WO2018211886A1 - Projection display device - Google Patents

Projection display device Download PDF

Info

Publication number
WO2018211886A1
WO2018211886A1 PCT/JP2018/015717 JP2018015717W WO2018211886A1 WO 2018211886 A1 WO2018211886 A1 WO 2018211886A1 JP 2018015717 W JP2018015717 W JP 2018015717W WO 2018211886 A1 WO2018211886 A1 WO 2018211886A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
source unit
display device
reflection
Prior art date
Application number
PCT/JP2018/015717
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 須藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2019519132A priority Critical patent/JPWO2018211886A1/en
Priority to CN201880031168.5A priority patent/CN110622066A/en
Priority to EP18802279.2A priority patent/EP3627221B1/en
Priority to US16/609,900 priority patent/US11156910B2/en
Publication of WO2018211886A1 publication Critical patent/WO2018211886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present disclosure relates to a projection display device using, for example, a semiconductor laser as a light emitting element.
  • Projection-type display devices that project a personal computer screen or video image onto a screen are required to have high brightness so that clear image light can be obtained even in a bright place. Therefore, in recent years, solid-state light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) have been employed as light sources with high brightness in light source devices used in projection display devices.
  • LEDs light-emitting diodes
  • LDs laser diodes
  • the long axis of emitted light having an elliptical cross section emitted from a laser diode is formed in a rectangular shape.
  • a projection device is disclosed that is incident substantially parallel to the long side of the image forming surface of the display element.
  • the projection display device is required to improve the luminance.
  • a projection display device includes a plurality of solid light sources, an image generation unit including a display element that modulates light emitted from the plurality of solid light sources, and light emitted from the plurality of solid light sources.
  • a light source optical system that leads to an image generation unit, and a projection optical system that projects image light generated by the image generation unit.
  • the light source optical system includes a plurality of reflection regions and a plurality of transmission regions. The plurality of transmission regions are arranged in substantially the same direction as the minor axis direction in the elliptical cross section of light emitted from the plurality of solid state light sources.
  • a plurality of solid light sources and a light source optical system that guides light emitted from the plurality of solid light sources to the image generation unit include a plurality of reflection regions and a plurality of transmission regions.
  • the first reflective element having the above is arranged.
  • the first reflecting element is formed such that the arrangement direction of the plurality of transmission regions is substantially the same as the minor axis direction in the elliptical cross section of the light emitted from the plurality of solid light sources. This makes it possible to efficiently guide the light emitted from the plurality of solid light sources to the display element.
  • the plurality of reflection regions and the plurality of transmission regions are provided as described above.
  • the plurality of reflective areas are arranged in the substantially same direction as the minor axis direction in the elliptical cross section of the light emitted from the plurality of solid light sources. The light emitted from the light is efficiently guided to the display element. Therefore, the luminance can be improved.
  • FIG. 1 is a perspective view showing the structure of a reflecting mirror. It is a figure showing the positional relationship between the light radiate
  • FIG. 7 is a schematic diagram illustrating an example of a partial configuration of the light source device and the light source optical system illustrated in FIG. 6. It is a schematic diagram showing an example of a part of structure of the light source device which concerns on the modification of this indication, and a light source optical system.
  • Embodiment an example of a projection display device including a reflection mirror having a plurality of reflection regions and a plurality of transmission regions
  • Configuration of light source device and light source optical system 1-2.
  • Configuration of Projection Display 1-3 Action / Effect Modification Example of arrangement of light source and reflection mirror
  • FIG. 1 schematically illustrates an example of a partial configuration of a light source device (light source device 100) and a light source optical system (light source optical system 200) according to an embodiment of the present disclosure. These are used, for example, in a projection display device described later (for example, the projection display device 1, see FIG. 6).
  • the projection display device 1 includes a light source device 100, a light source optical system 200, an image generation unit 300, and a projection optical system 400.
  • the light source optical system 200 is a reflection mirror 212 (first reflection element) having a plurality of reflection regions 212X and a plurality of transmission regions 212Y as a reflection element that reflects light emitted from the light source device 100. ).
  • the reflection mirror 212 has a configuration in which the plurality of transmission regions 212Y are arranged in substantially the same direction as the short axis direction in the elliptical cross section of the light emitted from the light source device 100.
  • the light source device 100 includes, for example, two light source units 110 (a light source unit 110a (second light source unit) and a light source unit 110b (first light source unit)).
  • the light source unit 110a and the light source unit 110b are arranged in parallel and each have a plurality of light emitting elements (for example, a semiconductor laser 122 and a solid state light source).
  • each of the light source unit 110a and the light source unit 110b includes, for example, a plurality of semiconductor laser arrays 120.
  • FIG. 2 is a perspective view of the configuration of the semiconductor laser array 120.
  • the semiconductor laser array 120 has a configuration in which a plurality of (here, 10) semiconductor lasers 122 are arranged in a pedestal part 121 in, for example, 5 rows and 2 columns.
  • 3A schematically shows a cross-sectional configuration of the light source unit 110a and the light source unit 110b
  • FIG. 3B schematically shows a planar configuration of the light source unit 110a and the light source unit 110b.
  • the light source unit 110a and the light source unit 110b have a configuration in which a plurality of (here, five) semiconductor laser arrays 120 illustrated in FIG. 2 are stacked in the column direction (Y-axis direction).
  • the cross-sectional shape f of the laser light oscillated from the semiconductor laser 122 has an elliptical shape as shown in FIG. 5, for example.
  • the major axis and the minor axis of the laser beams Lx and Ly having an elliptical cross section oscillated from each semiconductor laser 122 are arranged in substantially the same direction.
  • the light source optical system 200 is for guiding light emitted from the light source device 100 (for example, laser light Lx, Ly) to the image generation unit, and is configured by a plurality of optical elements.
  • the light source optical system 200 includes, as optical elements, a reflection mirror 211 (second reflection element) and a reflection mirror that are arranged in the oscillation direction of laser light (laser light Lx, Ly) emitted from the light source unit 110a and the light source unit 110b, respectively.
  • 212 first reflective element
  • the reflection mirror 211 and the reflection mirror 212 are configured by, for example, a plate-like member.
  • the reflection mirror 211 and the reflection mirror 212 are respectively inclined with respect to the light source unit 110a and the light source unit 110b arranged in parallel, for example, at positions facing each other in the same direction.
  • the laser beams Lx and Ly emitted from the semiconductor lasers 122 of the light source units 110a and 110b are reflected in the same direction (in FIG. 1, the condensing lens 213 side).
  • the reflection mirror 211 and the reflection mirror 212 are configured by, for example, a metal film deposition mirror or a dielectric multilayer mirror.
  • the reflection mirror 212 disposed near the condenser lens that is, the light beam emitted from the light source unit 110a and reflected by the reflection mirror 211 on the optical path of the laser beam Lx.
  • the reflection mirror 212 disposed in the configuration has a plurality of reflection regions 212X and a plurality of transmission regions 212Y.
  • the reflective region 212X is a region that reflects light and bends the light in a direction substantially perpendicular to the incident direction
  • the transmissive region 212Y is a region that transmits light.
  • the plurality of reflection areas 212X and the plurality of transmission areas 212Y are alternately arranged.
  • the arrangement, for example, the arrangement direction of the plurality of transmission regions 212Y is preferably substantially the same as the minor axis direction in the elliptical cross section of the laser light emitted from the semiconductor laser 122.
  • at least one of the plurality of reflection regions 212X and the plurality of transmission regions 212Y has a rectangular shape, for example, and the long side direction is the length of the elliptical cross section of the laser light emitted from the semiconductor laser 122. It is preferably formed so as to be substantially parallel to the axial direction.
  • FIG. 4 is a perspective view of the configuration of the reflection mirror 212.
  • the plurality of transmission regions 212Y of the reflection mirror 212 are configured by, for example, a plurality of openings 212h provided in a metal film deposition mirror or a dielectric multilayer mirror. Further, the plurality of transmission regions 212Y may be configured using, for example, a parallel plate-shaped transparent member. In that case, it is preferable to form an antireflection film on the surface of the transparent member.
  • FIG. 5 shows the positional relationship between the laser beams Lx and Ly emitted from the light source units 110a and 110b, the plurality of reflection regions 212X and the plurality of transmission regions 212Y of the reflection mirror 212, and the combined light density. It is.
  • the laser light Lx emitted from the light source unit 110a is reflected by the reflection mirror 211 as shown in FIG.
  • a reflection mirror 212 is installed at the reflected end, and a transmission region 212Y is formed in each of the reflection mirrors 212 on the optical path of each laser beam Lx.
  • Each laser beam Lx passes through the transmission region 212Y and enters the condenser lens 213.
  • the laser light Ly emitted from the light source unit 110b is reflected by the reflection region 212X of the reflection mirror 212 and enters the condenser lens 213 together with the laser light Lx.
  • the laser beam Lx and the laser beam Ly are incident on the condenser lens 213 independently without crossing each other.
  • the laser beams Lx and Ly synthesized by the condenser lens 213 are alternately arranged as shown by the tip of the arrow in FIG. 5, and the light densities thereof are emitted from the light source unit 110a and the light source unit 110b, respectively.
  • the optical density of the laser beam Lx and the laser beam Ly is doubled. That is, the luminance per unit area is doubled.
  • the reflection mirror 212 includes a plurality of transmission regions 212Y on the optical path of the laser light Lx reflected by the reflection mirror 211, and the light source unit 110b. It is desirable that the plurality of reflection regions 212X be disposed on the optical path of the laser beam Ly emitted from the laser beam Ly.
  • each transmission region 212Y is preferably not less than the length ls in the short axis direction of the laser beam Lx, for example, 1 s in consideration of a manufacturing margin or the like. It is desirable to set it as x1.5 or more.
  • the depth (length in the long side direction) d of each transmission region 212Y is preferably set to a length lm or more in the long axis direction of the laser light Lx, for example, considering a manufacturing margin or the like. 1 s ⁇ 1.5 or more is desirable. The same applies to each reflection region 212X. As a result, the laser beams Lx and Ly can be combined without waste.
  • the light source unit 110a and the light source unit 110b arranged in parallel have been described above in the oscillation direction of the laser light Ly emitted from the light source unit 110 arranged near the condenser lens 213.
  • the reflecting mirror 212 By arranging the reflecting mirror 212 having the configuration, the laser beams Lx and Ly emitted from the light source unit 110a and the light source unit 110b are efficiently combined. Therefore, it is possible to improve the luminance in the projection display device 1 described later.
  • the projection display device 1 includes the light source device 100, the light source optical system 200, the image generation unit 300, and the projection optical system 400 in this order.
  • the projection display device 1 shown in FIG. 6 exemplifies a transmissive 3LCD (liquid crystal display) type projection display device that performs light modulation with a reflective liquid crystal panel (liquid crystal panels 312R, 312G, 312B).
  • a transmissive 3LCD type projection display device that performs light modulation with a reflective liquid crystal panel (liquid crystal panels 312R, 312G, 312B).
  • it is not limited to this.
  • it may be configured as a reflection type 3LCD type projection display device that modulates light with a transmissive liquid crystal panel.
  • liquid crystal panels 312R, 312G, and 312B correspond to a specific example of the display element of the present disclosure.
  • the projection display device 1 of the present embodiment uses, for example, a digital micro-mirror device (DMD) instead of the reflective liquid crystal panel and the transmissive liquid crystal panel. It can also be applied to projectors.
  • DMD digital micro-mirror device
  • the light source device 100 is provided with light sources that emit red light (R), green light (G), and blue light (B), which are necessary for color image display.
  • the light source device 100 includes a light source device 100R that emits red light (R) and a light source device 100GB that emits green light (G) and blue light (B).
  • a solid light source such as a semiconductor laser (LD) or a light emitting diode (LED) that oscillates laser light having a corresponding wavelength is used as a light source.
  • LD semiconductor laser
  • LED light emitting diode
  • FIG. 7 schematically shows a part of the configuration of the light source device 100GB that emits green light (G) and blue light (B) and the light source optical system 200 thereof.
  • the emission efficiency of the semiconductor laser 122G that emits green light (G) is lower than that of the semiconductor laser 122B that emits blue light (B).
  • the green light (G) light source unit 110G is used by more semiconductor lasers 122G than the blue light (B) light source unit 110B, and the configuration of the light source unit 110G is In the same manner as the light source unit 110 shown in FIG.
  • the blue light (B) light source unit 110B is configured by a light source unit 110Ba including, for example, three semiconductor laser arrays, as shown in FIG. 7, in accordance with the emission intensity obtained from the green light (G) light source unit 110G. Has been.
  • Each light source part 110Ga, 110Gb, 110Ba is arranged in parallel toward this condensing lens 213, for example in this order.
  • Reflection mirrors 211G, 212G, and 212B are arranged in the oscillation directions of the laser beams Lga, Lgb, and Lb emitted from the light source units 110Ga, 110Gb, and 110Ba, respectively.
  • the reflection mirror 211G is a general total reflection mirror, similar to the reflection mirror 211 described above.
  • the reflection mirror 212G and the reflection mirror 212B have the same configuration as the reflection mirror 212 described above, and have a plurality of reflection regions and a plurality of transmission regions.
  • the installation positions of the reflecting mirrors 211G, 212G, and 212B are gathered independently without the optical paths of the laser light Lga reflected by the reflecting mirror 211G and the laser beams Lgb and Lb reflected by the reflecting mirrors 212G and 212B intersecting each other. It is adjusted so as to be incident on the optical lens 213. That is, the laser light Lgb emitted from the light source unit 110Gb is reflected in the plurality of reflection regions of the reflection mirror 212G. In the plurality of transmission regions of the reflection mirror 212G, the laser light Lga emitted from the light source unit 110Ga and reflected by the reflection mirror 211G is transmitted.
  • the laser light Lb emitted from the light source unit 110Ba is reflected in the plurality of reflection regions of the reflection mirror 212B.
  • the laser light Lga reflected by the reflection mirror 211G and the laser light Lgb reflected by the plurality of reflection regions of the reflection mirror 212G are transmitted.
  • the light source device 100R may have a general configuration, for example, the same configuration as the light source device 100 shown in FIG.
  • the light source optical system 200 includes a plurality of optical elements on the optical paths of light (red light (R), green light (G), and blue light (B)) emitted from the light source device 100R and the light source device 100GB.
  • the reflection mirrors 211 and 212, the condenser lens 213, the diffusion plate 214, the collimator lens 215, the fly-eye lenses 216 and 217, the condenser lens 218, Folding mirrors 219 and 220 are arranged on the optical path of the light source device 100R.
  • the reflection mirrors 211G, 212G, and 212B On the optical path of the light source device 100GB, for example, the reflection mirrors 211G, 212G, and 212B, the condenser lens 213, the diffusion plate 214, the collimator lens 215, the fly-eye lenses 216 and 217, and the condenser lens 218 are provided.
  • a folding mirror 219 and a dichroic mirror 221 are arranged.
  • Lights (red light (R), green light (G), and blue light (B)) emitted from the light source devices 100R and 100GB and passing through the reflection mirrors 211G and 212G (or the reflection mirrors 211G, 212G, and 212B) are respectively The light is condensed on the diffusion plate 214 by the condenser lens 213.
  • the condensed red light (R), green light (G), and blue light (B) are diffused by the diffusion plate 214 and enter the collimator lens 215, respectively.
  • the red light (R), green light (G), and blue light (B) transmitted through the collimator lens 215 are each divided into a plurality of constraints by the macro lens of the fly eye lens 216, and the corresponding macro lens in the fly eye lens 217.
  • Each is imaged.
  • Each of the microlenses of the fly-eye lens 217 functions as a secondary light source.
  • the red light (R), green light (G), and blue light (B) that have passed through the fly-eye lens 217 are collected by the condenser lens 218, respectively.
  • folding mirrors 219 and 220 are arranged, and the red light (R) collected by the condenser lens 218 is sequentially reflected by the folding mirrors 219 and 220, and the polarization beam splitter ( PBS) 311R.
  • PBS polarization beam splitter
  • a folding mirror 219 and a dichroic mirror 221 are arranged, and the green light (G) and blue light (B) collected by the condenser lens 218 are The light is reflected by the folding mirror 219 and enters the dichroic mirror 221, and is separated into green light (G) and blue light (B) by the dichroic mirror 221.
  • the image generation unit 300 includes PBSs 311R, 311G, and 311B, liquid crystal panels 312R, 312G, and 312B, and a dichroic prism 313.
  • the PBS 311R is disposed on the optical path of red light (R) and has a function of separating incident red light (R) into two polarization components orthogonal to each other on the polarization separation surface.
  • the PBS 311G is disposed on the optical path of the green light (G) and has a function of separating the incident green light (G) into two polarization components orthogonal to each other on the polarization separation surface.
  • the PBS 311B is disposed on the optical path of the blue light (B) and has a function of separating the incident blue light (B) into two polarization components orthogonal to each other on the polarization separation surface.
  • Each polarization separation surface reflects one polarization component (for example, S polarization component) and transmits the other polarization component (for example, P polarization component).
  • the liquid crystal panels 312R, 312G, and 312B are reflection type liquid crystal panels and generate image light of each color by modulating incident light based on an input image signal.
  • the liquid crystal panel 312R is disposed on the optical path of red light (R) reflected on the polarization separation surface of the PBS 311R.
  • the liquid crystal panel 312R is driven by, for example, a digital signal that is pulse-width modulated (PWM) according to a red image signal, thereby modulating incident light and reflecting the modulated light toward the PBS 311R. is doing.
  • PWM pulse-width modulated
  • the liquid crystal panel 312G is disposed on the optical path of green light (G) reflected on the polarization separation surface of the PBS 311G.
  • the liquid crystal panel 312G is driven by, for example, a digital signal pulse-width modulated (PWM) according to a green image signal, thereby modulating incident light and reflecting the modulated light toward the PBS 311G. is doing.
  • the liquid crystal panel 312B is disposed on the optical path of the blue light B reflected on the polarization separation surface of the PBS 311B.
  • the liquid crystal panel 312B is driven by, for example, a digital signal that is pulse width modulated (PWM) according to a blue image signal, thereby modulating incident light and reflecting the modulated light toward the PBS 311B. is doing.
  • Red light (R), green light (G), and blue light (B) reflected by the liquid crystal panels 312R, 312G, and 312B are transmitted through the PBSs 311R, 311G, and 311B, respectively, and enter the dichroic prism 313.
  • the dichroic prism 313 superimposes and combines the red light (R), green light (G), and blue light (B) incident from three directions, and directs the combined image light (Li) to the projection optical system 400. Exit.
  • the projection optical system 400 has a plurality of lenses, enlarges the image light (Li) synthesized by the dichroic prism 313, and projects it onto a screen (not shown).
  • the projection display device is required to have high brightness so that clear image light can be obtained even in a bright place.
  • solid-state light sources such as LEDs and LDs have been used as light sources for projection display devices.
  • the long axis of emission light having an elliptical cross section emitted from an LD and the length of an image forming surface of a display element formed in a rectangle are used. It is considered that the side is substantially parallel.
  • high brightness is achieved by improving the intensity of reflected light per unit area on the image forming surface of the display element.
  • the plurality of reflection regions 212X and the plurality of transmission regions 212Y are arranged in the light source optical system 200 that guides the laser light emitted from the light source unit 110 having the plurality of semiconductor lasers 122 to the image generation unit 300.
  • the reflection mirror 212 having the above is arranged.
  • the reflection mirror 212 is arranged such that the plurality of transmission regions 212Y are substantially the same as the minor axis direction in the elliptical cross section of the laser light emitted from the light source unit 110.
  • the projection display device 1 has the plurality of reflection regions 212X and the plurality of transmission regions 212Y as the optical elements constituting the light source optical system 200 as described above, and the plurality of transmission regions 212Y.
  • the reflection mirror 212 arranged so as to be substantially the same as the short axis direction in the elliptical cross section of the laser light emitted from the light source unit 110 is arranged. As a result, the laser light L emitted from the light source unit 110 can be efficiently guided to the image generation unit 300, and the luminance can be improved.
  • a plurality of light source units (for example, two of the light source unit 110a and the light source unit 110b) having a plurality of semiconductor lasers 122 and configured by a plurality of semiconductor laser arrays 120 are arranged in parallel.
  • the reflection mirror in the oscillation direction of the laser light Ly emitted from the light source unit 110b arranged near the display element (for example, the liquid crystal panels 312R, 312G, 312B). 212 is arranged.
  • a reflection mirror 211 configured by a total reflection mirror is arranged.
  • the plurality of laser beams Lx emitted from the light source unit 110a and reflected by the reflection mirror 211 pass through the plurality of transmission regions 212Y of the reflection mirror 212, respectively.
  • the plurality of laser beams Ly emitted from the light source unit 110b are reflected by the plurality of reflection regions 212X of the reflection mirror 212, and are incident on the condensing lens 213 and synthesized together with the plurality of laser beams Lx. Therefore, as described above, it is possible to improve luminance while suppressing an increase in the size of the light source device 100 as compared with a case where the number of semiconductor lasers is simply increased.
  • FIG. 8 schematically illustrates an example of a partial configuration of a light source device (light source device 500) and a light source optical system (light source optical system 600) according to a modification of the present disclosure. These are used for the projection display device (for example, the projection display device 1) as in the above embodiment.
  • the light source unit 510a and the light source unit 510b having the same configuration are arranged at positions facing the light source unit 110a and the light source unit 110b, for example, with the broken line X passing through the center of the condenser lens 213 as the target axis. It is set.
  • a reflection mirror 511 and a reflection mirror 512 having the same configuration as that of the reflection mirror 211 and the reflection mirror 212 are arranged in the oscillation direction of the laser light L emitted from the light source unit 510a and the light source unit 510b, respectively. .
  • the light source device 100 is configured by arranging a plurality of light source units (here, four of the light source units 110a, 110b, 510a, and 510b) and the reflecting mirrors 211, 212, 511, and 512 of the present disclosure in line symmetry.
  • the luminance can be further improved while suppressing the increase in size.
  • this indication can take the following composition.
  • a plurality of solid state light sources An image generation unit including a display element that modulates light emitted from the plurality of solid-state light sources; A light source optical system that guides light emitted from the plurality of solid-state light sources to the image generation unit; A projection optical system that projects the image light generated by the image generation unit,
  • the light source optical system includes a first reflective element having a plurality of reflection regions and a plurality of transmission regions, The plurality of transmission regions are arranged in substantially the same direction as a minor axis direction in an elliptical cross section of light emitted from the plurality of solid state light sources.
  • the projection display device wherein the first reflective element has the plurality of reflective regions and the plurality of transmissive regions arranged alternately.
  • a longitudinal direction of the transmissive region is substantially the same as a major axis direction of an elliptical cross section of light emitted from the plurality of solid state light sources.
  • the light source optical system has the first reflecting element in the light emitting direction from the first light source unit, and has the second reflecting element in the light emitting direction from the second light source unit,
  • the projection display device according to any one of (1) to (3).
  • the projection display device (5) The projection display device according to (4), wherein the first light source unit and the second light source unit are arranged in parallel with respect to the display element in this order.
  • the first reflection element reflects light emitted from the first light source unit in the plurality of reflection regions, and is emitted from the second light source unit in the plurality of transmission regions, and the second reflection.
  • the projection display device according to (4) or (5), wherein the light reflected by the element is transmitted.
  • the projection type according to any one of (1) to (6), wherein the first reflective element is configured by a mirror, and the plurality of transmission regions are configured by openings formed in the mirror. Display device.
  • the projection type according to any one of (4) and (6), wherein the projection type includes a third light source unit and a fourth light source unit facing the first light source unit and the second light source unit, respectively.
  • Display device (9)
  • the light source optical system includes a third reflective element and a fourth reflective element, respectively, in the emission direction of light from the third light source unit and the fourth light source unit,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

The projection display device according to one embodiment of the present disclosure is provided with: a plurality of solid-state light sources; an image generating unit including a display element that modulates light outputted from the solid-state light sources; a light source optical system that guides, to the image generating unit, the light outputted from the solid-state light sources; and a projection optical system that projects image light generated by the image generating unit. The light source optical system has a first reflection element having a plurality of reflection regions and a plurality of light-transmitting regions, and the light-transmitting regions are arrayed in the direction substantially equal to the short axis direction of the elliptic cross-sectional shape of the light outputted from the solid-state light sources.

Description

投射型表示装置Projection display
 本開示は、発光素子として、例えば半導体レーザを用いた投射型表示装置に関する。 The present disclosure relates to a projection display device using, for example, a semiconductor laser as a light emitting element.
 パーソナルコンピュータの画面やビデオ画像等をスクリーンに投影する投射型表示装置(プロジェクタ)では、明るい場所でも鮮明な画像光が得られるように高輝度化が求められている。そこで近年、投射型表示装置に用いられる光源装置には、高輝度な光源として、発光ダイオード(LED)やレーザダイオード(LD)といった固体発光素子が採用されている。 Projection-type display devices (projectors) that project a personal computer screen or video image onto a screen are required to have high brightness so that clear image light can be obtained even in a bright place. Therefore, in recent years, solid-state light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) have been employed as light sources with high brightness in light source devices used in projection display devices.
 光源として固体発光素子を採用する投射型表示装置の輝度を向上させる方法としては、例えば特許文献1において、レーザダイオードから射出される断面楕円形状を有する射出光の長軸が、長方形に形成される表示素子の画像形成面の長辺と略平行に入射されるようにした投影装置が開示されている。これにより、この投影装置では、表示素子の画像形成面における単位面積当たりの反射光の強度が向上されている。 As a method for improving the luminance of a projection display device that employs a solid light-emitting element as a light source, for example, in Patent Document 1, the long axis of emitted light having an elliptical cross section emitted from a laser diode is formed in a rectangular shape. A projection device is disclosed that is incident substantially parallel to the long side of the image forming surface of the display element. Thereby, in this projection apparatus, the intensity of the reflected light per unit area on the image forming surface of the display element is improved.
特開2015-121597号公報Japanese Patent Laying-Open No. 2015-121597
 このように、投射型表示装置では、輝度の向上が求められている。 As described above, the projection display device is required to improve the luminance.
 輝度を向上させることが可能な投射型表示装置を提供することが望ましい。 It is desirable to provide a projection display device that can improve luminance.
 本開示の一実施形態の投射型表示装置は、複数の固体光源と、複数の固体光源から出射された光を変調する表示素子を含む画像生成部と、複数の固体光源から出射された光を画像生成部へと導く光源光学系と、画像生成部で生成された画像光を投射する投射光学系とを備えたものであり、光源光学系は、複数の反射領域と複数の透過領域とを有する第1の反射素子を有し、複数の透過領域は、複数の固体光源から出射される光の断面楕円形状における短軸方向と略同一方向に配列されている。 A projection display device according to an embodiment of the present disclosure includes a plurality of solid light sources, an image generation unit including a display element that modulates light emitted from the plurality of solid light sources, and light emitted from the plurality of solid light sources. A light source optical system that leads to an image generation unit, and a projection optical system that projects image light generated by the image generation unit. The light source optical system includes a plurality of reflection regions and a plurality of transmission regions. The plurality of transmission regions are arranged in substantially the same direction as the minor axis direction in the elliptical cross section of light emitted from the plurality of solid state light sources.
 本開示の一実施形態の投射型表示装置では、複数の固体光源と、複数の固体光源から出射された光を画像生成部まで導く光源光学系において、複数の反射領域と複数の透過領域とを有する第1の反射素子を配置するようにした。この第1の反射素子は、複数の透過領域の配列方向が、複数の固体光源から出射される光の断面楕円形状における短軸方向と略同一となるように形成されている。これにより、複数の固体光源から出射される光を効率よく表示素子へ導くことが可能となる。 In the projection display device according to an embodiment of the present disclosure, a plurality of solid light sources and a light source optical system that guides light emitted from the plurality of solid light sources to the image generation unit include a plurality of reflection regions and a plurality of transmission regions. The first reflective element having the above is arranged. The first reflecting element is formed such that the arrangement direction of the plurality of transmission regions is substantially the same as the minor axis direction in the elliptical cross section of the light emitted from the plurality of solid light sources. This makes it possible to efficiently guide the light emitted from the plurality of solid light sources to the display element.
 本開示の一実施形態の投射型表示装置によれば、複数の固体光源から出射された光を画像生成部まで導く光源光学系において、上記のように複数の反射領域と複数の透過領域とを有し、複数の反射領域が複数の固体光源から出射される光の断面楕円形状における短軸方向と略同一方向に配列された第1の反射素子を配置するようにしたので、複数の固体光源から出射される光が効率よく表示素子へ導かれる。よって、輝度を向上させることが可能となる。 According to the projection display device of the embodiment of the present disclosure, in the light source optical system that guides the light emitted from the plurality of solid light sources to the image generation unit, the plurality of reflection regions and the plurality of transmission regions are provided as described above. And the plurality of reflective areas are arranged in the substantially same direction as the minor axis direction in the elliptical cross section of the light emitted from the plurality of solid light sources. The light emitted from the light is efficiently guided to the display element. Therefore, the luminance can be improved.
 なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 Note that the effect of the present disclosure is not necessarily limited to the effect described herein, and may be any effect described in the present specification.
本開示の一実施の形態に係る光源装置および光源光学系の一部の構成の一例を表す模式図である。It is a schematic diagram showing an example of a part of structure of the light source device and light source optical system which concern on one embodiment of this indication. 図1に示した光源部を構成する半導体レーザアレイの構造を表す斜視図である。It is a perspective view showing the structure of the semiconductor laser array which comprises the light source part shown in FIG. 図1に示した光源装置を構成する光源部の断面構成(A)および平面構成(B)を表す模式図である。It is a schematic diagram showing the cross-sectional structure (A) and planar structure (B) of the light source part which comprises the light source device shown in FIG. 図1に反射ミラーの構造を表す斜視図である。FIG. 1 is a perspective view showing the structure of a reflecting mirror. 図1に示した2つの光源部から出射される光と図4に示した反射ミラーとの位置関係および合成後の光密度を表す図である。It is a figure showing the positional relationship between the light radiate | emitted from the two light source parts shown in FIG. 1, and the reflective mirror shown in FIG. 4, and the light density after a synthesis | combination. 本開示の一実施の形態に係る投射型表示装置の構成の一例を表すブロック図である。It is a block diagram showing an example of composition of a projection type display concerning one embodiment of this indication. 図6に示した光源装置および光源光学系の一部の構成の一例を表す模式図である。FIG. 7 is a schematic diagram illustrating an example of a partial configuration of the light source device and the light source optical system illustrated in FIG. 6. 本開示の変形例に係る光源装置および光源光学系の一部の構成の一例を表す模式図である。It is a schematic diagram showing an example of a part of structure of the light source device which concerns on the modification of this indication, and a light source optical system.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態(複数の反射領域と複数の透過領域とを有する反射ミラーを備えた投射型表示装置の例)
  1-1.光源装置および光源光学系の構成
  1-2.投射型表示装置の構成
  1-3.作用・効果
 2.変形例(光源部と反射ミラーとの配置例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The following description is one specific example of the present disclosure, and the present disclosure is not limited to the following aspects. In addition, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, and the like of each component illustrated in each drawing. The order of explanation is as follows.
1. Embodiment (an example of a projection display device including a reflection mirror having a plurality of reflection regions and a plurality of transmission regions)
1-1. Configuration of light source device and light source optical system 1-2. Configuration of Projection Display 1-3 Action / Effect Modification (Example of arrangement of light source and reflection mirror)
<1.実施の形態>
 図1は、本開示の一実施の形態に係る光源装置(光源装置100)および光源光学系(光源光学系200)の一部の構成の一例を模式的に表したものである。これらは、例えば、後述する投射型表示装置(例えば、投射型表示装置1、図6参照)に用いられるものである。投射型表示装置1は、光源装置100と、光源光学系200と、画像生成部300と、投射光学系400とを含んで構成されている。本実施の形態では、光源光学系200は、光源装置100から発せられた光を反射する反射素子として、複数の反射領域212Xと複数の透過領域212Yとを有する反射ミラー212(第1の反射素子)を有するものである。反射ミラー212は、複数の透過領域212Yは光源装置100から出射される光の断面楕円形状における短軸方向と略同一方向に配列された構成を有する。
<1. Embodiment>
FIG. 1 schematically illustrates an example of a partial configuration of a light source device (light source device 100) and a light source optical system (light source optical system 200) according to an embodiment of the present disclosure. These are used, for example, in a projection display device described later (for example, the projection display device 1, see FIG. 6). The projection display device 1 includes a light source device 100, a light source optical system 200, an image generation unit 300, and a projection optical system 400. In the present embodiment, the light source optical system 200 is a reflection mirror 212 (first reflection element) having a plurality of reflection regions 212X and a plurality of transmission regions 212Y as a reflection element that reflects light emitted from the light source device 100. ). The reflection mirror 212 has a configuration in which the plurality of transmission regions 212Y are arranged in substantially the same direction as the short axis direction in the elliptical cross section of the light emitted from the light source device 100.
(1-1.光源装置および光源光学系の構成)
 光源装置100は、図1に示したように、例えば、2つの光源部110(光源部110a(第2の光源部)および光源部110b(第1の光源部))を有する。光源部110aおよび光源部110bは並列に配置されており、それぞれ、複数の発光素子(例えば、半導体レーザ122,固体光源)を有する。具体的には、光源部110aおよび光源部110bは、それぞれ、例えば、複数の半導体レーザアレイ120から構成されている。
(1-1. Configuration of Light Source Device and Light Source Optical System)
As shown in FIG. 1, the light source device 100 includes, for example, two light source units 110 (a light source unit 110a (second light source unit) and a light source unit 110b (first light source unit)). The light source unit 110a and the light source unit 110b are arranged in parallel and each have a plurality of light emitting elements (for example, a semiconductor laser 122 and a solid state light source). Specifically, each of the light source unit 110a and the light source unit 110b includes, for example, a plurality of semiconductor laser arrays 120.
 図2は、半導体レーザアレイ120の構成を斜視的に表したものである。半導体レーザアレイ120は、台座部121に複数(ここでは、10個)の半導体レーザ122が、例えば5行2列に配設された構成を有する。図3(A)は、光源部110aおよび光源部110bの断面構成を模式的に示したものであり、図3(B)は、光源部110aおよび光源部110bの平面構成を模式的に表したものである。本実施の形態では、光源部110aおよび光源部110bは、図2に示した半導体レーザアレイ120が列方向(Y軸方向)に複数(ここでは5個)積み重ねられた構成を有する。半導体レーザ122から発振されるレーザ光の断面形状fは、例えば図5に示したように楕円形を有する。光源部110aおよび光源部110bでは、各半導体レーザ122から発振される断面楕円形状を有するレーザ光Lx,Lyの長軸および短軸が、それぞれ略同一方向となるように配置されている。 FIG. 2 is a perspective view of the configuration of the semiconductor laser array 120. The semiconductor laser array 120 has a configuration in which a plurality of (here, 10) semiconductor lasers 122 are arranged in a pedestal part 121 in, for example, 5 rows and 2 columns. 3A schematically shows a cross-sectional configuration of the light source unit 110a and the light source unit 110b, and FIG. 3B schematically shows a planar configuration of the light source unit 110a and the light source unit 110b. Is. In the present embodiment, the light source unit 110a and the light source unit 110b have a configuration in which a plurality of (here, five) semiconductor laser arrays 120 illustrated in FIG. 2 are stacked in the column direction (Y-axis direction). The cross-sectional shape f of the laser light oscillated from the semiconductor laser 122 has an elliptical shape as shown in FIG. 5, for example. In the light source unit 110a and the light source unit 110b, the major axis and the minor axis of the laser beams Lx and Ly having an elliptical cross section oscillated from each semiconductor laser 122 are arranged in substantially the same direction.
 光源光学系200は、光源装置100から出射される光(例えば、レーザ光Lx,Ly)を画像生成部へと導くためのものであり、複数の光学素子によって構成されている。光源光学系200は、光学素子として、光源部110aおよび光源部110bから発せられるレーザ光(レーザ光Lx,Ly)の発振方向にそれぞれ配置される反射ミラー211(第2の反射素子)および反射ミラー212(第1の反射素子)を有する。反射ミラー211および反射ミラー212は、例えば板状部材によって構成されている。反射ミラー211および反射ミラー212は、並列配置されている光源部110aおよび光源部110bに対して、それぞれ、例えば正対する位置に互いに同一方向に傾斜して配置されている。これにより、各光源部110a,110bの半導体レーザ122から出射されるレーザ光Lx,Lyは、同一方向(図1では、集光レンズ213側)に反射されるようになっている。 The light source optical system 200 is for guiding light emitted from the light source device 100 (for example, laser light Lx, Ly) to the image generation unit, and is configured by a plurality of optical elements. The light source optical system 200 includes, as optical elements, a reflection mirror 211 (second reflection element) and a reflection mirror that are arranged in the oscillation direction of laser light (laser light Lx, Ly) emitted from the light source unit 110a and the light source unit 110b, respectively. 212 (first reflective element). The reflection mirror 211 and the reflection mirror 212 are configured by, for example, a plate-like member. The reflection mirror 211 and the reflection mirror 212 are respectively inclined with respect to the light source unit 110a and the light source unit 110b arranged in parallel, for example, at positions facing each other in the same direction. Thus, the laser beams Lx and Ly emitted from the semiconductor lasers 122 of the light source units 110a and 110b are reflected in the same direction (in FIG. 1, the condensing lens 213 side).
 反射ミラー211および反射ミラー212は、例えば、金属膜蒸着ミラーや誘電多層膜ミラーによって構成されている。 The reflection mirror 211 and the reflection mirror 212 are configured by, for example, a metal film deposition mirror or a dielectric multilayer mirror.
 本実施の形態では、この2つの反射ミラー211,212のうち集光レンズ寄りに配置された反射ミラー212、即ち、光源部110aから出射され、反射ミラー211によって反射されるレーザ光Lxの光路上に配置されている反射ミラー212が、上記のように、複数の反射領域212Xおよび複数の透過領域212Yが設けられた構成を有する。なお、反射領域212Xとは、光を反射させて、入射方向に対して略垂直な方向に光を折り曲げる領域であり、透過領域212Yとは、光を透過させる領域である。 In the present embodiment, of the two reflection mirrors 211 and 212, the reflection mirror 212 disposed near the condenser lens, that is, the light beam emitted from the light source unit 110a and reflected by the reflection mirror 211 on the optical path of the laser beam Lx. As described above, the reflection mirror 212 disposed in the configuration has a plurality of reflection regions 212X and a plurality of transmission regions 212Y. The reflective region 212X is a region that reflects light and bends the light in a direction substantially perpendicular to the incident direction, and the transmissive region 212Y is a region that transmits light.
 複数の反射領域212Xおよび複数の透過領域212Yは、交互に配置されている。その配列、例えば複数の透過領域212Yの配列方向は、半導体レーザ122から出射されるレーザ光の断面楕円形状における短軸方向と略同一となっていることが好ましい。また、複数の反射領域212Xおよび複数の透過領域212Yのうちの少なくとも一方は、それぞれ、例えば矩形形状を有し、その長辺方向は、半導体レーザ122から出射されるレーザ光の断面楕円形状における長軸方向と略平行となるように形成されていることが好ましい。図4は、反射ミラー212の構成を斜視的に表したものである。反射ミラー212の複数の透過領域212Yは、例えば金属膜蒸着ミラーや誘電多層膜ミラーに設けられた複数の開口212hによって構成されている。また、複数の透過領域212Yは、例えば、平行平板状の透明部材を用いて構成するようにしてもよい。その場合、透明部材には、表面に反射防止膜を形成することが好ましい。 The plurality of reflection areas 212X and the plurality of transmission areas 212Y are alternately arranged. The arrangement, for example, the arrangement direction of the plurality of transmission regions 212Y is preferably substantially the same as the minor axis direction in the elliptical cross section of the laser light emitted from the semiconductor laser 122. In addition, at least one of the plurality of reflection regions 212X and the plurality of transmission regions 212Y has a rectangular shape, for example, and the long side direction is the length of the elliptical cross section of the laser light emitted from the semiconductor laser 122. It is preferably formed so as to be substantially parallel to the axial direction. FIG. 4 is a perspective view of the configuration of the reflection mirror 212. The plurality of transmission regions 212Y of the reflection mirror 212 are configured by, for example, a plurality of openings 212h provided in a metal film deposition mirror or a dielectric multilayer mirror. Further, the plurality of transmission regions 212Y may be configured using, for example, a parallel plate-shaped transparent member. In that case, it is preferable to form an antireflection film on the surface of the transparent member.
 図5は、光源部110a,110bから出射されるレーザ光Lx,Lyと、反射ミラー212の複数の反射領域212Xおよび複数の透過領域212Yとの位置関係、ならびに合成後の光密度を表したものである。光源部110aから出射されるレーザ光Lxは、図1に示したように、反射ミラー211によって反射される。反射された先には反射ミラー212が設置されており、各レーザ光Lxの光路上の反射ミラー212には、それぞれ透過領域212Yが形成されている。各レーザ光Lxは、この透過領域212Yをそれぞれ透過して集光レンズ213に入射する。光源部110bから出射されるレーザ光Lyは、反射ミラー212の反射領域212Xによって反射され、レーザ光Lxと共に集光レンズ213に入射する。このとき、レーザ光Lxおよびレーザ光Lyは、それぞれ交わることなく、各々独立して集光レンズ213に入射する。集光レンズ213によって合成されるレーザ光Lx,Lyは、図5の矢印の先に示したように、それぞれ交互に配置され、その光密度は、光源部110aおよび光源部110bからそれぞれ出射されるレーザ光Lxおよびレーザ光Lyの光密度と比較して2倍となる。即ち、単位面積当たりの輝度が2倍に向上する。 FIG. 5 shows the positional relationship between the laser beams Lx and Ly emitted from the light source units 110a and 110b, the plurality of reflection regions 212X and the plurality of transmission regions 212Y of the reflection mirror 212, and the combined light density. It is. The laser light Lx emitted from the light source unit 110a is reflected by the reflection mirror 211 as shown in FIG. A reflection mirror 212 is installed at the reflected end, and a transmission region 212Y is formed in each of the reflection mirrors 212 on the optical path of each laser beam Lx. Each laser beam Lx passes through the transmission region 212Y and enters the condenser lens 213. The laser light Ly emitted from the light source unit 110b is reflected by the reflection region 212X of the reflection mirror 212 and enters the condenser lens 213 together with the laser light Lx. At this time, the laser beam Lx and the laser beam Ly are incident on the condenser lens 213 independently without crossing each other. The laser beams Lx and Ly synthesized by the condenser lens 213 are alternately arranged as shown by the tip of the arrow in FIG. 5, and the light densities thereof are emitted from the light source unit 110a and the light source unit 110b, respectively. The optical density of the laser beam Lx and the laser beam Ly is doubled. That is, the luminance per unit area is doubled.
 なお、上記のように、単位面積当たりの輝度を効率よく向上させるためには、反射ミラー212を、反射ミラー211によって反射されたレーザ光Lxの光路上に複数の透過領域212Yが、光源部110bから出射されたレーザ光Lyの光路上に複数の反射領域212Xが配置されるように設置することが望ましい。 As described above, in order to efficiently improve the luminance per unit area, the reflection mirror 212 includes a plurality of transmission regions 212Y on the optical path of the laser light Lx reflected by the reflection mirror 211, and the light source unit 110b. It is desirable that the plurality of reflection regions 212X be disposed on the optical path of the laser beam Ly emitted from the laser beam Ly.
 また、各透過領域212Yの幅(短辺方向の長さ)wは、それぞれレーザ光Lxの短軸方向の長さls以上とすることが好ましく、例えば、製造上のマージン等を考慮して1s×1.5以上とすることが望ましい。また、各透過領域212Yのそれぞれの奥行き(長辺方向の長さ)dは、それぞれレーザ光Lxの長軸方向の長さlm以上とすることが好ましく、例えば、製造上のマージン等を考慮して1s×1.5以上とすることが望ましい。各反射領域212Xについても同様である。これにより、レーザ光Lx,Lyを無駄なく合成することが可能となる。 Further, the width (length in the short side direction) w of each transmission region 212Y is preferably not less than the length ls in the short axis direction of the laser beam Lx, for example, 1 s in consideration of a manufacturing margin or the like. It is desirable to set it as x1.5 or more. In addition, the depth (length in the long side direction) d of each transmission region 212Y is preferably set to a length lm or more in the long axis direction of the laser light Lx, for example, considering a manufacturing margin or the like. 1 s × 1.5 or more is desirable. The same applies to each reflection region 212X. As a result, the laser beams Lx and Ly can be combined without waste.
 このように、本実施の形態では、並列に配置される光源部110aおよび光源部110bのうち、集光レンズ213寄りに配置された光源部110から発せられるレーザ光Lyの発振方向に、上述した構成を有する反射ミラー212を配置することにより、光源部110aおよび光源部110bから出射されるレーザ光Lx,Lyが効率よく合成される。よって、後述する投射型表示装置1における輝度を向上させることが可能となる。 As described above, in the present embodiment, the light source unit 110a and the light source unit 110b arranged in parallel have been described above in the oscillation direction of the laser light Ly emitted from the light source unit 110 arranged near the condenser lens 213. By arranging the reflecting mirror 212 having the configuration, the laser beams Lx and Ly emitted from the light source unit 110a and the light source unit 110b are efficiently combined. Therefore, it is possible to improve the luminance in the projection display device 1 described later.
(1-2.投射型表示装置の構成)
 本実施の形態の投射型表示装置1は、上記のように、光源装置100と、光源光学系200と、画像生成部300と、投射光学系400とを順に備えている。図6に示した投射型表示装置1は、反射型の液晶パネル(液晶パネル312R,312G,312B)により光変調を行う透過型3LCD(liquid crystal display)方式の投射型表示装置を例示しているがこれに限らない。例えば、透過型の液晶パネルにより光変調を行う反射型3LCD方式の投射型表示装置として構成するようにしてもよい。
(1-2. Configuration of Projection Display Device)
As described above, the projection display device 1 according to the present embodiment includes the light source device 100, the light source optical system 200, the image generation unit 300, and the projection optical system 400 in this order. The projection display device 1 shown in FIG. 6 exemplifies a transmissive 3LCD (liquid crystal display) type projection display device that performs light modulation with a reflective liquid crystal panel ( liquid crystal panels 312R, 312G, 312B). However, it is not limited to this. For example, it may be configured as a reflection type 3LCD type projection display device that modulates light with a transmissive liquid crystal panel.
 なお、液晶パネル312R,312G,312Bは、本開示の表示素子の一具体例に相当する。また、本実施の形態の投射型表示装置1は、反射型の液晶パネルおよび透過型の液晶パネルの代わりに、例えば、デジタル・マイクロミラー・デバイス(DMD:Digital Micro-mirror Device)等を用いたプロジェクタにも適用され得る。 Note that the liquid crystal panels 312R, 312G, and 312B correspond to a specific example of the display element of the present disclosure. The projection display device 1 of the present embodiment uses, for example, a digital micro-mirror device (DMD) instead of the reflective liquid crystal panel and the transmissive liquid crystal panel. It can also be applied to projectors.
 光源装置100には、カラー画像表示に必要とされる、赤色光(R)、緑色光(G)および青色光(B)を発する光源が配置されている。本実施の形態では、光源装置100は、赤色光(R)を出射する光源装置100Rと、緑色光(G)および青色光(B)を出射する光源装置100GBとが配設されている。各光源装置100R,100GBでは、光源として、対応する波長のレーザ光を発振する、例えば半導体レーザ(LD)または発光ダイオード(LED)等の固体光源が用いられている。 The light source device 100 is provided with light sources that emit red light (R), green light (G), and blue light (B), which are necessary for color image display. In the present embodiment, the light source device 100 includes a light source device 100R that emits red light (R) and a light source device 100GB that emits green light (G) and blue light (B). In each of the light source devices 100R and 100GB, a solid light source such as a semiconductor laser (LD) or a light emitting diode (LED) that oscillates laser light having a corresponding wavelength is used as a light source.
 図7は、緑色光(G)および青色光(B)を出射する光源装置100GBおよびそれらの光源光学系200の構成の一部を模式的に表したものである。一般に、青色光(B)を出射する半導体レーザ122Bと比較して、緑色光(G)を出射する半導体レーザ122Gの発光効率は低い。このため、図7に示したように、緑色光(G)の光源部110Gは、青色光(B)の光源部110Bよりも多くの半導体レーザ122Gが用いることが好ましく、光源部110Gの構成は、図1に示した光源部110と同様に、例えば2つの光源部110Ga,110Gbから構成されている。青色光(B)の光源部110Bは、緑色光(G)の光源部110Gから得られる発光強度に合わせて、図7に示したように、例えば3つの半導体レーザアレイからなる光源部110Baによって構成されている。各光源部110Ga,110Gb,110Baは、集光レンズ213に向かって、例えばこの順に並列に配置されている。 FIG. 7 schematically shows a part of the configuration of the light source device 100GB that emits green light (G) and blue light (B) and the light source optical system 200 thereof. In general, the emission efficiency of the semiconductor laser 122G that emits green light (G) is lower than that of the semiconductor laser 122B that emits blue light (B). For this reason, as shown in FIG. 7, it is preferable that the green light (G) light source unit 110G is used by more semiconductor lasers 122G than the blue light (B) light source unit 110B, and the configuration of the light source unit 110G is In the same manner as the light source unit 110 shown in FIG. The blue light (B) light source unit 110B is configured by a light source unit 110Ba including, for example, three semiconductor laser arrays, as shown in FIG. 7, in accordance with the emission intensity obtained from the green light (G) light source unit 110G. Has been. Each light source part 110Ga, 110Gb, 110Ba is arranged in parallel toward this condensing lens 213, for example in this order.
 各光源部110Ga,110Gb,110Baからそれぞれ発せられるレーザ光Lga,Lgb,Lbの発振方向には、それぞれ反射ミラー211G,212G,212Bが配置されている。反射ミラー211Gは、上述した反射ミラー211と同様に、一般的な全反射ミラーである。反射ミラー212Gおよび反射ミラー212Bは、上述した反射ミラー212と同様の構成を有するものであり、複数の反射領域および複数の透過領域を有する。 Reflection mirrors 211G, 212G, and 212B are arranged in the oscillation directions of the laser beams Lga, Lgb, and Lb emitted from the light source units 110Ga, 110Gb, and 110Ba, respectively. The reflection mirror 211G is a general total reflection mirror, similar to the reflection mirror 211 described above. The reflection mirror 212G and the reflection mirror 212B have the same configuration as the reflection mirror 212 described above, and have a plurality of reflection regions and a plurality of transmission regions.
 各反射ミラー211G,212G,212Bの設置位置は、反射ミラー211Gによって反射されるレーザ光Lgaおよび反射ミラー212G,212Bによって反射されるレーザ光Lgb,Lbの光路が交差することなく各々独立して集光レンズ213に入射するように調整されている。即ち、反射ミラー212Gの複数の反射領域では、光源部110Gbから出射されたレーザ光Lgbが反射される。反射ミラー212Gの複数の透過領域では、光源部110Gaから出射され、反射ミラー211Gによって反射されたレーザ光Lgaが透過する。反射ミラー212Bの複数の反射領域では、光源部110Baから出射されたレーザ光Lbが反射される。反射ミラー212Bの複数の透過領域では、それぞれ、反射ミラー211Gによって反射されたレーザ光Lgaおよび反射ミラー212Gの複数の反射領域によって反射されたレーザ光Lgbが透過する。 The installation positions of the reflecting mirrors 211G, 212G, and 212B are gathered independently without the optical paths of the laser light Lga reflected by the reflecting mirror 211G and the laser beams Lgb and Lb reflected by the reflecting mirrors 212G and 212B intersecting each other. It is adjusted so as to be incident on the optical lens 213. That is, the laser light Lgb emitted from the light source unit 110Gb is reflected in the plurality of reflection regions of the reflection mirror 212G. In the plurality of transmission regions of the reflection mirror 212G, the laser light Lga emitted from the light source unit 110Ga and reflected by the reflection mirror 211G is transmitted. The laser light Lb emitted from the light source unit 110Ba is reflected in the plurality of reflection regions of the reflection mirror 212B. In the plurality of transmission regions of the reflection mirror 212B, the laser light Lga reflected by the reflection mirror 211G and the laser light Lgb reflected by the plurality of reflection regions of the reflection mirror 212G are transmitted.
 なお、光源装置100Rは、一般的な構成を用いてよいし、例えば、図1に示した光源装置100と同様の構成を用いてもよい。 Note that the light source device 100R may have a general configuration, for example, the same configuration as the light source device 100 shown in FIG.
 光源光学系200は、光源装置100Rおよび光源装置100GBから出射される光(赤色光(R),緑色光(G),青色光(B))の光路上にそれぞれ複数の光学素子を有する。一例として、光源装置100Rの光路上には、上述した反射ミラー211,212と、集光レンズ213と、拡散板214と、コリメータレンズ215と、フライアイレンズ216,217と、コンデンサレンズ218と、折り返しミラー219,220とが配置されている。光源装置100GBの光路上には、例えば、上述した反射ミラー211G,212G,212Bと、集光レンズ213と、拡散板214と、コリメータレンズ215と、フライアイレンズ216,217と、コンデンサレンズ218と、折り返しミラー219と、ダイクロイックミラー221とが配置されている。 The light source optical system 200 includes a plurality of optical elements on the optical paths of light (red light (R), green light (G), and blue light (B)) emitted from the light source device 100R and the light source device 100GB. As an example, on the optical path of the light source device 100R, the reflection mirrors 211 and 212, the condenser lens 213, the diffusion plate 214, the collimator lens 215, the fly- eye lenses 216 and 217, the condenser lens 218, Folding mirrors 219 and 220 are arranged. On the optical path of the light source device 100GB, for example, the reflection mirrors 211G, 212G, and 212B, the condenser lens 213, the diffusion plate 214, the collimator lens 215, the fly- eye lenses 216 and 217, and the condenser lens 218 are provided. A folding mirror 219 and a dichroic mirror 221 are arranged.
 光源装置100R,100GBから出射され反射ミラー211G,212G(または、反射ミラー211G,212G,212B)を通過した光(赤色光(R),緑色光(G),青色光(B))は、それぞれ集光レンズ213によって拡散板214に集光される。集光された赤色光(R)および緑色光(G),青色光(B)は、拡散板214によってそれぞれ拡散され、それぞれコリメータレンズ215に入射する。コリメータレンズ215を透過した赤色光(R)および緑色光(G),青色光(B)は、それぞれフライアイレンズ216のマクロレンズによって複数の拘束に分割され、フライアイレンズ217における対応するマクロレンズにそれぞれ結像される。フライアイレンズ217のマイクロレンズのそれぞれが二次光源として機能する。フライアイレンズ217を通過した赤色光(R)および緑色光(G),青色光(B)はコンデンサレンズ218においてそれぞれ集光される。 Lights (red light (R), green light (G), and blue light (B)) emitted from the light source devices 100R and 100GB and passing through the reflection mirrors 211G and 212G (or the reflection mirrors 211G, 212G, and 212B) are respectively The light is condensed on the diffusion plate 214 by the condenser lens 213. The condensed red light (R), green light (G), and blue light (B) are diffused by the diffusion plate 214 and enter the collimator lens 215, respectively. The red light (R), green light (G), and blue light (B) transmitted through the collimator lens 215 are each divided into a plurality of constraints by the macro lens of the fly eye lens 216, and the corresponding macro lens in the fly eye lens 217. Each is imaged. Each of the microlenses of the fly-eye lens 217 functions as a secondary light source. The red light (R), green light (G), and blue light (B) that have passed through the fly-eye lens 217 are collected by the condenser lens 218, respectively.
 赤色光(R)の光路上には、折り返しミラー219,220が配置されており、コンデンサレンズ218において集光された赤色光(R)は折り返しミラー219,220によって順に反射され、偏光ビームスプリッタ(PBS)311Rに入射する。緑色光(G)および青色光(B)の光路上には、折り返しミラー219およびダイクロイックミラー221が配置されており、コンデンサレンズ218において集光された緑色光(G),青色光(B)は折り返しミラー219によって反射されてダイクロイックミラー221に入射し、ダイクロイックミラー221おいて緑色光(G)と青色光(B)とに分離される。 On the optical path of the red light (R), folding mirrors 219 and 220 are arranged, and the red light (R) collected by the condenser lens 218 is sequentially reflected by the folding mirrors 219 and 220, and the polarization beam splitter ( PBS) 311R. On the optical path of green light (G) and blue light (B), a folding mirror 219 and a dichroic mirror 221 are arranged, and the green light (G) and blue light (B) collected by the condenser lens 218 are The light is reflected by the folding mirror 219 and enters the dichroic mirror 221, and is separated into green light (G) and blue light (B) by the dichroic mirror 221.
 画像生成部300は、PBS311R,311G,311Bと、液晶パネル312R,312G,312Bと、ダイクロイックプリズム313とを有する。 The image generation unit 300 includes PBSs 311R, 311G, and 311B, liquid crystal panels 312R, 312G, and 312B, and a dichroic prism 313.
 PBS311Rは、赤色光(R)の光路上に配置されており、偏光分離面において、入射した赤色光(R)を互いに直交する2つの偏光成分に分離する機能を有している。PBS311Gは、緑色光(G)の光路上に配置されており、偏光分離面において、入射した緑色光(G)を互いに直交する2つの偏光成分に分離する機能を有している。PBS311Bは、青色光(B)の光路上に配置されており、偏光分離面において、入射した青色光(B)を互いに直交する2つの偏光成分に分離する機能を有している。各偏光分離面は、一方の偏光成分(例えばS偏光成分)を反射し、他方の偏光成分(例えばP偏光成分)を透過するようになっている。 The PBS 311R is disposed on the optical path of red light (R) and has a function of separating incident red light (R) into two polarization components orthogonal to each other on the polarization separation surface. The PBS 311G is disposed on the optical path of the green light (G) and has a function of separating the incident green light (G) into two polarization components orthogonal to each other on the polarization separation surface. The PBS 311B is disposed on the optical path of the blue light (B) and has a function of separating the incident blue light (B) into two polarization components orthogonal to each other on the polarization separation surface. Each polarization separation surface reflects one polarization component (for example, S polarization component) and transmits the other polarization component (for example, P polarization component).
 液晶パネル312R,312G,312Bは、反射型の液晶パネルであり、入力された画像信号に基づいて入射光を変調することにより、各色の画像光を生成するものである。液晶パネル312Rは、PBS311Rの偏光分離面において反射された赤色光(R)の光路上に配置されている。液晶パネル312Rは、例えば、赤色の画像信号に応じてパルス幅変調(PWM)されたデジタル信号によって駆動され、それによって入射光を変調させると共に、その変調光をPBS311Rに向けて反射する機能を有している。液晶パネル312Gは、PBS311Gの偏光分離面において反射された緑色光(G)の光路上に配置されている。液晶パネル312Gは、例えば、緑色の画像信号に応じてパルス幅変調(PWM)されたデジタル信号によって駆動され、それによって入射光を変調させると共に、その変調光をPBS311Gに向けて反射する機能を有している。液晶パネル312Bは、PBS311Bの偏光分離面において反射された青色光Bの光路上に配置されている。液晶パネル312Bは、例えば、青色の画像信号に応じてパルス幅変調(PWM)されたデジタル信号によって駆動され、それによって入射光を変調させると共に、その変調光をPBS311Bに向けて反射する機能を有している。 The liquid crystal panels 312R, 312G, and 312B are reflection type liquid crystal panels and generate image light of each color by modulating incident light based on an input image signal. The liquid crystal panel 312R is disposed on the optical path of red light (R) reflected on the polarization separation surface of the PBS 311R. The liquid crystal panel 312R is driven by, for example, a digital signal that is pulse-width modulated (PWM) according to a red image signal, thereby modulating incident light and reflecting the modulated light toward the PBS 311R. is doing. The liquid crystal panel 312G is disposed on the optical path of green light (G) reflected on the polarization separation surface of the PBS 311G. The liquid crystal panel 312G is driven by, for example, a digital signal pulse-width modulated (PWM) according to a green image signal, thereby modulating incident light and reflecting the modulated light toward the PBS 311G. is doing. The liquid crystal panel 312B is disposed on the optical path of the blue light B reflected on the polarization separation surface of the PBS 311B. The liquid crystal panel 312B is driven by, for example, a digital signal that is pulse width modulated (PWM) according to a blue image signal, thereby modulating incident light and reflecting the modulated light toward the PBS 311B. is doing.
 液晶パネル312R,312G,312Bにおいて反射された赤色光(R),緑色光(G)および青色光(B)は、それぞれPBS311R,311G,311Bを透過し、ダイクロイックプリズム313に入射する。 Red light (R), green light (G), and blue light (B) reflected by the liquid crystal panels 312R, 312G, and 312B are transmitted through the PBSs 311R, 311G, and 311B, respectively, and enter the dichroic prism 313.
 ダイクロイックプリズム313は、3つの方向から入射した赤色光(R)、緑色光(G)および青色光(B)を重ね合わせて合成し、合成した画像光(Li)を投射光学系400に向けて出射する。 The dichroic prism 313 superimposes and combines the red light (R), green light (G), and blue light (B) incident from three directions, and directs the combined image light (Li) to the projection optical system 400. Exit.
 投射光学系400は、複数のレンズを有し、ダイクロイックプリズム313によって合成された画像光(Li)を拡大してスクリーン(図示せず)へ投射する。 The projection optical system 400 has a plurality of lenses, enlarges the image light (Li) synthesized by the dichroic prism 313, and projects it onto a screen (not shown).
(1-3.作用・効果)
 前述したように、投射型表示装置では、明るい場所でも鮮明な画像光が得られるように高輝度化が求められている。近年、投射型表示装置の光源としてLEDやLD等の固体光源が用いられている。固体光源を用いた投射型表示装置の輝度を向上させる方法としては、例えば、LDから射出される断面楕円形状を有する射出光の長軸と、長方形に形成される表示素子の画像形成面の長辺とが略平行とすることが考えられている。この方法では、表示素子の画像形成面における単位面積当たりの反射光の強度を向上することで、高輝度が図られている。
(1-3. Action and effect)
As described above, the projection display device is required to have high brightness so that clear image light can be obtained even in a bright place. In recent years, solid-state light sources such as LEDs and LDs have been used as light sources for projection display devices. As a method for improving the brightness of a projection display device using a solid-state light source, for example, the long axis of emission light having an elliptical cross section emitted from an LD and the length of an image forming surface of a display element formed in a rectangle are used. It is considered that the side is substantially parallel. In this method, high brightness is achieved by improving the intensity of reflected light per unit area on the image forming surface of the display element.
 その他の方法としては、固体光源の数を増やすことが考えられる。しかしながら、例えば、固体光源の数を2倍に増やし、単純に平面上に配列した場合、集光レンズの大きさおよび集光レンズと拡散板との距離が2倍となり、光源装置が大型化するという問題がある。 Other methods may be to increase the number of solid light sources. However, for example, when the number of solid light sources is doubled and simply arranged on a flat surface, the size of the condensing lens and the distance between the condensing lens and the diffusion plate are doubled, resulting in an increase in the size of the light source device. There is a problem.
 これに対して本実施の形態では、複数の半導体レーザ122を有する光源部110から出射されるレーザ光を画像生成部300まで導く光源光学系200において、複数の反射領域212Xと複数の透過領域212Yとを有する反射ミラー212を配置するようにした。この反射ミラー212は、複数の透過領域212Yが、光源部110から出射されるレーザ光の断面楕円形状における短軸方向と略同一となるように配列されている。これにより、複数の固体光源から出射されるレーザ光Lを効率よく画像生成部300へ導くことが可能となる。 On the other hand, in the present embodiment, in the light source optical system 200 that guides the laser light emitted from the light source unit 110 having the plurality of semiconductor lasers 122 to the image generation unit 300, the plurality of reflection regions 212X and the plurality of transmission regions 212Y. The reflection mirror 212 having the above is arranged. The reflection mirror 212 is arranged such that the plurality of transmission regions 212Y are substantially the same as the minor axis direction in the elliptical cross section of the laser light emitted from the light source unit 110. As a result, the laser light L emitted from a plurality of solid state light sources can be efficiently guided to the image generation unit 300.
 以上、本実施の形態の投射型表示装置1では、光源光学系200を構成する光学素子として、上記のように複数の反射領域212Xと複数の透過領域212Yとを有し、複数の透過領域212Yが、光源部110から出射されるレーザ光の断面楕円形状における短軸方向と略同一となるように配列された反射ミラー212を配置するようにした。これにより、光源部110から出射されるレーザ光Lが効率よく画像生成部300へ導かれるようになり、輝度を向上させることが可能となる。 As described above, the projection display device 1 according to the present embodiment has the plurality of reflection regions 212X and the plurality of transmission regions 212Y as the optical elements constituting the light source optical system 200 as described above, and the plurality of transmission regions 212Y. However, the reflection mirror 212 arranged so as to be substantially the same as the short axis direction in the elliptical cross section of the laser light emitted from the light source unit 110 is arranged. As a result, the laser light L emitted from the light source unit 110 can be efficiently guided to the image generation unit 300, and the luminance can be improved.
 また、本実施の形態では、複数の半導体レーザ122を有する、複数の半導体レーザアレイ120から構成される複数の光源部(例えば、光源部110aおよび光源部110bの2つ)を並列に配置する。並列に配置された光源部110aおよび光源部110bのうち、表示素子(例えば、液晶パネル312R,312G,312B)寄りに配置された光源部110bから発せられるレーザ光Lyの発振方向に、上記反射ミラー212を配置するようにした。また、光源部110aから出射されるレーザ光Lxの発振方向には、例えば全反射ミラーによって構成される反射ミラー211を配置するようにした。これにより、光源部110aから出射され、反射ミラー211によって反射された複数のレーザ光Lxは、反射ミラー212の複数の透過領域212Yをそれぞれ通過する。光源部110bから出射された複数のレーザ光Lyは、反射ミラー212の複数の反射領域212Xによって反射され、複数のレーザ光Lxと共に、例えば集光レンズ213に入射して合成される。よって、上記のように、半導体レーザの数を単純に増やした場合と比較して、光源装置100の大型化を抑えつつ、輝度を向上させることが可能となる。 Further, in the present embodiment, a plurality of light source units (for example, two of the light source unit 110a and the light source unit 110b) having a plurality of semiconductor lasers 122 and configured by a plurality of semiconductor laser arrays 120 are arranged in parallel. Of the light source unit 110a and the light source unit 110b arranged in parallel, the reflection mirror in the oscillation direction of the laser light Ly emitted from the light source unit 110b arranged near the display element (for example, the liquid crystal panels 312R, 312G, 312B). 212 is arranged. Further, in the oscillation direction of the laser light Lx emitted from the light source unit 110a, for example, a reflection mirror 211 configured by a total reflection mirror is arranged. Thereby, the plurality of laser beams Lx emitted from the light source unit 110a and reflected by the reflection mirror 211 pass through the plurality of transmission regions 212Y of the reflection mirror 212, respectively. The plurality of laser beams Ly emitted from the light source unit 110b are reflected by the plurality of reflection regions 212X of the reflection mirror 212, and are incident on the condensing lens 213 and synthesized together with the plurality of laser beams Lx. Therefore, as described above, it is possible to improve luminance while suppressing an increase in the size of the light source device 100 as compared with a case where the number of semiconductor lasers is simply increased.
<2.変形例>
 次に、上記実施の形態の変形例について説明する。なお、上記実施の形態の光源装置100および光源光学系200に対応する構成要素には同一の符号を付して説明を省略する。
<2. Modification>
Next, a modification of the above embodiment will be described. In addition, the same code | symbol is attached | subjected to the component corresponding to the light source device 100 and the light source optical system 200 of the said embodiment, and description is abbreviate | omitted.
 図8は、本開示の変形例に係る光源装置(光源装置500)および光源光学系(光源光学系600)の一部の構成の一例を模式的に表したものである。これらは、上記実施の形態と同様に、投射型表示装置(例えば、投射型表示装置1)に用いられるものである。本変形例では、例えば、集光レンズ213の中心を通る破線Xを対象軸として、光源部110aおよび光源部110bと例えば正対する位置に、同様の構成を有する光源部510aおよび光源部510bを配設したものである。更に、光源部510aおよび光源部510bから出射されるレーザ光Lの発振方向に、それぞれ、反射ミラー211および反射ミラー212と同様の構成を有する反射ミラー511および反射ミラー512が配置されたものである。 FIG. 8 schematically illustrates an example of a partial configuration of a light source device (light source device 500) and a light source optical system (light source optical system 600) according to a modification of the present disclosure. These are used for the projection display device (for example, the projection display device 1) as in the above embodiment. In this modification, for example, the light source unit 510a and the light source unit 510b having the same configuration are arranged at positions facing the light source unit 110a and the light source unit 110b, for example, with the broken line X passing through the center of the condenser lens 213 as the target axis. It is set. Further, a reflection mirror 511 and a reflection mirror 512 having the same configuration as that of the reflection mirror 211 and the reflection mirror 212 are arranged in the oscillation direction of the laser light L emitted from the light source unit 510a and the light source unit 510b, respectively. .
 このように、複数の光源部(ここでは、光源部110a,110b,510a,510bの4つ)および本開示の反射ミラー211,212,511,512を線対称に配置することで、光源装置100の大型化を抑えつつ、輝度をさらに向上させることが可能となる。 As described above, the light source device 100 is configured by arranging a plurality of light source units (here, four of the light source units 110a, 110b, 510a, and 510b) and the reflecting mirrors 211, 212, 511, and 512 of the present disclosure in line symmetry. The luminance can be further improved while suppressing the increase in size.
 以上、実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。 As described above, the present disclosure has been described with the embodiment and the modification. However, the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible.
 なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。 Note that the effects described in the present specification are merely examples. The effects of the present disclosure are not limited to the effects described in this specification. The present disclosure may have effects other than those described in this specification.
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 複数の固体光源と、
 前記複数の固体光源から出射された光を変調する表示素子を含む画像生成部と、
 前記複数の固体光源から出射された光を前記画像生成部へと導く光源光学系と、
 前記画像生成部で生成された画像光を投射する投射光学系とを備え、
 前記光源光学系は、複数の反射領域と複数の透過領域とを有する第1の反射素子を有し、
 前記複数の透過領域は、前記複数の固体光源から出射される光の断面楕円形状における短軸方向と略同一方向に配列されている
 投射型表示装置。
(2)
 前記第1の反射素子は、前記複数の反射領域と前記複数の透過領域とが交互に配置されている、前記(1)に記載の投射型表示装置。
(3)
 前記透過領域の長手方向と前記複数の固体光源から出射される光の断面楕円形状の長軸方向とが略同一である、前記(1)または(2)に記載の投射型表示装置。
(4)
 前記複数の固体光源をそれぞれ有する第1の光源部と第2の光源部とを有し、
 前記光源光学系は、前記第1の光源部からの光の出射方向に前記第1の反射素子を有し、前記第2の光源部からの光の出射方向に第2の反射素子を有する、前記(1)乃至(3)のうちのいずれかに記載の投射型表示装置。
(5)
 前記第1の光源部および前記第2の光源部は、前記表示素子に対してこの順に並列に配置されている、前記(4)に記載の投射型表示装置。
(6)
 前記第1の反射素子は、前記複数の反射領域において前記第1の光源部から出射された光を反射し、前記複数の透過領域において前記第2の光源部から出射され、前記第2の反射素子によって反射された光を透過する、前記(4)または(5)に記載の投射型表示装置。
(7)
 前記第1の反射素子はミラーによって構成され、前記複数の透過領域は、前記ミラーに形成された開口によって構成されている、前記(1)乃至(6)のうちのいずれかに記載の投射型表示装置。
(8)
 前記第1の光源部および前記第2の光源部にそれぞれ正対する第3の光源部および第4の光源部を有する、前記(4)または(6)のうちのいずれか4に記載の投射型表示装置。
(9)
 前記光源光学系は、前記第3の光源部および前記第4の光源部からの光の出射方向に、それぞれ第3の反射素子および第4の反射素子を有し、
 前記第3の反射素子は、複数の反射領域と複数の透過領域とを有すると共に、それぞれ交互に配置されている、前記(8)に記載の投射型表示装置。
For example, this indication can take the following composition.
(1)
A plurality of solid state light sources;
An image generation unit including a display element that modulates light emitted from the plurality of solid-state light sources;
A light source optical system that guides light emitted from the plurality of solid-state light sources to the image generation unit;
A projection optical system that projects the image light generated by the image generation unit,
The light source optical system includes a first reflective element having a plurality of reflection regions and a plurality of transmission regions,
The plurality of transmission regions are arranged in substantially the same direction as a minor axis direction in an elliptical cross section of light emitted from the plurality of solid state light sources.
(2)
The projection display device according to (1), wherein the first reflective element has the plurality of reflective regions and the plurality of transmissive regions arranged alternately.
(3)
The projection display device according to (1) or (2), wherein a longitudinal direction of the transmissive region is substantially the same as a major axis direction of an elliptical cross section of light emitted from the plurality of solid state light sources.
(4)
A first light source unit and a second light source unit each having the plurality of solid light sources;
The light source optical system has the first reflecting element in the light emitting direction from the first light source unit, and has the second reflecting element in the light emitting direction from the second light source unit, The projection display device according to any one of (1) to (3).
(5)
The projection display device according to (4), wherein the first light source unit and the second light source unit are arranged in parallel with respect to the display element in this order.
(6)
The first reflection element reflects light emitted from the first light source unit in the plurality of reflection regions, and is emitted from the second light source unit in the plurality of transmission regions, and the second reflection. The projection display device according to (4) or (5), wherein the light reflected by the element is transmitted.
(7)
The projection type according to any one of (1) to (6), wherein the first reflective element is configured by a mirror, and the plurality of transmission regions are configured by openings formed in the mirror. Display device.
(8)
The projection type according to any one of (4) and (6), wherein the projection type includes a third light source unit and a fourth light source unit facing the first light source unit and the second light source unit, respectively. Display device.
(9)
The light source optical system includes a third reflective element and a fourth reflective element, respectively, in the emission direction of light from the third light source unit and the fourth light source unit,
The third reflective element according to (8), wherein the third reflective element includes a plurality of reflective regions and a plurality of transmissive regions, and is alternately disposed.
 本出願は、日本国特許庁において2017年5月19日に出願された日本特許出願番号2017-099731号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2017-099731 filed on May 19, 2017 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (9)

  1.  複数の固体光源と、
     前記複数の固体光源から出射された光を変調する表示素子を含む画像生成部と、
     前記複数の固体光源から出射された光を前記画像生成部へと導く光源光学系と、
     前記画像生成部で生成された画像光を投射する投射光学系とを備え、
     前記光源光学系は、複数の反射領域と複数の透過領域とを有する第1の反射素子を有し、
     前記複数の透過領域は、前記複数の固体光源から出射される光の断面楕円形状における短軸方向と略同一方向に配列されている
     投射型表示装置。
    A plurality of solid state light sources;
    An image generation unit including a display element that modulates light emitted from the plurality of solid-state light sources;
    A light source optical system that guides light emitted from the plurality of solid-state light sources to the image generation unit;
    A projection optical system that projects the image light generated by the image generation unit,
    The light source optical system includes a first reflective element having a plurality of reflection regions and a plurality of transmission regions,
    The plurality of transmission regions are arranged in substantially the same direction as a minor axis direction in an elliptical cross section of light emitted from the plurality of solid state light sources.
  2.  前記第1の反射素子は、前記複数の反射領域と前記複数の透過領域とが交互に配置されている、請求項1に記載の投射型表示装置。 The projection display device according to claim 1, wherein the first reflective element has the plurality of reflective regions and the plurality of transmissive regions arranged alternately.
  3.  前記透過領域の長手方向と前記複数の固体光源から出射される光の断面楕円形状の長軸方向とが略同一である、請求項1に記載の投射型表示装置。 2. The projection display device according to claim 1, wherein a longitudinal direction of the transmissive region and a major axis direction of an elliptical cross section of light emitted from the plurality of solid light sources are substantially the same.
  4.  前記複数の固体光源をそれぞれ有する第1の光源部と第2の光源部とを有し、
     前記光源光学系は、前記第1の光源部からの光の出射方向に前記第1の反射素子を有し、前記第2の光源部からの光の出射方向に第2の反射素子を有する、請求項1に記載の投射型表示装置。
    A first light source unit and a second light source unit each having the plurality of solid light sources;
    The light source optical system has the first reflecting element in the light emitting direction from the first light source unit, and has the second reflecting element in the light emitting direction from the second light source unit, The projection display device according to claim 1.
  5.  前記第1の光源部および前記第2の光源部は、前記表示素子に対してこの順に並列に配置されている、請求項4に記載の投射型表示装置。 The projection type display device according to claim 4, wherein the first light source unit and the second light source unit are arranged in parallel in this order with respect to the display element.
  6.  前記第1の反射素子は、前記複数の反射領域において前記第1の光源部から出射された光を反射し、前記複数の透過領域において前記第2の光源部から出射され、前記第2の反射素子によって反射された光を透過する、請求項4に記載の投射型表示装置。 The first reflection element reflects light emitted from the first light source unit in the plurality of reflection regions, and is emitted from the second light source unit in the plurality of transmission regions, and the second reflection. The projection display device according to claim 4, wherein the light reflected by the element is transmitted.
  7.  前記第1の反射素子はミラーによって構成され、前記複数の透過領域は、前記ミラーに形成された開口によって構成されている、請求項1に記載の投射型表示装置。 The projection display device according to claim 1, wherein the first reflective element is configured by a mirror, and the plurality of transmission regions are configured by openings formed in the mirror.
  8.  前記第1の光源部および前記第2の光源部にそれぞれ正対する第3の光源部および第4の光源部を有する、請求項4に記載の投射型表示装置。 The projection display device according to claim 4, further comprising a third light source unit and a fourth light source unit facing the first light source unit and the second light source unit, respectively.
  9.  前記光源光学系は、前記第3の光源部および前記第4の光源部からの光の出射方向に、それぞれ第3の反射素子および第4の反射素子を有し、
     前記第3の反射素子は、複数の反射領域と複数の透過領域とを有すると共に、それぞれ交互に配置されている、請求項8に記載の投射型表示装置。
    The light source optical system includes a third reflective element and a fourth reflective element, respectively, in the emission direction of light from the third light source unit and the fourth light source unit,
    The projection display device according to claim 8, wherein the third reflection element has a plurality of reflection regions and a plurality of transmission regions, and is alternately arranged.
PCT/JP2018/015717 2017-05-19 2018-04-16 Projection display device WO2018211886A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019519132A JPWO2018211886A1 (en) 2017-05-19 2018-04-16 Projection display device
CN201880031168.5A CN110622066A (en) 2017-05-19 2018-04-16 Projection display device
EP18802279.2A EP3627221B1 (en) 2017-05-19 2018-04-16 Projection display device
US16/609,900 US11156910B2 (en) 2017-05-19 2018-04-16 Projection display apparatus including a reflection device including reflection regions and transmission regions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099731 2017-05-19
JP2017099731 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018211886A1 true WO2018211886A1 (en) 2018-11-22

Family

ID=64273570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015717 WO2018211886A1 (en) 2017-05-19 2018-04-16 Projection display device

Country Status (5)

Country Link
US (1) US11156910B2 (en)
EP (1) EP3627221B1 (en)
JP (1) JPWO2018211886A1 (en)
CN (1) CN110622066A (en)
WO (1) WO2018211886A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179740A1 (en) * 2019-03-04 2020-09-10 株式会社ブイ・テクノロジー Light source device for exposure, exposure device, and exposure method
JP2021096381A (en) * 2019-12-18 2021-06-24 パナソニックIpマネジメント株式会社 Light source device and projection-type image display device
WO2023037729A1 (en) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 Projection image display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721158B (en) * 2022-03-31 2024-04-09 青岛海信激光显示股份有限公司 Projection light source and projection equipment
CN118363237A (en) * 2023-01-19 2024-07-19 中强光电股份有限公司 Light source module and projection device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018208A (en) * 2010-07-06 2012-01-26 Seiko Epson Corp Light source device and projector
JP2012181260A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Light source device and projection video display device
JP2013114980A (en) * 2011-11-30 2013-06-10 Seiko Epson Corp Light source device and projector
JP2015121597A (en) 2013-12-20 2015-07-02 カシオ計算機株式会社 Projection device
US20150309399A1 (en) * 2014-04-24 2015-10-29 Samsung Electronics Co., Ltd. Illumination apparatus and projection-type image display apparatus having the same
JP2016197600A (en) * 2016-06-30 2016-11-24 ソニー株式会社 Light source device and image display device
JP2016218303A (en) * 2015-05-22 2016-12-22 セイコーエプソン株式会社 Illumination device and projector
JP2017073245A (en) * 2015-10-06 2017-04-13 ウシオ電機株式会社 Fluorescent light source device
US20170115554A1 (en) * 2014-04-04 2017-04-27 Barco Nv Laser projection illumination system
JP2017099731A (en) 2015-12-03 2017-06-08 志げ 石塚 Body back medicine applicator

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356577B1 (en) 1999-07-15 2002-03-12 Silicon Light Machines Method and apparatus for combining light output from multiple laser diode bars
JP2005091968A (en) * 2003-09-19 2005-04-07 Nikon Corp Cross dichroic prism and projection type display device using the prism
US20060023172A1 (en) * 2004-07-28 2006-02-02 Sanyo Electric Co. Illuminating device and projection type video display
DE102006054713B4 (en) * 2006-11-19 2012-08-30 Infitec Gmbh Stereo projection with interference filters
TWI447435B (en) * 2011-04-29 2014-08-01 Delta Electronics Inc Light source system
TWI446002B (en) * 2011-04-29 2014-07-21 Delta Electronics Inc Light source apparatus
US8905578B2 (en) * 2011-09-26 2014-12-09 Projectdesign AG Laser array illumination for bright projectors
US8746888B2 (en) * 2011-10-03 2014-06-10 Eastman Kodak Company Stereoscopic projector using spectrally-adjacent color bands
GB2495774A (en) * 2011-10-21 2013-04-24 Barco Nv Laser diode grid element comprised of standard laser diodes on a heat exchange plate and PCB
CN103207509B (en) * 2012-01-12 2015-06-24 三菱电机株式会社 Light Source Device And Projecting Display Device
JP5849727B2 (en) 2012-01-26 2016-02-03 株式会社Jvcケンウッド Projection display
JP5966843B2 (en) * 2012-10-18 2016-08-10 ソニー株式会社 Light source device and image display device
WO2015056381A1 (en) * 2013-10-17 2015-04-23 ソニー株式会社 Light-source device and image display device
EP3032330B1 (en) * 2013-10-17 2018-12-12 Sony Corporation Light-source device, light-source unit, and image display device
WO2015129656A1 (en) * 2014-02-27 2015-09-03 三菱電機株式会社 Light source apparatus
DE102014205450A1 (en) 2014-03-24 2015-09-24 Osram Gmbh Light source arrangement
CN104298058A (en) * 2014-09-11 2015-01-21 海信集团有限公司 Laser source and projection display device
CN107329356B (en) * 2016-04-29 2020-08-21 中强光电股份有限公司 Illumination system and projection apparatus
CN107436528A (en) * 2016-05-26 2017-12-05 精工爱普生株式会社 Light supply apparatus and projecting apparatus
US10203593B2 (en) * 2017-01-27 2019-02-12 Panasonic Intellectual Property Management Co., Ltd. Light source device having a retardation plate and projection display apparatus including the light source
CN109521633A (en) * 2017-09-19 2019-03-26 中强光电股份有限公司 Lighting system and projection arrangement
JP7122592B2 (en) * 2018-04-09 2022-08-22 パナソニックIpマネジメント株式会社 Lighting device, lighting system and projection image display device
JP7108840B2 (en) * 2018-06-25 2022-07-29 パナソニックIpマネジメント株式会社 Light source device and projection stereoscopic display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018208A (en) * 2010-07-06 2012-01-26 Seiko Epson Corp Light source device and projector
JP2012181260A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Light source device and projection video display device
JP2013114980A (en) * 2011-11-30 2013-06-10 Seiko Epson Corp Light source device and projector
JP2015121597A (en) 2013-12-20 2015-07-02 カシオ計算機株式会社 Projection device
US20170115554A1 (en) * 2014-04-04 2017-04-27 Barco Nv Laser projection illumination system
US20150309399A1 (en) * 2014-04-24 2015-10-29 Samsung Electronics Co., Ltd. Illumination apparatus and projection-type image display apparatus having the same
JP2016218303A (en) * 2015-05-22 2016-12-22 セイコーエプソン株式会社 Illumination device and projector
JP2017073245A (en) * 2015-10-06 2017-04-13 ウシオ電機株式会社 Fluorescent light source device
JP2017099731A (en) 2015-12-03 2017-06-08 志げ 石塚 Body back medicine applicator
JP2016197600A (en) * 2016-06-30 2016-11-24 ソニー株式会社 Light source device and image display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627221A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179740A1 (en) * 2019-03-04 2020-09-10 株式会社ブイ・テクノロジー Light source device for exposure, exposure device, and exposure method
JP2021096381A (en) * 2019-12-18 2021-06-24 パナソニックIpマネジメント株式会社 Light source device and projection-type image display device
JP7361274B2 (en) 2019-12-18 2023-10-16 パナソニックIpマネジメント株式会社 Light source device and projection type image display device
WO2023037729A1 (en) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 Projection image display device

Also Published As

Publication number Publication date
EP3627221A1 (en) 2020-03-25
US11156910B2 (en) 2021-10-26
EP3627221B1 (en) 2022-10-26
US20200201162A1 (en) 2020-06-25
CN110622066A (en) 2019-12-27
EP3627221A4 (en) 2020-05-27
JPWO2018211886A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018211886A1 (en) Projection display device
JP5679358B2 (en) Illumination device and projection display device using the same
JP5574459B2 (en) Illumination optical system and projection display device including the same
JP5659741B2 (en) Light source device and projector
JP5605866B2 (en) Illumination optical system and projection display device including the same
JP2017058656A (en) Illumination system and projection device
JP2006301620A (en) Illumination unit and image projection apparatus employing the same
JP2004053949A (en) Light source unit and projection display device
JP7098937B2 (en) Lighting equipment and projectors
JP7009910B2 (en) Light source device and projector
JP5825697B2 (en) Illumination device and projection display device using the same
CN113835288B (en) Laser projection system and light source device
JP2012079622A (en) Light source device and projector
KR102071079B1 (en) Illuminating unit and display
JP2014182358A (en) Light source device and image display device
JP4944496B2 (en) LIGHTING DEVICE AND PROJECTOR USING THE LIGHTING DEVICE
JP7257599B2 (en) Light source device and projection type image display device
CN210835555U (en) Light source device and projection display device
JP2010169723A (en) Projector
JP5105804B2 (en) Projector and projection method
JP7149457B2 (en) Light source device and projection type image display device
JP7165267B2 (en) Light source device, projector, and method for equalizing light intensity distribution
CN217689745U (en) Light source device and projector
JP2012094439A (en) Lighting system and projection type image display device
JP4715167B2 (en) Lighting device, image display device, and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018802279

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018802279

Country of ref document: EP

Effective date: 20191219