WO2018212112A1 - Circularly polarizing film, circularly polarizing film with adhesive layer, and image display device - Google Patents

Circularly polarizing film, circularly polarizing film with adhesive layer, and image display device Download PDF

Info

Publication number
WO2018212112A1
WO2018212112A1 PCT/JP2018/018445 JP2018018445W WO2018212112A1 WO 2018212112 A1 WO2018212112 A1 WO 2018212112A1 JP 2018018445 W JP2018018445 W JP 2018018445W WO 2018212112 A1 WO2018212112 A1 WO 2018212112A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing film
circularly polarizing
polarizer
retardation film
Prior art date
Application number
PCT/JP2018/018445
Other languages
French (fr)
Japanese (ja)
Inventor
玲子 品川
卓哉 田中
哲郎 竹田
勝則 高田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020197030387A priority Critical patent/KR102281483B1/en
Priority to CN201880031905.1A priority patent/CN110651205B/en
Publication of WO2018212112A1 publication Critical patent/WO2018212112A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a circularly polarizing film. Moreover, this invention relates to the circularly-polarizing film with an adhesive layer using the said circularly-polarizing film. Furthermore, it is related with the image display apparatus using the said circularly-polarizing film or the circularly-polarizing film with an adhesive layer.
  • the circularly polarizing film of the present invention is suitably used for an image display device, and can be particularly suitably used for an image display device that visually recognizes a display screen through a polarizing lens such as polarized sunglasses.
  • a retardation film having a circularly polarizing function or an elliptical polarizing function may be used as a protective film provided on one side of the polarizer.
  • a stretched polycarbonate film and a stretched norbornene polymer film are known.
  • polycarbonate films and norbornene-based polymer films are low in moisture permeability and have good dimensional stability in a humidity environment.
  • in-plane retardation Re due to a large photoelastic coefficient is uneven. There was a serious problem that occurred.
  • a cellulose ester film such as a cellulose acetate film or a cellulose acetate propionate film can be used as the retardation film of the circularly polarizing film. Since the cellulose ester film has a small photoelastic coefficient, unevenness of the in-plane retardation Re is unlikely to occur, and it is possible to suppress the generation and dissolution of cracks even when touched by sebum, detergent, or solvent (patent) Reference 2). Moreover, the retardation film obtained by extending
  • the present invention is a circularly polarizing film comprising a polarizer, a retardation film disposed on one side of the polarizer, and a protective layer disposed on the other side of the polarizer,
  • An object of the present invention is to provide a circularly polarizing film that is excellent in impact properties and reworkability and can suppress curling.
  • Another object of the present invention is to provide a circularly polarizing film with an adhesive layer using the circularly polarizing film, and further to provide an image display device using the circularly polarizing film or the circularly polarizing film with an adhesive layer.
  • the present invention comprises a polarizer, a retardation film disposed on one side of the polarizer, and a protective layer disposed on the other side of the polarizer,
  • the retardation film has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light, has a thickness of 35 ⁇ m or less, and When both sides of the retardation film have different fracture start loads in the scratch test, the side having the higher fracture start load is the first surface and the lower side is the second surface.
  • the said polarizer is related with the circularly-polarizing film characterized by being bonded by the 1st surface of the said retardation film.
  • the fracture start load on the first surface of the retardation film is 55 mN or more.
  • the circularly polarizing film may have a surface functional layer on the second surface of the retardation film.
  • an angle formed between the absorption axis of the polarizer and the slow axis of the retardation film is preferably 35 ° to 55 °.
  • the angle formed between the slow axis of the retardation film and the long direction is preferably 35 ° to 55 °.
  • the retardation film is a stretched product of a resin film molded on a casting body by a solution casting method, and is suitable when the casting body side surface of the resin film is the first surface. It is.
  • the retardation film can be a cellulose ester film.
  • a film in which the polarizer, the retardation film and the protective layer are bonded through an adhesive layer can be used.
  • the present invention also relates to a circularly polarizing film with an adhesive layer, characterized by having the circularly polarizing film and an adhesive layer.
  • the present invention provides a circularly polarizing film or a circularly polarizing film with an adhesive layer on the viewing side of the optical cell, and the retardation film is disposed on the viewing side with respect to the polarizer. Device.
  • Polycarbonate films and norbornene-based polymer films are generally formed by a melt extrusion method, and there is no difference in physical properties on both sides of the film obtained by such a film formation method.
  • a film forming method using a solution casting method is generally used for the cellulose ester film.
  • a resin solution (dope) is poured onto a smooth drum (casting drum) or stainless steel smooth belt, and the film is formed by evaporating the solvent through a heating process. To do.
  • the solvent removal proceeds quickly on the side not in contact with the belt or drum surface (air side). Therefore, when forming a thin film, the air side is in contact with the belt or drum surface.
  • the retardation film used for the circularly polarizing film can be obtained by subjecting it to an oblique stretching treatment so that the angle formed by the width direction and the in-plane slow axis is within a predetermined range. Therefore, when the film having different physical properties on both sides as described above is subjected to high stretching by the oblique stretching, the air side of the obtained retardation film is mechanically brittle compared to the opposite surface. I understood that. In particular, in the case of a thin film, the mechanical properties on the air side were fragile. As a result, when a thin retardation film is bonded to the polarizer, it is presumed that peeling occurred at the time of impact or rework.
  • the retardation film of the present invention when a retardation film having a different physical property on both sides (having a function of converting linearly polarized light into circularly polarized light or elliptically polarized light) is disposed in the polarizer, the retardation is measured.
  • the side having a high mechanical characteristic that is, the side having a high fracture start load was bonded to the polarizer using the fracture start load in the scratch test as an index.
  • thinning of the film is not preferable from the viewpoint of impact resistance and reworkability, in the present invention, by adopting such a configuration, a retardation film having a thickness of 35 ⁇ m or less is used.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is the in-plane retardation of the film measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (450) is the in-plane retardation of the film measured with light having a wavelength of 450 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • Rth (450) is the retardation in the thickness direction of the film measured with light having a wavelength of 450 nm at 23 ° C.
  • substantially parallel and “substantially parallel” include the case where the angle between two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, more preferably 0 ° ⁇ 5 °. Further, in the present specification, the term “orthogonal” or “parallel” may include a substantially orthogonal state or a substantially parallel state.
  • Angle When referring to an angle in this specification, unless otherwise specified, the angle includes angles in both clockwise and counterclockwise directions.
  • Long shape “Long shape” means a long and narrow shape that is sufficiently long with respect to the width. Includes shape.
  • FIG. 1 is a schematic cross-sectional view showing an example of the cross-section of the circularly polarizing film of the present invention.
  • a circularly polarizing film F of FIG. 1 includes a polarizer 1, a retardation film 2 disposed on one side of the polarizer 1, and a protective layer 3 disposed on the other side of the polarizer 1.
  • the retardation film 2 has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light. Therefore, the circularly polarizing film of the present invention means a circularly polarizing film or an elliptically polarizing film.
  • the circularly polarizing film F is typically disposed on the viewing side of the image display device.
  • the circularly polarizing film F can be suitably applied to an image display device that can be used outdoors.
  • the retardation film 2 films having different fracture starting loads in the double-side scratch test are used.
  • the side with the higher fracture start load is the first surface 2 a and the side with the lower fracture load is the second surface 2 b.
  • the polarizer 1 is bonded to the first surface 2 a side of the retardation film 2.
  • the circularly polarizing film F may further include a surface functional layer 4 on the second surface 2b (the side opposite to the polarizer 1) of the retardation film 2 as necessary. Furthermore, the circularly polarizing film F may include another retardation film (not shown).
  • the number of different retardation films, arrangement position, optical characteristics (for example, refractive index ellipsoid, in-plane retardation, thickness direction retardation, wavelength dispersion characteristics), mechanical characteristics, etc. can be appropriately set according to the purpose. .
  • the polarizer 1 and the retardation film 2 are laminated so that the absorption axis of the polarizer 1 and the slow axis of the retardation film 2 form a predetermined angle.
  • the angle formed by the absorption axis of the polarizer 1 and the slow axis of the retardation film 2 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, still more preferably 40 ° to 50 °. Particularly preferably, it is 42 ° to 48 °, and particularly preferably around 45 °.
  • the circularly polarizing film F may be a single wafer or a long shape (for example, a roll).
  • the absorption axis direction of the long polarizer may be the long direction or the width direction.
  • the absorption axis direction of the polarizer is a long direction. This is because the polarizer can be easily manufactured, and as a result, the manufacturing efficiency of the circularly polarizing film is excellent.
  • the angle ⁇ formed between the slow axis of the retardation film 2 and the long direction is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, and further The angle is preferably 40 ° to 50 °, particularly preferably 42 ° to 48 °, and particularly preferably around 45 °.
  • a long retardation film (retardation film) having a slow axis in the oblique direction can be formed.
  • a long circularly polarizing film can be realized. Since such a long circularly polarizing film can be produced by roll-to-roll, productivity is remarkably improved.
  • the total thickness of the circularly polarizing film is typically 40 ⁇ m to 300 ⁇ m, preferably 40 ⁇ m to 160 ⁇ m, more preferably 50 ⁇ m to 140 ⁇ m, and further preferably 60 ⁇ m to 120 ⁇ m. According to the embodiment of the present invention, it is possible to obtain a circularly polarizing film that has such a very thin thickness and is curled well.
  • the total thickness of the circularly polarizing film refers to the total thickness of the polarizer, the retardation film, the protective layer, the surface functional layer if present, and the adhesive layer for laminating them.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single layer resin film include high hydrophilicity such as polyvinyl alcohol (PVA) resin film, partially formalized PVA resin film, ethylene / vinyl acetate copolymer partially saponified film, etc.
  • PVA polyvinyl alcohol
  • molecular films that have been dyed and stretched with dichroic substances such as iodine and dichroic dyes
  • polyene-based oriented films such as PVA dehydrated products and polyvinyl chloride dehydrochlorinated products It is done.
  • a polarizer obtained by dyeing a PVA resin film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA resin film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA-based resin film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, and the like. For example, by immersing the PVA resin film in water and washing it before dyeing, the PVA resin film surface can be cleaned of stains and anti-blocking agents, and the PVA resin film can be swollen and dyed. Unevenness can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 13 ⁇ m or less, still more preferably 10 ⁇ m, and particularly preferably 8 ⁇ m or less.
  • the lower limit of the polarizer thickness is 2 ⁇ m in one embodiment and 3 ⁇ m in another embodiment. According to the embodiment of the present invention, even when the thickness of the polarizer is very thin, curling when the polarizing film is heated can be satisfactorily suppressed.
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is preferably 42.0% to 45.5%, more preferably 42.5% to 45.0%. According to the present invention, it is possible to realize a polarizing film that is very thin and curl-suppressed, and further, in such a polarizing film, excellent single transmittance as described above can be realized.
  • the degree of polarization of the polarizer is 98% or more, preferably 98.5% or more, and more preferably 99% or more. According to the present invention, it is possible to realize a polarizing film that is very thin and curl-suppressed, and further, in such a polarizing film, the above-described excellent degree of polarization can be realized.
  • the retardation film 2 has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light. That is, the retardation film 2 typically has a relationship in which the refractive index characteristic is nx> ny.
  • the in-plane retardation Re (550) of the retardation film is preferably 80 nm to 160 nm, more preferably 90 nm to 120 nm. When the in-plane retardation is in such a range, a retardation film having appropriate elliptical polarization performance can be obtained with excellent productivity and reasonable cost. As a result, a polarizing film that can ensure good visibility even when the display screen is viewed through a polarizing lens such as polarized sunglasses can be obtained with excellent productivity and reasonable cost.
  • the retardation film 2 exhibits any appropriate refractive index ellipsoid as long as it has a relationship of nx> ny.
  • the refractive index ellipsoid of the retardation film exhibits a relationship of nx> ny ⁇ nz.
  • the Nz coefficient of the retardation film is preferably 1 to 2, more preferably 1 to 1.5, and still more preferably 1 to 1.3.
  • the retardation film 2 is composed of any appropriate retardation film that can satisfy the optical characteristics as described above.
  • films having different fracture start loads in the double-side scratch test are used as the retardation film 2.
  • the side with the higher fracture start load is the first surface 2 a and the side with the lower fracture load is the second surface 2 b.
  • the fracture start load of the first surface 2a is preferably 55 mN or more. When the fracture start load satisfies 55 mN or more, cohesive failure in the vicinity of the surface of the first surface 2a is unlikely to occur, and the impact resistance and reworkability of the circularly polarizing film obtained by bonding to the polarizer are satisfied. Is preferable.
  • the fracture start load of the first surface 2a is preferably 58 mN or more, more preferably 60 mN or more, and further preferably 70 mN or more.
  • a typical example of the resin forming the retardation film is a cellulose ester resin (hereinafter, also simply referred to as cellulose ester).
  • cellulose ester examples include cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate.
  • Preferred are cellulose triacetate, cellulose diacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • Cellulose esters may be used alone or in combination.
  • Cellulose ester is an acyl group such as an acetyl group or a propionyl group in which some or all of the free hydroxyl groups (hydroxyl groups) at the 2nd, 3rd and 6th positions in the glucose unit constituting cellulose by ⁇ -1,4-glycoside bonds It is a polymer esterified by (polymer).
  • the “acyl group substitution degree” represents the total of the ratio of hydroxyl groups esterified with respect to the 2nd, 3rd and 6th positions of glucose as a repeating unit. Specifically, the degree of substitution is 1 when the hydroxyl groups at the 2-position, 3-position and 6-position of cellulose are each 100% esterified.
  • the “average acyl group substitution degree” refers to an acyl group substitution degree in which the acyl group substitution degree of a plurality of glucose units constituting the cellulose ester resin is expressed as an average value per unit.
  • the degree of acyl group substitution can be measured according to ASTM-D817-96.
  • acyl group examples include acetyl group, propionyl group, butanoyl group, heptanoyl group, hexanoyl group, octanoyl group, decanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, hexadecanoyl group, octadecanoyl group, and isobutanoyl.
  • the cellulose ester resin satisfying the above formulas (1) and (2) includes a cellulose ester resin satisfying the following formula (1a) and the above formula (2), and a cellulose ester resin satisfying the following formula (1b): , Containing.
  • acetyl group substitution degree and “propionyl group substitution degree” are more specific indicators of the above-mentioned acyl group substitution degree.
  • the “group substitution degree” represents the sum of the ratios of hydroxyl groups esterified with acetyl groups at the 2-position, 3-position and 6-position of glucose of the repeating unit, and “propionyl group substitution degree” The total of the ratio by which the hydroxyl group is esterified by the acetyl group about 2nd-position, 3rd-position, and 6th-position of glucose is represented.
  • the cellulose ester resin preferably has a molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of 1.5 to 5.5, more preferably 2.0 to 5.0, still more preferably 2.5. To 5.0, particularly preferably 3.0 to 5.0.
  • Arbitrary appropriate cellulose can be used as a cellulose of the raw material of a cellulose ester resin. Specific examples include cotton linters, wood pulp, and kenaf. A cellulose ester resin obtained from different raw materials may be used in combination.
  • the cellulose ester resin can be produced by any appropriate method. Representative examples include methods comprising the following procedures: raw cellulose, certain organic acids (eg, acetic acid, propionic acid), acid anhydrides (eg, acetic anhydride, propionic anhydride), and catalysts (eg, Sulfuric acid) is mixed to esterify the cellulose, and the reaction proceeds until a cellulose triester is obtained. In cellulose triester, the three hydroxyl groups (hydroxyl groups) of the glucose unit are substituted with an acyl acid of an organic acid. When two types of organic acids are used at the same time, a mixed ester type cellulose ester (for example, cellulose acetate propionate, cellulose acetate butyrate) can be prepared.
  • certain organic acids eg, acetic acid, propionic acid
  • acid anhydrides eg, acetic anhydride, propionic anhydride
  • catalysts eg, Sulfuric acid
  • a cellulose ester having a desired degree of acyl group substitution is synthesized by hydrolyzing the cellulose triester. Thereafter, a cellulose ester resin can be obtained through steps such as filtration, precipitation, washing with water, dehydration, and drying.
  • the retardation film 2 (retardation film) is typically produced by stretching a resin film formed from the resin as described above in at least one direction.
  • a melt extrusion method for example, a T-die molding method
  • a cast coating method for example, a casting method
  • a calendar molding method for example, a hot press method, a co-extrusion method, a co-melting method, a multilayer extrusion method, an inflation molding method, etc. It is done.
  • a T-die molding method, a casting method, and an inflation molding method are used.
  • the resin film used for the retardation film used in the present invention examples having different fracture initiation loads in the double-side scratch test
  • those obtained by a solution casting method are preferably used.
  • a resin solution (dope) is poured onto a casting body (casting drum or stainless steel smooth belt) having a smooth surface, and the solvent is evaporated through a process of heating the film to form a film. Mold.
  • the fracture start load of the obtained resin film is smaller on the air side than on the casting body side.
  • the surface on the casting body side of the resin film becomes the first surface.
  • the thickness of the resin film can be set to any appropriate value according to desired optical characteristics, stretching conditions described later, and the like.
  • the thickness is preferably 50 ⁇ m to 250 ⁇ m, more preferably 80 ⁇ m to 200 ⁇ m.
  • stretching temperature is preferably in the range of glass transition temperature (Tg) ⁇ 20 ° C. of the resin film.
  • a retardation film (as a result, a retardation film) having the desired optical properties (for example, refractive index ellipsoid, in-plane retardation, Nz coefficient) is obtained. Can do.
  • the retardation film 2 is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end.
  • uniaxial stretching there is a method of stretching in the longitudinal direction (longitudinal direction) while running the resin film in the longitudinal direction.
  • Another specific example of the uniaxial stretching includes a method of stretching in the transverse direction using a tenter.
  • the draw ratio is preferably 10% to 500%.
  • the retardation film 2 is produced by continuously stretching a long resin film obliquely in the direction of the angle ⁇ with respect to the long direction.
  • a long stretched film having an orientation angle of an angle ⁇ with respect to the longitudinal direction of the film can be obtained.
  • roll-to-roll is possible when laminating with a polarizer.
  • the angle ⁇ is as described above.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, Examples thereof include the method described in JP-A-2002-22944.
  • the thickness of the retardation film (for example, the stretched film) is 35 ⁇ m or less. As the thickness increases, shrinkage and expansion tend to increase, and when the thickness exceeds 40 ⁇ m, the amount of panel warpage (curl) in reliability of heating and humidity increases.
  • the thickness is preferably 38 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • the thickness is preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more. Is preferred.
  • the retardation film constituting the retardation film 2 a commercially available film may be used as it is as long as it satisfies the requirements of the present invention, and the commercially available film is subjected to secondary processing (for example, stretched). Treatment, surface treatment).
  • the surface of the retardation film 2 on the polarizer 1 side may be subjected to surface treatment.
  • the surface treatment include corona treatment, plasma treatment, flame treatment, primer coating treatment, and saponification treatment.
  • the corona treatment include a method in which discharge is performed in normal pressure air by a corona treatment machine.
  • the plasma treatment for example, a method of discharging in a normal pressure air by a plasma discharge machine can be mentioned.
  • An example of the frame treatment is a method in which a flame is brought into direct contact with the film surface.
  • the primer coating treatment include a method of diluting an isocyanate compound, a silane coupling agent or the like with a solvent and coating the diluted solution thinly.
  • the saponification treatment include a method of immersing in a sodium hydroxide aqueous solution. Corona treatment and plasma treatment are preferable.
  • the protective layer 3 is formed of any appropriate film that can be used as a protective layer for a polarizer.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyvinyl alcohols, polycarbonates, nylons and aromatic polyamides.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • the upper limit of Tg of the said (meth) acrylic-type resin is not specifically limited, From viewpoints of a moldability etc., Preferably it is 170 degrees C or less.
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer).
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid
  • poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
  • the (meth) acrylic resin examples include (meth) acrylic resins having a ring structure in the molecule described in, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296.
  • the resin examples include high Tg (meth) acrylic resins obtained by intramolecular crosslinking or intramolecular cyclization reaction.
  • a (meth) acrylic resin having a lactone ring structure is particularly preferable in that it has high heat resistance, high transparency, and high mechanical strength.
  • Examples of the (meth) acrylic resin having the lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. Examples thereof include (meth) acrylic resins having a lactone ring structure described in JP-A-146084.
  • the (meth) acrylic resin having a lactone ring structure has a mass average molecular weight (sometimes referred to as a weight average molecular weight), preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, still more preferably 10,000 to 500,000. Preferably it is 50,000 to 500,000.
  • the (meth) acrylic resin having a lactone ring structure has a Tg (glass transition temperature) of preferably 115 ° C. or higher, more preferably 125 ° C. or higher, still more preferably 130 ° C. or higher, particularly preferably 135 ° C., most preferably. Is 140 ° C. or higher. It is because it can be excellent in durability.
  • the upper limit of Tg of the (meth) acrylic resin having the lactone ring structure is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
  • (meth) acrylic refers to acrylic and / or methacrylic.
  • the protective layer 3 is preferably optically isotropic.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the thickness of the protective layer is preferably 5 ⁇ m to 60 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m.
  • a surface functional layer 4 can be provided on the second surface of the retardation film 2.
  • the surface functional layer include a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer, and an antiglare layer.
  • the functional layers such as the hard coat layer, the antireflection layer, the antisticking layer, the diffusion layer and the antiglare layer can be provided on the retardation film itself, and separately provided separately from the retardation film. You can also.
  • a hard coat layer is preferably applied.
  • the hard coat layer has a function of imparting chemical resistance, scratch resistance and surface smoothness to the circularly polarizing film and improving dimensional stability under high temperature and high humidity. Any appropriate configuration can be adopted as the hard coat layer.
  • the hard coat layer is, for example, a cured layer of any appropriate ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, and epoxy resins.
  • the glass transition temperature of the resin constituting the hard coat layer is preferably 120 ° C. to 300 ° C., more preferably 130 ° C. to 250 ° C. If it is such a range, the polarizing film excellent in the dimensional stability under high temperature can be obtained.
  • the hard coat layer may contain any appropriate additive as required. Representative examples of the additive include inorganic fine particles and / or organic fine particles.
  • the thickness of the surface functional layer 4 is preferably 10 ⁇ m or less, more preferably 1 ⁇ m to 8 ⁇ m, and further preferably 2 ⁇ m to 7 ⁇ m.
  • the adhesive layer may be a pressure-sensitive adhesive layer or an adhesive layer.
  • the adhesive layer is formed of an adhesive.
  • the type of the adhesive is not particularly limited, and various types can be used.
  • the adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt-based, active energy ray-curable types, and the like. Or an active energy ray hardening-type adhesive agent is suitable.
  • the polarizer 1, the retardation film 2 and the protective layer 3 are bonded together with an aqueous adhesive.
  • Any appropriate aqueous adhesive can be adopted as the aqueous adhesive.
  • an aqueous adhesive containing a PVA resin is used.
  • the average degree of polymerization of the PVA resin contained in the aqueous adhesive is preferably about 100 to 5500, more preferably 1000 to 4500 from the viewpoint of adhesiveness.
  • the average saponification degree is preferably about 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, from the viewpoint of adhesiveness.
  • the PVA resin contained in the aqueous adhesive preferably contains an acetoacetyl group. This is because the adhesion between the polarizer, the retardation film and the protective layer is excellent and the durability can be excellent.
  • the acetoacetyl group-containing PVA resin can be obtained, for example, by reacting a PVA resin and diketene by an arbitrary method.
  • the degree of acetoacetyl group modification of the acetoacetyl group-containing PVA resin is typically 0.1 mol% or more, preferably about 0.1 mol% to 40 mol%, more preferably 1 mol% to 20 mol. %, Particularly preferably 1 mol% to 7 mol%.
  • the degree of acetoacetyl group modification is a value measured by NMR.
  • the solid content concentration of the water-based adhesive is preferably 6% by weight or less, more preferably 0.1% by weight to 6% by weight, and further preferably 0.5% by weight to 6% by weight. If solid content concentration is such a range, there exists an advantage that the dimensional control rate of a polarizing plate is easy to control. If the solid content concentration is too low, the water content of the obtained polarizing film increases, and the dimensional change may increase depending on the drying conditions. If the solid content concentration is too high, the viscosity of the adhesive increases, and the productivity of the polarizing film may be insufficient.
  • the thickness of the adhesive layer is preferably 0.01 ⁇ m to 7 ⁇ m, more preferably 0.05 ⁇ m to 5 ⁇ m, still more preferably 0.05 ⁇ m to 2 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m. If the thickness of the adhesive layer is too thin, the cohesive force of the adhesive itself cannot be obtained, and the adhesive strength may not be obtained. If the thickness of the adhesive layer is too thick, the circularly polarizing film may not satisfy the durability.
  • the pressure-sensitive adhesive layer can be provided on one side or both sides of the circularly polarizing film F (not shown).
  • the pressure-sensitive adhesive layer is provided in advance on the protective layer 3 side of the circularly polarizing film F, it can be easily bonded to another optical member (for example, a liquid crystal cell or an organic EL panel).
  • another optical member for example, a liquid crystal cell or an organic EL panel.
  • the peeling film is bonded together on the surface of this adhesive layer until it uses.
  • the adhesive layer on the viewing side (retardation film 2 side) is suitable for members such as an input device such as a touch panel applied on the viewing side of an image display device, a transparent substrate such as a cover glass and a plastic cover, for example. Can be applied.
  • This manufacturing method produces the laminated body which has the polarizer 1 and the phase difference film 2 arrange
  • the heating temperature of the high temperature heating is preferably 86 ° C. or higher.
  • the upper limit of the heating temperature for high temperature heating is, for example, 100 ° C.
  • the heating time for the high temperature heating is preferably 3 minutes to 10 minutes, more preferably 3 minutes to 6 minutes. You may heat a laminated body at the temperature below 85 degreeC (low temperature heating) before and / or after high temperature heating.
  • the heating temperature and heating time of the low-frequency heating can be appropriately set according to the purpose and desired characteristics of the obtained polarizing film.
  • the high temperature heating and / or low temperature heating may also serve as a drying treatment of the adhesive in the lamination of the polarizer, the retardation film (retardation film) and the protective layer (protective film).
  • any appropriate method may be employ
  • the image display device includes a circularly polarizing film on the viewing side of the optical cell.
  • the circularly polarizing film is disposed so that the retardation film is closer to the viewing side than the polarizer.
  • a liquid crystal display device and an organic electroluminescence (EL) display device can be given.
  • Such an image display device can realize excellent visibility even when the display screen is viewed through a polarizing lens such as polarized sunglasses by providing the polarizing film on the viewing side. Therefore, such an image display device can be suitably used even outdoors.
  • ⁇ Fracture start load> A nano scratch tester manufactured by CSM Instruments SA was used as a measuring device for the fracture initiation load.
  • the first surface or the second surface of each retardation film (sample) was affixed to a slide glass, and the other surface (second surface or first surface) was faced upward, and fixed to the stage of the measuring apparatus.
  • a cantilever ST-150 equipped with a conical diamond indenter (tip radius of curvature 10 ⁇ m) in a measurement environment of 23 ° C. and 50% RH a load of 0 to 300 mN was applied in the continuous load mode of the above apparatus.
  • a scratch test was carried out by rubbing in one direction while increasing (scratch load).
  • FIG. 2 is an image showing scratch marks before the start of destruction (non-destructive portion)
  • FIG. 3 is an image showing scratch marks at the start point of destruction.
  • a polyvinyl alcohol film having a polymerization degree of 2400, a saponification degree of 99.9 mol%, and a thickness of 30 ⁇ m is immersed in warm water at 30 ° C. and swollen, and the length of the polyvinyl alcohol film becomes 2.0 times the original length.
  • Uniaxial stretching was performed as described above.
  • it is immersed in an aqueous solution (dye bath) having a concentration of a mixture of iodine and potassium iodide (weight ratio 0.5: 8) of 0.3% by weight, and the length of the polyvinyl alcohol film is 3.0 times the original length.
  • Dyeing was performed while uniaxially stretching.
  • the film was stretched so that the length of the polyvinyl alcohol film was 3.7 times the original length while immersed in an aqueous solution (crosslinking bath 1) of 5% by weight boric acid and 3% by weight potassium iodide.
  • an aqueous solution (crosslinking bath 2) of 4% by weight boric acid and 5% by weight potassium iodide the polyvinyl alcohol film was stretched so that its length was 6 times the original length.
  • an iodine ion impregnation process with an aqueous solution (iodine impregnation bath) of 3% by weight of potassium iodide, it was dried in an oven at 60 ° C. for 4 minutes to obtain a long (roll-shaped) polarizer.
  • the thickness of the obtained polarizer was 12 ⁇ m.
  • the absorption axis of the polarizer was parallel to the longitudinal direction.
  • a film obtained by obliquely stretching a long triacetylcellulose (TAC) film obtained by a solution casting method was used.
  • the thickness of the stretched film was 35 ⁇ m, 32 ⁇ m, 28 ⁇ m, 25 ⁇ m, 20 ⁇ m, and 40 ⁇ m, respectively.
  • Each stretched film (a stretched product of a TAC film) was provided with a hard coat layer having a thickness of 5 ⁇ m on the first surface or the second surface (the surface not bonded to the polarizer).
  • Each stretched film (a stretched product of the TAC film) was adjusted so that the in-plane retardation Re (550) was 105 nm, and the angle formed between the slow axis and the longitudinal direction was 45 °. .
  • a polyvinyl alcohol-based resin containing acetoacetyl groups (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%) is dissolved in pure water at a temperature of 30 ° C., A water-based adhesive was obtained by adjusting the solid content concentration to 4%.
  • Example 1 (Production of circularly polarizing film)
  • a stretched film having a thickness of 35 ⁇ m (a stretched product of a TAC film) provided with a hard coat layer on the second surface was used.
  • the first surface of the retardation film was applied so that the thickness of the adhesive layer after drying the aqueous adhesive was 80 nm.
  • the aqueous adhesive was applied to the protective film so that the thickness of the adhesive layer after drying was 80 nm.
  • the retardation film with adhesive and the protective film are bonded to both sides of the polarizer under a temperature condition of 23 ° C. with a roll machine, and then dried at 55 ° C. for 4 minutes and at 86 ° C. for 4 minutes.
  • a polarizing film was produced.
  • the polarizer, the retardation film with an adhesive, and the protective film were bonded so that the polarizer and the adhesive layer of the protective film were in contact with each other.
  • the absorption axis direction of the polarizer was parallel to the long direction, and the angle formed between the slow axis of the retardation film and the long direction was 45 °.
  • Example 1 the circularly polarizing film was obtained in the same manner as in Example 1 except that the thickness of the stretched film used for the retardation film and the surface on which the retardation film was bonded to the polarizer were changed as shown in Table 1. Obtained.
  • the retardation films having the same thickness used in Examples 1 to 5 and Comparative Examples 1 to 5 are the same retardation film, and only the surface bonded to the polarizer is different.
  • the retardation film of the same thickness used by the comparative example 6 and the comparative example 7 is the same retardation film, and only the surface bonded together to the polarizer is different.
  • the peel force was measured by the following method. Cut out the circularly polarizing film into a size of 200 mm parallel to the stretching direction of the polarizer and 15 mm in the orthogonal direction, and cut it with a cutter knife between the retardation film and the polarizer. Laminated to a glass plate. With Tensilon, the protective film and the polarizer were peeled off in the 90-degree direction at a peeling speed of 3000 mm / min, and the peel strength (N / 15 mm) was measured.
  • the peel force is preferably 0.8 N / 15 mm or more, more preferably 1 N / 15 mm or more, and further preferably 1.5 N / 15 mm or more.
  • Table 1 when the peel force is 0.8 N / 15 mm or more, “ ⁇ ” is indicated, and when the peel force is less than 0.8 N / 15, “X” is indicated.
  • the peeling force from the polarizer can satisfy 0.8 N / 15 mm.
  • the obtained circularly polarizing film was cut out to 112 mm ⁇ 65 mm (5 inch size) so that the absorption axis direction of the polarizer was a long side.
  • the cut circularly polarizing film was allowed to stand on a horizontal plane with the hard coat layer facing upward, and the height at which the end of the sample curled and floated from the plane was measured.
  • the case where the height of the largest floating part (maximum floating height) was 3 mm or less was marked with ⁇ , and the case where the maximum floating height exceeded 3 mm was marked with x.

Abstract

The present invention relates to a circularly polarizing film which is provided with a polarizer, a retardation film that is arranged on one side of the polarizer, and a protective layer that is arranged on the other side of the polarizer, and which is characterized in that: the retardation film has a function of converting linearly polarized light to circularly polarized light or elliptically polarized light; the retardation film has a thickness of 35 μm or less; both surfaces of the retardation film have different fracture initiation loads in a scratch test; and if the first surface has a higher fracture initiation load and the second surface has a lower fracture initiation load, the polarizer is bonded to the first surface of the retardation film. A circularly polarizing film according to the present invention has excellent impact resistance and excellent reworkability, and is able to suppress curling.

Description

円偏光フィルム、粘着剤層付円偏光フィルムおよび画像表示装置Circular polarizing film, circular polarizing film with pressure-sensitive adhesive layer, and image display device
 本発明は、円偏光フィルムに関する。また本発明は前記円偏光フィルムを用いた粘着剤層付円偏光フィルムに関する。さらには前記円偏光フィルムまたは粘着剤層付円偏光フィルムを用いた画像表示装置に関する。本発明の円偏光フィルムは、画像表示装置に好適に用いられ、偏光サングラス等の偏光レンズを介して表示画面を視認する画像表示装置に特に好適に用いられ得る。 The present invention relates to a circularly polarizing film. Moreover, this invention relates to the circularly-polarizing film with an adhesive layer using the said circularly-polarizing film. Furthermore, it is related with the image display apparatus using the said circularly-polarizing film or the circularly-polarizing film with an adhesive layer. The circularly polarizing film of the present invention is suitably used for an image display device, and can be particularly suitably used for an image display device that visually recognizes a display screen through a polarizing lens such as polarized sunglasses.
 近年、携帯電話、スマートフォン、タブレット型パーソナルコンピューター(PC)、カーナビゲーションシステム、デジタルサイネージ、ウィンドウディスプレイなどのように、画像表示装置が強い外光の下使用される機会が増加している。このように屋外で画像表示装置が使用される場合、視認者が偏光サングラスをかけて当該画像表示装置を見る際に、視認者が見る角度によっては偏光サングラスの透過軸方向と画像表示装置の出射側の透過軸方向とがクロスニコル状態となり、その結果、画面が黒くなり、表示画像が視認されない場合がある。このような問題を解決するために、画像表示装置の視認側表面に円偏光フィルム(偏光サングラス対応偏光フィルム)を配置する技術が提案されている(特許文献1)。また、前記のような画像表示装置は、落下や衝突など外部衝撃を受けやすく、前記円偏光フィルムについても耐衝撃性が求められている。 In recent years, image display devices such as mobile phones, smartphones, tablet personal computers (PCs), car navigation systems, digital signage, window displays, etc. have been increasingly used under strong external light. When the image display device is used outdoors as described above, when the viewer views the image display device wearing polarized sunglasses, the transmission axis direction of the polarized sunglasses and the emission of the image display device depend on the viewing angle. As a result, the screen becomes black and the display image may not be visually recognized. In order to solve such a problem, a technique has been proposed in which a circularly polarizing film (a polarizing film for polarizing sunglasses) is disposed on the viewing-side surface of the image display device (Patent Document 1). Further, the image display device as described above is easily subjected to external impact such as dropping or collision, and the circularly polarizing film is also required to have impact resistance.
 また、円偏光フィルム等の光学フィルムは、液晶セル等に貼り合わせる際、貼り合わせ位置を誤ったり、貼合せ面に異物が噛み込んだりしたような場合にも当該光学フィルムを液晶パネルから剥離し、液晶セル等を再利用する場合がある。かかる剥離工程において、液晶パネルから糊残りなく光学フィルム全体を剥がすことができる再剥離性(リワーク性)が求められる。 In addition, when an optical film such as a circularly polarizing film is bonded to a liquid crystal cell or the like, the optical film is peeled off from the liquid crystal panel even when the bonding position is wrong or a foreign object is caught in the bonding surface. In some cases, liquid crystal cells or the like are reused. In such a peeling step, re-peelability (reworkability) that can peel the entire optical film from the liquid crystal panel without adhesive residue is required.
 前記円偏光フィルムには、偏光子の一方に設けられる保護フィルムとして円偏光機能または楕円偏光機能を有する位相差フィルムが用いられることがある。当該位相差フィルムとしては、延伸ポリカーボネートフィルムや延伸ノルボルネン系ポリマーフィルムが知られている。しかし、ポリカーボネートフィルムやノルボルネン系ポリマーフィルムは低透湿であり、湿度環境下での寸法安定性が高く良好な反面、ポリカーボネートフィルム用いると、大きな光弾性係数に由来する面内位相差Reのムラが発生するという重大な問題があった。また、光学セル(例えば、液晶セル)よりも視認側(さらに偏光子よりも視認側)に前記位相差フィルムとしてノルボルネン系フィルムを用いた場合は、ノルボルネン系フィルムに皮脂や洗剤が付着したり、前記円偏光フィルムをフルラミネーションする際の層間樹脂に含まれる溶媒によって、ノルボルネン系フィルムにクラックが発生したり、溶解してしまうという重大な問題があった。 In the circularly polarizing film, a retardation film having a circularly polarizing function or an elliptical polarizing function may be used as a protective film provided on one side of the polarizer. As the retardation film, a stretched polycarbonate film and a stretched norbornene polymer film are known. However, polycarbonate films and norbornene-based polymer films are low in moisture permeability and have good dimensional stability in a humidity environment. On the other hand, when polycarbonate films are used, in-plane retardation Re due to a large photoelastic coefficient is uneven. There was a serious problem that occurred. Moreover, when using a norbornene film as the retardation film on the viewing side (further viewing side than the polarizer) than the optical cell (for example, a liquid crystal cell), sebum or detergent adheres to the norbornene film, There has been a serious problem that the norbornene-based film is cracked or dissolved by the solvent contained in the interlayer resin when the circularly polarizing film is fully laminated.
 一方、前記円偏光フィルムの位相差フィルムとして、セルロースアセテートフィルムやセルロースアセテートプロピオネートフィルム等のセルロースエステル系フィルムを用いることができる。セルロースエステル系フィルムは光弾性係数が小さいため、面内位相差Reのムラが発生しにくく、また、皮脂や洗剤、溶媒が触れてもクラックの発生や溶解を抑制することが可能である(特許文献2)。また、セルロースエステル系フィルムを延伸して得られる位相差フィルムは、通常、TV用として用いられることが多く、その厚みは40μm以上のものが一般的であった。 On the other hand, a cellulose ester film such as a cellulose acetate film or a cellulose acetate propionate film can be used as the retardation film of the circularly polarizing film. Since the cellulose ester film has a small photoelastic coefficient, unevenness of the in-plane retardation Re is unlikely to occur, and it is possible to suppress the generation and dissolution of cracks even when touched by sebum, detergent, or solvent (patent) Reference 2). Moreover, the retardation film obtained by extending | stretching a cellulose-ester type film is usually used for TV, and the thickness is generally 40 μm or more.
特開2014-16425号公報JP 2014-16425 A 特開2016-177165号公報JP 2016-177165 A
 ところで、近年の画像表示装置には薄型化が要求されており、前記位相差フィルムにも薄型化が求められる。また、前記位相差フィルムは延伸処理により得られるため、カールが発生し易いものであり、カールを抑制する観点からも薄型化が求められている。しかし、セルロースエステル系フィルムを延伸することにより得られる位相差フィルムを偏光子に貼り合せた円偏光フィルムは、外部衝撃時やリワーク時に、当該位相差フィルムと偏光子との貼り合わせた面の近傍で剥がれてしまうという問題が生じていた。 Incidentally, recent image display devices are required to be thin, and the retardation film is also required to be thin. Further, since the retardation film is obtained by stretching, curling is likely to occur, and a reduction in thickness is also required from the viewpoint of curling. However, a circularly polarizing film in which a retardation film obtained by stretching a cellulose ester film is bonded to a polarizer is in the vicinity of the surface where the retardation film and the polarizer are bonded during external impact or rework. There was a problem of peeling off.
 本発明は、偏光子と、当該該偏光子の一方の側に配置された位相差フィルムと、当該偏光子のもう一方の側に配置された保護層とを有する円偏光フィルムであって、耐衝撃性やリワーク性に優れ、かつ、カールを抑制することができる円偏光フィルムを提供することを目的とする。 The present invention is a circularly polarizing film comprising a polarizer, a retardation film disposed on one side of the polarizer, and a protective layer disposed on the other side of the polarizer, An object of the present invention is to provide a circularly polarizing film that is excellent in impact properties and reworkability and can suppress curling.
 また本発明は、前記円偏光フィルムを用いた粘着剤層付円偏光フィルムを提供すること、さらには前記円偏光フィルムまたは粘着剤層付円偏光フィルムを用いた画像表示装置を提供することを目的とする。 Another object of the present invention is to provide a circularly polarizing film with an adhesive layer using the circularly polarizing film, and further to provide an image display device using the circularly polarizing film or the circularly polarizing film with an adhesive layer. And
 本願発明者らは、鋭意検討の結果、下記の円偏光フィルム等により上記課題を解決し得ることを見出し、本発明に至った。 As a result of intensive studies, the inventors of the present application have found that the above-described problems can be solved by the following circularly polarizing film and the like, and have reached the present invention.
 即ち本発明は、偏光子と、当該該偏光子の一方の側に配置された位相差フィルムと、当該偏光子のもう一方の側に配置された保護層とを備え、
 前記位相差フィルムは、直線偏光を円偏光または楕円偏光に変換する機能を有し、厚みが35μm以下であり、かつ、
 前記位相差フィルムの両面は、スクラッチ試験における破壊開始荷重が異なり、前記破壊開始荷重が高い側を第1面とし、低い側を第2面とする場合に、
 前記前記偏光子は、前記位相差フィルムの第1面に貼り合されていることを特徴とする円偏光フィルム、に関する。
That is, the present invention comprises a polarizer, a retardation film disposed on one side of the polarizer, and a protective layer disposed on the other side of the polarizer,
The retardation film has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light, has a thickness of 35 μm or less, and
When both sides of the retardation film have different fracture start loads in the scratch test, the side having the higher fracture start load is the first surface and the lower side is the second surface.
The said polarizer is related with the circularly-polarizing film characterized by being bonded by the 1st surface of the said retardation film.
 前記円偏光フィルムにおいて、前記位相差フィルムの第1面の破壊開始荷重が55mN以上であることが好ましい。 In the circularly polarizing film, it is preferable that the fracture start load on the first surface of the retardation film is 55 mN or more.
 前記円偏光フィルムにおいて、前記位相差フィルムの第2面に表面機能層を有することができる。 The circularly polarizing film may have a surface functional layer on the second surface of the retardation film.
 前記円偏光フィルムにおいて、前記偏光子の吸収軸と前記位相差フィルムの遅相軸とのなす角度が35°~55°であることが好ましい。前記円偏光フィルムが長尺状の場合には、前記位相差フィルムの遅相軸と長尺方向とのなす角度が35°~55°であることが好ましい。 In the circularly polarizing film, an angle formed between the absorption axis of the polarizer and the slow axis of the retardation film is preferably 35 ° to 55 °. When the circularly polarizing film is long, the angle formed between the slow axis of the retardation film and the long direction is preferably 35 ° to 55 °.
 前記円偏光フィルムにおいて、前記位相差フィルムが、溶液流延法によりキャスティング体上で成型された樹脂フィルムの延伸物であり、当該樹脂フィルムのキャスティング体側の面が前記第1面である場合に好適である。 In the circularly polarizing film, the retardation film is a stretched product of a resin film molded on a casting body by a solution casting method, and is suitable when the casting body side surface of the resin film is the first surface. It is.
 前記円偏光フィルムにおいて、前記位相差フィルムがセルロースエステル系フィルムを用いることができる。 In the circularly polarizing film, the retardation film can be a cellulose ester film.
 前記円偏光フィルムにおいて、前記偏光子と前記位相差フィルムおよび前記保護層とが、接着剤層を介して貼り合わせられているものを用いることができる。 In the circularly polarizing film, a film in which the polarizer, the retardation film and the protective layer are bonded through an adhesive layer can be used.
 また本発明は、前記円偏光フィルムおよび粘着剤層を有することを特徴とする粘着剤層付円偏光フィルム、に関する。 The present invention also relates to a circularly polarizing film with an adhesive layer, characterized by having the circularly polarizing film and an adhesive layer.
 さらに、本発明は円偏光フィルムまたは粘着剤層付円偏光フィルムを、光学セルの視認側に備え、前記位相差フィルムが前記偏光子よりも視認側に配置されていることを特徴とする画像表示装置、に関する。 Furthermore, the present invention provides a circularly polarizing film or a circularly polarizing film with an adhesive layer on the viewing side of the optical cell, and the retardation film is disposed on the viewing side with respect to the polarizer. Device.
 ポリカーボネートフィルムやノルボルネン系ポリマーフィルムは溶融押出し法による成型方法が一般的に用いられ、かかる成膜方法で得られるフィルムの両面における物性に相違はない。一方、セルロースエステル系フィルムは溶液流延法を用いた成膜方法が一般的には用いられている。溶液流延法では樹脂溶液(ドープ)を、表面が平滑なドラム(キャスティングドラム)やステンレス製の平滑ベルト上に流し込んで付着させ、これを加熱する工程に通して溶媒を蒸発させ、フィルムを成型する。かかる溶液流延法においては、前記ベルトまたはドラム面に接していない側(エアー側)で脱溶媒が早く進行するため、特に薄型フィルムを成型する場合には、前記エアー側がベルトまたはドラム面に接している側より硬化されやすい(表面に皮バリのようなものがある)。その結果、溶液流延法で得られるフィルムは両面の物性が相違することが分かった。また、溶液流延法で得られるフィルムを他のフィルムに貼り合わせる場合には、便宜上、前記エアー側を貼り合わせていることも分かった。 Polycarbonate films and norbornene-based polymer films are generally formed by a melt extrusion method, and there is no difference in physical properties on both sides of the film obtained by such a film formation method. On the other hand, a film forming method using a solution casting method is generally used for the cellulose ester film. In the solution casting method, a resin solution (dope) is poured onto a smooth drum (casting drum) or stainless steel smooth belt, and the film is formed by evaporating the solvent through a heating process. To do. In such a solution casting method, the solvent removal proceeds quickly on the side not in contact with the belt or drum surface (air side). Therefore, when forming a thin film, the air side is in contact with the belt or drum surface. It is easier to cure than the side it is on (there is something like a skin burr on the surface). As a result, it was found that the film obtained by the solution casting method has different physical properties on both sides. Moreover, when bonding the film obtained by a solution casting method to another film, it also turned out that the said air side is bonded together for convenience.
 また、円偏光フィルムに用いる位相差フィルムは幅手方向と面内の遅相軸のなす角度が所定範囲内となるように斜め延伸処理することにより得られる。そのため、前記のような両面の物性が異なるフィルムについて、前記斜め延伸による高延伸を施した場合には、得られる位相差フィルムのエアー側はその反対面に比べて機械特性的に脆くなっていたことが分かった。特に、薄型化フィルムの場合には、前記エアー側の機械特性的は脆弱であった。その結果、薄型の位相差フィルムを偏光子に貼り合わせた場合に衝撃時やリワーク時に、剥がれを生じていたと推察される。 Further, the retardation film used for the circularly polarizing film can be obtained by subjecting it to an oblique stretching treatment so that the angle formed by the width direction and the in-plane slow axis is within a predetermined range. Therefore, when the film having different physical properties on both sides as described above is subjected to high stretching by the oblique stretching, the air side of the obtained retardation film is mechanically brittle compared to the opposite surface. I understood that. In particular, in the case of a thin film, the mechanical properties on the air side were fragile. As a result, when a thin retardation film is bonded to the polarizer, it is presumed that peeling occurred at the time of impact or rework.
 上記知見から、本発明の円偏光フィルムでは、偏光子に、両面の物性が異なる位相差フィルム(直線偏光を円偏光または楕円偏光に変換する機能を有する)を配置する場合には、前記位相差フィルムにおいて、機械特性的の強い側、即ち、スクラッチ試験における破壊開始荷重を指標として、当該破壊開始荷重が高い側を、偏光子に貼り合わせた。フィルムの薄型化は、耐衝撃性やリワーク性の点からは好ましくはないが、本発明では、このような構成を採用することで、厚みを35μm以下の薄型化した位相差フィルムを用いる場合にも、衝撃時やリワーク時においても位相差フィルムと偏光子との貼り合わせた面の近傍の凝集破壊が起きにくくなり、耐衝撃性やリワーク性に優れる、円偏光フィルムを提供することができる。また、本発明では、前記位相差フィルムとして、厚みが35μm以下のものを用いることにより、カールを抑制することができる。 From the above findings, in the circularly polarizing film of the present invention, when a retardation film having a different physical property on both sides (having a function of converting linearly polarized light into circularly polarized light or elliptically polarized light) is disposed in the polarizer, the retardation is measured. In the film, the side having a high mechanical characteristic, that is, the side having a high fracture start load was bonded to the polarizer using the fracture start load in the scratch test as an index. Although thinning of the film is not preferable from the viewpoint of impact resistance and reworkability, in the present invention, by adopting such a configuration, a retardation film having a thickness of 35 μm or less is used. In addition, it is possible to provide a circularly polarizing film that is less likely to cause cohesive failure near the bonded surface of the retardation film and the polarizer even during impact or rework, and that is excellent in impact resistance and reworkability. In the present invention, curling can be suppressed by using a retardation film having a thickness of 35 μm or less.
本発明の円偏光フィルムの構成断面の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure cross section of the circularly-polarizing film of this invention. 破壊開始荷重の測定の破壊開始前(非破壊部)におけるスクラッチ痕を示す画像である。It is an image which shows the scratch mark in the measurement of a fracture start load before the fracture start (non-destructive part). 破壊開始荷重の測定の破壊開始点におけるスクラッチ痕を示す画像である。It is an image which shows the scratch mark in the fracture start point of the measurement of a fracture start load.
 (用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定したフィルムの面内位相差である。例えば、「Re(450)」は、23℃における波長450nmの光で測定したフィルムの面内位相差である。Re(λ)は、フィルムの厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
  「Rth(λ)」は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差である。例えば、「Rth(450)」は、23℃における波長450nmの光で測定したフィルムの厚み方向の位相差である。Rth(λ)は、フィルムの厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)実質的に直交または平行
 「実質的に直交」および「略直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。「実質的に平行」および「略平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「直交」または「平行」というときは、実質的に直交または実質的に平行な状態を含み得るものとする。
(6)角度
 本明細書において角度に言及するときは、特に明記しない限り、当該角度は時計回りおよび反時計回りの両方の方向の角度を包含する。
(7)長尺状
 「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。
(Definition of terms and symbols)
The definitions of terms and symbols in this specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is the in-plane retardation of the film measured with light having a wavelength of λ nm at 23 ° C. For example, “Re (450)” is the in-plane retardation of the film measured with light having a wavelength of 450 nm at 23 ° C. Re (λ) is determined by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the film.
(3) Thickness direction retardation (Rth)
“Rth (λ)” is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C. For example, “Rth (450)” is the retardation in the thickness direction of the film measured with light having a wavelength of 450 nm at 23 ° C. Rth (λ) is determined by the formula: Rth = (nx−nz) × d, where d (nm) is the thickness of the film.
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Substantially orthogonal or parallel The expressions “substantially orthogonal” and “substantially orthogonal” include the case where the angle between the two directions is 90 ° ± 10 °, preferably 90 ° ± 7 °. And more preferably 90 ° ± 5 °. The expressions “substantially parallel” and “substantially parallel” include the case where the angle between two directions is 0 ° ± 10 °, preferably 0 ° ± 7 °, more preferably 0 ° ± 5 °. Further, in the present specification, the term “orthogonal” or “parallel” may include a substantially orthogonal state or a substantially parallel state.
(6) Angle When referring to an angle in this specification, unless otherwise specified, the angle includes angles in both clockwise and counterclockwise directions.
(7) Long shape “Long shape” means a long and narrow shape that is sufficiently long with respect to the width. Includes shape.
 <偏光フィルムの全体構成>
 図1は、本発明の円偏光フィルムの構成断面の一例を示す概略断面図である。図1の円偏光フィルムFは、偏光子1と、偏光子1の一方の側に配置された位相差フィルム2と、偏光子1のもう一方の側に配置された保護層3とを備える。位相差フィルム2は、直線偏光を円偏光または楕円偏光に変換する機能を有する。したがって、本発明の円偏光フィルムは、円偏光フィルムまたは楕円偏光フィルムを意味する。円偏光フィルムFは、代表的には画像表示装置の視認側に配置される。この場合、位相差フィルム2が視認側となるように配置される。上記のような構成であれば、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、円偏光フィルムFは、屋外で用いられ得る画像表示装置にも好適に適用され得る。
<Overall configuration of polarizing film>
FIG. 1 is a schematic cross-sectional view showing an example of the cross-section of the circularly polarizing film of the present invention. A circularly polarizing film F of FIG. 1 includes a polarizer 1, a retardation film 2 disposed on one side of the polarizer 1, and a protective layer 3 disposed on the other side of the polarizer 1. The retardation film 2 has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light. Therefore, the circularly polarizing film of the present invention means a circularly polarizing film or an elliptically polarizing film. The circularly polarizing film F is typically disposed on the viewing side of the image display device. In this case, it arrange | positions so that the phase difference film 2 may become a visual recognition side. With the configuration as described above, excellent visibility can be realized even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the circularly polarizing film F can be suitably applied to an image display device that can be used outdoors.
 位相差フィルム2は、両面のスクラッチ試験における破壊開始荷重が異なるものが用いられる。前記位相差フィルム2において、破壊開始荷重が高い側を第1面2a、低い側を第2面2bとする。図1に示すように、偏光子1は、前記位相差フィルム2の第1面2aの側に貼り合される。 As the retardation film 2, films having different fracture starting loads in the double-side scratch test are used. In the retardation film 2, the side with the higher fracture start load is the first surface 2 a and the side with the lower fracture load is the second surface 2 b. As shown in FIG. 1, the polarizer 1 is bonded to the first surface 2 a side of the retardation film 2.
 円偏光フィルムFは、必要に応じて、位相差フィルム2の第2面2b(偏光子1と反対側)に表面機能層4をさらに備えてもよい。さらに、円偏光フィルムFは、別の位相差フィルム(図示せず)を備えてもよい。別の位相差フィルムの数、配置位置、光学特性(例えば、屈折率楕円体、面内位相差、厚み方向位相差、波長分散特性)、機械的特性等は目的に応じて適切に設定され得る。 The circularly polarizing film F may further include a surface functional layer 4 on the second surface 2b (the side opposite to the polarizer 1) of the retardation film 2 as necessary. Furthermore, the circularly polarizing film F may include another retardation film (not shown). The number of different retardation films, arrangement position, optical characteristics (for example, refractive index ellipsoid, in-plane retardation, thickness direction retardation, wavelength dispersion characteristics), mechanical characteristics, etc. can be appropriately set according to the purpose. .
 偏光子1と位相差フィルム2とは、偏光子1の吸収軸と位相差フィルム2の遅相軸とが所定の角度をなすように積層されている。偏光子1の吸収軸と位相差フィルム2の遅相軸とのなす角度は、好ましくは35°~55°であり、より好ましくは38°~52°、さらに好ましくは40°~50°であり、特に好ましくは42°~48°であり、とりわけ好ましくは45°近傍である。位相差フィルム2をこのような軸関係で偏光子1よりも視認側に配置することにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、屋外で用いられ得る画像表示装置にも本発明の実施形態による偏光フィルムを好適に適用することができる。 The polarizer 1 and the retardation film 2 are laminated so that the absorption axis of the polarizer 1 and the slow axis of the retardation film 2 form a predetermined angle. The angle formed by the absorption axis of the polarizer 1 and the slow axis of the retardation film 2 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, still more preferably 40 ° to 50 °. Particularly preferably, it is 42 ° to 48 °, and particularly preferably around 45 °. By arranging the retardation film 2 on the viewing side with respect to the polarizer 1 in such an axial relationship, excellent visibility can be realized even when the display screen is viewed through a polarizing lens such as polarized sunglasses. it can. Therefore, the polarizing film according to the embodiment of the present invention can be suitably applied to an image display device that can be used outdoors.
 円偏光フィルムFは、枚葉状であってもよく長尺状(例えば、ロール状)であってもよい。円偏光フィルムFが長尺状である場合、長尺状の偏光子の吸収軸方向は長尺方向であってもよく、幅方向であってもよい。好ましくは、偏光子の吸収軸方向は長尺方向である。偏光子の製造が容易であるので、結果として、円偏光フィルムの製造効率に優れるからである。円偏光フィルムが長尺状である場合、位相差フィルム2の遅相軸と長尺方向とのなす角度θは、好ましくは35°~55°であり、より好ましくは38°~52°、さらに好ましくは40°~50°であり、特に好ましくは42°~48°であり、とりわけ好ましくは45°近傍である。後述するように位相差フィルムを構成する位相差フィルムを斜め延伸により形成することにより、斜め方向に遅相軸を有する長尺状の位相差フィルム(位相差フィルム)を形成することができ、結果として、長尺状の円偏光フィルムを実現することができる。このような長尺状の円偏光フィルムは、ロールトゥロールにより作製することができるので、生産性が格段に優れたものとなる。 The circularly polarizing film F may be a single wafer or a long shape (for example, a roll). When the circularly polarizing film F is long, the absorption axis direction of the long polarizer may be the long direction or the width direction. Preferably, the absorption axis direction of the polarizer is a long direction. This is because the polarizer can be easily manufactured, and as a result, the manufacturing efficiency of the circularly polarizing film is excellent. When the circularly polarizing film is long, the angle θ formed between the slow axis of the retardation film 2 and the long direction is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, and further The angle is preferably 40 ° to 50 °, particularly preferably 42 ° to 48 °, and particularly preferably around 45 °. As described later, by forming the retardation film constituting the retardation film by oblique stretching, a long retardation film (retardation film) having a slow axis in the oblique direction can be formed. As described above, a long circularly polarizing film can be realized. Since such a long circularly polarizing film can be produced by roll-to-roll, productivity is remarkably improved.
 円偏光フィルムの全体厚みは、代表的には40μm~300μmであり、好ましくは40μm~160μmであり、より好ましくは50μm~140μmであり、さらに好ましくは60μm~120μmである。本発明の実施形態によれば、このように非常に薄い厚みでありながら、カールが良好に抑制された円偏光フィルムが得られ得る。なお、円偏光フィルムの全体厚みとは、偏光子、位相差フィルム、保護層、存在する場合には表面機能層、およびこれらを積層するための接着剤層の合計厚みをいう。 The total thickness of the circularly polarizing film is typically 40 μm to 300 μm, preferably 40 μm to 160 μm, more preferably 50 μm to 140 μm, and further preferably 60 μm to 120 μm. According to the embodiment of the present invention, it is possible to obtain a circularly polarizing film that has such a very thin thickness and is curled well. The total thickness of the circularly polarizing film refers to the total thickness of the polarizer, the retardation film, the protective layer, the surface functional layer if present, and the adhesive layer for laminating them.
 以下、本発明の実施形態による円偏光フィルムを構成する各層について説明する。 Hereinafter, each layer constituting the circularly polarizing film according to the embodiment of the present invention will be described.
 <偏光子>
 偏光子1としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
<Polarizer>
Any appropriate polarizer can be adopted as the polarizer 1. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系樹脂フィルム、部分ホルマール化PVA系樹脂フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系樹脂フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single layer resin film include high hydrophilicity such as polyvinyl alcohol (PVA) resin film, partially formalized PVA resin film, ethylene / vinyl acetate copolymer partially saponified film, etc. Examples of molecular films that have been dyed and stretched with dichroic substances such as iodine and dichroic dyes, polyene-based oriented films such as PVA dehydrated products and polyvinyl chloride dehydrochlorinated products It is done. Preferably, a polarizer obtained by dyeing a PVA resin film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系樹脂フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系樹脂フィルムを水に浸漬して水洗することで、PVA系樹脂フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系樹脂フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA resin film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA-based resin film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, and the like. For example, by immersing the PVA resin film in water and washing it before dyeing, the PVA resin film surface can be cleaned of stains and anti-blocking agents, and the PVA resin film can be swollen and dyed. Unevenness can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは13μm以下であり、さらに好ましくは10μmであり、特に好ましくは8μm以下である。偏光子の厚みの下限は、1つの実施形態においては2μmであり、別の実施形態においては3μmである。本発明の実施形態によれば、偏光子の厚みがこのように非常に薄いにもかかわらず、偏光フィルムを加熱した際のカールを良好に抑制することができる。 The thickness of the polarizer is preferably 15 μm or less, more preferably 13 μm or less, still more preferably 10 μm, and particularly preferably 8 μm or less. The lower limit of the polarizer thickness is 2 μm in one embodiment and 3 μm in another embodiment. According to the embodiment of the present invention, even when the thickness of the polarizer is very thin, curling when the polarizing film is heated can be satisfactorily suppressed.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは42.0%~45.5%であり、より好ましくは42.5%~45.0%である。本発明によれば、非常に薄く、かつカールが抑制された偏光フィルムを実現し、さらに、このような偏光フィルムにおいて上記のような優れた単体透過率を実現することができる The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance of the polarizer is preferably 42.0% to 45.5%, more preferably 42.5% to 45.0%. According to the present invention, it is possible to realize a polarizing film that is very thin and curl-suppressed, and further, in such a polarizing film, excellent single transmittance as described above can be realized.
 偏光子の偏光度は、上記のとおり98%以上であり、好ましくは98.5%以上であり、さらに好ましくは99%以上である。本発明によれば、非常に薄く、かつカールが抑制された偏光フィルムを実現し、さらに、このような偏光フィルムにおいて上記のような優れた偏光度を実現することができる。 As described above, the degree of polarization of the polarizer is 98% or more, preferably 98.5% or more, and more preferably 99% or more. According to the present invention, it is possible to realize a polarizing film that is very thin and curl-suppressed, and further, in such a polarizing film, the above-described excellent degree of polarization can be realized.
 <位相差フィルム>
 位相差フィルム2は、上記のとおり、直線偏光を円偏光または楕円偏光に変換する機能を有する。すなわち、位相差フィルム2は、代表的には屈折率特性がnx>nyの関係を示す。位相差フィルムの面内位相差Re(550)は、好ましくは80nm~160nm、より好ましくは90nm~120nmである。面内位相差がこのような範囲であれば、適切な楕円偏光性能を有する位相差フィルムを、優れた生産性および妥当なコストで得ることができる。結果として、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも良好な視認性を確保し得る偏光フィルムを、優れた生産性および妥当なコストで得ることができる。
<Phase difference film>
As described above, the retardation film 2 has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light. That is, the retardation film 2 typically has a relationship in which the refractive index characteristic is nx> ny. The in-plane retardation Re (550) of the retardation film is preferably 80 nm to 160 nm, more preferably 90 nm to 120 nm. When the in-plane retardation is in such a range, a retardation film having appropriate elliptical polarization performance can be obtained with excellent productivity and reasonable cost. As a result, a polarizing film that can ensure good visibility even when the display screen is viewed through a polarizing lens such as polarized sunglasses can be obtained with excellent productivity and reasonable cost.
 位相差フィルム2は、nx>nyの関係を有する限り、任意の適切な屈折率楕円体を示す。好ましくは、位相差フィルムの屈折率楕円体は、nx>ny≧nzの関係を示す。位相差フィルムのNz係数は、好ましくは1~2であり、より好ましくは1~1.5であり、さらに好ましくは1~1.3である。 The retardation film 2 exhibits any appropriate refractive index ellipsoid as long as it has a relationship of nx> ny. Preferably, the refractive index ellipsoid of the retardation film exhibits a relationship of nx> ny ≧ nz. The Nz coefficient of the retardation film is preferably 1 to 2, more preferably 1 to 1.5, and still more preferably 1 to 1.3.
 位相差フィルム2は、上記のような光学特性を満足させ得る、任意の適切な位相差フィルムで構成される。また、位相差フィルム2は、両面のスクラッチ試験における破壊開始荷重が異なるものが用いられる。前記のように、位相差フィルム2において、破壊開始荷重が高い側を第1面2a、低い側を第2面2bとする。前記第1面2aの破壊開始荷重は55mN以上であることが好ましい。前記破壊開始荷重が55mN以上を満足する場合には、第1面2aの表面近傍の凝集破壊が起きにくく、偏光子に貼り合わせて得られる円偏光フィルムの耐衝撃性やリワーク性を満足するうえで好ましい。前記第1面2aの破壊開始荷重は、さらには58mN以上、さらには60mN以上、さらに70mN以上であるのが好ましい。 The retardation film 2 is composed of any appropriate retardation film that can satisfy the optical characteristics as described above. In addition, as the retardation film 2, films having different fracture start loads in the double-side scratch test are used. As described above, in the retardation film 2, the side with the higher fracture start load is the first surface 2 a and the side with the lower fracture load is the second surface 2 b. The fracture start load of the first surface 2a is preferably 55 mN or more. When the fracture start load satisfies 55 mN or more, cohesive failure in the vicinity of the surface of the first surface 2a is unlikely to occur, and the impact resistance and reworkability of the circularly polarizing film obtained by bonding to the polarizer are satisfied. Is preferable. The fracture start load of the first surface 2a is preferably 58 mN or more, more preferably 60 mN or more, and further preferably 70 mN or more.
 位相差フィルムを形成する樹脂としては、代表的にはセルロースエステル樹脂(以下、単にセルロースエステルとも称する)が挙げられる。 A typical example of the resin forming the retardation film is a cellulose ester resin (hereinafter, also simply referred to as cellulose ester).
 セルロースエステルの具体例としては、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、セルロースフタレートが挙げられる。好ましくは、セルローストリアセテート、セルロースジアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートである。セルロースエステルは、単独で用いてもよく組み合わせて用いてもよい。 Specific examples of the cellulose ester include cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. Preferred are cellulose triacetate, cellulose diacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate. Cellulose esters may be used alone or in combination.
 セルロースエステルは、β-1,4-グリコシド結合でセルロースを構成するグルコース単位における2位、3位および6位の遊離ヒドロキシル基(水酸基)の一部または全部をアセチル基、プロピオニル基等のアシル基によりエステル化した重合体(ポリマー)である。ここで、「アシル基置換度」とは、繰り返し単位のグルコースの2位、3位及び6位について、ヒドロキシル基がエステル化されている割合の合計を表す。具体的には、セルロースの2位、3位及び6位のそれぞれのヒドロキシル基が100%エステル化した場合をそれぞれ置換度1とする。したがって、セルロースの2位、3位及び6位のすべてが100%エステル化した場合、置換度は最大の3となる。また、「平均アシル基置換度」とは、セルロースエステル樹脂を構成する複数のグルコース単位のアシル基置換度を、一単位当たりの平均値として表現したアシル基置換度をいう。アシル基置換度は、ASTM-D817-96に準じて測定することができる。 Cellulose ester is an acyl group such as an acetyl group or a propionyl group in which some or all of the free hydroxyl groups (hydroxyl groups) at the 2nd, 3rd and 6th positions in the glucose unit constituting cellulose by β-1,4-glycoside bonds It is a polymer esterified by (polymer). Here, the “acyl group substitution degree” represents the total of the ratio of hydroxyl groups esterified with respect to the 2nd, 3rd and 6th positions of glucose as a repeating unit. Specifically, the degree of substitution is 1 when the hydroxyl groups at the 2-position, 3-position and 6-position of cellulose are each 100% esterified. Therefore, when all of the 2nd, 3rd and 6th positions of cellulose are 100% esterified, the degree of substitution is 3 at the maximum. The “average acyl group substitution degree” refers to an acyl group substitution degree in which the acyl group substitution degree of a plurality of glucose units constituting the cellulose ester resin is expressed as an average value per unit. The degree of acyl group substitution can be measured according to ASTM-D817-96.
 アシル基としては、例えば、アセチル基、プロピオニル基、ブタノイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、イソブタノイル基、tert-ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が挙げられる。 Examples of the acyl group include acetyl group, propionyl group, butanoyl group, heptanoyl group, hexanoyl group, octanoyl group, decanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, hexadecanoyl group, octadecanoyl group, and isobutanoyl. Group, tert-butanoyl group, cyclohexanecarbonyl group, oleoyl group, benzoyl group, naphthylcarbonyl group, cinnamoyl group.
 1つの実施形態においては、セルロースエステル樹脂のアセチル基置換度をX、プロピオニル基置換度をYとしたとき、XおよびYは、下記式(1)および式(2)を満たすことが好ましい。
 式(1):2.0≦(X+Y)≦2.8
 式(2):0≦Y≦1.0
 より好ましくは、上記式(1)および式(2)を満たすセルロースエステル樹脂は、下記式(1a)と上記式(2)を満たすセルロースエステル樹脂と、下記式(1b)を満たすセルロースエステル樹脂と、を含有する。
 式(1a):2.0≦(X+Y)<2.5
 式(1b):2.5≦(X+Y)≦2.8なお、「アセチル基置換度」および「プロピオニル基置換度」は、上記のアシル基置換度のより具体的な指標であり、「アセチル基置換度」とは繰り返し単位のグルコースの2位、3位及び6位について、ヒドロキシル基がアセチル基によりエステル化されている割合の合計を表し、「プロピオニル基置換度」とは、繰り返し単位のグルコースの2位、3位及び6位について、ヒドロキシル基がアセチル基によりエステル化されている割合の合計を表す。
In one embodiment, when the acetyl group substitution degree of the cellulose ester resin is X and the propionyl group substitution degree is Y, X and Y preferably satisfy the following formulas (1) and (2).
Formula (1): 2.0 ≦ (X + Y) ≦ 2.8
Formula (2): 0 ≦ Y ≦ 1.0
More preferably, the cellulose ester resin satisfying the above formulas (1) and (2) includes a cellulose ester resin satisfying the following formula (1a) and the above formula (2), and a cellulose ester resin satisfying the following formula (1b): , Containing.
Formula (1a): 2.0 ≦ (X + Y) <2.5
Formula (1b): 2.5 ≦ (X + Y) ≦ 2.8 Note that “acetyl group substitution degree” and “propionyl group substitution degree” are more specific indicators of the above-mentioned acyl group substitution degree. The “group substitution degree” represents the sum of the ratios of hydroxyl groups esterified with acetyl groups at the 2-position, 3-position and 6-position of glucose of the repeating unit, and “propionyl group substitution degree” The total of the ratio by which the hydroxyl group is esterified by the acetyl group about 2nd-position, 3rd-position, and 6th-position of glucose is represented.
 セルロースエステル樹脂は、分子量分布(重量平均分子量Mw/数平均分子量Mn)が好ましくは1.5~5.5であり、より好ましくは2.0~5.0であり、さらに好ましくは2.5~5.0であり、特に好ましくは3.0~5.0である。 The cellulose ester resin preferably has a molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of 1.5 to 5.5, more preferably 2.0 to 5.0, still more preferably 2.5. To 5.0, particularly preferably 3.0 to 5.0.
 セルロースエステル樹脂の原料のセルロースとしては、任意の適切なセルロースを用いることができる。具体例としては、綿花リンター、木材パルプ、ケナフが挙げられる。異なる原料から得られたセルロースエステル樹脂を組み合わせて用いてもよい。 Arbitrary appropriate cellulose can be used as a cellulose of the raw material of a cellulose ester resin. Specific examples include cotton linters, wood pulp, and kenaf. A cellulose ester resin obtained from different raw materials may be used in combination.
 セルロースエステル樹脂は、任意の適切な方法により製造することができる。代表例としては以下の手順を含む方法が挙げられる:原料のセルロース、所定の有機酸(例えば、酢酸、プロピオン酸)、酸無水物(例えば、無水酢酸、無水プロピオン酸)、および触媒(例えば、硫酸)を混合して、セルロースをエステル化し、セルローストリエステルが得られるまで反応を進める。セルローストリエステルにおいては、グルコース単位の三個のヒドロキシル基(水酸基)は、有機酸のアシル酸で置換されている。同時に二種類の有機酸を使用すると、混合エステル型のセルロースエステル(例えば、セルロースアセテートプロピオネート、セルロースアセテートブチレート)を作成することができる。次いで、セルローストリエステルを加水分解することにより、所望のアシル基置換度を有するセルロースエステルを合成する。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、セルロースエステル樹脂が得られ得る。 The cellulose ester resin can be produced by any appropriate method. Representative examples include methods comprising the following procedures: raw cellulose, certain organic acids (eg, acetic acid, propionic acid), acid anhydrides (eg, acetic anhydride, propionic anhydride), and catalysts (eg, Sulfuric acid) is mixed to esterify the cellulose, and the reaction proceeds until a cellulose triester is obtained. In cellulose triester, the three hydroxyl groups (hydroxyl groups) of the glucose unit are substituted with an acyl acid of an organic acid. When two types of organic acids are used at the same time, a mixed ester type cellulose ester (for example, cellulose acetate propionate, cellulose acetate butyrate) can be prepared. Next, a cellulose ester having a desired degree of acyl group substitution is synthesized by hydrolyzing the cellulose triester. Thereafter, a cellulose ester resin can be obtained through steps such as filtration, precipitation, washing with water, dehydration, and drying.
 位相差フィルム2(位相差フィルム)は、代表的には、上記のような樹脂から形成された樹脂フィルムを少なくとも一方向に延伸することにより作製される。 The retardation film 2 (retardation film) is typically produced by stretching a resin film formed from the resin as described above in at least one direction.
 樹脂フィルムの形成方法としては、任意の適切な方法が採用され得る。例えば、溶融押出し法(例えば、Tダイ成形法)、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法、共押出し法、共溶融法、多層押出し、インフレーション成形法等が挙げられる。好ましくは、Tダイ成形法、流延法およびインフレーション成形法が用いられる。 Arbitrary appropriate methods can be employ | adopted as a formation method of a resin film. For example, a melt extrusion method (for example, a T-die molding method), a cast coating method (for example, a casting method), a calendar molding method, a hot press method, a co-extrusion method, a co-melting method, a multilayer extrusion method, an inflation molding method, etc. It is done. Preferably, a T-die molding method, a casting method, and an inflation molding method are used.
 本発明で用いる位相差フィルム(両面のスクラッチ試験における破壊開始荷重が異なるもの)に用いられる樹脂フィルムは、溶液流延法により得られたものが好適に使用される。溶液流延法では樹脂溶液(ドープ)を、表面が平滑なキャスティング体(キャスティングドラムまたはステンレス製の平滑ベルト)上に流し込んで付着させ、これを加熱する工程に通して溶媒を蒸発させ、フィルムを成型する。かかる溶液流延法においては、前記キャスティング体に接していない側(エアー側)で脱溶媒が早く進行するため、得られる樹脂フィルムの破壊開始荷重は、前記エアー側がキャスティング体側よりも小さくなる。かかる溶液流延法により得られた樹脂フィルムを延伸することにより得られる位相差フィルムにおいては、前記樹脂フィルムのキャスティング体側の面が前記第1面になる。 As the resin film used for the retardation film used in the present invention (those having different fracture initiation loads in the double-side scratch test), those obtained by a solution casting method are preferably used. In the solution casting method, a resin solution (dope) is poured onto a casting body (casting drum or stainless steel smooth belt) having a smooth surface, and the solvent is evaporated through a process of heating the film to form a film. Mold. In such a solution casting method, since solvent removal proceeds faster on the side not in contact with the casting body (air side), the fracture start load of the obtained resin film is smaller on the air side than on the casting body side. In a retardation film obtained by stretching a resin film obtained by such a solution casting method, the surface on the casting body side of the resin film becomes the first surface.
 樹脂フィルムの厚み(未延伸フィルム)の厚みは、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~250μmであり、より好ましくは80μm~200μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value according to desired optical characteristics, stretching conditions described later, and the like. The thickness is preferably 50 μm to 250 μm, more preferably 80 μm to 200 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸・自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、水平方向、垂直方向、厚さ方向、対角方向等、様々な方向や次元に行なうことができる。延伸の温度は、好ましくは、樹脂フィルムのガラス転移温度(Tg)±20℃の範囲である。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching / free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a horizontal direction, a vertical direction, a thickness direction, and a diagonal direction. The stretching temperature is preferably in the range of glass transition temperature (Tg) ± 20 ° C. of the resin film.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率楕円体、面内位相差、Nz係数)を有する位相差フィルム(結果として、位相差フィルム)を得ることができる。 By appropriately selecting the stretching method and stretching conditions, a retardation film (as a result, a retardation film) having the desired optical properties (for example, refractive index ellipsoid, in-plane retardation, Nz coefficient) is obtained. Can do.
 1つの実施形態においては、位相差フィルム2は、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。一軸延伸の具体例としては、樹脂フィルムを長尺方向に走行させながら、長手方向(縦方向)に延伸する方法が挙げられる。一軸延伸の別の具体例としては、テンターを用いて横方向に延伸する方法が挙げられる。延伸倍率は、好ましくは10%~500%である。 In one embodiment, the retardation film 2 is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end. As a specific example of uniaxial stretching, there is a method of stretching in the longitudinal direction (longitudinal direction) while running the resin film in the longitudinal direction. Another specific example of the uniaxial stretching includes a method of stretching in the transverse direction using a tenter. The draw ratio is preferably 10% to 500%.
 別の実施形態においては、位相差フィルム2は、長尺状の樹脂フィルムを長尺方向に対して角度θの方向に連続的に斜め延伸することにより作製される。斜め延伸を採用することにより、フィルムの長尺方向に対して角度θの配向角を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。角度θは上記のとおりである。 In another embodiment, the retardation film 2 is produced by continuously stretching a long resin film obliquely in the direction of the angle θ with respect to the long direction. By adopting oblique stretching, a long stretched film having an orientation angle of an angle θ with respect to the longitudinal direction of the film can be obtained. For example, roll-to-roll is possible when laminating with a polarizer. Can be simplified. The angle θ is as described above.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報等に記載の方法が挙げられる。 Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, Examples thereof include the method described in JP-A-2002-22944.
 位相差フィルム(例えば、前記延伸フィルム)の厚みは35μm以下である。前記厚みが大きくなると、収縮膨張が大きくなる傾向があり、厚みが40μmを超えると加熱湿信頼性でのパネル反り量(カール)が大きくなる。前記厚みは38μm以下であるのが好ましく、さらには35μm以下であるのが好ましい。一方、前記厚みが薄くなると破壊開始荷重の大きい面(第一の面)でも荷重が低くなり、ピール力が低下するため、前記厚みは15μm以上であるのが好ましく、さらには20μm以上であるのが好ましい。 The thickness of the retardation film (for example, the stretched film) is 35 μm or less. As the thickness increases, shrinkage and expansion tend to increase, and when the thickness exceeds 40 μm, the amount of panel warpage (curl) in reliability of heating and humidity increases. The thickness is preferably 38 μm or less, and more preferably 35 μm or less. On the other hand, when the thickness is reduced, the load is reduced even on the surface with the large fracture start load (first surface), and the peel force is reduced. Therefore, the thickness is preferably 15 μm or more, and more preferably 20 μm or more. Is preferred.
 位相差フィルム2を構成する位相差フィルムとしては、本発明の要件を満足するものであれば、市販のフィルムをそのまま用いてもよく、市販のフィルムを目的に応じて2次加工(例えば、延伸処理、表面処理)して用いてもよい。 As the retardation film constituting the retardation film 2, a commercially available film may be used as it is as long as it satisfies the requirements of the present invention, and the commercially available film is subjected to secondary processing (for example, stretched). Treatment, surface treatment).
 位相差フィルム2の偏光子1側の表面には、表面処理が施されていてもよい。表面処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理、プライマー塗布処理、ケン化処理が挙げられる。コロナ処理としては、例えば、コロナ処理機により常圧空気中で放電する方式が挙げられる。プラズマ処理は、例えば、プラズマ放電機により常圧空気中で放電する方式が挙げられる。フレーム処理は、例えば、フィルム表面に直接火炎を接触させる方式が挙げられる。プライマー塗布処理は、例えば、イソシアネート化合物、シランカップリング剤等を溶媒で希釈し、当該希釈液を薄く塗布する方式が挙げられる。ケン化処理は、例えば、水酸化ナトリウム水溶液中に浸漬させる方式が挙げられる。好ましくは、コロナ処理、プラズマ処理である。 The surface of the retardation film 2 on the polarizer 1 side may be subjected to surface treatment. Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, primer coating treatment, and saponification treatment. Examples of the corona treatment include a method in which discharge is performed in normal pressure air by a corona treatment machine. As the plasma treatment, for example, a method of discharging in a normal pressure air by a plasma discharge machine can be mentioned. An example of the frame treatment is a method in which a flame is brought into direct contact with the film surface. Examples of the primer coating treatment include a method of diluting an isocyanate compound, a silane coupling agent or the like with a solvent and coating the diluted solution thinly. Examples of the saponification treatment include a method of immersing in a sodium hydroxide aqueous solution. Corona treatment and plasma treatment are preferable.
 <保護層>
 保護層3は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ナイロンや芳香族ポリアミド等のポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、エチレン・プロピレン共重合体の如きポリオレフィン系、シクロ系ないしはノルボルネン構造を有する環状オレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。
<Protective layer>
The protective layer 3 is formed of any appropriate film that can be used as a protective layer for a polarizer. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyvinyl alcohols, polycarbonates, nylons and aromatic polyamides. Such as polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polynorbornene, polyolefin such as ethylene / propylene copolymer, cycloolefin or cycloolefin having a norbornene structure, (meth) acrylic And transparent resins such as acetates. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included.
 上記(メタ)アクリル系樹脂としては、Tg(ガラス転移温度)が、好ましくは115℃以上、より好ましくは120℃以上、さらに好ましくは125℃以上、特に好ましくは130℃以上である。耐久性に優れ得るからである。上記(メタ)アクリル系樹脂のTgの上限値は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。 As the (meth) acrylic resin, Tg (glass transition temperature) is preferably 115 ° C. or higher, more preferably 120 ° C. or higher, further preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher. It is because it can be excellent in durability. Although the upper limit of Tg of the said (meth) acrylic-type resin is not specifically limited, From viewpoints of a moldability etc., Preferably it is 170 degrees C or less.
  上記(メタ)アクリル系樹脂としては、本発明の効果を損なわない範囲内で、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが挙げられる。より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が挙げられる。 As said (meth) acrylic-type resin, arbitrary appropriate (meth) acrylic-type resins can be employ | adopted within the range which does not impair the effect of this invention. For example, poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer). Preferably, poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
 上記(メタ)アクリル系樹脂の具体例としては、例えば、三菱レイヨン社製のアクリペットVHやアクリペットVRL20A、特開2004-70296号公報に記載の分子内に環構造を有する(メタ)アクリル系樹脂、分子内架橋や分子内環化反応により得られる高Tg(メタ)アクリル系樹脂が挙げられる。 Specific examples of the (meth) acrylic resin include (meth) acrylic resins having a ring structure in the molecule described in, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296. Examples of the resin include high Tg (meth) acrylic resins obtained by intramolecular crosslinking or intramolecular cyclization reaction.
 上記(メタ)アクリル系樹脂として、高い耐熱性、高い透明性、高い機械的強度を有する点で、ラクトン環構造を有する(メタ)アクリル系樹脂が特に好ましい。 As the (meth) acrylic resin, a (meth) acrylic resin having a lactone ring structure is particularly preferable in that it has high heat resistance, high transparency, and high mechanical strength.
 上記ラクトン環構造を有する(メタ)アクリル系樹脂としては、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報などに記載の、ラクトン環構造を有する(メタ)アクリル系樹脂が挙げられる。 Examples of the (meth) acrylic resin having the lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. Examples thereof include (meth) acrylic resins having a lactone ring structure described in JP-A-146084.
 上記ラクトン環構造を有する(メタ)アクリル系樹脂は、質量平均分子量(重量平均分子量と称することもある)が、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000である。 The (meth) acrylic resin having a lactone ring structure has a mass average molecular weight (sometimes referred to as a weight average molecular weight), preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, still more preferably 10,000 to 500,000. Preferably it is 50,000 to 500,000.
 上記ラクトン環構造を有する(メタ)アクリル系樹脂は、Tg(ガラス転移温度)が、好ましくは115℃以上、より好ましくは125℃以上、さらに好ましくは130℃以上、特に好ましくは135℃、最も好ましくは140℃以上である。耐久性に優れ得るからである。上記ラクトン環構造を有する(メタ)アクリル系樹脂のTgの上限値は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。 The (meth) acrylic resin having a lactone ring structure has a Tg (glass transition temperature) of preferably 115 ° C. or higher, more preferably 125 ° C. or higher, still more preferably 130 ° C. or higher, particularly preferably 135 ° C., most preferably. Is 140 ° C. or higher. It is because it can be excellent in durability. The upper limit of Tg of the (meth) acrylic resin having the lactone ring structure is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
 なお、本明細書において「(メタ)アクリル系」とは、アクリル系および/またはメタクリル系をいう。 In this specification, “(meth) acrylic” refers to acrylic and / or methacrylic.
 保護層3は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。 The protective layer 3 is preferably optically isotropic. In this specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say.
 保護層の厚みは、好ましくは5μm~60μm、より好ましくは10μm~40μmである。 The thickness of the protective layer is preferably 5 μm to 60 μm, more preferably 10 μm to 40 μm.
 <表面機能層>
 前記位相差フィルム2の第2面には表面機能層4を設けることができる。前記表面機能層としては、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などが挙げられ。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、位相差フィルムそのものに設けることができるほか、別途、位相差フィルムとは別体のものとして設けることもできる。
<Surface functional layer>
A surface functional layer 4 can be provided on the second surface of the retardation film 2. Examples of the surface functional layer include a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer, and an antiglare layer. The functional layers such as the hard coat layer, the antireflection layer, the antisticking layer, the diffusion layer and the antiglare layer can be provided on the retardation film itself, and separately provided separately from the retardation film. You can also.
 前記表面機能層としては、例えば、ハードコート層が好適に適用される。ハードコート層は、円偏光フィルムに耐薬品性、耐擦傷性および表面平滑性を付与するとともに、高温高湿下での寸法安定性を向上させる機能を有する。ハードコート層としては、任意の適切な構成が採用され得る。ハードコート層は、例えば、任意の適切な紫外線硬化樹脂の硬化層である。紫外線硬化樹脂としては、例えば、アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層を構成する樹脂のガラス転移温度は、好ましくは120℃~300℃であり、より好ましくは130℃~250℃である。このような範囲であれば、高温下での寸法安定性に優れる偏光フィルムを得ることができる。ハードコート層は、必要に応じて、任意の適切な添加剤を含んでいてもよい。当該添加剤の代表例としては、無機系微粒子および/または有機系微粒子が挙げられる。 As the surface functional layer, for example, a hard coat layer is preferably applied. The hard coat layer has a function of imparting chemical resistance, scratch resistance and surface smoothness to the circularly polarizing film and improving dimensional stability under high temperature and high humidity. Any appropriate configuration can be adopted as the hard coat layer. The hard coat layer is, for example, a cured layer of any appropriate ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, and epoxy resins. The glass transition temperature of the resin constituting the hard coat layer is preferably 120 ° C. to 300 ° C., more preferably 130 ° C. to 250 ° C. If it is such a range, the polarizing film excellent in the dimensional stability under high temperature can be obtained. The hard coat layer may contain any appropriate additive as required. Representative examples of the additive include inorganic fine particles and / or organic fine particles.
 なお、ハードコート層の詳細は、例えば、特開2007-171943号公報に記載されており、その記載は参考として本明細書に援用される。 Note that details of the hard coat layer are described in, for example, Japanese Patent Application Laid-Open No. 2007-171943, and the description thereof is incorporated herein by reference.
 表面機能層4の厚みは、好ましくは10μm以下であり、より好ましくは1μm~8μmであり、さらに好ましくは2μm~7μmである。 The thickness of the surface functional layer 4 is preferably 10 μm or less, more preferably 1 μm to 8 μm, and further preferably 2 μm to 7 μm.
 <接着剤層>
 本発明の実施形態による円偏光フィルムを構成する各層の貼り合わせには、任意の適切な接着剤層(図示せず)が用いられる。接着剤層は、粘着剤層であってもよく接着剤層であってもよい。接着剤層は接着剤により形成される。接着剤の種類は特に制限されず、種々のものを用いることができる。前記接着剤層は光学的に透明であれば特に制限されず、接着剤としては、水系、溶剤系、ホットメルト系、活性エネルギー線硬化型等の各種形態のものが用いられるが、水系接着剤または活性エネルギー線硬化型接着剤が好適である。
<Adhesive layer>
Arbitrary appropriate adhesive layers (not shown) are used for bonding of the layers constituting the circularly polarizing film according to the embodiment of the present invention. The adhesive layer may be a pressure-sensitive adhesive layer or an adhesive layer. The adhesive layer is formed of an adhesive. The type of the adhesive is not particularly limited, and various types can be used. The adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt-based, active energy ray-curable types, and the like. Or an active energy ray hardening-type adhesive agent is suitable.
 代表的には、偏光子1と位相差フィルム2および保護層3とは、水系接着剤で貼り合わせられている。水系接着剤としては、任意の適切な水系接着剤が採用され得る。好ましくは、PVA系樹脂を含む水系接着剤が用いられる。水系接着剤に含まれるPVA系樹脂の平均重合度は、接着性の点から、好ましくは100~5500程度、さらに好ましくは1000~4500である。平均ケン化度は、接着性の点から、好ましくは85モル%~100モル%程度、さらに好ましくは90モル%~100モル%である。 Typically, the polarizer 1, the retardation film 2 and the protective layer 3 are bonded together with an aqueous adhesive. Any appropriate aqueous adhesive can be adopted as the aqueous adhesive. Preferably, an aqueous adhesive containing a PVA resin is used. The average degree of polymerization of the PVA resin contained in the aqueous adhesive is preferably about 100 to 5500, more preferably 1000 to 4500 from the viewpoint of adhesiveness. The average saponification degree is preferably about 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, from the viewpoint of adhesiveness.
 水系接着剤に含まれるPVA系樹脂は、好ましくは、アセトアセチル基を含有する。偏光子と位相差フィルムおよび保護層との密着性に優れ、耐久性に優れ得るからである。アセトアセチル基含有PVA系樹脂は、例えば、PVA系樹脂とジケテンとを任意の方法で反応させることにより得られる。アセトアセチル基含有PVA系樹脂のアセトアセチル基変性度は、代表的には0.1モル%以上であり、好ましくは0.1モル%~40モル%程度、さらに好ましくは1モル%~20モル%、特に好ましくは1モル%~7モル%である。なお、アセトアセチル基変性度はNMRにより測定した値である。 The PVA resin contained in the aqueous adhesive preferably contains an acetoacetyl group. This is because the adhesion between the polarizer, the retardation film and the protective layer is excellent and the durability can be excellent. The acetoacetyl group-containing PVA resin can be obtained, for example, by reacting a PVA resin and diketene by an arbitrary method. The degree of acetoacetyl group modification of the acetoacetyl group-containing PVA resin is typically 0.1 mol% or more, preferably about 0.1 mol% to 40 mol%, more preferably 1 mol% to 20 mol. %, Particularly preferably 1 mol% to 7 mol%. The degree of acetoacetyl group modification is a value measured by NMR.
 水系接着剤の固形分濃度は、好ましくは6重量%以下であり、より好ましくは0.1重量%~6重量%であり、さらに好ましくは0.5重量%~6重量%である。固形分濃度がこのような範囲であれば、偏光板の寸法制御率を制御しやすいという利点がある。固形分濃度が低すぎると、得られる偏光フィルムの水分含有量が多くなり、乾燥条件によっては寸法変化が大きくなる場合がある。固形分濃度が高すぎると、接着剤の粘度が高くなり、偏光フィルムの生産性が不十分となる場合がある。 The solid content concentration of the water-based adhesive is preferably 6% by weight or less, more preferably 0.1% by weight to 6% by weight, and further preferably 0.5% by weight to 6% by weight. If solid content concentration is such a range, there exists an advantage that the dimensional control rate of a polarizing plate is easy to control. If the solid content concentration is too low, the water content of the obtained polarizing film increases, and the dimensional change may increase depending on the drying conditions. If the solid content concentration is too high, the viscosity of the adhesive increases, and the productivity of the polarizing film may be insufficient.
 接着剤層の厚みは、好ましくは0.01μm~7μm、より好ましくは0.05μm~5μm、さらに好ましくは0.05μm~2μm、特に好ましくは0.1μm~1μmである。接着剤層の厚みが薄すぎると、接着剤自体の凝集力が得られず、接着強度が得られないおそれがある。接着剤層の厚みが厚すぎると、円偏光フィルムが耐久性を満足できない場合がある。 The thickness of the adhesive layer is preferably 0.01 μm to 7 μm, more preferably 0.05 μm to 5 μm, still more preferably 0.05 μm to 2 μm, and particularly preferably 0.1 μm to 1 μm. If the thickness of the adhesive layer is too thin, the cohesive force of the adhesive itself cannot be obtained, and the adhesive strength may not be obtained. If the thickness of the adhesive layer is too thick, the circularly polarizing film may not satisfy the durability.
 円偏光フィルムFの片面または両面に粘着剤層を有することができる(図示せず)。例えば、円偏光フィルムFの保護層3側に粘着剤層が予め設けられていることにより、他の光学部材(例えば、液晶セル、有機ELパネル)へ容易に貼り合わせることができる。なお、この粘着剤層の表面には、使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。一方、視認側(位相差フィルム2側)の粘着剤層は、例えば、画像表示装置の視認側において適用されるタッチパネルなどの入力装置、カバーガラス、プラスチックカバー等の透明基体等の部材に好適に適用することができる。 The pressure-sensitive adhesive layer can be provided on one side or both sides of the circularly polarizing film F (not shown). For example, since the pressure-sensitive adhesive layer is provided in advance on the protective layer 3 side of the circularly polarizing film F, it can be easily bonded to another optical member (for example, a liquid crystal cell or an organic EL panel). In addition, it is preferable that the peeling film is bonded together on the surface of this adhesive layer until it uses. On the other hand, the adhesive layer on the viewing side (retardation film 2 side) is suitable for members such as an input device such as a touch panel applied on the viewing side of an image display device, a transparent substrate such as a cover glass and a plastic cover, for example. Can be applied.
 <円偏光フィルムの製造方法>
 本発明の実施形態による円偏光フィルムの製造方法の一例について、特徴的な部分のみを簡単に説明する。この製造方法は、偏光子1と偏光子1の一方の側に配置された位相差フィルム2と偏光子1のもう一方の側に配置された保護層3とを有する積層体を作製すること、および、当該積層体を例えば85℃以上の温度で加熱すること(以下、高温加熱と称する場合もある)を含む。高温加熱の加熱温度は、好ましくは86℃以上である。高温加熱の加熱温度の上限は、例えば100℃である。高温加熱の加熱時間は、好ましくは3分~10分であり、より好ましくは3分~6分である。高温加熱の前および/または後に、積層体を85℃未満の温度で加熱(低温加熱)してもよい。低音加熱の加熱温度および加熱時間は、目的および得られる偏光フィルムの所望の特性に応じて適切に設定され得る。高温加熱および/または低温加熱は、偏光子、位相差フィルム(位相差フィルム)および保護層(保護フィルム)の積層における接着剤の乾燥処理を兼ねてもよい。なお、偏光子、位相差フィルム(位相差フィルム)および保護層(保護フィルム)の形成方法は、上記のとおり、または、任意の適切な方法が採用され得る。偏光子、位相差フィルム(位相差フィルム)および保護層(保護フィルム)の積層方法もまた、任意の適切な方法が採用され得る。
<Method for producing circularly polarizing film>
About an example of the manufacturing method of the circularly-polarizing film by embodiment of this invention, only a characteristic part is demonstrated easily. This manufacturing method produces the laminated body which has the polarizer 1 and the phase difference film 2 arrange | positioned at one side of the polarizer 1, and the protective layer 3 arrange | positioned at the other side of the polarizer 1, And the said laminated body is heated at the temperature of 85 degreeC or more, for example (henceforth a high temperature heating may be included hereafter). The heating temperature of the high temperature heating is preferably 86 ° C. or higher. The upper limit of the heating temperature for high temperature heating is, for example, 100 ° C. The heating time for the high temperature heating is preferably 3 minutes to 10 minutes, more preferably 3 minutes to 6 minutes. You may heat a laminated body at the temperature below 85 degreeC (low temperature heating) before and / or after high temperature heating. The heating temperature and heating time of the low-frequency heating can be appropriately set according to the purpose and desired characteristics of the obtained polarizing film. The high temperature heating and / or low temperature heating may also serve as a drying treatment of the adhesive in the lamination of the polarizer, the retardation film (retardation film) and the protective layer (protective film). In addition, as for the formation method of a polarizer, retardation film (retardation film), and a protective layer (protective film), any appropriate method may be employ | adopted as mentioned above. Arbitrary appropriate methods can also be employ | adopted for the lamination | stacking method of a polarizer, retardation film (retardation film), and a protective layer (protective film).
 <画像表示装置>
 本発明の実施形態による画像表示装置は、光学セルの視認側に円偏光フィルムを備える。円偏光フィルムは、位相差フィルムが前記偏光子よりも視認側となるように配置されている。光学セルを備える画像表示装置の代表例としては、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置が挙げられる。このような画像表示装置は、上記の偏光フィルムを視認側に備えることにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、このような画像表示装置は、屋外においても好適に用いられ得る。
<Image display device>
The image display device according to the embodiment of the present invention includes a circularly polarizing film on the viewing side of the optical cell. The circularly polarizing film is disposed so that the retardation film is closer to the viewing side than the polarizer. As a typical example of an image display device including an optical cell, a liquid crystal display device and an organic electroluminescence (EL) display device can be given. Such an image display device can realize excellent visibility even when the display screen is viewed through a polarizing lens such as polarized sunglasses by providing the polarizing film on the viewing side. Therefore, such an image display device can be suitably used even outdoors.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例における評価項目は以下のとおりである。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the evaluation items in the examples are as follows.
 <破壊開始荷重>
 破壊開始荷重の測定装置としては、CSM InstrumentsSA社製のナノスクラッチテスターを使用した。各位相差フィルム(サンプル)の第1面または第2面をスライドガラスに貼り付け、もう一方の面(第2面または第1面)を上向きにして、上記測定装置のステージに固定した。そして、23℃、50%RHの測定環境下、円錐型のダイヤモンド製圧子(先端の曲率半径10μm)を備えたカンチレバーST-150を用いて、上記装置の連続荷重モードで、0~300mNまで荷重(スクラッチ荷重)を増加させつつ一方向に擦過するスクラッチ試験を行った。
 上記スクラッチ試験を実施したサンプルを、装置付属の光学顕微鏡(ニコン社製)を用いて、対物レンズ20倍でスクラッチ痕を表面観察した。そして、スクラッチ痕上において背面層がスクラッチ方向に2μmよりも長く剥離した最初の箇所を破壊開始点とし、その破壊開始点のスクラッチ方向に対する長さ(破壊長さ)の中心に対応するスクラッチ荷重を破壊開始荷重とした。図2は、破壊開始前(非破壊部)におけるスクラッチ痕を示す画像であり、図3は、破壊開始点におけるスクラッチ痕を示す画像である。
 上記サンプルを測定した結果、破壊開始荷重の大きい面を第1面、小さい面を第2面とした。結果を表1に示す。
<Fracture start load>
A nano scratch tester manufactured by CSM Instruments SA was used as a measuring device for the fracture initiation load. The first surface or the second surface of each retardation film (sample) was affixed to a slide glass, and the other surface (second surface or first surface) was faced upward, and fixed to the stage of the measuring apparatus. Using a cantilever ST-150 equipped with a conical diamond indenter (tip radius of curvature 10 μm) in a measurement environment of 23 ° C. and 50% RH, a load of 0 to 300 mN was applied in the continuous load mode of the above apparatus. A scratch test was carried out by rubbing in one direction while increasing (scratch load).
Using the optical microscope (manufactured by Nikon Corporation) attached to the apparatus, the scratch marks were observed on the surface of the sample subjected to the scratch test with an objective lens 20 times. Then, the first location where the back layer is peeled longer than 2 μm in the scratch direction on the scratch mark is taken as the fracture start point, and the scratch load corresponding to the center of the length of the fracture start point in the scratch direction (destruction length) is The fracture start load was used. FIG. 2 is an image showing scratch marks before the start of destruction (non-destructive portion), and FIG. 3 is an image showing scratch marks at the start point of destruction.
As a result of measuring the above sample, the surface having a large fracture start load was designated as the first surface, and the surface having the small fracture load was designated as the second surface. The results are shown in Table 1.
 (偏光子の作製)
 重合度2400、ケン化度99.9モル%、厚さ30μmのポリビニルアルコールフィルムを、30℃の温水中に浸漬し、膨潤させながらポリビニルアルコールフィルムの長さが元長の2.0倍となるように一軸延伸を行った。次いで、ヨウ素とヨウ化カリウムの混合物(重量比0.5:8)の濃度が0.3重量%の水溶液(染色浴)に浸漬し、ポリビニルアルコールフィルムの長さが元長の3.0倍となるように一軸延伸しながら染色した。その後、ホウ酸5重量%、ヨウ化カリウム3重量%の水溶液(架橋浴1)中に浸漬しながら、ポリビニルアルコールフィルムの長さが元長の3.7倍となるように延伸した後、60℃のホウ酸4重量%、ヨウ化カリウム5重量%の水溶液(架橋浴2)中で、ポリビニルアルコールフィルムの長さが元長の6倍となるように延伸した。その後、ヨウ化カリウム3重量%の水溶液(ヨウ素含浸浴)でヨウ素イオン含浸処理を行った後、60℃のオーブンで4分間乾燥し、長尺状(ロール状)の偏光子を得た。得られた偏光子の厚みは12μmであった。偏光子の吸収軸は、長尺方向と平行であった。
(Production of polarizer)
A polyvinyl alcohol film having a polymerization degree of 2400, a saponification degree of 99.9 mol%, and a thickness of 30 μm is immersed in warm water at 30 ° C. and swollen, and the length of the polyvinyl alcohol film becomes 2.0 times the original length. Uniaxial stretching was performed as described above. Next, it is immersed in an aqueous solution (dye bath) having a concentration of a mixture of iodine and potassium iodide (weight ratio 0.5: 8) of 0.3% by weight, and the length of the polyvinyl alcohol film is 3.0 times the original length. Dyeing was performed while uniaxially stretching. Thereafter, the film was stretched so that the length of the polyvinyl alcohol film was 3.7 times the original length while immersed in an aqueous solution (crosslinking bath 1) of 5% by weight boric acid and 3% by weight potassium iodide. In an aqueous solution (crosslinking bath 2) of 4% by weight boric acid and 5% by weight potassium iodide, the polyvinyl alcohol film was stretched so that its length was 6 times the original length. Then, after performing an iodine ion impregnation process with an aqueous solution (iodine impregnation bath) of 3% by weight of potassium iodide, it was dried in an oven at 60 ° C. for 4 minutes to obtain a long (roll-shaped) polarizer. The thickness of the obtained polarizer was 12 μm. The absorption axis of the polarizer was parallel to the longitudinal direction.
 (位相差フィルム)
 溶液流延法により得られた長尺状のトリアセチルセルロース(TAC)フィルムを、斜め延伸したフィルムを用いた。延伸フィルム(TACフィルムの延伸物)の厚みは、それぞれ、35μm、32μm、28μ、25μm、20μ、40μmのものを用いた。
 各延伸フィルム(TACフィルムの延伸物)には、第1面または第2面(偏光子に貼り合わせない面)にそれぞれ厚みは5μmハードコート層を設けた。
 各延伸フィルム(TACフィルムの延伸物)は面内位相差Re(550)が105nmになるようにそれぞれ調整したものであり、その遅相軸と長尺方向とのなす角度は45°であった。
(Retardation film)
A film obtained by obliquely stretching a long triacetylcellulose (TAC) film obtained by a solution casting method was used. The thickness of the stretched film (the stretched product of the TAC film) was 35 μm, 32 μm, 28 μm, 25 μm, 20 μm, and 40 μm, respectively.
Each stretched film (a stretched product of a TAC film) was provided with a hard coat layer having a thickness of 5 μm on the first surface or the second surface (the surface not bonded to the polarizer).
Each stretched film (a stretched product of the TAC film) was adjusted so that the in-plane retardation Re (550) was 105 nm, and the angle formed between the slow axis and the longitudinal direction was 45 °. .
 (保護層:保護フィルム)
 長尺状のシクロオレフィン(COP)フィルム(厚み13μm,商品名:ZF14-013,日本ゼオン(株)製)を用いた。
(Protective layer: protective film)
A long cycloolefin (COP) film (thickness 13 μm, trade name: ZF14-013, manufactured by Nippon Zeon Co., Ltd.) was used.
 (水系接着剤の調製)
 アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)を30℃の温度条件下で純水に溶解し、固形分濃度4%に調整して水系接着剤を得た。
(Preparation of aqueous adhesive)
A polyvinyl alcohol-based resin containing acetoacetyl groups (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%) is dissolved in pure water at a temperature of 30 ° C., A water-based adhesive was obtained by adjusting the solid content concentration to 4%.
 実施例1
 (円偏光フィルムの作製)
 位相差フィルムとして、厚み35μmの延伸フィルム(TACフィルムの延伸物)の第2面にハードコート層を設けたものを用いた。当該位相差フィルムの第1面を、上記水系接着剤を乾燥後の接着剤層の厚みが80nmとなるように塗工した。保護フィルムにも同様に上記水系接着剤を乾燥後の接着剤層の厚みが80nmとなるように塗工した。次いで、23℃の温度条件下で、偏光子の両面に、前記接着剤付きの位相差フィルムと保護フィルムをロール機で貼り合せ、その後55℃で4分間、86℃で4分乾燥して円偏光フィルムを作製した。前記偏光子と接着剤付きの位相差フィルムと保護フィルムの貼り合わせは、偏光子と保護フィルムの接着剤層とが接するように行った。得られた円偏光フィルムは、偏光子の吸収軸方向が長尺方向に平行であり、位相差フィルムの遅相軸と長尺方向とのなす角度が45°であった。
Example 1
(Production of circularly polarizing film)
As the retardation film, a stretched film having a thickness of 35 μm (a stretched product of a TAC film) provided with a hard coat layer on the second surface was used. The first surface of the retardation film was applied so that the thickness of the adhesive layer after drying the aqueous adhesive was 80 nm. Similarly, the aqueous adhesive was applied to the protective film so that the thickness of the adhesive layer after drying was 80 nm. Next, the retardation film with adhesive and the protective film are bonded to both sides of the polarizer under a temperature condition of 23 ° C. with a roll machine, and then dried at 55 ° C. for 4 minutes and at 86 ° C. for 4 minutes. A polarizing film was produced. The polarizer, the retardation film with an adhesive, and the protective film were bonded so that the polarizer and the adhesive layer of the protective film were in contact with each other. In the obtained circularly polarizing film, the absorption axis direction of the polarizer was parallel to the long direction, and the angle formed between the slow axis of the retardation film and the long direction was 45 °.
 実施例2~5、比較例1~7
 実施例1において、位相差フィルムに用いた延伸フィルムの厚み、当該位相差フィルムを偏光子に貼り合わせる面を表1に示すように変えたこと以外は実施例1と同様にして円偏光フィルムを得た。
 なお、実施例1~5と比較例1~5で用いた同じ厚さの位相差フィルムは同じ位相差フィルムであり、偏光子に貼り合わせた面のみが相違する。また、比較例6と比較例7で用いた同じ厚さの位相差フィルムは同じ位相差フィルムであり、偏光子に貼り合わせた面のみが相違する
Examples 2-5, Comparative Examples 1-7
In Example 1, the circularly polarizing film was obtained in the same manner as in Example 1 except that the thickness of the stretched film used for the retardation film and the surface on which the retardation film was bonded to the polarizer were changed as shown in Table 1. Obtained.
The retardation films having the same thickness used in Examples 1 to 5 and Comparative Examples 1 to 5 are the same retardation film, and only the surface bonded to the polarizer is different. Moreover, the retardation film of the same thickness used by the comparative example 6 and the comparative example 7 is the same retardation film, and only the surface bonded together to the polarizer is different.
 上記実施例および比較例で得られた円偏光フィルムについて、下記評価を表1に示す。 The following evaluation is shown in Table 1 for the circularly polarizing films obtained in the above Examples and Comparative Examples.
 <ピール力測定方法>
 得られた円偏光フィルムについて、下記方法によりピール力を測定した。
 円偏光フィルムを偏光子の延伸方向と平行に200mm、直交方向に15mmの大きさに切り出し、位相差フィルムと偏光子との間にカッターナイフで切り込みを入れ、円偏光フィルムの位相差フィルム側をガラス板に貼り合わせた。テンシロンにより、90度方向に保護フィルムと偏光子とを剥離速度3000mm/minで剥離し、その剥離強度(N/15mm)を測定した。剥離後の剥離面について、赤外吸収スペクトルをATR法によって測定し、位相差フィルムの凝集破壊(フィルム破断)であることを確認した。
 なお、ピール力は0.8N/15mm以上であるのが好ましく、さらには1N/15mm以上であるのが好ましく、さらには1.5N/15mm以上であるのが好ましい。表1には、ピール力は0.8N/15mm以上の場合を「〇」、0.8N/15未満の場合を「×」、とした。
 位相差フィルムを偏光子に貼り合わせる面の破壊開始荷重はは55mN以上である場合には、偏光子との剥離力を0.8N/15mmを満足することができる。
<Peel force measurement method>
About the obtained circularly-polarizing film, the peel force was measured by the following method.
Cut out the circularly polarizing film into a size of 200 mm parallel to the stretching direction of the polarizer and 15 mm in the orthogonal direction, and cut it with a cutter knife between the retardation film and the polarizer. Laminated to a glass plate. With Tensilon, the protective film and the polarizer were peeled off in the 90-degree direction at a peeling speed of 3000 mm / min, and the peel strength (N / 15 mm) was measured. About the peeling surface after peeling, the infrared absorption spectrum was measured by ATR method, and it was confirmed that it was a cohesive failure (film breakage) of a retardation film.
The peel force is preferably 0.8 N / 15 mm or more, more preferably 1 N / 15 mm or more, and further preferably 1.5 N / 15 mm or more. In Table 1, when the peel force is 0.8 N / 15 mm or more, “◯” is indicated, and when the peel force is less than 0.8 N / 15, “X” is indicated.
When the fracture start load on the surface where the retardation film is bonded to the polarizer is 55 mN or more, the peeling force from the polarizer can satisfy 0.8 N / 15 mm.
 <カール方向長さ>
 得られた円偏光フィルムを、偏光子の吸収軸方向が長辺となるように112mm×65mm(5インチサイズ)に切り出した。切り出した円偏光フィルムを水平な平面上にハードコート層が上面になる向きで静置し、上記平面からサンプルの端部がカールして浮いた高さを計測した。最も大きく浮いた部分の高さ(最大浮き高さ)が3mm以下の場合を○、最大浮き高さが3mmを超える場合を×とした。
<Length in curl direction>
The obtained circularly polarizing film was cut out to 112 mm × 65 mm (5 inch size) so that the absorption axis direction of the polarizer was a long side. The cut circularly polarizing film was allowed to stand on a horizontal plane with the hard coat layer facing upward, and the height at which the end of the sample curled and floated from the plane was measured. The case where the height of the largest floating part (maximum floating height) was 3 mm or less was marked with ◯, and the case where the maximum floating height exceeded 3 mm was marked with x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 F  円偏光フィルム
 1  偏光子
 2  位相差フィルム
 3  保護層
 4  表面機能層
 
F Circularly polarizing film 1 Polarizer 2 Retardation film 3 Protective layer 4 Surface functional layer

Claims (10)

  1.  偏光子と、当該該偏光子の一方の側に配置された位相差フィルムと、当該偏光子のもう一方の側に配置された保護層とを備え、
     前記位相差フィルムは、直線偏光を円偏光または楕円偏光に変換する機能を有し、厚みが35μm以下であり、かつ、
     前記位相差フィルムの両面は、スクラッチ試験における破壊開始荷重が異なり、前記破壊開始荷重が高い側を第1面とし、低い側を第2面とする場合に、
     前記偏光子は、前記位相差フィルムの第1面に貼り合されていることを特徴とする円偏光フィルム。
    A polarizer, a retardation film disposed on one side of the polarizer, and a protective layer disposed on the other side of the polarizer,
    The retardation film has a function of converting linearly polarized light into circularly polarized light or elliptically polarized light, has a thickness of 35 μm or less, and
    When both sides of the retardation film have different fracture start loads in the scratch test, the side having the higher fracture start load is the first surface and the lower side is the second surface.
    The said polarizer is bonded by the 1st surface of the said retardation film, The circularly-polarizing film characterized by the above-mentioned.
  2.  前記位相差フィルムの第1面の破壊開始荷重が55mN以上であることを特徴とする請求項1に記載の円偏光フィルム。 The circularly polarizing film according to claim 1, wherein the fracture start load on the first surface of the retardation film is 55 mN or more.
  3.  前記位相差フィルムの第2面に表面機能層を有することを特徴とする請求項1または2記載の円偏光フィルム。 The circularly polarizing film according to claim 1 or 2, further comprising a surface functional layer on the second surface of the retardation film.
  4.  前記偏光子の吸収軸と前記位相差フィルムの遅相軸とのなす角度が35°~55°であることを特徴とする請求項1~3のいずれに記載の円偏光フィルム。 The circularly polarizing film according to any one of claims 1 to 3, wherein an angle formed between an absorption axis of the polarizer and a slow axis of the retardation film is 35 ° to 55 °.
  5.  長尺状であり、前記位相差フィルムの遅相軸と長尺方向とのなす角度が35°~55°であることを特徴とする請求項1~4のいずれに記載の円偏光フィルム。 The circularly polarizing film according to any one of claims 1 to 4, wherein the circularly polarizing film has a long shape, and an angle formed between a slow axis of the retardation film and a long direction is 35 ° to 55 °.
  6.  前記位相差フィルムが、溶液流延法によりキャスティング体上で成型された樹脂フィルムの延伸物であり、当該樹脂フィルムのキャスティング体側の面が前記第1面であることを特徴とする請求項1~5のいずれかに記載の円偏光フィルム。 The phase difference film is a stretched product of a resin film molded on a casting body by a solution casting method, and the surface on the casting body side of the resin film is the first surface. 6. The circularly polarizing film according to any one of 5 above.
  7.  前記位相差フィルムがセルロースエステル系フィルムであることを特徴とする請求項1~6のいずれかに記載の円偏光フィルム。 The circularly polarizing film according to any one of claims 1 to 6, wherein the retardation film is a cellulose ester film.
  8.  前記偏光子と前記位相差フィルムおよび前記保護層とが、接着剤層を介して貼り合わせられていることを特徴とする請求項1~7のいずれかに記載の円偏光フィルム。 The circularly polarizing film according to any one of claims 1 to 7, wherein the polarizer, the retardation film and the protective layer are bonded together via an adhesive layer.
  9.  請求項1~8のいずれかに記載の円偏光フィルムおよび粘着剤層を有することを特徴とする粘着剤層付円偏光フィルム。 A circularly polarizing film with an adhesive layer, comprising the circularly polarizing film according to any one of claims 1 to 8 and an adhesive layer.
  10.  請求項1~8のいずれかに記載の円偏光フィルムまたは請求項9記載の粘着剤層付円偏光フィルムを、光学セルの視認側に備え、前記位相差フィルムが前記偏光子よりも視認側に配置されていることを特徴とする画像表示装置。
     
     
    The circularly polarizing film according to any one of claims 1 to 8 or the circularly polarizing film with an adhesive layer according to claim 9 is provided on the viewing side of an optical cell, and the retardation film is on the viewing side with respect to the polarizer. An image display device characterized by being arranged.

PCT/JP2018/018445 2017-05-16 2018-05-14 Circularly polarizing film, circularly polarizing film with adhesive layer, and image display device WO2018212112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197030387A KR102281483B1 (en) 2017-05-16 2018-05-14 Circularly polarized film, circularly polarized film with adhesive layer and image display device
CN201880031905.1A CN110651205B (en) 2017-05-16 2018-05-14 Circular polarizing film, circular polarizing film with adhesive layer, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017097215A JP6935229B2 (en) 2017-05-16 2017-05-16 Circularly polarizing film, circularly polarizing film with adhesive layer and image display device
JP2017-097215 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018212112A1 true WO2018212112A1 (en) 2018-11-22

Family

ID=64273896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018445 WO2018212112A1 (en) 2017-05-16 2018-05-14 Circularly polarizing film, circularly polarizing film with adhesive layer, and image display device

Country Status (5)

Country Link
JP (1) JP6935229B2 (en)
KR (1) KR102281483B1 (en)
CN (1) CN110651205B (en)
TW (1) TWI657919B (en)
WO (1) WO2018212112A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237535A (en) * 2006-03-08 2007-09-20 Dainippon Printing Co Ltd Authenticity judging medium, article having it, label of authenticity judging medium, transfer sheet of authenticity judging medium and transfer foil of authenticity judging medium
WO2015146599A1 (en) * 2014-03-25 2015-10-01 コニカミノルタ株式会社 Retardation film, polarizing plate using same, and display device
JP2015200758A (en) * 2014-04-07 2015-11-12 日東電工株式会社 Production method of polarizing plate
JP2016177165A (en) * 2015-03-20 2016-10-06 日東電工株式会社 Optical laminate, manufacturing method therefor and image display unit using the optical laminate

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100044A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Polarizing plate
CN100500746C (en) * 2001-05-30 2009-06-17 柯尼卡美能达精密光学株式会社 Cellulose ester film, its manufacturing method, phase displacement film, optical compensation sheet, elliptic polarizing plate, and display
CA2459177A1 (en) * 2002-06-27 2004-01-08 Teijin Limited Polycarbonate-based oriented film and retardation film
JP2004177642A (en) * 2002-11-27 2004-06-24 Konica Minolta Holdings Inc Phase difference film and its manufacturing method, optical compensating film, polarizing plate, and liquid crystal display device
US7504139B2 (en) * 2003-12-26 2009-03-17 Fujifilm Corporation Optical cellulose acylate film, polarizing plate and liquid crystal display
JP4335773B2 (en) * 2004-09-27 2009-09-30 日東電工株式会社 Film laminate manufacturing method and manufacturing apparatus used therefor
CN100380206C (en) * 2004-12-02 2008-04-09 日东电工株式会社 Polarizing plate with optical compensating layer, and image display using the same
CN101416082B (en) * 2006-06-05 2012-07-04 帝人化成株式会社 Polycarbonate resin film and method for production thereof
WO2008015889A1 (en) * 2006-07-31 2008-02-07 Konica Minolta Opto, Inc. Process for producing optical film, optical film, and polarization plate or image display unit utilizing the same
US20100003426A1 (en) * 2006-08-04 2010-01-07 Takatugu Suzuki Optical Film, Manufacturing Method Thereof, Polarizing Plate Employing it and Liquid Crystal Display Device
JP5182098B2 (en) * 2006-12-05 2013-04-10 コニカミノルタアドバンストレイヤー株式会社 Optical film, and polarizing plate and liquid crystal display device using the same
JP2009067875A (en) * 2007-09-12 2009-04-02 Fujifilm Corp Cellulose acylate film, method for manufacturing the same, retardation film, polarizing plate and liquid crystal display
JP5104373B2 (en) * 2008-02-14 2012-12-19 日本ゼオン株式会社 Production method of retardation plate
WO2010001763A1 (en) * 2008-07-01 2010-01-07 日本ゼオン株式会社 Optical member and grid polarizing film
JP5406615B2 (en) * 2009-07-15 2014-02-05 日東電工株式会社 Transparent film and surface protective film using the film
JP2012003183A (en) * 2010-06-21 2012-01-05 Fujifilm Corp Twisted alignment mode liquid crystal display device
CN103069307B (en) * 2010-08-27 2016-03-30 大日本印刷株式会社 Optical laminate, polaroid and image display device
JP4691205B1 (en) * 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
US8922889B2 (en) * 2011-11-14 2014-12-30 Fujifilm Corporation Cellulose acylate film, protective film for polarizing plate, polarizing plate, and liquid crystal display device
JP5928482B2 (en) * 2011-12-28 2016-06-01 コニカミノルタ株式会社 Retardation film, method for producing retardation film, polarizing plate and liquid crystal display device
US9500790B2 (en) * 2012-02-22 2016-11-22 Konica Minolta, Inc. Optical film, circularly polarizing plate, and image display device
JP6335422B2 (en) * 2012-06-29 2018-05-30 日東電工株式会社 Circular polarizing plate and organic EL panel
JP6167479B2 (en) * 2012-07-06 2017-07-26 大日本印刷株式会社 Polarizing plate, organic electroluminescence display device, and liquid crystal display device
JP5891165B2 (en) * 2012-07-20 2016-03-22 富士フイルム株式会社 Laminated body, polarizing plate, and liquid crystal display device
JPWO2014061215A1 (en) * 2012-10-15 2016-09-05 コニカミノルタ株式会社 Retardation film, circularly polarizing plate produced using the retardation film, and organic EL display
US20140111859A1 (en) * 2012-10-19 2014-04-24 Corning Incorporated Scratch resistant polarizing articles and methods for making and using same
CN104076426B (en) * 2013-03-27 2017-08-15 日东电工株式会社 The manufacture method of polarization plates, liquid crystal display device and polarization plates
US9740017B2 (en) * 2013-05-29 2017-08-22 Volfoni R&D Optical polarisation device for a stereoscopic image projector
JP5994746B2 (en) * 2013-05-31 2016-09-21 コニカミノルタ株式会社 Liquid crystal display device with hard coat film, polarizing plate and touch panel
JP5971198B2 (en) * 2013-06-12 2016-08-17 コニカミノルタ株式会社 Polarizing plate, method for manufacturing the same, and organic electroluminescence display device including the same
CN104513400B (en) * 2013-09-27 2018-11-06 富士胶片株式会社 Solution film-forming method and equipment
CN110346861B (en) * 2014-05-23 2021-12-28 住友化学株式会社 Optical laminate and image display device
US20160033699A1 (en) * 2014-08-04 2016-02-04 Nitto Denko Corporation Polarizing plate
CN104596989B (en) * 2015-01-23 2017-05-31 四川大学 Method based on interference fringe picture treatment measurement refractive index of transparent medium distribution
JP2016200709A (en) * 2015-04-10 2016-12-01 コニカミノルタ株式会社 Polarizing plate protective film and polarizing plate having the same, and method for producing the polarizing plate protective film
JP6784481B2 (en) * 2015-07-13 2020-11-11 日東電工株式会社 Circular polarizing plate for organic EL display device and organic EL display device
KR20170011306A (en) * 2015-07-22 2017-02-02 삼성전자주식회사 Optical film, manufacturing method thereof and display device
US10107946B2 (en) * 2015-07-22 2018-10-23 Nitto Denko Corporation Polarizing plate with a retardation layer and image display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237535A (en) * 2006-03-08 2007-09-20 Dainippon Printing Co Ltd Authenticity judging medium, article having it, label of authenticity judging medium, transfer sheet of authenticity judging medium and transfer foil of authenticity judging medium
WO2015146599A1 (en) * 2014-03-25 2015-10-01 コニカミノルタ株式会社 Retardation film, polarizing plate using same, and display device
JP2015200758A (en) * 2014-04-07 2015-11-12 日東電工株式会社 Production method of polarizing plate
JP2016177165A (en) * 2015-03-20 2016-10-06 日東電工株式会社 Optical laminate, manufacturing method therefor and image display unit using the optical laminate

Also Published As

Publication number Publication date
TWI657919B (en) 2019-05-01
KR102281483B1 (en) 2021-07-26
KR20190121401A (en) 2019-10-25
CN110651205B (en) 2022-01-18
JP6935229B2 (en) 2021-09-15
JP2018194644A (en) 2018-12-06
TW201900416A (en) 2019-01-01
CN110651205A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
JP4753440B2 (en) Laminated optical film and method for producing the same
JP7355583B2 (en) Polarizing plate with retardation layer and image display device using the same
TWI425258B (en) A polarizing element outer protective film, a polarizing film, and a liquid crystal display element
CN112840252A (en) Polarizing plate with phase difference layer and image display device using same
KR102388437B1 (en) Optical laminate and method of producing the same, and image display device using the optical laminate
TW202027989A (en) Polarizing plate equipped with phase retardation layer and image display apparatus employing same
TW202036955A (en) Polarizing plate with phase difference layer and image display device using the same
JP2022051789A (en) Liquid crystal panel manufacturing method, polarizing plate, and liquid crystal display device
JP5199825B2 (en) Laminated optical film and method for producing the same
WO2018212112A1 (en) Circularly polarizing film, circularly polarizing film with adhesive layer, and image display device
JP7355584B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7217723B2 (en) Optical layered body, manufacturing method thereof, and image display device using the optical layered body
KR20210071999A (en) Polarizing plate with retardation layer and image display device using same
WO2022244301A1 (en) Circular polarizing plate and image display device using same
WO2022181188A1 (en) Laminate and method for manufacturing image display panel
WO2022091471A1 (en) Retardation-layer-equipped polarizing plate, and image display device
WO2020080171A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080172A1 (en) Polarizing plate with phase difference layer, and image display device using this
KR20210031840A (en) Optical laminate and display apparatus using the same
CN115113317A (en) Optical laminate, method for producing same, and image display device
TW202026152A (en) Polarizing plate with retardation layer and image display device using same
TW202036049A (en) Polarizing plate with retardation layer and image display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030387

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802014

Country of ref document: EP

Kind code of ref document: A1