WO2018212238A1 - Directional coupler and communication device - Google Patents

Directional coupler and communication device Download PDF

Info

Publication number
WO2018212238A1
WO2018212238A1 PCT/JP2018/018941 JP2018018941W WO2018212238A1 WO 2018212238 A1 WO2018212238 A1 WO 2018212238A1 JP 2018018941 W JP2018018941 W JP 2018018941W WO 2018212238 A1 WO2018212238 A1 WO 2018212238A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
directional coupler
line portion
laminate
sub
Prior art date
Application number
PCT/JP2018/018941
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 松下
淳旨 栗原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018212238A1 publication Critical patent/WO2018212238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers

Definitions

  • the present invention relates to a directional coupler and a communication device.
  • the directional coupler includes a main line and a sub line, and is a circuit element that extracts a part of power propagating through the main line from the sub line, and is used for, for example, signal monitoring.
  • the main line and the sub line are composed of conductor patterns arranged on the substrate.
  • Such directional coupler structures are generally classified as either broadside coupling structures or edgeside coupling structures.
  • the broadside coupling structure is a structure in which the conductor pattern constituting the main line and the conductor pattern constituting the sub line are arranged in different layers so as to overlap each other when viewed in the stacking direction.
  • the faces (broadsides) face each other.
  • the edge side coupling structure is a structure in which a conductor pattern constituting a main line and a conductor pattern constituting a sub line are arranged in the same wiring layer, and end faces (edge sides) of the wiring pattern face each other.
  • Patent Document 1 discloses a directional coupler having an edge side coupling structure in which a sub line is arranged in a spiral manner so as to pass through both sides of a main line in the same wiring layer as the main line. Yes.
  • One of the characteristics of directional couplers is directionality.
  • Directionality refers to the magnitude of the signal extracted to the coupling port according to the power of the signal propagating from the input port to the output port, and the signal extracted to the coupling port according to the power of the signal propagating from the output port to the input port. It is a numerical value that represents the difference from the size.
  • the directionality corresponds to the ability of the directional coupler to distinguish the power of signals having different propagation directions (for example, traveling wave and reflected wave), and the larger the directionality, the better.
  • Directionality is mainly determined by the balance between inductive coupling and capacitive coupling between the main line and the subline.
  • an object of the present invention is to provide a directional coupler having a novel structure excellent in directionality.
  • a directional coupler includes a laminate, and a main line and a sub-line provided in the laminate, and at least a part of the main line.
  • a first line portion and a second line portion that is at least a part of the sub-line extend in the same direction in different layers of the laminate, and when the laminate is viewed in plan, the first line portion And the second line portion have a portion that does not overlap with each other, and the side of the first line portion near the second line portion and the first line portion of the second line portion are close to each other The sides are aligned.
  • the first line portion and the second line portion are arranged in different steps on the different wiring layers of the laminate, and arranged with the sides close to each other in plan view, Since the coupling portion between the main line and the sub-line is configured, a directional coupler having excellent directivity can be obtained by a good balance between inductive coupling and capacitive coupling.
  • FIG. 1 is a perspective view showing an example of the structure of a directional coupler according to Embodiment 1.
  • FIG. 2 is a side view showing an example of the structure of the directional coupler according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating an example of an equivalent circuit of the directional coupler according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of the structure of a directional coupler having a broadside coupling structure.
  • FIG. 5 is a schematic diagram illustrating an example of the structure of a directional coupler having an edge side coupling structure.
  • FIG. 6 is a perspective view illustrating an example of dimensions of a main part of the directional coupler according to Embodiment 1.
  • FIG. 7 is a graph showing an example of selectivity of the directional coupler according to Embodiment 1.
  • FIG. 8 is a graph showing an example of the degree of coupling of the directional coupler according to the first embodiment.
  • FIG. 9 is a perspective view showing an example of the structure of the directional coupler according to the second embodiment.
  • FIG. 10 is a side view showing an example of the structure of the directional coupler according to the second embodiment.
  • FIG. 11 is a block diagram illustrating an example of a functional configuration of the communication apparatus according to the third embodiment.
  • Embodiment 1 In the directional coupler according to Embodiment 1, the wiring pattern constituting the main line and the wiring pattern constituting the sub-line are arranged in different layers in different layers of the laminated body, and the sides closer to each other in plan view are arranged. Align and arrange.
  • a multilayer substrate is described as an example of a stacked body, but the present invention is not limited to this example.
  • the multilayer body may be, for example, a multilayer chip component, or may be an integrated circuit component in which wiring conductors are stacked by using a semiconductor process.
  • FIG. 1 is a perspective view showing an example of the structure of a directional coupler according to Embodiment 1.
  • FIG. 1 the stacking direction of the multilayer substrate is shown as the Z-axis direction, and the main surface of the multilayer substrate is shown as the XY plane.
  • viewing the directional coupler in the Z-axis direction corresponds to a plan view.
  • FIG. 2 is a side view showing an example of the structure of the directional coupler according to Embodiment 1, and corresponds to a view of the directional coupler of FIG. 1 viewed in the X-axis direction.
  • the directional coupler 1 includes a multilayer substrate 10, and a main line 31 and a sub line 32 provided on the multilayer substrate 10.
  • the multilayer substrate 10 may further be provided with a ground plane 33.
  • the main line 31 and the sub line 32 are shown in dark gray, and the ground plane 33 is shown in light gray.
  • the multilayer substrate 10 is formed by laminating base material layers 11 to 14.
  • the base material layers 11 to 14 may be made of, for example, LTCC (low temperature co-fired ceramics) material.
  • the first line portion 31c which is at least part of the main line 31, and the second line portion 32c, which is at least part of the sub-line 32, are extended in the X-axis direction in the base material layers 12 and 13, respectively.
  • the ground plane 33 is provided on the base material layer 11.
  • the main line 31, the sub line 32, and the ground plane 33 may be a conductor pattern made of an alloy material containing copper or silver, for example.
  • the first line portion 31 c and the second line portion 32 c constitute a coupling portion between the main line 31 and the sub line 32.
  • the first line portion 31c and the second line portion 32c have portions that do not overlap each other when viewed in the Z-axis direction. That is, the first line portion 31c and the second line portion 32c are arranged in a shifted state. Further, the side 31d of the first line portion 31c near the second line portion 32c and the side 32d of the second line portion 32c near the first line portion 31c are aligned in the Z-axis direction.
  • the fact that the sides 31d and 32d are aligned in the Z-axis direction means that the sides 31d and 32d are substantially on the same line. More practically, the deviation amount of the sides 31d and 32d is predetermined. Say that it is in the range. A specific example of the predetermined range will be described later.
  • Three electrode terminals 34 are provided on one side surface and the other side surface (the right side surface and the left side surface in FIG. 1, hereinafter simply referred to as the right side surface and the left side surface) that intersect the Y axis of the multilayer substrate 10.
  • the electrode terminal 34 may be provided continuously from the side surface of the multilayer substrate 10 to the top surface and the bottom surface.
  • One end 31a and the other end 31b of the main line 31 are exposed on the right side surface of the multilayer substrate 10 and are connected to electrode terminals 34 illustrated on the right front side and the right back side in FIG.
  • One end 32a and the other end 32b of the sub line 32 are exposed on the left side surface of the multilayer substrate 10, and are connected to electrode terminals 34 illustrated on the left front side and the left back side in FIG.
  • one end 33a and the other end 33b of the ground plane 33 are exposed on the right side surface and the left side surface of the multilayer substrate 10, respectively, and connected to the electrode terminals 34 shown in the right center and left center of FIG. .
  • the ground plane 33 is not essential, when the ground plane 33 is provided, the ground plane 33 is grounded via the electrode terminal 34, whereby noise can be shielded and interference of electromagnetic waves can be suppressed.
  • the directional coupler 1 is configured as a side electrode type chip component.
  • the directional coupler 1 is mounted on a mother board such as a printed wiring board by joining the electrode terminals 34 on the side surface via a conductive bonding material such as solder.
  • FIG. 3 is a circuit diagram showing an example of an equivalent circuit in which the directional coupler 1 is represented by a lumped constant circuit.
  • one end 31a and the other end 31b of the main line 31 correspond to the input port IN and the output port OUT, respectively.
  • One end 32a and the other end 32b of the sub line 32 correspond to the coupling port CPL and the isolation port ISO, respectively.
  • the directionality of the directional coupler 1 is mainly determined by the balance between inductive coupling and capacitive coupling between the first line portion 31c and the second line portion 32c.
  • the problem that the edge side coupling structure and the broad side coupling structure have in achieving this balance will be described.
  • FIG. 4 and 5 are side views showing an example of the structure of the directional coupler according to the comparative example.
  • 4 shows a directional coupler 8 having a broad side coupling structure
  • FIG. 5 shows a directional coupler 9 having an edge side coupling structure.
  • the main line 81 and the sub line 82 face each other in a large area. Therefore, when the main line 81 and the sub line 82 are brought close to each other in order to increase the degree of coupling, there is a concern that the capacitive coupling between the main and sub lines becomes excessive and the selectivity is impaired.
  • the main line 91 and the sub line 92 face each other with a small area. Therefore, there is a concern that even if the main line 91 and the sub-line 92 are brought close to the limit where they are not short-circuited, the capacitive coupling is insufficient and the optimum selectivity cannot be obtained.
  • the first line portion 31c and the second line portion 32c are stepped on different wiring layers of the multilayer substrate 10 and the sides 31d and 32d that are close to each other in plan view are aligned.
  • the main line 31 and the sub line 32 constitute a coupling portion.
  • the capacitive coupling can be made larger than that in the directional coupler 9, and the possibility that the capacitive coupling becomes excessive like the directional coupler 8 is small.
  • a directional coupler having excellent directivity can be obtained due to a good balance between inductive coupling and capacitive coupling.
  • FIG. 6 is a perspective view showing an example of the dimensions of the main part of the directional coupler 1 set for the simulation.
  • a distance in the Z-axis direction between the first line portion 31c and the second line portion 32c is expressed as a vertical gap VGap, and in the XY plane between the side 31d of the first line portion 31c and the side 32d of the second line portion 32c.
  • the amount of deviation is expressed as a horizontal gap HGap.
  • the vertical gap VGap was set to 2, 6, 13, and 16 ⁇ m, and the selectivity and the coupling degree were obtained in the range of ⁇ 36 to 36 ⁇ m of the horizontal gap HGap for each vertical gap VGap.
  • the vertical gap VGap of 2, 6, 13, 16 ⁇ m is an example corresponding to a typical thickness of the base material layer constituting the multilayer substrate 10.
  • the negative value of the horizontal gap HGap represents the amount of shift in the direction in which the first line portion 31c and the second line portion 32c overlap in the Z-axis direction
  • the positive value of the horizontal gap HGap is the first line portion This represents the amount of deviation in the direction in which 31c and the second line portion 32c are separated.
  • the minimum value of the horizontal gap HGap of ⁇ 36 ⁇ m is such that the first line portion 31c and the second line portion 32c do not completely overlap when viewed in the Z-axis direction (that is, the directional coupler 1 has a broadside coupling structure). Corresponds to the amount of deviation.
  • FIG. 7 is a graph showing an example of selectivity of the directional coupler 1 by simulation.
  • FIG. 8 is a graph showing an example of the degree of coupling of the directional coupler 1 by simulation.
  • the change in the degree of coupling is gentle within the range of ⁇ 9 ⁇ m to 17 ⁇ m of the horizontal gap HGap, and the value of the horizontal gap HGap that should not be particularly used was not found within this range.
  • the side 31d of the first line portion 31c and the side 32d of the second line portion 32c are aligned in the Z-axis direction. It was found that the directional coupler 1 excellent in selectivity can be obtained by adopting the configuration. It was also found that the sides 31d and 32d are aligned when viewed in the Z-axis direction by the amount of deviation between the sides 31d and 32d being in the range of ⁇ 9 ⁇ m to 17 ⁇ m.
  • Embodiment 2 describes a configuration example of a directional coupler as a bottom electrode type chip component. In the following, description of items similar to those in the first embodiment will be omitted, and items different from those in the second embodiment will be mainly described.
  • FIG. 9 is a perspective view showing an example of the structure of the directional coupler according to the second embodiment.
  • the directional coupler 2 shown in FIG. 9 does not have electrode terminals on the side surface of the multilayer substrate 10 and has a plurality of electrode terminals 35 only on the bottom surface, compared to the directional coupler 1 of FIG. The difference is that a plurality of conductor vias 36 are provided in the multilayer substrate 10.
  • One end 31a and the other end 31b of the main line 31 are connected to electrode terminals 35 illustrated on the right front side and the right back side of FIG.
  • One end 32a and the other end 32b of the sub-line 32 are connected to electrode terminals 35 illustrated on the left front side and the left back side of FIG.
  • one end 33a and the other end 33b of the ground plane 33 are connected to electrode terminals 35 illustrated in the right center and left center of FIG.
  • the ground plane 33 is not essential, when the ground plane 33 is provided, the ground plane 33 is grounded via the electrode terminal 35, whereby noise can be shielded and the signal quality of the directional coupler 2 can be improved. .
  • the directional coupler 2 is configured as a bottom electrode type chip component.
  • the directional coupler 2 is mounted on the mother board by bonding the electrode terminals 35 on the bottom surface to a mother board such as a printed wiring board via a conductive bonding material such as solder.
  • FIG. 11 is a block diagram illustrating an example of a functional configuration of the communication apparatus 100 according to the third embodiment.
  • the communication device 100 includes a baseband signal processing circuit 110, an RF signal processing circuit 120, and a front end circuit 130.
  • the front end circuit 130 includes a power amplifier 131, a low noise amplifier 132, a duplexer 133, a coupler 134, a termination resistor 135, and a power controller 136.
  • the baseband signal processing circuit 110 converts transmission data generated by an application device / application software that performs voice calls, image display, and the like into a transmission signal and supplies the transmission signal to the RF signal processing circuit 120.
  • the conversion may include data compression, multiplexing, and error correction code addition.
  • the received signal received from the RF signal processing circuit 120 is converted into received data and supplied to the application device / application software. Such conversion may include data decompression, demultiplexing, and error correction.
  • the baseband signal processing circuit 110 may be configured with a baseband integrated circuit (BBIC) chip.
  • BBIC baseband integrated circuit
  • the RF signal processing circuit 120 converts the transmission signal generated by the baseband signal processing circuit 110 into a transmission RF signal Tx and supplies it to the front end circuit 130.
  • the conversion may include signal modulation and up-conversion.
  • the RF signal processing circuit 120 converts the received RF signal Rx received from the front end circuit 130 into a received signal and supplies the received signal to the baseband signal processing circuit 110.
  • the RF signal processing circuit 120 may be composed of a high frequency integrated circuit (RFIC) chip.
  • the power amplifier 131 amplifies the transmission RF signal Tx generated by the RF signal processing circuit 120 and supplies the amplified RF signal Tx to the duplexer 133.
  • the low noise amplifier 132 amplifies the received RF signal Rx received from the duplexer 133 and supplies it to the RF signal processing circuit 120.
  • the duplexer 133 combines the transmission RF signal Tx with the antenna signal ANT and separates the reception RF signal Rx from the antenna signal ANT.
  • the coupler 134 is a directional coupler, and the directional coupler 1 or 2 of the first or second embodiment is used.
  • the input port IN and the output port OUT are connected to the common terminal of the duplexer 133 and the antenna 200, respectively, and the isolation port ISO is terminated by a termination resistor 135.
  • a part of the power of the signal propagating from the input port IN to the output port OUT (that is, the power of the transmission RF signal Tx) is extracted from the coupling port CPL as a monitor signal.
  • the power controller 136 adjusts the power of the transmission RF signal Tx by controlling the gain of the power amplifier 131 based on the monitor signal extracted from the coupling port CPL of the coupler 134.
  • the front end circuit 130 may be composed of a high frequency module including a power amplifier 131, a low noise amplifier 132, a duplexer 133, a coupler 134, a termination resistor 135, and a power controller 136.
  • the power controller 136 may be included in the RF signal processing circuit 120 instead of the front end circuit 130.
  • directional coupler 1 or 2 having excellent directivity according to Embodiment 1 or 2 is used as coupler 134, transmission is performed using a high-accuracy monitor signal extracted from coupler 134.
  • the power of the RF signal Tx can be adjusted with high accuracy.
  • the present invention is not limited to individual embodiments. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
  • the base material layer of the multilayer substrate is configured by the LTCC material, but the constituent material of the base material layer is not limited to LTCC.
  • the base material layer of the multilayer substrate may be made of a resin material.
  • a directional coupler includes a laminate, and a main line and a sub line provided in the laminate, and the first line portion and the sub line that are at least a part of the main line.
  • the second line portion that is at least a part of the line extends in the same direction in different layers of the laminate, and when the laminate is viewed in plan, the first line portion and the second line portion are , Having a portion that does not overlap with each other, and the side of the first line portion close to the second line portion and the side of the second line portion close to the first line portion are aligned. .
  • a directional coupler with a broadside coupling structure the main line and the sub-line are opposed to each other in a large area, so that when the main line and the sub-line are brought close together in order to increase the degree of coupling, capacitive coupling between the main and sub-lines is generated. There is a concern that the selectivity becomes excessive and the selectivity is impaired.
  • the directional coupler with the edge side coupling structure the main line and the sub line face each other with a small area. There is a concern that a good selectivity cannot be obtained.
  • the first line portion and the second line portion are arranged on different wiring layers of the laminated body in a stepped manner and with the sides closer to each other in plan view, A coupling portion between the line and the sub line is formed. Therefore, the capacitive coupling can be made larger than that of the edge side coupling structure, and there is little concern that the capacitive coupling becomes excessive like the broad side coupling structure. As a result, a directional coupler having excellent directivity can be obtained due to a good balance between inductive coupling and capacitive coupling.
  • the directional coupler includes an electrode terminal provided on a side surface of the multilayer body and connected to one of the one end and the other end of the main line and the one end and the other end of the sub line. , May be further provided.
  • a directional coupler as a side electrode type chip component can be obtained.
  • the directional coupler is provided on one main surface of the laminate, and is connected to one of the one end and the other end of the main line and one end and the other end of the sub line.
  • a terminal may be further provided.
  • a directional coupler as a bottom electrode type chip component can be obtained.
  • the directional coupler further includes a ground plane provided in a layer different from both the layer provided with the first line portion and the layer provided with the second line portion of the multilayer body. Also good.
  • the laminate may be formed by laminating a plurality of base material layers made of low-temperature co-fired ceramics.
  • the laminate may be formed by laminating a plurality of base material layers composed of a resin thin film.
  • width of the first line portion and the width of the second line portion may be substantially equal.
  • This configuration simplifies the design of the directional coupler because the first line portion and the second line portion are configured by a single-width conductor pattern.
  • the width of the first line portion may be larger than the width of the second line portion.
  • the impedance of the main line can be made smaller than that of the sub line, the insertion loss of the directional coupler is reduced.
  • a communication apparatus includes a front-end circuit having the directional coupler and an RF signal processing circuit connected to the high-frequency module.
  • a directional coupler having excellent directivity can be used for various applications in a communication device such as feedback control of transmission power.
  • the present invention can be widely used for directional couplers and communication devices using directional couplers.
  • Multilayer substrate 11-14 Base material layer 31 Main line 31a One end of main line 31b Other end of main line 31c First line part 31d Side of first line part 32 Sub line 32a One end of the sub line 32b Other end of the sub line 32c Second line part 32d Side of the second line part 33 Ground plane 33a One end of the ground plane 33b Other end of the ground plane 34, 35 Electrode terminal 36 Conductor via 81, 91 Main line 82, 92 Sub line 100 Communication device 110 Baseband signal processing circuit 120 RF signal processing circuit 130 Front end circuit 131 Power amplifier 132 Low noise amplifier 133 Duplexer 134 Coupler 135 Termination resistor 136 Power controller 200 Antenna

Abstract

The present invention is provided with: a multilayer substrate (10); and a main line (31) and a sub-line (32) provided on the multilayer substrate (10), wherein a first line portion (31c) which is at least a portion of the main line (31) and a second line portion (32c) which is at least a portion of the sub-line 32 extend in the same direction in different layers of the multilayer substrate (10), and when the multilayer substrate (10) is seen in plan view, the first line portion (31c) and the second line portion (32c) have portions which do not overlap each other, and a side (31d), of the first line portion (31c), which is closer to the second line portion (32c) and a side (32d), of the second line portion (32c), which is closer to the first line portion (31c), are parallel to each other.

Description

方向性結合器および通信装置Directional coupler and communication device
 本発明は、方向性結合器および通信装置に関する。 The present invention relates to a directional coupler and a communication device.
 通信装置などの高周波回路で用いられる方向性結合器と呼ばれる回路要素がある。方向性結合器は、主線路と副線路とを備え、主線路を伝搬する電力の一部を副線路から取り出す回路要素であり、例えば、信号のモニタリングなどに用いられる。 There is a circuit element called a directional coupler used in high-frequency circuits such as communication devices. The directional coupler includes a main line and a sub line, and is a circuit element that extracts a part of power propagating through the main line from the sub line, and is used for, for example, signal monitoring.
 ある種の方向性結合器では、主線路と副線路とは基板に配置された導体パターンで構成される。そのような方向性結合器の構造は、一般的に、ブロードサイド結合構造およびエッジサイド結合構造のいずれかに分類される。 In a kind of directional coupler, the main line and the sub line are composed of conductor patterns arranged on the substrate. Such directional coupler structures are generally classified as either broadside coupling structures or edgeside coupling structures.
 ブロードサイド結合構造は、異なる層に配置された、主線路を構成する導体パターンと副線路を構成する導体パターンとが、積層方向に見て重なり合うように配置された構造であり、配線パターンの主面(ブロードサイド)同士が対向する。エッジサイド結合構造は、主線路を構成する導体パターンと副線路を構成する導体パターンとを同じ配線層に配置した構造であり、配線パターンの端面(エッジサイド)同士が対向する。 The broadside coupling structure is a structure in which the conductor pattern constituting the main line and the conductor pattern constituting the sub line are arranged in different layers so as to overlap each other when viewed in the stacking direction. The faces (broadsides) face each other. The edge side coupling structure is a structure in which a conductor pattern constituting a main line and a conductor pattern constituting a sub line are arranged in the same wiring layer, and end faces (edge sides) of the wiring pattern face each other.
 例えば、特許文献1には、副線路を、主線路と同じ配線層において、主線路の両側を通るようにスパイラル状に周回配置してなる、エッジサイド結合構造の方向性結合器が開示されている。 For example, Patent Document 1 discloses a directional coupler having an edge side coupling structure in which a sub line is arranged in a spiral manner so as to pass through both sides of a main line in the same wiring layer as the main line. Yes.
特許第3765261号公報Japanese Patent No. 3765261
 方向性結合器の特性の1つに、方向性(ダイレクティビティ)がある。 One of the characteristics of directional couplers is directionality.
 方向性とは、入力ポートから出力ポートへ伝搬する信号の電力に応じて結合ポートに取り出される信号の大きさと、出力ポートから入力ポートへ伝搬する信号の電力に応じて結合ポートに取り出される信号の大きさとの差異を表す数値である。方向性は、伝搬方向が異なる信号(例えば、進行波と反射波)の電力を区別する方向性結合器の能力に対応し、大きいほど好ましい。 Directionality refers to the magnitude of the signal extracted to the coupling port according to the power of the signal propagating from the input port to the output port, and the signal extracted to the coupling port according to the power of the signal propagating from the output port to the input port. It is a numerical value that represents the difference from the size. The directionality corresponds to the ability of the directional coupler to distinguish the power of signals having different propagation directions (for example, traveling wave and reflected wave), and the larger the directionality, the better.
 方向性は、主として、主線路と副線路間の、誘導性結合と容量性結合とのバランスによって決まる。しかしながら、従来のエッジサイド結合構造およびブロードサイド結合構造のいずれにおいても、結合度を高めつつ方向性を最適化することが難しい場合がある。 Directionality is mainly determined by the balance between inductive coupling and capacitive coupling between the main line and the subline. However, in both the conventional edge side coupling structure and the broad side coupling structure, it may be difficult to optimize the directionality while increasing the degree of coupling.
 そこで、本発明は、方向性に優れた新規な構造の方向性結合器を提供することを目的とする。 Therefore, an object of the present invention is to provide a directional coupler having a novel structure excellent in directionality.
 上記目的を達成するために、本発明の一態様に係る方向性結合器は、積層体と、前記積層体に設けられた主線路および副線路と、を備え、前記主線路の少なくとも一部である第1線路部と前記副線路の少なくとも一部である第2線路部とは、前記積層体の異なる層において同一方向に延設され、前記積層体を平面視したとき、前記第1線路部と前記第2線路部とが、互いに重ならない部分を有しており、かつ前記第1線路部の前記第2線路部に近い側の辺と前記第2線路部の前記第1線路部に近い側の辺とが揃っている。 In order to achieve the above object, a directional coupler according to one aspect of the present invention includes a laminate, and a main line and a sub-line provided in the laminate, and at least a part of the main line. A first line portion and a second line portion that is at least a part of the sub-line extend in the same direction in different layers of the laminate, and when the laminate is viewed in plan, the first line portion And the second line portion have a portion that does not overlap with each other, and the side of the first line portion near the second line portion and the first line portion of the second line portion are close to each other The sides are aligned.
 本発明に係る方向性結合器によれば、第1線路部と第2線路部とを、積層体の異なる配線層に段違いに、かつ平面視で互いに近い側の辺を揃えて配置して、主線路と副線路との結合部を構成するので、誘導性結合と容量性結合との良好なバランスにより、方向性に優れた方向性結合器が得られる。 According to the directional coupler according to the present invention, the first line portion and the second line portion are arranged in different steps on the different wiring layers of the laminate, and arranged with the sides close to each other in plan view, Since the coupling portion between the main line and the sub-line is configured, a directional coupler having excellent directivity can be obtained by a good balance between inductive coupling and capacitive coupling.
図1は、実施の形態1に係る方向性結合器の構造の一例を示す斜視図である。1 is a perspective view showing an example of the structure of a directional coupler according to Embodiment 1. FIG. 図2は、実施の形態1に係る方向性結合器の構造の一例を示す側面図である。FIG. 2 is a side view showing an example of the structure of the directional coupler according to the first embodiment. 図3は、実施の形態1に係る方向性結合器の等価回路の一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of an equivalent circuit of the directional coupler according to the first embodiment. 図4は、ブロードサイド結合構造の方向性結合器の構造の一例を示す模式図である。FIG. 4 is a schematic diagram illustrating an example of the structure of a directional coupler having a broadside coupling structure. 図5は、エッジサイド結合構造の方向性結合器の構造の一例を示す模式図である。FIG. 5 is a schematic diagram illustrating an example of the structure of a directional coupler having an edge side coupling structure. 図6は、実施の形態1に係る方向性結合器の要部の寸法の一例を示す斜視図である。FIG. 6 is a perspective view illustrating an example of dimensions of a main part of the directional coupler according to Embodiment 1. 図7は、実施の形態1に係る方向性結合器の選択性の一例を示すグラフである。FIG. 7 is a graph showing an example of selectivity of the directional coupler according to Embodiment 1. 図8は、実施の形態1に係る方向性結合器の結合度の一例を示すグラフである。FIG. 8 is a graph showing an example of the degree of coupling of the directional coupler according to the first embodiment. 図9は、実施の形態2に係る方向性結合器の構造の一例を示す斜視図である。FIG. 9 is a perspective view showing an example of the structure of the directional coupler according to the second embodiment. 図10は、実施の形態2に係る方向性結合器の構造の一例を示す側面図である。FIG. 10 is a side view showing an example of the structure of the directional coupler according to the second embodiment. 図11は、実施の形態3に係る通信装置の機能的な構成の一例を示すブロック図である。FIG. 11 is a block diagram illustrating an example of a functional configuration of the communication apparatus according to the third embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as optional constituent elements.
 (実施の形態1)
 実施の形態1に係る方向性結合器は、主線路を構成する配線パターンと副線路を構成する配線パターンとを、積層体の異なる配線層に段違いに、かつ平面視で互いに近い側の辺を揃えて配置するものである。実施の形態1では、積層体の一例として多層基板を挙げて説明するが、この例には限られない。積層体は、例えば、積層型チップ部品であってもよく、また、半導体プロセスを利用して配線導体を積層配置した集積回路部品であってもよい。
(Embodiment 1)
In the directional coupler according to Embodiment 1, the wiring pattern constituting the main line and the wiring pattern constituting the sub-line are arranged in different layers in different layers of the laminated body, and the sides closer to each other in plan view are arranged. Align and arrange. In Embodiment 1, a multilayer substrate is described as an example of a stacked body, but the present invention is not limited to this example. The multilayer body may be, for example, a multilayer chip component, or may be an integrated circuit component in which wiring conductors are stacked by using a semiconductor process.
 図1は、実施の形態1に係る方向性結合器の構造の一例を示す斜視図である。図1では、多層基板の積層方向をZ軸方向として示し、多層基板の主面をXY平面として示している。以下の説明において方向性結合器をZ軸方向に見ることが、平面視に対応する。 FIG. 1 is a perspective view showing an example of the structure of a directional coupler according to Embodiment 1. FIG. In FIG. 1, the stacking direction of the multilayer substrate is shown as the Z-axis direction, and the main surface of the multilayer substrate is shown as the XY plane. In the following description, viewing the directional coupler in the Z-axis direction corresponds to a plan view.
 図2は、実施の形態1に係る方向性結合器の構造の一例を示す側面図であり、図1の方向性結合器をX軸方向に見た図に対応する。 FIG. 2 is a side view showing an example of the structure of the directional coupler according to Embodiment 1, and corresponds to a view of the directional coupler of FIG. 1 viewed in the X-axis direction.
 図1および図2に示されるように、方向性結合器1は、多層基板10と、多層基板10に設けられた主線路31および副線路32と、を備える。多層基板10には、さらに、グランドプレーン33が設けられていてもよい。なお、図示の明確のため、主線路31および副線路32を濃い灰色で示し、グランドプレーン33を薄い灰色で示している。 As shown in FIGS. 1 and 2, the directional coupler 1 includes a multilayer substrate 10, and a main line 31 and a sub line 32 provided on the multilayer substrate 10. The multilayer substrate 10 may further be provided with a ground plane 33. For clarity of illustration, the main line 31 and the sub line 32 are shown in dark gray, and the ground plane 33 is shown in light gray.
 多層基板10は、基材層11~14を積層してなる。基材層11~14は、例えば、LTCC(低温同時焼成セラミックス)材料で構成されてもよい。 The multilayer substrate 10 is formed by laminating base material layers 11 to 14. The base material layers 11 to 14 may be made of, for example, LTCC (low temperature co-fired ceramics) material.
 主線路31の少なくとも一部である第1線路部31cと副線路32の少なくとも一部である第2線路部32cとは、それぞれ基材層12、13において、X軸方向に延設されている。グランドプレーン33は、基材層11に設けられる。主線路31、副線路32、およびグランドプレーン33は、例えば、銅または銀を含有する合金材料で構成された導体パターンであってもよい。第1線路部31cと第2線路部32cとは、主線路31と副線路32との結合部を構成する。 The first line portion 31c, which is at least part of the main line 31, and the second line portion 32c, which is at least part of the sub-line 32, are extended in the X-axis direction in the base material layers 12 and 13, respectively. . The ground plane 33 is provided on the base material layer 11. The main line 31, the sub line 32, and the ground plane 33 may be a conductor pattern made of an alloy material containing copper or silver, for example. The first line portion 31 c and the second line portion 32 c constitute a coupling portion between the main line 31 and the sub line 32.
 多層基板10を平面視したとき、第1線路部31cと第2線路部32cとは、Z軸方向に見て互いに重ならない部分を有している。つまり、第1線路部31cと第2線路部32cとは、ずれた状態で配置されている。また、第1線路部31cの第2線路部32cに近い側の辺31dと第2線路部32cの第1線路部31cに近い側の辺32dとは、Z軸方向に見て揃っている。ここで、辺31d、32dが、Z軸方向に見て揃っているとは、辺31d、32dが略同一線上にあることを言い、より実際的には、辺31d、32dのずれ量が所定の範囲内にあることを言う。当該所定の範囲の具体例については、後述する。 When the multilayer substrate 10 is viewed in plan, the first line portion 31c and the second line portion 32c have portions that do not overlap each other when viewed in the Z-axis direction. That is, the first line portion 31c and the second line portion 32c are arranged in a shifted state. Further, the side 31d of the first line portion 31c near the second line portion 32c and the side 32d of the second line portion 32c near the first line portion 31c are aligned in the Z-axis direction. Here, the fact that the sides 31d and 32d are aligned in the Z-axis direction means that the sides 31d and 32d are substantially on the same line. More practically, the deviation amount of the sides 31d and 32d is predetermined. Say that it is in the range. A specific example of the predetermined range will be described later.
 多層基板10のY軸と交差する一方側面および他方側面(図1での右側面および左側面、以下単に右側面および左側面と言う)には、電極端子34が3つずつ設けられている。電極端子34は、多層基板10の側面から上面および底面へ連続して設けられてもよい。 Three electrode terminals 34 are provided on one side surface and the other side surface (the right side surface and the left side surface in FIG. 1, hereinafter simply referred to as the right side surface and the left side surface) that intersect the Y axis of the multilayer substrate 10. The electrode terminal 34 may be provided continuously from the side surface of the multilayer substrate 10 to the top surface and the bottom surface.
 主線路31の一方端31aおよび他方端31bは、多層基板10の右側面に露出し、図1の右手前および右奥に図示される電極端子34にそれぞれ接続されている。副線路32の一方端32aおよび他方端32bは、多層基板10の左側面に露出し、図1の左手前および左奥に図示される電極端子34にそれぞれ接続されている。 One end 31a and the other end 31b of the main line 31 are exposed on the right side surface of the multilayer substrate 10 and are connected to electrode terminals 34 illustrated on the right front side and the right back side in FIG. One end 32a and the other end 32b of the sub line 32 are exposed on the left side surface of the multilayer substrate 10, and are connected to electrode terminals 34 illustrated on the left front side and the left back side in FIG.
 また、グランドプレーン33の一方端33aおよび他方端33bは、多層基板10の右側面および左側面にそれぞれ露出し、図1の右中央および左中央に図示される電極端子34にそれぞれ接続されている。グランドプレーン33は必須ではないが、グランドプレーン33を設ける場合、電極端子34を介してグランドプレーン33を接地することにより、雑音をシールドして電磁波の干渉を抑制することができる。 Further, one end 33a and the other end 33b of the ground plane 33 are exposed on the right side surface and the left side surface of the multilayer substrate 10, respectively, and connected to the electrode terminals 34 shown in the right center and left center of FIG. . Although the ground plane 33 is not essential, when the ground plane 33 is provided, the ground plane 33 is grounded via the electrode terminal 34, whereby noise can be shielded and interference of electromagnetic waves can be suppressed.
 このようにして、方向性結合器1は、側面電極型のチップ部品として構成される。方向性結合器1は、側面の電極端子34を、はんだなどの導電性接合材を介して接合することにより、プリント配線板などのマザー基板に実装される。 Thus, the directional coupler 1 is configured as a side electrode type chip component. The directional coupler 1 is mounted on a mother board such as a printed wiring board by joining the electrode terminals 34 on the side surface via a conductive bonding material such as solder.
 図3は、方向性結合器1を集中定数回路で表した等価回路の一例を示す回路図である。 FIG. 3 is a circuit diagram showing an example of an equivalent circuit in which the directional coupler 1 is represented by a lumped constant circuit.
 図3に示されるように、主線路31の一方端31aおよび他方端31bは、入力ポートINおよび出力ポートOUTにそれぞれ対応する。副線路32の一方端32aおよび他方端32bは、結合ポートCPLおよびアイソレーションポートISOにそれぞれ対応する。 As shown in FIG. 3, one end 31a and the other end 31b of the main line 31 correspond to the input port IN and the output port OUT, respectively. One end 32a and the other end 32b of the sub line 32 correspond to the coupling port CPL and the isolation port ISO, respectively.
 主線路31の第1線路部31cと副線路32の第2線路部32cとの間には、導体パターン同士の相互インダクタンスMによる誘導性結合と、導体パターンを対向電極として形成されるキャパシタンスCによる容量性結合とが生じる。 Between the first line portion 31c of the main line 31 and the second line portion 32c of the sub line 32, there is inductive coupling due to mutual inductance M between the conductor patterns and capacitance C formed using the conductor pattern as a counter electrode. Capacitive coupling occurs.
 前述したように、方向性結合器1の方向性は、主として、第1線路部31cと第2線路部32cとの間の誘導性結合と容量性結合とのバランスによって決まる。このバランスを取る上で、エッジサイド結合構造およびブロードサイド結合構造が有している問題について説明する。 As described above, the directionality of the directional coupler 1 is mainly determined by the balance between inductive coupling and capacitive coupling between the first line portion 31c and the second line portion 32c. The problem that the edge side coupling structure and the broad side coupling structure have in achieving this balance will be described.
 図4および図5は、比較例に係る方向性結合器の構造の一例を示す側面図である。図4では、ブロードサイド結合構造の方向性結合器8を示し、図5では、エッジサイド結合構造の方向性結合器9を示している。 4 and 5 are side views showing an example of the structure of the directional coupler according to the comparative example. 4 shows a directional coupler 8 having a broad side coupling structure, and FIG. 5 shows a directional coupler 9 having an edge side coupling structure.
 図4に示されるブロードサイド結合構造の方向性結合器8では、主線路81と副線路82とが大面積で対向する。そのため、結合度を高めるために主線路81と副線路82とを近づけると、主副線路間の容量性結合が過大となり、選択性が損なわれる懸念がある。 In the directional coupler 8 having the broad side coupling structure shown in FIG. 4, the main line 81 and the sub line 82 face each other in a large area. Therefore, when the main line 81 and the sub line 82 are brought close to each other in order to increase the degree of coupling, there is a concern that the capacitive coupling between the main and sub lines becomes excessive and the selectivity is impaired.
 図5に示されるエッジサイド結合構造の方向性結合器9では、主線路91と副線路92とが小面積で対向する。そのため、主線路91と副線路92とを短絡しない限界まで近づけても容量性結合が不足し、最適な選択性が得られない懸念がある。 In the directional coupler 9 having the edge side coupling structure shown in FIG. 5, the main line 91 and the sub line 92 face each other with a small area. Therefore, there is a concern that even if the main line 91 and the sub-line 92 are brought close to the limit where they are not short-circuited, the capacitive coupling is insufficient and the optimum selectivity cannot be obtained.
 これに対し、方向性結合器1では、第1線路部31cと第2線路部32cとを、多層基板10の異なる配線層に段違いに、かつ平面視で互いに近い側の辺31d、32dを揃えて配置して、主線路31と副線路32との結合部を構成している。 On the other hand, in the directional coupler 1, the first line portion 31c and the second line portion 32c are stepped on different wiring layers of the multilayer substrate 10 and the sides 31d and 32d that are close to each other in plan view are aligned. The main line 31 and the sub line 32 constitute a coupling portion.
 そのため、方向性結合器1では、方向性結合器9と比べて容量性結合をより大きくすることができ、かつ方向性結合器8のように容量性結合が過大となる懸念も小さい。その結果、誘導性結合と容量性結合との良好なバランスにより、方向性に優れた方向性結合器が得られる。 Therefore, in the directional coupler 1, the capacitive coupling can be made larger than that in the directional coupler 9, and the possibility that the capacitive coupling becomes excessive like the directional coupler 8 is small. As a result, a directional coupler having excellent directivity can be obtained due to a good balance between inductive coupling and capacitive coupling.
 次に、シミュレーションで求めた方向性結合器1の特性について説明する。 Next, the characteristics of the directional coupler 1 obtained by simulation will be described.
 図6は、シミュレーションのために設定した方向性結合器1の要部の寸法の一例を示す斜視図である。第1線路部31cと第2線路部32cとのZ軸方向の離間距離を垂直ギャップVGapと表記し、第1線路部31cの辺31dと第2線路部32cの辺32dとのXY面内でのずれ量を水平ギャップHGapと表記する。 FIG. 6 is a perspective view showing an example of the dimensions of the main part of the directional coupler 1 set for the simulation. A distance in the Z-axis direction between the first line portion 31c and the second line portion 32c is expressed as a vertical gap VGap, and in the XY plane between the side 31d of the first line portion 31c and the side 32d of the second line portion 32c. The amount of deviation is expressed as a horizontal gap HGap.
 シミュレーションでは、垂直ギャップVGapを2、6、13、16μmに設定し、垂直ギャップVGapごとに水平ギャップHGapの-36~36μmの範囲において、選択性と結合度とを求めた。 In the simulation, the vertical gap VGap was set to 2, 6, 13, and 16 μm, and the selectivity and the coupling degree were obtained in the range of −36 to 36 μm of the horizontal gap HGap for each vertical gap VGap.
 なお、2、6、13、16μmなる垂直ギャップVGapは、多層基板10を構成する基材層の典型的な厚さに対応する一例である。 The vertical gap VGap of 2, 6, 13, 16 μm is an example corresponding to a typical thickness of the base material layer constituting the multilayer substrate 10.
 水平ギャップHGapの負値は、第1線路部31cと第2線路部32cとが、Z軸方向に見て重複する方向へのずれ量を表し、水平ギャップHGapの正値は、第1線路部31cと第2線路部32cとが離間する方向へのずれ量を表す。-36μmなる水平ギャップHGapの最小値は、第1線路部31cと第2線路部32cとがZ軸方向に見て完全には重なり合わない(つまり、方向性結合器1がブロードサイド結合構造にならない)ずれ量に対応する。 The negative value of the horizontal gap HGap represents the amount of shift in the direction in which the first line portion 31c and the second line portion 32c overlap in the Z-axis direction, and the positive value of the horizontal gap HGap is the first line portion This represents the amount of deviation in the direction in which 31c and the second line portion 32c are separated. The minimum value of the horizontal gap HGap of −36 μm is such that the first line portion 31c and the second line portion 32c do not completely overlap when viewed in the Z-axis direction (that is, the directional coupler 1 has a broadside coupling structure). Corresponds to the amount of deviation.
 図7は、シミュレーションによる方向性結合器1の選択性の一例を示すグラフである。 FIG. 7 is a graph showing an example of selectivity of the directional coupler 1 by simulation.
 図7に見られるように、2、6、13、16μmなる垂直ギャップVGapの下で、水平ギャップHGapが-9μm以上17μm以下の範囲内にあれば、30dBを上回る選択性が得られる。特に、垂直ギャップVGapが13μmである場合、水平ギャップHGapが0μm、つまり、第1線路部31cの辺31dと第2線路部32cの辺32dとがZ軸方向に見て同一線上にあるとき、選択性の最大値が得られる。 As shown in FIG. 7, under the vertical gap VGap of 2, 6, 13, 16 μm, if the horizontal gap HGap is within the range of −9 μm to 17 μm, selectivity exceeding 30 dB can be obtained. In particular, when the vertical gap VGap is 13 μm, the horizontal gap HGap is 0 μm, that is, when the side 31d of the first line portion 31c and the side 32d of the second line portion 32c are on the same line as viewed in the Z-axis direction, The maximum selectivity is obtained.
 図8は、シミュレーションによる方向性結合器1の結合度の一例を示すグラフである。 FIG. 8 is a graph showing an example of the degree of coupling of the directional coupler 1 by simulation.
 図8に見られるように、結合度の変化は、水平ギャップHGapの-9μm以上17μm以下の範囲内でなだらかであり、当該範囲内に特に使用を避けるべき水平ギャップHGapの値は見つからなかった。 As shown in FIG. 8, the change in the degree of coupling is gentle within the range of −9 μm to 17 μm of the horizontal gap HGap, and the value of the horizontal gap HGap that should not be particularly used was not found within this range.
 これらの結果から、基材層の典型的な厚さに対応する垂直ギャップVGapの下で、Z軸方向に見て第1線路部31cの辺31dと第2線路部32cの辺32dとが揃っている構成を採用することで、選択性に優れた方向性結合器1が得られることが分かった。また、辺31d、32dがZ軸方向に見て揃っていることを、辺31d、32dのずれ量が-9μm以上17μm以下の範囲内にあることによって規定できることが分かった。 From these results, under the vertical gap VGap corresponding to the typical thickness of the base material layer, the side 31d of the first line portion 31c and the side 32d of the second line portion 32c are aligned in the Z-axis direction. It was found that the directional coupler 1 excellent in selectivity can be obtained by adopting the configuration. It was also found that the sides 31d and 32d are aligned when viewed in the Z-axis direction by the amount of deviation between the sides 31d and 32d being in the range of −9 μm to 17 μm.
 (実施の形態2)
 実施の形態1では、側面電極型のチップ部品として構成された方向性結合器の例について説明したが、方向性結合器は、側面電極型のチップ部品には限られない。
(Embodiment 2)
In the first embodiment, an example of a directional coupler configured as a side electrode type chip component has been described. However, the directional coupler is not limited to a side electrode type chip component.
 実施の形態2では、方向性結合器の、底面電極型のチップ部品としての構成例について説明する。以下では、実施の形態1と同様の事項については説明を省略し、実施の形態2で相違する事項について主に説明する。 Embodiment 2 describes a configuration example of a directional coupler as a bottom electrode type chip component. In the following, description of items similar to those in the first embodiment will be omitted, and items different from those in the second embodiment will be mainly described.
 図9は、実施の形態2係る方向性結合器の構造の一例を示す斜視図である。図9に示される方向性結合器2は、図1の方向性結合器1と比べて、多層基板10の側面に電極端子を有さず、底面のみに複数の電極端子35を有する点、および多層基板10内に複数の導体ビア36を有する点で相違する。 FIG. 9 is a perspective view showing an example of the structure of the directional coupler according to the second embodiment. The directional coupler 2 shown in FIG. 9 does not have electrode terminals on the side surface of the multilayer substrate 10 and has a plurality of electrode terminals 35 only on the bottom surface, compared to the directional coupler 1 of FIG. The difference is that a plurality of conductor vias 36 are provided in the multilayer substrate 10.
 主線路31の一方端31aおよび他方端31bは、導体ビア36を介して、図9の右手前および右奥に図示される電極端子35にそれぞれ接続されている。副線路32の一方端32aおよび他方端32bは、導体ビア36を介して、図9の左手前および左奥に図示される電極端子35にそれぞれ接続されている。 One end 31a and the other end 31b of the main line 31 are connected to electrode terminals 35 illustrated on the right front side and the right back side of FIG. One end 32a and the other end 32b of the sub-line 32 are connected to electrode terminals 35 illustrated on the left front side and the left back side of FIG.
 また、グランドプレーン33の一方端33aおよび他方端33bは、導体ビア36を介して、図9の右中央および左中央に図示される電極端子35にそれぞれ接続されている。グランドプレーン33は必須ではないが、グランドプレーン33を設ける場合、電極端子35を介してグランドプレーン33を接地することにより、雑音をシールドして方向性結合器2の信号品質を向上することができる。 Further, one end 33a and the other end 33b of the ground plane 33 are connected to electrode terminals 35 illustrated in the right center and left center of FIG. Although the ground plane 33 is not essential, when the ground plane 33 is provided, the ground plane 33 is grounded via the electrode terminal 35, whereby noise can be shielded and the signal quality of the directional coupler 2 can be improved. .
 このようにして、方向性結合器2は、底面電極型のチップ部品として構成される。方向性結合器2は、底面の電極端子35を、プリント配線板などのマザー基板に、はんだなどの導電性接合材を介して接合することにより、マザー基板に実装される。 Thus, the directional coupler 2 is configured as a bottom electrode type chip component. The directional coupler 2 is mounted on the mother board by bonding the electrode terminals 35 on the bottom surface to a mother board such as a printed wiring board via a conductive bonding material such as solder.
 (実施の形態3)
 実施の形態3では、実施の形態1または2に係る方向性結合器を備える通信装置について説明する。
(Embodiment 3)
In the third embodiment, a communication device including the directional coupler according to the first or second embodiment will be described.
 図11は、実施の形態3に係る通信装置100の機能的な構成の一例を示すブロック図である。図11に示されるように、通信装置100は、ベースバンド信号処理回路110、RF信号処理回路120、およびフロントエンド回路130を備える。 FIG. 11 is a block diagram illustrating an example of a functional configuration of the communication apparatus 100 according to the third embodiment. As illustrated in FIG. 11, the communication device 100 includes a baseband signal processing circuit 110, an RF signal processing circuit 120, and a front end circuit 130.
 フロントエンド回路130は、パワーアンプ131、ローノイズアンプ132、デュプレクサ133、カプラ134、終端抵抗135、およびパワーコントローラ136を有する。 The front end circuit 130 includes a power amplifier 131, a low noise amplifier 132, a duplexer 133, a coupler 134, a termination resistor 135, and a power controller 136.
 ベースバンド信号処理回路110は、音声通話や画像表示などを行う応用装置/応用ソフトウェアで生成された送信データを送信信号に変換し、RF信号処理回路120へ供給する。当該変換は、データの圧縮、多重化、誤り訂正符号の付加を含んでもよい。また、RF信号処理回路120から受信した受信信号を受信データに変換し、応用装置/応用ソフトウェアへ供給する。当該変換は、データの伸長、多重分離、誤り訂正を含んでもよい。ベースバンド信号処理回路110は、ベースバンド集積回路(BBIC)チップで構成されてもよい。 The baseband signal processing circuit 110 converts transmission data generated by an application device / application software that performs voice calls, image display, and the like into a transmission signal and supplies the transmission signal to the RF signal processing circuit 120. The conversion may include data compression, multiplexing, and error correction code addition. Further, the received signal received from the RF signal processing circuit 120 is converted into received data and supplied to the application device / application software. Such conversion may include data decompression, demultiplexing, and error correction. The baseband signal processing circuit 110 may be configured with a baseband integrated circuit (BBIC) chip.
 RF信号処理回路120は、ベースバンド信号処理回路110で生成された送信信号を送信RF信号Txに変換し、フロントエンド回路130へ供給する。当該変換は、信号の変調及びアップコンバートを含んでもよい。また、RF信号処理回路120は、フロントエンド回路130から受信した受信RF信号Rxを受信信号に変換し、ベースバンド信号処理回路110へ供給する。RF信号処理回路120は、高周波集積回路(RFIC)チップで構成されてもよい。 The RF signal processing circuit 120 converts the transmission signal generated by the baseband signal processing circuit 110 into a transmission RF signal Tx and supplies it to the front end circuit 130. The conversion may include signal modulation and up-conversion. In addition, the RF signal processing circuit 120 converts the received RF signal Rx received from the front end circuit 130 into a received signal and supplies the received signal to the baseband signal processing circuit 110. The RF signal processing circuit 120 may be composed of a high frequency integrated circuit (RFIC) chip.
 フロントエンド回路130において、パワーアンプ131は、RF信号処理回路120で生成された送信RF信号Txを増幅して、デュプレクサ133へ供給する。 In the front end circuit 130, the power amplifier 131 amplifies the transmission RF signal Tx generated by the RF signal processing circuit 120 and supplies the amplified RF signal Tx to the duplexer 133.
 ローノイズアンプ132は、デュプレクサ133から受信した受信RF信号Rxを増幅して、RF信号処理回路120へ供給する。 The low noise amplifier 132 amplifies the received RF signal Rx received from the duplexer 133 and supplies it to the RF signal processing circuit 120.
 デュプレクサ133は、送信RF信号Txをアンテナ信号ANTに合成し、また、アンテナ信号ANTから受信RF信号Rxを分離する。 The duplexer 133 combines the transmission RF signal Tx with the antenna signal ANT and separates the reception RF signal Rx from the antenna signal ANT.
 カプラ134は、方向性結合器であり、実施の形態1または2の方向性結合器1または2が用いられる。入力ポートINおよび出力ポートOUTは、デュプレクサ133の共通端子およびアンテナ200にそれぞれ接続され、アイソレーションポートISOは、終端抵抗135により終端される。結合ポートCPLには、入力ポートINから出力ポートOUTへ伝搬する信号の電力(つまり、送信RF信号Txのパワー)の一部が、モニタ信号として取り出される。 The coupler 134 is a directional coupler, and the directional coupler 1 or 2 of the first or second embodiment is used. The input port IN and the output port OUT are connected to the common terminal of the duplexer 133 and the antenna 200, respectively, and the isolation port ISO is terminated by a termination resistor 135. A part of the power of the signal propagating from the input port IN to the output port OUT (that is, the power of the transmission RF signal Tx) is extracted from the coupling port CPL as a monitor signal.
 パワーコントローラ136は、カプラ134の結合ポートCPLから取り出されたモニタ信号に基づいてパワーアンプ131のゲインを制御することにより、送信RF信号Txのパワーを調整する。 The power controller 136 adjusts the power of the transmission RF signal Tx by controlling the gain of the power amplifier 131 based on the monitor signal extracted from the coupling port CPL of the coupler 134.
 フロントエンド回路130は、パワーアンプ131、ローノイズアンプ132、デュプレクサ133、カプラ134、終端抵抗135、およびパワーコントローラ136を搭載した高周波モジュールで構成されてもよい。 The front end circuit 130 may be composed of a high frequency module including a power amplifier 131, a low noise amplifier 132, a duplexer 133, a coupler 134, a termination resistor 135, and a power controller 136.
 なお、パワーコントローラ136は、フロントエンド回路130ではなく、RF信号処理回路120に含まれてもよい。 The power controller 136 may be included in the RF signal processing circuit 120 instead of the front end circuit 130.
 通信装置100によれば、カプラ134に、実施の形態1または2に係る方向性に優れた方向性結合器1または2を用いるので、カプラ134から取り出される高精度のモニタ信号を用いて、送信RF信号Txのパワーを精度よく調整することができる。 According to communication apparatus 100, since directional coupler 1 or 2 having excellent directivity according to Embodiment 1 or 2 is used as coupler 134, transmission is performed using a high-accuracy monitor signal extracted from coupler 134. The power of the RF signal Tx can be adjusted with high accuracy.
 以上、本発明の実施の形態に係る方向性結合器および通信装置について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。 Although the directional coupler and the communication device according to the embodiments of the present invention have been described above, the present invention is not limited to individual embodiments. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
 例えば、実施の形態1では、多層基板の基材層をLTCC材料で構成したが、基材層の構成材料はLTCCには限られない。多層基板の基材層は、樹脂材料で構成してもよい。 For example, in the first embodiment, the base material layer of the multilayer substrate is configured by the LTCC material, but the constituent material of the base material layer is not limited to LTCC. The base material layer of the multilayer substrate may be made of a resin material.
 この構成によれば、多層基板に樹脂材料を用いるので、安価でかつ方向性に優れた方向性結合器が得られる。 According to this configuration, since a resin material is used for the multilayer substrate, a directional coupler that is inexpensive and excellent in directionality can be obtained.
 (まとめ)
 本発明の一態様に係る方向性結合器は、積層体と、前記積層体に設けられた主線路および副線路と、を備え、前記主線路の少なくとも一部である第1線路部と前記副線路の少なくとも一部である第2線路部とは、前記積層体の異なる層において同一方向に延設され、前記積層体を平面視したとき、前記第1線路部と前記第2線路部とが、互いに重ならない部分を有しており、かつ前記第1線路部の前記第2線路部に近い側の辺と前記第2線路部の前記第1線路部に近い側の辺とが揃っている。
(Summary)
A directional coupler according to one aspect of the present invention includes a laminate, and a main line and a sub line provided in the laminate, and the first line portion and the sub line that are at least a part of the main line. The second line portion that is at least a part of the line extends in the same direction in different layers of the laminate, and when the laminate is viewed in plan, the first line portion and the second line portion are , Having a portion that does not overlap with each other, and the side of the first line portion close to the second line portion and the side of the second line portion close to the first line portion are aligned. .
 ブロードサイド結合構造の方向性結合器では、主線路と副線路とが大面積で対向するため、結合度を高めるために主線路と副線路とを近づけると、主副線路間の容量性結合が過大となり、選択性が損なわれる懸念がある。逆に、エッジサイド結合構造の方向性結合器では、主線路と副線路とが小面積で対向するため、主線路と副線路とを短絡しない限界まで近づけても容量性結合が不足し、最適な選択性が得られない懸念がある。 In a directional coupler with a broadside coupling structure, the main line and the sub-line are opposed to each other in a large area, so that when the main line and the sub-line are brought close together in order to increase the degree of coupling, capacitive coupling between the main and sub-lines is generated. There is a concern that the selectivity becomes excessive and the selectivity is impaired. On the other hand, in the directional coupler with the edge side coupling structure, the main line and the sub line face each other with a small area. There is a concern that a good selectivity cannot be obtained.
 これに対し、前述した構成によれば、第1線路部と第2線路部とを、積層体の異なる配線層に段違いに、かつ平面視で互いに近い側の辺を揃えて配置して、主線路と副線路との結合部を構成している。そのため、エッジサイド結合構造と比べて容量性結合をより大きくすることができ、かつブロードサイド結合構造のように容量性結合が過大となる懸念も小さい。その結果、誘導性結合と容量性結合との良好なバランスにより、方向性に優れた方向性結合器が得られる。 On the other hand, according to the configuration described above, the first line portion and the second line portion are arranged on different wiring layers of the laminated body in a stepped manner and with the sides closer to each other in plan view, A coupling portion between the line and the sub line is formed. Therefore, the capacitive coupling can be made larger than that of the edge side coupling structure, and there is little concern that the capacitive coupling becomes excessive like the broad side coupling structure. As a result, a directional coupler having excellent directivity can be obtained due to a good balance between inductive coupling and capacitive coupling.
 また、前記方向性結合器は、前記積層体の側面に設けられ、前記主線路の一方端および他方端ならびに前記副線路の一方端および他方端のうちの1つに接続されている電極端子を、さらに備えてもよい。 The directional coupler includes an electrode terminal provided on a side surface of the multilayer body and connected to one of the one end and the other end of the main line and the one end and the other end of the sub line. , May be further provided.
 この構成によれば、側面電極型のチップ部品としての方向性結合器が得られる。 According to this configuration, a directional coupler as a side electrode type chip component can be obtained.
 また、前記方向性結合器は、前記積層体の一方主面に設けられ、前記主線路の一方端および他方端ならびに前記副線路の一方端および他方端のうちの1つに接続されている電極端子を、さらに備えてもよい。 The directional coupler is provided on one main surface of the laminate, and is connected to one of the one end and the other end of the main line and one end and the other end of the sub line. A terminal may be further provided.
 この構成によれば、底面電極型のチップ部品としての方向性結合器が得られる。 According to this configuration, a directional coupler as a bottom electrode type chip component can be obtained.
 また、前記方向性結合器は、前記積層体の前記第1線路部が設けられた層および前記第2線路部が設けられた層のいずれとも異なる層に設けられたグランドプレーンを、さらに備えてもよい。 The directional coupler further includes a ground plane provided in a layer different from both the layer provided with the first line portion and the layer provided with the second line portion of the multilayer body. Also good.
 この構成によれば、グランドプレーンを接地することにより、雑音をシールドして方向性結合器の信号品質を向上することができる。 According to this configuration, by grounding the ground plane, noise can be shielded and the signal quality of the directional coupler can be improved.
 また、前記積層体は、低温同時焼成セラミックスで構成された複数の基材層を積層してなるとしてもよい。 The laminate may be formed by laminating a plurality of base material layers made of low-temperature co-fired ceramics.
 この構成によれば、積層体にセラミックス材料を用いるので、小型でかつ高性能の方向性結合器が得られる。 According to this configuration, since a ceramic material is used for the laminate, a small and high-performance directional coupler can be obtained.
 また、前記積層体は、樹脂薄膜で構成された複数の基材層を積層してなるとしてもよい。 Further, the laminate may be formed by laminating a plurality of base material layers composed of a resin thin film.
 この構成によれば、積層体に樹脂材料を用いるので、安価でかつ高性能の方向性結合器が得られる。 According to this configuration, since a resin material is used for the laminate, an inexpensive and high-performance directional coupler can be obtained.
 また、前記第1線路部の幅と前記第2線路部の幅とは略等しくてもよい。 Further, the width of the first line portion and the width of the second line portion may be substantially equal.
 この構成によれば、単一の幅の導体パターンで第1線路部と第2線路部とを構成するので、方向性結合器の設計が簡素化される。 This configuration simplifies the design of the directional coupler because the first line portion and the second line portion are configured by a single-width conductor pattern.
 また、前記第1線路部の幅が前記第2線路部の幅より大きくてもよい。 The width of the first line portion may be larger than the width of the second line portion.
 この構成によれば、副線路に比べて主線路のインピーダンスをより小さくできるので、方向性結合器の挿入損失が低減する。 According to this configuration, since the impedance of the main line can be made smaller than that of the sub line, the insertion loss of the directional coupler is reduced.
 本発明の一態様に係る通信装置は、前記方向性結合器を有するフロントエンド回路と、前記高周波モジュールに接続されたRF信号処理回路と、を備える。 A communication apparatus according to an aspect of the present invention includes a front-end circuit having the directional coupler and an RF signal processing circuit connected to the high-frequency module.
 この構成によれば、方向性に優れた方向性結合器を、例えば、送信電力のフィードバック制御など、通信装置における各種の用途に利用することができる。 According to this configuration, a directional coupler having excellent directivity can be used for various applications in a communication device such as feedback control of transmission power.
 本発明は、方向性結合器および方向性結合器を用いた通信装置に広く利用できる。 The present invention can be widely used for directional couplers and communication devices using directional couplers.
  1、2、8、9 方向性結合器
  10 多層基板
  11~14 基材層
  31 主線路
  31a 主線路の一方端
  31b 主線路の他方端
  31c 第1線路部
  31d 第1線路部の辺
  32 副線路
  32a 副線路の一方端
  32b 副線路の他方端
  32c 第2線路部
  32d 第2線路部の辺
  33 グランドプレーン
  33a グランドプレーンの一方端
  33b グランドプレーンの他方端
  34、35 電極端子
  36 導体ビア
  81、91 主線路
  82、92 副線路
  100 通信装置
  110 ベースバンド信号処理回路
  120 RF信号処理回路
  130 フロントエンド回路
  131 パワーアンプ
  132 ローノイズアンプ
  133 デュプレクサ
  134 カプラ
  135 終端抵抗
  136 パワーコントローラ
  200 アンテナ
1, 2, 8, 9 Directional coupler 10 Multilayer substrate 11-14 Base material layer 31 Main line 31a One end of main line 31b Other end of main line 31c First line part 31d Side of first line part 32 Sub line 32a One end of the sub line 32b Other end of the sub line 32c Second line part 32d Side of the second line part 33 Ground plane 33a One end of the ground plane 33b Other end of the ground plane 34, 35 Electrode terminal 36 Conductor via 81, 91 Main line 82, 92 Sub line 100 Communication device 110 Baseband signal processing circuit 120 RF signal processing circuit 130 Front end circuit 131 Power amplifier 132 Low noise amplifier 133 Duplexer 134 Coupler 135 Termination resistor 136 Power controller 200 Antenna

Claims (9)

  1.  積層体と、
     前記積層体に設けられた主線路および副線路と、を備え、
     前記主線路の少なくとも一部である第1線路部と前記副線路の少なくとも一部である第2線路部とは、前記積層体の異なる層において、同一方向に向かい合うように延設され、
     前記積層体を平面視したとき、前記第1線路部と前記第2線路部とが、互いに重ならない部分を有しており、かつ前記第1線路部の前記第2線路部に近い側の辺と前記第2線路部の前記第1線路部に近い側の辺とが揃っている、
     方向性結合器。
    A laminate,
    A main line and a sub line provided in the laminate,
    The first line portion that is at least part of the main line and the second line portion that is at least part of the sub-line are extended so as to face in the same direction in different layers of the laminate,
    When the laminate is viewed in plan, the first line portion and the second line portion have a portion that does not overlap with each other, and the side of the first line portion that is closer to the second line portion And the side of the second line portion close to the first line portion is aligned,
    Directional coupler.
  2.  前記積層体の側面に設けられ、前記主線路の一方端および他方端ならびに前記副線路の一方端および他方端のうちの1つに接続されている電極端子を、さらに備える、
     請求項1に記載の方向性結合器。
    An electrode terminal provided on a side surface of the laminate and connected to one of the one end and the other end of the main line and the one end and the other end of the sub line;
    The directional coupler according to claim 1.
  3.  前記積層体の一方主面に設けられ、前記主線路の一方端および他方端ならびに前記副線路の一方端および他方端のうちの1つに接続されている電極端子を、さらに備える、
     請求項1に記載の方向性結合器。
    An electrode terminal provided on one main surface of the laminate and connected to one of the one end and the other end of the main line and the one end and the other end of the sub line;
    The directional coupler according to claim 1.
  4.  前記積層体の前記第1線路部が設けられた層および前記第2線路部が設けられた層のいずれとも異なる層に設けられたグランドプレーンを、さらに備える、
     請求項1から3のいずれか1項に記載の方向性結合器。
    A ground plane provided in a layer different from any of the layer provided with the first line portion and the layer provided with the second line portion of the laminate;
    The directional coupler according to any one of claims 1 to 3.
  5.  前記積層体は、低温同時焼成セラミックスで構成された複数の基材層を積層してなる、
     請求項1から4のいずれか1項に記載の方向性結合器。
    The laminate is formed by laminating a plurality of base material layers made of low-temperature co-fired ceramics.
    The directional coupler according to any one of claims 1 to 4.
  6.  前記積層体は、樹脂薄膜で構成された複数の基材層を積層してなる、
     請求項1から4のいずれか1項に記載の方向性結合器。
    The laminate is formed by laminating a plurality of base material layers composed of a resin thin film.
    The directional coupler according to any one of claims 1 to 4.
  7.  前記第1線路部の幅と前記第2線路部の幅とは略等しい、
     請求項1から6のいずれか1項に記載の方向性結合器。
    The width of the first line portion and the width of the second line portion are substantially equal.
    The directional coupler according to any one of claims 1 to 6.
  8.  前記第1線路部の幅が前記第2線路部の幅より大きい、
     請求項1から6のいずれか1項に記載の方向性結合器。
    A width of the first line portion is larger than a width of the second line portion;
    The directional coupler according to any one of claims 1 to 6.
  9.  請求項1から8のいずれか1項に記載の方向性結合器を有するフロントエンド回路と、
     前記高周波モジュールに接続されたRF信号処理回路と、
     を備える通信装置。
    A front end circuit comprising the directional coupler according to any one of claims 1 to 8,
    An RF signal processing circuit connected to the high-frequency module;
    A communication device comprising:
PCT/JP2018/018941 2017-05-19 2018-05-16 Directional coupler and communication device WO2018212238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099664 2017-05-19
JP2017-099664 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212238A1 true WO2018212238A1 (en) 2018-11-22

Family

ID=64274457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018941 WO2018212238A1 (en) 2017-05-19 2018-05-16 Directional coupler and communication device

Country Status (1)

Country Link
WO (1) WO2018212238A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121502A (en) * 1988-09-26 1990-05-09 Hughes Aircraft Co Thick-film microwave coupler
JP2004040259A (en) * 2002-06-28 2004-02-05 Fujitsu Quantum Devices Ltd Directional coupler and electronic apparatus employing the same
JP2013214840A (en) * 2012-03-31 2013-10-17 Tdk Corp Directional coupler and radio communication device
WO2015192150A2 (en) * 2014-06-12 2015-12-17 Skyworks Solutions, Inc. Devices and methods related to directional couplers
WO2017013927A1 (en) * 2015-07-22 2017-01-26 京セラ株式会社 Directional coupler and communication module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121502A (en) * 1988-09-26 1990-05-09 Hughes Aircraft Co Thick-film microwave coupler
JP2004040259A (en) * 2002-06-28 2004-02-05 Fujitsu Quantum Devices Ltd Directional coupler and electronic apparatus employing the same
JP2013214840A (en) * 2012-03-31 2013-10-17 Tdk Corp Directional coupler and radio communication device
WO2015192150A2 (en) * 2014-06-12 2015-12-17 Skyworks Solutions, Inc. Devices and methods related to directional couplers
WO2017013927A1 (en) * 2015-07-22 2017-01-26 京セラ株式会社 Directional coupler and communication module

Similar Documents

Publication Publication Date Title
TWI493893B (en) High-frequency circuit module
WO2020022180A1 (en) High-frequency module
CN109845029B (en) Substrate with built-in directional coupler, high-frequency front-end circuit, and communication device
US9119318B2 (en) Multilayer substrate module
US11349507B2 (en) Radio frequency module and communication device
TWI608652B (en) Directional coupler and wireless communication device
US11271306B2 (en) Wiring board, coupler module, and communication device
JP2019087832A (en) Bidirectional coupler
US10756408B2 (en) Directional coupler, high-frequency front-end module, and communication device
US20230198556A1 (en) Radio-frequency module and communication apparatus
KR20210103400A (en) Radio frequency module and communication device
US20230208467A1 (en) Radio-frequency module and communication apparatus
US20230208020A1 (en) Radio-frequency module and communication apparatus
JP2021145283A (en) High frequency module and communication device
WO2018212238A1 (en) Directional coupler and communication device
US11303319B2 (en) Radio frequency module and communication device
CN110710118A (en) High-frequency module and communication device
KR20080043067A (en) Front end module of transmitter unit
US20230216171A1 (en) Directional coupler, high-frequency module, and communication device
US11362634B2 (en) Filter module and high frequency module
US11894593B2 (en) Filter device, and antenna module and communication device including the same
US20240014805A1 (en) Radio-frequency module and communication device
US20220131252A1 (en) High-frequency module and its manufacturing method
JP4329702B2 (en) High frequency device equipment
KR20210059628A (en) Radio frequency module and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP