WO2018212248A1 - Image processing device and image processing method - Google Patents

Image processing device and image processing method Download PDF

Info

Publication number
WO2018212248A1
WO2018212248A1 PCT/JP2018/018975 JP2018018975W WO2018212248A1 WO 2018212248 A1 WO2018212248 A1 WO 2018212248A1 JP 2018018975 W JP2018018975 W JP 2018018975W WO 2018212248 A1 WO2018212248 A1 WO 2018212248A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
image processing
heart
processing apparatus
Prior art date
Application number
PCT/JP2018/018975
Other languages
French (fr)
Japanese (ja)
Inventor
康之 本間
直矢 嶋田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2019518843A priority Critical patent/JPWO2018212248A1/en
Publication of WO2018212248A1 publication Critical patent/WO2018212248A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present disclosure relates to an image processing apparatus and an image processing method.
  • Patent Document 1 describes a medical system that performs this type of diagnosis.
  • the medical system described in Patent Document 1 includes a medical instrument including a needle that is inserted into a target body and removes a lesion in the target body, and a vibration application unit that applies vibration to the needle.
  • the medical system described in Patent Literature 1 includes an ultrasonic data acquisition unit that transmits an ultrasonic signal to a target body, receives an ultrasonic echo signal reflected from the target body, and acquires ultrasonic data.
  • the medical system described in Patent Document 1 is connected to a medical instrument and an ultrasonic data acquisition unit, forms a plurality of ultrasonic images using the ultrasonic data, and performs motion tracking on each of the plurality of ultrasonic images. To detect the position of the needle and to perform image processing for improving the image quality of the ultrasonic image based on the detected position of the needle on a plurality of ultrasonic images.
  • Ultrasound images can be obtained in real time, but in the case of ultrasound images, it is difficult to clearly identify the position and contour of a medical device such as a needle due to attenuation of the ultrasound. It is difficult to perform a diagnosis or treatment by operating a medical instrument while confirming a sound image.
  • motion tracking is performed to detect the position of the needle
  • image processing is performed to improve the image quality of the ultrasound image based on the detected position of the needle. ing.
  • This disclosure is intended to provide an image processing apparatus and an image processing method capable of improving the accuracy of contour correction of a tubular member as a medical instrument in an image.
  • An image processing apparatus as a first aspect of the present disclosure includes an imaging unit capable of capturing an image of a heart from a body surface, an acquisition unit that acquires outer diameter information of a tubular member inserted into the heart, and the acquisition An image processing unit that corrects an outline of the tubular member in the image based on the outer diameter information acquired by the unit.
  • the image processing unit corrects the contour of the tubular member in the image based on the outer diameter information and the scale information of the image.
  • the imaging unit includes an ultrasonic wave transmission unit that transmits ultrasonic waves, an ultrasonic wave reception unit that receives ultrasonic waves, and the measurement information received by the ultrasonic wave reception unit.
  • An image forming unit to be formed.
  • the imaging unit captures the image every predetermined time.
  • An image processing apparatus as an embodiment of the present disclosure includes a display unit that can display the image corrected by the image processing unit.
  • An image processing apparatus as an embodiment of the present disclosure includes an input unit that inputs the outer diameter information to the acquisition unit.
  • An image processing apparatus as an embodiment of the present disclosure includes an operation unit that receives an operation by a user, and the input unit inputs the outer diameter information received by the operation unit to the acquisition unit.
  • An image processing apparatus as one embodiment of the present disclosure includes a storage unit that stores the outer diameter information, and the input unit inputs the outer diameter information stored in the storage unit to the acquisition unit.
  • An image processing apparatus as a second aspect of the present disclosure includes an acquisition unit that acquires outer diameter information of a tubular member inserted into a heart, and a body surface based on the outer diameter information acquired by the acquisition unit. An image processing unit that corrects the contour of the tubular member in the captured image of the heart.
  • An image processing method as a third aspect of the present disclosure includes an imaging step of capturing a heart image from a body surface, an acquisition step of acquiring outer diameter information of a tubular member inserted into the heart, and the outer diameter And an image processing step of correcting a contour of the tubular member in the image based on the information.
  • an image processing apparatus and an image processing method capable of improving the accuracy of contour correction of a tubular member as a medical instrument in an image.
  • FIG. 1 is a block diagram illustrating an image processing apparatus 1 as one embodiment of an image processing apparatus according to the present disclosure.
  • FIG. 2 is a schematic diagram showing an outline of a procedure performed using the image processing apparatus 1.
  • the image processing apparatus 1 delivers a medical instrument into the heart through blood vessels, and performs a predetermined diagnosis or treatment in the heart.
  • This is a monitoring device that can monitor the state in the heart.
  • the monitoring apparatus as the image processing apparatus 1 monitors, for example, the position and contour of the catheter in the left ventricle LV as the tubular member 31 inserted into the left ventricle LV from the femoral artery FA through the aorta AO and the aortic valve AV from outside the body. Display as you can.
  • a medical worker such as a doctor depends on the position and contour of the tubular member 31 in the left ventricle LV displayed on the monitoring device as the image processing apparatus 1, and various kinds of deliveries delivered into the left ventricle LV through the tubular member 31.
  • a predetermined diagnosis or treatment is performed using a medical instrument.
  • the predetermined treatment performed in the left ventricle LV for example, treatment in which various therapeutic substances are administered into the myocardium in order to treat heart disease or the like can be mentioned.
  • various therapeutic substances include cells that can provide therapeutic effects such as cell replacement, angiogenesis induction, heart wall reinforcement, scaffolding materials, or tissue repair or regeneration by prevention of apoptosis / necrosis. Or a polymer etc.
  • Cells as a therapeutic substance are administered into the myocardium in the state of a cell suspension dispersed in a liquid such as physiological saline.
  • Adherent cells include, for example, adherent cells (adherent cells).
  • Adherent cells include, for example, adherent somatic cells (eg, cardiomyocytes, fibroblasts, epithelial cells, endothelial cells, hepatocytes, pancreatic cells, kidney cells, adrenal cells, periodontal cells, gingival cells, periosteum cells, skin Cells, synovial cells, chondrocytes, etc.) and stem cells (eg, tissue stem cells such as myoblasts, cardiac stem cells, embryonic stem cells, pluripotent stem cells such as induced pluripotent cells (iPS) cells, mesenchymal stem cells, etc.) Etc.
  • adherent somatic cells eg, cardiomyocytes, fibroblasts, epithelial cells, endothelial cells, hepatocytes, pancreatic cells, kidney cells, adrenal cells, periodontal cells, gingival cells, periosteum cells, skin Cells, synovial
  • Somatic cells may be stem cells, especially cells differentiated from iPS cells.
  • Non-limiting examples of cells as therapeutic substances include, for example, myoblasts (eg, skeletal myoblasts), mesenchymal stem cells (eg, bone marrow, adipose tissue, peripheral blood, skin, hair root, muscle tissue, uterus) Endometrium, placenta, cord blood-derived cells, etc.), cardiomyocytes, fibroblasts, cardiac stem cells, embryonic stem cells, iPS cells, synovial cells, chondrocytes, epithelial cells (eg, oral mucosal epithelial cells, retinal pigment epithelium) Cells, nasal mucosal epithelial cells, etc.), endothelial cells (eg, vascular endothelial cells, etc.), hepatocytes (eg, liver parenchymal cells, etc.), pancreatic cells (eg, islet cells, etc.), kidney cells, adrenal cells, periodontal ligament
  • Drugs as therapeutic substances include, for example, proteins, plasmids, genes, growth factors, chemoattractants, synthetic polypeptides, various pharmaceutical compositions, and other therapeutically beneficial substances alone, Or they can be included in any combination.
  • Polymers as therapeutic agents include injectable biocompatible single-component or multi-component materials, polymer-based beads, polymer hydrogels, fibrin adhesives, synthetic polymeric materials such as collagen, alginate, polyethylene glycol, and Chitosan etc. are mentioned.
  • the monitoring device as the image processing apparatus 1 monitors the treatment for administering the therapeutic substance from the left ventricle LV to or near the infarct site X of the myocardium of the left ventricle LV.
  • the operation performed while monitoring by the monitoring device as the image processing apparatus 1 is not limited to the administration of a predetermined therapeutic substance, for example, a procedure for diagnosing the infarct state of the myocardium of the left ventricle LV Etc.
  • a tomographic image of the heart is acquired from outside the body using a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) or an X-ray computed tomography apparatus (hereinafter referred to as an X-ray CT apparatus). It can be specified in advance from the acquired tomographic image.
  • MRI apparatus magnetic resonance imaging apparatus
  • X-ray CT apparatus X-ray computed tomography apparatus
  • the monitoring device as the image processing device 1 of the present embodiment is not limited to the device that enables monitoring of the treatment in the left ventricle LV described above, and is executed inside any of the right ventricle, the left atrium, and the right atrium. It is good also as a device which can monitor the treatment to be performed from outside the body.
  • the image processing apparatus 1 of the present embodiment is a three-dimensional ultrasonic diagnostic apparatus. Therefore, it is possible to acquire tomographic images at different cross sections even in any of the left ventricle LV, right ventricle, left atrium, and right atrium, and monitoring can be performed by using these tomographic images.
  • the image processing apparatus 1 includes an imaging unit 2, an acquisition unit 3, an image processing unit 4, a display unit 5, an input unit 6, an operation unit 7, a storage unit 8, and a control. Part 9.
  • the imaging unit 2 can capture a tomographic image of the heart as a heart image and a three-dimensional image of the heart from the body surface.
  • the imaging unit 2 includes an ultrasonic wave transmission unit 11 that transmits ultrasonic waves, an ultrasonic wave reception unit 12 that receives ultrasonic waves, and an ultrasonic wave as ultrasonic measurement information received by the ultrasonic wave reception unit 12. And an image forming unit 13 that forms a tomographic image from the sound wave data.
  • the ultrasonic receiving unit 12 receives ultrasonic waves transmitted from the ultrasonic transmission unit 11 and reflected from each part of the heart.
  • the monitoring device as the image processing device 1 of the present embodiment is a three-dimensional ultrasonic diagnostic device.
  • the “three-dimensional ultrasonic diagnostic apparatus” means an ultrasonic diagnostic apparatus that can capture a three-dimensional image.
  • the three-dimensional ultrasonic diagnostic apparatus as the image processing apparatus 1 according to this embodiment includes a three-dimensional ultrasonic probe 1a that is brought into contact with the body surface, and an apparatus that can communicate with the three-dimensional ultrasonic probe 1a by wire or wirelessly.
  • the three-dimensional ultrasonic probe 1 a includes an ultrasonic transmission unit 11 and an ultrasonic reception unit 12 of the imaging unit 2.
  • the apparatus main body 1 b includes an image forming unit 13 of the imaging unit 2.
  • the image forming unit 13 includes a processor such as a CPU or MPU.
  • the three-dimensional ultrasonic probe 1a is arranged on the skin near the rib on the front surface of the body so that the ultrasonic wave can be transmitted and received between the ribs.
  • an ultrasonic diagnosis is executed using the ultrasonic transmitter 11 and the ultrasonic receiver 12.
  • the apparatus main body 1b acquires ultrasonic measurement information from the three-dimensional ultrasonic probe 1a. Next, the image forming unit 13 of the apparatus main body 1b forms a tomographic image of the heart based on the acquired ultrasonic measurement information.
  • the imaging unit 2 can capture tomographic images at various cross sections of the heart. That is, the image forming unit 13 of the imaging unit 2 forms a tomographic image for the predetermined plane based on the measurement information of the predetermined plane received by the ultrasonic receiver 12. Furthermore, the imaging unit 2 performs rendering by processing of stacking a plurality of tomographic images of the captured heart and processing of three-dimensional data serving as a basis of each tomographic image collected at the time of scanning for capturing a plurality of tomographic images. Run and take a 3D image of the heart.
  • the image forming unit 13 of the imaging unit 2 combines a plurality of tomographic images, or processes three-dimensional data collected when each tomographic image is captured, thereby processing a three-dimensional model of the heart. And any three-dimensional image of the heart can be formed based on this three-dimensional model.
  • FIG. 3 is a diagram illustrating an example of a three-dimensional image of the heart imaged by the imaging unit 2. More specifically, FIG. 3 shows a state where a cross-sectional image of the left ventricle LV of the three-dimensional model of the heart formed by the imaging unit 2 is displayed on the display unit 5. More specifically, FIG. 3 intersects a line segment connecting the aortic valve AV (see FIG. 2) and the apex Y of the left ventricle LV (see FIG. 2) at a predetermined angle (in the present embodiment, substantially orthogonal). ) A cross-sectional image of the cross section, which is an image of the apex Y side as viewed from the aortic valve AV side.
  • a three-dimensional model of the heart is formed by the imaging unit 2, not only the cross section shown in FIG. 3 but also a desired cross section of the heart can be displayed on the display unit 5 described later.
  • the treatment is performed in a state where a cross section intersecting with a line segment connecting the aortic valve AV (see FIG. 2) and the apex Y of the left ventricle LV is displayed on the display unit 5 described later.
  • monitoring is performed, the operation may be monitored by a cross-sectional image of a cross section substantially parallel to a line segment connecting the aortic valve AV and the apex Y of the left ventricle LV.
  • the imaging unit 2 captures an image every predetermined time. Specifically, the imaging unit 2 can capture tomographic images at the same position every predetermined time and can display them on the display unit 5 over time as a moving image. In addition, the imaging unit 2 can capture a three-dimensional image (including a cross-sectional image formed from a three-dimensional model) of the heart at the same viewpoint at predetermined time intervals and display it on the display unit 5 over time as a moving image. it can.
  • the imaging interval of the three-dimensional image (in this embodiment, approximately equal to the three-dimensional model formation interval) is set to 1 second, for example, and the tomographic image, the three-dimensional image, etc. are displayed as moving images over time at the same interval.
  • a tomographic image of the heart, a three-dimensional image, etc. can be monitored in real time.
  • an intra-cardiac image can be displayed on the display unit 5.
  • FIG. 3 as an example, only a cross-sectional image as a three-dimensional image of the heart formed from a three-dimensional model is shown.
  • the imaging interval of the 3D image is not limited to 1 second and can be set as appropriate. However, in order to display the tomographic image of the heart during the operation, the 3D image, etc. in real time, the 3D image of the heart is at least 3 seconds. It is preferable to perform imaging at the following intervals.
  • the time interval for switching the tomographic image and the three-dimensional image displayed on the display unit 5 with time may be the same as the imaging interval of the three-dimensional image, or may be a different interval. For example, when only the tomographic image is displayed on the display unit 5 in real time, the imaging interval for capturing the tomographic image at the same position is set to 200 msec, and the display of the display unit 5 is switched at the same interval as this imaging interval.
  • the display may be switched at a time interval different from the imaging interval.
  • a tomographic image displayed on the display unit 5 and a tomographic image not displayed on the display unit 5 are alternately captured at predetermined time intervals.
  • the structure to do is mentioned.
  • the imaging interval for capturing the 3D image at the same position is set to 1 second or the like, and the display unit 5 is displayed at the same interval as this imaging interval.
  • the display may be switched, or the display may be switched at a time interval different from the imaging interval.
  • a three-dimensional image displayed on the display unit 5 and a three-dimensional image not displayed on the display unit 5 are alternately displayed every predetermined time.
  • a configuration for imaging is given.
  • a treatment for administering a predetermined therapeutic substance is executed by using the image while displaying the image in the heart in real time. Therefore, during this treatment, the three-dimensional ultrasonic probe 1a is fixed at a predetermined position on the body surface described above.
  • the fixation of the three-dimensional ultrasonic probe 1a on the body surface can be realized by sticking the body surface with an adhesive or the like.
  • the acquisition unit 3 acquires the outer diameter information of the tubular member 31 as a medical instrument inserted into the heart. Specifically, the acquisition unit 3 acquires the outer diameter information of the catheter as the tubular member 31 input by the input unit 6 described later.
  • the outer diameter information of the tubular member 31 may be information that can specify the outer diameter of the tubular member 31, and is not limited to the outer diameter dimension. For example, it is good also as information which can specify an outer diameter indirectly, such as circumference.
  • the acquisition unit 3 of the present embodiment is provided in the apparatus main body 1b, but may be provided in the three-dimensional ultrasonic probe 1a.
  • the image processing apparatus 1 includes a processor 20 (see FIG. 1) configured by a CPU and an MPU.
  • the processor 20 constitutes an acquisition unit 3 together with an image processing unit 4 described later.
  • the image processing unit 4 corrects the outline of the tubular member 31 in the tomographic image of the heart and the three-dimensional image of the heart captured by the imaging unit 2 based on the outer diameter information of the tubular member 31 acquired by the acquiring unit 3. If the outer diameter information of the tubular member 31 can be acquired in advance, the outline of the tubular member 31 displayed in the tomographic image can be easily corrected. Moreover, if the outer diameter information of the tubular member 31 can be acquired in advance, the outline of the tubular member 31 displayed in the three-dimensional image of the heart can be easily corrected.
  • the image processing unit 4 of the present embodiment is based on the outer diameter information of the tubular member 31 and the scale information of an image such as a tomographic image or a three-dimensional image captured by the imaging unit 2.
  • the contour of the member 31 is corrected.
  • Examples of the scale information of the image captured by the image capturing unit 2 include ratio information between the actual distance and the image distance in the image with respect to a predetermined two points in the image.
  • the image scale information may be information acquired by a user operation of the operation unit 7 described later, or may be information stored in the storage unit 8 described later.
  • the acquisition unit 3 acquires such image scale information by being input by an input unit 6 described later.
  • the contour correction of the tubular member 31 in the tomographic image of the heart or the three-dimensional image of the heart is performed based on other information in addition to the above-described outer diameter information and scale information from the viewpoint of improving the correction accuracy.
  • Other information includes, for example, inner diameter information and thickness information of the tubular member 31.
  • the image processing unit 4 can be configured by the processor 20 (see FIG. 1) configured by a CPU or MPU.
  • the display unit 5 can display a tomographic image in which the contour of the tubular member 31 is corrected by the image processing unit 4.
  • the display unit 5 can display a cross-sectional image of the heart formed from a three-dimensional model of the heart as a three-dimensional image of the heart with the contour of the tubular member 31 corrected by the image processing unit 4.
  • the display unit 5 can be configured with, for example, a liquid crystal display.
  • the display unit 5 is provided in the apparatus main body 1b of the image processing apparatus 1, but may be configured to be provided in the three-dimensional ultrasonic probe 1a in addition to the apparatus main body 1b.
  • FIG. 3 shows an example in which only a cross-sectional image of the heart formed from a three-dimensional model of the heart is displayed, but a tomographic image of the heart and a three-dimensional image other than the cross-sectional image are displayed simultaneously. You can also.
  • the position and size of the infarct region X of the myocardium of the left ventricle LV are acquired in advance using an MRI apparatus or an X-ray CT apparatus.
  • the tomographic image captured by the imaging unit 2 is displayed on the display unit 5, and a display indicating the position and size of the infarct site X is superimposed or synthesized on the displayed tomographic image. That is, in the real-time tomographic image that is switched to the latest state at any time, the position and size of the infarct site X to be treated or the vicinity thereof can be indicated. Therefore, the actual treatment can be executed while confirming the infarct site X, which is a target site of the treatment to which the therapeutic substance is administered, and the position and size in the vicinity thereof in the tomographic image in real time.
  • the display unit 5 can display a three-dimensional image of the heart imaged by the imaging unit 2 as shown in FIG. A display indicating the position and size of X is superimposed or synthesized (see FIG. 3).
  • the therapeutic substance when a therapeutic substance is administered to the infarct region X displayed in the tomographic image and the three-dimensional image described above or in the vicinity thereof, the therapeutic substance is administered, for example, by displaying a predetermined mark at the administration position.
  • the display unit 5 is caused to display a display that enables the identified position to be identified. In this way, it becomes easy for a medical worker such as a doctor to grasp the progress of the treatment while checking the image processing apparatus 1.
  • the input unit 6 inputs the outer diameter information of the tubular member 31 to the acquisition unit 3. Specifically, the input unit 6 inputs the outer diameter information of the tubular member 31 received by the operation unit 7 described later to the acquisition unit 3. Further, the input unit 6 inputs the outer diameter information of the tubular member 31 stored in the storage unit 8 described later to the acquisition unit 3. Thus, the input unit 6 can input the outer diameter information of the tubular member 31 from the operation unit 7 and the storage unit 8 to the acquisition unit 3. Similarly to the acquisition unit 3 and the image processing unit 4 described above, the input unit 6 also includes a processor 20 (see FIG. 1).
  • the operation unit 7 is a part that receives an operation by the user.
  • the operation unit 7 can be configured by various user interfaces such as a switch and a liquid crystal touch panel provided on the outer wall of the apparatus main body 1b of the image processing apparatus 1, for example.
  • the storage unit 8 is a part that stores the outer diameter information of the tubular member.
  • the storage unit 8 can be constituted by a memory such as a ROM (abbreviation of Read Only Memory) or a RAM (abbreviation of Random Access Memory), for example.
  • the control unit 9 performs the above-described operation at a predetermined timing on each of the imaging unit 2, the acquisition unit 3, the image processing unit 4, the display unit 5, the input unit 6, the operation unit 7, and the storage unit 8. Instruct to run.
  • the control unit 9 reads an image processing program stored in the storage unit 8 and causes the image processing unit 4 to execute image processing.
  • the control unit 9 is configured by a processor 20 (see FIG. 1) such as an MPU or a CPU, like the acquisition unit 3, the image processing unit 4, and the input unit 6 described above.
  • the acquisition unit 3, the image processing unit 4, the input unit 6, and the control unit 9 are configured from a single processor 20, but may be configured from a plurality of processors.
  • the image processing method shown in the flowchart of FIG. 4 is executed.
  • the image processing method by the image processing apparatus 1 includes an imaging step S1 for capturing a heart image from the body surface, an acquisition step S2 for acquiring outer diameter information of the tubular member 31 inserted into the heart, and a tubular shape.
  • An image processing step S3 for correcting the contour of the tubular member 31 in the image captured in the imaging step S1 based on the outer diameter information of the member 31. Since the processing in each of the steps S1 to S3 is as described above, description thereof is omitted here.
  • the contour of the tubular member 31 in the image may be corrected using various information such as the outer diameter information and shape information of the puncture member as a medical instrument delivered into the heart through the tubular member 31.
  • the puncture member is used when the myocardium is punctured and a therapeutic substance is injected into the myocardium, and is used by protruding from the distal end opening of the tubular member 31. Therefore, the puncture member is reflected together with the tubular member 31 in the cross-sectional image of the heart (see FIG. 3). Therefore, various types of information on the puncture member may be acquired and used for contour correction of the tubular member 31.
  • Various types of information on the puncture member are acquired by the acquisition unit 3 as in the case of the outer shape information of the tubular member 31, for example.
  • the contour of the tubular member 31 is corrected.
  • the contour of the tubular member 31 in the ultrasound image is corrected.
  • a similar technique may be applied to the contour correction of the tubular member 31 in an image other than the ultrasound image.
  • the image processing device 1 includes the imaging unit 2. However, the image processing device 1 does not include the imaging unit 2, acquires a heart image captured by an external imaging device, and executes image processing.
  • the image processing apparatus may be used. In such a case, the acquisition unit 3 of the image processing device 1 may acquire heart image data from an external imaging device.
  • Patent Document 2 describes an ultrasonic diagnostic apparatus used for this type of diagnosis.
  • the ultrasonic diagnostic apparatus described in Patent Document 2 includes an ultrasonic wave generation unit that generates an ultrasonic wave in the vicinity of the tip, and transmits and receives an ultrasonic wave to and from a catheter or a small-diameter probe inserted into the subject. And an ultrasonic probe formed by two-dimensionally arranging a plurality of ultrasonic transducers that wave.
  • the ultrasonic diagnostic apparatus described in Patent Document 2 includes a first transmission drive unit that generates a drive signal so that an ultrasonic probe performs ultrasonic transmission for generating an ultrasonic image, and an ultrasonic generation unit.
  • Second transmission driving means for generating a drive signal so as to perform position detection ultrasonic wave transmission a plurality of times and an ultrasonic reception signal based on a plurality of position detection ultrasonic waves are added, and based on the received signal after addition
  • Position calculating means for obtaining position information of the catheter or the small diameter probe.
  • the ultrasonic diagnostic apparatus described in Patent Document 2 includes an ultrasonic image generation unit that generates an ultrasonic image based on an ultrasonic reception signal corresponding to an ultrasonic wave transmission for generating an ultrasonic image, and a catheter or a cell.
  • Display means for displaying the position of the catheter or the small diameter probe together with the ultrasonic image based on the position information of the diameter probe.
  • an insertion means such as a catheter or a small-diameter probe inserted into a lumen such as a blood vessel or a bile duct is provided with an ultrasonic wave generation means that generates an ultrasonic wave near the tip. Since ultrasonic waves emitted from the insertion means can be used when the insertion means is inserted to perform diagnosis or treatment, according to the ultrasonic diagnostic apparatus described in Patent Document 2, the position of the insertion means in the body can be more accurately determined. Can be identified.
  • FIG. 5 is a block diagram showing an image processing device set 1100 as one embodiment of the image processing device set according to the present disclosure.
  • An image processing device set 1100 illustrated in FIG. 5 includes an image processing device 1001 as one embodiment of the image processing device according to the present disclosure, and an insertion member 1031 to be inserted into the heart.
  • FIG. 6 is a schematic diagram showing an outline of a procedure performed using the image processing apparatus set 1100.
  • the image processing apparatus 1001 delivers a medical instrument into a heart through a blood vessel, and performs a predetermined diagnosis or treatment in the heart.
  • This is a monitoring device that can monitor the state in the heart.
  • the monitoring apparatus as the image processing apparatus 1001 monitors, for example, the position and contour of the catheter in the left ventricle LV as the insertion member 1031 inserted into the left ventricle LV from the femoral artery FA through the aorta AO and the aortic valve AV from outside the body. Display as you can.
  • a medical worker such as a doctor, depending on the position and contour of the insertion member 1031 in the left ventricle LV displayed on the monitoring device as the image processing apparatus 1001, can deliver various types of deliveries into the left ventricle LV through the insertion member 1031.
  • a predetermined diagnosis or treatment is performed using a medical instrument.
  • the predetermined treatment performed in the left ventricle LV for example, treatment in which various therapeutic substances are administered into the myocardium in order to treat heart disease or the like can be mentioned.
  • various therapeutic substances include cells that can provide therapeutic effects such as cell replacement, angiogenesis induction, heart wall reinforcement, scaffolding materials, or tissue repair or regeneration by prevention of apoptosis / necrosis. Or a polymer etc.
  • Cells as a therapeutic substance are administered into the myocardium in the state of a cell suspension dispersed in a liquid such as physiological saline.
  • Adherent cells include, for example, adherent cells (adherent cells).
  • Adherent cells include, for example, adherent somatic cells (eg, cardiomyocytes, fibroblasts, epithelial cells, endothelial cells, hepatocytes, pancreatic cells, kidney cells, adrenal cells, periodontal cells, gingival cells, periosteum cells, skin Cells, synovial cells, chondrocytes, etc.) and stem cells (eg, tissue stem cells such as myoblasts, cardiac stem cells, embryonic stem cells, pluripotent stem cells such as induced pluripotent cells (iPS) cells, mesenchymal stem cells, etc.) Etc.
  • adherent somatic cells eg, cardiomyocytes, fibroblasts, epithelial cells, endothelial cells, hepatocytes, pancreatic cells, kidney cells, adrenal cells, periodontal cells, gingival cells, periosteum cells, skin Cells, synovial
  • Somatic cells may be stem cells, especially cells differentiated from iPS cells.
  • Non-limiting examples of cells as therapeutic substances include, for example, myoblasts (eg, skeletal myoblasts), mesenchymal stem cells (eg, bone marrow, adipose tissue, peripheral blood, skin, hair root, muscle tissue, uterus) Endometrium, placenta, cord blood-derived cells, etc.), cardiomyocytes, fibroblasts, cardiac stem cells, embryonic stem cells, iPS cells, synovial cells, chondrocytes, epithelial cells (eg, oral mucosal epithelial cells, retinal pigment epithelium) Cells, nasal mucosal epithelial cells, etc.), endothelial cells (eg, vascular endothelial cells, etc.), hepatocytes (eg, liver parenchymal cells, etc.), pancreatic cells (eg, islet cells, etc.), kidney cells, adrenal cells, periodontal ligament
  • Drugs as therapeutic substances include, for example, proteins, plasmids, genes, growth factors, chemoattractants, synthetic polypeptides, various pharmaceutical compositions, and other therapeutically beneficial substances alone, Or they can be included in any combination.
  • Polymers as therapeutic agents include injectable biocompatible single-component or multi-component materials, polymer-based beads, polymer hydrogels, fibrin adhesives, synthetic polymeric materials such as collagen, alginate, polyethylene glycol, and Chitosan etc. are mentioned.
  • a treatment that administers a therapeutic substance from the left ventricle LV to or near the infarct region X of the myocardium of the left ventricle LV is monitored by a monitoring device as the image processing device 1001.
  • the operation performed while monitoring with the monitoring device as the image processing apparatus 1001 is not limited to the administration of a predetermined therapeutic substance, for example, a procedure for diagnosing the infarct state of the myocardium of the left ventricle LV Etc.
  • a tomographic image of the heart is acquired from outside the body using a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) or an X-ray computed tomography apparatus (hereinafter referred to as an X-ray CT apparatus). It can be specified in advance from the acquired tomographic image.
  • MRI apparatus magnetic resonance imaging apparatus
  • X-ray CT apparatus X-ray computed tomography apparatus
  • the monitoring apparatus as the image processing apparatus 1001 of the present embodiment is not limited to an apparatus that can monitor the treatment in the left ventricle LV (see FIG. 6), and any one of the right ventricle, the left atrium, and the right atrium. It is good also as a device which can monitor the treatment performed inside the body from outside the body.
  • the image processing apparatus 1001 of the present embodiment is a three-dimensional ultrasonic diagnostic apparatus. Therefore, it is possible to acquire tomographic images at different cross sections even in any of the left ventricle LV, right ventricle, left atrium, and right atrium, and monitoring can be performed by using these tomographic images.
  • the image processing apparatus 1001 includes an imaging unit 1002, an image processing unit 1003, a display unit 1004, an operation unit 1005, a storage unit 1006, and a control unit 1007.
  • the imaging unit 1002 can capture a tomographic image of the heart as a heart image and a three-dimensional image of the heart from the body surface.
  • the imaging unit 1002 includes an ultrasonic transmission unit 1011 that transmits ultrasonic waves, an ultrasonic reception unit 1012 that receives ultrasonic waves, and ultrasonic measurement information received by the ultrasonic reception unit 1012 as ultrasonic measurement information.
  • the ultrasonic receiving unit 1012 receives ultrasonic waves transmitted from the ultrasonic transmitting unit 1011 and reflected from each part of the heart.
  • the monitoring apparatus as the image processing apparatus 1001 of the present embodiment is a three-dimensional ultrasonic diagnostic apparatus.
  • the “three-dimensional ultrasonic diagnostic apparatus” means an ultrasonic diagnostic apparatus that can capture a three-dimensional image.
  • the three-dimensional ultrasonic diagnostic apparatus as the image processing apparatus 1001 of this embodiment includes a three-dimensional ultrasonic probe 1001a that is brought into contact with the body surface, and an apparatus that can communicate with the three-dimensional ultrasonic probe 1001a by wire or wirelessly.
  • the three-dimensional ultrasonic probe 1001a includes an ultrasonic transmission unit 1011 and an ultrasonic reception unit 1012 of the imaging unit 1002.
  • the apparatus main body 1001b includes an image forming unit 1013 of the imaging unit 1002.
  • the image forming unit 1013 is configured by a processor such as a CPU or MPU.
  • the three-dimensional ultrasonic probe 1001a is arranged on the skin near the rib on the front surface of the body so that ultrasonic waves can be transmitted and received from between the ribs.
  • ultrasonic diagnosis is executed using the ultrasonic transmission unit 1011 and the ultrasonic reception unit 1012.
  • the apparatus main body 1001b acquires ultrasonic measurement information from the three-dimensional ultrasonic probe 1001a. Next, the image forming unit 1013 of the apparatus main body 1001b forms a tomographic image of the heart based on the acquired ultrasonic measurement information.
  • the imaging unit 1002 can capture tomographic images at various cross sections of the heart. That is, the image forming unit 1013 of the imaging unit 1002 forms a tomographic image for the predetermined plane based on the measurement information of the predetermined plane received by the ultrasonic receiver 1012. Furthermore, the imaging unit 1002 performs rendering by processing of stacking a plurality of tomographic images of the captured heart and processing of three-dimensional data that is the basis of each tomographic image collected at the time of scanning for capturing a plurality of tomographic images. Run and take a 3D image of the heart.
  • the image forming unit 1013 of the imaging unit 1002 combines a plurality of tomographic images, or processes three-dimensional data collected when each tomographic image is captured, thereby processing a three-dimensional model of the heart. And any three-dimensional image of the heart can be formed based on this three-dimensional model.
  • FIG. 7 is a diagram illustrating an example of a three-dimensional image of the heart imaged by the imaging unit 1002. More specifically, FIG. 7 shows a state where a cross-sectional image of the left ventricle LV of the three-dimensional model of the heart formed by the imaging unit 1002 is displayed on the display unit 1004. More specifically, FIG. 7 intersects a line segment connecting the aortic valve AV (see FIG. 6) and the apex Y of the left ventricle LV (see FIG. 6) at a predetermined angle (in the present embodiment, substantially orthogonal). ) A cross-sectional image of the cross-section, as viewed from the aortic valve AV side to the apex Y side.
  • the desired cross section of the heart can be displayed on the display unit 1004 described later, not only the cross section shown in FIG.
  • the operation is performed in a state where a cross section intersecting with a line segment connecting the aortic valve AV (see FIG. 6) and the apex Y of the left ventricle LV is displayed on the display unit 1004 described later.
  • the operation may be monitored by a cross-sectional image of a cross section substantially parallel to a line segment connecting the aortic valve AV and the apex Y of the left ventricle LV.
  • the imaging unit 1002 captures an image every predetermined time. Specifically, the imaging unit 1002 can capture tomographic images at the same position every predetermined time and can display them on the display unit 1004 over time as a moving image. In addition, the imaging unit 1002 captures a three-dimensional image of the heart (including a cross-sectional image formed from a three-dimensional model) at the same viewpoint at predetermined time intervals and displays it on the display unit 1004 over time as a moving image. it can.
  • the imaging interval of the three-dimensional image (in this embodiment, approximately equal to the three-dimensional model formation interval) is set to 1 second, for example, and the tomographic image, the three-dimensional image, etc. are displayed as a moving image over time on the display unit 1004 at the same interval.
  • a tomographic image of the heart, a three-dimensional image, etc. can be monitored in real time.
  • an intracardiac image can be displayed on the display unit 1004.
  • FIG. 7 only a cross-sectional image as a three-dimensional image of the heart formed from a three-dimensional model is shown as an example.
  • the imaging interval of the 3D image is not limited to 1 second and can be set as appropriate. However, in order to display the tomographic image of the heart during the operation, the 3D image, etc. in real time, the 3D image of the heart is at least 3 seconds. It is preferable to perform imaging at the following intervals. Further, the time interval for switching the tomographic image or the three-dimensional image displayed on the display unit 1004 with time may be the same as the imaging interval of the three-dimensional image or may be different. For example, when only the tomographic image is displayed on the display unit 1004 in real time, the imaging interval for capturing the tomographic image at the same position is set to 200 msec, and the display of the display unit 1004 is switched at the same interval as this imaging interval.
  • the display may be switched at a time interval different from the imaging interval.
  • a tomographic image displayed on the display unit 1004 and a tomographic image not displayed on the display unit 1004 are alternately captured at predetermined time intervals.
  • the structure to do is mentioned.
  • the imaging interval for capturing the three-dimensional image at the same position is set to 1 second, and the display unit 1004 is displayed at the same interval as this imaging interval.
  • the display may be switched, or the display may be switched at a time interval different from the imaging interval.
  • a three-dimensional image displayed on the display unit 1004 and a three-dimensional image not displayed on the display unit 1004 are alternately displayed every predetermined time.
  • a configuration for imaging is given.
  • the intra-cardiac image is displayed in real time, and a treatment for administering a predetermined therapeutic substance is executed using the image. Therefore, during this treatment, the three-dimensional ultrasonic probe 1001a is fixed at a predetermined position on the body surface described above. Fixation of the three-dimensional ultrasonic probe 1001a on the body surface can be realized by sticking the body surface with an adhesive or the like.
  • the imaging unit 1002 includes a receiving device 1002a.
  • the receiving device 1002a receives a plurality of pieces of position information transmitted from the insertion member 1031.
  • the plurality of pieces of position information transmitted from the insertion member 1031 of the present embodiment are ultrasonic signals as will be described later. Therefore, the receiving device 1002a of the present embodiment is an ultrasonic receiving device that receives an ultrasonic signal transmitted from the insertion member 1031.
  • the ultrasonic receiving apparatus as the receiving apparatus 1002a of this embodiment is provided in the three-dimensional ultrasonic probe 1001a. More specifically, the ultrasonic receiving device as the receiving device 1002a of the present embodiment constitutes an ultrasonic receiving unit 1012.
  • the ultrasonic receiving device as the receiving device 1002a of the present embodiment is transmitted from the ultrasonic receiving unit 1012 that receives ultrasonic measurement information when capturing a tomographic image and the insertion member 1031 located in the heart. And a receiving unit that receives position information.
  • the image processing unit 1003 corrects the contour of the insertion member 1031 inserted in the heart in the heart image captured by the imaging unit 1002. Specifically, the image processing unit 1003 corrects the contour of the insertion member 1031 in the image based on the plurality of pieces of position information of the insertion member 1031 received by the reception device 1002a. More specifically, the image processing unit 1003 corrects the contour of the insertion member 1031 in the image based on a difference in reception timing of a plurality of pieces of position information received by the receiving device 1002a.
  • the “plurality of position information” of the insertion member 1031 is position information indicating different positions of the insertion member 1031 at an arbitrary timing.
  • the contour of the insertion member 1031 in the image can be corrected so as to match the positional relationship.
  • the positional relationship between different parts set in advance can be specified by using the difference in reception timing. A specific example of the “plurality of position information” will be described later.
  • the image processing unit 1003 is based on the plurality of pieces of position information of the insertion member 1031 described above and scale information of an image such as a tomographic image or a three-dimensional image captured by the imaging unit 1002. Correct the contour.
  • Examples of the scale information of the image captured by the imaging unit 1002 include ratio information between the actual distance and the image distance in the image with respect to a predetermined two points in the image. Thus, if the scale information of an image is acquired, the outline of the insertion member 1031 displayed in the image can be corrected more clearly.
  • the image scale information may be information acquired by a user operation of the operation unit 1005 described later, or may be information stored in the storage unit 1006 described later.
  • the contour correction of the insertion member 1031 in the tomographic image of the heart or the three-dimensional image of the heart is executed based on other information in addition to the plurality of position information and scale information described above from the viewpoint of improving the correction accuracy. It is preferable.
  • Another information includes, for example, length information of the insertion member 1031.
  • the image processing unit 1003 can be configured by a processor 1020 (see FIG. 5) configured by a CPU or MPU.
  • the display unit 1004 can display a tomographic image in which the contour of the insertion member 1031 is corrected by the image processing unit 1003.
  • the display unit 1004 can display a cross-sectional image of the heart formed from a three-dimensional model of the heart as a three-dimensional image of the heart, the contour of the insertion member 1031 being corrected by the image processing unit 1003.
  • the display unit 1004 can be configured with, for example, a liquid crystal display.
  • the display unit 1004 is provided in the apparatus main body 1001b of the image processing apparatus 1001, but may be provided in the three-dimensional ultrasonic probe 1001a in addition to the apparatus main body 1001b.
  • the display unit 1004 shown in FIG. 7 shows an example in which only the cross-sectional image of the heart formed from the three-dimensional model of the heart is displayed. However, the tomographic image of the heart and the three-dimensional image other than the cross-sectional image are displayed simultaneously. You can also.
  • the position and size of the infarcted portion X of the myocardium of the left ventricle LV are acquired in advance using an MRI apparatus or an X-ray CT apparatus.
  • a tomographic image captured by the imaging unit 1002 is displayed on the display unit 1004, and a display indicating the position and size of the infarct site X is superimposed or synthesized on the displayed tomographic image. That is, in the real-time tomographic image that is switched to the latest state at any time, the position and size of the infarct site X to be treated or the vicinity thereof can be indicated. Therefore, the actual treatment can be executed while confirming the infarct site X, which is a target site of the treatment to which the therapeutic substance is administered, and the position and size in the vicinity thereof in the tomographic image in real time.
  • the display unit 1004 can display a three-dimensional image of the heart imaged by the imaging unit 1002 as shown in FIG. A display indicating the position and size of X is superimposed or synthesized (see FIG. 7).
  • the therapeutic substance when a therapeutic substance is administered to the infarct region X displayed in the tomographic image and the three-dimensional image described above or in the vicinity thereof, the therapeutic substance is administered, for example, by displaying a predetermined mark at the administration position.
  • the display unit 1004 displays a display that enables the identified position to be identified. In this way, it becomes easy for a medical worker such as a doctor to grasp the progress of the treatment while checking the image processing apparatus 1001.
  • the operation unit 1005 is a part that receives a user operation.
  • the operation unit 1005 can be configured by various user interfaces such as a switch and a liquid crystal touch panel provided on the outer wall of the apparatus main body 1001b of the image processing apparatus 1001, for example.
  • the storage unit 1006 is a part that stores the positional relationship between different preset parts of the insertion member 1031 and the outline shape of the insertion member 1031 corresponding to the positional relation in association with each other.
  • the storage unit 1006 can be configured by a memory such as a ROM (abbreviation of Read Only Memory) or a RAM (abbreviation of Random Access Memory), for example.
  • the control unit 1007 instructs each of the imaging unit 1002, the image processing unit 1003, the display unit 1004, the operation unit 1005, and the storage unit 1006 to execute the above-described operation at a predetermined timing.
  • the control unit 1007 reads an image processing program stored in the storage unit 1006 and causes the image processing unit 1003 to execute image processing.
  • the control unit 1007 is configured by a processor 1020 (see FIG. 5) such as an MPU or a CPU, similar to the image processing unit 1003 described above.
  • the image processing unit 1003 and the control unit 1007 may be configured from a single processor 1020 or a plurality of processors.
  • the insertion member 1031 is a member inserted into the heart.
  • the insertion member 1031 of this embodiment includes a transmission device 1031a that transmits a plurality of pieces of position information. More specifically, the insertion member 1031 of this embodiment includes a tubular member 1031b that is inserted into the heart, and the above-described transmission device 1031a is attached to the outer peripheral surface of the tubular member 1031b. Further, in the present embodiment, a plurality of transmitting devices 1031a are attached at different positions in the circumferential direction of the tubular member 1031b. The plurality of pieces of position information of the insertion member 1031 are transmitted from a plurality of transmission devices 1031a attached to different positions.
  • the outer diameter information of the tubular member 1031b can be acquired from the position information transmitted from each of the plurality of transmission devices 1031a.
  • the outer diameter information of the tubular member 1031b may be information that can specify the outer diameter of the tubular member 1031b, and is not limited to the outer diameter dimension. For example, it is good also as information which can specify an outer diameter indirectly, such as circumference. By using this outer diameter information, the contour of the tubular member 1031b in the image can be corrected.
  • the transmitting device 1031a of this embodiment can transmit an ultrasonic signal, and transmits an ultrasonic signal as position information.
  • the “plurality of position information” of the insertion member 1031 position information of different positions in the circumferential direction of the tubular member 1031 b is used to acquire the outer diameter information of the insertion member 1031.
  • Any information on the insertion member 1031 that can be used for correcting the contour of the member 1031 is not limited to the outer diameter information.
  • the insertion member 1031 of the present embodiment includes the tubular member 1031b.
  • the insertion member 1031 is not limited to the configuration including the tubular member 1031b.
  • another insertion device such as a surgical device delivered to the target site through the tubular member such as a catheter can be used. It may be a medical instrument.
  • the image processing apparatus 1001 described above executes the image processing method shown in the flowchart of FIG. Specifically, the image processing method by the image processing apparatus 1001 includes a receiving step S1 for receiving a plurality of positional information transmitted from an insertion member 1031 inserted into the heart, and an imaging step for taking an image of the heart from the body surface. S2 and image processing process S3 which correct
  • the image processing apparatus 1001, the image processing apparatus set 1100, and the image processing method that can be executed by the image processing apparatus 1001 are not limited to the specific configuration and process described above, and various changes and modifications are possible.
  • a tubular instrument for example, a catheter
  • outer diameter information and shape of a puncture member as a medical instrument delivered into the heart through the tubular instrument as the insertion member 1031
  • the outline of the insertion member 1031 in the image may be corrected using various types of information such as information.
  • the puncture member is used when the myocardium is punctured and a therapeutic substance is injected into the myocardium, and is used by projecting from the distal end opening of a tubular instrument as the insertion member 1031. Therefore, the puncture member is reflected together with the tubular instrument as the insertion member 1031 in the cross-sectional image of the heart (see FIG. 7). Therefore, various types of information on the puncture member may be acquired and used for contour correction of the insertion member 1031. Various types of information on the puncture member may be input from the operation unit 1005 or stored in the storage unit 1006, for example.
  • the contour of the insertion member 1031 is obtained by a similar method in a tomographic image of the heart or a cross-sectional image of the heart at a position different from that in FIG. It may be corrected.
  • the image processing apparatus 1001 described above (1) an imaging unit 1002 that can capture an image of the heart from the body surface, and an image processing unit 1003 that corrects an outline of the insertion member 1031 inserted in the heart in the image
  • the imaging unit 1002 includes a receiving device 1002a that receives a plurality of pieces of position information transmitted from the insertion member 1031.
  • the image processing unit 1003 is based on the plurality of pieces of position information received by the receiving device 1002a. The contour of the insertion member 1031 in the image is corrected.
  • the image processing unit 1003 performs the insertion in the image based on a difference in reception timing of the plurality of position information received by the receiving device 1002a.
  • the contour of the member 1031 is corrected.
  • the imaging unit 1002 includes an ultrasonic transmission unit 1011 that transmits ultrasonic waves and an ultrasonic reception unit 1012 that receives ultrasonic waves. And an image forming unit 1013 for forming the image from the measurement information received by the ultrasonic wave receiving unit 1012.
  • the plurality of pieces of position information are ultrasonic signals
  • the receiving apparatus 1002a is an ultrasonic receiving apparatus that receives the ultrasonic signals
  • the ultrasonic receiving device constitutes the ultrasonic receiving unit 1012.
  • the imaging unit 1002 captures the image every predetermined time.
  • the image processing apparatus 1001 described in (1) to (5) above includes a display unit 1004 capable of displaying the image corrected by the image processing unit 1003.
  • the above-described image processing apparatus set 1100 includes: (7): The image processing apparatus 1001 according to (1) to (6) above, and the insertion member 1031 inserted into the heart, the transmission apparatus 1031a transmitting the plurality of position information. Prepare.
  • the insertion member 1031 includes a tubular member 1031b to be inserted into the heart, and the transmitter 1031a is an outer peripheral surface of the tubular member 1031b. Is attached.
  • the above-described image processing apparatus 1001 executes the following image processing method (10). (10): receiving step S1 for receiving a plurality of positional information transmitted from the insertion member 1031 inserted into the heart, imaging step S2 for taking an image of the heart from the body surface, and intracardiac in the image And an image processing step S3 for correcting the contour of the insertion member 1031 based on the plurality of pieces of position information.
  • another image processing apparatus may be configured by appropriately combining the above-described constituent elements of the image processing apparatus 1 and the above-described constituent elements of the image processing apparatus 1001.
  • the constituent elements of the image processing apparatus 1 may have the functions of the constituent elements of the image processing apparatus 1001.
  • the image processing unit 4 of the image processing apparatus 1 may be configured to have both functions of the image processing unit 1003 of the image processing apparatus 1001. Therefore, for example, the above-described image processing apparatus 1 and the image processing apparatus 1001 are combined, and the functions of a plurality of constituent elements are combined into a single constituent element as necessary.
  • the present disclosure relates to an image processing apparatus and an image processing method.
  • Image processing device 1a 3D ultrasonic probe 1b: Device body 2: Imaging unit 3: Acquisition unit 4: Image processing unit 5: Display unit 6: Input unit 7: Operation unit 8: Storage unit 9: Control unit 11 : Ultrasonic transmitter 12: Ultrasonic receiver 13: Image forming unit 20: Processor 31: Tubular member 1001: Image processing apparatus 1001 a: Three-dimensional ultrasonic probe 1001 b: Main body 1002: Imaging unit 1002 a: Receiver 1003: Image Processing unit 1004: Display unit 1005: Operation unit 1006: Storage unit 1007: Control unit 1011: Ultrasonic transmission unit 1012: Ultrasonic reception unit 1013: Image forming unit 1020: Processor 1031: Insertion member 1031a: Transmission device 1031b: Tubular member 1100: Image processing device set AO: Aorta AV: Aortic valve FA: Femoral artery LV: Left ventricle X: Infarct region Y: Apex

Abstract

This image processing device is provided with an imaging unit which can capture an image of the heart from the body surface, an acquisition unit which acquires external diameter information of a tubular member inserted into the heart, and an image processing unit which, on the basis of the external diameter information acquired by the acquisition unit, corrects the contour of the tubular member in the image.

Description

画像処理装置及び画像処理方法Image processing apparatus and image processing method
 本開示は画像処理装置及び画像処理方法に関する。 The present disclosure relates to an image processing apparatus and an image processing method.
 従来から、血管や心臓などの内部に医療用器具を挿入し、体外用3次元超音波診断装置を用いて体内の医療用器具の位置を検出しながら診断や治療を行うことが知られている。特許文献1には、この種の診断を行う医療システムが記載されている。 Conventionally, it is known that a medical instrument is inserted into a blood vessel, a heart, or the like, and a diagnosis or treatment is performed while detecting the position of the medical instrument in the body using an external three-dimensional ultrasonic diagnostic apparatus. . Patent Document 1 describes a medical system that performs this type of diagnosis.
 特許文献1に記載の医療システムは、対象体内に挿入されて対象体内の病巣を除去するためのニードルおよびこのニードルに振動を印加する振動印加部を含む医療用器具を備える。また、特許文献1に記載の医療システムは、超音波信号を対象体に送信し、対象体から反射される超音波エコー信号を受信して超音波データを取得する超音波データ取得部を備える。更に、特許文献1に記載の医療システムは、医療用器具および超音波データ取得部に連結され、超音波データを用いて複数の超音波映像を形成し、複数の超音波映像のそれぞれにモーショントラッキングを行ってニードルの位置を検出し、検出されたニードルの位置に基づいて超音波映像の画質を改善させるための映像処理を複数の超音波映像に行うプロセッサを備える。 The medical system described in Patent Document 1 includes a medical instrument including a needle that is inserted into a target body and removes a lesion in the target body, and a vibration application unit that applies vibration to the needle. The medical system described in Patent Literature 1 includes an ultrasonic data acquisition unit that transmits an ultrasonic signal to a target body, receives an ultrasonic echo signal reflected from the target body, and acquires ultrasonic data. Furthermore, the medical system described in Patent Document 1 is connected to a medical instrument and an ultrasonic data acquisition unit, forms a plurality of ultrasonic images using the ultrasonic data, and performs motion tracking on each of the plurality of ultrasonic images. To detect the position of the needle and to perform image processing for improving the image quality of the ultrasonic image based on the detected position of the needle on a plurality of ultrasonic images.
特開2012-105948号公報JP 2012-105948 A 特開2001-299756号公報JP 2001-299756 A
 超音波映像を用いればリアルタイムで映像を得ることができるが、超音波映像の場合には、超音波の減衰により、ニードルなどの医療用器具の位置や輪郭を明確に識別することが難しく、超音波映像を確認しながら医療用器具を操作して診断や治療を行うことは困難である。これに対して、特許文献1に記載の医療システムでは、モーショントラッキングを行ってニードルの位置を検出し、検出されたニードルの位置に基づいて超音波映像の画質を改善させるための映像処理を行っている。しかしながら、超音波映像やその基となる画像における医療用器具の輪郭補正の精度については、依然として改良の余地がある。 Ultrasound images can be obtained in real time, but in the case of ultrasound images, it is difficult to clearly identify the position and contour of a medical device such as a needle due to attenuation of the ultrasound. It is difficult to perform a diagnosis or treatment by operating a medical instrument while confirming a sound image. On the other hand, in the medical system described in Patent Document 1, motion tracking is performed to detect the position of the needle, and image processing is performed to improve the image quality of the ultrasound image based on the detected position of the needle. ing. However, there is still room for improvement in the accuracy of the contour correction of the medical device in the ultrasound image and the image that is the basis thereof.
 本開示は、画像における医療用器具としての管状部材の輪郭補正の精度を向上可能な画像処理装置及び画像処理方法を提供することを目的とする。 This disclosure is intended to provide an image processing apparatus and an image processing method capable of improving the accuracy of contour correction of a tubular member as a medical instrument in an image.
 本開示の第1の態様としての画像処理装置は、体表面から心臓の画像を撮像可能な撮像部と、前記心臓内に挿入される管状部材の外径情報を取得する取得部と、前記取得部が取得した前記外径情報に基づいて、前記画像における前記管状部材の輪郭を補正する画像処理部と、を備える。 An image processing apparatus as a first aspect of the present disclosure includes an imaging unit capable of capturing an image of a heart from a body surface, an acquisition unit that acquires outer diameter information of a tubular member inserted into the heart, and the acquisition An image processing unit that corrects an outline of the tubular member in the image based on the outer diameter information acquired by the unit.
 本開示の1つの実施形態として、前記画像処理部は、前記外径情報と前記画像のスケール情報とに基づいて、前記画像における前記管状部材の輪郭を補正する。 As one embodiment of the present disclosure, the image processing unit corrects the contour of the tubular member in the image based on the outer diameter information and the scale information of the image.
 本開示の1つの実施形態として、前記撮像部は、超音波を発信する超音波発信部と、超音波を受信する超音波受信部と、前記超音波受信部が受信した測定情報から前記画像を形成する画像形成部と、を備える。 As one embodiment of the present disclosure, the imaging unit includes an ultrasonic wave transmission unit that transmits ultrasonic waves, an ultrasonic wave reception unit that receives ultrasonic waves, and the measurement information received by the ultrasonic wave reception unit. An image forming unit to be formed.
 本開示の1つの実施形態として、前記撮像部は、所定時間ごとに前記画像を撮像する。 As one embodiment of the present disclosure, the imaging unit captures the image every predetermined time.
 本開示の1つの実施形態としての画像処理装置は、前記画像処理部により補正された前記画像を表示可能な表示部を備える。 An image processing apparatus as an embodiment of the present disclosure includes a display unit that can display the image corrected by the image processing unit.
 本開示の1つの実施形態としての画像処理装置は、前記外径情報を前記取得部に入力する入力部を備える。 An image processing apparatus as an embodiment of the present disclosure includes an input unit that inputs the outer diameter information to the acquisition unit.
 本開示の1つの実施形態としての画像処理装置は、ユーザーによる操作を受け付ける操作部を備え、前記入力部は、前記操作部が受け付けた前記外径情報を前記取得部に入力する。 An image processing apparatus as an embodiment of the present disclosure includes an operation unit that receives an operation by a user, and the input unit inputs the outer diameter information received by the operation unit to the acquisition unit.
 本開示の1つの実施形態としての画像処理装置は、前記外径情報を記憶する記憶部を備え、前記入力部は、前記記憶部が記憶する前記外径情報を前記取得部に入力する。 An image processing apparatus as one embodiment of the present disclosure includes a storage unit that stores the outer diameter information, and the input unit inputs the outer diameter information stored in the storage unit to the acquisition unit.
 本開示の第2の態様としての画像処理装置は、心臓内に挿入される管状部材の外径情報を取得する取得部と、前記取得部が取得した前記外径情報に基づいて、体表面から撮像された心臓の画像における前記管状部材の輪郭を補正する画像処理部と、を備える。 An image processing apparatus as a second aspect of the present disclosure includes an acquisition unit that acquires outer diameter information of a tubular member inserted into a heart, and a body surface based on the outer diameter information acquired by the acquisition unit. An image processing unit that corrects the contour of the tubular member in the captured image of the heart.
 本開示の第3の態様としての画像処理方法は、体表面から心臓の画像を撮像する撮像工程と、前記心臓内に挿入される管状部材の外径情報を取得する取得工程と、前記外径情報に基づいて、前記画像における前記管状部材の輪郭を補正する画像処理工程と、を含む。 An image processing method as a third aspect of the present disclosure includes an imaging step of capturing a heart image from a body surface, an acquisition step of acquiring outer diameter information of a tubular member inserted into the heart, and the outer diameter And an image processing step of correcting a contour of the tubular member in the image based on the information.
 本開示によれば、画像における医療用器具としての管状部材の輪郭補正の精度を向上可能な画像処理装置及び画像処理方法を提供することができる。 According to the present disclosure, it is possible to provide an image processing apparatus and an image processing method capable of improving the accuracy of contour correction of a tubular member as a medical instrument in an image.
本開示の一実施形態としての画像処理装置を示すブロック図である。It is a block diagram showing an image processing device as one embodiment of this indication. 図1の画像処理装置を用いて行う施術の概要を示す概要図である。It is a schematic diagram which shows the outline | summary of the treatment performed using the image processing apparatus of FIG. 図1の画像処理装置の撮像部により撮像される心臓の3次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image of the heart imaged by the imaging part of the image processing apparatus of FIG. 図1に示す画像処理装置により実行される画像処理方法を示すフローチャートである。It is a flowchart which shows the image processing method performed by the image processing apparatus shown in FIG. 本開示の一実施形態としての画像処理装置セットを示すブロック図である。It is a block diagram showing an image processing device set as one embodiment of this indication. 図5に示す画像処理装置セットを用いて行う施術の概要を示す概要図である。It is a schematic diagram which shows the outline | summary of the treatment performed using the image processing apparatus set shown in FIG. 図5の画像処理装置セットにおける画像処理装置の撮像部により撮像される心臓の3次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image of the heart imaged by the imaging part of the image processing apparatus in the image processing apparatus set of FIG. 図5の画像処理装置セットにおける画像処理装置により実行される画像処理方法を示すフローチャートである。It is a flowchart which shows the image processing method performed by the image processing apparatus in the image processing apparatus set of FIG.
 以下、本開示に係る画像処理装置及び画像処理方法の実施形態について図面を参照して説明する。各図において共通する部材・部位には同一の符号を付している。 Hereinafter, embodiments of an image processing apparatus and an image processing method according to the present disclosure will be described with reference to the drawings. In each figure, the same code | symbol is attached | subjected to the common member and site | part.
 図1は、本開示に係る画像処理装置の1つの実施形態としての画像処理装置1を示すブロック図である。また、図2は、画像処理装置1を用いて行う施術の概要を示す概要図である。 FIG. 1 is a block diagram illustrating an image processing apparatus 1 as one embodiment of an image processing apparatus according to the present disclosure. FIG. 2 is a schematic diagram showing an outline of a procedure performed using the image processing apparatus 1.
 図2に示すように、本実施形態の画像処理装置1は、血管を通じて心臓内へと医療用器具をデリバリーし、心臓内で所定の診断や治療などの施術を実行する際に、施術中の心臓内の様子をモニタリング可能とするモニタリング装置である。画像処理装置1としてのモニタリング装置は、例えば、大腿動脈FAから大動脈AO及び大動脈弁AVを通じて左心室LVに挿入される管状部材31としてのカテーテルの左心室LV内の位置や輪郭を、体外からモニタリングできるように表示する。医師等の医療従事者は、画像処理装置1としてのモニタリング装置に表示される左心室LV内の管状部材31の位置や輪郭を頼りに、この管状部材31を通じて左心室LV内にデリバリーされた各種医療用器具を用いて所定の診断や治療などの施術を実行する。 As shown in FIG. 2, the image processing apparatus 1 according to the present embodiment delivers a medical instrument into the heart through blood vessels, and performs a predetermined diagnosis or treatment in the heart. This is a monitoring device that can monitor the state in the heart. The monitoring apparatus as the image processing apparatus 1 monitors, for example, the position and contour of the catheter in the left ventricle LV as the tubular member 31 inserted into the left ventricle LV from the femoral artery FA through the aorta AO and the aortic valve AV from outside the body. Display as you can. A medical worker such as a doctor depends on the position and contour of the tubular member 31 in the left ventricle LV displayed on the monitoring device as the image processing apparatus 1, and various kinds of deliveries delivered into the left ventricle LV through the tubular member 31. A predetermined diagnosis or treatment is performed using a medical instrument.
 左心室LV内で実行される所定の治療としては、例えば、心疾患等を治療するために心筋内に各種の治療物質を投与する治療が挙げられる。各種の治療物質としては、細胞の補充、血管新生誘導、心臓壁補強、足場材料、またはアポトーシス・ネクローシスの予防による組織修復あるいは再生などの治療効果が得られる物質が挙げられ、例えば、細胞、薬液又はポリマー等である。治療物質としての細胞は、例えば、生理食塩水等の液体中に分散した細胞懸濁液の状態で心筋内に投与される。 As the predetermined treatment performed in the left ventricle LV, for example, treatment in which various therapeutic substances are administered into the myocardium in order to treat heart disease or the like can be mentioned. Examples of various therapeutic substances include cells that can provide therapeutic effects such as cell replacement, angiogenesis induction, heart wall reinforcement, scaffolding materials, or tissue repair or regeneration by prevention of apoptosis / necrosis. Or a polymer etc. Cells as a therapeutic substance are administered into the myocardium in the state of a cell suspension dispersed in a liquid such as physiological saline.
 治療物質としての細胞は、例えば、接着細胞(付着性細胞)を含む。接着細胞は、例えば、接着性の体細胞(例えば、心筋細胞、線維芽細胞、上皮細胞、内皮細胞、肝細胞、膵細胞、腎細胞、副腎細胞、歯根膜細胞、歯肉細胞、骨膜細胞、皮膚細胞、滑膜細胞、軟骨細胞など)及び幹細胞(例えば、筋芽細胞、心臓幹細胞などの組織幹細胞、胚性幹細胞、iPS(induced pluripotent stem)細胞などの多能性幹細胞、間葉系幹細胞等)などを含む。体細胞は、幹細胞、特にiPS細胞から分化させた細胞であってもよい。治療物質としての細胞の非限定例としては、例えば、筋芽細胞(例えば、骨格筋芽細胞など)、間葉系幹細胞(例えば、骨髄、脂肪組織、末梢血、皮膚、毛根、筋組織、子宮内膜、胎盤、臍帯血由来の細胞など)、心筋細胞、線維芽細胞、心臓幹細胞、胚性幹細胞、iPS細胞、滑膜細胞、軟骨細胞、上皮細胞(例えば、口腔粘膜上皮細胞、網膜色素上皮細胞、鼻粘膜上皮細胞など)、内皮細胞(例えば、血管内皮細胞など)、肝細胞(例えば、肝実質細胞など)、膵細胞(例えば、膵島細胞など)、腎細胞、副腎細胞、歯根膜細胞、歯肉細胞、骨膜細胞、皮膚細胞等が挙げられる。 Cells as therapeutic substances include, for example, adherent cells (adherent cells). Adherent cells include, for example, adherent somatic cells (eg, cardiomyocytes, fibroblasts, epithelial cells, endothelial cells, hepatocytes, pancreatic cells, kidney cells, adrenal cells, periodontal cells, gingival cells, periosteum cells, skin Cells, synovial cells, chondrocytes, etc.) and stem cells (eg, tissue stem cells such as myoblasts, cardiac stem cells, embryonic stem cells, pluripotent stem cells such as induced pluripotent cells (iPS) cells, mesenchymal stem cells, etc.) Etc. Somatic cells may be stem cells, especially cells differentiated from iPS cells. Non-limiting examples of cells as therapeutic substances include, for example, myoblasts (eg, skeletal myoblasts), mesenchymal stem cells (eg, bone marrow, adipose tissue, peripheral blood, skin, hair root, muscle tissue, uterus) Endometrium, placenta, cord blood-derived cells, etc.), cardiomyocytes, fibroblasts, cardiac stem cells, embryonic stem cells, iPS cells, synovial cells, chondrocytes, epithelial cells (eg, oral mucosal epithelial cells, retinal pigment epithelium) Cells, nasal mucosal epithelial cells, etc.), endothelial cells (eg, vascular endothelial cells, etc.), hepatocytes (eg, liver parenchymal cells, etc.), pancreatic cells (eg, islet cells, etc.), kidney cells, adrenal cells, periodontal ligament cells Gingival cells, periosteum cells, skin cells and the like.
 治療物質としての薬剤は、例えば、タンパク質、プラスミド、遺伝子、成長因子、化学誘因物質、合成ポリペプチド、種々の医薬組成物等が挙げられ、さらには他の治療的に有益な物質を単独で、または任意の組合せで含むこともできる。 Drugs as therapeutic substances include, for example, proteins, plasmids, genes, growth factors, chemoattractants, synthetic polypeptides, various pharmaceutical compositions, and other therapeutically beneficial substances alone, Or they can be included in any combination.
 治療物質としてのポリマーは、注入可能な生体適合性を有する単一成分または多成分材料、ポリマーベースのビーズ、ポリマーヒドロゲル、フィブリン接着剤、コラーゲン、アルギン酸塩、ポリエチレングリコールなどの合成高分子材料、およびキトサン等が挙げられる。 Polymers as therapeutic agents include injectable biocompatible single-component or multi-component materials, polymer-based beads, polymer hydrogels, fibrin adhesives, synthetic polymeric materials such as collagen, alginate, polyethylene glycol, and Chitosan etc. are mentioned.
 本実施形態では、図2に示すように、左心室LVの心筋の梗塞部位X又はその近傍に対して左心室LV内から治療物質を投与する施術を、画像処理装置1としてのモニタリング装置でモニタリングしながら実行する例を示すが、画像処理装置1としてのモニタリング装置でモニタリングしながら実行する施術は、所定の治療物質の投与に限らず、例えば、左心室LVの心筋の梗塞状態を診断する施術等であってもよい。左心室LVの心筋の梗塞部位Xは、磁気共鳴映像装置(以下、MRI装置という)又はX線コンピュータ断層撮影装置(以下、X線CT装置という)を用いて体外から心臓の断層画像を取得し、取得した断層画像から予め特定しておくことができる。 In the present embodiment, as shown in FIG. 2, the monitoring device as the image processing apparatus 1 monitors the treatment for administering the therapeutic substance from the left ventricle LV to or near the infarct site X of the myocardium of the left ventricle LV. However, the operation performed while monitoring by the monitoring device as the image processing apparatus 1 is not limited to the administration of a predetermined therapeutic substance, for example, a procedure for diagnosing the infarct state of the myocardium of the left ventricle LV Etc. For the infarct region X of the myocardium of the left ventricle LV, a tomographic image of the heart is acquired from outside the body using a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) or an X-ray computed tomography apparatus (hereinafter referred to as an X-ray CT apparatus). It can be specified in advance from the acquired tomographic image.
 また、本実施形態の画像処理装置1としてのモニタリング装置は、上述の左心室LV内の施術をモニタリング可能にする装置に限らず、右心室、左心房および右心房のいずれかの内部で実行される施術を体外からモニタリング可能な装置としてもよい。後述するように、本実施形態の画像処理装置1は、3次元超音波診断装置である。そのため、左心室LV、右心室、左心房および右心房のいずれの内部であっても異なる断面での断層画像を取得可能であり、これら断層画像を利用することによりモニタリング可能である。 Further, the monitoring device as the image processing device 1 of the present embodiment is not limited to the device that enables monitoring of the treatment in the left ventricle LV described above, and is executed inside any of the right ventricle, the left atrium, and the right atrium. It is good also as a device which can monitor the treatment to be performed from outside the body. As will be described later, the image processing apparatus 1 of the present embodiment is a three-dimensional ultrasonic diagnostic apparatus. Therefore, it is possible to acquire tomographic images at different cross sections even in any of the left ventricle LV, right ventricle, left atrium, and right atrium, and monitoring can be performed by using these tomographic images.
 以下、本実施形態の画像処理装置1の詳細について説明する。 Hereinafter, details of the image processing apparatus 1 of the present embodiment will be described.
 図1に示すように、画像処理装置1は、撮像部2と、取得部3と、画像処理部4と、表示部5と、入力部6と、操作部7と、記憶部8と、制御部9と、を備える。 As shown in FIG. 1, the image processing apparatus 1 includes an imaging unit 2, an acquisition unit 3, an image processing unit 4, a display unit 5, an input unit 6, an operation unit 7, a storage unit 8, and a control. Part 9.
 撮像部2は、体表面から心臓の画像としての心臓の断層画像及び心臓の3次元画像を撮像可能である。 The imaging unit 2 can capture a tomographic image of the heart as a heart image and a three-dimensional image of the heart from the body surface.
 具体的に、撮像部2は、超音波を発信する超音波発信部11と、超音波を受信する超音波受信部12と、この超音波受信部12が受信した超音波の測定情報としての超音波データから断層画像を形成する画像形成部13と、を備える。超音波発信部11から発信され、心臓の各部位から反射される超音波を超音波受信部12が受信する。 Specifically, the imaging unit 2 includes an ultrasonic wave transmission unit 11 that transmits ultrasonic waves, an ultrasonic wave reception unit 12 that receives ultrasonic waves, and an ultrasonic wave as ultrasonic measurement information received by the ultrasonic wave reception unit 12. And an image forming unit 13 that forms a tomographic image from the sound wave data. The ultrasonic receiving unit 12 receives ultrasonic waves transmitted from the ultrasonic transmission unit 11 and reflected from each part of the heart.
 より具体的に、本実施形態の画像処理装置1としてのモニタリング装置は、3次元超音波診断装置である。「3次元超音波診断装置」とは、3次元画像を撮像可能な超音波診断装置を意味する。そして、本実施形態の画像処理装置1としての3次元超音波診断装置は、体表面上に接触させる3次元超音波プローブ1aと、この3次元超音波プローブ1aと有線又は無線により通信可能な装置本体1bと、を備える。3次元超音波プローブ1aは、撮像部2の超音波発信部11及び超音波受信部12を備える。装置本体1bは、撮像部2の画像形成部13を備える。画像形成部13はCPUやMPUなどのプロセッサにより構成される。 More specifically, the monitoring device as the image processing device 1 of the present embodiment is a three-dimensional ultrasonic diagnostic device. The “three-dimensional ultrasonic diagnostic apparatus” means an ultrasonic diagnostic apparatus that can capture a three-dimensional image. The three-dimensional ultrasonic diagnostic apparatus as the image processing apparatus 1 according to this embodiment includes a three-dimensional ultrasonic probe 1a that is brought into contact with the body surface, and an apparatus that can communicate with the three-dimensional ultrasonic probe 1a by wire or wirelessly. A main body 1b. The three-dimensional ultrasonic probe 1 a includes an ultrasonic transmission unit 11 and an ultrasonic reception unit 12 of the imaging unit 2. The apparatus main body 1 b includes an image forming unit 13 of the imaging unit 2. The image forming unit 13 includes a processor such as a CPU or MPU.
 図2に示すように、3次元超音波プローブ1aは、肋骨の間から超音波の発信及び受信が可能なように、体表面のうち体前面の肋骨近傍の皮膚上に配置される。その状態で、超音波発信部11及び超音波受信部12を用いて超音波診断を実行する。 As shown in FIG. 2, the three-dimensional ultrasonic probe 1a is arranged on the skin near the rib on the front surface of the body so that the ultrasonic wave can be transmitted and received between the ribs. In this state, an ultrasonic diagnosis is executed using the ultrasonic transmitter 11 and the ultrasonic receiver 12.
 装置本体1bは、3次元超音波プローブ1aから超音波の測定情報を取得する。次いで、装置本体1bの画像形成部13が、取得した超音波の測定情報に基づいて、心臓の断層画像を形成する。 The apparatus main body 1b acquires ultrasonic measurement information from the three-dimensional ultrasonic probe 1a. Next, the image forming unit 13 of the apparatus main body 1b forms a tomographic image of the heart based on the acquired ultrasonic measurement information.
 撮像部2は、このようにして、心臓の各種断面での断層画像を撮像することができる。つまり、撮像部2の画像形成部13は、超音波受信部12が受信した所定の一平面の測定情報に基づき、この所定の一平面についての断層画像を形成する。更に、撮像部2は、撮像された心臓の複数の断層画像を積層させる処理や、複数の断層画像を撮像する走査時に収集される各断層画像の基となる3次元データの処理により、レンダリングを実行し、心臓の3次元画像を撮像することができる。具体的に、撮像部2の画像形成部13は、複数の断層画像を組み合わせることにより、又は、各断層画像を撮像する際に収集される3次元データを処理することにより、心臓の3次元モデルを形成すると共に、この3次元モデルに基づき心臓の任意の3次元画像を形成することができる。 In this way, the imaging unit 2 can capture tomographic images at various cross sections of the heart. That is, the image forming unit 13 of the imaging unit 2 forms a tomographic image for the predetermined plane based on the measurement information of the predetermined plane received by the ultrasonic receiver 12. Furthermore, the imaging unit 2 performs rendering by processing of stacking a plurality of tomographic images of the captured heart and processing of three-dimensional data serving as a basis of each tomographic image collected at the time of scanning for capturing a plurality of tomographic images. Run and take a 3D image of the heart. Specifically, the image forming unit 13 of the imaging unit 2 combines a plurality of tomographic images, or processes three-dimensional data collected when each tomographic image is captured, thereby processing a three-dimensional model of the heart. And any three-dimensional image of the heart can be formed based on this three-dimensional model.
 図3は、撮像部2により撮像される心臓の3次元画像の一例を示す図である。より具体的に、図3は、撮像部2により形成される心臓の3次元モデルの左心室LVの断面画像が表示部5に表示されている状態を示している。より具体的に、図3は、大動脈弁AV(図2参照)と左心室LVの心尖部Y(図2参照)とを結ぶ線分と所定の角度で交差する(本実施形態では略直交する)断面の断面画像であり、大動脈弁AV側から心尖部Y側を見た画像である。このように、撮像部2により心臓の3次元モデルを形成すれば、図3に示す断面に限らず、心臓の所望の断面を後述する表示部5に表示することができる。本実施形態では、図3に示すような、大動脈弁AV(図2参照)と左心室LVの心尖部Yとを結ぶ線分と交差する断面を後述する表示部5に表示した状態で施術のモニタリングを行うが、大動脈弁AVと左心室LVの心尖部Yとを結ぶ線分と略平行する断面の断面画像により施術のモニタリングを行ってもよい。 FIG. 3 is a diagram illustrating an example of a three-dimensional image of the heart imaged by the imaging unit 2. More specifically, FIG. 3 shows a state where a cross-sectional image of the left ventricle LV of the three-dimensional model of the heart formed by the imaging unit 2 is displayed on the display unit 5. More specifically, FIG. 3 intersects a line segment connecting the aortic valve AV (see FIG. 2) and the apex Y of the left ventricle LV (see FIG. 2) at a predetermined angle (in the present embodiment, substantially orthogonal). ) A cross-sectional image of the cross section, which is an image of the apex Y side as viewed from the aortic valve AV side. Thus, if a three-dimensional model of the heart is formed by the imaging unit 2, not only the cross section shown in FIG. 3 but also a desired cross section of the heart can be displayed on the display unit 5 described later. In the present embodiment, as shown in FIG. 3, the treatment is performed in a state where a cross section intersecting with a line segment connecting the aortic valve AV (see FIG. 2) and the apex Y of the left ventricle LV is displayed on the display unit 5 described later. Although monitoring is performed, the operation may be monitored by a cross-sectional image of a cross section substantially parallel to a line segment connecting the aortic valve AV and the apex Y of the left ventricle LV.
 また、撮像部2は、所定時間ごとに画像を撮像する。具体的に、撮像部2は、所定時間ごとに同一位置での断層画像を撮像し、動画として経時的に表示部5に表示することができる。また、撮像部2は、所定時間ごとに同一視点での心臓の3次元画像(3次元モデルから形成される断面画像を含む)を撮像し、動画として経時的に表示部5に表示することができる。3次元画像の撮像間隔(本実施形態では3次元モデルの形成間隔と略等しい)を例えば1秒に設定し、同間隔で表示部5に断層画像、3次元画像などを動画として経時的に表示させるようにすれば、心臓の断層画像、3次元画像などをリアルタイムにモニタリングすることができる。換言すれば、表示部5に心臓内の映像を表示することができる。但し、図3では、一例として、3次元モデルから形成された、心臓の3次元画像としての断面画像のみを示している。 Further, the imaging unit 2 captures an image every predetermined time. Specifically, the imaging unit 2 can capture tomographic images at the same position every predetermined time and can display them on the display unit 5 over time as a moving image. In addition, the imaging unit 2 can capture a three-dimensional image (including a cross-sectional image formed from a three-dimensional model) of the heart at the same viewpoint at predetermined time intervals and display it on the display unit 5 over time as a moving image. it can. The imaging interval of the three-dimensional image (in this embodiment, approximately equal to the three-dimensional model formation interval) is set to 1 second, for example, and the tomographic image, the three-dimensional image, etc. are displayed as moving images over time at the same interval. By doing so, a tomographic image of the heart, a three-dimensional image, etc. can be monitored in real time. In other words, an intra-cardiac image can be displayed on the display unit 5. However, in FIG. 3, as an example, only a cross-sectional image as a three-dimensional image of the heart formed from a three-dimensional model is shown.
 3次元画像の撮像間隔は1秒に限らず適宜設定可能であるが、施術中の心臓の断層画像、3次元画像などをリアルタイムで表示するために、心臓の3次元画像については、少なくとも3秒以下の間隔で撮像を実行するようにすることが好ましい。また、表示部5に表示する断層画像や3次元画像を経時的に切り替える時間間隔は、3次元画像の撮像間隔と同間隔であってもよく、異なる間隔としてもよい。例えば、表示部5に断層画像のみをリアルタイムに表示する場合に、同位置での断層画像を撮像する撮像間隔を200msec等にして、この撮像間隔と同間隔で表示部5の表示を切り替えるようにしてもよいし、撮像間隔とは異なる時間間隔で表示を切り替えてもよい。撮像間隔と異なる時間間隔で表示部5の切り替えを実行する例としては、例えば、所定時間ごとに、表示部5に表示する断層画像と、表示部5に表示しない断層画像と、を交互に撮像する構成が挙げられる。また、表示部5に3次元画像のみをリアルタイムに表示する場合に、同位置での3次元画像を撮像する撮像間隔を1秒等にして、この撮像間隔と同間隔で表示部5の表示を切り替えるようにしてもよいし、撮像間隔とは異なる時間間隔で表示を切り替えてもよい。撮像間隔と異なる時間間隔で表示部5の切り替えを実行する例としては、例えば、所定時間ごとに、表示部5に表示する3次元画像と、表示部5に表示しない3次元画像と、を交互に撮像する構成が挙げられる。 The imaging interval of the 3D image is not limited to 1 second and can be set as appropriate. However, in order to display the tomographic image of the heart during the operation, the 3D image, etc. in real time, the 3D image of the heart is at least 3 seconds. It is preferable to perform imaging at the following intervals. In addition, the time interval for switching the tomographic image and the three-dimensional image displayed on the display unit 5 with time may be the same as the imaging interval of the three-dimensional image, or may be a different interval. For example, when only the tomographic image is displayed on the display unit 5 in real time, the imaging interval for capturing the tomographic image at the same position is set to 200 msec, and the display of the display unit 5 is switched at the same interval as this imaging interval. Alternatively, the display may be switched at a time interval different from the imaging interval. As an example of executing switching of the display unit 5 at a time interval different from the imaging interval, for example, a tomographic image displayed on the display unit 5 and a tomographic image not displayed on the display unit 5 are alternately captured at predetermined time intervals. The structure to do is mentioned. In addition, when only a 3D image is displayed on the display unit 5 in real time, the imaging interval for capturing the 3D image at the same position is set to 1 second or the like, and the display unit 5 is displayed at the same interval as this imaging interval. The display may be switched, or the display may be switched at a time interval different from the imaging interval. As an example of executing the switching of the display unit 5 at a time interval different from the imaging interval, for example, a three-dimensional image displayed on the display unit 5 and a three-dimensional image not displayed on the display unit 5 are alternately displayed every predetermined time. A configuration for imaging is given.
 このように、本実施形態の画像処理装置1としてのモニタリング装置では、心臓内の映像をリアルタイムに表示しながら、この映像を頼りにして、所定の治療物質を投与する施術を実行する。そのため、この施術の間、3次元超音波プローブ1aは、上述した体表面上の所定位置で固定された状態とされる。3次元超音波プローブ1aの体表面上での固定は、粘着剤等による体表面への貼着等により実現可能である。 As described above, in the monitoring apparatus as the image processing apparatus 1 according to the present embodiment, a treatment for administering a predetermined therapeutic substance is executed by using the image while displaying the image in the heart in real time. Therefore, during this treatment, the three-dimensional ultrasonic probe 1a is fixed at a predetermined position on the body surface described above. The fixation of the three-dimensional ultrasonic probe 1a on the body surface can be realized by sticking the body surface with an adhesive or the like.
 取得部3は、心臓内に挿入される医療用器具としての管状部材31の外径情報を取得する。具体的に、取得部3は、後述の入力部6により入力された管状部材31としてのカテーテルの外径情報を取得する。管状部材31の外径情報とは、管状部材31の外径を特定可能な情報であればよく、外径寸法に限られない。例えば、周長など、間接的に外径を特定できる情報としてもよい。本実施形態の取得部3は、装置本体1bに設けられているが、3次元超音波プローブ1aに設けてもよい。画像処理装置1は、CPUやMPUにより構成されたプロセッサ20(図1参照)を備えており、このプロセッサ20が、後述する画像処理部4と共に、取得部3を構成している。 The acquisition unit 3 acquires the outer diameter information of the tubular member 31 as a medical instrument inserted into the heart. Specifically, the acquisition unit 3 acquires the outer diameter information of the catheter as the tubular member 31 input by the input unit 6 described later. The outer diameter information of the tubular member 31 may be information that can specify the outer diameter of the tubular member 31, and is not limited to the outer diameter dimension. For example, it is good also as information which can specify an outer diameter indirectly, such as circumference. The acquisition unit 3 of the present embodiment is provided in the apparatus main body 1b, but may be provided in the three-dimensional ultrasonic probe 1a. The image processing apparatus 1 includes a processor 20 (see FIG. 1) configured by a CPU and an MPU. The processor 20 constitutes an acquisition unit 3 together with an image processing unit 4 described later.
 画像処理部4は、取得部3が取得した管状部材31の外径情報に基づいて、撮像部2が撮像する心臓の断層画像や心臓の3次元画像における管状部材31の輪郭を補正する。管状部材31の外径情報を予め取得できれば、断層画像中に表示される管状部材31の輪郭を補正し易くなる。また、管状部材31の外径情報を予め取得できれば、心臓の3次元画像中に表示される管状部材31の輪郭を補正し易くなる。より具体的に、本実施形態の画像処理部4は、管状部材31の外径情報と、撮像部2が撮像する断層画像や3次元画像などの画像のスケール情報とに基づいて、画像における管状部材31の輪郭を補正する。撮像部2が撮像する画像のスケール情報としては、例えば、画像中の所定の2点間に関しての、実距離と画像における画像距離との比率情報が挙げられる。このように画像のスケール情報を取得すれば、画像中に表示される管状部材31の輪郭をより鮮明に補正することができる。画像のスケール情報は、後述する操作部7のユーザー操作により取得した情報としてもよく、後述する記憶部8に記憶されている情報としてもよい。取得部3は、このような画像のスケール情報を、後述する入力部6により入力されることで取得する。 The image processing unit 4 corrects the outline of the tubular member 31 in the tomographic image of the heart and the three-dimensional image of the heart captured by the imaging unit 2 based on the outer diameter information of the tubular member 31 acquired by the acquiring unit 3. If the outer diameter information of the tubular member 31 can be acquired in advance, the outline of the tubular member 31 displayed in the tomographic image can be easily corrected. Moreover, if the outer diameter information of the tubular member 31 can be acquired in advance, the outline of the tubular member 31 displayed in the three-dimensional image of the heart can be easily corrected. More specifically, the image processing unit 4 of the present embodiment is based on the outer diameter information of the tubular member 31 and the scale information of an image such as a tomographic image or a three-dimensional image captured by the imaging unit 2. The contour of the member 31 is corrected. Examples of the scale information of the image captured by the image capturing unit 2 include ratio information between the actual distance and the image distance in the image with respect to a predetermined two points in the image. Thus, if the scale information of an image is acquired, the outline of the tubular member 31 displayed in the image can be corrected more clearly. The image scale information may be information acquired by a user operation of the operation unit 7 described later, or may be information stored in the storage unit 8 described later. The acquisition unit 3 acquires such image scale information by being input by an input unit 6 described later.
 心臓の断層画像や心臓の3次元画像での、管状部材31の輪郭補正は、補正精度の向上の観点から、上述の外径情報及びスケール情報に加えて、別の情報に基づいて実行することが好ましい。別の情報としては、例えば、管状部材31の内径情報や肉厚情報などが挙げられる。また、画像処理部4は、上述したように、CPUやMPUにより構成されたプロセッサ20(図1参照)により構成することができる。 The contour correction of the tubular member 31 in the tomographic image of the heart or the three-dimensional image of the heart is performed based on other information in addition to the above-described outer diameter information and scale information from the viewpoint of improving the correction accuracy. Is preferred. Other information includes, for example, inner diameter information and thickness information of the tubular member 31. Further, as described above, the image processing unit 4 can be configured by the processor 20 (see FIG. 1) configured by a CPU or MPU.
 表示部5は、画像処理部4により管状部材31の輪郭が補正された断層画像を表示可能である。また、表示部5は、画像処理部4により管状部材31の輪郭が補正された、心臓の3次元画像としての、心臓の3次元モデルから形成される心臓の断面画像を表示可能である。表示部5は、例えば、液晶ディスプレイなどで構成することができる。表示部5は、画像処理装置1の装置本体1bに設けられているが、装置本体1bに加えて、3次元超音波プローブ1aに設ける構成としてもよい。図3に示す表示部5は、心臓の3次元モデルから形成される心臓の断面画像のみを表示する例を示しているが、心臓の断層画像や、断面画像以外の3次元画像を同時に表示することもできる。 The display unit 5 can display a tomographic image in which the contour of the tubular member 31 is corrected by the image processing unit 4. The display unit 5 can display a cross-sectional image of the heart formed from a three-dimensional model of the heart as a three-dimensional image of the heart with the contour of the tubular member 31 corrected by the image processing unit 4. The display unit 5 can be configured with, for example, a liquid crystal display. The display unit 5 is provided in the apparatus main body 1b of the image processing apparatus 1, but may be configured to be provided in the three-dimensional ultrasonic probe 1a in addition to the apparatus main body 1b. The display unit 5 shown in FIG. 3 shows an example in which only a cross-sectional image of the heart formed from a three-dimensional model of the heart is displayed, but a tomographic image of the heart and a three-dimensional image other than the cross-sectional image are displayed simultaneously. You can also.
 上述したように、ここで例示する施術において、左心室LVの心筋の梗塞部位Xの位置及びその大きさは、MRI装置又はX線CT装置を用いて予め取得されている。そして、表示部5には、撮像部2が撮像した断層画像が表示されるが、表示される断層画像には、梗塞部位Xの位置及び大きさを示す表示が重畳又は合成されている。すなわち、随時最新の状態に切り替わるリアルタイムの断層画像において、施術の対象となる梗塞部位X又はその近傍の位置や大きさを示すことができる。そのため、治療物質を投与する施術の標的部位となる梗塞部位Xやその近傍の位置及び大きさを、断層画像においてリアルタイムで確認しながら、実際の施術を実行することができる。 As described above, in the procedure illustrated here, the position and size of the infarct region X of the myocardium of the left ventricle LV are acquired in advance using an MRI apparatus or an X-ray CT apparatus. The tomographic image captured by the imaging unit 2 is displayed on the display unit 5, and a display indicating the position and size of the infarct site X is superimposed or synthesized on the displayed tomographic image. That is, in the real-time tomographic image that is switched to the latest state at any time, the position and size of the infarct site X to be treated or the vicinity thereof can be indicated. Therefore, the actual treatment can be executed while confirming the infarct site X, which is a target site of the treatment to which the therapeutic substance is administered, and the position and size in the vicinity thereof in the tomographic image in real time.
 更に、表示部5には、上述の断層画像に加えて、図3に示すように、撮像部2が撮像した心臓の3次元画像を表示可能であるが、上述の断層画像と同様、梗塞部位Xの位置及び大きさを示す表示が重畳又は合成されている(図3参照)。 Further, in addition to the above-described tomographic image, the display unit 5 can display a three-dimensional image of the heart imaged by the imaging unit 2 as shown in FIG. A display indicating the position and size of X is superimposed or synthesized (see FIG. 3).
 また、上述の断層画像及び3次元画像において表示される梗塞部位X又はその近傍に対して治療物質が投与された場合には、例えば投与位置に所定の印を表示するなど、治療物質が投与された位置を識別可能とする表示を表示部5に表示させる。このようにすれば、医師等の医療従事者が、画像処理装置1を確認しながら施術の進捗状況を把握することが容易となる。 In addition, when a therapeutic substance is administered to the infarct region X displayed in the tomographic image and the three-dimensional image described above or in the vicinity thereof, the therapeutic substance is administered, for example, by displaying a predetermined mark at the administration position. The display unit 5 is caused to display a display that enables the identified position to be identified. In this way, it becomes easy for a medical worker such as a doctor to grasp the progress of the treatment while checking the image processing apparatus 1.
 入力部6は、管状部材31の外径情報を取得部3に入力する。具体的に、入力部6は、後述する操作部7が受け付けた管状部材31の外径情報を取得部3に入力する。更に、入力部6は、後述する記憶部8が記憶する管状部材31の外径情報を取得部3に入力する。このように、入力部6は、操作部7及び記憶部8から管状部材31の外径情報を取得部3に入力することができる。この入力部6も、上述した取得部3及び画像処理部4と同様、プロセッサ20(図1参照)により構成される。 The input unit 6 inputs the outer diameter information of the tubular member 31 to the acquisition unit 3. Specifically, the input unit 6 inputs the outer diameter information of the tubular member 31 received by the operation unit 7 described later to the acquisition unit 3. Further, the input unit 6 inputs the outer diameter information of the tubular member 31 stored in the storage unit 8 described later to the acquisition unit 3. Thus, the input unit 6 can input the outer diameter information of the tubular member 31 from the operation unit 7 and the storage unit 8 to the acquisition unit 3. Similarly to the acquisition unit 3 and the image processing unit 4 described above, the input unit 6 also includes a processor 20 (see FIG. 1).
 操作部7は、ユーザーによる操作を受け付ける部位である。操作部7は、例えば、画像処理装置1の装置本体1bの外壁に設けられるスイッチや液晶タッチパネルなどの各種ユーザーインターフェイスにより構成することができる。 The operation unit 7 is a part that receives an operation by the user. The operation unit 7 can be configured by various user interfaces such as a switch and a liquid crystal touch panel provided on the outer wall of the apparatus main body 1b of the image processing apparatus 1, for example.
 記憶部8は、管状部材の外径情報を記憶する部位である。記憶部8は、例えば、ROM(Read Only Memoryの略)やRAM(Random Access Memoryの略)などのメモリにより構成することができる。 The storage unit 8 is a part that stores the outer diameter information of the tubular member. The storage unit 8 can be constituted by a memory such as a ROM (abbreviation of Read Only Memory) or a RAM (abbreviation of Random Access Memory), for example.
 制御部9は、上述した撮像部2、取得部3、画像処理部4、表示部5、入力部6、操作部7、及び記憶部8の各部に対して、所定のタイミングで上述した動作を実行するように指示する。制御部9は、例えば、記憶部8に記憶されている画像処理プログラムを読み出し、画像処理部4に画像処理を実行させる。制御部9は、上述した取得部3、画像処理部4及び入力部6と同様、MPUやCPUなどのプロセッサ20(図1参照)により構成される。取得部3、画像処理部4、入力部6及び制御部9を、単一のプロセッサ20から構成されているが、複数のプロセッサから構成してもよい。 The control unit 9 performs the above-described operation at a predetermined timing on each of the imaging unit 2, the acquisition unit 3, the image processing unit 4, the display unit 5, the input unit 6, the operation unit 7, and the storage unit 8. Instruct to run. For example, the control unit 9 reads an image processing program stored in the storage unit 8 and causes the image processing unit 4 to execute image processing. The control unit 9 is configured by a processor 20 (see FIG. 1) such as an MPU or a CPU, like the acquisition unit 3, the image processing unit 4, and the input unit 6 described above. The acquisition unit 3, the image processing unit 4, the input unit 6, and the control unit 9 are configured from a single processor 20, but may be configured from a plurality of processors.
 以上のとおり、上述した画像処理装置1によれば図4にフローチャートで示す画像処理方法が実行される。具体的に、画像処理装置1による画像処理方法は、体表面から心臓の画像を撮像する撮像工程S1と、心臓内に挿入される管状部材31の外径情報を取得する取得工程S2と、管状部材31の外径情報に基づいて、撮像工程S1で撮像された画像における管状部材31の輪郭を補正する画像処理工程S3と、を含む。各工程S1~S3における処理は上述した通りであるためここでは説明を省略する。 As described above, according to the image processing apparatus 1 described above, the image processing method shown in the flowchart of FIG. 4 is executed. Specifically, the image processing method by the image processing apparatus 1 includes an imaging step S1 for capturing a heart image from the body surface, an acquisition step S2 for acquiring outer diameter information of the tubular member 31 inserted into the heart, and a tubular shape. An image processing step S3 for correcting the contour of the tubular member 31 in the image captured in the imaging step S1 based on the outer diameter information of the member 31. Since the processing in each of the steps S1 to S3 is as described above, description thereof is omitted here.
 本開示に係る画像処理装置及び画像処理方法は、上述した実施形態で示す具体的な構成及び工程に限定されず、請求の範囲の記載を逸脱しない限り、種々の変更、変形が可能である。例えば、管状部材31を通じて心臓内にデリバリーされる医療用器具としての穿刺部材の外径情報、形状情報などの各種情報を利用して、画像における管状部材31の輪郭を補正してもよい。穿刺部材は、心筋に穿刺され、治療物質を心筋内に注入する際に利用され、管状部材31の先端開口から突出させて使用する。そのため、穿刺部材は、心臓の断面画像(図3参照)において、管状部材31と共に映り込む。したがって、穿刺部材の各種情報を取得し、管状部材31の輪郭補正に利用してもよい。穿刺部材の各種情報は、例えば、管状部材31の外形情報と同様、取得部3により取得される。 The image processing apparatus and the image processing method according to the present disclosure are not limited to the specific configurations and processes shown in the above-described embodiments, and various changes and modifications can be made without departing from the scope of the claims. For example, the contour of the tubular member 31 in the image may be corrected using various information such as the outer diameter information and shape information of the puncture member as a medical instrument delivered into the heart through the tubular member 31. The puncture member is used when the myocardium is punctured and a therapeutic substance is injected into the myocardium, and is used by protruding from the distal end opening of the tubular member 31. Therefore, the puncture member is reflected together with the tubular member 31 in the cross-sectional image of the heart (see FIG. 3). Therefore, various types of information on the puncture member may be acquired and used for contour correction of the tubular member 31. Various types of information on the puncture member are acquired by the acquisition unit 3 as in the case of the outer shape information of the tubular member 31, for example.
 また、上述の実施形態では、大動脈弁AV(図2参照)と左心室LV(図2、図3参照)の心尖部Y(図2参照)とを結ぶ直線状の線分と略直交する断面の断面画像(図3参照)において、管状部材31の輪郭を補正しているが、心臓の断層画像や、図3とは異なる位置での心臓の断面画像において、同様の手法により、管状部材31の輪郭を補正してもよい。更に、上述の実施形態では、超音波画像における管状部材31の輪郭を補正しているが、超音波以外の画像における管状部材31の輪郭補正に同様の手法を適用してもよい。但し、リアルタイムでのモニタリングを実現する上では、上述の実施形態で示す超音波画像を利用することが好ましい。 In the above-described embodiment, a cross section that is substantially orthogonal to a straight line segment connecting the aortic valve AV (see FIG. 2) and the apex Y (see FIG. 2) of the left ventricle LV (see FIGS. 2 and 3). In the cross-sectional image of FIG. 3 (see FIG. 3), the contour of the tubular member 31 is corrected. However, in the cross-sectional image of the heart and the cross-sectional image of the heart at a position different from FIG. You may correct | amend the outline of. Furthermore, in the above-described embodiment, the contour of the tubular member 31 in the ultrasound image is corrected. However, a similar technique may be applied to the contour correction of the tubular member 31 in an image other than the ultrasound image. However, in order to realize real-time monitoring, it is preferable to use the ultrasonic image shown in the above-described embodiment.
 また、上述の実施形態では、画像処理装置1が撮像部2を備える構成であったが、撮像部2を備えず、外部の撮像装置で撮像された心臓の画像を取得し、画像処理を実行する画像処理装置としてもよい。かかる場合には、画像処理装置1の取得部3が、外部の撮像装置から心臓の画像データを取得するようにすればよい。 In the above-described embodiment, the image processing device 1 includes the imaging unit 2. However, the image processing device 1 does not include the imaging unit 2, acquires a heart image captured by an external imaging device, and executes image processing. The image processing apparatus may be used. In such a case, the acquisition unit 3 of the image processing device 1 may acquire heart image data from an external imaging device.
 以下、上述した画像処理装置及び画像処理方法とは別の画像処理装置及び画像処理方法を例示説明する。 Hereinafter, an image processing apparatus and an image processing method different from the above-described image processing apparatus and image processing method will be described as an example.
 血管や心臓などの内部に医療用器具を挿入し、体外用3次元超音波診断装置を用いて体内の医療用器具の位置を検出しながら診断や治療を行うことがある。特許文献2には、この種の診断に利用される超音波診断装置が記載されている。 There are cases where a medical instrument is inserted into a blood vessel, a heart, or the like, and a diagnosis or treatment is performed while detecting the position of the medical instrument in the body using an external three-dimensional ultrasonic diagnostic apparatus. Patent Document 2 describes an ultrasonic diagnostic apparatus used for this type of diagnosis.
 特許文献2に記載の超音波診断装置は、先端付近に超音波を発生する超音波発生手段を備え、被検体内に挿入されるカテーテル又は細径プローブと、被検体に対して超音波を送受波する複数の超音波振動子を二次元的に配列してなる超音波プローブと、を備える。また、特許文献2に記載の超音波診断装置は、超音波プローブが超音波画像生成用の超音波送波を行うように駆動信号を発生する第1の送信駆動手段と、超音波発生手段が位置検出用超音波送波を複数回行うように駆動信号を発生する第2の送信駆動手段と、複数の位置検出用超音波に基づく超音波受信信号を加算し、加算後の受信信号に基づいてカテーテル又は細径プローブの位置情報を求める位置演算手段と、を備える。更に、特許文献2に記載の超音波診断装置は、超音波画像生成用の超音波送波に対応する超音波受信信号に基づいて超音波画像を生成する超音波画像生成手段と、カテーテル又は細径プローブの位置情報に基づいて、超音波画像と共にカテーテル又は細径プローブの位置を表示する表示手段と、を備える。 The ultrasonic diagnostic apparatus described in Patent Document 2 includes an ultrasonic wave generation unit that generates an ultrasonic wave in the vicinity of the tip, and transmits and receives an ultrasonic wave to and from a catheter or a small-diameter probe inserted into the subject. And an ultrasonic probe formed by two-dimensionally arranging a plurality of ultrasonic transducers that wave. In addition, the ultrasonic diagnostic apparatus described in Patent Document 2 includes a first transmission drive unit that generates a drive signal so that an ultrasonic probe performs ultrasonic transmission for generating an ultrasonic image, and an ultrasonic generation unit. Second transmission driving means for generating a drive signal so as to perform position detection ultrasonic wave transmission a plurality of times and an ultrasonic reception signal based on a plurality of position detection ultrasonic waves are added, and based on the received signal after addition Position calculating means for obtaining position information of the catheter or the small diameter probe. Furthermore, the ultrasonic diagnostic apparatus described in Patent Document 2 includes an ultrasonic image generation unit that generates an ultrasonic image based on an ultrasonic reception signal corresponding to an ultrasonic wave transmission for generating an ultrasonic image, and a catheter or a cell. Display means for displaying the position of the catheter or the small diameter probe together with the ultrasonic image based on the position information of the diameter probe.
 特許文献2に記載の超音波診断装置では、血管や胆管などの管腔に挿入されるカテーテルや細径プローブ等の挿入手段が、先端付近に超音波を発生する超音波発生手段を備える。挿入手段を挿入し診断や治療を行う際に、挿入手段から発せられる超音波を利用できるため、特許文献2に記載の超音波診断装置によれば、体内での挿入手段の位置をより正確に特定することができる。しかしながら、超音波画像等の画像に心臓内の挿入手段をリアルタイムに表示し、その画像をモニタリングしながら心臓内の診断や治療を行う場合には、心臓内での挿入手段の位置のみならず、心臓内での挿入手段の輪郭を明確に表示することが望ましく、特許文献2に記載の超音波診断装置では、画像における挿入手段の輪郭補正を行うことが難しい。 In the ultrasonic diagnostic apparatus described in Patent Document 2, an insertion means such as a catheter or a small-diameter probe inserted into a lumen such as a blood vessel or a bile duct is provided with an ultrasonic wave generation means that generates an ultrasonic wave near the tip. Since ultrasonic waves emitted from the insertion means can be used when the insertion means is inserted to perform diagnosis or treatment, according to the ultrasonic diagnostic apparatus described in Patent Document 2, the position of the insertion means in the body can be more accurately determined. Can be identified. However, when the insertion means in the heart is displayed in real time on an image such as an ultrasonic image and the diagnosis or treatment in the heart is performed while monitoring the image, not only the position of the insertion means in the heart, It is desirable to clearly display the contour of the insertion means in the heart, and it is difficult for the ultrasonic diagnostic apparatus described in Patent Document 2 to correct the contour of the insertion means in the image.
 以下に例示説明する画像処理装置及び画像処理方法によれば、撮像された心臓の画像における挿入部材の輪郭補正を実現し易くなる。 According to the image processing apparatus and the image processing method described below as examples, it is easy to realize the contour correction of the insertion member in the captured heart image.
 図5は、本開示に係る画像処理装置セットの1つの実施形態としての画像処理装置セット1100を示すブロック図である。図5に示す画像処理装置セット1100は、本開示に係る画像処理装置の1つの実施形態としての画像処理装置1001と、心臓内に挿入される挿入部材1031と、を備える。図6は、画像処理装置セット1100を用いて行う施術の概要を示す概要図である。 FIG. 5 is a block diagram showing an image processing device set 1100 as one embodiment of the image processing device set according to the present disclosure. An image processing device set 1100 illustrated in FIG. 5 includes an image processing device 1001 as one embodiment of the image processing device according to the present disclosure, and an insertion member 1031 to be inserted into the heart. FIG. 6 is a schematic diagram showing an outline of a procedure performed using the image processing apparatus set 1100.
 図6に示すように、本実施形態の画像処理装置1001は、血管を通じて心臓内へと医療用器具をデリバリーし、心臓内で所定の診断や治療などの施術を実行する際に、施術中の心臓内の様子をモニタリング可能とするモニタリング装置である。画像処理装置1001としてのモニタリング装置は、例えば、大腿動脈FAから大動脈AO及び大動脈弁AVを通じて左心室LVに挿入される挿入部材1031としてのカテーテルの左心室LV内の位置や輪郭を、体外からモニタリングできるように表示する。医師等の医療従事者は、画像処理装置1001としてのモニタリング装置に表示される左心室LV内の挿入部材1031の位置や輪郭を頼りに、この挿入部材1031を通じて左心室LV内にデリバリーされた各種医療用器具を用いて所定の診断や治療などの施術を実行する。 As shown in FIG. 6, the image processing apparatus 1001 according to the present embodiment delivers a medical instrument into a heart through a blood vessel, and performs a predetermined diagnosis or treatment in the heart. This is a monitoring device that can monitor the state in the heart. The monitoring apparatus as the image processing apparatus 1001 monitors, for example, the position and contour of the catheter in the left ventricle LV as the insertion member 1031 inserted into the left ventricle LV from the femoral artery FA through the aorta AO and the aortic valve AV from outside the body. Display as you can. A medical worker such as a doctor, depending on the position and contour of the insertion member 1031 in the left ventricle LV displayed on the monitoring device as the image processing apparatus 1001, can deliver various types of deliveries into the left ventricle LV through the insertion member 1031. A predetermined diagnosis or treatment is performed using a medical instrument.
 左心室LV内で実行される所定の治療としては、例えば、心疾患等を治療するために心筋内に各種の治療物質を投与する治療が挙げられる。各種の治療物質としては、細胞の補充、血管新生誘導、心臓壁補強、足場材料、またはアポトーシス・ネクローシスの予防による組織修復あるいは再生などの治療効果が得られる物質が挙げられ、例えば、細胞、薬液又はポリマー等である。治療物質としての細胞は、例えば、生理食塩水等の液体中に分散した細胞懸濁液の状態で心筋内に投与される。 As the predetermined treatment performed in the left ventricle LV, for example, treatment in which various therapeutic substances are administered into the myocardium in order to treat heart disease or the like can be mentioned. Examples of various therapeutic substances include cells that can provide therapeutic effects such as cell replacement, angiogenesis induction, heart wall reinforcement, scaffolding materials, or tissue repair or regeneration by prevention of apoptosis / necrosis. Or a polymer etc. Cells as a therapeutic substance are administered into the myocardium in the state of a cell suspension dispersed in a liquid such as physiological saline.
 治療物質としての細胞は、例えば、接着細胞(付着性細胞)を含む。接着細胞は、例えば、接着性の体細胞(例えば、心筋細胞、線維芽細胞、上皮細胞、内皮細胞、肝細胞、膵細胞、腎細胞、副腎細胞、歯根膜細胞、歯肉細胞、骨膜細胞、皮膚細胞、滑膜細胞、軟骨細胞など)及び幹細胞(例えば、筋芽細胞、心臓幹細胞などの組織幹細胞、胚性幹細胞、iPS(induced pluripotent stem)細胞などの多能性幹細胞、間葉系幹細胞等)などを含む。体細胞は、幹細胞、特にiPS細胞から分化させた細胞であってもよい。治療物質としての細胞の非限定例としては、例えば、筋芽細胞(例えば、骨格筋芽細胞など)、間葉系幹細胞(例えば、骨髄、脂肪組織、末梢血、皮膚、毛根、筋組織、子宮内膜、胎盤、臍帯血由来の細胞など)、心筋細胞、線維芽細胞、心臓幹細胞、胚性幹細胞、iPS細胞、滑膜細胞、軟骨細胞、上皮細胞(例えば、口腔粘膜上皮細胞、網膜色素上皮細胞、鼻粘膜上皮細胞など)、内皮細胞(例えば、血管内皮細胞など)、肝細胞(例えば、肝実質細胞など)、膵細胞(例えば、膵島細胞など)、腎細胞、副腎細胞、歯根膜細胞、歯肉細胞、骨膜細胞、皮膚細胞等が挙げられる。 Cells as therapeutic substances include, for example, adherent cells (adherent cells). Adherent cells include, for example, adherent somatic cells (eg, cardiomyocytes, fibroblasts, epithelial cells, endothelial cells, hepatocytes, pancreatic cells, kidney cells, adrenal cells, periodontal cells, gingival cells, periosteum cells, skin Cells, synovial cells, chondrocytes, etc.) and stem cells (eg, tissue stem cells such as myoblasts, cardiac stem cells, embryonic stem cells, pluripotent stem cells such as induced pluripotent cells (iPS) cells, mesenchymal stem cells, etc.) Etc. Somatic cells may be stem cells, especially cells differentiated from iPS cells. Non-limiting examples of cells as therapeutic substances include, for example, myoblasts (eg, skeletal myoblasts), mesenchymal stem cells (eg, bone marrow, adipose tissue, peripheral blood, skin, hair root, muscle tissue, uterus) Endometrium, placenta, cord blood-derived cells, etc.), cardiomyocytes, fibroblasts, cardiac stem cells, embryonic stem cells, iPS cells, synovial cells, chondrocytes, epithelial cells (eg, oral mucosal epithelial cells, retinal pigment epithelium) Cells, nasal mucosal epithelial cells, etc.), endothelial cells (eg, vascular endothelial cells, etc.), hepatocytes (eg, liver parenchymal cells, etc.), pancreatic cells (eg, islet cells, etc.), kidney cells, adrenal cells, periodontal ligament cells Gingival cells, periosteum cells, skin cells and the like.
 治療物質としての薬剤は、例えば、タンパク質、プラスミド、遺伝子、成長因子、化学誘因物質、合成ポリペプチド、種々の医薬組成物等が挙げられ、さらには他の治療的に有益な物質を単独で、または任意の組合せで含むこともできる。 Drugs as therapeutic substances include, for example, proteins, plasmids, genes, growth factors, chemoattractants, synthetic polypeptides, various pharmaceutical compositions, and other therapeutically beneficial substances alone, Or they can be included in any combination.
 治療物質としてのポリマーは、注入可能な生体適合性を有する単一成分または多成分材料、ポリマーベースのビーズ、ポリマーヒドロゲル、フィブリン接着剤、コラーゲン、アルギン酸塩、ポリエチレングリコールなどの合成高分子材料、およびキトサン等が挙げられる。 Polymers as therapeutic agents include injectable biocompatible single-component or multi-component materials, polymer-based beads, polymer hydrogels, fibrin adhesives, synthetic polymeric materials such as collagen, alginate, polyethylene glycol, and Chitosan etc. are mentioned.
 本実施形態では、図6に示すように、左心室LVの心筋の梗塞部位X又はその近傍に対して左心室LV内から治療物質を投与する施術を、画像処理装置1001としてのモニタリング装置でモニタリングしながら実行する例を示すが、画像処理装置1001としてのモニタリング装置でモニタリングしながら実行する施術は、所定の治療物質の投与に限らず、例えば、左心室LVの心筋の梗塞状態を診断する施術等であってもよい。左心室LVの心筋の梗塞部位Xは、磁気共鳴映像装置(以下、MRI装置という)又はX線コンピュータ断層撮影装置(以下、X線CT装置という)を用いて体外から心臓の断層画像を取得し、取得した断層画像から予め特定しておくことができる。 In the present embodiment, as shown in FIG. 6, a treatment that administers a therapeutic substance from the left ventricle LV to or near the infarct region X of the myocardium of the left ventricle LV is monitored by a monitoring device as the image processing device 1001. However, the operation performed while monitoring with the monitoring device as the image processing apparatus 1001 is not limited to the administration of a predetermined therapeutic substance, for example, a procedure for diagnosing the infarct state of the myocardium of the left ventricle LV Etc. For the infarct region X of the myocardium of the left ventricle LV, a tomographic image of the heart is acquired from outside the body using a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) or an X-ray computed tomography apparatus (hereinafter referred to as an X-ray CT apparatus). It can be specified in advance from the acquired tomographic image.
 また、本実施形態の画像処理装置1001としてのモニタリング装置は、上述の左心室LV(図6参照)内の施術をモニタリング可能にする装置に限らず、右心室、左心房および右心房のいずれかの内部で実行される施術を体外からモニタリング可能な装置としてもよい。後述するように、本実施形態の画像処理装置1001は、3次元超音波診断装置である。そのため、左心室LV、右心室、左心房および右心房のいずれの内部であっても異なる断面での断層画像を取得可能であり、これら断層画像を利用することによりモニタリング可能である。 In addition, the monitoring apparatus as the image processing apparatus 1001 of the present embodiment is not limited to an apparatus that can monitor the treatment in the left ventricle LV (see FIG. 6), and any one of the right ventricle, the left atrium, and the right atrium. It is good also as a device which can monitor the treatment performed inside the body from outside the body. As will be described later, the image processing apparatus 1001 of the present embodiment is a three-dimensional ultrasonic diagnostic apparatus. Therefore, it is possible to acquire tomographic images at different cross sections even in any of the left ventricle LV, right ventricle, left atrium, and right atrium, and monitoring can be performed by using these tomographic images.
 以下、本実施形態の画像処理装置1001の詳細について説明する。 Hereinafter, details of the image processing apparatus 1001 of the present embodiment will be described.
 図5に示すように、画像処理装置1001は、撮像部1002と、画像処理部1003と、表示部1004と、操作部1005と、記憶部1006と、制御部1007と、を備える。 As illustrated in FIG. 5, the image processing apparatus 1001 includes an imaging unit 1002, an image processing unit 1003, a display unit 1004, an operation unit 1005, a storage unit 1006, and a control unit 1007.
 撮像部1002は、体表面から心臓の画像としての心臓の断層画像及び心臓の3次元画像を撮像可能である。 The imaging unit 1002 can capture a tomographic image of the heart as a heart image and a three-dimensional image of the heart from the body surface.
 具体的に、撮像部1002は、超音波を発信する超音波発信部1011と、超音波を受信する超音波受信部1012と、この超音波受信部1012が受信した超音波の測定情報としての超音波データから断層画像を形成する画像形成部1013と、を備える。超音波発信部1011から発信され、心臓の各部位から反射される超音波を超音波受信部1012が受信する。 Specifically, the imaging unit 1002 includes an ultrasonic transmission unit 1011 that transmits ultrasonic waves, an ultrasonic reception unit 1012 that receives ultrasonic waves, and ultrasonic measurement information received by the ultrasonic reception unit 1012 as ultrasonic measurement information. An image forming unit 1013 for forming a tomographic image from the sound wave data. The ultrasonic receiving unit 1012 receives ultrasonic waves transmitted from the ultrasonic transmitting unit 1011 and reflected from each part of the heart.
 より具体的に、本実施形態の画像処理装置1001としてのモニタリング装置は、3次元超音波診断装置である。「3次元超音波診断装置」とは、3次元画像を撮像可能な超音波診断装置を意味する。そして、本実施形態の画像処理装置1001としての3次元超音波診断装置は、体表面上に接触させる3次元超音波プローブ1001aと、この3次元超音波プローブ1001aと有線又は無線により通信可能な装置本体1001bと、を備える。3次元超音波プローブ1001aは、撮像部1002の超音波発信部1011及び超音波受信部1012を備える。装置本体1001bは、撮像部1002の画像形成部1013を備える。画像形成部1013はCPUやMPUなどのプロセッサにより構成される。 More specifically, the monitoring apparatus as the image processing apparatus 1001 of the present embodiment is a three-dimensional ultrasonic diagnostic apparatus. The “three-dimensional ultrasonic diagnostic apparatus” means an ultrasonic diagnostic apparatus that can capture a three-dimensional image. The three-dimensional ultrasonic diagnostic apparatus as the image processing apparatus 1001 of this embodiment includes a three-dimensional ultrasonic probe 1001a that is brought into contact with the body surface, and an apparatus that can communicate with the three-dimensional ultrasonic probe 1001a by wire or wirelessly. A main body 1001b. The three-dimensional ultrasonic probe 1001a includes an ultrasonic transmission unit 1011 and an ultrasonic reception unit 1012 of the imaging unit 1002. The apparatus main body 1001b includes an image forming unit 1013 of the imaging unit 1002. The image forming unit 1013 is configured by a processor such as a CPU or MPU.
 図6に示すように、3次元超音波プローブ1001aは、肋骨の間から超音波の発信及び受信が可能なように、体表面のうち体前面の肋骨近傍の皮膚上に配置される。その状態で、超音波発信部1011及び超音波受信部1012を用いて超音波診断を実行する。 As shown in FIG. 6, the three-dimensional ultrasonic probe 1001a is arranged on the skin near the rib on the front surface of the body so that ultrasonic waves can be transmitted and received from between the ribs. In this state, ultrasonic diagnosis is executed using the ultrasonic transmission unit 1011 and the ultrasonic reception unit 1012.
 装置本体1001bは、3次元超音波プローブ1001aから超音波の測定情報を取得する。次いで、装置本体1001bの画像形成部1013が、取得した超音波の測定情報に基づいて、心臓の断層画像を形成する。 The apparatus main body 1001b acquires ultrasonic measurement information from the three-dimensional ultrasonic probe 1001a. Next, the image forming unit 1013 of the apparatus main body 1001b forms a tomographic image of the heart based on the acquired ultrasonic measurement information.
 撮像部1002は、このようにして、心臓の各種断面での断層画像を撮像することができる。つまり、撮像部1002の画像形成部1013は、超音波受信部1012が受信した所定の一平面の測定情報に基づき、この所定の一平面についての断層画像を形成する。更に、撮像部1002は、撮像された心臓の複数の断層画像を積層させる処理や、複数の断層画像を撮像する走査時に収集される各断層画像の基となる3次元データの処理により、レンダリングを実行し、心臓の3次元画像を撮像することができる。具体的に、撮像部1002の画像形成部1013は、複数の断層画像を組み合わせることにより、又は、各断層画像を撮像する際に収集される3次元データを処理することにより、心臓の3次元モデルを形成すると共に、この3次元モデルに基づき心臓の任意の3次元画像を形成することができる。 In this way, the imaging unit 1002 can capture tomographic images at various cross sections of the heart. That is, the image forming unit 1013 of the imaging unit 1002 forms a tomographic image for the predetermined plane based on the measurement information of the predetermined plane received by the ultrasonic receiver 1012. Furthermore, the imaging unit 1002 performs rendering by processing of stacking a plurality of tomographic images of the captured heart and processing of three-dimensional data that is the basis of each tomographic image collected at the time of scanning for capturing a plurality of tomographic images. Run and take a 3D image of the heart. Specifically, the image forming unit 1013 of the imaging unit 1002 combines a plurality of tomographic images, or processes three-dimensional data collected when each tomographic image is captured, thereby processing a three-dimensional model of the heart. And any three-dimensional image of the heart can be formed based on this three-dimensional model.
 図7は、撮像部1002により撮像される心臓の3次元画像の一例を示す図である。より具体的に、図7は、撮像部1002により形成される心臓の3次元モデルの左心室LVの断面画像が表示部1004に表示されている状態を示している。より具体的に、図7は、大動脈弁AV(図6参照)と左心室LVの心尖部Y(図6参照)とを結ぶ線分と所定の角度で交差する(本実施形態では略直交する)断面の断面画像であり、大動脈弁AV側から心尖部Y側を見た画像である。このように、撮像部1002により心臓の3次元モデルを形成すれば、図7に示す断面に限らず、心臓の所望の断面を後述する表示部1004に表示することができる。本実施形態では、図7に示すような、大動脈弁AV(図6参照)と左心室LVの心尖部Yとを結ぶ線分と交差する断面を後述する表示部1004に表示した状態で施術のモニタリングを行うが、大動脈弁AVと左心室LVの心尖部Yとを結ぶ線分と略平行する断面の断面画像により施術のモニタリングを行ってもよい。 FIG. 7 is a diagram illustrating an example of a three-dimensional image of the heart imaged by the imaging unit 1002. More specifically, FIG. 7 shows a state where a cross-sectional image of the left ventricle LV of the three-dimensional model of the heart formed by the imaging unit 1002 is displayed on the display unit 1004. More specifically, FIG. 7 intersects a line segment connecting the aortic valve AV (see FIG. 6) and the apex Y of the left ventricle LV (see FIG. 6) at a predetermined angle (in the present embodiment, substantially orthogonal). ) A cross-sectional image of the cross-section, as viewed from the aortic valve AV side to the apex Y side. In this way, if a three-dimensional model of the heart is formed by the imaging unit 1002, the desired cross section of the heart can be displayed on the display unit 1004 described later, not only the cross section shown in FIG. In the present embodiment, as shown in FIG. 7, the operation is performed in a state where a cross section intersecting with a line segment connecting the aortic valve AV (see FIG. 6) and the apex Y of the left ventricle LV is displayed on the display unit 1004 described later. Although monitoring is performed, the operation may be monitored by a cross-sectional image of a cross section substantially parallel to a line segment connecting the aortic valve AV and the apex Y of the left ventricle LV.
 また、撮像部1002は、所定時間ごとに画像を撮像する。具体的に、撮像部1002は、所定時間ごとに同一位置での断層画像を撮像し、動画として経時的に表示部1004に表示することができる。また、撮像部1002は、所定時間ごとに同一視点での心臓の3次元画像(3次元モデルから形成される断面画像を含む)を撮像し、動画として経時的に表示部1004に表示することができる。3次元画像の撮像間隔(本実施形態では3次元モデルの形成間隔と略等しい)を例えば1秒に設定し、同間隔で表示部1004に断層画像、3次元画像などを動画として経時的に表示させるようにすれば、心臓の断層画像、3次元画像などをリアルタイムにモニタリングすることができる。換言すれば、表示部1004に心臓内の映像を表示することができる。但し、図7では、一例として、3次元モデルから形成された、心臓の3次元画像としての断面画像のみを示している。 Further, the imaging unit 1002 captures an image every predetermined time. Specifically, the imaging unit 1002 can capture tomographic images at the same position every predetermined time and can display them on the display unit 1004 over time as a moving image. In addition, the imaging unit 1002 captures a three-dimensional image of the heart (including a cross-sectional image formed from a three-dimensional model) at the same viewpoint at predetermined time intervals and displays it on the display unit 1004 over time as a moving image. it can. The imaging interval of the three-dimensional image (in this embodiment, approximately equal to the three-dimensional model formation interval) is set to 1 second, for example, and the tomographic image, the three-dimensional image, etc. are displayed as a moving image over time on the display unit 1004 at the same interval. By doing so, a tomographic image of the heart, a three-dimensional image, etc. can be monitored in real time. In other words, an intracardiac image can be displayed on the display unit 1004. However, in FIG. 7, only a cross-sectional image as a three-dimensional image of the heart formed from a three-dimensional model is shown as an example.
 3次元画像の撮像間隔は1秒に限らず適宜設定可能であるが、施術中の心臓の断層画像、3次元画像などをリアルタイムで表示するために、心臓の3次元画像については、少なくとも3秒以下の間隔で撮像を実行するようにすることが好ましい。また、表示部1004に表示する断層画像や3次元画像を経時的に切り替える時間間隔は、3次元画像の撮像間隔と同間隔であってもよく、異なる間隔としてもよい。例えば、表示部1004に断層画像のみをリアルタイムに表示する場合に、同位置での断層画像を撮像する撮像間隔を200msec等にして、この撮像間隔と同間隔で表示部1004の表示を切り替えるようにしてもよいし、撮像間隔とは異なる時間間隔で表示を切り替えてもよい。撮像間隔と異なる時間間隔で表示部1004の切り替えを実行する例としては、例えば、所定時間ごとに、表示部1004に表示する断層画像と、表示部1004に表示しない断層画像と、を交互に撮像する構成が挙げられる。また、表示部1004に3次元画像のみをリアルタイムに表示する場合に、同位置での3次元画像を撮像する撮像間隔を1秒等にして、この撮像間隔と同間隔で表示部1004の表示を切り替えるようにしてもよいし、撮像間隔とは異なる時間間隔で表示を切り替えてもよい。撮像間隔と異なる時間間隔で表示部1004の切り替えを実行する例としては、例えば、所定時間ごとに、表示部1004に表示する3次元画像と、表示部1004に表示しない3次元画像と、を交互に撮像する構成が挙げられる。 The imaging interval of the 3D image is not limited to 1 second and can be set as appropriate. However, in order to display the tomographic image of the heart during the operation, the 3D image, etc. in real time, the 3D image of the heart is at least 3 seconds. It is preferable to perform imaging at the following intervals. Further, the time interval for switching the tomographic image or the three-dimensional image displayed on the display unit 1004 with time may be the same as the imaging interval of the three-dimensional image or may be different. For example, when only the tomographic image is displayed on the display unit 1004 in real time, the imaging interval for capturing the tomographic image at the same position is set to 200 msec, and the display of the display unit 1004 is switched at the same interval as this imaging interval. Alternatively, the display may be switched at a time interval different from the imaging interval. As an example of switching the display unit 1004 at a time interval different from the imaging interval, for example, a tomographic image displayed on the display unit 1004 and a tomographic image not displayed on the display unit 1004 are alternately captured at predetermined time intervals. The structure to do is mentioned. In addition, when only a three-dimensional image is displayed on the display unit 1004 in real time, the imaging interval for capturing the three-dimensional image at the same position is set to 1 second, and the display unit 1004 is displayed at the same interval as this imaging interval. The display may be switched, or the display may be switched at a time interval different from the imaging interval. As an example of switching the display unit 1004 at a time interval different from the imaging interval, for example, a three-dimensional image displayed on the display unit 1004 and a three-dimensional image not displayed on the display unit 1004 are alternately displayed every predetermined time. A configuration for imaging is given.
 このように、本実施形態の画像処理装置1001としてのモニタリング装置では、心臓内の映像をリアルタイムに表示しながら、この映像を頼りにして、所定の治療物質を投与する施術を実行する。そのため、この施術の間、3次元超音波プローブ1001aは、上述した体表面上の所定位置で固定された状態とされる。3次元超音波プローブ1001aの体表面上での固定は、粘着剤等による体表面への貼着等により実現可能である。 As described above, in the monitoring apparatus as the image processing apparatus 1001 according to the present embodiment, the intra-cardiac image is displayed in real time, and a treatment for administering a predetermined therapeutic substance is executed using the image. Therefore, during this treatment, the three-dimensional ultrasonic probe 1001a is fixed at a predetermined position on the body surface described above. Fixation of the three-dimensional ultrasonic probe 1001a on the body surface can be realized by sticking the body surface with an adhesive or the like.
 また、撮像部1002は、受信装置1002aを備えている。この受信装置1002aは、後述するように、挿入部材1031から発信される複数の位置情報を受信する。本実施形態の挿入部材1031から発信される複数の位置情報は、後述するように超音波信号である。そのため、本実施形態の受信装置1002aは、挿入部材1031から発信される超音波信号を受信する超音波受信装置である。そして、本実施形態の受信装置1002aとしての超音受信装置は、3次元超音波プローブ1001aに設けられている。より具体的に、本実施形態の受信装置1002aとしての超音受信装置は、超音波受信部1012を構成している。つまり、本実施形態の受信装置1002aとしての超音受信装置は、断層画像を撮像する際に超音波の測定情報を受信する超音波受信部1012と、心臓内に位置する挿入部材1031から発信される位置情報を受信する受信部と、を兼ねている。 Further, the imaging unit 1002 includes a receiving device 1002a. As will be described later, the receiving device 1002a receives a plurality of pieces of position information transmitted from the insertion member 1031. The plurality of pieces of position information transmitted from the insertion member 1031 of the present embodiment are ultrasonic signals as will be described later. Therefore, the receiving device 1002a of the present embodiment is an ultrasonic receiving device that receives an ultrasonic signal transmitted from the insertion member 1031. And the ultrasonic receiving apparatus as the receiving apparatus 1002a of this embodiment is provided in the three-dimensional ultrasonic probe 1001a. More specifically, the ultrasonic receiving device as the receiving device 1002a of the present embodiment constitutes an ultrasonic receiving unit 1012. That is, the ultrasonic receiving device as the receiving device 1002a of the present embodiment is transmitted from the ultrasonic receiving unit 1012 that receives ultrasonic measurement information when capturing a tomographic image and the insertion member 1031 located in the heart. And a receiving unit that receives position information.
 画像処理部1003は、撮像部1002により撮像される心臓の画像において、心臓内に挿入されている挿入部材1031の輪郭を補正する。具体的に、画像処理部1003は、受信装置1002aが受信する、挿入部材1031の複数の位置情報に基づいて、画像における挿入部材1031の輪郭を補正する。より具体的に、画像処理部1003は、受信装置1002aが受信する複数の位置情報の受信タイミングの差に基づいて、画像における挿入部材1031の輪郭を補正する。ここで、挿入部材1031の「複数の位置情報」とは、任意のタイミングにおける挿入部材1031の異なる位置を示す位置情報である。挿入部材1031の異なる部位の位置関係が特定できれば、その位置関係に一致するように画像中の挿入部材1031の輪郭を補正することができる。上述したように、受信タイミングの差を利用すれば、予め設定された異なる部位どうしの位置関係を特定するこができる。この「複数の位置情報」の具体例については後述する。 The image processing unit 1003 corrects the contour of the insertion member 1031 inserted in the heart in the heart image captured by the imaging unit 1002. Specifically, the image processing unit 1003 corrects the contour of the insertion member 1031 in the image based on the plurality of pieces of position information of the insertion member 1031 received by the reception device 1002a. More specifically, the image processing unit 1003 corrects the contour of the insertion member 1031 in the image based on a difference in reception timing of a plurality of pieces of position information received by the receiving device 1002a. Here, the “plurality of position information” of the insertion member 1031 is position information indicating different positions of the insertion member 1031 at an arbitrary timing. If the positional relationship between different parts of the insertion member 1031 can be specified, the contour of the insertion member 1031 in the image can be corrected so as to match the positional relationship. As described above, the positional relationship between different parts set in advance can be specified by using the difference in reception timing. A specific example of the “plurality of position information” will be described later.
 本実施形態の画像処理部1003は、上述した挿入部材1031の複数の位置情報と、撮像部1002が撮像する断層画像や3次元画像などの画像のスケール情報とに基づいて、画像における挿入部材1031の輪郭を補正する。撮像部1002が撮像する画像のスケール情報としては、例えば、画像中の所定の2点間に関しての、実距離と画像における画像距離との比率情報が挙げられる。このように画像のスケール情報を取得すれば、画像中に表示される挿入部材1031の輪郭をより鮮明に補正することができる。画像のスケール情報は、後述する操作部1005のユーザー操作により取得した情報としてもよく、後述する記憶部1006に記憶されている情報としてもよい。 The image processing unit 1003 according to the present embodiment is based on the plurality of pieces of position information of the insertion member 1031 described above and scale information of an image such as a tomographic image or a three-dimensional image captured by the imaging unit 1002. Correct the contour. Examples of the scale information of the image captured by the imaging unit 1002 include ratio information between the actual distance and the image distance in the image with respect to a predetermined two points in the image. Thus, if the scale information of an image is acquired, the outline of the insertion member 1031 displayed in the image can be corrected more clearly. The image scale information may be information acquired by a user operation of the operation unit 1005 described later, or may be information stored in the storage unit 1006 described later.
 心臓の断層画像や心臓の3次元画像での、挿入部材1031の輪郭補正は、補正精度の向上の観点から、上述の複数の位置情報及びスケール情報に加えて、別の情報に基づいて実行することが好ましい。別の情報としては、例えば、挿入部材1031の長さ情報などが挙げられる。 The contour correction of the insertion member 1031 in the tomographic image of the heart or the three-dimensional image of the heart is executed based on other information in addition to the plurality of position information and scale information described above from the viewpoint of improving the correction accuracy. It is preferable. Another information includes, for example, length information of the insertion member 1031.
 画像処理部1003は、CPUやMPUにより構成されたプロセッサ1020(図5参照)により構成することができる。 The image processing unit 1003 can be configured by a processor 1020 (see FIG. 5) configured by a CPU or MPU.
 表示部1004は、画像処理部1003により挿入部材1031の輪郭が補正された断層画像を表示可能である。また、表示部1004は、画像処理部1003により挿入部材1031の輪郭が補正された、心臓の3次元画像としての、心臓の3次元モデルから形成される心臓の断面画像を表示可能である。表示部1004は、例えば、液晶ディスプレイなどで構成することができる。表示部1004は、画像処理装置1001の装置本体1001bに設けられているが、装置本体1001bに加えて、3次元超音波プローブ1001aに設ける構成としてもよい。図7に示す表示部1004は、心臓の3次元モデルから形成される心臓の断面画像のみを表示する例を示しているが、心臓の断層画像や、断面画像以外の3次元画像を同時に表示することもできる。 The display unit 1004 can display a tomographic image in which the contour of the insertion member 1031 is corrected by the image processing unit 1003. The display unit 1004 can display a cross-sectional image of the heart formed from a three-dimensional model of the heart as a three-dimensional image of the heart, the contour of the insertion member 1031 being corrected by the image processing unit 1003. The display unit 1004 can be configured with, for example, a liquid crystal display. The display unit 1004 is provided in the apparatus main body 1001b of the image processing apparatus 1001, but may be provided in the three-dimensional ultrasonic probe 1001a in addition to the apparatus main body 1001b. The display unit 1004 shown in FIG. 7 shows an example in which only the cross-sectional image of the heart formed from the three-dimensional model of the heart is displayed. However, the tomographic image of the heart and the three-dimensional image other than the cross-sectional image are displayed simultaneously. You can also.
 上述したように、ここで例示する施術において、左心室LV(図6等参照)の心筋の梗塞部位Xの位置及びその大きさは、MRI装置又はX線CT装置を用いて予め取得されている。そして、表示部1004には、撮像部1002が撮像した断層画像が表示されるが、表示される断層画像には、梗塞部位Xの位置及び大きさを示す表示が重畳又は合成されている。すなわち、随時最新の状態に切り替わるリアルタイムの断層画像において、施術の対象となる梗塞部位X又はその近傍の位置や大きさを示すことができる。そのため、治療物質を投与する施術の標的部位となる梗塞部位Xやその近傍の位置及び大きさを、断層画像においてリアルタイムで確認しながら、実際の施術を実行することができる。 As described above, in the procedure illustrated here, the position and size of the infarcted portion X of the myocardium of the left ventricle LV (see FIG. 6 and the like) are acquired in advance using an MRI apparatus or an X-ray CT apparatus. . A tomographic image captured by the imaging unit 1002 is displayed on the display unit 1004, and a display indicating the position and size of the infarct site X is superimposed or synthesized on the displayed tomographic image. That is, in the real-time tomographic image that is switched to the latest state at any time, the position and size of the infarct site X to be treated or the vicinity thereof can be indicated. Therefore, the actual treatment can be executed while confirming the infarct site X, which is a target site of the treatment to which the therapeutic substance is administered, and the position and size in the vicinity thereof in the tomographic image in real time.
 更に、表示部1004には、上述の断層画像に加えて、図7に示すように、撮像部1002が撮像した心臓の3次元画像を表示可能であるが、上述の断層画像と同様、梗塞部位Xの位置及び大きさを示す表示が重畳又は合成されている(図7参照)。 Further, in addition to the above-described tomographic image, the display unit 1004 can display a three-dimensional image of the heart imaged by the imaging unit 1002 as shown in FIG. A display indicating the position and size of X is superimposed or synthesized (see FIG. 7).
 また、上述の断層画像及び3次元画像において表示される梗塞部位X又はその近傍に対して治療物質が投与された場合には、例えば投与位置に所定の印を表示するなど、治療物質が投与された位置を識別可能とする表示を表示部1004に表示させる。このようにすれば、医師等の医療従事者が、画像処理装置1001を確認しながら施術の進捗状況を把握することが容易となる。 In addition, when a therapeutic substance is administered to the infarct region X displayed in the tomographic image and the three-dimensional image described above or in the vicinity thereof, the therapeutic substance is administered, for example, by displaying a predetermined mark at the administration position. The display unit 1004 displays a display that enables the identified position to be identified. In this way, it becomes easy for a medical worker such as a doctor to grasp the progress of the treatment while checking the image processing apparatus 1001.
 操作部1005は、ユーザーによる操作を受け付ける部位である。操作部1005は、例えば、画像処理装置1001の装置本体1001bの外壁に設けられるスイッチや液晶タッチパネルなどの各種ユーザーインターフェイスにより構成することができる。 The operation unit 1005 is a part that receives a user operation. The operation unit 1005 can be configured by various user interfaces such as a switch and a liquid crystal touch panel provided on the outer wall of the apparatus main body 1001b of the image processing apparatus 1001, for example.
 記憶部1006は、挿入部材1031の予め設定された異なる部位どうしの位置関係と、その位置関係に対応した挿入部材1031の輪郭形状と、を紐付けて記憶する部位である。記憶部1006は、例えば、ROM(Read Only Memoryの略)やRAM(Random Access Memoryの略)などのメモリにより構成することができる。 The storage unit 1006 is a part that stores the positional relationship between different preset parts of the insertion member 1031 and the outline shape of the insertion member 1031 corresponding to the positional relation in association with each other. The storage unit 1006 can be configured by a memory such as a ROM (abbreviation of Read Only Memory) or a RAM (abbreviation of Random Access Memory), for example.
 制御部1007は、上述した撮像部1002、画像処理部1003、表示部1004、操作部1005、及び記憶部1006の各部に対して、所定のタイミングで上述した動作を実行するように指示する。制御部1007は、例えば、記憶部1006に記憶されている画像処理プログラムを読み出し、画像処理部1003に画像処理を実行させる。制御部1007は、上述した画像処理部1003と同様、MPUやCPUなどのプロセッサ1020(図5参照)により構成される。画像処理部1003及び制御部1007を、単一のプロセッサ1020から構成してもよく、複数のプロセッサから構成してもよい。 The control unit 1007 instructs each of the imaging unit 1002, the image processing unit 1003, the display unit 1004, the operation unit 1005, and the storage unit 1006 to execute the above-described operation at a predetermined timing. For example, the control unit 1007 reads an image processing program stored in the storage unit 1006 and causes the image processing unit 1003 to execute image processing. The control unit 1007 is configured by a processor 1020 (see FIG. 5) such as an MPU or a CPU, similar to the image processing unit 1003 described above. The image processing unit 1003 and the control unit 1007 may be configured from a single processor 1020 or a plurality of processors.
 次に、画像処理装置セット1100の挿入部材1031について説明する。 Next, the insertion member 1031 of the image processing apparatus set 1100 will be described.
 挿入部材1031は心臓内に挿入される部材である。本実施形態の挿入部材1031は、複数の位置情報を発信する発信装置1031aを備えている。より具体的に、本実施形態の挿入部材1031は、心臓内に挿入される管状部材1031bを備えており、上述の発信装置1031aは、管状部材1031bの外周面に取り付けられている。更に、本実施形態では、発信装置1031aが、管状部材1031bの周方向の異なる位置に、複数取り付けられている。そして、挿入部材1031の複数の位置情報は、異なる位置に取り付けられた複数の発信装置1031aからそれぞれ発信されている。そのため、複数の発信装置1031aからそれぞれ発信される位置情報により、管状部材1031bの外径情報を取得できる。管状部材1031bの外径情報とは、管状部材1031bの外径を特定可能な情報であればよく、外径寸法に限られない。例えば、周長など、間接的に外径を特定できる情報としてもよい。この外径情報を利用すれば、画像における管状部材1031bの輪郭を補正可能である。本実施形態の発信装置1031aは、超音波信号を発信可能であり、位置情報として超音波信号を発信している。 The insertion member 1031 is a member inserted into the heart. The insertion member 1031 of this embodiment includes a transmission device 1031a that transmits a plurality of pieces of position information. More specifically, the insertion member 1031 of this embodiment includes a tubular member 1031b that is inserted into the heart, and the above-described transmission device 1031a is attached to the outer peripheral surface of the tubular member 1031b. Further, in the present embodiment, a plurality of transmitting devices 1031a are attached at different positions in the circumferential direction of the tubular member 1031b. The plurality of pieces of position information of the insertion member 1031 are transmitted from a plurality of transmission devices 1031a attached to different positions. Therefore, the outer diameter information of the tubular member 1031b can be acquired from the position information transmitted from each of the plurality of transmission devices 1031a. The outer diameter information of the tubular member 1031b may be information that can specify the outer diameter of the tubular member 1031b, and is not limited to the outer diameter dimension. For example, it is good also as information which can specify an outer diameter indirectly, such as circumference. By using this outer diameter information, the contour of the tubular member 1031b in the image can be corrected. The transmitting device 1031a of this embodiment can transmit an ultrasonic signal, and transmits an ultrasonic signal as position information.
 本実施形態では、挿入部材1031の「複数の位置情報」として、管状部材1031bの周方向の異なる位置の位置情報を利用し、挿入部材1031の外径情報を取得しているが、画像における挿入部材1031の輪郭を補正する上で利用可能な挿入部材1031の情報であれば、外径情報に限られない。 In the present embodiment, as the “plurality of position information” of the insertion member 1031, position information of different positions in the circumferential direction of the tubular member 1031 b is used to acquire the outer diameter information of the insertion member 1031. Any information on the insertion member 1031 that can be used for correcting the contour of the member 1031 is not limited to the outer diameter information.
 本実施形態の挿入部材1031は管状部材1031bを備えるが、挿入部材1031は管状部材1031bを備える構成に限られず、例えば、カテーテルなどの管状部材を通じて標的部位にデリバリーされる施術用デバイスなどの別の医療用器具であってもよい。 The insertion member 1031 of the present embodiment includes the tubular member 1031b. However, the insertion member 1031 is not limited to the configuration including the tubular member 1031b. For example, another insertion device such as a surgical device delivered to the target site through the tubular member such as a catheter can be used. It may be a medical instrument.
 以上のとおり、上述した画像処理装置1001によれば図8にフローチャートで示す画像処理方法が実行される。具体的に、画像処理装置1001による画像処理方法は、心臓内に挿入された挿入部材1031から発信される複数の位置情報を受信する受信工程S1と、体表面から心臓の画像を撮像する撮像工程S2と、画像における心臓内の挿入部材1031の輪郭を、挿入部材1031から発信される複数の位置情報に基づいて補正する画像処理工程S3と、を含む。各工程S1~S3における処理は上述した通りであるためここでは説明を省略する。 As described above, the image processing apparatus 1001 described above executes the image processing method shown in the flowchart of FIG. Specifically, the image processing method by the image processing apparatus 1001 includes a receiving step S1 for receiving a plurality of positional information transmitted from an insertion member 1031 inserted into the heart, and an imaging step for taking an image of the heart from the body surface. S2 and image processing process S3 which correct | amends the outline of the insertion member 1031 in the heart in an image based on the several positional information transmitted from the insertion member 1031. FIG. Since the processing in each of the steps S1 to S3 is as described above, description thereof is omitted here.
 画像処理装置1001、画像処理装置セット1100、及び、画像処理装置1001により実行可能な画像処理方法は、上述した具体的な構成及び工程に限定されず、種々の変更、変形が可能である。例えば、挿入部材1031としての管状器具(例えばカテーテル)の複数の位置情報に加えて、この挿入部材1031としての管状器具を通じて心臓内にデリバリーされる医療用器具としての穿刺部材の外径情報、形状情報などの各種情報を利用して、画像における挿入部材1031の輪郭を補正してもよい。穿刺部材は、心筋に穿刺され、治療物質を心筋内に注入する際に利用され、挿入部材1031としての管状器具の先端開口から突出させて使用する。そのため、穿刺部材は、心臓の断面画像(図7参照)において、挿入部材1031としての管状器具と共に映り込む。したがって、穿刺部材の各種情報を取得し、挿入部材1031の輪郭補正に利用してもよい。穿刺部材の各種情報は、例えば、操作部1005から入力されてもよく、記憶部1006に記憶されていてもよい。 The image processing apparatus 1001, the image processing apparatus set 1100, and the image processing method that can be executed by the image processing apparatus 1001 are not limited to the specific configuration and process described above, and various changes and modifications are possible. For example, in addition to a plurality of position information of a tubular instrument (for example, a catheter) as the insertion member 1031, outer diameter information and shape of a puncture member as a medical instrument delivered into the heart through the tubular instrument as the insertion member 1031 The outline of the insertion member 1031 in the image may be corrected using various types of information such as information. The puncture member is used when the myocardium is punctured and a therapeutic substance is injected into the myocardium, and is used by projecting from the distal end opening of a tubular instrument as the insertion member 1031. Therefore, the puncture member is reflected together with the tubular instrument as the insertion member 1031 in the cross-sectional image of the heart (see FIG. 7). Therefore, various types of information on the puncture member may be acquired and used for contour correction of the insertion member 1031. Various types of information on the puncture member may be input from the operation unit 1005 or stored in the storage unit 1006, for example.
 また、上述の実施形態では、大動脈弁AV(図6参照)と左心室LV(図6、図7参照)の心尖部Y(図6参照)とを結ぶ線分と略直交する断面の断面画像(図7参照)において、挿入部材1031の輪郭を補正しているが、心臓の断層画像や、図7とは異なる位置での心臓の断面画像において、同様の手法により、挿入部材1031の輪郭を補正してもよい。 Further, in the above-described embodiment, a cross-sectional image of a cross section substantially orthogonal to a line segment connecting the aortic valve AV (see FIG. 6) and the apex Y (see FIG. 6) of the left ventricle LV (see FIGS. 6 and 7). 7 (see FIG. 7), the contour of the insertion member 1031 is corrected. However, the contour of the insertion member 1031 is obtained by a similar method in a tomographic image of the heart or a cross-sectional image of the heart at a position different from that in FIG. It may be corrected.
 以上のように、上述した画像処理装置1001は、
(1):体表面から前記心臓の画像を撮像可能な撮像部1002と、前記画像において、前記心臓内に挿入されている挿入部材1031の輪郭を補正する画像処理部1003と、を備え、前記撮像部1002は、前記挿入部材1031から発信される複数の位置情報を受信する受信装置1002aを備え、前記画像処理部1003は、前記受信装置1002aが受信する前記複数の位置情報に基づいて、前記画像における前記挿入部材1031の輪郭を補正する。
As described above, the image processing apparatus 1001 described above
(1): an imaging unit 1002 that can capture an image of the heart from the body surface, and an image processing unit 1003 that corrects an outline of the insertion member 1031 inserted in the heart in the image, The imaging unit 1002 includes a receiving device 1002a that receives a plurality of pieces of position information transmitted from the insertion member 1031. The image processing unit 1003 is based on the plurality of pieces of position information received by the receiving device 1002a. The contour of the insertion member 1031 in the image is corrected.
(2):上記(1)に記載の画像処理装置1001において、前記画像処理部1003は、前記受信装置1002aが受信する前記複数の位置情報の受信タイミングの差に基づいて、前記画像における前記挿入部材1031の輪郭を補正する。 (2): In the image processing device 1001 according to (1), the image processing unit 1003 performs the insertion in the image based on a difference in reception timing of the plurality of position information received by the receiving device 1002a. The contour of the member 1031 is corrected.
(3):上記(1)又は上記(2)に記載の画像処理装置1001において、前記撮像部1002は、超音波を発信する超音波発信部1011と、超音波を受信する超音波受信部1012と、前記超音波受信部1012が受信した測定情報から前記画像を形成する画像形成部1013と、を備える。 (3): In the image processing apparatus 1001 described in (1) or (2) above, the imaging unit 1002 includes an ultrasonic transmission unit 1011 that transmits ultrasonic waves and an ultrasonic reception unit 1012 that receives ultrasonic waves. And an image forming unit 1013 for forming the image from the measurement information received by the ultrasonic wave receiving unit 1012.
(4):上記(3)に記載の画像処理装置1001において、前記複数の位置情報は超音波信号であり、前記受信装置1002aは、前記超音波信号を受信する超音波受信装置であり、前記超音受信装置が、前記超音波受信部1012を構成する。 (4): In the image processing apparatus 1001 according to (3), the plurality of pieces of position information are ultrasonic signals, and the receiving apparatus 1002a is an ultrasonic receiving apparatus that receives the ultrasonic signals, The ultrasonic receiving device constitutes the ultrasonic receiving unit 1012.
(5):上記(1)~上記(4)に記載の画像処理装置1001において、前記撮像部1002は、所定時間ごとに前記画像を撮像する。 (5): In the image processing apparatus 1001 described in (1) to (4) above, the imaging unit 1002 captures the image every predetermined time.
(6):上記(1)~上記(5)に記載の画像処理装置1001において、前記画像処理部1003により補正された前記画像を表示可能な表示部1004を備える。 (6): The image processing apparatus 1001 described in (1) to (5) above includes a display unit 1004 capable of displaying the image corrected by the image processing unit 1003.
 また、上述した画像処理装置セット1100は、
(7):上記(1)~上記(6)に記載の画像処理装置1001と、前記複数の位置情報を発信する発信装置1031aを備え、前記心臓内に挿入される前記挿入部材1031と、を備える。
The above-described image processing apparatus set 1100 includes:
(7): The image processing apparatus 1001 according to (1) to (6) above, and the insertion member 1031 inserted into the heart, the transmission apparatus 1031a transmitting the plurality of position information. Prepare.
(8):上記(7)に記載の画像処理装置セット1100において、前記挿入部材1031は、前記心臓内に挿入される管状部材1031bを備え、前記発信装置1031aは、前記管状部材1031bの外周面に取り付けられている。 (8): In the image processing apparatus set 1100 according to (7), the insertion member 1031 includes a tubular member 1031b to be inserted into the heart, and the transmitter 1031a is an outer peripheral surface of the tubular member 1031b. Is attached.
(9):上記(8)に記載の画像処理装置セット1100において、前記発信装置1031aは、前記管状部材1031bの周方向の異なる位置に、複数取り付けられており、前記複数の位置情報は、前記複数の発信装置1031aから発信されている。 (9): In the image processing device set 1100 described in (8) above, a plurality of the transmitting devices 1031a are attached to different positions in the circumferential direction of the tubular member 1031b, and the plurality of pieces of positional information are It is transmitted from a plurality of transmission devices 1031a.
 更に、上述した画像処理装置1001は、以下の(10)の画像処理方法を実行する。
(10):心臓内に挿入された挿入部材1031から発信される複数の位置情報を受信する受信工程S1と、体表面から前記心臓の画像を撮像する撮像工程S2と、前記画像における前記心臓内の前記挿入部材1031の輪郭を、前記複数の位置情報に基づいて補正する画像処理工程S3と、を含む。
Further, the above-described image processing apparatus 1001 executes the following image processing method (10).
(10): receiving step S1 for receiving a plurality of positional information transmitted from the insertion member 1031 inserted into the heart, imaging step S2 for taking an image of the heart from the body surface, and intracardiac in the image And an image processing step S3 for correcting the contour of the insertion member 1031 based on the plurality of pieces of position information.
 更に、上述した画像処理装置1の構成要素と、上述した画像処理装置1001の構成要素と、を適宜組み合わせることにより、別の画像処理装置を構成してもよい。また、画像処理装置1の構成要素が、画像処理装置1001の構成要素の機能を兼ね備えるようにしてもよい。例えば、画像処理装置1の画像処理部4が、画像処理装置1001の画像処理部1003の機能を併せ持つ構成としてもよい。したがって、例えば、上述した画像処理装置1及び画像処理装置1001の構成要素を組み合わせると共に、必要に応じて複数の構成要素の機能を1つの構成要素に集約する等して、上述した画像処理装置1及び画像処理装置1001の両方の機能を併せ持つ画像処理装置を構成してもよい。 Furthermore, another image processing apparatus may be configured by appropriately combining the above-described constituent elements of the image processing apparatus 1 and the above-described constituent elements of the image processing apparatus 1001. Further, the constituent elements of the image processing apparatus 1 may have the functions of the constituent elements of the image processing apparatus 1001. For example, the image processing unit 4 of the image processing apparatus 1 may be configured to have both functions of the image processing unit 1003 of the image processing apparatus 1001. Therefore, for example, the above-described image processing apparatus 1 and the image processing apparatus 1001 are combined, and the functions of a plurality of constituent elements are combined into a single constituent element as necessary. And an image processing apparatus having both functions of the image processing apparatus 1001.
 本開示は画像処理装置及び画像処理方法に関する。 The present disclosure relates to an image processing apparatus and an image processing method.
1:画像処理装置
1a:3次元超音波プローブ
1b:装置本体
2:撮像部
3:取得部
4:画像処理部
5:表示部
6:入力部
7:操作部
8:記憶部
9:制御部
11:超音波発信部
12:超音波受信部
13:画像形成部
20:プロセッサ
31:管状部材
1001:画像処理装置
1001a:3次元超音波プローブ
1001b:装置本体
1002:撮像部
1002a:受信装置
1003:画像処理部
1004:表示部
1005:操作部
1006:記憶部
1007:制御部
1011:超音波発信部
1012:超音波受信部
1013:画像形成部
1020:プロセッサ
1031:挿入部材
1031a:発信装置
1031b:管状部材
1100:画像処理装置セット
AO:大動脈
AV:大動脈弁
FA:大腿動脈
LV:左心室
X:梗塞部位
Y:心尖部
1: Image processing device 1a: 3D ultrasonic probe 1b: Device body 2: Imaging unit 3: Acquisition unit 4: Image processing unit 5: Display unit 6: Input unit 7: Operation unit 8: Storage unit 9: Control unit 11 : Ultrasonic transmitter 12: Ultrasonic receiver 13: Image forming unit 20: Processor 31: Tubular member 1001: Image processing apparatus 1001 a: Three-dimensional ultrasonic probe 1001 b: Main body 1002: Imaging unit 1002 a: Receiver 1003: Image Processing unit 1004: Display unit 1005: Operation unit 1006: Storage unit 1007: Control unit 1011: Ultrasonic transmission unit 1012: Ultrasonic reception unit 1013: Image forming unit 1020: Processor 1031: Insertion member 1031a: Transmission device 1031b: Tubular member 1100: Image processing device set AO: Aorta AV: Aortic valve FA: Femoral artery LV: Left ventricle X: Infarct region Y: Apex

Claims (10)

  1.  体表面から心臓の画像を撮像可能な撮像部と、
     前記心臓内に挿入される管状部材の外径情報を取得する取得部と、
     前記取得部が取得した前記外径情報に基づいて、前記画像における前記管状部材の輪郭を補正する画像処理部と、を備える画像処理装置。
    An imaging unit capable of capturing an image of the heart from the body surface;
    An acquisition unit for acquiring outer diameter information of a tubular member inserted into the heart;
    An image processing apparatus comprising: an image processing unit that corrects an outline of the tubular member in the image based on the outer diameter information acquired by the acquisition unit.
  2.  前記画像処理部は、前記外径情報と前記画像のスケール情報とに基づいて、前記画像における前記管状部材の輪郭を補正する、請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the image processing unit corrects a contour of the tubular member in the image based on the outer diameter information and the scale information of the image.
  3.  前記撮像部は、
      超音波を発信する超音波発信部と、
      超音波を受信する超音波受信部と、
      前記超音波受信部が受信した測定情報から前記画像を形成する画像形成部と、を備える、請求項1又は2に記載の画像処理装置。
    The imaging unit
    An ultrasonic transmitter that transmits ultrasonic waves;
    An ultrasonic receiver for receiving ultrasonic waves;
    The image processing apparatus according to claim 1, further comprising: an image forming unit that forms the image from measurement information received by the ultrasonic wave receiving unit.
  4.  前記撮像部は、所定時間ごとに前記画像を撮像する、請求項1乃至3のいずれか1つに記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 3, wherein the imaging unit captures the image at predetermined time intervals.
  5.  前記画像処理部により補正された前記画像を表示可能な表示部を備える、請求項1乃至4のいずれか1つに記載の画像処理装置。 5. The image processing apparatus according to claim 1, further comprising a display unit capable of displaying the image corrected by the image processing unit.
  6.  前記外径情報を前記取得部に入力する入力部を備える、請求項1乃至5のいずれか1つに記載の画像処理装置。 The image processing apparatus according to claim 1, further comprising an input unit that inputs the outer diameter information to the acquisition unit.
  7.  ユーザーによる操作を受け付ける操作部を備え、
     前記入力部は、前記操作部が受け付けた前記外径情報を前記取得部に入力する、請求項6に記載の画像処理装置。
    It has an operation unit that accepts user operations,
    The image processing apparatus according to claim 6, wherein the input unit inputs the outer diameter information received by the operation unit to the acquisition unit.
  8.  前記外径情報を記憶する記憶部を備え、
     前記入力部は、前記記憶部が記憶する前記外径情報を前記取得部に入力する、請求項6に記載の画像処理装置。
    A storage unit for storing the outer diameter information;
    The image processing apparatus according to claim 6, wherein the input unit inputs the outer diameter information stored in the storage unit to the acquisition unit.
  9.  心臓内に挿入される管状部材の外径情報を取得する取得部と、
     前記取得部が取得した前記外径情報に基づいて、体表面から撮像された心臓の画像における前記管状部材の輪郭を補正する画像処理部と、を備える画像処理装置。
    An acquisition unit for acquiring outer diameter information of a tubular member inserted into the heart;
    An image processing apparatus comprising: an image processing unit that corrects a contour of the tubular member in a heart image captured from a body surface based on the outer diameter information acquired by the acquisition unit.
  10.  体表面から心臓の画像を撮像する撮像工程と、
     前記心臓内に挿入される管状部材の外径情報を取得する取得工程と、
     前記外径情報に基づいて、前記画像における前記管状部材の輪郭を補正する画像処理工程と、を含む画像処理方法。
     
     
    An imaging step of capturing an image of the heart from the body surface;
    Obtaining an outer diameter information of the tubular member inserted into the heart; and
    An image processing step of correcting an outline of the tubular member in the image based on the outer diameter information.

PCT/JP2018/018975 2017-05-16 2018-05-16 Image processing device and image processing method WO2018212248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019518843A JPWO2018212248A1 (en) 2017-05-16 2018-05-16 Image processing apparatus and image processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-097664 2017-05-16
JP2017-097665 2017-05-16
JP2017097664 2017-05-16
JP2017097665 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018212248A1 true WO2018212248A1 (en) 2018-11-22

Family

ID=64273917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018975 WO2018212248A1 (en) 2017-05-16 2018-05-16 Image processing device and image processing method

Country Status (2)

Country Link
JP (1) JPWO2018212248A1 (en)
WO (1) WO2018212248A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521147A (en) * 2003-03-27 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for guiding an invasive medical device by three-dimensional ultrasound imaging
JP2010269054A (en) * 2009-05-25 2010-12-02 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2014510608A (en) * 2011-04-11 2014-05-01 イマコー・インコーポレーテッド Positioning of heart replacement valve by ultrasonic guidance
JP2017153953A (en) * 2016-02-26 2017-09-07 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and image processing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521147A (en) * 2003-03-27 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for guiding an invasive medical device by three-dimensional ultrasound imaging
JP2010269054A (en) * 2009-05-25 2010-12-02 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2014510608A (en) * 2011-04-11 2014-05-01 イマコー・インコーポレーテッド Positioning of heart replacement valve by ultrasonic guidance
JP2017153953A (en) * 2016-02-26 2017-09-07 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and image processing program

Also Published As

Publication number Publication date
JPWO2018212248A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP5164309B2 (en) Catheter device
US6923768B2 (en) Method and apparatus for acquiring and displaying a medical instrument introduced into a cavity organ of a patient to be examined or treated
WO2014077396A1 (en) Ultrasound diagnostic device and image processing method
US20070021744A1 (en) Apparatus and method for performing ablation with imaging feedback
JP2014516723A (en) Ablation probe with ultrasound imaging capability
JP2005529701A (en) Computer generated display of imaging pattern of imaging device
JP6386733B2 (en) X-ray diagnostic apparatus and ultrasonic diagnostic apparatus
JP6158936B2 (en) Ultrasound data visualization device
KR102278893B1 (en) Medical image processing apparatus and medical image registration method using the same
US20190090855A1 (en) Ultrasonic diagnostic apparatus and non-transitory computer readable medium
CN106419853A (en) Method and device for automatically withdrawing closed-loop OCT catheter
CN109715054B (en) Visualization of image objects related to an instrument in an extracorporeal image
JPH0417843A (en) Ultrasonic diagnostic apparatus
WO2018212249A1 (en) Image display device and image display device set
WO2018212248A1 (en) Image processing device and image processing method
JP5498181B2 (en) Medical image acquisition device
McMAHON et al. Accurate guidance of a catheter by ultrasound imaging and identification of a catheter tip by pulsed‐wave Doppler
JP4300460B2 (en) Ultrasonic diagnostic equipment
JP6222797B2 (en) X-ray diagnostic apparatus and program
CN115363709A (en) Bending-adjustable intravascular ultrasound-guided puncture method
WO2018212230A1 (en) Image processing device, image processing system and image processing method
JP7271126B2 (en) Ultrasound diagnostic equipment and medical image processing equipment
WO2018212231A1 (en) Image processing device, image processing system, and image processing method
JP3943923B2 (en) Ultrasound diagnostic imaging equipment
KR102403040B1 (en) Catheter with ultrasonics wave projection plane and system for ultrasonics wave inspector including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802669

Country of ref document: EP

Kind code of ref document: A1