WO2018211575A1 - 制御装置、監視システムおよび監視方法 - Google Patents

制御装置、監視システムおよび監視方法 Download PDF

Info

Publication number
WO2018211575A1
WO2018211575A1 PCT/JP2017/018278 JP2017018278W WO2018211575A1 WO 2018211575 A1 WO2018211575 A1 WO 2018211575A1 JP 2017018278 W JP2017018278 W JP 2017018278W WO 2018211575 A1 WO2018211575 A1 WO 2018211575A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
coverage
mobile
unit
point
Prior art date
Application number
PCT/JP2017/018278
Other languages
English (en)
French (fr)
Inventor
真史 江村
小川 雅嗣
真澄 一圓
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2017/018278 priority Critical patent/WO2018211575A1/ja
Priority to US16/611,280 priority patent/US20200166620A1/en
Priority to EP17909902.3A priority patent/EP3627182B1/en
Priority to JP2019518622A priority patent/JP6888672B2/ja
Publication of WO2018211575A1 publication Critical patent/WO2018211575A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations

Definitions

  • the present invention relates to a monitoring technique, and more particularly to a technique for performing monitoring adapted to environmental conditions using a stationary sensor and a mobile sensor.
  • monitoring systems that use multiple stationary sensors are used.
  • such a monitoring system is often required to be able to reliably perform monitoring within an area to be monitored.
  • the sensor coverage may change due to sensor characteristic variation due to environmental changes in the monitoring target area, and there may be a region where monitoring cannot be performed by the installed sensor.
  • Patent Document 1 relates to a monitoring system that combines a stationary camera and a flight-type monitoring device.
  • the monitoring system of Patent Document 1 predicts the position of a tracking target when it is determined that the tracking target cannot be detected by a stationary camera.
  • the monitoring system disclosed in Patent Document 1 captures a tracking target from the sky at a position predicted by controlling a flying device based on a predicted result of the position of the tracking target. Detection is in progress.
  • Patent Document 1 is not sufficient in the following points.
  • the monitoring system of Patent Document 1 predicts the position of a tracking target and performs imaging using a flying device.
  • the region that can be monitored by the sensor also changes due to the change in the coverage. Therefore, there is a possibility that a point that needs to be measured by a mobile sensor cannot be accurately predicted. In such a case, there is a possibility that even if a mobile sensor is used, an area that cannot be monitored by the sensor is generated and the monitoring target cannot be detected. Therefore, the technique of Patent Document 1 is not sufficient as a technique for reliably continuing monitoring even when the coverage of the stationary sensor changes due to environmental changes.
  • an object of the present invention is to provide a control device that can continue monitoring even when the sensor coverage changes due to environmental changes.
  • the control device of the present invention includes a coverage prediction means and a control means.
  • the covered area predicting means predicts a covered area that is a range that can be measured by the stationary sensor that detects the object, based on the measurement result of the environment of the area where the object is detected.
  • the control means determines the position where the mobile sensor for detecting the object is arranged based on the coverage predicted by the coverage prediction means and the probability that the object exists, and controls the mobile sensor.
  • the monitoring method of the present invention predicts a covered area that is a range that can be measured by a stationary sensor that detects an object, based on an environment measurement result of the area where the object is detected. Further, the monitoring method of the present invention determines the position where the mobile sensor for detecting the object is arranged based on the predicted coverage and the probability that the object exists, and controls the mobile sensor.
  • monitoring can be continued even when the sensor coverage changes due to environmental changes.
  • FIG. 1 shows an outline of the configuration of the control device of this embodiment.
  • the control device of the present embodiment includes a coverage prediction unit 1 and a control unit 2.
  • the covered area prediction unit 1 predicts a covered area that is a range that can be measured by the stationary sensor that detects the object, based on the measurement result of the environment of the area where the object is detected.
  • the control means 2 determines the position where the mobile sensor for detecting the object is arranged based on the coverage predicted by the coverage prediction means 1 and the probability that the object exists, and controls the mobile sensor.
  • the control device of the present embodiment predicts the coverage of the stationary sensor based on the environmental measurement result of the area where the object is detected by the coverage prediction means 1, and the mobile sensor based on the prediction result by the control means 2.
  • the position to arrange is determined. Since the control device of the present embodiment predicts the coverage area of the stationary sensor based on the measurement result of the environment, the mobile sensor is arranged even when the coverage area of the stationary sensor changes due to environmental changes. The position to be performed can be accurately predicted. As a result, by using the control device of the present embodiment, it is possible to continue monitoring even when the sensor coverage changes due to environmental changes.
  • FIG. 2 is a diagram showing an outline of the configuration of the monitoring system of the present embodiment.
  • FIG. 3 is a block diagram showing the configuration of the monitoring system of this embodiment.
  • the monitoring system of the present embodiment is an underwater monitoring system that performs underwater monitoring and searching by detecting an object existing in water with a sonar.
  • the monitoring system of the present embodiment includes a stationary sensor 11, an environmental sensor 12, a sensor communication power supply device 13, a system control device 14, a sensor-equipped drone 15, a drone input / recovery device 16, and wireless communication.
  • a device 17 is provided. Further, the underwater cable 18 is connected between the installation type sensor 11 and the environmental sensor 12 and the communication power feeder 13 for the sensor.
  • the system control device 14, the sensor communication power supply device 13, the unmanned machine input / recovery device 16, and the wireless communication device 17 are connected via a communication cable or a communication line, respectively.
  • the installation type sensor 11 is a sensor that is installed at a plurality of locations in the water and detects an object existing in the water.
  • the installation type sensor 11 may be single.
  • an active sonar is used for the installation type sensor 11 of the present embodiment. Data measured by the stationary sensor 11 is sent as sensor information to the system control device 14 via the underwater cable 18 and the sensor communication power supply device 13.
  • the environmental sensor 12 is a sensor that acquires data used to calculate a coverage of the stationary sensor 11, that is, a range in which an underwater object can be detected by the sensor.
  • the environmental sensor 12 is installed at a plurality of locations in the water.
  • the environmental sensor 12 may be single.
  • the environment sensor 12 includes, for example, a water temperature sensor that measures the water temperature used when calculating sound velocity data in water, and an electrical conductivity sensor that measures electrical conductivity. Data measured by the environmental sensor 12 is sent as environmental information to the system control device 14 via the underwater cable 18 and the sensor communication power supply device 13.
  • the installation type sensor 11 and the environment sensor 12 are operated by electric power supplied from the sensor communication power supply device 13 via the underwater cable 18.
  • the sensor communication power supply device 13 relays communication between the installation sensor 11 and the environment sensor 12 and the system control device 14.
  • the sensor communication power supply device 13 communicates with the stationary sensor 11 and the environment sensor 12 via the underwater cable 18.
  • the sensor communication power supply device 13 supplies power to the stationary sensor 11 and the environment sensor 12 via the underwater cable 18.
  • FIG. 4 is a block diagram showing a configuration of the system control device 14 of the present embodiment.
  • the system control device 14 has a function of controlling the operation of the sensor-equipped drone 15 based on the sensor information and the environment information and detecting an object existing in the water.
  • the system control device 14 includes a target detection processing unit 21, a threat level input unit 22, a threat level calculation unit 23, a system control unit 24, an unmanned aircraft input / recovery command unit 25, an unmanned aircraft control command unit 26, A movement cost calculation unit 27 and a sensor coverage estimation unit 28 are provided.
  • the system control device 14 further includes an unmanned aircraft characteristic data storage unit 31, a map data storage unit 32, a sensor characteristic data storage unit 33, and a stationary sensor position data storage unit 34.
  • the target detection processing unit 21 calculates the existence probability of the target, that is, the object to be searched, based on the sensor information sent from the stationary sensor 11 and the sensor-equipped drone 15.
  • the target detection processing unit 21 sends the calculated object existence probability data to the threat degree calculation unit 23 as the target existence probability.
  • the target detection processing unit 21 calculates the existence probability of an object in water based on the S / N (Signal / Noise) ratio of the received signal.
  • the target detection processing unit 21 performs pulse compression processing, CFAR (Constant False Alarm Rate) processing and the like on the received signal data for each direction, and calculates the existence probability of the object as the target existence probability.
  • the detection of an underwater object may be performed by multi-stick sensing using a plurality of sensors.
  • detection of an underwater object may be performed by a method that improves the ultimate accuracy of position detection by performing data fusion on data individually received by a plurality of sensors.
  • the target detection processing unit 21 When the target detection processing unit 21 detects an underwater object, it indicates that the object has been detected to a monitoring system administrator or the like via a terminal device connected to the system control device 14 or a communication line. Information is notified.
  • the threat level input unit 22 is an interface through which an operator or the like inputs the threat level at each point as a user-defined threat level.
  • the threat level is an index indicating the importance of each point, and is set to a higher value for a point that becomes a threat when invaded by a third party or an unknown object. For example, the threat level is set to be higher near the important facility and lower as the distance from the important facility is increased.
  • a point with a high value of threat level is a point with high priority of correspondence such as identification, removal, and destruction of an object when the object exists.
  • a point with a low value of the threat level is a point with a low priority of correspondence such as object identification.
  • the threat level calculation unit 23 estimates the threat level of each point based on the user-defined threat level input via the threat level input unit 22 and the target existence probability data received from the target detection processing unit 21. Calculate as
  • the system control unit 24 determines the necessity of searching for an object at each point, controls the insertion and return of the sensor-equipped drone 15 to each point, and has a function of performing underwater monitoring and searching for an underwater object. Have.
  • the system control unit 24 calculates a search request value indicating the necessity of detecting or searching for an object or the like at each point in the water.
  • the system control unit 24 compares the reference value set in advance with the calculated search request value, and a point where the calculated search request value is equal to or greater than the reference value needs to be searched by the sensor-equipped drone 15 that is a mobile sensor. Judged to be a special point.
  • the system control unit 24 determines that there is a point that needs to be searched, the system control unit 24 sends information on the point that needs to be searched to the drone 15 equipped with the sensor.
  • the information indicating the position of each point in the present embodiment is configured based on information on the latitude and longitude of the target point, for example.
  • the information on the point that needs to be searched may include depth information.
  • the information of each point may be set as information which shows the difference from the reference
  • the system control unit 24 instructs the unmanned aircraft input / recovery device 16 to input the sensor-mounted unmanned aircraft 15 via the unmanned aircraft input / recovery command unit 25. Further, when the system control unit 24 determines that the search is completed, the system control unit 24 causes the sensor-equipped drone 15 to be returned to the position of the drone loading and collecting device 16.
  • the function of determining the point where the search by the sensor-equipped drone 15 is required based on the search request value calculated from the coverage of the system control unit 24 of the present embodiment and instructing the input of the sensor-equipped drone 15 is as follows. This corresponds to the control means 2 of the first embodiment.
  • the unmanned machine input / recovery command unit 25 sends instructions for input and recovery of the sensor-equipped unmanned machine 15 to the unmanned machine input / recovery device 16 based on the control of the system control unit 24. Moreover, the operation
  • recovery apparatus 16 is also called lifting.
  • the unmanned aircraft control command unit 26 sends information on the destination point to the sensor-equipped drone 15 based on the control of the system control unit 24.
  • the unmanned aircraft control command unit 26 sends a return instruction to the sensor-equipped drone 15 based on the control of the system control unit 24.
  • the movement cost calculation unit 27 calculates an index indicating the load required for movement of the sensor-equipped drone 15 as the movement cost.
  • the movement cost is minimized at the point where the sensor-equipped drone 15 is present when the movement cost is calculated. Further, the movement cost increases as the distance from the point where the sensor-equipped drone 15 is present when the movement cost is calculated. At a point that is farther than the movable distance calculated from the remaining battery amount of the sensor-equipped drone 15 and cannot be reached, the movement cost becomes positive infinite.
  • the travel cost to each point is calculated for each sensor-equipped drone 15 as map format data. Map-format data refers to data in which information indicating the position of each point is associated with data at each point such as travel cost.
  • FIG. 5 is a graph schematically showing the relationship between the movement distance from the point where the sensor-equipped drone 15 exists to the destination and the movement cost.
  • the broken line in FIG. 5 indicates the maximum value of the movable distance calculated based on the remaining battery amount, that is, the remaining movable distance.
  • the movement cost calculation unit 27 calculates an optimal movement route to each point based on an A-star algorithm or the like using information such as a tidal current.
  • the movement cost calculation unit 27 calculates the movement distance to each point based on the data of the optimal movement route, and calculates the movement cost considering the remaining battery capacity.
  • d indicates the moving distance from the local point.
  • D batt indicates the distance at which the battery is empty.
  • C offset is an offset value for giving a margin to the remaining amount of the battery.
  • the movement cost is set to diverge infinitely at the distance where the battery is empty.
  • the sensor coverage estimation unit 28 has a function of calculating a coverage that is a region measurable by the sensors of the stationary sensor 11 and the sensor-equipped drone 15.
  • the sensor coverage estimation unit 28 calculates the coverage based on the position information of the sensor-equipped drone 15, the environment information, the map data, the sensor characteristics, and the position information of the stationary sensor 11.
  • the sensor coverage prediction unit 28 determines the beam intensity at each point starting from the position of the stationary sensor 11 based on the water temperature and electrical conductivity included in the environmental information, the intensity of the output beam included in the sensor characteristics, and the like. Predict. When predicting the intensity of the beam at each point, the sensor coverage area prediction unit 28 considers the reflection at the raised portion of the bottom of the water based on the map data and determines the traveling direction of the beam emitted from the stationary sensor 11. Predict.
  • the sensor coverage prediction unit 28 calculates the intensity when the echo sound of the object with respect to the beam emitted from the stationary sensor 11 reaches the position of the stationary sensor 11 when an object is present at each point.
  • the sensor coverage area prediction unit 28 sets a coverage area in which an echo sound having a sufficient intensity for predicting an object position or the like reaches the position of the stationary sensor 11.
  • Covered area data is calculated as map format data. The coverage data is a higher value at a point where the echo sound returning to the position of the stationary sensor 11 is predicted to be strong, and at a point where the echo sound returning to the position of the stationary sensor 11 is predicted to be weak. Low value.
  • the sensor coverage estimation unit 28 sends the calculated coverage information to the system control unit 24 as a sensor effective range.
  • the value of the sensor effective range data is high in the vicinity of the stationary sensor 11 and decreases as it becomes difficult to detect an object by the sensor away from the stationary sensor 11.
  • the data of the sensor effective range is calculated as a value based on the topography of the water bottom and the underwater environment.
  • the function of the sensor coverage prediction unit 28 of the present embodiment corresponds to the coverage prediction means 1 of the first embodiment.
  • the drone characteristic data storage unit 31 stores characteristic data of the sensor-equipped drone 15. As characteristic data of the sensor-equipped drone 15, for example, cruise speed, battery capacity, and sensor performance data of the sensor-equipped drone 15 are stored.
  • the map data storage unit 32 stores map data including the bottom topography.
  • the sensor characteristic data storage unit 33 stores data of characteristics and set values such as the frequency of the sonar beam of the stationary sensor 11, the beam transmission direction, and the transmission level.
  • the stationary sensor position data storage unit 34 stores positional information of a point where the stationary sensor 11 is installed. All or part of the data stored in the drone characteristic data storage unit 31, the map data storage unit 32, the sensor characteristic data storage unit 33, and the stationary sensor position data storage unit 34 is transmitted to another device via a communication line. May be read from.
  • the processing in each part of the system control device 14 of the present embodiment may be performed by executing a computer program in a CPU (Central Processing Unit) of the information processing device.
  • a computer program for performing each process is recorded in a hard disk drive, a semiconductor storage device, or other recording medium.
  • FIG. 6 is a block diagram showing a configuration of the sensor-equipped drone 15 of the present embodiment.
  • the sensor-equipped drone 15 includes a drone control sensor unit 41, a drone control unit 42, a drone drive unit 43, a search sensor unit 44, a storage unit 45, a communication unit 46, and a power storage unit 47. ing.
  • the sensor-equipped drone 15 is a mobile sensor that moves by autonomous navigation based on the control of the system control device 14 and searches for an underwater object in the drone control sensor unit 41.
  • the sensor-equipped drone 15 is configured as, for example, an underwater traveling type moving body that moves in the vicinity of a water surface that can transmit and receive wireless signals to and from the wireless communication device 17. As long as the sensor-equipped drone 15 includes a sensor that can be measured underwater, it may be a water-borne type.
  • the sensor-equipped drone 15 may move and search for an object in the water at a depth where a radio signal propagating in the air does not reach directly.
  • the sensor-equipped drone 15 rises to a position where wireless communication is possible or performs communication when performing wireless communication with the wireless communication device 17.
  • Wireless communication is carried out by raising the antenna near the water surface.
  • the sensor unit 41 for controlling the drone is a sensor that acquires data necessary for movement of the sensor-equipped drone 15.
  • the unmanned aerial vehicle control sensor unit 41 includes a position measurement device, an inertial navigation device, an altitude / depth meter, an obstacle detection sensor, and the like. Data acquired by the drone control sensor unit 41 is sent to the drone control unit 42.
  • the drone control unit 42 has a function of performing overall control of the sensor-equipped drone 15.
  • the unmanned aerial vehicle control unit 42 controls the unmanned aerial vehicle driving unit 43 to move the sensor-equipped drone 15 to a target position for searching for an underwater object.
  • Information on the target position is received from the system control device 14 via the wireless communication device 17.
  • the drone control unit 42 controls the drone drive unit 43 so as to reach the target position by the autonomous navigation system based on the data acquired by the sensor unit 41 for drone control and the information on the target position. Further, the drone control unit 42 transmits the measurement data of the search sensor unit 44 temporarily stored in the storage unit 45 via the communication unit 46.
  • the drone drive unit 43 has a function as power when the sensor-equipped drone 15 moves.
  • the drone drive unit 43 uses the electric power of the power storage unit 47 as a power source to propel the sensor-equipped drone 15 underwater based on the control of the drone control unit 42.
  • the search sensor unit 44 is a sensor that detects an underwater object.
  • An active sonar similar to the stationary sensor 11 is used for the search sensor unit 44 of the present embodiment.
  • the data measured by the search sensor unit 44 is temporarily stored in the storage unit 45 and then transmitted via the communication unit 46 by the drone control unit 42.
  • the storage unit 45 stores data measured by the search sensor unit 44.
  • the communication unit 46 performs wireless communication with the wireless communication device 17.
  • the power storage unit 47 is a battery that supplies electric power as a power source when operating the sensor-equipped drone 15.
  • the unmanned machine input / recovery device 16 has a function of managing the sensor-mounted unmanned machine 15.
  • the unmanned machine input / recovery device 16 inputs and recovers the sensor-equipped unmanned machine 15 based on the control of the system control device 14.
  • the unmanned machine throw-in and collection device 16 Upon receiving an instruction to turn on the sensor-equipped drone 15 from the system control device 14, the unmanned machine throw-in and collection device 16 releases the fixed state and makes the sensor-equipped drone 15 movable.
  • the location information of the movement destination of the sensor-equipped drone 15 may be sent from the system control device 14 to the sensor-equipped drone 15 via the drone input / recovery device 16. Further, upon receiving an instruction to collect the sensor-equipped unmanned aircraft 15 from the system control device 14, the unmanned machine input / recovery device 16 places the sensor-equipped drone 15 in a fixed state.
  • the unmanned machine loading / unloading device 16 supplies power to the sensor-mounted unmanned machine 15 to charge the battery of the power storage unit 47 when the sensor-mounted unmanned machine 15 is fixed.
  • the wireless communication device 17 performs wireless communication with the sensor-equipped drone 15.
  • the wireless communication device 17 relays wireless communication between the system control device 14 and the sensor-equipped drone 15.
  • the underwater cable 18 is provided as a cable for transmitting data and supplying power.
  • the underwater cable 18 is constituted by, for example, an optical fiber for data transmission and a feeder line formed around the optical fiber.
  • 7 and 8 show an outline of an operation flow of the system control device 14 of the monitoring system according to the present embodiment.
  • the system control device 14 acquires measurement data of the stationary sensor 11 and the environmental sensor 12 (step 101).
  • the stationary sensor 11 and the environmental sensor 12 each send measurement data to the sensor communication power supply device 13 via the underwater cable 18.
  • the stationary sensor 11 and the environment sensor 12 are operated by electric power supplied from the sensor communication power supply device 13 via the underwater cable 18.
  • the sensor communication power supply device 13 When the sensor communication power supply device 13 receives the measurement data from the stationary sensor 11 and the environment sensor 12, the sensor communication power supply device 13 sends the received measurement data to the system control device 14. Sensor information received by the system control device 14, that is, measurement data of the stationary sensor 11 is input to the target detection processing unit 21. The environment information received by the system control device 14, that is, the measurement data of the environment sensor 12 is input to the sensor coverage prediction unit 28.
  • a user-defined threat level is input to the threat level input unit 22 by an operator or the like.
  • the user-defined threat level may be set in advance and stored in the system control device 14. Further, the user-defined threat level may be input to the system control device 14 via a communication line or the like. Data on the user-defined threat level input to the system control device 14 via the threat level input unit 22 is sent to the threat level calculation unit 23.
  • the system control device 14 calculates a search request value (step 102).
  • the target detection processing unit 21 When the calculation of the search request value is started, the target detection processing unit 21 performs a process of calculating the existence probability of the underwater object as the target detection process based on the measurement data of the stationary sensor 11. The target detection processing unit 21 sends the result of the target detection processing to the threat level calculation unit 23.
  • the threat level calculation unit 23 calculates the estimated threat level of each point based on the user-defined threat level data and the target existence probability data. The threat level calculation unit 23 calculates the estimated threat level by multiplying the target existence probability by the user-defined threat level. The threat level calculation unit 23 sends the calculated estimated threat level data to the system control unit 24.
  • FIG. 9 schematically shows a data processing method when the system control device 14 of the present embodiment calculates the estimated threat.
  • the threat level calculation unit 23 of the system control device 14 calculates the predicted threat level at each point by multiplying the target existence probability at each point by the user-defined threat level.
  • the movement cost calculation unit 27 obtains the cruise speed and the battery capacity data of the power storage unit 47 as the characteristic data of the sensor-equipped drone 15 from the unmanned aircraft characteristic data storage unit 31. read out. In addition, the movement cost calculation unit 27 reads out map data including the water bottom topography from the map data storage unit 32. The movement cost calculation unit 27 reads the characteristic data and map data of the sensor-equipped drone 15 and calculates the movement cost of the sensor-equipped drone 15. When the movement cost is calculated, the movement cost calculation unit 27 sends the calculated movement cost data to the system control unit 24.
  • the sensor coverage prediction unit 28 When the sensor coverage prediction unit 28 receives the measurement data of the environmental sensor 12, the sensor coverage prediction unit 28 reads out the map data, the sensor characteristic data, and the position data of the stationary sensor 11. When reading each data, the sensor coverage prediction unit 28 reads the map data from the map data storage unit 32. Further, the sensor coverage prediction unit 28 reads out the sensor characteristic data of the stationary sensor 11 from the sensor characteristic data storage unit 33. In addition, the sensor coverage prediction unit 28 reads the position information of the installation type sensor 11 from the installation type sensor position data storage unit 34.
  • the sensor coverage prediction unit 28 predicts the coverage of the stationary sensor 11 based on each read data and the measurement data of the environment sensor 12.
  • the sensor coverage prediction unit 28 sends the predicted coverage of the stationary sensor 11, that is, data of a range in which the stationary sensor 11 can detect an underwater object, to the system control unit 24 as a sensor effective range. .
  • the system control unit 24 calculates a search effect based on the estimated threat level data and the sensor effective range data.
  • the system control unit 24 calculates the search effect by dividing the estimated threat level by the sensor effective range.
  • the search effect is an index indicating whether it is suitable for measurement by the sensor-equipped drone 15.
  • the search effect has a higher value as the threat level is higher and the measurement by the stationary sensor 11 is difficult.
  • the system control unit 24 calculates a search request value based on the search effect and movement cost data.
  • the system control unit 24 calculates the search request value by reducing the travel cost from the search effect.
  • FIG. 10 schematically shows a data processing method when the system control device 14 of the present embodiment calculates a search request value.
  • the system control unit 24 of the system control device 14 calculates the search effect at each point by dividing the estimated threat level at each point by the data of the sensor effective range.
  • the system control unit 24 calculates a search request value at each point by reducing the movement cost from the calculated search effect at each point.
  • the system control unit 24 determines whether there is a portion that needs to be measured by the sensor-equipped drone 15. For example, the system control unit 24 compares the search request value with a reference value set in advance, and determines a location where the search request value is equal to or greater than the reference value as a location requiring measurement by the sensor-equipped drone 15.
  • Priority may be set so as to increase as the value of the search request value increases when there are a plurality of locations that need to be searched. Moreover, a high priority may be set in an area where the density of the places where measurement by the sensor-equipped drone 15 is necessary is high.
  • the system control unit 24 determines that there is a point that needs to be searched by the sensor-equipped drone 15. If it is determined that there is a point that needs to be searched by the sensor-equipped drone 15, the system control unit 24 confirms whether or not the sensor-equipped drone 15 can be inserted (step 104). The system control unit 24 outputs information for confirming whether or not the sensor-equipped drone 15 can be turned on to a terminal device or the like connected to the system control device 14, and receives an answer from the operator or the like.
  • the system control unit 24 performs the process of throwing the sensor-equipped drone 15 (step 106).
  • the system control unit 24 sends an instruction to throw the sensor-equipped drone 15 to the drone loading / recovery command unit 25.
  • the unmanned machine throw-in and recovery command unit 25 sends an instruction to throw the sensor-equipped drone 15 into the unmanned machine throw-in and collection device 16.
  • the determination of the insertion of the sensor-equipped drone 15 may be made automatically without confirmation to the operator or the like.
  • the system control unit 24 determines that there is a point that needs to be searched by the sensor-equipped drone 15, so that the sensor-equipped drone 15 is turned on. Judgment is started when necessary.
  • the unmanned machine throw-in and recovery device 16 Upon receiving an instruction to turn on the sensor-equipped drone 15, the unmanned machine throw-in and recovery device 16 releases the fixation of the sensor-equipped drone 15 so that the sensor-equipped drone 15 can move.
  • the system control unit 24 starts control of the sensor-equipped drone 15 (step 107).
  • the system control unit 24 sends the information on the target position of the movement of the sensor-equipped drone 15, that is, the point where the sensor-equipped drone 15 needs to be measured, to the drone control command. Send to part 26.
  • the drone control command unit 26 sends the information on the target position of the sensor-equipped drone 15 to the wireless communication device 17.
  • the wireless communication device 17 sends the information on the target position to the sensor-equipped drone 15.
  • step 103 when there is no point where the search request value is equal to or larger than the reference value (No in step 103), the system control device 14 repeats the operation again from the operation of acquiring each measurement data in step 101.
  • the system control device 14 repeats the operation again from the operation of acquiring each measurement data in step 101.
  • the system control device 14 may end the operation.
  • the sensor-equipped drone 15 moves to a point corresponding to the information on the target position by autonomous navigation.
  • the drone control unit 42 of the sensor-equipped drone 15 receives information indicating that the target position has been reached via the communication unit 46 as a movement completion notification. 17 to send.
  • the drone control unit 42 adds the position information of the sensor-equipped drone 15 and the remaining battery information to the movement completion notification and transmits it.
  • the wireless communication device 17 receives the movement completion notification from the sensor-equipped drone 15, the wireless communication device 17 transmits the received movement completion notification to the system control device 14.
  • the system control device 14 receives a movement completion notification indicating that the sensor-equipped drone 15 has reached the target position via the wireless communication device 17 (step 108).
  • the movement completion notification received by the system control device 14 is input to the movement cost calculation unit 27.
  • the movement cost calculation unit 27 receives the remaining information of the sensor-equipped drone 15 based on the position information of the sensor-equipped drone 15 and the remaining battery amount.
  • the movable distance is calculated (step 109).
  • the travel cost calculation unit 27 generates travel cost data for each point based on the travelable distance, and sends the travel cost data to the system control unit 24.
  • the search sensor unit 44 of the sensor-equipped drone 15 performs measurement using a sonar.
  • the measurement result by the sonar of the search sensor unit 44 is temporarily stored in the storage unit 45.
  • the measurement data stored in the storage unit 45 is transmitted to the wireless communication device 17 via the communication unit 46. Send to.
  • the wireless communication device 17 When the wireless communication device 17 receives the measurement data of the sensor-equipped drone 15, the wireless communication device 17 sends the measurement data to the system control device 14.
  • the system control device 14 receives the measurement data of the sensor-equipped drone 15 from the wireless communication device 17 (step 110).
  • the measurement data of the sensor-mounted drone 15 received by the system control device 14 is input to the target detection processing unit 21. Further, the system control device 14 acquires measurement data of the stationary sensor 11 and the environment sensor 12 (step 111).
  • the target detection processing unit 21 of the system control device 14 calculates the target existence probability based on the measurement data of the stationary sensor 11 and the sensor-equipped drone 15. To do.
  • the target detection processing unit 21 sends the calculated target presence probability data to the threat level calculation unit 23.
  • the threat level calculation unit 23 Upon receiving the target existence probability data, the threat level calculation unit 23 calculates the estimated threat level of each point based on the user-defined threat level and the target presence probability data. The threat level calculation unit 23 sends the calculated estimated threat level data to the system control unit 24.
  • the sensor coverage prediction unit 28 is based on the measurement data, position information, map data, and sensor characteristic data of the environmental sensor 12 and the sensor-equipped drone 15, and the search sensor unit 44 of the installation type sensor 11 and sensor-equipped drone 15. Predict the coverage area.
  • the sensor coverage estimation unit 28 sends the predicted coverage data to the system control unit 24 as sensor effective range data.
  • the system control unit 24 calculates a search effect based on the estimated threat level data and the target existence probability.
  • the system control unit 24 calculates a search request value based on the search effect and movement cost data (step 112).
  • the system control unit 24 determines whether there is a portion that needs to be measured by the sensor-equipped drone 15. The system control unit 24 compares the search request value with a preset reference value, and determines a location where the search request value is greater than or equal to the reference value as a location that needs to be measured by the sensor-equipped drone 15.
  • the system control unit 24 determines that the search by the sensor-equipped drone 15 needs to be continued. If it is determined that the search needs to be continued, the system control unit 24 confirms whether or not the search can be continued by the sensor-equipped drone 15 with an operator or the like (step 114). The system control unit 24 outputs information on confirmation of whether or not to continue the search by the sensor-equipped unmanned aircraft 15 to a terminal device or the like connected to the system control device 14 and accepts an answer by an operator or the like.
  • the system control unit 24 sends information on the target position of the search by the sensor-equipped drone 15 to the drone control command unit 26.
  • the drone control command unit 26 sends the target position and information on the movement instruction to the target position to the wireless communication device 17 (step 116).
  • the wireless communication device 17 Upon receiving the search target position and movement instruction information, the wireless communication device 17 sends the received target position and movement instruction information to the sensor-equipped drone 15.
  • the determination of the search continuation by the sensor-equipped drone 15 may be automatically performed without confirming with an operator or the like.
  • the system control unit 24 needs to continue the search by the sensor-equipped drone 15 when determining that there is a point that needs to be searched. Judgment is made and the movement of the sensor-equipped drone 15 is controlled.
  • the sensor-equipped drone 15 that has received the search target position and movement instruction information starts to move based on the target position information, and performs a measurement operation by the search sensor unit 204 when the target position is reached.
  • the sensor-equipped drone 15 transmits a movement completion notification to the system control device 14 via the wireless communication device 17.
  • the system control device 14 that has received the movement completion notification performs the operation from step 108.
  • the system control unit 24 determines that the search by the sensor-equipped drone 15 has been completed.
  • a return instruction for returning the sensor-equipped drone 15 to the drone input / recovery device 16 is sent to the drone control command unit 26.
  • the unmanned aircraft control command unit 26 sends it to the wireless communication device 17 of the unmanned aircraft input / recovery device 16 (step 117).
  • the wireless communication device 17 sends the received return instruction to the sensor-equipped drone 15.
  • the sensor-equipped drone 15 moves to the position of the drone input / recovery device 16 by autonomous navigation.
  • the sensor-equipped unmanned aircraft 15 that has moved to the position of the unmanned aircraft input / recovery device 16 is fixed by the unmanned aircraft input / recovery device 16 to perform operations such as power feeding.
  • the system control unit 24 determines that the search by the sensor-equipped drone 15 is completed, and sends a return instruction to the drone control command unit 26.
  • the unmanned aircraft control command unit 26 sends the unmanned aircraft control command unit 26 to the sensor-equipped drone 15 via the wireless communication device 17 of the unmanned vehicle input and collection device 16 (step 117).
  • the sensor-equipped drone 15 moves to the position of the drone input / recovery device 16 by autonomous navigation.
  • the sensor-equipped unmanned aircraft 15 that has moved to the position of the unmanned aircraft input / recovery device 16 is fixed by the unmanned aircraft input / recovery device 16 to perform operations such as power feeding.
  • the system control device 14 of the monitoring system of the present embodiment predicts the coverage area of the installation type sensor 11 in consideration of the change in the sensor performance of the installation type sensor 11 based on the measurement result of the environment by the environment sensor 12. . Therefore, the monitoring system according to the present embodiment can predict the coverage of the stationary sensor 11 in consideration of the environmental change even when the environment such as the water temperature changes and the sensor performance changes.
  • the system control device 14 performs measurement by the mobile sensor, that is, the sensor-equipped drone 15 based on the prediction result of the stationary sensor 11 and the existence probability, the threat level, and the movement cost of the object to be detected. The position to perform is judged. Therefore, the system control device 14 can accurately determine a point suitable for searching for an object by the mobile sensor from points where the object detection by the stationary sensor 11 is difficult. That is, the monitoring system of the present embodiment can search for an object with a mobile sensor even if it is difficult to detect with a stationary sensor 11 a point with high importance of monitoring. As a result, the monitoring system of the present embodiment can continue monitoring even when the sensor coverage changes due to environmental changes.
  • the plurality of sensor-equipped drones 15 when there are a plurality of sensor-equipped drones 15 and there are a plurality of points where a search is determined to be necessary based on the search request value, the plurality of sensor-equipped drones 15 May be simultaneously introduced to these points. By simultaneously searching for a plurality of points in the plurality of sensor-equipped drones 15, even when the moving speed of an object in water is high, it can be detected more reliably.
  • the configuration includes a plurality of sensor-equipped drones
  • communication with the wireless communication device 17 may be performed by relaying communication between the sensor-equipped drones 15.
  • the sensor-equipped drone 15 existing at a point far from the wireless communication device 17 can also perform stable communication.
  • the sensor-equipped drone 15 and the system control device 14 perform wireless communication via the wireless communication device 17.
  • the sensor-equipped drone 15 may communicate with the system control device 14 via communication equipment installed in water.
  • the sensor-equipped drone 15 communicates with an underwater communication device installed in the stationary sensor 11 or the environment sensor 12 by an acoustic signal, a radio signal, or an optical signal, and the communication device performs system control via the underwater cable 18. It may be configured to communicate with the device 14.
  • the underwater communication device that communicates with the sensor-equipped drone 15 may be installed at a position different from the installation type sensor 11 and the environment sensor 12.
  • the sensor-equipped drone 15 of the second embodiment may be a flying mobile body.
  • the underwater search is performed by putting the search sensor unit 44 into the water at the target position for the search.
  • the monitoring system of the second embodiment detects an object in water, but may be configured to detect an object on land.
  • an optical camera can be used as a stationary sensor or a mobile sensor.
  • a visibility meter is used as the environmental sensor.
  • the mobile sensor moves in a state provided in a vehicle or a flying object, for example.
  • Covering area predicting means for predicting a covering area that is a range that can be measured by the stationary sensor that detects the object based on the measurement result of the environment of the area that detects the object; Control means for determining a position where a mobile sensor for detecting the object is arranged and controlling the mobile sensor based on the coverage predicted by the coverage prediction means and the probability that the object exists.
  • a control device comprising:
  • the control means arranges the mobile sensor that detects the object based on a movement cost that is an index indicating a load of movement of the mobile sensor from the current location, the coverage, and the probability that the object exists.
  • the control apparatus according to appendix 1, wherein a position to be operated is determined.
  • the control means determines whether or not measurement by the mobile sensor is necessary by comparing a reference value with an index calculated based on the moving cost, the coverage, and the probability that the object exists.
  • the control apparatus according to appendix 2.
  • Appendix 5 The control device according to any one of appendices 2 to 4, further comprising a movement cost calculation unit that calculates the movement cost based on a remaining power source of the mobile sensor.
  • Appendix 6 An environmental sensor that measures the environment of the area where the object is detected; A plurality of stationary sensors for detecting the object; A mobile device having a sensor for detecting the object and driving means for moving by autonomous navigation; A control device according to any one of appendices 1 to 5, The coverage prediction means of the control device predicts the coverage of the stationary sensor based on the measurement result of the environmental sensor, The monitoring system, wherein the control means of the control device determines a position where the mobile device is arranged as the mobile sensor based on a result predicted by the coverage prediction means.
  • the communication power supply apparatus further comprising: a communication unit that relays communication between the environmental sensor and the installation type sensor, and the control device; and a power supply unit that supplies power to the environmental sensor and the installation type sensor.
  • Appendix 8 A charging / lifting device having means for charging and unloading the mobile device and means for supplying power to the mobile device;
  • the monitoring system according to appendix 6 or 7, wherein the mobile unit is input from the input / lift device based on control of the control device, and returns to the input / output device.
  • a monitoring method comprising: determining a position where a mobile sensor for detecting the object is arranged based on the predicted coverage and the probability that the object exists; and controlling the mobile sensor.
  • the position of the mobile sensor that detects the object is determined based on the movement cost that is an index indicating the load of movement of the mobile sensor from the current location, the coverage, and the probability that the object exists.
  • the supplementary note 10 is characterized in that the necessity of measurement by the mobile sensor is determined by comparing a reference value with an index calculated based on the moving cost, the coverage, and the probability that the object exists. The monitoring method described.
  • Appendix 13 The monitoring method according to any one of appendices 10 to 12, wherein the movement cost is calculated based on a remaining amount of a power source of the mobile sensor.
  • Covering area prediction processing for predicting a covering area that is a range that can be measured by the stationary sensor that detects the object based on the measurement result of the environment of the area in which the object is detected;
  • a control process for determining a position where a mobile sensor for detecting the object is arranged and controlling the mobile sensor based on the coverage predicted in the coverage prediction process and the probability that the object exists.
  • a control program executed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

[課題]環境変化によってセンサの覆域に変動が生じた場合にも、監視を継続することができる制御装置を提供する。 [解決手段]制御装置を、覆域予測手段1と、制御手段2を備える構成とする。覆域予測手段1は、物体を検出する領域の環境の計測結果に基づいて、物体を検出する設置式センサが計測可能な範囲である覆域を予測する。制御手段2は、覆域予測手段1が予測した覆域と物体が存在する確率とに基づいて、物体を検出する移動式センサを配置する位置を判断し、移動式センサを制御する。

Description

制御装置、監視システムおよび監視方法
 本発明は、監視技術に関するものであり、特に、設置式と移動式のセンサを用いて環境条件に適応した監視を行う技術に関するものである。
 幅広い分野において、複数の設置式センサを利用した監視システムが利用されている。また、そのような監視システムは、監視の対象となる領域内において、確実に監視を行えることが要求されることも多い。しかし、監視の対象となる領域の環境変化によるセンサの特性変動でセンサの覆域が変化し、設置されたセンサによって監視を行うことができない領域が生じる可能性がある。
 監視の対象となる領域内において確実に監視を継続するためには、例えば、センサを密に配置することも考えられる。しかし、センサの数を増やすと、多くのセンサを設置することになり監視システムの構成が複雑になる恐れがある。そのため、監視システムの構成の複雑化を抑制しつつ、設置式センサによって監視を行うことができない領域が生じた際にも、監視を継続できることが望ましい。そのため、設置式センサによって監視を行うことができない領域を、他の方法で監視する技術の開発が行われている。そのような、設置式センサによって監視を行うことができない領域を監視する技術としては、例えば、特許文献1のような技術が開示されている。
 特許文献1は、設置式のカメラと、飛行型の監視装置を組み合わせた監視システムに関するものである。特許文献1の監視システムは、設置式のカメラで追跡対象を検出できないと判断したときに、追跡対象の位置を予測している。特許文献1の監視システムは、追跡対象の位置の予測結果を基に、飛行装置を制御して予測した位置において上空から追跡対象の撮影を行うことで、設置式のカメラで撮影できない追跡対象の検出を行っている。
特開2016-119625号公報
 しかしながら、特許文献1の技術は次のような点で十分ではない。特許文献1の監視システムは、追跡対象の位置を予測して飛行装置を用いて撮影を行っている。しかし、例えば、水中におけるソーナーシステムのように環境によってセンサの覆域が変動するような監視システムでは、覆域の変化によってセンサによって監視できる領域も変化する。そのため、移動式のセンサによる計測が必要な地点を正確に予測することができない恐れがある。そのような場合には、移動式のセンサを用いても、センサによる監視ができない領域が生じて監視対象を検出できない恐れがある。よって、特許文献1の技術は、環境変化によって設置式センサの覆域に変動が生じた場合にも、確実に監視を継続する技術としては十分ではない。
 本発明は、上記の課題を解決するため、環境変化によってセンサの覆域に変動が生じた場合にも、監視を継続することができる制御装置を提供することを目的としている。
 上記の課題を解決するため、本発明の制御装置は、覆域予測手段と、制御手段を備えている。覆域予測手段は、物体を検出する領域の環境の計測結果に基づいて、物体を検出する設置式センサが計測可能な範囲である覆域を予測する。制御手段は、覆域予測手段が予測した覆域と物体が存在する確率とに基づいて、物体を検出する移動式センサを配置する位置を判断し、移動式センサを制御する。
 本発明の監視方法は、物体を検出する領域の環境の計測結果に基づいて、物体を検出する設置式センサが計測可能な範囲である覆域を予測する。また、本発明の監視方法は、予測した覆域と物体が存在する確率とに基づいて、物体を検出する移動式センサを配置する位置を判断し、移動式センサを制御する。
本発明によると、環境変化によってセンサの覆域に変動が生じた場合にも、監視を継続することができる。
本発明の第1の実施形態の構成の概要を示す図である。 本発明の第2の実施形態の監視システムの構成の概要を示す図である。 本発明の第2の実施形態の監視システムの構成を示すブロック図である。 本発明の第2の実施形態のシステム制御装置の構成を示すブロック図である。 本発明の第2の実施形態における移動コストの例を示した図である。 本発明の第2の実施形態のセンサ搭載無人機の構成を示すブロック図である。 本発明の第2の実施形態の動作フローの概要を示した図である。 本発明の第2の実施形態の動作フローの概要を示した図である。 本発明の第2の実施形態における推定脅威度の算出方法を模式的に示した図である。 本発明の第2の実施形態における捜索要求値の算出方法を模式的に示した図である。
 (第1の実施形態)
 本発明の第1の実施形態について図を参照して詳細に説明する。図1は、本実施形態の制御装置の構成の概要を示したものである。本実施形態の制御装置は、覆域予測手段1と、制御手段2を備えている。覆域予測手段1は、物体を検出する領域の環境の計測結果に基づいて、物体を検出する設置式センサが計測可能な範囲である覆域を予測する。制御手段2は、覆域予測手段1が予測した覆域と物体が存在する確率とに基づいて、物体を検出する移動式センサを配置する位置を判断し、移動式センサを制御する。
 本実施形態の制御装置は、覆域予測手段1において物体を検出する領域の環境の計測結果に基づいて設置式センサの覆域を予測し、制御手段2において予測結果に基づいて移動式センサを配置する位置を判断している。本実施形態の制御装置は、環境の計測結果に基づいて設置式センサの覆域を予測しているので、環境の変動によって設置式センサの覆域が変化した場合にも、移動式センサを配置する位置を的確に予測することができる。その結果、本実施形態の制御装置を用いることで環境変化によってセンサの覆域に変動が生じた場合にも、監視を継続することができる。
 (第2の実施形態)
 本発明の第2の実施形態について図を参照して詳細に説明する。図2は、本実施形態の監視システムの構成の概要を示した図である。また、図3は、本実施形態の監視システムの構成を示すブロック図である。本実施形態の監視システムは、水中に存在する物体をソーナーで検出することで、水中における監視や捜索を行う水中監視システムである。
 本実施形態の監視システムは、設置式センサ11と、環境センサ12と、センサ用通信給電装置13と、システム制御装置14と、センサ搭載無人機15と、無人機投入回収装置16と、無線通信装置17を備えている。また、設置式センサ11および環境センサ12と、センサ用通信給電装置13の間は、水中ケーブル18で接続されている。また、システム制御装置14と、センサ用通信給電装置13、無人機投入回収装置16および無線通信装置17の間は、それぞれ通信ケーブルまたは通信回線を介して接続されている。
 設置式センサ11は、水中の複数の箇所に設置され、水中に存在する物体を検出するセンサである。設置式センサ11は、単数であってもよい。本実施形態の設置式センサ11には、例えば、アクティブソーナーが用いられる。設置式センサ11が計測したデータは、水中ケーブル18およびセンサ用通信給電装置13を介してシステム制御装置14にセンサ情報として送られる。
 環境センサ12は、設置式センサ11の覆域、すなわち、センサによって水中の物体の検出が可能な範囲の算出に用いるデータを取得するセンサである。環境センサ12は、水中の複数の箇所に設置されている。環境センサ12は、単数であってもよい。環境センサ12は、例えば、水中の音速データを算出する際に用いる水温を計測する水温センサと、電気伝導度を計測する電気伝導度センサによって構成されている。環境センサ12が計測したデータは、水中ケーブル18およびセンサ用通信給電装置13を介してシステム制御装置14に環境情報として送られる。
 また、設置式センサ11および環境センサ12は、水中ケーブル18を介してセンサ用通信給電装置13から供給される電力によって動作する。
 センサ用通信給電装置13は、設置式センサ11および環境センサ12と、システム制御装置14の間の通信をそれぞれ中継する。センサ用通信給電装置13は、水中ケーブル18を介して設置式センサ11および環境センサ12とそれぞれ通信を行う。また、センサ用通信給電装置13は、水中ケーブル18を介して設置式センサ11および環境センサ12にそれぞれ電力を供給する。
 システム制御装置14の構成について説明する。図4は、本実施形態のシステム制御装置14の構成を示すブロック図である。システム制御装置14は、センサ情報および環境情報を基にセンサ搭載無人機15の動作を制御し、水中に存在する物体を検出する機能を有する。
 システム制御装置14は、目標検出処理部21と、脅威度入力部22と、脅威度算出部23と、システム制御部24と、無人機投入回収指令部25と、無人機制御指令部26と、移動コスト算出部27と、センサ覆域予測部28を備えている。また、システム制御装置14は、無人機特性データ記憶部31と、地図データ記憶部32と、センサ特性データ記憶部33と、設置式センサ位置データ記憶部34をさらに備えている。
 目標検出処理部21は、設置式センサ11およびセンサ搭載無人機15から送られてくるセンサ情報を基に、目標すなわち捜索対象の物体の存在確率を算出する。目標検出処理部21は、算出した物体の存在確率のデータを目標存在確率として脅威度算出部23に送る。
 目標検出処理部21は、受信信号のS/N(Signal / Noise)比を基に水中の物体の存在確率を算出する。目標検出処理部21は、方位ごとの受信信号のデータにパルス圧縮処理およびCFAR(Constant False Alarm Rate)処理等を施し、物体の存在確率を目標存在確率として算出する。また、水中の物体の検出は、複数のセンサによるマルチスティック方式によるセンシングで行われてもよい。また、水中の物体の検出は、複数のセンサが個々に受信したデータに対してデータフュージョンを行うことで位置検出の極限精度を向上する方式で行われてもよい。
 また、目標検出処理部21において水中の物体を検出した場合には、システム制御装置14に接続されている端末装置や通信回線を介して監視システムの管理者等に、物体を検出したことを示す情報が通知される。
 脅威度入力部22は、作業者等が各地点の脅威度をユーザ定義脅威度として入力するインターフェースである。脅威度とは、地点ごとの重要性を示す指標であり、第3者や未知の物体に侵入されると脅威になる地点ほど高い値として設定される。脅威度は、例えば、重要施設の近傍ほど高く、重要施設から離れるほど低くなるように設定される。脅威度の値が高い地点は、物体等が存在した場合に、物体の特定、除去および破壊等の対応の優先度が高い地点である。また、脅威度の値が低い地点は、物体の特定等の対応の優先度が低い地点である。
 脅威度算出部23は、脅威度入力部22を介して入力されるユーザ定義脅威度と、目標検出処理部21から受け取る目標の存在確率のデータを基に、各地点の脅威度を推定脅威度として算出する。
 システム制御部24は、各地点における物体の捜索の必要性を判断し、センサ搭載無人機15の各地点への投入および帰投を制御して、水中の監視や水中の物体の捜索を行う機能を有する。システム制御部24は、水中の各地点における物体等の検出や捜索の必要性を示す捜索要求値を算出する。システム制御部24は、あらかじめ設定された基準値と、算出した捜索要求値を比較し、算出した捜索要求値が基準値以上の地点を、移動式センサであるセンサ搭載無人機15による捜索が必要な地点であると判断する。
 システム制御部24は、捜索が必要な地点があると判断すると、センサ搭載無人機15に捜索が必要な地点の情報を送る。本実施形態における各地点の位置を示す情報は、例えば、対象となる地点の緯度と経度の情報を基に構成されている。捜索が必要な地点の情報には、深度の情報が含まれていてもよい。また、各地点の情報は、水中に設定された基準地点からの差を示す情報として設定されていてもよい。
 システム制御部24は、捜索が必要な地点があるとき、無人機投入回収指令部25を介して、無人機投入回収装置16にセンサ搭載無人機15の投入を指示する。また、システム制御部24は、捜索が完了したと判断すると、センサ搭載無人機15を無人機投入回収装置16の位置に帰投させる。
 本実施形態のシステム制御部24の覆域から算出された捜索要求値を基にセンサ搭載無人機15による捜索が必要な地点を判断し、センサ搭載無人機15の投入を指示する機能は、第1の実施形態の制御手段2に相当する。
 無人機投入回収指令部25は、システム制御部24の制御に基づいて無人機投入回収装置16にセンサ搭載無人機15の投入および回収の指示を送る。また、無人機投入回収装置16においてセンサ搭載無人機15を回収する動作は、揚収とも呼ばれる。
 無人機制御指令部26は、システム制御部24の制御に基づいてセンサ搭載無人機15に移動先の地点の情報を送る。また、無人機制御指令部26は、システム制御部24の制御に基づいてセンサ搭載無人機15に帰投の指示を送る。
 移動コスト算出部27は、センサ搭載無人機15の移動に要する負荷を示す指標を移動コストとして算出する。移動コストは、移動コストの算出時にセンサ搭載無人機15が存在する地点で最小となる。また、移動コストは、移動コストの算出時にセンサ搭載無人機15が存在する地点から離れる従って値が大きくなる。センサ搭載無人機15の残りのバッテリー量から算出した移動可能距離より遠方であり、到達が不可能な地点では、移動コストは、正の無限大となる。各地点までの移動コストは、地図形式のデータとしてセンサ搭載無人機15ごとに算出される。地図形式のデータとは、各地点の位置を示す情報と、移動コストなどの各地点におけるデータとが互いに関連づけられたデータのことをいう。
 図5は、センサ搭載無人機15が存在する地点から移動先までの移動距離と移動コストの関係を模式的に示したグラフである。図5の破線は、残りのバッテリー量を基に算出した移動可能な距離の最大値、すなわち、移動可能な残りの距離を示している。
 移動コスト算出部27は、各地点までの最適な移動経路を潮流等の情報を用いてA-starアルゴリズム等に基づいて算出する。移動コスト算出部27は、最適な移動経路のデータを基に各地点までの移動距離を算出し、バッテリーの残量を考慮した移動コストを算出する。移動コストは、移動コストをCとすると、例えば、C=tan((d/(π/2))/Dbatt)+Coffsetの式に基づいて算出される。dは、現地点からの移動距離を示している。また、Dbattは、バッテリーが空になる距離を示している。また、Coffsetは、バッテリーの残量に余裕を持たせるためのオフセット値である。上記の式において移動コストは、バッテリーが空になる距離で無限大に発散するように設定されている。
 センサ覆域予測部28は、設置式センサ11およびセンサ搭載無人機15のセンサによって計測可能な領域である覆域を算出する機能を有する。センサ覆域予測部28は、センサ搭載無人機15の位置情報、環境情報、地図データ、センサ特性および設置式センサ11の位置情報を基に覆域を算出する。
 センサ覆域予測部28は、環境情報に含まれる水温および電気伝導度と、センサ特性に含まれる出力ビームの強度等を基に設置式センサ11の位置を起点とした各地点におけるビームの強度を予測する。センサ覆域予測部28は、各地点におけるビームの強度を予測する際に、地図データを基に水底の隆起部分での反射等を考慮して設置式センサ11から発せられたビームの進む方向を予測する。
 センサ覆域予測部28は、各地点に物体が存在した場合に、設置式センサ11から発せられたビームに対する物体の反響音が設置式センサ11の位置に到達する際の強度を算出する。センサ覆域予測部28は、物体の位置等の予測に十分な強度の反響音が設置式センサ11の位置に到達する範囲を覆域とする。覆域のデータは、地図形式のデータとして算出される。覆域のデータは、設置式センサ11の位置に戻ってくる反響音が強いと予測される地点ほど高い値となり、設置式センサ11の位置に戻ってくる反響音が弱いと予測される地点では低い値となる。
 センサ覆域予測部28は、算出した覆域の情報をセンサ有効範囲としてシステム制御部24に送る。センサ有効範囲のデータの値は、設置式センサ11の近傍で高く、設置式センサ11から離れてセンサによる物体の検出が困難になるに従って小さくなる。センサ有効範囲のデータは、水底の地形や水中の環境に基づいた値として算出される。また、本実施形態のセンサ覆域予測部28の機能は、第1の実施形態の覆域予測手段1に相当する。
 無人機特性データ記憶部31は、センサ搭載無人機15の特性データを記憶している。センサ搭載無人機15の特性データとしては、例えば、センサ搭載無人機15の巡航速力、バッテリー容量およびセンサの性能のデータが記憶されている。地図データ記憶部32は、水底の地形を含む地図データを記憶している。センサ特性データ記憶部33は、設置式センサ11のソーナーのビームの周波数、ビームの送出方向および送信レベル等の特性や設定値のデータを記憶している。設置式センサ位置データ記憶部34は、設置式センサ11が設置されている地点の位置情報を記憶している。無人機特性データ記憶部31、地図データ記憶部32、センサ特性データ記憶部33および設置式センサ位置データ記憶部34に記憶されているデータの全てまたは一部は、通信回線を介して他の装置から読み出されてもよい。
 本実施形態のシステム制御装置14の各部位における処理は、情報処理装置のCPU(Central Processing Unit)においてコンピュータプログラムを実行することで行われてもよい。また、そのような構成とする場合に、各処理を行うコンピュータプログラムは、ハードディスクドライブ、半導体記憶装置またはその他の記録媒体に記録されている。
 センサ搭載無人機15の構成について説明する。図6は、本実施形態のセンサ搭載無人機15の構成を示すブロック図である。センサ搭載無人機15は、無人機制御用センサ部41と、無人機制御部42と、無人機駆動部43と、捜索用センサ部44、記憶部45と、通信部46と、蓄電部47を備えている。
 本実施形態のセンサ搭載無人機15は、システム制御装置14の制御に基づいて自律航法で移動し、無人機制御用センサ部41において水中の物体の捜索を行う移動式センサである。センサ搭載無人機15は、例えば、無線通信装置17との間で無線信号の送受信が可能な水面付近を移動する水中航走型の移動体として構成されている。センサ搭載無人機15は、水中で計測可能なセンサを備えていれば、水上航走型であってもよい。
 センサ搭載無人機15は、空中を伝搬する無線信号が直接、届かない深度において移動および水中の物体の捜索を行ってもよい。無線信号が直接、届かない深度で移動等を行う場合には、センサ搭載無人機15は、無線通信装置17との無線通信を行う際に、無線通信が可能な位置まで浮上するか、通信用のアンテナを水面付近に浮上させることで無線通信を行う。
 無人機制御用センサ部41は、センサ搭載無人機15の移動に必要なデータを取得するセンサである。無人機制御用センサ部41は、位置計測装置、慣性航法装置、高度/深度計および障害物検出用センサ等によって構成されている。無人機制御用センサ部41が取得したデータは、無人機制御部42に送られる。
 無人機制御部42は、センサ搭載無人機15の制御全般を行う機能を有する。無人機制御部42は、無人機駆動部43を制御して、水中の物体の捜索を行う目標位置にセンサ搭載無人機15を移動させる。目標位置の情報は、システム制御装置14から無線通信装置17を介して受け取る。無人機制御部42は、無人機制御用センサ部41で取得したデータと、目標位置の情報を基に自律航法システムによって目標位置に到達するように無人機駆動部43を制御する。また、無人機制御部42は、記憶部45に一時保存されている捜索用センサ部44の計測データを、通信部46を介して送信する。
 無人機駆動部43は、センサ搭載無人機15が移動する際の動力としての機能を有する。無人機駆動部43は、蓄電部47の電力を動力源として、無人機制御部42の制御に基づいてセンサ搭載無人機15を水中で推進させる。
 捜索用センサ部44は、水中の物体を検出するセンサである。本実施形態の捜索用センサ部44には、設置式センサ11と同様のアクティブソーナーが用いられる。捜索用センサ部44が計測したデータは、記憶部45に一時保存された後、無人機制御部42によって通信部46を介して送信される。
 記憶部45は、捜索用センサ部44が計測したデータを保存する。通信部46は、無線通信装置17と無線通信を行う。蓄電部47は、センサ搭載無人機15を動作させる際に動力源となる電力を供給するバッテリーである。
 無人機投入回収装置16は、センサ搭載無人機15を管理する機能を有する。無人機投入回収装置16は、システム制御装置14の制御に基づいてセンサ搭載無人機15の投入および回収を行う。
 無人機投入回収装置16は、システム制御装置14からセンサ搭載無人機15の投入の指示を受けると、固定状態を解除してセンサ搭載無人機15を移動可能な状態にする。センサ搭載無人機15の移動先の位置情報は、無人機投入回収装置16を介してシステム制御装置14からセンサ搭載無人機15に送られてもよい。また、無人機投入回収装置16は、システム制御装置14からセンサ搭載無人機15の回収の指示を受けると、センサ搭載無人機15を固定した状態にする。
 また、無人機投入回収装置16は、センサ搭載無人機15を固定しているときに、センサ搭載無人機15に給電を行って蓄電部47のバッテリーの充電を行う。
 無線通信装置17は、センサ搭載無人機15と無線通信を行う。無線通信装置17は、システム制御装置14とセンサ搭載無人機15の間の無線通信を中継する。
 水中ケーブル18は、データの伝送および電力の供給を行うケーブルとして備えられている。水中ケーブル18は、例えば、データ伝送用の光ファイバと、光ファイバの周囲に形成された給電線によって構成されている。
 本実施形態の監視システムの動作について説明する。図7および図8は、本実施形態の監視システムのシステム制御装置14の動作フローの概要を示したものである。
 監視システムが動作を開始すると、システム制御装置14は、設置式センサ11および環境センサ12の計測データを取得する(ステップ101)。設置式センサ11および環境センサ12は、それぞれ計測データを、水中ケーブル18を介してセンサ用通信給電装置13に送る。設置式センサ11および環境センサ12は、水中ケーブル18を介してセンサ用通信給電装置13から供給される電力によって動作する。
 センサ用通信給電装置13は、設置式センサ11および環境センサ12から計測データをそれぞれ受け取ると、受け取った計測データをシステム制御装置14に送る。システム制御装置14が受信したセンサ情報、すなわち、設置式センサ11の計測データは、目標検出処理部21に入力される。また、システム制御装置14が受信した環境情報、すなわち、環境センサ12の計測データは、センサ覆域予測部28に入力される。
 また、作業者等によってユーザ定義脅威度が脅威度入力部22に入力される。ユーザ定義脅威度は、あらかじめ設定されてシステム制御装置14に保存されていてもよい。また、ユーザ定義脅威度は、通信回線等を介してシステム制御装置14に入力されてもよい。脅威度入力部22を介してシステム制御装置14に入力されたユーザ定義脅威度のデータは脅威度算出部23に送られる。
 設置式センサ11および環境センサ12から受信する計測データと、ユーザ定義脅威度のデータを取得すると、システム制御装置14は、捜索要求値を算出する(ステップ102)。
 捜索要求値の算出を開始すると、目標検出処理部21は、設置式センサ11の計測データを基に、水中の物体の存在確率を算出する処理を目標検出処理として行う。目標検出処理部21は、目標検出処理の結果を脅威度算出部23に送る。
 脅威度算出部23は、ユーザ定義脅威度のデータと目標の存在確率のデータを基に各地点の推定脅威度を算出する。脅威度算出部23は、目標存在確率と、ユーザ定義脅威度を乗ずることで推定脅威度を算出する。脅威度算出部23は、算出した推定脅威度のデータをシステム制御部24に送る。
 図9は、本実施形態のシステム制御装置14が推定脅威度を算出する際のデータ処理方法を模式的に示したものである。システム制御装置14の脅威度算出部23は、図9に示すように、各地点の目標存在確率とユーザ定義脅威度を乗ずることで、各地点における予測脅威度を算出する。
 また、捜索要求値の算出を開始する際に、移動コスト算出部27は、無人機特性データ記憶部31からセンサ搭載無人機15の特性データとして、巡航速力および蓄電部47のバッテリー容量のデータを読み出す。また、移動コスト算出部27は、地図データ記憶部32から水底地形を含む地図データを読み出す。移動コスト算出部27は、センサ搭載無人機15の特性データと地図データを読み出すと、センサ搭載無人機15の移動コストを算出する。移動コストを算出すると、移動コスト算出部27は、算出した移動コストのデータをシステム制御部24に送る。
 センサ覆域予測部28は、環境センサ12の計測データを受け取ると、地図データ、センサ特性データおよび設置式センサ11の位置データの読み出しを行う。各データの読み出しを行う際に、センサ覆域予測部28は、地図データ記憶部32から地図データの読み出しを行う。また、センサ覆域予測部28は、センサ特性データ記憶部33から設置式センサ11のセンサ特性のデータの読み出しを行う。また、センサ覆域予測部28は、設置式センサ位置データ記憶部34から設置式センサ11の位置情報の読み出しを行う。
 各データの読み出しを行うと、センサ覆域予測部28は、読み出した各データと、環境センサ12の計測データを基に設置式センサ11の覆域を予測する。センサ覆域予測部28は、予測した設置式センサ11の覆域、すなわち、設置式センサ11が水中の物体の検出を行うことができる範囲のデータを、センサ有効範囲としてシステム制御部24に送る。
 推定脅威度のデータとセンサ有効範囲のデータを受け取ると、システム制御部24は、推定脅威度のデータとセンサ有効範囲のデータを基に捜索効果を算出する。システム制御部24は、推定脅威度をセンサ有効範囲で除することで捜索効果を算出する。捜索効果は、センサ搭載無人機15による計測に適しているかを示す指標である。捜索効果は、脅威度が高く、設置式センサ11による計測が困難である地点ほど高い値となる。
 捜索効果を算出すると、システム制御部24は、捜索効果と移動コストのデータを基に捜索要求値を算出する。システム制御部24は、捜索効果から移動コストを減ずることで捜索要求値を算出する。
 図10は、本実施形態のシステム制御装置14が捜索要求値を算出する際のデータ処理方法を模式的に示したものである。システム制御装置14のシステム制御部24は、図10に示すように、各地点の推定脅威度をセンサ有効範囲のデータで除することで、各地点における捜索効果を算出する。システム制御部24は、算出した各地点の捜索効果から移動コストを減ずることで各地点における捜索要求値を算出している。
 捜索要求値を算出すると、システム制御部24は、センサ搭載無人機15による計測が必要な箇所がないかを判断する。システム制御部24は、例えば、捜索要求値とあらかじめ設定された基準値とを比較し、捜索要求値が基準値以上の箇所をセンサ搭載無人機15による計測が必要な箇所として判断する。
 捜索が必要な箇所が複数、存在する場合には、捜索要求値の値が大きくなるにつれて高くなるように優先度が設定されてもよい。また、センサ搭載無人機15による計測が必要な箇所の密度が高い領域に高い優先度が設定されてもよい。
 捜索要求値が基準値以上の地点があるとき(ステップ103でYes)、システム制御部24は、センサ搭載無人機15による捜索が必要な地点があると判断する。センサ搭載無人機15による捜索が必要な地点があると判断すると、システム制御部24は、作業者等にセンサ搭載無人機15の投入の可否の確認を行う(ステップ104)。システム制御部24は、システム制御装置14に接続されている端末装置等にセンサ搭載無人機15の投入の可否の確認の情報を出力し、作業者等による回答を受け付ける。
 センサ搭載無人機15の投入が可であるとき(ステップ105でYes)、システム制御部24は、センサ搭載無人機15の投入の処理を行う(ステップ106)。システム制御部24は、センサ搭載無人機15の投入の処理を開始すると、センサ搭載無人機15を投入する指示を無人機投入回収指令部25に送る。センサ搭載無人機15の投入の指示を受け取ると、無人機投入回収指令部25は、無人機投入回収装置16にセンサ搭載無人機15を投入する指示を送る。
 センサ搭載無人機15の投入判断は、作業者等への確認を行わずに自動で行われてもよい。センサ搭載無人機15の投入の判断を自動で行う場合には、システム制御部24は、センサ搭載無人機15による捜索が必要な地点があると判断したときに、センサ搭載無人機15の投入が必要と判断して投入の制御を開始する。
 センサ搭載無人機15の投入の指示を受け取ると、無人機投入回収装置16は、センサ搭載無人機15の固定を解除して、センサ搭載無人機15が移動可能な状態にする。
 センサ搭載無人機15の投入の処理を行うと、システム制御部24は、センサ搭載無人機15の制御を開始する(ステップ107)。センサ搭載無人機15の投入の制御を開始すると、システム制御部24は、センサ搭載無人機15の移動の目標位置、すなわち、センサ搭載無人機15による計測が必要な地点の情報を無人機制御指令部26に送る。
 センサ搭載無人機15の計測位置の情報を受け取ると、無人機制御指令部26は、無線通信装置17にセンサ搭載無人機15の目標位置の情報を送る。センサ搭載無人機15の目標位置の情報を受け取ると、無線通信装置17は、目標位置の情報をセンサ搭載無人機15に送る。
 ステップ103において、捜索要求値が基準値以上の地点がないとき(ステップ103でNo)、システム制御装置14は、ステップ101における各計測データの取得の動作から、再度、動作を繰り返す。
 また、ステップ105においてセンサ搭載無人機15の投入が不可であるとき(ステップ105でNo)、システム制御装置14は、ステップ101における各計測データの取得の動作から、再度、動作を繰り返す。ステップ105においてセンサ搭載無人機15の投入が不可であるときに、システム制御装置14は、動作を終了してもよい。
 移動の目標位置の情報を受信すると、センサ搭載無人機15は、目標位置の情報に該当する地点に自律航法によって移動する。目標位置、すなわち、計測を行う地点に到達すると、センサ搭載無人機15の無人機制御部42は、通信部46を介して目標位置に到達したことを示す情報を、移動完了通知として無線通信装置17に送信する。無人機制御部42は、移動完了通知に、センサ搭載無人機15の位置情報と、バッテリーの残量の情報を付加して送信する。無線通信装置17は、移動完了通知をセンサ搭載無人機15から受信すると、受け取った移動完了通知をシステム制御装置14に送信する。
 システム制御装置14は、無線通信装置17を介してセンサ搭載無人機15が目標位置に到達したことを示す移動完了通知を受信する(ステップ108)。システム制御装置14が受信した移動完了通知は、移動コスト算出部27に入力される。
 移動完了通知としてセンサ搭載無人機15の位置情報等を受け取ると、移動コスト算出部27は、センサ搭載無人機15の位置情報および残りのバッテリー量等を基に、センサ搭載無人機15の残りの移動可能距離を算出する(ステップ109)。移動可能距離を算出すると、移動コスト算出部27は、移動可能距離を基に各地点の移動コストのデータを生成し、移動コストのデータをシステム制御部24に送る。
 目標位置に該当する地点に到達すると、センサ搭載無人機15の捜索用センサ部44は、ソーナーによる計測を行う。捜索用センサ部44のソーナーによる計測結果は、記憶部45に一時保存される。
 センサ搭載無人機15の無人機制御部42は、無線通信装置17との無線通信が可能な状態になると、記憶部45に保存されている計測データを、通信部46を介して無線通信装置17に送る。
 無線通信装置17は、センサ搭載無人機15の計測データを受け取ると、計測データをシステム制御装置14に送る。システム制御装置14は、センサ搭載無人機15の計測データを、無線通信装置17から受信する(ステップ110)。システム制御装置14が受信したセンサ搭載無人機15の計測データは、目標検出処理部21に入力される。また、システム制御装置14は、設置式センサ11および環境センサ12の計測データを取得する(ステップ111)。
 設置式センサ11とセンサ搭載無人機15の計測データを受け取ると、システム制御装置14の目標検出処理部21は、設置式センサ11とセンサ搭載無人機15の計測データを基に目標存在確率を算出する。目標存在確率を算出すると、目標検出処理部21は、算出した目標存在確率のデータを脅威度算出部23に送る。
 目標存在確率のデータを受け取ると、脅威度算出部23は、ユーザ定義威度と目標存在確率のデータを基に各地点の推定脅威度を算出する。脅威度算出部23は、算出した推定脅威度のデータをシステム制御部24に送る。
 また、センサ覆域予測部28は、環境センサ12およびセンサ搭載無人機15の計測データ、位置情報、地図データおよびセンサ特性データ基に設置式センサ11およびセンサ搭載無人機15の捜索用センサ部44の覆域を予測する。センサ覆域予測部28は、予測した覆域のデータを、センサ有効範囲のデータとしてシステム制御部24に送る。
 推定脅威度のデータと目標存在確率のデータを受け取ると、システム制御部24は、推定脅威度のデータと目標存在確率を基に捜索効果を算出する。
 捜索効果を算出すると、システム制御部24は、捜索効果と移動コストのデータを基に捜索要求値を算出する(ステップ112)。
 捜索要求値を算出すると、システム制御部24は、センサ搭載無人機15による計測が必要な箇所がないかを判断する。システム制御部24は、捜索要求値とあらかじめ設定された基準値とを比較し、捜索要求値が基準値以上の箇所をセンサ搭載無人機15による計測が必要な箇所として判断する。
 捜索要求値が基準値以上の地点が存在するとき(ステップ113でYes)、システム制御部24は、センサ搭載無人機15による捜索を継続する必要があると判断する。捜索を継続する必要があると判断すると、システム制御部24は、作業者等にセンサ搭載無人機15による捜索継続の可否の確認を行う(ステップ114)。システム制御部24は、システム制御装置14に接続されている端末装置等にセンサ搭載無人機15による捜索の継続可否の確認の情報を出力し、作業者等による回答を受け付ける。
 捜索継続が可であるとき(ステップ115でYes)、システム制御部24は、センサ搭載無人機15による捜索の目標位置の情報を無人機制御指令部26に送る。捜索の目標位置の情報を受け取ると、無人機制御指令部26は、目標位置と目標位置への移動指示の情報を、無線通信装置17に送る(ステップ116)。捜索の目標位置と移動指示の情報を受け取ると、無線通信装置17は、受け取った目標位置と移動指示の情報をセンサ搭載無人機15に送る。
 センサ搭載無人機15による捜索継続の判断は、作業者等への確認を行わずに自動で行われてもよい。センサ搭載無人機15による捜索継続の判断を自動で行う場合には、システム制御部24は、捜索が必要な地点が残っていると判断したときに、センサ搭載無人機15による捜索継続が必要と判断して、センサ搭載無人機15の移動を制御する。
 捜索の目標位置と移動指示の情報を受け取ったセンサ搭載無人機15は、目標位置の情報に基づいて移動を開始し、目標位置に到達すると捜索用センサ部204による計測の動作を行う。センサ搭載無人機15は、目標位置に到達したときに、移動完了通知を、無線通信装置17を介してシステム制御装置14に送信する。移動完了通知を受信したシステム制御装置14は、ステップ108からの動作を行う。
 捜索要求値が基準値以上の地点が存在しないとき(ステップ113でNo)、システム制御部24は、センサ搭載無人機15による捜索が完了したと判断する。捜索が完了したと判断すると、センサ搭載無人機15を無人機投入回収装置16に戻す帰投指示を、無人機制御指令部26に送る。帰投指示を受け取ると、無人機制御指令部26は、無人機投入回収装置16の無線通信装置17に送る(ステップ117)。帰投指示を受け取ると、無線通信装置17は、受け取った帰投指示をセンサ搭載無人機15に送る。帰投指示を受け取ると、センサ搭載無人機15は、自律航法によって無人機投入回収装置16の位置に移動する。無人機投入回収装置16の位置に移動したセンサ搭載無人機15は、無人機投入回収装置16によって固定され、給電等の作業が行われる。
 また、捜索継続が不可であるとき(ステップ115でNo)、システム制御部24は、センサ搭載無人機15による捜索が完了したと判断し、帰投指示を無人機制御指令部26に送る。帰投指示を受け取ると、無人機制御指令部26は、無人機投入回収装置16の無線通信装置17を介してセンサ搭載無人機15に送る(ステップ117)。帰投指示を受け取ると、センサ搭載無人機15は、自律航法によって無人機投入回収装置16の位置に移動する。無人機投入回収装置16の位置に移動したセンサ搭載無人機15は、無人機投入回収装置16によって固定され、給電等の作業が行われる。
 本実施形態の監視システムのシステム制御装置14は、環境センサ12による環境の計測結果を基に、設置式センサ11のセンサ性能の変化を考慮して設置式センサ11の覆域を予測している。そのため、本実施形態の監視システムは、水温等の環境が変動し、センサ性能に変化があった場合にも、環境の変動を考慮して設置式センサ11の覆域を予測することができる。
 また、システム制御装置14は、設置式センサ11の予測結果と、検出の目標となる物体の存在確率、脅威度および移動コストを基に、移動式センサ、すなわち、センサ搭載無人機15による計測を行う位置を判断している。そのため、システム制御装置14は、設置式センサ11では物体の検出が困難な地点の中から、移動式センサによる物体の捜索に適した地点を的確に判断することができる。すなわち、本実施形態の監視システムは、監視の重要性の高い地点について、設置式センサ11によって検出が困難な場合であっても、移動式センサによって物体の捜索を行うことができる。その結果、本実施形態の監視システムは、環境変化によってセンサの覆域に変動が生じた場合にも、監視を継続することができる。
 第2の実施形態の監視システムにおいて、複数のセンサ搭載無人機15を備えている場合に、捜索要求値から捜索が必要と判断される地点が複数あるとき、複数のセンサ搭載無人機15がそれぞれの地点に同時に投入されてもよい。複数のセンサ搭載無人機15において複数の地点の捜索を同時に行うことで、水中の物体の移動速度が速い場合にも、より確実に検出することができる。
 また、複数のセンサ搭載無人機15を複数の地点にそれぞれ投入する際に、一部のセンサ搭載無人機15を特定の地点に固定し、他のセンサ搭載無人機15を移動させながら複数の地点における捜索を行ってもよい。そのような構成とすることで、重要性の高い地点を継続的に捜索しつつ、複数の地点の捜索を行うことができるので水中の物体をより確実に検出することができる。
 また、複数のセンサ搭載無人機15を備える構成とした場合に、センサ搭載無人機15間で通信の中継を行って、無線通信装置17との通信を行ってもよい。そのような構成とすることで、無線通信装置17から遠い地点に存在するセンサ搭載無人機15も安定した通信を行うことができる。
 第2の実施形態の監視システムにおいて、センサ搭載無人機15とシステム制御装置14は、無線通信装置17を介して無線通信を行っている。そのような構成に代えて、センサ搭載無人機15は、水中に設置された通信設備を介してシステム制御装置14と通信を行ってもよい。例えば、センサ搭載無人機15は、設置式センサ11や環境センサ12に設置された水中の通信装置と音響信号、無線信号または光信号によって通信を行い、通信装置が水中ケーブル18を介してシステム制御装置14と通信を行う構成であってもよい。また、センサ搭載無人機15と通信を行う水中の通信装置は、設置式センサ11や環境センサ12とは異なる位置に設置されていてもよい。
 第2の実施形態のセンサ搭載無人機15は、飛行型の移動体であってもよい。飛行型のセンサ搭載無人機15を用いる場合には、捜索を行う目標位置で捜索用センサ部44を水中に投入することで水中の捜索が行われる。
 第2の実施形態の監視システムは、水中の物体の検出を行っているが、陸上の物体の検出を行う構成であってもよい。そのような構成とする場合には、設置式センサや移動式センサとして、例えば、光学カメラを用いることができる。また、センサとして光学カメラを用いる構成の場合には、環境センサには、例えば、視程計が用いられる。移動式センサは、例えば、車両や飛行体に備えられた状態で移動する。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 物体を検出する領域の環境の計測結果に基づいて、前記物体を検出する設置式センサが計測可能な範囲である覆域を予測する覆域予測手段と、
 前記覆域予測手段が予測した前記覆域と前記物体が存在する確率とに基づいて、前記物体を検出する移動式センサを配置する位置を判断し、前記移動式センサを制御する制御手段と
 を備えることを特徴とする制御装置。
 (付記2)
 前記制御手段は、前記移動式センサの現在地からの移動の負荷を示す指標である移動コストと、前記覆域と、前記物体が存在する確率に基づいて前記物体を検出する前記移動式センサを配置する位置を判断することを特徴とする付記1に記載の制御装置。
 (付記3)
 前記制御手段は、前記移動コストと、前記覆域と、前記物体が存在する確率に基づいて算出した指標と、基準値を比較して前記移動式センサによる計測の要否を判断することを特徴とする付記2に記載の制御装置。
 (付記4)
 前記制御手段は、前記移動式センサによる計測が必要な地点が複数あると判断したとき、計測が必要な第1の地点で計測を終えた後、前記第1の地点とは異なる計測が必要な地点である第2の地点への移動の可否を、前記移動コストを基に判断することを特徴とする付記2または3に記載の制御装置。
 (付記5)
 前記移動式センサの動力源の残量を基に前記移動コストを算出する移動コスト算出手段をさらに備えることを特徴とする付記2から4いずれかに記載の制御装置。
 (付記6)
 物体を検出する領域の環境を計測する環境センサと、
 前記物体を検出する複数の設置式センサと、
 前記物体を検出するセンサと、自律航法で移動する駆動手段とを有する移動機と、
 付記1から5いずれかに記載の制御装置と
 を備え、
 前記制御装置の前記覆域予測手段は、前記環境センサの計測結果に基づいて前記設置式センサの前記覆域を予測し、
 前記制御装置の前記制御手段は、前記覆域予測手段が予測した結果に基づいて前記移動機を前記移動式センサとして配置する位置を判断することを特徴とする監視システム。
 (付記7)
 前記環境センサおよび前記設置式センサと、前記制御装置の間の通信を中継する通信手段と、前記環境センサおよび前記設置式センサに電力を供給する給電手段とを有する通信給電装置をさらに備えることを特徴とする付記6に記載の監視システム。
 (付記8)
 前記移動機の投入および揚収を行う手段と、前記移動機に給電する手段を有する投入揚収装置をさらに備え、
 前記移動機は、前記制御装置の制御に基づいて前記投入揚収装置から投入され、前記投入揚収装置に帰投することを特徴とする付記6または7に記載の監視システム。
 (付記9)
 物体を検出する領域の環境の計測結果に基づいて、前記物体を検出する設置式センサが計測可能な範囲である覆域を予測し、
 予測した前記覆域と前記物体が存在する確率とに基づいて、前記物体を検出する移動式センサを配置する位置を判断し、前記移動式センサを制御することを特徴とする監視方法。
 (付記10)
 前記移動式センサの現在地からの移動の負荷を示す指標である移動コストと、前記覆域と、前記物体が存在する確率に基づいて前記物体を検出する前記移動式センサを配置する位置を判断することを特徴とする付記9に記載の監視方法。
 (付記11)
 前記移動コストと、前記覆域と、前記物体が存在する確率に基づいて算出した指標と、基準値を比較して前記移動式センサによる計測の要否を判断することを特徴とする付記10に記載の監視方法。
 (付記12)
 前記移動式センサによる計測が必要な地点が複数あると判断したとき、計測が必要な第1の地点で計測を終えた後、前記第1の地点とは異なる計測が必要な地点である第2の地点への移動の可否を、前記移動コストを基に判断することを特徴とする付記10または11に記載の監視方法。
 (付記13)
 前記移動式センサの動力源の残量を基に前記移動コストを算出することを特徴とする付記10から12いずれかに記載の監視方法。
 (付記14)
 物体を検出する領域の環境の計測結果に基づいて、前記物体を検出する設置式センサが計測可能な範囲である覆域を予測する覆域予測処理と、
 前記覆域予測処理において予測した前記覆域と前記物体が存在する確率とに基づいて、前記物体を検出する移動式センサを配置する位置を判断し、前記移動式センサを制御する制御処理と
 をコンピュータに実行させることを特徴とする制御プログラム。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 1  覆域予測手段
 2  制御手段
 11  設置式センサ
 12  環境センサ
 13  センサ用通信給電装置
 14  システム制御装置
 15  センサ搭載無人機
 16  無人機投入回収装置
 17  無線通信装置
 18  水中ケーブル
 21  目標検出処理部
 22  脅威度入力部
 23  脅威度算出部
 24  システム制御部
 25  無人機投入回収指令部
 26  無人機制御指令部
 27  移動コスト算出部
 28  センサ覆域予測部
 31  無人機特性データ記憶部
 32  地図データ記憶部
 33  センサ特性データ記憶部
 34  設置式センサ位置データ記憶部
 41  無人機制御用センサ部
 42  無人機制御部
 43  無人機駆動部
 44  捜索用センサ部
 45  記憶部
 46  通信部
 47  蓄電部

Claims (14)

  1.  物体を検出する領域の環境の計測結果に基づいて、前記物体を検出する設置式センサが計測可能な範囲である覆域を予測する覆域予測手段と、
     前記覆域予測手段が予測した前記覆域と前記物体が存在する確率とに基づいて、前記物体を検出する移動式センサを配置する位置を判断し、前記移動式センサを制御する制御手段と
     を備えることを特徴とする制御装置。
  2.  前記制御手段は、前記移動式センサの現在地からの移動の負荷を示す指標である移動コストと、前記覆域と、前記物体が存在する確率に基づいて前記物体を検出する前記移動式センサを配置する位置を判断することを特徴とする請求項1に記載の制御装置。
  3.  前記制御手段は、前記移動コストと、前記覆域と、前記物体が存在する確率に基づいて算出した指標と、基準値を比較して前記移動式センサによる計測の要否を判断することを特徴とする請求項2に記載の制御装置。
  4.  前記制御手段は、前記移動式センサによる計測が必要な地点が複数あると判断したとき、計測が必要な第1の地点で計測を終えた後、前記第1の地点とは異なる計測が必要な地点である第2の地点への移動の可否を、前記移動コストを基に判断することを特徴とする請求項2または3に記載の制御装置。
  5.  前記移動式センサの動力源の残量を基に前記移動コストを算出する移動コスト算出手段をさらに備えることを特徴とする請求項2から4いずれかに記載の制御装置。
  6.  物体を検出する領域の環境を計測する環境センサと、
     前記物体を検出する複数の設置式センサと、
     前記物体を検出するセンサと、自律航法で移動する駆動手段とを有する移動機と、
     請求項1から5いずれかに記載の制御装置と
     を備え、
     前記制御装置の前記覆域予測手段は、前記環境センサの計測結果に基づいて前記設置式センサの前記覆域を予測し、
     前記制御装置の前記制御手段は、前記覆域予測手段が予測した結果に基づいて前記移動機を前記移動式センサとして配置する位置を判断することを特徴とする監視システム。
  7.  前記環境センサおよび前記設置式センサと、前記制御装置の間の通信を中継する通信手段と、前記環境センサおよび前記設置式センサに電力を供給する給電手段とを有する通信給電装置をさらに備えることを特徴とする請求項6に記載の監視システム。
  8.  前記移動機の投入および揚収を行う手段と、前記移動機に給電する手段を有する投入揚収装置をさらに備え、
     前記移動機は、前記制御装置の制御に基づいて前記投入揚収装置から投入され、前記投入揚収装置に帰投することを特徴とする請求項6または7に記載の監視システム。
  9.  物体を検出する領域の環境の計測結果に基づいて、前記物体を検出する設置式センサが計測可能な範囲である覆域を予測し、
     予測した前記覆域と前記物体が存在する確率とに基づいて、前記物体を検出する移動式センサを配置する位置を判断し、前記移動式センサを制御することを特徴とする監視方法。
  10.  前記移動式センサの現在地からの移動の負荷を示す指標である移動コストと、前記覆域と、前記物体が存在する確率に基づいて前記物体を検出する前記移動式センサを配置する位置を判断することを特徴とする請求項9に記載の監視方法。
  11.  前記移動コストと、前記覆域と、前記物体が存在する確率に基づいて算出した指標と、基準値を比較して前記移動式センサによる計測の要否を判断することを特徴とする請求項10に記載の監視方法。
  12.  前記移動式センサによる計測が必要な地点が複数あると判断したとき、計測が必要な第1の地点で計測を終えた後、前記第1の地点とは異なる計測が必要な地点である第2の地点への移動の可否を、前記移動コストを基に判断することを特徴とする請求項10または11に記載の監視方法。
  13.  前記移動式センサの動力源の残量を基に前記移動コストを算出することを特徴とする請求項10から12いずれかに記載の監視方法。
  14.  物体を検出する領域の環境の計測結果に基づいて、前記物体を検出する設置式センサが計測可能な範囲である覆域を予測する覆域予測処理と、
     前記覆域予測処理において予測した前記覆域と前記物体が存在する確率とに基づいて、前記物体を検出する移動式センサを配置する位置を判断し、前記移動式センサを制御する制御処理と
     をコンピュータに実行させることを特徴とするプログラムを記録した制御プログラム記録媒体。
PCT/JP2017/018278 2017-05-16 2017-05-16 制御装置、監視システムおよび監視方法 WO2018211575A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/018278 WO2018211575A1 (ja) 2017-05-16 2017-05-16 制御装置、監視システムおよび監視方法
US16/611,280 US20200166620A1 (en) 2017-05-16 2017-05-16 Control apparatus, monitoring system, and monitoring method
EP17909902.3A EP3627182B1 (en) 2017-05-16 2017-05-16 Control apparatus, monitoring system, and monitoring method
JP2019518622A JP6888672B2 (ja) 2017-05-16 2017-05-16 制御装置、監視システムおよび監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018278 WO2018211575A1 (ja) 2017-05-16 2017-05-16 制御装置、監視システムおよび監視方法

Publications (1)

Publication Number Publication Date
WO2018211575A1 true WO2018211575A1 (ja) 2018-11-22

Family

ID=64273644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018278 WO2018211575A1 (ja) 2017-05-16 2017-05-16 制御装置、監視システムおよび監視方法

Country Status (4)

Country Link
US (1) US20200166620A1 (ja)
EP (1) EP3627182B1 (ja)
JP (1) JP6888672B2 (ja)
WO (1) WO2018211575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139786A (ja) * 2020-03-06 2021-09-16 日本電気株式会社 水中物体捜索支援装置、水中物体捜索支援方法及びそのプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624630B2 (en) * 2019-02-12 2023-04-11 International Business Machines Corporation Using augmented reality to present vehicle navigation requirements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850173B1 (en) * 2003-04-30 2005-02-01 The United States Of America As Represented By The Secretary Of The Navy Waterway shielding system and method
WO2007004217A1 (en) * 2005-06-30 2007-01-11 Planum Vision Ltd. Surveillance system and method for detecting forbidden movement along a predetermined path
JP2011215775A (ja) * 2010-03-31 2011-10-27 Secom Co Ltd 物体検出センサおよび警備システム
JP2016119625A (ja) 2014-12-22 2016-06-30 セコム株式会社 監視システム
JP2016119627A (ja) * 2014-12-22 2016-06-30 セコム株式会社 追跡処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032314B2 (en) * 2008-09-29 2011-10-04 The United States Of America As Represented By The Secretary Of The Navy MLD-modified synthetic ocean profiles
GB2520670B (en) * 2013-09-23 2018-10-10 Saab Seaeye Holdings Ltd A system for monitoring a remote underwater location

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850173B1 (en) * 2003-04-30 2005-02-01 The United States Of America As Represented By The Secretary Of The Navy Waterway shielding system and method
WO2007004217A1 (en) * 2005-06-30 2007-01-11 Planum Vision Ltd. Surveillance system and method for detecting forbidden movement along a predetermined path
JP2011215775A (ja) * 2010-03-31 2011-10-27 Secom Co Ltd 物体検出センサおよび警備システム
JP2016119625A (ja) 2014-12-22 2016-06-30 セコム株式会社 監視システム
JP2016119627A (ja) * 2014-12-22 2016-06-30 セコム株式会社 追跡処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627182A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139786A (ja) * 2020-03-06 2021-09-16 日本電気株式会社 水中物体捜索支援装置、水中物体捜索支援方法及びそのプログラム
JP7467992B2 (ja) 2020-03-06 2024-04-16 日本電気株式会社 水中物体捜索支援装置、水中物体捜索支援方法及びそのプログラム

Also Published As

Publication number Publication date
JPWO2018211575A1 (ja) 2020-03-12
US20200166620A1 (en) 2020-05-28
EP3627182A1 (en) 2020-03-25
EP3627182B1 (en) 2021-06-23
EP3627182A4 (en) 2020-05-27
JP6888672B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
EP3653470B1 (en) Parking control system for autonomous vehicle
CN105300510B (zh) 智能型噪音监视装置及利用其的噪音监视方法
JP6603253B2 (ja) 移動体制御システム、および移動体制御方法
US8949012B2 (en) Automated multi-vehicle position, orientation and identification system and method
JP5595030B2 (ja) 移動体制御システム、制御装置、制御方法、プログラム及び記録媒体
KR101645646B1 (ko) 수중운동체 동작 상태 확인 시스템 및 방법
KR101882483B1 (ko) 무인 수상정의 장애물 탐지 장치 및 방법
US9985482B2 (en) Wireless power transmission control device, wireless power transmission system, and wireless power transmission control method
US11408988B2 (en) System and method for acoustic vehicle location tracking
WO2018211575A1 (ja) 制御装置、監視システムおよび監視方法
JP6821929B2 (ja) 航走管理装置及び航走管理方法
JP4925845B2 (ja) マルチセンサ制御システム
CN111836230A (zh) 系统信息处理设备和信息处理方法
KR101356605B1 (ko) 수중 탐사 시스템
KR20150068126A (ko) 타겟 정보를 기초로 다중 모드 레이더를 위한 제어 신호를 생성하는 레이더 신호 제어 장치 및 그 제어 방법
US11807271B2 (en) Method, system, and computer program product for resolving level ambiguity for radar systems of autonomous vehicles
JP7188451B2 (ja) 移動体制御装置、移動体、移動体制御方法およびプログラム
JP5561424B1 (ja) 表示制御装置、表示制御方法およびプログラム
JP2021005120A (ja) 自律走行装置および通信システム
WO2020091590A1 (en) A system and method for locating a device in an indoor environment
EP2332823B1 (en) Apparatus for position notification of vehicle, method and computer-readable medium
EP4325317A1 (en) Autonomous vehicle control guided by occupancy scores
JP2024045978A (ja) 無人機制御装置、無人機制御方法、およびプログラム
JP2024019946A (ja) 通信制御方法及び通信システム
JP2018172056A (ja) 水中航走体の管制方法及び水中航走体の管制システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017909902

Country of ref document: EP

Effective date: 20191216