WO2018211592A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2018211592A1
WO2018211592A1 PCT/JP2017/018374 JP2017018374W WO2018211592A1 WO 2018211592 A1 WO2018211592 A1 WO 2018211592A1 JP 2017018374 W JP2017018374 W JP 2017018374W WO 2018211592 A1 WO2018211592 A1 WO 2018211592A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
information
unit
sensor
heat source
Prior art date
Application number
PCT/JP2017/018374
Other languages
French (fr)
Japanese (ja)
Inventor
崇明 杉本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019518637A priority Critical patent/JP6783386B2/en
Priority to PCT/JP2017/018374 priority patent/WO2018211592A1/en
Publication of WO2018211592A1 publication Critical patent/WO2018211592A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the air conditioning system according to the present invention has an effect that the human sensor can be installed without depending on the installation position of the air conditioner.
  • FIG. 13 The figure which shows an example of the table used when producing
  • FIG. The figure for demonstrating an example of the heat source obtained from the information showing the three-dimensional heat source distribution concerning this Embodiment 1
  • the block diagram which shows an example of a function structure of the air conditioning system concerning Embodiment 2 of this invention.
  • the flowchart of the process for the air-conditioning control which the air conditioning system of FIG. 11 performs The block diagram which shows an example of a function structure of the air conditioning system concerning Embodiment 3 of this invention.
  • the sensor device 20 and the sensor device 30 detect indoor sensing, specifically, the amount of infrared radiation in the room, and acquire information representing a two-dimensional thermal image.
  • the sensor device 20 and the sensor device 30 transmit information representing a two-dimensional thermal image to the indoor unit 10 wirelessly.
  • the indoor unit 10 includes information representing a two-dimensional thermal image transmitted from the sensor device 20, information representing a two-dimensional thermal image transmitted from the sensor device 30, and installation of the sensor device 20 transmitted from the remote controller 40.
  • Information representing the three-dimensional heat source distribution is generated from the position information and the installation position information of the sensor device 30 transmitted from the remote controller 40.
  • the indoor unit 10 specifies an area where the person H exists based on the information representing the three-dimensional heat source distribution, and performs air conditioning control according to the position of the person H.
  • FIG. 3 is a configuration diagram illustrating an example of the air-conditioning system 1 according to the first embodiment of the present invention.
  • thermopile sensor 22 accommodated in the cover 21, a main body 23, and a communication device 24 capable of communicating with the indoor unit 10 wirelessly.
  • the thermopile sensor 22 can rotate right and left by motor driving.
  • the thermopile sensor 22 is, for example, a sensor having 80 pixels in the vertical direction in FIG.
  • the sensor device 20 uses the thermopile sensor 22 to detect indoor sensing through the cover 21, specifically, the amount of infrared radiation in the room, and acquires information representing a two-dimensional thermal image.
  • the thermopile sensor 22 is an example of a first human sensor and a second human sensor.
  • the sensor device 20 transmits information representing the acquired two-dimensional thermal image to the indoor unit 10 via the communication device 24.
  • Information representing a two-dimensional thermal image is an example of information acquired by the first human sensor and information acquired by the second human sensor.
  • the indoor unit 10 shown in FIG. 5 includes a control unit 101, a communication unit 102, and a storage unit 103.
  • the control unit 101 controls the entire indoor unit 10.
  • the control unit 101 receives the information on the installation position of the sensor device 20 and the information on the installation position of the sensor device 30 transmitted from the remote controller 40 via the communication unit 102.
  • the storage unit 103 stores information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30.
  • the control unit 101 receives the information representing the two-dimensional thermal image transmitted from the sensor device 20 and the information representing the two-dimensional thermal image transmitted from the sensor device 30 via the communication unit 102.
  • the sensor device 20 includes a control unit 201, a drive unit 202, a human detection sensor unit 203, and a communication unit 204.
  • the control unit 201 controls the entire sensor device 20.
  • the control unit 201 controls the driving unit 202 and the human detection sensor unit 203 to detect indoor sensing, specifically, the amount of infrared radiation in the room, and acquire information representing a two-dimensional thermal image. .
  • the control unit 201 transmits information representing the acquired two-dimensional thermal image to the indoor unit 10 via the communication unit 204. Since the sensor device 30 is the same as the sensor device 20, the description thereof is omitted.
  • step S101 first, the input unit 402 of the remote controller 40 receives a selection input of the installation position of the sensor device 20 and a selection input of the installation position of the sensor device 30 by the user.
  • Information on the installation position of the sensor device 20 is generated by the control unit 401 based on a selection input of the installation position of the sensor device 20 by the user.
  • Information on the installation position of the sensor device 30 is generated by the control unit 401 based on a selection input of the installation position of the sensor device 30 by the user.
  • 7 and 8 are diagrams for explaining information on the installation positions of the sensor devices 20 and 30 according to the first embodiment.
  • control unit 401 of the remote controller 40 transmits information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30 to the indoor unit 10 via the communication unit 403 (step S102).
  • control unit 101 of the indoor unit 10 receives the information on the installation position of the sensor device 20 and the information on the installation position of the sensor device 30 transmitted in step S102 via the communication unit 102 (step S103).
  • Information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30 received in step S103 are stored in the storage unit 103.
  • thermopile sensor 22 And information on an angle (hereinafter referred to as “heat source angle”) formed by the thermopile sensor 22 in the sensor output direction.
  • heat source angle an angle formed by the thermopile sensor 22 in the sensor output direction.
  • the thermopile sensor 22 is a sensor having 80 pixels in the vertical direction in FIG. 4, that is, in the y-axis direction, for example, 1 to 20 pixels is 50 cm in height, 21 to 40 pixels is 100 cm in height, The height from 41 to 60 pixels is 150 cm, and the height from 61 to 80 pixels is 200 cm.
  • control unit 201 of the sensor device 20 transmits information representing the two-dimensional thermal image acquired in step S104 to the indoor unit 10 via the communication unit 204 (step S105).
  • step S106 the control unit 301 of the sensor device 30 controls the driving unit 302 and the human detection sensor unit 303 to perform indoor sensing and acquire information representing a two-dimensional thermal image.
  • the control unit 101 of the indoor unit 10 includes information representing the two-dimensional thermal image transmitted from the sensor device 20, information representing the two-dimensional thermal image transmitted from the sensor device 30, and installation of the sensor device 20.
  • Information representing the three-dimensional heat source distribution is generated from the position information and the installation position information of the sensor device 30 (step S109). Specifically, the above-described distance, angle, and area information of the sensor device 20, the above-described distance, angle, and area information of the sensor device 30, and the heat source height and heat source angle information sensed by the sensor device 20 are described. Then, from the information on the height and the heat source angle of the heat source sensed by the sensor device 30, the heat source region is specified using the table shown in FIG. 9, and information representing a three-dimensional heat source distribution is generated.
  • the information on the height of the heat source sensed by the sensor device 20 is information on the position of a pixel whose sensor output from the sensor device 20 has a value equal to or greater than a certain threshold value.
  • the information on the height of the heat source sensed by the sensor device 30 is information on the position of a pixel whose sensor output from the sensor device 30 is equal to or greater than a certain threshold value.
  • the distance of the sensor device 20 is 500 cm, the angle is 30 °, the area is the area 4, the distance of the sensor device 30 is 500 cm, the angle is 30 °, and the area is In area 3, the height of the heat source sensed by the sensor device 20 is 150 cm, the heat source angle of the heat source sensed by the sensor device 20 is 45 °, and the height of the heat source sensed by the sensor device 30 is 150 cm.
  • the heat source angle of the heat source sensed by the sensor device 30 is 45 °
  • the heat source region is identified as, for example, the region a shown in FIG.
  • step S110 when the heat source obtained from the information representing the three-dimensional heat source distribution is not only the person H (No in step S110), the control unit 101 of the indoor unit 10 displays the three-dimensional heat source distribution.
  • the represented information is corrected (step S111).
  • the correction of the information representing the three-dimensional heat source distribution refers to a process of excluding information determined as a heat source other than the person H from the information representing the three-dimensional heat source distribution. For example, in the case of a three-dimensional heat source distribution as shown in FIG. 10, the control unit 101 displays the three-dimensional heat source distribution so that information representing the heat source in the region m is excluded from the information representing the three-dimensional heat source distribution. Correction of the information.
  • step S110 when the heat source obtained from the information representing the three-dimensional heat source distribution is only the person H (Yes in step S110), or after step S111, the control unit 101 of the indoor unit 10 A region where the person H is present is identified from a region where the heat source obtained from the information representing the three-dimensional heat source distribution is present (step S112).
  • the control unit 101 specifies the regions where the person H exists as the region a, the region d, and the region g.
  • FIG. 11 is a block diagram which shows an example of a function structure of the air conditioning system 1A concerning Embodiment 2 of this invention.
  • the air conditioning system 1A according to the second embodiment of the present invention is different from the above-described first embodiment mainly in that the function of the control unit 101A of the indoor unit 10A is different.
  • the description of the same configuration and operation as those in the first embodiment will be omitted, and a description of the different configuration and operation will be given below.
  • the first determination unit 104 includes information representing a two-dimensional thermal image received from the sensor device 20 in the previous control cycle and information representing a two-dimensional thermal image received from the sensor device 20 in the current control cycle. And the position of the heat source obtained from the information representing the two-dimensional thermal image received in the previous control cycle and the heat source obtained from the information representing the two-dimensional thermal image received in the current control cycle. It is determined whether or not there is a change in position.
  • the first determination unit 104 includes information representing a two-dimensional thermal image received from the sensor device 30 in the previous control cycle, and information representing a two-dimensional thermal image received from the sensor device 30 in the current control cycle. And the position of the heat source obtained from the information representing the two-dimensional thermal image received in the previous control cycle and the heat source obtained from the information representing the two-dimensional thermal image received in the current control cycle. It is determined whether or not there is a change in position.
  • the first determination unit 104 of the indoor unit 10A displays the information representing the two-dimensional thermal image received from the sensor device 20 in step S203 and the two-dimensional thermal image received from the sensor device 20 in step S206. And the position of the heat source obtained from the information representing the two-dimensional thermal image received from the sensor device 20 in step S203 and the two-dimensional thermal image received from the sensor device 20 in step S206. It is determined whether or not there is a change in the position of the heat source obtained from the information (step S207).
  • the first determination unit 104 of the indoor unit 10A includes information representing the two-dimensional thermal image received from the sensor device 30 in step S203 and information representing the two-dimensional thermal image received from the sensor device 30 in step S206.
  • step S207 the position of the heat source obtained from the information representing the two-dimensional thermal image received from the sensor device 30 in step S203 and the information representing the two-dimensional thermal image received from the sensor device 30 in step S206. It is determined whether or not there is a change in the position of the obtained heat source (step S207).
  • step S207 If the result of determination in step S207 is that there is no change in the position of the heat source (No in step S207), the stop unit 105 of the indoor unit 10A sends a request for stopping sensing by the sensor device 30 to the communication unit 102A.
  • the communication unit 102A stops communication with the sensor device 30 (step S208).
  • the sensor device 30 that has received the request for stopping the sensing transmitted in step S208 stops the indoor sensing.
  • the sensor device 20 performs indoor sensing and acquires information representing a two-dimensional thermal image (step S209).
  • the sensor device 20 transmits information representing the two-dimensional thermal image acquired in step S209 to the indoor unit 10A (step S210).
  • the indoor unit 10A receives the information representing the two-dimensional thermal image transmitted in step S210 (step S211).
  • Information representing the two-dimensional thermal image received in step S211 is stored in the storage unit 103A.
  • information representing the two-dimensional thermal image received from the sensor device 20 in step S211 and the sensor device in step S206 is generated from the information representing the two-dimensional thermal image received from 30, the information on the installation position of the sensor device 20, and the information on the installation position of the sensor device 30.
  • the first determination unit 104 of the indoor unit 10A displays the information representing the two-dimensional thermal image received from the sensor device 20 in step S206 and the two-dimensional thermal image received from the sensor device 20 in step S211. And the position of the heat source obtained from the information representing the two-dimensional thermal image received from the sensor device 20 in step S206, and the two-dimensional thermal image received from the sensor device 20 in step S211. It is determined whether or not there is a change in the position of the heat source obtained from the information (step S212).
  • step S212 If the result of determination in step S212 is that there is no change in the position of the heat source (No in step S212), the process returns to step S209.
  • step S212 If the result of determination in step S212 is that there is a change in the position of the heat source (Yes in step S212), the return unit 106 of the indoor unit 10A restores communication with the sensor device 30 by the communication unit 102A and the sensor device A request for returning sensing by 30 is transmitted to the sensor device 30 via the communication unit 102A (step S213), and the process returns to step S204.
  • the sensor device 30 that has received the request for returning the sensing transmitted in step S213 performs indoor sensing.
  • the sensor device 30 stops sensing in the room, and the indoor unit 10A communicates with the sensor device 30 by the communication unit 102A. To stop. Thereby, the power consumption of the air conditioning system 1A can be reduced.
  • FIG. 13 is a block diagram which shows an example of a function structure of the air conditioning system 1B concerning Embodiment 3 of this invention.
  • the air conditioning system 1B according to the third embodiment of the present invention is different from the above-described first embodiment mainly in that the function of the control unit 101B of the indoor unit 10B is different.
  • the description of the same configuration and operation as those in the first embodiment will be omitted, and a description of the different configuration and operation will be given below.
  • the indoor unit 10B illustrated in FIG. 13 includes a control unit 101B, a communication unit 102B, and a storage unit 103B.
  • the control unit 101B includes a second determination unit 107 and a discard unit 108.
  • the second determination unit 107 determines whether or not communication with the sensor device 20 has been normally performed. The second determination unit 107 determines whether or not communication with the sensor device 30 has been normally performed.
  • the discarding unit 108 When the communication with the sensor device 20 is not normally performed as a result of the determination by the second determination unit 107, the discarding unit 108 represents information representing a two-dimensional thermal image received from the sensor device 20 in the communication. Is discarded.
  • the discarding unit 108 represents information representing a two-dimensional thermal image received from the sensor device 30 in the communication. Is discarded.
  • FIG. 14 is a flowchart of a process for air conditioning control executed by the air conditioning system 1B of FIG.
  • the processing for air conditioning control in FIG. 14 corresponds to the processing from step S104 to step S108 in the processing for air conditioning control in FIG. 6 described above.
  • each of the sensor devices 20 and 30 performs indoor sensing and acquires information representing a two-dimensional thermal image.
  • the sensor devices 20 and 30 each transmit information representing the two-dimensional thermal image acquired in step S301 to the indoor unit 10B (step S302).
  • the indoor unit 10B receives information representing the two-dimensional thermal images transmitted in step S302, respectively (step S303).
  • Information representing the two-dimensional thermal image received in step S303 is stored in the storage unit 103B.
  • the second determination unit 107 of the indoor unit 10B determines whether or not communication with the sensor device 20 has been normally performed (step S304).
  • the second determination unit 107 is calculated from, for example, a checksum added to information representing a two-dimensional thermal image received from the sensor device 20 and information representing the two-dimensional thermal image. Whether or not communication with the sensor device 20 has been normally performed is determined based on whether or not the checksum matches.
  • the second determination unit 107 determines whether or not communication with the sensor device 20 has been normally performed, for example, based on whether or not there is a response from the sensor device 20 within a preset response time. be able to.
  • the discard unit 108 of the indoor unit 10B receives the two-dimensional data received from the sensor device 20 in the communication.
  • the information representing the thermal image is discarded, that is, the information representing the two-dimensional thermal image received from the sensor device 20 in step S303 (step S305).
  • information representing the two-dimensional thermal image received from the sensor device 20 last time, from the sensor device 30 in step S303.
  • Information representing a three-dimensional heat source distribution is generated from the received information representing a two-dimensional thermal image, information about the installation position of the sensor device 20, and information about the installation position of the sensor device 30.
  • the second determination unit 107 of the indoor unit 10B includes the sensor device 30. It is determined whether or not communication with has been performed normally (step S306).
  • the second determination unit 107 is calculated from, for example, the checksum added to the information representing the two-dimensional thermal image received from the sensor device 30 and the information representing the two-dimensional thermal image. Whether or not the communication with the sensor device 30 is normally performed is determined based on whether or not the checksum matches.
  • the second determination unit 107 determines whether or not communication with the sensor device 30 has been normally performed, for example, based on whether or not there is a response from the sensor device 30 within a preset response time. be able to.
  • the discard unit 108 of the indoor unit 10B receives the two-dimensional data received from the sensor device 30 in the communication.
  • the information representing the thermal image is discarded, that is, the information representing the two-dimensional thermal image received from the sensor device 30 in step S303 (step S307).
  • step S109 in the above-described processing for air conditioning control in FIG. 6 after step S307, information representing the two-dimensional thermal image received from the sensor device 20 in step S303, the previous time from the sensor device 30.
  • Information representing a three-dimensional heat source distribution is generated from the received information representing a two-dimensional thermal image, information about the installation position of the sensor device 20, and information about the installation position of the sensor device 30.
  • information representing the two-dimensional thermal image received from the sensor device 20 last time, from the sensor device 30 Information representing a three-dimensional heat source distribution is generated from the information representing the two-dimensional thermal image received last time, the information on the installation position of the sensor device 20, and the information on the installation position of the sensor device 30.
  • step S306 when the communication with the sensor device 30 is normally performed (Yes in step S306), or after step S307, the process returns to step S301.
  • the two-dimensional communication is normally performed. Since the information representing the three-dimensional heat source distribution is generated from the information representing the thermal image, it is possible to prevent the air conditioning control according to the position of the person H from being performed inappropriately.
  • the other sensor device 20 or 30 and the room If the communication with the machine 10B is normally performed, it is possible to prevent the air conditioning control according to the position of the person H from being performed inappropriately. Since the sensor device 20 and the sensor device 30 have the same function, with respect to the function of acquiring information representing a two-dimensional thermal image, one sensor device 20, 30 has the function of the other sensor device 20, 30. This is because it can be complemented.
  • the air conditioning control corresponding to the position of the person is performed.
  • the air conditioning control corresponding to the position of an animal such as a dog or a cat can be performed.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.
  • 1, 1A, 1B air conditioning system 10, 10A, 10B indoor unit, 11 microcomputer, 12 communication circuit, 13 memory, 20, 30 sensor device, 21 cover, 22 thermopile sensor, 23 main body, 24 communication device, 40 remote control, 101, 101A, 101B, 201, 301, 401 control unit, 102, 102A, 102B, 204, 304, 403 communication unit, 103, 103A, 103B storage unit, 104 first determination unit, 105 stop unit, 106 return unit 107 second discriminating unit, 108 discarding unit, 202, 302 driving unit, 203, 303 human detection sensor unit, 402 input unit, H person.

Abstract

An air conditioning system (1) is provided with an indoor machine (10), and a sensor device (20), which is separated from the indoor machine (10), and which can be disposed at a discretionary indoor position, and the indoor machine (10) is provided with a communication unit (102) that communicates with the sensor device (20) in a wireless manner, and a control unit (101) that controls indoor air conditioning. The sensor device (20) is provided with: a human detection sensor unit (203); a communication unit (204) that communicates with the indoor machine (10) in a wireless manner; and a control unit (201) that transmits information to the indoor machine (10) via the communication unit (204), said information having been acquired by means of the human detection sensor unit (203). On the basis of the information acquired by the human detection sensor unit (203), and information of the disposition position of the sensor device (20), the control unit (101) of the indoor machine (10) performs air conditioning control.

Description

空気調和システムAir conditioning system
 本発明は、人感知センサを備える空気調和システムに関する。 The present invention relates to an air conditioning system including a human sensor.
 従来の空気調和機では、人感知センサが室内機本体に設けられている。人感知センサは、1つの室内機本体に1つ設けられている。空気調和機では、人感知センサにより取得された情報である2次元の熱画像を表した情報を人感知センサから取得して、当該情報に基づいて空調制御を行っていた。 In the conventional air conditioner, a human sensor is provided in the indoor unit body. One human sensor is provided in one indoor unit main body. In an air conditioner, information representing a two-dimensional thermal image, which is information acquired by a human sensor, is acquired from the human sensor and air conditioning control is performed based on the information.
 特許文献1では、室内をセンシングする第1センサと、少なくとも第1センサによって取得したデータに基づいて室内の空調制御を行う制御手段と、を備える空気調和機において、室内をセンシングする第2センサを備える外部システムと通信する通信手段を備え、制御手段は、通信手段を介して外部システムとの間で入出力される情報に基づいて、外部システムとの協調制御を行う技術が開示されている。特許文献1では、外部システムは、店舗等の室内に不審者等がいるか否かを監視するためのシステムまたは他の空調システムである。 In patent document 1, in the air conditioner provided with the 1st sensor which senses a room, and the control means which performs indoor air-conditioning control based on the data acquired by the 1st sensor at least, the 2nd sensor which senses a room is provided. A technique is disclosed that includes a communication unit that communicates with an external system, and the control unit performs cooperative control with the external system based on information input / output with the external system via the communication unit. In Patent Document 1, the external system is a system for monitoring whether or not there are suspicious persons or the like in a room such as a store, or another air conditioning system.
特開2016-114270号公報JP 2016-114270 A
 しかしながら、従来の空気調和機では、人感知センサの位置が固定されていた。このため、人感知センサの位置によっては、人感知センサと人との間の障害物によって、人感知センサが人を感知することができない場合があった。従来の空気調和機では、人感知センサの設置位置を部屋の中の障害物などに応じてユーザが決めることができない、という問題があった。 However, in the conventional air conditioner, the position of the human detection sensor is fixed. For this reason, depending on the position of the human detection sensor, the human detection sensor may not be able to detect the person due to an obstacle between the human detection sensor and the person. The conventional air conditioner has a problem in that the user cannot determine the installation position of the human sensor according to an obstacle in the room.
 特許文献1に記載の技術でも、第1センサの位置が固定され、第2センサの位置も固定されているため、第1センサおよび第2のセンサが人を感知することができない場合があった。 Even in the technique described in Patent Document 1, the position of the first sensor is fixed, and the position of the second sensor is also fixed, and thus the first sensor and the second sensor may not be able to detect a person. .
 本発明は、上記に鑑みてなされたものであって、空気調和機の設置位置に依存せずに人感知センサを設置することができる空気調和システムを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain an air conditioning system in which a human sensor can be installed without depending on the installation position of the air conditioner.
 上述した課題を解決し、目的を達成するために、本発明にかかる空気調和システムは、室内機を備える。空気調和システムは、室内機と分離し、室内の任意の位置に設置可能な第1のセンサ装置を備える。室内機は、第1のセンサ装置と無線により通信する通信部を備える。室内機は、室内の空調制御を行う制御部を備える。第1のセンサ装置は、第1の人感知センサを備える。第1のセンサ装置は、室内機と無線により通信する通信部を備える。第1のセンサ装置は、第1の人感知センサにより取得された情報を、通信部を介して室内機へ送信する制御部を備える。室内機の制御部は、第1の人感知センサにより取得された情報および第1のセンサ装置の設置位置の情報に基づいて、空調制御を行う。 In order to solve the above-described problems and achieve the object, the air conditioning system according to the present invention includes an indoor unit. The air conditioning system includes a first sensor device that is separated from the indoor unit and can be installed at an arbitrary position in the room. The indoor unit includes a communication unit that communicates with the first sensor device wirelessly. The indoor unit includes a control unit that performs indoor air conditioning control. The first sensor device includes a first human sensor. The first sensor device includes a communication unit that communicates with the indoor unit wirelessly. The first sensor device includes a control unit that transmits information acquired by the first human sensor to the indoor unit via the communication unit. The control unit of the indoor unit performs air conditioning control based on information acquired by the first human sensor and information on the installation position of the first sensor device.
 本発明にかかる空気調和システムは、空気調和機の設置位置に依存せずに人感知センサを設置することができるという効果を奏する。 The air conditioning system according to the present invention has an effect that the human sensor can be installed without depending on the installation position of the air conditioner.
本発明の実施の形態1にかかる空気調和システムによる空調制御の概要を説明するための図The figure for demonstrating the outline | summary of the air-conditioning control by the air conditioning system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる空気調和システムによる空調制御の概要を説明するための図The figure for demonstrating the outline | summary of the air-conditioning control by the air conditioning system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる空気調和システムの一例を示す構成図The block diagram which shows an example of the air conditioning system concerning Embodiment 1 of this invention. 図3におけるセンサ装置の一例を示す概略図Schematic which shows an example of the sensor apparatus in FIG. 図3の空気調和システムの機能構成の一例を示すブロック図The block diagram which shows an example of a function structure of the air conditioning system of FIG. 図3の空気調和システムが実行する空調制御のための処理のフローチャートThe flowchart of the process for the air-conditioning control which the air conditioning system of FIG. 3 performs 本実施の形態1にかかるセンサ装置の設置位置の情報を説明するための図The figure for demonstrating the information of the installation position of the sensor apparatus concerning this Embodiment 1. FIG. 本実施の形態1にかかるセンサ装置の設置位置の情報を説明するための図The figure for demonstrating the information of the installation position of the sensor apparatus concerning this Embodiment 1. FIG. 本実施の形態1にかかる3次元の熱源分布を表した情報を生成する際に用いられるテーブルの一例を示す図The figure which shows an example of the table used when producing | generating the information showing the three-dimensional heat source distribution concerning this Embodiment 1. FIG. 本実施の形態1にかかる3次元の熱源分布を表した情報から得られる熱源の一例を説明するための図The figure for demonstrating an example of the heat source obtained from the information showing the three-dimensional heat source distribution concerning this Embodiment 1 本発明の実施の形態2にかかる空気調和システムの機能構成の一例を示すブロック図The block diagram which shows an example of a function structure of the air conditioning system concerning Embodiment 2 of this invention. 図11の空気調和システムが実行する空調制御のための処理のフローチャートThe flowchart of the process for the air-conditioning control which the air conditioning system of FIG. 11 performs 本発明の実施の形態3にかかる空気調和システムの機能構成の一例を示すブロック図The block diagram which shows an example of a function structure of the air conditioning system concerning Embodiment 3 of this invention. 図13の空気調和システムが実行する空調制御のための処理のフローチャートThe flowchart of the process for the air-conditioning control which the air conditioning system of FIG. 13 performs
 以下に、本発明の実施の形態にかかる空気調和システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an air conditioning system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 まず、本発明の実施の形態1にかかる空気調和システムによる空調制御の概要について説明する。図1および図2は、本発明の実施の形態1にかかる空気調和システム1による空調制御の概要を説明するための図である。
Embodiment 1 FIG.
First, an outline of air conditioning control by the air conditioning system according to the first embodiment of the present invention will be described. 1 and 2 are diagrams for explaining an overview of air conditioning control by the air-conditioning system 1 according to the first embodiment of the present invention.
 図1に示すように、空気調和システム1は、空気調和機の室内機10(以下、単に「室内機10」と称する。)と、センサ装置20と、センサ装置30と、室内機10のリモートコントローラ40(以下、単に「リモコン40」と称する。)とを備える。センサ装置20およびセンサ装置30は、室内機10から分離している。センサ装置20およびセンサ装置30は、室内の任意の位置に設置可能である。センサ装置20の設置位置の情報およびセンサ装置30の設置位置の情報は、たとえばリモコン40から無線により室内機10へ送信される。室内機10とセンサ装置20とは無線による通信が可能である。同様に、室内機10とセンサ装置30とは無線による通信が可能である。センサ装置20およびセンサ装置30は、室内のセンシング、具体的には室内の赤外線の放射量を検出して、2次元の熱画像を表した情報を取得する。センサ装置20およびセンサ装置30は、2次元の熱画像を表した情報を無線により室内機10へ送信する。室内機10は、センサ装置20から送信された2次元の熱画像を表した情報、センサ装置30から送信された2次元の熱画像を表した情報、リモコン40から送信されたセンサ装置20の設置位置の情報およびリモコン40から送信されたセンサ装置30の設置位置の情報から、3次元の熱源分布を表した情報を生成する。室内機10は、3次元の熱源分布を表した情報に基づいて、人Hが存在する領域を特定して、人Hの位置に応じた空調制御を行う。 As shown in FIG. 1, an air conditioning system 1 includes an air conditioner indoor unit 10 (hereinafter simply referred to as “indoor unit 10”), a sensor device 20, a sensor device 30, and a remote of the indoor unit 10. And a controller 40 (hereinafter simply referred to as “remote controller 40”). The sensor device 20 and the sensor device 30 are separated from the indoor unit 10. The sensor device 20 and the sensor device 30 can be installed at any position in the room. Information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30 are transmitted from the remote controller 40 to the indoor unit 10 by radio, for example. The indoor unit 10 and the sensor device 20 can communicate wirelessly. Similarly, the indoor unit 10 and the sensor device 30 can communicate wirelessly. The sensor device 20 and the sensor device 30 detect indoor sensing, specifically, the amount of infrared radiation in the room, and acquire information representing a two-dimensional thermal image. The sensor device 20 and the sensor device 30 transmit information representing a two-dimensional thermal image to the indoor unit 10 wirelessly. The indoor unit 10 includes information representing a two-dimensional thermal image transmitted from the sensor device 20, information representing a two-dimensional thermal image transmitted from the sensor device 30, and installation of the sensor device 20 transmitted from the remote controller 40. Information representing the three-dimensional heat source distribution is generated from the position information and the installation position information of the sensor device 30 transmitted from the remote controller 40. The indoor unit 10 specifies an area where the person H exists based on the information representing the three-dimensional heat source distribution, and performs air conditioning control according to the position of the person H.
 図2に示すように、室内機10は、風向を制御することにより、室内の領域毎に空調制御が可能である。たとえば、図2に示すように、室内が27個の領域に分割される場合には、室内機10は、風向を27通りに制御することが可能である。 As shown in FIG. 2, the indoor unit 10 can control air conditioning for each indoor area by controlling the wind direction. For example, as shown in FIG. 2, when the room is divided into 27 regions, the indoor unit 10 can control the wind direction in 27 ways.
 次に、本発明の実施の形態1にかかる空気調和システムについて説明する。図3は、本発明の実施の形態1にかかる空気調和システム1の一例を示す構成図である。 Next, the air conditioning system according to Embodiment 1 of the present invention will be described. FIG. 3 is a configuration diagram illustrating an example of the air-conditioning system 1 according to the first embodiment of the present invention.
 図3に示す空気調和システム1は、室内機10と、センサ装置20と、センサ装置30と、リモコン40とを備える。センサ装置20は、第1のセンサ装置の一例である。センサ装置30は、第2のセンサ装置の一例である。室内機10は、マイクロコンピュータ11(以下、「マイコン11」と称する。)と、通信回路12と、メモリ13とを備える。マイコン11は、CPU(Central Processing Unit)、メモリおよび入出力インターフェース回路(いずれも図示しない)を有する。通信回路12は、センサ装置20、センサ装置30およびリモコン40と無線による通信が可能である。メモリ13は、たとえばセンサ装置20から送信された2次元の熱画像を表した情報、センサ装置30から送信された2次元の熱画像を表した情報、リモコン40から送信されたセンサ装置20の設置位置の情報およびリモコン40から送信されたセンサ装置30の設置位置の情報を記憶する。 The air conditioning system 1 shown in FIG. 3 includes an indoor unit 10, a sensor device 20, a sensor device 30, and a remote controller 40. The sensor device 20 is an example of a first sensor device. The sensor device 30 is an example of a second sensor device. The indoor unit 10 includes a microcomputer 11 (hereinafter referred to as “microcomputer 11”), a communication circuit 12, and a memory 13. The microcomputer 11 has a CPU (Central Processing Unit), a memory, and an input / output interface circuit (all not shown). The communication circuit 12 can wirelessly communicate with the sensor device 20, the sensor device 30, and the remote controller 40. The memory 13 is, for example, information representing a two-dimensional thermal image transmitted from the sensor device 20, information representing a two-dimensional thermal image transmitted from the sensor device 30, and installation of the sensor device 20 transmitted from the remote controller 40. Information on the position and information on the installation position of the sensor device 30 transmitted from the remote controller 40 are stored.
 図4は、図3におけるセンサ装置20の一例を示す概略図である。図3におけるセンサ装置30は、センサ装置20と同様であるため、その説明については省略する。 FIG. 4 is a schematic diagram showing an example of the sensor device 20 in FIG. Since the sensor device 30 in FIG. 3 is the same as the sensor device 20, the description thereof is omitted.
 図4に示すセンサ装置20は、ドーム状のカバー21と、カバー21内に収容されるサーモパイルセンサ22と、本体23と、室内機10と無線により通信可能な通信機24とを備える。サーモパイルセンサ22は、モータ駆動によって右回転および左回転が可能である。サーモパイルセンサ22は、たとえば図4中の縦方向、すなわちy軸方向の画素数が80個のセンサである。センサ装置20は、サーモパイルセンサ22を用いて、カバー21越しに室内のセンシング、具体的には室内の赤外線の放射量を検出して、2次元の熱画像を表した情報を取得する。サーモパイルセンサ22は、第1の人感知センサおよび第2の人感知センサの一例である。センサ装置20は、取得した2次元の熱画像を表した情報を、通信機24を介して室内機10へ送信する。2次元の熱画像を表した情報は、第1の人感知センサにより取得された情報および第2の人感知センサにより取得された情報の一例である。 4 includes a dome-shaped cover 21, a thermopile sensor 22 accommodated in the cover 21, a main body 23, and a communication device 24 capable of communicating with the indoor unit 10 wirelessly. The thermopile sensor 22 can rotate right and left by motor driving. The thermopile sensor 22 is, for example, a sensor having 80 pixels in the vertical direction in FIG. The sensor device 20 uses the thermopile sensor 22 to detect indoor sensing through the cover 21, specifically, the amount of infrared radiation in the room, and acquires information representing a two-dimensional thermal image. The thermopile sensor 22 is an example of a first human sensor and a second human sensor. The sensor device 20 transmits information representing the acquired two-dimensional thermal image to the indoor unit 10 via the communication device 24. Information representing a two-dimensional thermal image is an example of information acquired by the first human sensor and information acquired by the second human sensor.
 次に、図3の空気調和システムの機能構成について説明する。図5は、図3の空気調和システム1の機能構成の一例を示すブロック図である。 Next, the functional configuration of the air conditioning system of FIG. 3 will be described. FIG. 5 is a block diagram showing an example of a functional configuration of the air conditioning system 1 of FIG.
 図5に示す室内機10は、制御部101と、通信部102と、記憶部103とを有する。制御部101は、室内機10の全体を制御する。制御部101は、リモコン40から送信されたセンサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報を、通信部102を介して受信する。記憶部103は、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報を記憶する。制御部101は、センサ装置20から送信された2次元の熱画像を表した情報、およびセンサ装置30から送信された2次元の熱画像を表した情報を、通信部102を介して受信する。記憶部103は、センサ装置20から送信された2次元の熱画像を表した情報、およびセンサ装置30から送信された2次元の熱画像を表した情報を記憶する。制御部101は、センサ装置20から送信された2次元の熱画像を表した情報、センサ装置30から送信された2次元の熱画像を表した情報、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報から3次元の熱源分布を表した情報を生成する。制御部101は、3次元の熱源分布を表した情報から得られる熱源が存在する領域から人Hが存在する領域を特定する。制御部101は、特定された領域が空調制御対象の領域となるように、風向を制御して、人Hの位置に応じた空調制御を行う。 The indoor unit 10 shown in FIG. 5 includes a control unit 101, a communication unit 102, and a storage unit 103. The control unit 101 controls the entire indoor unit 10. The control unit 101 receives the information on the installation position of the sensor device 20 and the information on the installation position of the sensor device 30 transmitted from the remote controller 40 via the communication unit 102. The storage unit 103 stores information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30. The control unit 101 receives the information representing the two-dimensional thermal image transmitted from the sensor device 20 and the information representing the two-dimensional thermal image transmitted from the sensor device 30 via the communication unit 102. The storage unit 103 stores information representing a two-dimensional thermal image transmitted from the sensor device 20 and information representing a two-dimensional thermal image transmitted from the sensor device 30. The control unit 101 includes information representing a two-dimensional thermal image transmitted from the sensor device 20, information representing a two-dimensional thermal image transmitted from the sensor device 30, information on an installation position of the sensor device 20, and a sensor. Information representing the three-dimensional heat source distribution is generated from the information on the installation position of the device 30. The control unit 101 specifies a region where the person H is present from a region where the heat source is obtained from information representing the three-dimensional heat source distribution. The control unit 101 performs air conditioning control according to the position of the person H by controlling the wind direction so that the identified area becomes the area targeted for air conditioning control.
 センサ装置20は、制御部201と、駆動部202と、人感知センサ部203と、通信部204とを有する。制御部201は、センサ装置20の全体を制御する。制御部201は、駆動部202および人感知センサ部203を制御して、室内のセンシング、具体的には室内の赤外線の放射量を検出して、2次元の熱画像を表した情報を取得する。制御部201は、取得した2次元の熱画像を表した情報を、通信部204を介して室内機10へ送信する。センサ装置30は、センサ装置20と同様であるため、その説明については省略する。 The sensor device 20 includes a control unit 201, a drive unit 202, a human detection sensor unit 203, and a communication unit 204. The control unit 201 controls the entire sensor device 20. The control unit 201 controls the driving unit 202 and the human detection sensor unit 203 to detect indoor sensing, specifically, the amount of infrared radiation in the room, and acquire information representing a two-dimensional thermal image. . The control unit 201 transmits information representing the acquired two-dimensional thermal image to the indoor unit 10 via the communication unit 204. Since the sensor device 30 is the same as the sensor device 20, the description thereof is omitted.
 リモコン40は、制御部401と、入力部402と、通信部403とを有する。制御部401は、リモコン40の全体を制御する。入力部402は、ユーザによるセンサ装置20の設置位置の選択入力、およびセンサ装置30の設置位置の選択入力を受け付ける。制御部401は、ユーザによるセンサ装置20の設置位置の選択入力に基づいて、センサ装置20の設置位置の情報を生成する。制御部401は、ユーザによるセンサ装置30の設置位置の選択入力に基づいて、センサ装置30の設置位置の情報を生成する。制御部401は、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報を、通信部403を介して室内機10へ送信する。 The remote controller 40 includes a control unit 401, an input unit 402, and a communication unit 403. The control unit 401 controls the entire remote controller 40. The input unit 402 receives a selection input for the installation position of the sensor device 20 and a selection input for the installation position of the sensor device 30 by the user. The control unit 401 generates information on the installation position of the sensor device 20 based on a selection input of the installation position of the sensor device 20 by the user. The control unit 401 generates information on the installation position of the sensor device 30 based on a selection input of the installation position of the sensor device 30 by the user. The control unit 401 transmits information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30 to the indoor unit 10 via the communication unit 403.
 次に、図3の空気調和システムが実行する空調制御のための処理について説明する。図6は、図3の空気調和システム1が実行する空調制御のための処理のフローチャートである。 Next, processing for air conditioning control executed by the air conditioning system of FIG. 3 will be described. FIG. 6 is a flowchart of processing for air conditioning control executed by the air conditioning system 1 of FIG.
 ステップS101において、まず、リモコン40の入力部402は、ユーザによるセンサ装置20の設置位置の選択入力、およびセンサ装置30の設置位置の選択入力を受け付ける。センサ装置20の設置位置の情報は、ユーザによるセンサ装置20の設置位置の選択入力に基づいて制御部401により生成される。センサ装置30の設置位置の情報は、ユーザによるセンサ装置30の設置位置の選択入力に基づいて制御部401により生成される。図7および図8は、本実施の形態1にかかるセンサ装置20,30の設置位置の情報を説明するための図である。センサ装置20,30の設置位置の情報は、図7に示すように室内機10の中心位置Cから鉛直方向に延びた線と床Dとの接点を基準点Eとした場合の基準点Eとの距離、すなわちXまたはYの情報と、図7に示すようにセンサ装置20,30の正面方向とセンサ装置20,30から上記基準点の方向とがなす角度、すなわちAまたはBの情報と、図8に示すようにたとえば室内を9つのエリアに分割した場合のセンサ装置20,30の設置エリア、すなわちエリア4またはエリア3の情報とを含む。センサ装置20,30の正面方向は、図4に示すサーモパイルセンサ22がモータ駆動による回転前に向いている方向である。リモコン40の画面には、上述した距離、角度、およびエリアをセンサ装置20,30毎にユーザに選択させるための選択入力画面が表示される。 In step S101, first, the input unit 402 of the remote controller 40 receives a selection input of the installation position of the sensor device 20 and a selection input of the installation position of the sensor device 30 by the user. Information on the installation position of the sensor device 20 is generated by the control unit 401 based on a selection input of the installation position of the sensor device 20 by the user. Information on the installation position of the sensor device 30 is generated by the control unit 401 based on a selection input of the installation position of the sensor device 30 by the user. 7 and 8 are diagrams for explaining information on the installation positions of the sensor devices 20 and 30 according to the first embodiment. The information on the installation positions of the sensor devices 20 and 30 includes the reference point E when the reference point E is a contact point between a line extending in the vertical direction from the center position C of the indoor unit 10 and the floor D as shown in FIG. Distance, that is, X or Y information, and an angle formed by the front direction of the sensor device 20, 30 and the direction of the reference point from the sensor device 20, 30 as shown in FIG. As shown in FIG. 8, for example, the installation area of the sensor devices 20 and 30 when the room is divided into nine areas, that is, information on the area 4 or the area 3 is included. The front direction of the sensor devices 20 and 30 is the direction in which the thermopile sensor 22 shown in FIG. 4 faces before rotation by motor driving. On the screen of the remote controller 40, a selection input screen for allowing the user to select the above-described distance, angle, and area for each of the sensor devices 20 and 30 is displayed.
 次いで、リモコン40の制御部401は、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報を、通信部403を介して室内機10へ送信する(ステップS102)。 Next, the control unit 401 of the remote controller 40 transmits information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30 to the indoor unit 10 via the communication unit 403 (step S102).
 次いで、室内機10の制御部101は、ステップS102で送信されたセンサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報を、通信部102を介して受信する(ステップS103)。ステップS103で受信したセンサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報は記憶部103に記憶される。 Next, the control unit 101 of the indoor unit 10 receives the information on the installation position of the sensor device 20 and the information on the installation position of the sensor device 30 transmitted in step S102 via the communication unit 102 (step S103). Information on the installation position of the sensor device 20 and information on the installation position of the sensor device 30 received in step S103 are stored in the storage unit 103.
 ステップS104において、センサ装置20の制御部201は、駆動部202および人感知センサ部203を制御して、室内のセンシングを行い、2次元の熱画像を表した情報を取得する。センサ装置20のサーモパイルセンサ22は、モータ駆動によって右回転および左回転が可能であり、たとえば右回りに180°回転し、また左回りに180°回転する。2次元の熱画像を表した情報は、センサ出力が、ある閾値以上の値の画素の位置の情報と、当該センサ出力の際の上述したモータ駆動による駆動角度、すなわち上述したセンサ装置の正面方向と当該センサ出力の際のサーモパイルセンサ22が向いている方向とのなす角度(以下、「熱源角度」と称する。)の情報とを含む。サーモパイルセンサ22が、図4中の縦方向、すなわちy軸方向の画素数が80のセンサである場合、たとえば1~20画素までを高さ50cmとし、21~40画素までを高さ100cmとし、41~60画素までを高さ150cmとし、61~80画素までを高さ200cmとする。 In step S104, the control unit 201 of the sensor device 20 controls the drive unit 202 and the human detection sensor unit 203 to perform indoor sensing and acquire information representing a two-dimensional thermal image. The thermopile sensor 22 of the sensor device 20 can be rotated clockwise and counterclockwise by driving a motor. For example, the thermopile sensor 22 rotates 180 ° clockwise and 180 ° counterclockwise. The information representing the two-dimensional thermal image includes information on the position of a pixel whose sensor output is a value equal to or greater than a certain threshold, and the driving angle by the motor driving described above in the sensor output, that is, the front direction of the sensor device described above. And information on an angle (hereinafter referred to as “heat source angle”) formed by the thermopile sensor 22 in the sensor output direction. When the thermopile sensor 22 is a sensor having 80 pixels in the vertical direction in FIG. 4, that is, in the y-axis direction, for example, 1 to 20 pixels is 50 cm in height, 21 to 40 pixels is 100 cm in height, The height from 41 to 60 pixels is 150 cm, and the height from 61 to 80 pixels is 200 cm.
 次いで、センサ装置20の制御部201は、ステップS104で取得した2次元の熱画像を表した情報を、通信部204を介して室内機10へ送信する(ステップS105)。 Next, the control unit 201 of the sensor device 20 transmits information representing the two-dimensional thermal image acquired in step S104 to the indoor unit 10 via the communication unit 204 (step S105).
 ステップS106において、センサ装置30の制御部301は、駆動部302および人感知センサ部303を制御して、室内のセンシングを行い、2次元の熱画像を表した情報を取得する。 In step S106, the control unit 301 of the sensor device 30 controls the driving unit 302 and the human detection sensor unit 303 to perform indoor sensing and acquire information representing a two-dimensional thermal image.
 次いで、センサ装置30の制御部301は、ステップS106で取得した2次元の熱画像を表した情報を、通信部304を介して室内機10へ送信する(ステップS107)。 Next, the control unit 301 of the sensor device 30 transmits information representing the two-dimensional thermal image acquired in step S106 to the indoor unit 10 via the communication unit 304 (step S107).
 ステップS108において、室内機10の制御部101は、ステップS105で送信された2次元の熱画像を表した情報、およびステップS107で送信された2次元の熱画像を表した情報を、通信部102を介して受信する(ステップS108)。ステップS108で受信した、センサ装置20から送信された2次元の熱画像を表した情報およびセンサ装置30から送信された2次元の熱画像を表した情報は、それぞれ記憶部103に記憶される。 In step S108, the control unit 101 of the indoor unit 10 transmits the information representing the two-dimensional thermal image transmitted in step S105 and the information representing the two-dimensional thermal image transmitted in step S107 to the communication unit 102. (Step S108). The information representing the two-dimensional thermal image transmitted from the sensor device 20 and the information representing the two-dimensional thermal image transmitted from the sensor device 30 received in step S108 are stored in the storage unit 103, respectively.
 次いで、室内機10の制御部101は、センサ装置20から送信された2次元の熱画像を表した情報、センサ装置30から送信された2次元の熱画像を表した情報、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報から3次元の熱源分布を表した情報を生成する(ステップS109)。具体的には、センサ装置20の上述した距離、角度およびエリアの情報と、センサ装置30の上述した距離、角度およびエリアの情報と、センサ装置20が感知した熱源の高さおよび熱源角度の情報と、センサ装置30が感知した熱源の高さおよび熱源角度の情報とから、図9に示すテーブルを用いて、熱源の領域を特定し、3次元の熱源分布を表した情報を生成する。センサ装置20が感知した熱源の高さの情報は、センサ装置20からのセンサ出力が、ある閾値以上の値の画素の位置の情報である。センサ装置30が感知した熱源の高さの情報は、センサ装置30からのセンサ出力が、ある閾値以上の値の画素の位置の情報である。 Next, the control unit 101 of the indoor unit 10 includes information representing the two-dimensional thermal image transmitted from the sensor device 20, information representing the two-dimensional thermal image transmitted from the sensor device 30, and installation of the sensor device 20. Information representing the three-dimensional heat source distribution is generated from the position information and the installation position information of the sensor device 30 (step S109). Specifically, the above-described distance, angle, and area information of the sensor device 20, the above-described distance, angle, and area information of the sensor device 30, and the heat source height and heat source angle information sensed by the sensor device 20 are described. Then, from the information on the height and the heat source angle of the heat source sensed by the sensor device 30, the heat source region is specified using the table shown in FIG. 9, and information representing a three-dimensional heat source distribution is generated. The information on the height of the heat source sensed by the sensor device 20 is information on the position of a pixel whose sensor output from the sensor device 20 has a value equal to or greater than a certain threshold value. The information on the height of the heat source sensed by the sensor device 30 is information on the position of a pixel whose sensor output from the sensor device 30 is equal to or greater than a certain threshold value.
 図9は、本実施の形態1にかかる3次元の熱源分布を表した情報を生成する際に用いられるテーブルの一例を示す図である。図9に示すテーブルは、図8に示すセンサ装置20,30が設置されるエリアの組み合わせ毎に作成される。図9に示すテーブルは、空気調和機の設置業者またはユーザによって予め作成される。図9に示すテーブルは、センサ装置20のエリアがエリア4であり、センサ装置30のエリアがエリア3である場合のテーブルである。図9に示すように、センサ装置20の距離が500cmであり、角度が30°であり、エリアがエリア4であり、センサ装置30の距離が500cmであり、角度が30°であり、エリアがエリア3であり、センサ装置20が感知した熱源の高さが150cmであり、センサ装置20が感知した熱源の熱源角度が45°であり、センサ装置30が感知した熱源の高さが150cmであり、センサ装置30が感知した熱源の熱源角度が45°である場合は、熱源の領域がたとえば図2に示す領域aと特定される。 FIG. 9 is a diagram illustrating an example of a table used when generating information representing the three-dimensional heat source distribution according to the first embodiment. The table shown in FIG. 9 is created for each combination of areas where the sensor devices 20 and 30 shown in FIG. 8 are installed. The table shown in FIG. 9 is created in advance by an air conditioner installer or user. The table shown in FIG. 9 is a table when the area of the sensor device 20 is area 4 and the area of the sensor device 30 is area 3. As shown in FIG. 9, the distance of the sensor device 20 is 500 cm, the angle is 30 °, the area is the area 4, the distance of the sensor device 30 is 500 cm, the angle is 30 °, and the area is In area 3, the height of the heat source sensed by the sensor device 20 is 150 cm, the heat source angle of the heat source sensed by the sensor device 20 is 45 °, and the height of the heat source sensed by the sensor device 30 is 150 cm. When the heat source angle of the heat source sensed by the sensor device 30 is 45 °, the heat source region is identified as, for example, the region a shown in FIG.
 次いで、室内機10の制御部101は、ステップS109で生成された3次元の熱源分布を表した情報から得られる熱源が人Hのみか否かを判別する(ステップS110)。図10は、本実施の形態1にかかる3次元の熱源分布を表した情報から得られる熱源の一例を説明するための図である。図10に示すような3次元の熱源分布の場合、制御部101は、領域a、領域dおよび領域gの熱源は人の形に分布しているため、熱源は人Hであると判断することが可能である。人の形はあらかじめ定義されているものとする。図10に示すような3次元の熱源分布の場合、制御部101は、領域mの熱源は矩形に分布しているため、熱源は人H以外の、たとえばテレビであると判断することが可能である。ステップS110では、たとえば、ステップS109で生成された3次元の熱源分布を表した情報から得られる熱源が矩形の熱源を含まない場合は、熱源が人Hのみと判別することができる。 Next, the control unit 101 of the indoor unit 10 determines whether or not the person H is the only heat source obtained from the information representing the three-dimensional heat source distribution generated in step S109 (step S110). FIG. 10 is a diagram for explaining an example of a heat source obtained from information representing the three-dimensional heat source distribution according to the first embodiment. In the case of the three-dimensional heat source distribution as shown in FIG. 10, the control unit 101 determines that the heat source is the person H because the heat sources in the areas a, d, and g are distributed in a human shape. Is possible. The shape of the person is pre-defined. In the case of the three-dimensional heat source distribution as shown in FIG. 10, the control unit 101 can determine that the heat source in the region m is a rectangle, for example, a television other than the person H. is there. In step S110, for example, when the heat source obtained from the information representing the three-dimensional heat source distribution generated in step S109 does not include a rectangular heat source, it is possible to determine that the heat source is only person H.
 ステップS110での判別の結果、3次元の熱源分布を表した情報から得られる熱源が人Hのみでないときは(ステップS110でNo)、室内機10の制御部101は、3次元の熱源分布を表した情報の補正を行う(ステップS111)。3次元の熱源分布を表した情報の補正は、3次元の熱源分布を表した情報から、人H以外の熱源と判断された情報を除く処理をいう。たとえば、図10に示すような3次元の熱源分布の場合、制御部101は、3次元の熱源分布を表した情報において領域mの熱源を表した情報を除くように3次元の熱源分布を表した情報の補正を行う。 As a result of the determination in step S110, when the heat source obtained from the information representing the three-dimensional heat source distribution is not only the person H (No in step S110), the control unit 101 of the indoor unit 10 displays the three-dimensional heat source distribution. The represented information is corrected (step S111). The correction of the information representing the three-dimensional heat source distribution refers to a process of excluding information determined as a heat source other than the person H from the information representing the three-dimensional heat source distribution. For example, in the case of a three-dimensional heat source distribution as shown in FIG. 10, the control unit 101 displays the three-dimensional heat source distribution so that information representing the heat source in the region m is excluded from the information representing the three-dimensional heat source distribution. Correction of the information.
 ステップS110での判別の結果、3次元の熱源分布を表した情報から得られる熱源が人Hのみであるとき(ステップS110でYes)、またはステップS111の後に、室内機10の制御部101は、3次元の熱源分布を表した情報から得られる熱源が存在する領域から人Hが存在する領域を特定する(ステップS112)。たとえば、図10に示すような3次元の熱源分布の場合、制御部101は、人Hが存在する領域は、領域a、領域dおよび領域gと特定する。 As a result of the determination in step S110, when the heat source obtained from the information representing the three-dimensional heat source distribution is only the person H (Yes in step S110), or after step S111, the control unit 101 of the indoor unit 10 A region where the person H is present is identified from a region where the heat source obtained from the information representing the three-dimensional heat source distribution is present (step S112). For example, in the case of a three-dimensional heat source distribution as shown in FIG. 10, the control unit 101 specifies the regions where the person H exists as the region a, the region d, and the region g.
 次いで、室内機10の制御部101は、ステップS112で特定された領域が空調制御対象の領域となるように、風向を制御して、当該領域に室内機10から送出される空気が供給されるようにして、人Hが存在する領域の空調制御を行って(ステップS113)、本処理を終了する。たとえば、人Hが存在する領域が、領域a、領域dおよび領域gと特定された場合、制御部101は、領域dが空調制御対象の領域となるように、風向を制御して、当該領域に室内機10から送出される空気が供給されるようにする。 Next, the control unit 101 of the indoor unit 10 controls the air direction so that the area specified in step S112 becomes the air conditioning control target area, and the air sent from the indoor unit 10 is supplied to the area. In this way, air conditioning control is performed on the area where the person H is present (step S113), and this process is terminated. For example, when the region where the person H exists is specified as the region a, the region d, and the region g, the control unit 101 controls the wind direction so that the region d becomes a region targeted for air conditioning control, and the region Is supplied with air sent from the indoor unit 10.
 図6に示した空調制御のための処理によれば、室内機10の設置位置に依存せずにセンサ装置20を設置することができる。また、室内の任意の位置に設置されたセンサ装置20からの2次元の熱画像を表した情報に基づいて、人Hの位置に応じた空調制御が行われる。センサ装置20の位置が固定されていないため、センサ装置20の設置位置を部屋の中の障害物などに応じてユーザが決めることができる。 According to the process for air conditioning control shown in FIG. 6, the sensor device 20 can be installed without depending on the installation position of the indoor unit 10. In addition, air-conditioning control according to the position of the person H is performed based on information representing a two-dimensional thermal image from the sensor device 20 installed at an arbitrary position in the room. Since the position of the sensor device 20 is not fixed, the user can determine the installation position of the sensor device 20 according to an obstacle in the room.
 図6に示した空調制御のための処理によれば、室内の任意の位置に設置されたセンサ装置20およびセンサ装置30からの2次元の熱画像を表した情報から生成される3次元の熱源分布を表した情報に基づいて、人Hが存在する領域が特定される。これにより、空気調和システム1では、3次元の熱源分布を表した情報が得られるため、人Hが存在する領域を精度よく特定することができ、人Hの位置に応じた空調制御を精度よく行うことができる。 According to the process for air conditioning control shown in FIG. 6, a three-dimensional heat source generated from information representing a two-dimensional thermal image from the sensor device 20 and the sensor device 30 installed at an arbitrary position in the room. Based on the information representing the distribution, the region where the person H exists is specified. Thereby, in the air conditioning system 1, since the information showing the three-dimensional heat source distribution can be obtained, the area where the person H exists can be specified with high accuracy, and the air conditioning control according to the position of the person H can be performed with high accuracy. It can be carried out.
実施の形態2.
 次に、本発明の実施の形態2にかかる空気調和システムについて説明する。図11は、本発明の実施の形態2にかかる空気調和システム1Aの機能構成の一例を示すブロック図である。本発明の実施の形態2にかかる空気調和システム1Aは、主に、室内機10Aの制御部101Aの機能が異なる点が、上述した実施の形態1と異なる。実施の形態1と重複した構成および作用については説明を省略し、以下に異なる構成および作用についての説明を行う。
Embodiment 2. FIG.
Next, an air conditioning system according to Embodiment 2 of the present invention will be described. FIG. 11: is a block diagram which shows an example of a function structure of the air conditioning system 1A concerning Embodiment 2 of this invention. The air conditioning system 1A according to the second embodiment of the present invention is different from the above-described first embodiment mainly in that the function of the control unit 101A of the indoor unit 10A is different. The description of the same configuration and operation as those in the first embodiment will be omitted, and a description of the different configuration and operation will be given below.
 図11に示す室内機10Aは、制御部101Aと、通信部102Aと、記憶部103Aとを有する。制御部101Aは、第1の判別部104と、停止部105と、復帰部106とを有する。 The indoor unit 10A shown in FIG. 11 includes a control unit 101A, a communication unit 102A, and a storage unit 103A. The control unit 101A includes a first determination unit 104, a stop unit 105, and a return unit 106.
 第1の判別部104は、センサ装置20から前回の制御周期に受信した2次元の熱画像を表した情報と、センサ装置20から今回の制御周期に受信した2次元の熱画像を表した情報とを比較し、前回の制御周期に受信した2次元の熱画像を表した情報から得られる熱源の位置と、今回の制御周期に受信した2次元の熱画像を表した情報から得られる熱源の位置とに変化があるか否かを判別する。第1の判別部104は、センサ装置30から前回の制御周期に受信した2次元の熱画像を表した情報と、センサ装置30から今回の制御周期に受信した2次元の熱画像を表した情報とを比較し、前回の制御周期に受信した2次元の熱画像を表した情報から得られる熱源の位置と、今回の制御周期に受信した2次元の熱画像を表した情報から得られる熱源の位置とに変化があるか否かを判別する。 The first determination unit 104 includes information representing a two-dimensional thermal image received from the sensor device 20 in the previous control cycle and information representing a two-dimensional thermal image received from the sensor device 20 in the current control cycle. And the position of the heat source obtained from the information representing the two-dimensional thermal image received in the previous control cycle and the heat source obtained from the information representing the two-dimensional thermal image received in the current control cycle. It is determined whether or not there is a change in position. The first determination unit 104 includes information representing a two-dimensional thermal image received from the sensor device 30 in the previous control cycle, and information representing a two-dimensional thermal image received from the sensor device 30 in the current control cycle. And the position of the heat source obtained from the information representing the two-dimensional thermal image received in the previous control cycle and the heat source obtained from the information representing the two-dimensional thermal image received in the current control cycle. It is determined whether or not there is a change in position.
 停止部105は、第1の判別部104による判別の結果、熱源の位置に変化がない場合は、センサ装置30によるセンシングを停止させるための要求を、通信部102Aを介してセンサ装置30へ送信するとともに、通信部102Aによるセンサ装置30との通信を停止させる。 If the position of the heat source has not changed as a result of the determination by the first determination unit 104, the stop unit 105 transmits a request for stopping the sensing by the sensor device 30 to the sensor device 30 via the communication unit 102A. In addition, communication with the sensor device 30 by the communication unit 102A is stopped.
 復帰部106は、センサ装置30との通信の停止後において、第1の判別部104による判別の結果、熱源の位置に変化がある場合は、通信部102Aによるセンサ装置30との通信を復帰させるとともに、センサ装置30によるセンシングを復帰させるための要求を、通信部102Aを介してセンサ装置30へ送信する。 When the position of the heat source is changed as a result of the determination by the first determination unit 104 after the communication with the sensor device 30 is stopped, the return unit 106 returns the communication with the sensor device 30 by the communication unit 102A. At the same time, a request for returning sensing by the sensor device 30 is transmitted to the sensor device 30 via the communication unit 102A.
 次に、図11の空気調和システムが実行する空調制御のための処理について説明する。図12は、図11の空気調和システム1Aが実行する空調制御のための処理のフローチャートである。図12の空調制御のための処理は、上述した図6の空調制御のための処理におけるステップS104からステップS108までの処理に相当する。 Next, processing for air conditioning control executed by the air conditioning system of FIG. 11 will be described. FIG. 12 is a flowchart of processing for air conditioning control executed by the air conditioning system 1A of FIG. The processing for air conditioning control in FIG. 12 corresponds to the processing from step S104 to step S108 in the processing for air conditioning control in FIG. 6 described above.
 ステップS201において、センサ装置20,30は、それぞれ室内のセンシングを行い、それぞれ2次元の熱画像を表した情報を取得する。 In step S201, each of the sensor devices 20 and 30 performs indoor sensing and acquires information representing a two-dimensional thermal image.
 次いで、センサ装置20,30は、ステップS201でそれぞれ取得した2次元の熱画像を表した情報をそれぞれ室内機10Aへ送信する(ステップS202)。 Next, the sensor devices 20 and 30 each transmit information representing the two-dimensional thermal image acquired in step S201 to the indoor unit 10A (step S202).
 次いで、室内機10Aは、ステップS202でそれぞれ送信された2次元の熱画像を表した情報をそれぞれ受信する(ステップS203)。ステップS203でそれぞれ受信された2次元の熱画像を表した情報はそれぞれ記憶部103Aに記憶される。ステップS203でそれぞれ受信した2次元の熱画像を表した情報は、前回の制御周期に受信した第1の人感知センサにより取得された第1の取得情報および前回の制御周期に受信した第2の人感知センサにより取得された第3の取得情報に相当する。 Next, the indoor unit 10A receives the information representing the two-dimensional thermal images transmitted in step S202, respectively (step S203). Information representing the two-dimensional thermal image received in step S203 is stored in the storage unit 103A. The information representing the two-dimensional thermal image received in step S203 includes the first acquisition information acquired by the first human sensor received in the previous control cycle and the second information received in the previous control cycle. This corresponds to third acquired information acquired by the human sensor.
 次いで、センサ装置20,30は、それぞれ室内のセンシングを行い、それぞれ2次元の熱画像を表した情報を取得する(ステップS204)。 Next, each of the sensor devices 20 and 30 performs indoor sensing and acquires information representing a two-dimensional thermal image (step S204).
 次いで、センサ装置20,30は、ステップS204でそれぞれ取得した2次元の熱画像を表した情報をそれぞれ室内機10Aへ送信する(ステップS205)。 Next, the sensor devices 20 and 30 each transmit information representing the two-dimensional thermal image acquired in step S204 to the indoor unit 10A (step S205).
 次いで、室内機10Aは、ステップS205でそれぞれ送信された2次元の熱画像を表した情報をそれぞれ受信する(ステップS206)。ステップS206でそれぞれ受信した2次元の熱画像を表した情報はそれぞれ記憶部103Aに記憶される。ステップS206でそれぞれ受信した2次元の熱画像を表した情報は、今回の制御周期に受信した第1の人感知センサにより取得された第2の取得情報および今回の制御周期に受信した第2の人感知センサにより取得された第3の取得情報に相当する。 Next, the indoor unit 10A receives each information representing the two-dimensional thermal image transmitted in step S205 (step S206). Information representing the two-dimensional thermal image received in step S206 is stored in the storage unit 103A. The information representing the two-dimensional thermal image received in step S206 includes the second acquired information acquired by the first human sensor received in the current control cycle and the second received in the current control cycle. This corresponds to third acquired information acquired by the human sensor.
 次いで、室内機10Aの第1の判別部104は、ステップS203でセンサ装置20から受信した2次元の熱画像を表した情報と、ステップS206でセンサ装置20から受信した2次元の熱画像を表した情報とを比較し、ステップS203でセンサ装置20から受信した2次元の熱画像を表した情報から得られる熱源の位置と、ステップS206でセンサ装置20から受信した2次元の熱画像を表した情報から得られる熱源の位置とに変化があるか否かを判別する(ステップS207)。室内機10Aの第1の判別部104は、ステップS203でセンサ装置30から受信した2次元の熱画像を表した情報と、ステップS206でセンサ装置30から受信した2次元の熱画像を表した情報とを比較し、ステップS203でセンサ装置30から受信した2次元の熱画像を表した情報から得られる熱源の位置と、ステップS206でセンサ装置30から受信した2次元の熱画像を表した情報から得られる熱源の位置とに変化があるか否かを判別する(ステップS207)。 Next, the first determination unit 104 of the indoor unit 10A displays the information representing the two-dimensional thermal image received from the sensor device 20 in step S203 and the two-dimensional thermal image received from the sensor device 20 in step S206. And the position of the heat source obtained from the information representing the two-dimensional thermal image received from the sensor device 20 in step S203 and the two-dimensional thermal image received from the sensor device 20 in step S206. It is determined whether or not there is a change in the position of the heat source obtained from the information (step S207). The first determination unit 104 of the indoor unit 10A includes information representing the two-dimensional thermal image received from the sensor device 30 in step S203 and information representing the two-dimensional thermal image received from the sensor device 30 in step S206. And the position of the heat source obtained from the information representing the two-dimensional thermal image received from the sensor device 30 in step S203 and the information representing the two-dimensional thermal image received from the sensor device 30 in step S206. It is determined whether or not there is a change in the position of the obtained heat source (step S207).
 ステップS207での判別の結果、センサ20が感知した熱源の位置、およびセンサ30が感知した熱源の位置の少なくとも一方の熱源の位置に変化があるときは(ステップS207でYes)、ステップS204の処理に戻る。 If there is a change in the position of the heat source sensed by the sensor 20 and / or the position of the heat source sensed by the sensor 30 as a result of the determination in step S207 (Yes in step S207), the process in step S204 Return to.
 ステップS207での判別の結果、熱源の位置に変化がないときは(ステップS207でNo)、室内機10Aの停止部105は、センサ装置30によるセンシングを停止させるための要求を、通信部102Aを介してセンサ装置30へ送信するとともに、通信部102Aによるセンサ装置30との通信を停止させる(ステップS208)。ステップS208で送信されたセンシングを停止させるための要求を受信したセンサ装置30は、室内のセンシングを停止する。 If the result of determination in step S207 is that there is no change in the position of the heat source (No in step S207), the stop unit 105 of the indoor unit 10A sends a request for stopping sensing by the sensor device 30 to the communication unit 102A. The communication unit 102A stops communication with the sensor device 30 (step S208). The sensor device 30 that has received the request for stopping the sensing transmitted in step S208 stops the indoor sensing.
 次いで、センサ装置20は、室内のセンシングを行い、2次元の熱画像を表した情報を取得する(ステップS209)。 Next, the sensor device 20 performs indoor sensing and acquires information representing a two-dimensional thermal image (step S209).
 次いで、センサ装置20は、ステップS209で取得した2次元の熱画像を表した情報を室内機10Aへ送信する(ステップS210)。 Next, the sensor device 20 transmits information representing the two-dimensional thermal image acquired in step S209 to the indoor unit 10A (step S210).
 次いで、室内機10Aは、ステップS210で送信された2次元の熱画像を表した情報を受信する(ステップS211)。ステップS211で受信した2次元の熱画像を表した情報は記憶部103Aに記憶される。ステップS211の後の、上述した図6の空調制御のための処理におけるステップS109に相当する処理では、ステップS211でセンサ装置20から受信した2次元の熱画像を表した情報、ステップS206でセンサ装置30から受信した2次元の熱画像を表した情報、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報から3次元の熱源分布を表した情報を生成する。 Next, the indoor unit 10A receives the information representing the two-dimensional thermal image transmitted in step S210 (step S211). Information representing the two-dimensional thermal image received in step S211 is stored in the storage unit 103A. In the processing corresponding to step S109 in the above-described processing for air conditioning control in FIG. 6 after step S211, information representing the two-dimensional thermal image received from the sensor device 20 in step S211 and the sensor device in step S206. The information representing the three-dimensional heat source distribution is generated from the information representing the two-dimensional thermal image received from 30, the information on the installation position of the sensor device 20, and the information on the installation position of the sensor device 30.
 次いで、室内機10Aの第1の判別部104は、ステップS206でセンサ装置20から受信した2次元の熱画像を表した情報と、ステップS211でセンサ装置20から受信した2次元の熱画像を表した情報とを比較し、ステップS206でセンサ装置20から受信した2次元の熱画像を表した情報から得られる熱源の位置と、ステップS211でセンサ装置20から受信した2次元の熱画像を表した情報から得られる熱源の位置とに変化があるか否かを判別する(ステップS212)。 Next, the first determination unit 104 of the indoor unit 10A displays the information representing the two-dimensional thermal image received from the sensor device 20 in step S206 and the two-dimensional thermal image received from the sensor device 20 in step S211. And the position of the heat source obtained from the information representing the two-dimensional thermal image received from the sensor device 20 in step S206, and the two-dimensional thermal image received from the sensor device 20 in step S211. It is determined whether or not there is a change in the position of the heat source obtained from the information (step S212).
 ステップS212での判別の結果、熱源の位置に変化がないときは(ステップS212でNo)、ステップS209の処理に戻る。 If the result of determination in step S212 is that there is no change in the position of the heat source (No in step S212), the process returns to step S209.
 ステップS212での判別の結果、熱源の位置に変化があるときは(ステップS212でYes)、室内機10Aの復帰部106は、通信部102Aによるセンサ装置30との通信を復帰させるとともに、センサ装置30によるセンシングを復帰させるための要求を、通信部102Aを介してセンサ装置30へ送信して(ステップS213)、ステップS204の処理に戻る。ステップS213で送信されたセンシングを復帰させるための要求を受信したセンサ装置30は、室内のセンシングを行う。 If the result of determination in step S212 is that there is a change in the position of the heat source (Yes in step S212), the return unit 106 of the indoor unit 10A restores communication with the sensor device 30 by the communication unit 102A and the sensor device A request for returning sensing by 30 is transmitted to the sensor device 30 via the communication unit 102A (step S213), and the process returns to step S204. The sensor device 30 that has received the request for returning the sensing transmitted in step S213 performs indoor sensing.
 図12に示した空調制御のための処理によれば、熱源の位置に変化がないときは、センサ装置30は室内のセンシングを停止し、室内機10Aでは通信部102Aによるセンサ装置30との通信を停止する。これにより、空気調和システム1Aの消費電力を少なくすることができる。 According to the processing for air conditioning control shown in FIG. 12, when there is no change in the position of the heat source, the sensor device 30 stops sensing in the room, and the indoor unit 10A communicates with the sensor device 30 by the communication unit 102A. To stop. Thereby, the power consumption of the air conditioning system 1A can be reduced.
実施の形態3.
 次に、本発明の実施の形態3にかかる空気調和システムについて説明する。図13は、本発明の実施の形態3にかかる空気調和システム1Bの機能構成の一例を示すブロック図である。本発明の実施の形態3にかかる空気調和システム1Bは、主に、室内機10Bの制御部101Bの機能が異なる点が、上述した実施の形態1と異なる。実施の形態1と重複した構成および作用については説明を省略し、以下に異なる構成および作用についての説明を行う。
Embodiment 3 FIG.
Next, an air conditioning system according to Embodiment 3 of the present invention will be described. FIG. 13: is a block diagram which shows an example of a function structure of the air conditioning system 1B concerning Embodiment 3 of this invention. The air conditioning system 1B according to the third embodiment of the present invention is different from the above-described first embodiment mainly in that the function of the control unit 101B of the indoor unit 10B is different. The description of the same configuration and operation as those in the first embodiment will be omitted, and a description of the different configuration and operation will be given below.
 図13に示す室内機10Bは、制御部101Bと、通信部102Bと、記憶部103Bとを有する。制御部101Bは、第2の判別部107と、破棄部108とを有する。 The indoor unit 10B illustrated in FIG. 13 includes a control unit 101B, a communication unit 102B, and a storage unit 103B. The control unit 101B includes a second determination unit 107 and a discard unit 108.
 第2の判別部107は、センサ装置20との通信が正常に行われたか否かを判別する。第2の判別部107は、センサ装置30との通信が正常に行われたか否かを判別する。 The second determination unit 107 determines whether or not communication with the sensor device 20 has been normally performed. The second determination unit 107 determines whether or not communication with the sensor device 30 has been normally performed.
 破棄部108は、第2の判別部107による判別の結果、センサ装置20との通信が正常に行われていないときは、当該通信においてセンサ装置20から受信した2次元の熱画像を表した情報を破棄する。破棄部108は、第2の判別部107による判別の結果、センサ装置30との通信が正常に行われていないときは、当該通信においてセンサ装置30から受信した2次元の熱画像を表した情報を破棄する。 When the communication with the sensor device 20 is not normally performed as a result of the determination by the second determination unit 107, the discarding unit 108 represents information representing a two-dimensional thermal image received from the sensor device 20 in the communication. Is discarded. When the communication with the sensor device 30 is not normally performed as a result of the determination by the second determination unit 107, the discarding unit 108 represents information representing a two-dimensional thermal image received from the sensor device 30 in the communication. Is discarded.
 次に、図13の空気調和システムが実行する空調制御のための処理について説明する。図14は、図13の空気調和システム1Bが実行する空調制御のための処理のフローチャートである。図14の空調制御のための処理は、上述した図6の空調制御のための処理におけるステップS104からステップS108までの処理に相当する。 Next, processing for air conditioning control executed by the air conditioning system of FIG. 13 will be described. FIG. 14 is a flowchart of a process for air conditioning control executed by the air conditioning system 1B of FIG. The processing for air conditioning control in FIG. 14 corresponds to the processing from step S104 to step S108 in the processing for air conditioning control in FIG. 6 described above.
 ステップS301において、センサ装置20,30は、それぞれ室内のセンシングを行い、それぞれ2次元の熱画像を表した情報を取得する。 In step S301, each of the sensor devices 20 and 30 performs indoor sensing and acquires information representing a two-dimensional thermal image.
 次いで、センサ装置20,30は、ステップS301でそれぞれ取得した2次元の熱画像を表した情報をそれぞれ室内機10Bへ送信する(ステップS302)。 Next, the sensor devices 20 and 30 each transmit information representing the two-dimensional thermal image acquired in step S301 to the indoor unit 10B (step S302).
 次いで、室内機10Bは、ステップS302でそれぞれ送信された2次元の熱画像を表した情報をそれぞれ受信する(ステップS303)。ステップS303でそれぞれ受信した2次元の熱画像を表した情報はそれぞれ記憶部103Bに記憶される。 Next, the indoor unit 10B receives information representing the two-dimensional thermal images transmitted in step S302, respectively (step S303). Information representing the two-dimensional thermal image received in step S303 is stored in the storage unit 103B.
 次いで、室内機10Bの第2の判別部107は、センサ装置20との通信が正常に行われたか否かを判別する(ステップS304)。ステップS304では、第2の判別部107は、たとえばセンサ装置20から受信した2次元の熱画像を表した情報に付加されているチェックサムと、当該2次元の熱画像を表した情報から算出されたチェックサムとが一致しているか否かによって、センサ装置20との通信が正常に行われたか否かを判別する。ステップS304では、第2の判別部107は、たとえば予め設定された応答時間内にセンサ装置20から応答があったか否かによっても、センサ装置20との通信が正常に行われたか否かを判別することができる。 Next, the second determination unit 107 of the indoor unit 10B determines whether or not communication with the sensor device 20 has been normally performed (step S304). In step S304, the second determination unit 107 is calculated from, for example, a checksum added to information representing a two-dimensional thermal image received from the sensor device 20 and information representing the two-dimensional thermal image. Whether or not communication with the sensor device 20 has been normally performed is determined based on whether or not the checksum matches. In step S304, the second determination unit 107 determines whether or not communication with the sensor device 20 has been normally performed, for example, based on whether or not there is a response from the sensor device 20 within a preset response time. be able to.
 ステップS304での判別の結果、センサ装置20との通信が正常に行われていないときは(ステップS304でNo)、室内機10Bの破棄部108は、当該通信においてセンサ装置20から受信した2次元の熱画像を表した情報、すなわちステップS303でセンサ装置20から受信した2次元の熱画像を表した情報を破棄する(ステップS305)。ステップS305の後の、上述した図6の空調制御のための処理におけるステップS109に相当する処理では、センサ装置20から前回受信した2次元の熱画像を表した情報、ステップS303でセンサ装置30から受信した2次元の熱画像を表した情報、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報から3次元の熱源分布を表した情報を生成する。 If the communication with the sensor device 20 is not normally performed as a result of the determination in step S304 (No in step S304), the discard unit 108 of the indoor unit 10B receives the two-dimensional data received from the sensor device 20 in the communication. The information representing the thermal image is discarded, that is, the information representing the two-dimensional thermal image received from the sensor device 20 in step S303 (step S305). In the processing corresponding to step S109 in the above-described processing for air conditioning control in FIG. 6 after step S305, information representing the two-dimensional thermal image received from the sensor device 20 last time, from the sensor device 30 in step S303. Information representing a three-dimensional heat source distribution is generated from the received information representing a two-dimensional thermal image, information about the installation position of the sensor device 20, and information about the installation position of the sensor device 30.
 ステップS304での判別の結果、センサ装置20との通信が正常に行われているとき(ステップS304でYes)、またはステップS305の後、室内機10Bの第2の判別部107は、センサ装置30との通信が正常に行われたか否かを判別する(ステップS306)。ステップS306では、第2の判別部107は、たとえばセンサ装置30から受信した2次元の熱画像を表した情報に付加されているチェックサムと、当該2次元の熱画像を表した情報から算出されたチェックサムとが一致しているか否かによって、センサ装置30との通信が正常に行われたか否かを判別する。ステップS306では、第2の判別部107は、たとえば予め設定された応答時間内にセンサ装置30から応答があったか否かによっても、センサ装置30との通信が正常に行われたか否かを判別することができる。 As a result of the determination in step S304, when the communication with the sensor device 20 is normally performed (Yes in step S304) or after step S305, the second determination unit 107 of the indoor unit 10B includes the sensor device 30. It is determined whether or not communication with has been performed normally (step S306). In step S306, the second determination unit 107 is calculated from, for example, the checksum added to the information representing the two-dimensional thermal image received from the sensor device 30 and the information representing the two-dimensional thermal image. Whether or not the communication with the sensor device 30 is normally performed is determined based on whether or not the checksum matches. In step S306, the second determination unit 107 determines whether or not communication with the sensor device 30 has been normally performed, for example, based on whether or not there is a response from the sensor device 30 within a preset response time. be able to.
 ステップS306での判別の結果、センサ装置30との通信が正常に行われていないときは(ステップS306でNo)、室内機10Bの破棄部108は、当該通信においてセンサ装置30から受信した2次元の熱画像を表した情報、すなわちステップS303でセンサ装置30から受信した2次元の熱画像を表した情報を破棄する(ステップS307)。ステップS307の後の、上述した図6の空調制御のための処理におけるステップS109に相当する処理では、ステップS303でセンサ装置20から受信した2次元の熱画像を表した情報、センサ装置30から前回受信した2次元の熱画像を表した情報、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報から3次元の熱源分布を表した情報を生成する。ステップS305およびステップS307の後の、上述した図6の空調制御のための処理におけるステップS109に相当する処理では、センサ装置20から前回受信した2次元の熱画像を表した情報、センサ装置30から前回受信した2次元の熱画像を表した情報、センサ装置20の設置位置の情報、およびセンサ装置30の設置位置の情報から3次元の熱源分布を表した情報を生成する。 When the communication with the sensor device 30 is not normally performed as a result of the determination in step S306 (No in step S306), the discard unit 108 of the indoor unit 10B receives the two-dimensional data received from the sensor device 30 in the communication. The information representing the thermal image is discarded, that is, the information representing the two-dimensional thermal image received from the sensor device 30 in step S303 (step S307). In the processing corresponding to step S109 in the above-described processing for air conditioning control in FIG. 6 after step S307, information representing the two-dimensional thermal image received from the sensor device 20 in step S303, the previous time from the sensor device 30. Information representing a three-dimensional heat source distribution is generated from the received information representing a two-dimensional thermal image, information about the installation position of the sensor device 20, and information about the installation position of the sensor device 30. In the processing corresponding to step S109 in the above-described processing for air conditioning control in FIG. 6 after step S305 and step S307, information representing the two-dimensional thermal image received from the sensor device 20 last time, from the sensor device 30 Information representing a three-dimensional heat source distribution is generated from the information representing the two-dimensional thermal image received last time, the information on the installation position of the sensor device 20, and the information on the installation position of the sensor device 30.
 ステップS306での判別の結果、センサ装置30との通信が正常に行われているとき(ステップS306でYes)、またはステップS307の後、ステップS301の処理に戻る。 As a result of the determination in step S306, when the communication with the sensor device 30 is normally performed (Yes in step S306), or after step S307, the process returns to step S301.
 図14に示した空調制御のための処理によれば、室内機10Bとセンサ装置20,30との通信が正常に行われていないときでも、通信が正常に行われているときの2次元の熱画像を表した情報から3次元の熱源分布を表した情報を生成するため、人Hの位置に応じた空調制御が不適切に行われることを抑制することができる。 According to the processing for air conditioning control shown in FIG. 14, even when communication between the indoor unit 10 </ b> B and the sensor devices 20 and 30 is not normally performed, the two-dimensional communication is normally performed. Since the information representing the three-dimensional heat source distribution is generated from the information representing the thermal image, it is possible to prevent the air conditioning control according to the position of the person H from being performed inappropriately.
 図14に示した空調制御のための処理によれば、どちらか一方のセンサ装置20,30と室内機10Bとの通信が正常に行われていないときでも、他方のセンサ装置20,30と室内機10Bとの通信が正常に行われていれば、人Hの位置に応じた空調制御が不適切に行われることを抑制することができる。センサ装置20とセンサ装置30とが同一の機能を有するため、2次元の熱画像を表した情報を取得するという機能に関し、一方のセンサ装置20,30が他方のセンサ装置20,30の機能を補完することができるためである。 According to the process for air conditioning control shown in FIG. 14, even when communication between one of the sensor devices 20 and 30 and the indoor unit 10B is not normally performed, the other sensor device 20 or 30 and the room If the communication with the machine 10B is normally performed, it is possible to prevent the air conditioning control according to the position of the person H from being performed inappropriately. Since the sensor device 20 and the sensor device 30 have the same function, with respect to the function of acquiring information representing a two-dimensional thermal image, one sensor device 20, 30 has the function of the other sensor device 20, 30. This is because it can be complemented.
 上述した各実施の形態では、同一の機能を有する2つのセンサ装置を用いているため、どちらか一方のセンサ装置が故障した場合においても、他方のセンサ装置によって室内のセンシングを行うことができ、人の位置に応じた空調制御を行うことができる。上述した各実施の形態では、2つのセンサ装置を用いたが、3つ以上のセンサ装置を用いて、人の位置に応じた空調制御を行うこともできる。 In each embodiment described above, since two sensor devices having the same function are used, even when one of the sensor devices fails, indoor sensing can be performed by the other sensor device. Air conditioning control according to the position of the person can be performed. In each of the above-described embodiments, two sensor devices are used. However, air conditioning control according to the position of a person can be performed using three or more sensor devices.
 上述した各実施の形態では、人の位置に応じた空調制御を行ったが、同様に、犬または猫といった動物の位置に応じた空調制御を行うこともできる。 In each of the above-described embodiments, the air conditioning control corresponding to the position of the person is performed. Similarly, the air conditioning control corresponding to the position of an animal such as a dog or a cat can be performed.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.
 1,1A,1B 空気調和システム、10,10A,10B 室内機、11 マイコン、12 通信回路、13 メモリ、20,30 センサ装置、21 カバー、22 サーモパイルセンサ、23 本体、24 通信機、40 リモコン、101,101A,101B,201,301,401 制御部、102,102A,102B,204,304,403 通信部、103,103A,103B 記憶部、104 第1の判別部、105 停止部、106 復帰部、107 第2の判別部、108 破棄部、202,302 駆動部、203,303 人感知センサ部、402 入力部、H 人。 1, 1A, 1B air conditioning system, 10, 10A, 10B indoor unit, 11 microcomputer, 12 communication circuit, 13 memory, 20, 30 sensor device, 21 cover, 22 thermopile sensor, 23 main body, 24 communication device, 40 remote control, 101, 101A, 101B, 201, 301, 401 control unit, 102, 102A, 102B, 204, 304, 403 communication unit, 103, 103A, 103B storage unit, 104 first determination unit, 105 stop unit, 106 return unit 107 second discriminating unit, 108 discarding unit, 202, 302 driving unit, 203, 303 human detection sensor unit, 402 input unit, H person.

Claims (6)

  1.  室内機と、
     前記室内機と分離し、室内の任意の位置に設置可能な第1のセンサ装置とを備え、
     前記室内機は、
     前記第1のセンサ装置と無線により通信する通信部と、
     前記室内の空調制御を行う制御部とを備え、
     前記第1のセンサ装置は、
     第1の人感知センサと、
     前記室内機と無線により通信する通信部と、
     前記第1の人感知センサにより取得された情報を、前記通信部を介して前記室内機へ送信する制御部とを備え、
     前記室内機の制御部は、前記第1の人感知センサにより取得された情報および前記第1のセンサ装置の設置位置の情報に基づいて、前記空調制御を行う
     ことを特徴とする空気調和システム。
    Indoor unit,
    A first sensor device that is separated from the indoor unit and can be installed at an arbitrary position in the room;
    The indoor unit is
    A communication unit that communicates with the first sensor device wirelessly;
    A control unit for performing air conditioning control in the room,
    The first sensor device includes:
    A first human sensor;
    A communication unit that communicates wirelessly with the indoor unit;
    A control unit that transmits information acquired by the first human sensor to the indoor unit via the communication unit;
    The control unit of the indoor unit performs the air conditioning control based on information acquired by the first human sensor and information on an installation position of the first sensor device.
  2.  前記室内機と分離し、前記室内の任意の位置に設置可能な第2のセンサ装置をさらに備え、
     前記室内機の通信部は、前記第2のセンサ装置と無線による通信をさらに行い、
     前記第2のセンサ装置は、
     第2の人感知センサと、
     前記室内機と無線により通信する通信部と、
     前記第2の人感知センサにより取得された情報を、前記通信部を介して前記室内機へ送信する制御部とを備え、
     前記室内機の制御部は、前記第1の人感知センサにより取得された情報、前記第2の人感知センサにより取得された情報、前記第1のセンサ装置の設置位置の情報および前記第2のセンサ装置の設置位置の情報に基づいて、前記空調制御を行う
     ことを特徴とする請求項1に記載の空気調和システム。
    A second sensor device that is separated from the indoor unit and can be installed at an arbitrary position in the room;
    The communication unit of the indoor unit further performs wireless communication with the second sensor device,
    The second sensor device includes:
    A second human sensor;
    A communication unit that communicates wirelessly with the indoor unit;
    A control unit that transmits information acquired by the second human sensor to the indoor unit via the communication unit;
    The control unit of the indoor unit includes information acquired by the first human sensor, information acquired by the second human sensor, information on an installation position of the first sensor device, and the second The air conditioning system according to claim 1, wherein the air conditioning control is performed based on information on an installation position of the sensor device.
  3.  前記第1の人感知センサにより取得された情報および前記第2の人感知センサにより取得された情報は、それぞれ2次元の熱画像を表した情報であり、
     前記室内機の制御部は、前記第1の人感知センサにより取得された情報、前記第2の人感知センサにより取得された情報、前記第1のセンサ装置の設置位置の情報および前記第2のセンサ装置の設置位置の情報から3次元の熱源分布を表した情報を生成し、当該3次元の熱源分布を表した情報に基づいて、熱源の位置に応じた前記空調制御を行う
     ことを特徴とする請求項2に記載の空気調和システム。
    The information acquired by the first human sensor and the information acquired by the second human sensor are each information representing a two-dimensional thermal image,
    The control unit of the indoor unit includes information acquired by the first human sensor, information acquired by the second human sensor, information on an installation position of the first sensor device, and the second Generating information representing a three-dimensional heat source distribution from information on the installation position of the sensor device, and performing the air conditioning control according to the position of the heat source based on the information representing the three-dimensional heat source distribution. The air conditioning system according to claim 2.
  4.  前記第1のセンサ装置の設置位置の情報および前記第2のセンサ装置の設置位置の情報は、それぞれユーザによる前記室内機のリモコンを介した入力に基づいて生成され、前記リモコンから前記室内機に送信される
     ことを特徴とする請求項2に記載の空気調和システム。
    The information on the installation position of the first sensor device and the information on the installation position of the second sensor device are respectively generated based on an input by the user through the remote controller of the indoor unit, and the remote controller sends the information to the indoor unit. The air conditioning system according to claim 2, wherein the air conditioning system is transmitted.
  5.  前記室内機の制御部は、
     前記第1のセンサ装置から前回の制御周期に受信した第1の人感知センサにより取得された第1の取得情報と、今回の制御周期に受信した第1の人感知センサにより取得された第2の取得情報とを比較し、また前記第2のセンサ装置から前回の制御周期に受信した第2の人感知センサにより取得された第3の取得情報と、今回の制御周期に受信した第2の人感知センサにより取得された第4の取得情報とを比較して、前記第1の取得情報から得られる熱源の位置と、前記第2の取得情報から得られる前記熱源の位置とに変化があるか否かを判別し、また、前記第3の取得情報から得られる前記熱源の位置と、前記第4の取得情報から得られる前記熱源の位置とに変化があるか否かを判別する第1の判別部と、
     前記第1の判別部による判別の結果、前記第1の取得情報から得られる前記熱源の位置と、前記第2の取得情報から得られる前記熱源の位置とに変化がない場合、かつ前記第3の取得情報から得られる前記熱源の位置と、前記第4の取得情報から得られる前記熱源の位置とに変化がない場合は、前記第2のセンサ装置によるセンシングを停止させるための要求を、前記通信部を介して前記第2のセンサ装置へ送信するとともに、前記通信部による前記第2のセンサ装置との通信を停止させる停止部と、
     前記第2のセンサ装置との通信の停止後において、前記第1の人感知センサにより取得された情報から得られる前記熱源の位置に変化がある場合は、前記通信部による前記第2のセンサ装置との通信を復帰させるとともに、前記第2のセンサ装置によるセンシングを復帰させるための要求を、前記通信部を介して前記第2のセンサ装置へ送信する復帰部とをさらに備える
     ことを特徴とする請求項2に記載の空気調和システム。
    The control unit of the indoor unit is
    First acquisition information acquired by the first human sensor received in the previous control cycle from the first sensor device, and second acquired by the first human sensor received in the current control cycle. And the third acquisition information acquired by the second human sensor received from the second sensor device in the previous control cycle and the second acquisition information received in the current control cycle. There is a change in the position of the heat source obtained from the first acquired information and the position of the heat source obtained from the second acquired information by comparing the fourth acquired information acquired by the human sensor. And determining whether or not there is a change in the position of the heat source obtained from the third acquisition information and the position of the heat source obtained from the fourth acquisition information. The discriminator of
    If there is no change in the position of the heat source obtained from the first acquisition information and the position of the heat source obtained from the second acquisition information as a result of the determination by the first determination unit, and the third If there is no change in the position of the heat source obtained from the acquired information and the position of the heat source obtained from the fourth acquired information, a request for stopping sensing by the second sensor device is made. A stop unit that transmits to the second sensor device via the communication unit, and stops communication with the second sensor device by the communication unit;
    After the communication with the second sensor device is stopped, if there is a change in the position of the heat source obtained from the information acquired by the first human sensor, the second sensor device by the communication unit And a return unit that transmits a request for returning sensing by the second sensor device to the second sensor device via the communication unit. The air conditioning system according to claim 2.
  6.  前記室内機の制御部は、
     前記第1のセンサ装置との通信が正常に行われたか否かを判別し、また前記第2のセンサ装置との通信が正常に行われたか否かを判別する判別部と、
     前記判別部による判別の結果、前記第1のセンサ装置との通信が正常に行われていないときは、当該通信において前記第1のセンサ装置から受信した第1の人感知センサにより取得された情報を破棄し、また前記第2のセンサ装置との通信が正常に行われていないときは、当該通信において前記第2のセンサ装置から受信した第2の人感知センサにより取得された情報を破棄する破棄部とをさらに備える
     ことを特徴とする請求項2に記載の空気調和システム。
    The control unit of the indoor unit is
    A determination unit for determining whether or not communication with the first sensor device is normally performed; and for determining whether or not communication with the second sensor device is normally performed;
    As a result of determination by the determination unit, when communication with the first sensor device is not normally performed, information acquired by the first human sensor received from the first sensor device in the communication If the communication with the second sensor device is not normally performed, the information acquired by the second human sensor received from the second sensor device in the communication is discarded. The air conditioning system according to claim 2, further comprising a discarding unit.
PCT/JP2017/018374 2017-05-16 2017-05-16 Air conditioning system WO2018211592A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019518637A JP6783386B2 (en) 2017-05-16 2017-05-16 Air conditioning system
PCT/JP2017/018374 WO2018211592A1 (en) 2017-05-16 2017-05-16 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018374 WO2018211592A1 (en) 2017-05-16 2017-05-16 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2018211592A1 true WO2018211592A1 (en) 2018-11-22

Family

ID=64273497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018374 WO2018211592A1 (en) 2017-05-16 2017-05-16 Air conditioning system

Country Status (2)

Country Link
JP (1) JP6783386B2 (en)
WO (1) WO2018211592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166079A1 (en) * 2020-02-18 2021-08-26 三菱電機株式会社 Integrated air-conditioning controller, air-conditioning control system, and air-conditioning control method
JP7433023B2 (en) 2019-11-19 2024-02-19 三菱電機株式会社 air conditioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106624A (en) * 2001-09-27 2003-04-09 Matsushita Electric Ind Co Ltd Physical quantity control system
JP2012154591A (en) * 2011-01-27 2012-08-16 Mitsubishi Electric Corp Air conditioner
WO2016157568A1 (en) * 2015-03-30 2016-10-06 三菱電機株式会社 Air blower and air blowing system
JP2016205633A (en) * 2015-04-15 2016-12-08 アズビル株式会社 Air-conditioning control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106624A (en) * 2001-09-27 2003-04-09 Matsushita Electric Ind Co Ltd Physical quantity control system
JP2012154591A (en) * 2011-01-27 2012-08-16 Mitsubishi Electric Corp Air conditioner
WO2016157568A1 (en) * 2015-03-30 2016-10-06 三菱電機株式会社 Air blower and air blowing system
JP2016205633A (en) * 2015-04-15 2016-12-08 アズビル株式会社 Air-conditioning control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433023B2 (en) 2019-11-19 2024-02-19 三菱電機株式会社 air conditioning system
WO2021166079A1 (en) * 2020-02-18 2021-08-26 三菱電機株式会社 Integrated air-conditioning controller, air-conditioning control system, and air-conditioning control method
JP7357757B2 (en) 2020-02-18 2023-10-06 三菱電機株式会社 Air conditioning integrated controller, air conditioning control system and air conditioning control method

Also Published As

Publication number Publication date
JP6783386B2 (en) 2020-11-11
JPWO2018211592A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6239164B2 (en) Air conditioning system
JP2022023104A (en) Air conditioning system
JP6453069B2 (en) Air conditioner, control method of air conditioner, and program
KR20140031081A (en) Air conditioner
CN113906260B (en) Air conditioner control device and air conditioner control system
JP6282926B2 (en) Control method and communication apparatus
US20170264827A1 (en) Motion-sensor based remote control
JP7377333B2 (en) air conditioner
WO2018211592A1 (en) Air conditioning system
JP5554301B2 (en) Air conditioner
JP6790249B2 (en) Air conditioners, air conditioners, air conditioners and programs
JP2015190666A (en) Indoor machine of air conditioning machine, and air conditioning machine using the same
WO2016157675A1 (en) Control system, control method, and control program
JP2014077598A (en) Temperature controller, air conditioner, hot water supplier, and floor heating
JP6360736B2 (en) Air conditioner
JP2016017707A (en) Air conditioning system
JP6965406B2 (en) Air conditioning control device, air conditioning control method and air conditioning control program
JP6285815B2 (en) Air conditioner or air conditioning system
WO2019049363A1 (en) Air conditioner and air conditioner control method
WO2017208344A1 (en) Air conditioning system
JP6920873B2 (en) Air conditioner
JP7305040B2 (en) Air-conditioning control system, air-conditioning system, air-conditioning control method and air-conditioning control program
WO2021234770A1 (en) Control system, equipment system, and method for controlling equipment
WO2023058083A1 (en) Air blowing control device
JP7433023B2 (en) air conditioning system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910177

Country of ref document: EP

Kind code of ref document: A1