WO2018210210A1 - Lighting control system, sensor lamp, and control method thereof - Google Patents

Lighting control system, sensor lamp, and control method thereof Download PDF

Info

Publication number
WO2018210210A1
WO2018210210A1 PCT/CN2018/086763 CN2018086763W WO2018210210A1 WO 2018210210 A1 WO2018210210 A1 WO 2018210210A1 CN 2018086763 W CN2018086763 W CN 2018086763W WO 2018210210 A1 WO2018210210 A1 WO 2018210210A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
sensor
detection circuit
voltage
Prior art date
Application number
PCT/CN2018/086763
Other languages
French (fr)
Inventor
Yehua Wan
Lifeng LING
Jinxiang Shen
Original Assignee
Zhejiang Shenghui Lighting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shenghui Lighting Co., Ltd. filed Critical Zhejiang Shenghui Lighting Co., Ltd.
Publication of WO2018210210A1 publication Critical patent/WO2018210210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure relates to the field of electronic technologies and, more particularly, relates to a lighting control system for a sensor lamp, the sensor lamp and its control method.
  • Sensor lamps are green energy or energy saving lighting fixtures of the new generation. Sensor lamps may have various sensing operation manners, including infrared or microwave sensors and the like. Due to their stable, energy-saving features, sensor lamps are widely used in commercial and industrial applications.
  • the sensor lamps are configured to control the turn-on and turn-off of the lighting fixtures through sensor signals.
  • the sensor lamp may start lighting. If no sensor signal is received by the sensor lamps after a certain duration, the sensor lamps may stop lighting. Accordingly, the sensor lamps can only start or stop the lighting function according to the received sensor signals, and the operation modes of the sensor lamps are relatively limited.
  • the disclosed method and system are directed to solve one or more problems set forth above and other problems.
  • the lighting control system may include a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit.
  • the switch circuit may be connected to a power supply, and the switch detection circuit may be connected to the switch circuit and configured to determine a state of the switch circuit.
  • the sensor detection circuit may be configured to receive signals from at least one of the switch detection circuit or a sensor to control the voltage-current conversion circuit.
  • the voltage-current conversion circuit may be connected between the switch circuit and a Light-Emitting Diode (LED) lighting circuit. If the signals from the switch detection circuit match a first pattern, the sensor detection circuit may be configured to control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously. And if the signals from the switch detection circuit match a second pattern, the sensor detection circuit may be configured to control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
  • LED Light-Emitting Diode
  • the sensor lamp may include a Light-Emitting Diode (LED) lighting circuit, a sensor, and the disclosed lighting control system.
  • the Light-Emitting Diode (LED) lighting circuit may provide a light source.
  • the sensor may be configured to detect movement information around the sensor lamp or detect whether light intensity of the sensor lamp is below a first level of brightness and send a driver signal to a sensor detection circuit.
  • the switch circuit may be connected to a power supply, and the switch detection circuit may be connected to the switch circuit and configured to determine a state of the switch circuit.
  • the sensor detection circuit may be configured to receive signals from at least one of the switch detection circuit or the sensor to control the voltage-current conversion circuit.
  • the voltage-current conversion circuit may be connected between the switch circuit and the LED lighting circuit. According to the state of the switch circuit, if the signals from the switch detection circuit match a first pattern, the sensor detection circuit may be configured to block signals from the sensor and control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously. If the signals from the switch detection circuit match a second pattern, the sensor detection circuit may be configured to receive the driver signal from the sensor and control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
  • the sensor lamp may include a sensor, a Light-Emitting Diode (LED) lighting circuit and a lighting control system.
  • the lighting control system may include a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit.
  • the switch detection circuit may be coupled to the switch circuit and the switch detection circuit may be configured to determine a state of the switch circuit.
  • the voltage-current conversion circuit may be coupled between the switch circuit and the LED lighting circuit.
  • the voltage-current conversion circuit may be controlled by the sensor detection circuit to supply power to the LED lighting circuit continuously if the signals from the switch detection circuit match a first pattern.
  • the voltage-current conversion circuit may be controlled by the sensor detection circuit to supply the power to the LED lighting circuit within a first duration if the signals from the switch detection circuit match a second pattern.
  • FIG. 1 is a schematic diagram showing a first lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram showing a second lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram showing a third lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram showing a fourth lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram showing a fifth lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • the terms “first” , “second” , “third” , “fourth” , etc. are used to distinguish similar objects but unnecessarily used to identify a specific order or sequence. It should be understood that the data used in this manner are interchangeable whenever appropriate so that the embodiments of the present disclosure described can be, for example, realized in an order other than the specific orders illustrated or described herein.
  • the terms “include” , “have” , and any of their variations are intended to cover nonexclusive inclusions, for example, including processes, methods, systems, products, or apparatuses of a series of steps or units. They are unnecessarily limited to those steps or units that are clearly listed but may include those that are not clearly listed or that are inherent to the processes, methods, systems, products, or apparatuses.
  • FIG. 1 is a schematic diagram showing a first lighting control system according to some embodiments of the present disclosure.
  • the sensor lamp may include the lighting control system, a sensor 6, and a light-emitting diode (LED) lighting circuit 7.
  • the lighting control system for the sensor lamp may include a switch circuit 1, a first rectification circuit 2, a voltage-current conversion circuit 3, a switch detection circuit 4, and a sensor detection circuit 5.
  • One terminal of the switch circuit 1 may be electrically connected to a power supply (not shown) to provide power to the sensor lamp.
  • One terminal of the first rectification circuit 2 may be electrically connected to the switch circuit 1, and another terminal of the first rectification circuit 2 may be electrically connected to a first terminal of the voltage-current conversion circuit 3 and one terminal of the switch detection circuit 4, respectively.
  • a second terminal of the voltage-current conversion circuit 3 may be electrically connected to the LED lighting circuit 7, and a third terminal of the voltage-current conversion circuit 3 may be electrically connected to a first terminal of the sensor detection circuit 5.
  • Another terminal of the switch detection circuit 4 may be electrically connected to a second terminal of the sensor detection circuit 5, and a third terminal of the sensor detection circuit 5 may be electrically connected to the sensor 6.
  • the sensor detection circuit 5 may be configured to record the signals received from the switch detection circuit 41 and determine a pattern based on the signals received from the switch detection circuit 4. If the sensor detection circuit 5 determines that the received signals match a first pattern, the sensor detection circuit 5 may be configured to control the voltage-current conversion circuit 3 to provide power to the LED lighting circuit 7 continuously. And, if the received signals match a second pattern, the sensor detection circuit 5 may be configured to control the voltage-current conversion circuit 3 to provide power to the LED lighting circuit 7 within a predetermined duration.
  • the first rectification circuit 2 may be configured to convert an AC power input into a DC power that the sensor lamp can use directly.
  • the voltage-current conversion circuit 3 may be configured to convert the DC power into a low-voltage DC current to supply power to the LED lighting circuit 7.
  • the switch detection circuit 4 may be configured to detect the state of the switch circuit 1 and transmit state information of the switch circuit 1 to the sensor detection circuit 5 for the sensor detection circuit 5 to make records and determine a pattern of the signals.
  • the sensor 6 may be configured to detect movement information of humans and objects around the sensor lamp, and information of light intensity.
  • the sensor detection circuit 5 may be configured to receive information sent by the sensor 6 and the switch detection circuit 4.
  • the switch detection circuit 4 may detect the state information of the switch circuit 1. In the case, the switch detection circuit 4 may transmit the signals according to the state information of the switch circuit 1 to the sensor detection circuit 5.
  • the sensor detection circuit 5 may be configured to receive and record the signals from the switch detection circuit 4 and determine whether the received signals match a preset pattern based on a number of times that the switch circuit is repeatedly turned off and on (e.g., within a certain period) .
  • the sensor detection circuit 5 have various functions, such as voltage detection/measurement, counter functionality, timer functionality, data storage, calculation, and signal processing, etc.
  • the sensor detection circuit 5 may be a microcontroller integrating such functions.
  • the sensor detection circuit 5 may shield or ignore signals from the sensor 6 (e.g., in response to the received signals from the switch detection circuit 4 matching the first pattern) , which means information from the sensor 6 may be no longer received or processed by the sensor detection circuit 5. Meanwhile, the sensor detection circuit 5 may also control the voltage-current conversion circuit 3 to supply power to the LED lighting circuit 7 continuously so that the LED lighting circuit 7 may keep being lit on. In that case, the sensor lamp controlled by the switch circuit 1 may remain on. In some embodiments, if the sensor detection circuit 5 determines that the signals from the switch detection circuit 4 is not in the first pattern, the sensor detection circuit 5 may control the voltage-current conversion circuit 3 to stop power supply to the LED lighting circuit 7 continuously.
  • the sensor detection circuit 5 may determine the signals from the switch detection circuit 4 match a second pattern.
  • the sensor detection circuit 5 may start receiving the signals sent by the sensor 6 (e.g., in response to the signals from the switch detection circuit 4 matching the second pattern) .
  • the sensor 6 may be configured to detect any movement of humans or objects, and/or any light intensity being below than a specified brightness. If so, the sensor 6 may send a driver signal to the sensor detection circuit 5 so that the sensor detection circuit 5 may control the voltage-current conversion circuit 3 to provide power to the LED lighting circuit 7. After a preset duration, the sensor detection circuit 5 may control the voltage-current conversion circuit 3 to stop the power supply to the LED lighting circuit 7, and re-start receiving the signals sent by the sensor 6.
  • the voltage-current conversion circuit 3 may implement and/or control different topologies to drive the LED lighting circuit 7.
  • the topology may be a FLYBACK structure, a BUCK structure, a BUCK BOOST structure, a BOOST structure, a SEPIC structure, a FORWARD structure, or a HALFBRIDGE structure.
  • the sensor lamp with the lighting control system not only can start or stop the lighting function according to the received sensing signal in response to the second pattern, but also can control the voltage-current conversion circuit 3 to continuously supply power to the LED lighting circuit 7 in response to the first pattern to keep the LED lighting circuit 7 on. It further allows the sensor lamp to switch between different operation modes under the control of the switch circuit 1, thereby enriching the operating modes of the sensor lamp.
  • FIG. 2 is a schematic diagram showing a second lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • the lighting control system as illustrated in FIG. 2 may be implemented on a basis of the embodiments shown in FIG. 1.
  • the switch detection circuit 4 may include a first resistor 41, a second resistor 42, a third resistor 44, a fourth resistor 46, a field effect transistor (FET) 43, and a first capacitor 45.
  • the first resistor 41 may be connected between a first terminal A and a second terminal B.
  • the first terminal A may be connected to, as stated earlier, the voltage-current conversion circuit 3.
  • the first terminal A may also be connected to the switch circuit 1 through the first rectification circuit 2.
  • the second resistor 42 may be connected between the first terminal A and a third terminal C, and the third terminal C may be connected to the sensor detection circuit 5.
  • the third resistor 44 may be connected between the second terminal B and a ground level, and the fourth resistor 46 may be connected between the third terminal C and the ground level.
  • a drain of the FET 43 may be connected to the third terminal C, a gate of the FET 43 may be connected to the second terminal B, and a source of the FET 43 may be connected to the ground level.
  • the first capacitor 45 may be connected with the third resistor 44 in parallel.
  • one end of the first resistor 41 is respectively connected to the first rectification circuit 2 and the voltage-current conversion circuit 3 through the first terminal A; and the other end of the first resistor 41 is respectively connected to one end of the third resistor 44, one end of the first capacitor 45, and the gate of the FET 43, through the second terminal B.
  • one end of the second resistor 42 is respectively connected to the first rectification circuit 2 and the voltage-current conversion circuit 3 through the first terminal A; and the other end of the second resistor 42 is respectively connected to the drain of the FET 43 and the sensor detection circuit 5 through the third terminal C.
  • the drain of the FET 43 is connected to the sensor detection circuit 5 and one end of the fourth resistor 46 through the third terminal C.
  • the other end of third resistor 44, the other end of first capacitor 45, the other end of fourth resistor 46, and the source of the FET 43 are respectively connected to the ground.
  • the state of the switch circuit 1 may cause a voltage level of the FET 43 between the gate terminal and the source terminal, which in turn affects and changes a voltage level at the drain of the FET 43 accordingly.
  • the switch detection circuit 4 may be configured to determine the state of the switch circuit 1 by detecting a drain voltage of the FET 43.
  • the drain terminal of the FET 43 is connected to the sensor detection circuit 5, and the signal sent from the switch detection circuit 4 and recorded by the sensor detection circuit 5 is the drain voltage of the FET 43.
  • the signal may be a high-level signal or a low-level signal based on the on/off state of the switch circuit 1 and/or a time duration that the switch has been on/off.
  • the first resistor 41, the second resistor 42, the third resistor 43 and the fourth resistor 46 may be used as voltage divider resistors in the configuration.
  • the switch circuit 1 may include an on/off switch. If the switch of the switch circuit 1 is in an on-state, an input voltage of the switch circuit 1 may be rectified by the first rectification circuit 2 and divided by the first resistor 41 and the third resistor 44. A voltage may be provided to the gate of the FET 43. The voltage between the gate of the FET 43 and the source of the FET 43 (i.e., grounded) is greater than a turn-on voltage of the FET 43, the FET 43 is turned on and the drain voltage of the FET 43 may be close to 0V, which is a low-level voltage.
  • a delay-charge capacitor connected to the switch detection circuit 4 can be charged when the switch is in the on-state, which can be used to extend power supply when the switch is turned-off.
  • the delay-charge capacitor may be capacitor 51 as shown in FIG. 4.
  • the capacitor 51 has one end connected to the ground and the other end connected to the drain of the FET 43 through a resistor 52 and the second resister 42. If the switch is turned off, the voltage at an output end of the first rectification circuit 2 may be rapidly reduced. And the voltage between the gate and the source of the FET 43 may be also rapidly reduced to be less than the turn-on voltage, so the FET 43 may be turned off.
  • the delay-charge capacitor (e.g., capacitor 51) starts discharging and provides power supply to the switch detection circuit 4 and the sensor detection circuit 5 for a certain time duration after the switch is turned off. That is, the sensor detection circuit 5 may still be powered for the time duration after the switch is turned off to continue recording the signal from the switch detection circuit 4 (e.g., the drain voltage of FET 43) .
  • the drain voltage of the FET 43 is the voltage across the fourth resistor 46. Accordingly, during the time duration, the switch detection circuit 5 may detect the drain voltage of the FET 43 is in a high level. If the switch remains off after the time period, the delay-charge capacitor can be depleted, and the sensor detection loses power supply and can no longer record the signal from the switch detection circuit 4.
  • the switch of the switch circuit is turned back on before the delay-charge capacitor is depleted (i.e., within the time duration since the switch is turned off) , external power supply is restored to the switch detection circuit 4, the FET 43 is turned-on, and the drain voltage of the FET 43 becomes a low-level voltage.
  • the sensor detection circuit can keep records of the number of times that the switch is turned off and on due to the delayed power supply provide by the delay-charge capacitor during the time that the switch is turned on.
  • the switch detection circuit 4 may be configured to output the drain voltage level of the FET 43, which may be detected/determined by the sensor detection circuit 5, as changing from a low-level to a high level and back to a low-level (corresponding to a switch closing operation and a switch opening operation performed sequentially within a certain time duration as shown in, e.g., FIG. 2) , or changing from a high-level to a low-level and back to a high level in another embodiment of a different configuration of the sensor detection circuit 5 with respect to the switch detection circuit 4, such as by placing a resistor between the source terminal of the FET 43 and the ground and detecting voltage at the source terminal of the FET 43 as the signal for the sensor detection circuit 5 (not shown) . Under such situation, it is considered that the sensor detection circuit 5, in accordance with the signals from the switch detection circuit 4, detects an effective switching operation pattern performed on the switch of the switch circuit 1. That is, one continuous turn-on and turn-off operation is performed on the switch.
  • FIG. 3 is a schematic diagram of a third lighting control system for a sensor lamp according some embodiments of the present disclosure.
  • the switch circuit 1 may include a first switch 11, and the first switch 11 may be serially connected to a live wire of the power supply, or the first switch 11 may be serially connected to a neutral wire of the power supply.
  • the switch circuit 1 may further include a capacitor C1 and an inductor L1. One terminal of the first switch 11 may be connected to an AC input, and another terminal may be connected to the first rectification circuit 2 through the capacitor C1 and the inductor L1.
  • the state of the switch circuit 1 is determined by the state of the first switch 11.
  • the state of the first switch 11 may include turn-on, turn-off, repeatedly turn-on and turn-off within a preset duration, etc.
  • the first pattern may include or be triggered from a pattern that the first switch 11 is repeatedly turned off and on N times within a first preset duration, and N is an integer greater than 0.
  • the second pattern may include or be triggered from a pattern that the first switch 11 is repeatedly turned off and on M times within a second preset duration, and M is an integer greater than 0.
  • the duration between a repetition and a turn-on is not limited.
  • the first repetition of “turned off and on” indicates that the first switch 11 is initially at an off-state (not necessarily just being turned-off) and is turned on afterwards.
  • M and N can be preset.
  • a cycle of the first pattern and the second pattern is repeated by the first switch 11 being repeatedly turned off and on for same times within the first and second preset durations.
  • M and N are both set as 2
  • the first and second preset durations are both set as 5 seconds.
  • the first pattern is that the first switch 11 is repeatedly turned off and on once (i.e., N equals 1) within 10 seconds (first preset duration)
  • the second pattern includes a pattern that the first switch 11 is repeatedly turned off and on for three times (i.e., M equals 3) within 10 seconds (second preset duration)
  • the first preset duration is equal to the second preset duration. If the operation of repeatedly turning off and on the first switch 11 is not completed within either the first preset duration or the second preset duration, the state of the sensor lamp may not be changed.
  • the lighting control system is powered on, and at this time, the signals from the switch detection circuit are determined that it is in the second pattern.
  • the first switch 11 is continuously turned off and on for three times (N is 3) within 5 seconds (first preset duration is greater than 5 seconds, such as 10 seconds) , at which time the switch circuit 1 is in the first pattern.
  • N is 3
  • first preset duration is greater than 5 seconds, such as 10 seconds
  • FIG. 4 is a schematic diagram of a fourth lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • the lighting control system may further include the second capacitor 51, and the second capacitor 51 may have a relatively large capacitance value.
  • a first terminal of the second capacitor 51 may be connected to one terminal of the sensor detection circuit 5 and accordingly connected to the terminal A of the second resistor 42 through a resistor 52.
  • the second terminal of the second capacitor 51 may be grounded.
  • the second capacitor 51 may be used to provide a longer power supply duration when the switch 11 is turned off in order to maintain the operation of the sensor detection circuit 5.
  • the senor 6 may include at least one of an infrared sensor, a microwave sensor, a sound sensor, a camera, or a light sensor.
  • FIGs. 3 and 4 illustrate the capacitor C1 and the inductor L1, connected between the first switch 11 and the first rectification circuit 2.
  • An output terminal of the first rectification circuit 2 may be grounded through a capacitor C2.
  • the first rectification circuit 2 may connect the sensor detection circuit 5 through the resistor 52.
  • the voltage-current conversion circuit may be grounded through a resistor R1.
  • the voltage-current conversion circuit may include a transformer T1, a capacitor C3 and/or a diode D1 as shown in FIG. 4.
  • the capacitor C3 may be connected with the LED lighting circuit 7 in parallel.
  • the diode D1 may be connected in series with the transformer T1, and the serial connection of the diode D1 and the transformer T1 may be connected to the capacitor C3 in parallel.
  • certain components and connections in the sensor lamp may adopt existing structures known in the art.
  • FIG. 5 is a schematic diagram of a fifth lighting control system for a sensor lamp according to some embodiments of the present disclosure.
  • the lighting control system shown in FIG. 5 may further include a second rectification circuit 8.
  • One terminal of the second rectification circuit 8 may be electrically connected to the switch circuit 1, and another terminal of the second rectification circuit 8 may be electrically connected to the switch detection circuit 4.
  • the second rectification circuit 8 may be configured to convert the AC power to the DC power suitable for the sensor lamp, separated from the current converted by the first rectification circuit 2.
  • the first rectification circuit 2 may specifically provide the power for the LED lighting circuit 7 shown in the upper branch, and the second rectification circuit 8 may supply the power to the control circuits in the lower branch, and thus the lighting circuits and the control circuits do not interfere with each other.
  • the sensor lamp may include a Light-Emitting Diode (LED) lighting circuit, a sensor, and the disclosed lighting control system.
  • the Light-Emitting Diode (LED) lighting circuit may provide a light source.
  • the sensor may be configured to detect movement information around the sensor lamp or detect whether light intensity of the sensor lamp is below a first level of brightness and send a driver signal to a sensor detection circuit.
  • the switch circuit may be connected to a power supply, and the switch detection circuit may be connected to the switch circuit and configured to determine a state of the switch circuit.
  • the sensor detection circuit may be configured to receive signals from at least one of the switch detection circuit or the sensor to control the voltage-current conversion circuit.
  • the voltage-current conversion circuit may be connected between the switch circuit and the LED lighting circuit. According to the state of the switch circuit, if the signals from the switch detection circuit match a first pattern, the sensor detection circuit may be configured to block signals from the sensor and control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously. If the signals from the switch detection circuit match a second pattern, the sensor detection circuit may be configured to receive the driver signal from the sensor and control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
  • the sensor lamp may include a sensor, a Light-Emitting Diode (LED) lighting circuit and a lighting control system.
  • the lighting control system may include a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit.
  • the switch detection circuit may be coupled to the switch circuit and the switch detection circuit may be configured to determine a state of the switch circuit.
  • the voltage-current conversion circuit may be coupled between the switch circuit and the LED lighting circuit.
  • the voltage-current conversion circuit may be controlled by the sensor detection circuit to supply power to the LED lighting circuit continuously if the signals from the switch detection circuit match a first pattern.
  • the voltage-current conversion circuit may be controlled by the sensor detection circuit to supply the power to the LED lighting circuit within a first duration if the signals from the switch detection circuit match a second pattern.
  • the control methods may be realized in a manner similar to implementing the lighting control system and the sensor lamp, the details of which are not described herein again.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A lighting control system for a sensor lamp is provided. The lighting control system includes a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit. The switch detection circuit is connected to the switch circuit and configured to determine a state of the switch circuit. The sensor detection circuit is configured to receive signals from at least one of the switch detection circuit or a sensor. If the signals from the switch detection circuit match a first pattern, the sensor detection circuit is configured to control the voltage-current conversion circuit to supply power to an LED lighting circuit continuously. And if the signals from the switch detection circuit match a second pattern, the sensor detection circuit is configured to control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.

Description

LIGHTING CONTROL SYSTEM, SENSOR LAMP, AND CONTROL METHOD THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the priority to Chinese Patent Application No. 201710338595.5, entitled "Sensor Lamp” , filed on May 15, 2017, the entire contents of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to the field of electronic technologies and, more particularly, relates to a lighting control system for a sensor lamp, the sensor lamp and its control method.
BACKGROUND
Sensor lamps are green energy or energy saving lighting fixtures of the new generation. Sensor lamps may have various sensing operation manners, including infrared or microwave sensors and the like. Due to their stable, energy-saving features, sensor lamps are widely used in commercial and industrial applications.
In the art, the sensor lamps are configured to control the turn-on and turn-off of the lighting fixtures through sensor signals. When the sensor lamps receive the sensor signals through the sensors, the sensor lamp may start lighting. If no sensor signal is received by the sensor lamps after a certain duration, the sensor lamps may stop lighting. Accordingly, the sensor lamps can only start or stop the lighting function according to the received sensor signals, and the operation modes of the sensor lamps are relatively limited.
The disclosed method and system are directed to solve one or more problems set forth above and other problems.
BRIEF SUMMARY OF THE DISCLOSURE
One aspect of the present disclosure provides a lighting control system for a sensor lamp. The lighting control system may include a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit. The switch circuit may be connected to a power supply, and the switch detection circuit may be connected to the switch circuit and configured to determine a state of the switch circuit. The sensor detection circuit may be configured to receive signals from at least one of the switch detection circuit or a sensor to control the voltage-current conversion circuit. The voltage-current conversion circuit may be connected between the switch circuit and a Light-Emitting Diode (LED) lighting circuit. If the signals from the switch detection circuit match a first pattern, the sensor detection circuit may be configured to control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously. And if the signals from the switch detection circuit match a second pattern, the sensor detection circuit may be configured to control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
Another aspect of the present disclosure provides a sensor lamp. The sensor lamp may include a Light-Emitting Diode (LED) lighting circuit, a sensor, and the disclosed lighting control system. The Light-Emitting Diode (LED) lighting circuit may provide a light source. The sensor may be configured to detect movement information around the sensor lamp or detect whether light intensity of the sensor lamp is below a first level of brightness and send a driver signal to a sensor detection circuit. The switch circuit may be connected to a power supply, and the switch detection circuit may be connected to the switch circuit and configured to determine a state of the switch circuit. The sensor detection circuit may be configured to receive signals from at least one of the switch detection circuit or the sensor to control the voltage-current conversion circuit. The voltage-current conversion circuit may be connected between the switch circuit and the LED lighting circuit. According to the state of the switch circuit, if the signals from the switch detection circuit match a first  pattern, the sensor detection circuit may be configured to block signals from the sensor and control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously. If the signals from the switch detection circuit match a second pattern, the sensor detection circuit may be configured to receive the driver signal from the sensor and control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
Still another aspect of the present disclosure provides a control method for a sensor lamp. The sensor lamp may include a sensor, a Light-Emitting Diode (LED) lighting circuit and a lighting control system. And the lighting control system may include a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit. The switch detection circuit may be coupled to the switch circuit and the switch detection circuit may be configured to determine a state of the switch circuit. The voltage-current conversion circuit may be coupled between the switch circuit and the LED lighting circuit. Through the sensor detection circuit, signals may be received from at least one of the switch detection circuit or the senor to control the voltage-current conversion circuit. The voltage-current conversion circuit may be controlled by the sensor detection circuit to supply power to the LED lighting circuit continuously if the signals from the switch detection circuit match a first pattern. The voltage-current conversion circuit may be controlled by the sensor detection circuit to supply the power to the LED lighting circuit within a first duration if the signals from the switch detection circuit match a second pattern.
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure, the accompanying drawings illustrated the embodiments of the present disclosure are briefly introduced in the following. Obviously, the drawings in the  description are merely some embodiments of the present disclosure, and for those skilled in the art, under the premise of not having creative effort, other drawings can also be obtained on the basis of the accompanying drawings.
The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure.
FIG. 1 is a schematic diagram showing a first lighting control system for a sensor lamp according to some embodiments of the present disclosure.
FIG. 2 is a schematic diagram showing a second lighting control system for a sensor lamp according to some embodiments of the present disclosure.
FIG. 3 is a schematic diagram showing a third lighting control system for a sensor lamp according to some embodiments of the present disclosure.
FIG. 4 is a schematic diagram showing a fourth lighting control system for a sensor lamp according to some embodiments of the present disclosure.
FIG. 5 is a schematic diagram showing a fifth lighting control system for a sensor lamp according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
The technical solutions in the embodiments of the present disclosure will be described in a clear and complete manner with reference to the accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are only a part of those of the present disclosure, but not all of them. Based on the embodiments of the present disclosure, all other embodiments obtained by those skilled in the art without creative efforts should be deemed under the protection scope of the present disclosure.
In the description, the claims, and the accompanying drawings of the present disclosure, the terms "first" , "second" , "third" , "fourth" , etc. (if any) are used to distinguish similar objects but unnecessarily used to identify a specific order or  sequence. It should be understood that the data used in this manner are interchangeable whenever appropriate so that the embodiments of the present disclosure described can be, for example, realized in an order other than the specific orders illustrated or described herein. In addition, the terms "include" , "have" , and any of their variations are intended to cover nonexclusive inclusions, for example, including processes, methods, systems, products, or apparatuses of a series of steps or units. They are unnecessarily limited to those steps or units that are clearly listed but may include those that are not clearly listed or that are inherent to the processes, methods, systems, products, or apparatuses.
The technical solutions of the present disclosure will be described in detail with specific embodiments below. Some of the following embodiments may be combined with each other, and the same or similar concepts or steps may be omitted.
One aspect of the present disclosure provides a lighting control system for a sensor lamp. FIG. 1 is a schematic diagram showing a first lighting control system according to some embodiments of the present disclosure.
As illustrated in FIG. 1, the sensor lamp may include the lighting control system, a sensor 6, and a light-emitting diode (LED) lighting circuit 7. The lighting control system for the sensor lamp may include a switch circuit 1, a first rectification circuit 2, a voltage-current conversion circuit 3, a switch detection circuit 4, and a sensor detection circuit 5.
One terminal of the switch circuit 1 may be electrically connected to a power supply (not shown) to provide power to the sensor lamp. One terminal of the first rectification circuit 2 may be electrically connected to the switch circuit 1, and another terminal of the first rectification circuit 2 may be electrically connected to a first terminal of the voltage-current conversion circuit 3 and one terminal of the switch detection circuit 4, respectively. A second terminal of the voltage-current conversion circuit 3 may be electrically connected to the LED lighting circuit 7, and a third terminal of the voltage-current conversion circuit 3 may be electrically connected to a first terminal of the sensor detection circuit 5. Another terminal of the switch detection circuit 4 may be electrically connected to a second terminal of the  sensor detection circuit 5, and a third terminal of the sensor detection circuit 5 may be electrically connected to the sensor 6.
In some embodiments, the sensor detection circuit 5 may be configured to record the signals received from the switch detection circuit 41 and determine a pattern based on the signals received from the switch detection circuit 4. If the sensor detection circuit 5 determines that the received signals match a first pattern, the sensor detection circuit 5 may be configured to control the voltage-current conversion circuit 3 to provide power to the LED lighting circuit 7 continuously. And, if the received signals match a second pattern, the sensor detection circuit 5 may be configured to control the voltage-current conversion circuit 3 to provide power to the LED lighting circuit 7 within a predetermined duration.
In some embodiments, the first rectification circuit 2 may be configured to convert an AC power input into a DC power that the sensor lamp can use directly. The voltage-current conversion circuit 3 may be configured to convert the DC power into a low-voltage DC current to supply power to the LED lighting circuit 7. The switch detection circuit 4 may be configured to detect the state of the switch circuit 1 and transmit state information of the switch circuit 1 to the sensor detection circuit 5 for the sensor detection circuit 5 to make records and determine a pattern of the signals. The sensor 6 may be configured to detect movement information of humans and objects around the sensor lamp, and information of light intensity. The sensor detection circuit 5 may be configured to receive information sent by the sensor 6 and the switch detection circuit 4.
In some embodiments, the switch detection circuit 4 may detect the state information of the switch circuit 1. In the case, the switch detection circuit 4 may transmit the signals according to the state information of the switch circuit 1 to the sensor detection circuit 5. The sensor detection circuit 5 may be configured to receive and record the signals from the switch detection circuit 4 and determine whether the received signals match a preset pattern based on a number of times that the switch circuit is repeatedly turned off and on (e.g., within a certain period) . In some embodiments, the sensor detection circuit 5 have various functions, such as voltage  detection/measurement, counter functionality, timer functionality, data storage, calculation, and signal processing, etc. For example, the sensor detection circuit 5 may be a microcontroller integrating such functions. If the received signals match a first pattern, the sensor detection circuit 5 may shield or ignore signals from the sensor 6 (e.g., in response to the received signals from the switch detection circuit 4 matching the first pattern) , which means information from the sensor 6 may be no longer received or processed by the sensor detection circuit 5. Meanwhile, the sensor detection circuit 5 may also control the voltage-current conversion circuit 3 to supply power to the LED lighting circuit 7 continuously so that the LED lighting circuit 7 may keep being lit on. In that case, the sensor lamp controlled by the switch circuit 1 may remain on. In some embodiments, if the sensor detection circuit 5 determines that the signals from the switch detection circuit 4 is not in the first pattern, the sensor detection circuit 5 may control the voltage-current conversion circuit 3 to stop power supply to the LED lighting circuit 7 continuously.
In some embodiments, the sensor detection circuit 5 may determine the signals from the switch detection circuit 4 match a second pattern. The sensor detection circuit 5 may start receiving the signals sent by the sensor 6 (e.g., in response to the signals from the switch detection circuit 4 matching the second pattern) . The sensor 6 may be configured to detect any movement of humans or objects, and/or any light intensity being below than a specified brightness. If so, the sensor 6 may send a driver signal to the sensor detection circuit 5 so that the sensor detection circuit 5 may control the voltage-current conversion circuit 3 to provide power to the LED lighting circuit 7. After a preset duration, the sensor detection circuit 5 may control the voltage-current conversion circuit 3 to stop the power supply to the LED lighting circuit 7, and re-start receiving the signals sent by the sensor 6.
In some embodiments, the voltage-current conversion circuit 3 may implement and/or control different topologies to drive the LED lighting circuit 7. For example, the topology may be a FLYBACK structure, a BUCK structure, a BUCK BOOST structure, a BOOST structure, a SEPIC structure, a FORWARD structure, or a HALFBRIDGE structure.
The sensor lamp with the lighting control system provided in the embodiments not only can start or stop the lighting function according to the received sensing signal in response to the second pattern, but also can control the voltage-current conversion circuit 3 to continuously supply power to the LED lighting circuit 7 in response to the first pattern to keep the LED lighting circuit 7 on. It further allows the sensor lamp to switch between different operation modes under the control of the switch circuit 1, thereby enriching the operating modes of the sensor lamp.
FIG. 2 is a schematic diagram showing a second lighting control system for a sensor lamp according to some embodiments of the present disclosure. The lighting control system as illustrated in FIG. 2 may be implemented on a basis of the embodiments shown in FIG. 1. The switch detection circuit 4 may include a first resistor 41, a second resistor 42, a third resistor 44, a fourth resistor 46, a field effect transistor (FET) 43, and a first capacitor 45. The first resistor 41 may be connected between a first terminal A and a second terminal B. The first terminal A may be connected to, as stated earlier, the voltage-current conversion circuit 3. The first terminal A may also be connected to the switch circuit 1 through the first rectification circuit 2. The second resistor 42 may be connected between the first terminal A and a third terminal C, and the third terminal C may be connected to the sensor detection circuit 5. The third resistor 44 may be connected between the second terminal B and a ground level, and the fourth resistor 46 may be connected between the third terminal C and the ground level. A drain of the FET 43 may be connected to the third terminal C, a gate of the FET 43 may be connected to the second terminal B, and a source of the FET 43 may be connected to the ground level. The first capacitor 45 may be connected with the third resistor 44 in parallel. In other words, one end of the first resistor 41 is respectively connected to the first rectification circuit 2 and the voltage-current conversion circuit 3 through the first terminal A; and the other end of the first resistor 41 is respectively connected to one end of the third resistor 44, one end of the first capacitor 45, and the gate of the FET 43, through the second terminal B. Further, one end of the second resistor 42 is respectively connected to the first rectification circuit 2 and the voltage-current conversion circuit 3 through the first  terminal A; and the other end of the second resistor 42 is respectively connected to the drain of the FET 43 and the sensor detection circuit 5 through the third terminal C. The drain of the FET 43 is connected to the sensor detection circuit 5 and one end of the fourth resistor 46 through the third terminal C. The other end of third resistor 44, the other end of first capacitor 45, the other end of fourth resistor 46, and the source of the FET 43 are respectively connected to the ground.
The state of the switch circuit 1 may cause a voltage level of the FET 43 between the gate terminal and the source terminal, which in turn affects and changes a voltage level at the drain of the FET 43 accordingly. And the switch detection circuit 4 may be configured to determine the state of the switch circuit 1 by detecting a drain voltage of the FET 43. In some embodiments, the drain terminal of the FET 43 is connected to the sensor detection circuit 5, and the signal sent from the switch detection circuit 4 and recorded by the sensor detection circuit 5 is the drain voltage of the FET 43. The signal may be a high-level signal or a low-level signal based on the on/off state of the switch circuit 1 and/or a time duration that the switch has been on/off. The first resistor 41, the second resistor 42, the third resistor 43 and the fourth resistor 46 may be used as voltage divider resistors in the configuration.
In some embodiments, the switch circuit 1 may include an on/off switch. If the switch of the switch circuit 1 is in an on-state, an input voltage of the switch circuit 1 may be rectified by the first rectification circuit 2 and divided by the first resistor 41 and the third resistor 44. A voltage may be provided to the gate of the FET 43. The voltage between the gate of the FET 43 and the source of the FET 43 (i.e., grounded) is greater than a turn-on voltage of the FET 43, the FET 43 is turned on and the drain voltage of the FET 43 may be close to 0V, which is a low-level voltage. Further, a delay-charge capacitor connected to the switch detection circuit 4 can be charged when the switch is in the on-state, which can be used to extend power supply when the switch is turned-off. In some embodiments, the delay-charge capacitor may be capacitor 51 as shown in FIG. 4. The capacitor 51 has one end connected to the ground and the other end connected to the drain of the FET 43 through a resistor 52 and the second resister 42. If the switch is turned off, the voltage at an output end of  the first rectification circuit 2 may be rapidly reduced. And the voltage between the gate and the source of the FET 43 may be also rapidly reduced to be less than the turn-on voltage, so the FET 43 may be turned off. In that case, the delay-charge capacitor (e.g., capacitor 51) starts discharging and provides power supply to the switch detection circuit 4 and the sensor detection circuit 5 for a certain time duration after the switch is turned off. That is, the sensor detection circuit 5 may still be powered for the time duration after the switch is turned off to continue recording the signal from the switch detection circuit 4 (e.g., the drain voltage of FET 43) . The drain voltage of the FET 43 is the voltage across the fourth resistor 46. Accordingly, during the time duration, the switch detection circuit 5 may detect the drain voltage of the FET 43 is in a high level. If the switch remains off after the time period, the delay-charge capacitor can be depleted, and the sensor detection loses power supply and can no longer record the signal from the switch detection circuit 4. If the switch of the switch circuit is turned back on before the delay-charge capacitor is depleted (i.e., within the time duration since the switch is turned off) , external power supply is restored to the switch detection circuit 4, the FET 43 is turned-on, and the drain voltage of the FET 43 becomes a low-level voltage. In other words, if the switch is turned off and turned back on again quickly within a short time period, the sensor detection circuit can keep records of the number of times that the switch is turned off and on due to the delayed power supply provide by the delay-charge capacitor during the time that the switch is turned on.
In summary, the switch detection circuit 4 may be configured to output the drain voltage level of the FET 43, which may be detected/determined by the sensor detection circuit 5, as changing from a low-level to a high level and back to a low-level (corresponding to a switch closing operation and a switch opening operation performed sequentially within a certain time duration as shown in, e.g., FIG. 2) , or changing from a high-level to a low-level and back to a high level in another embodiment of a different configuration of the sensor detection circuit 5 with respect to the switch detection circuit 4, such as by placing a resistor between the source terminal of the FET 43 and the ground and detecting voltage at the source terminal of  the FET 43 as the signal for the sensor detection circuit 5 (not shown) . Under such situation, it is considered that the sensor detection circuit 5, in accordance with the signals from the switch detection circuit 4, detects an effective switching operation pattern performed on the switch of the switch circuit 1. That is, one continuous turn-on and turn-off operation is performed on the switch.
FIG. 3 is a schematic diagram of a third lighting control system for a sensor lamp according some embodiments of the present disclosure. Further, based on the embodiments shown in FIG. 2, the switch circuit 1 may include a first switch 11, and the first switch 11 may be serially connected to a live wire of the power supply, or the first switch 11 may be serially connected to a neutral wire of the power supply. The switch circuit 1 may further include a capacitor C1 and an inductor L1. One terminal of the first switch 11 may be connected to an AC input, and another terminal may be connected to the first rectification circuit 2 through the capacitor C1 and the inductor L1.
In some embodiments, the state of the switch circuit 1 is determined by the state of the first switch 11. The state of the first switch 11 may include turn-on, turn-off, repeatedly turn-on and turn-off within a preset duration, etc.
Further, in some embodiments, the first pattern may include or be triggered from a pattern that the first switch 11 is repeatedly turned off and on N times within a first preset duration, and N is an integer greater than 0. And the second pattern may include or be triggered from a pattern that the first switch 11 is repeatedly turned off and on M times within a second preset duration, and M is an integer greater than 0. The duration between a repetition and a turn-on is not limited. In some embodiments, the first repetition of “turned off and on” indicates that the first switch 11 is initially at an off-state (not necessarily just being turned-off) and is turned on afterwards. In some embodiments, M and N can be preset.
If M is equal to N and the first preset duration is equal to the second preset duration, a cycle of the first pattern and the second pattern is repeated by the first switch 11 being repeatedly turned off and on for same times within the first and second preset durations. For example, M and N are both set as 2, and the first and  second preset durations are both set as 5 seconds. When detecting the first switch 11 being repeatedly turned off and on for 2 times (i.e., starting from an off state, and being turned on, turned off, and turned on sequentially) within 5 seconds, if it is presently in the first pattern, the sensor lamp enters the second pattern; likewise, if it is in the second pattern, the sensor lamp enters the first pattern.
If M is not equal to N, whether a pattern to be switched is the first pattern or the second pattern is determined by a number of times that the first switch 11 is repeatedly turned off and on within the first or second preset durations. For example, in one embodiment, the first pattern is that the first switch 11 is repeatedly turned off and on once (i.e., N equals 1) within 10 seconds (first preset duration) , and the second pattern includes a pattern that the first switch 11 is repeatedly turned off and on for three times (i.e., M equals 3) within 10 seconds (second preset duration) . In this particular case, the first preset duration is equal to the second preset duration. If the operation of repeatedly turning off and on the first switch 11 is not completed within either the first preset duration or the second preset duration, the state of the sensor lamp may not be changed.
In some embodiments, after the first switch 11 is turned on, the lighting control system is powered on, and at this time, the signals from the switch detection circuit are determined that it is in the second pattern. The first switch 11 is continuously turned off and on for three times (N is 3) within 5 seconds (first preset duration is greater than 5 seconds, such as 10 seconds) , at which time the switch circuit 1 is in the first pattern. When it is desired to switch the switch circuit 1 from the first pattern to the second pattern, it only needs to turn off and turn on the first switch 11 again, and the switch circuit 1 is switched from the first pattern to the second pattern.
FIG. 4 is a schematic diagram of a fourth lighting control system for a sensor lamp according to some embodiments of the present disclosure. As shown in FIG. 4, based on the embodiments as shown in FIG. 3, the lighting control system may further include the second capacitor 51, and the second capacitor 51 may have a relatively large capacitance value. A first terminal of the second capacitor 51 may be  connected to one terminal of the sensor detection circuit 5 and accordingly connected to the terminal A of the second resistor 42 through a resistor 52. And the second terminal of the second capacitor 51 may be grounded. The second capacitor 51 may be used to provide a longer power supply duration when the switch 11 is turned off in order to maintain the operation of the sensor detection circuit 5.
Further, in some embodiments, the sensor 6 may include at least one of an infrared sensor, a microwave sensor, a sound sensor, a camera, or a light sensor.
In addition, the embodiments of FIGs. 3 and 4 illustrate the capacitor C1 and the inductor L1, connected between the first switch 11 and the first rectification circuit 2. An output terminal of the first rectification circuit 2 may be grounded through a capacitor C2. The first rectification circuit 2 may connect the sensor detection circuit 5 through the resistor 52. The voltage-current conversion circuit may be grounded through a resistor R1. And the voltage-current conversion circuit may include a transformer T1, a capacitor C3 and/or a diode D1 as shown in FIG. 4. The capacitor C3 may be connected with the LED lighting circuit 7 in parallel. The diode D1 may be connected in series with the transformer T1, and the serial connection of the diode D1 and the transformer T1 may be connected to the capacitor C3 in parallel. In some embodiments, certain components and connections in the sensor lamp may adopt existing structures known in the art.
FIG. 5 is a schematic diagram of a fifth lighting control system for a sensor lamp according to some embodiments of the present disclosure. Based on the embodiments provided by FIG. 1, the lighting control system shown in FIG. 5 may further include a second rectification circuit 8. One terminal of the second rectification circuit 8 may be electrically connected to the switch circuit 1, and another terminal of the second rectification circuit 8 may be electrically connected to the switch detection circuit 4. In some embodiments, the second rectification circuit 8 may be configured to convert the AC power to the DC power suitable for the sensor lamp, separated from the current converted by the first rectification circuit 2. As such, the first rectification circuit 2 may specifically provide the power for the LED lighting circuit 7 shown in the upper branch, and the second rectification circuit 8 may supply  the power to the control circuits in the lower branch, and thus the lighting circuits and the control circuits do not interfere with each other.
Another aspect of the present disclosure provides a sensor lamp. The sensor lamp may include a Light-Emitting Diode (LED) lighting circuit, a sensor, and the disclosed lighting control system. The Light-Emitting Diode (LED) lighting circuit may provide a light source. The sensor may be configured to detect movement information around the sensor lamp or detect whether light intensity of the sensor lamp is below a first level of brightness and send a driver signal to a sensor detection circuit. The switch circuit may be connected to a power supply, and the switch detection circuit may be connected to the switch circuit and configured to determine a state of the switch circuit. The sensor detection circuit may be configured to receive signals from at least one of the switch detection circuit or the sensor to control the voltage-current conversion circuit. The voltage-current conversion circuit may be connected between the switch circuit and the LED lighting circuit. According to the state of the switch circuit, if the signals from the switch detection circuit match a first pattern, the sensor detection circuit may be configured to block signals from the sensor and control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously. If the signals from the switch detection circuit match a second pattern, the sensor detection circuit may be configured to receive the driver signal from the sensor and control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
Still another aspect of the present disclosure provides a control method for a sensor lamp. The sensor lamp may include a sensor, a Light-Emitting Diode (LED) lighting circuit and a lighting control system. And the lighting control system may include a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit. The switch detection circuit may be coupled to the switch circuit and the switch detection circuit may be configured to determine a state of the switch circuit. The voltage-current conversion circuit may be coupled between the switch circuit and the LED lighting circuit. Through the sensor detection circuit, signals may be received from at least one of the switch detection circuit or the senor  to control the voltage-current conversion circuit. The voltage-current conversion circuit may be controlled by the sensor detection circuit to supply power to the LED lighting circuit continuously if the signals from the switch detection circuit match a first pattern. The voltage-current conversion circuit may be controlled by the sensor detection circuit to supply the power to the LED lighting circuit within a first duration if the signals from the switch detection circuit match a second pattern. The control methods may be realized in a manner similar to implementing the lighting control system and the sensor lamp, the details of which are not described herein again.
It should be understood that the above embodiments are only used to illustrate the technical solutions of the present disclosure, rather than to limit the scope of the present disclosure. Although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that it is still possible to modify the technical solutions described in the foregoing embodiments or equivalently replace some or all of the technical features. And these modifications, substitutions or equivalences do not deviate from the protection scope and the spirit of the present disclosure. And other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure provided herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the claims.

Claims (20)

  1. A lighting control system for a sensor lamp, comprising:
    a switch circuit connected to a power supply;
    a switch detection circuit connected to the switch circuit and configured to determine a state of the switch circuit;
    a sensor detection circuit configured to receive signals from at least one of the switch detection circuit or a sensor to control a voltage-current conversion circuit; and
    the voltage-current conversion circuit connected between the switch circuit and a Light-Emitting Diode (LED) lighting circuit, wherein, according to the state of the switch circuit:
    if the signals from the switch detection circuit match a first pattern, the sensor detection circuit is configured to control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously; and
    if the signals from the switch detection circuit match a second pattern, the sensor detection circuit is configured to control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
  2. The lighting control system of claim 1, further comprising a first rectification circuit configured to convert an Alternating Current (AC) power to a Direct Current (DC) power to supply the LED lighting circuit, wherein one terminal of the first rectification circuit is connected to the switch circuit, another terminal of the first rectification circuit is connected to a first terminal of the voltage-current conversion circuit and a first terminal of the switch detection circuit, respectively.
  3. The lighting control system of claim 2, wherein the voltage-current conversion circuit is configured to convert the DC power outputted from the first rectification circuit to a low-voltage DC current to supply the LED lighting circuit.
  4. The lighting control system of claim 1, wherein:
    the sensor is configured to detect movement information around the sensor lamp or detect whether light intensity of the sensor lamp is below a first level of brightness, and send a driver signal to the sensor detection circuit;
    if the signals from the switch detection circuit match the first pattern, the sensor detection circuit is configured to block signals from the sensor; and
    if the signals from the switch detection circuit match the second pattern, the sensor detection circuit is configured to receive the driver signal from the sensor and control the voltage-current conversion circuit in response to the driver signal.
  5. The lighting control system of claim 1, wherein the switch detection circuit comprises:
    a first resistor connected between a first terminal and a second terminal, the first terminal being connected to the switch circuit and the voltage-current conversion circuit, respectively;
    a second resistor connected between the first terminal and a third terminal, the third terminal being connected to the sensor detection circuit;
    a third resistor connected between the second terminal and a ground level;
    a fourth resistor connected between the third terminal and the ground level;
    a field-effect transistor (FET) , a drain of the FET being connected to the third terminal, a gate connected to the second terminal, and a source connected to the ground level; and
    a capacitor connected with the third resistor in parallel, wherein:
    the switch detection circuit is configured to determine the state of the switch circuit by detecting a drain voltage level of the FET so that, if the drain voltage level of the FET is low, it is determined that the switch circuit is in an on-state, and, if the drain voltage level of the FET is high, it is determined that the switch circuit is in an off-state.
  6. The lighting control system of claim 1, wherein the switch circuit comprises a  first switch, and the first switch is serially connected to a live wire of the power supply or a neutral line of the power supply.
  7. The lighting control system of claim 2, wherein the switch circuit comprises a first switch, a first capacitor and an inductor, and one terminal of the first switch is connected to an AC input, and another terminal of the first switch is connected to the first rectification circuit through the first capacitor and the inductor.
  8. The lighting control system of claim 6, wherein:
    the first pattern includes a pattern that the first switch is repeatedly turned off and on N times within a second duration, N being an integer greater than 0; and
    the second pattern includes a pattern that the first switch is repeatedly turned off and on M times within a third duration, M being an integer greater than 0.
  9. The lighting control system of claim 8, wherein:
    if M is equal to N and the second duration is equal to the third duration, a cycle of the first pattern and the second pattern is repeated by the first switch being repeatedly turned off and on for same times within the first and second durations, respectively; and
    if M is not equal to N, whether a pattern to be switched is the first pattern or the second pattern is determined by a number of times that the first switch is repeatedly turned off and on within the second or third duration.
  10. The lighting control system of claim 5, further comprising a second capacitor, wherein:
    a first terminal of the second capacitor is connected to a terminal of the sensor detection circuit and the second resistor of the switch detection circuit through a resistor, respectively,
    a second terminal of the second capacitor is connected to the group level, and
    the second capacitor is configured to supply power to the sensor detection circuit when the switch circuit is in the off-state.
  11. The lighting control system of claim 1, wherein the sensor includes at least one of an infrared sensor, a microwave sensor, a sound sensor, or a light sensor.
  12. The lighting control system of claim 1, further comprising a second rectification circuit, wherein:
    the second rectification circuit is connected between the switch circuit and the switch detection circuit, and
    the second rectification circuit is configured to convert the AC power to a DC power and supply power to the switch detection circuit, the sensor detection circuit and the sensor.
  13. The lighting control system of claim 1, wherein the voltage-current conversion circuit may include a transformer, a diode, and a capacitor, and the capacitor and the LED lighting circuit are connected in parallel.
  14. The lighting control system of claim 1, further comprising a capacitor, wherein an output terminal of the first rectification circuit is grounded through the capacitor.
  15. A sensor lamp, comprising:
    a Light-Emitting Diode (LED) lighting circuit for providing a light source;
    a sensor configured to detect movement information around the sensor lamp or detect whether light intensity of the sensor lamp is below a first level of brightness, and send a driver signal to a sensor detection circuit;
    a switch circuit connected to a power supply;
    a switch detection circuit connected to the switch circuit and configured to determine a state of the switch circuit;
    the sensor detection circuit configured to receive signals from at least one of the switch detection circuit or the sensor to control a voltage-current conversion circuit;  and
    the voltage-current conversion circuit connected between the switch circuit and the LED lighting circuit, wherein, according to the state of the switch circuit:
    if the signals from the switch detection circuit match a first pattern, the sensor detection circuit is configured to block signals from the sensor and control the voltage-current conversion circuit to supply power to the LED lighting circuit continuously; and
    if the signals from the switch detection circuit match a second pattern, the sensor detection circuit is configured to receive the driver signal from the sensor and control the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration.
  16. A control method for a sensor lamp that comprises a sensor, a Light-Emitting Diode (LED) lighting circuit and a lighting control system, wherein the lighting control system includes a switch circuit, a switch detection circuit, a sensor detection circuit, and a voltage-current conversion circuit, the method comprising:
    coupling the switch detection circuit to the switch circuit and configuring the switch detection circuit to determine a state of the switch circuit;
    coupling the voltage-current conversion circuit between the switch circuit and the LED lighting circuit;
    receiving, through the sensor detection circuit, signals from at least one of the switch detection circuit or the senor to control the voltage-current conversion circuit;
    controlling, through the sensor detection circuit, the voltage-current conversion circuit to supply power to the LED lighting circuit continuously if the signals from the switch detection circuit match a first pattern; and
    controlling, through the sensor detection circuit, the voltage-current conversion circuit to supply the power to the LED lighting circuit within a first duration if the signals from the switch detection circuit match a second pattern.
  17. The control method of claim 16, wherein the lighting control system further  includes a first rectification circuit, and the method further comprises: converting, through the first rectification circuit, an Alternating Current (AC) power to a Direct Current (DC) power to supply the LED lighting circuit of the sensor lamp.
  18. The control method of claim 17, further comprising: converting, through the voltage-current conversion circuit, the DC power outputted from the first rectification circuit to a low-voltage DC current to supply the LED lighting circuit of the sensor lamp.
  19. The control method of claim 16, further comprising:
    detecting a movement around the sensor lamp or detecting whether light intensity of the sensor lamp is below a first level of brightness so as to send a driver signal to the sensor detection circuit; and
    blocking, through the sensor detection circuit, signals from the sensor if the signals from the switch detection circuit match the first pattern; and
    receiving, through the sensor detection circuit, the driver signal from the sensor and controlling the voltage-current circuit in response to the driver signal if the signals from the switch detection circuit match the second pattern.
  20. The control method of claim 16, wherein the switch detection circuit includes a field-effect transistor (FET) , and the method further comprises:
    detecting a drain voltage level of the FET; and
    if the drain voltage level of the FET is low, determining, through the switch detection circuit, that the switch circuit is in an on-state; and
    if the drain voltage level of the FET is high, determining, through the switch detection circuit, that the switch circuit is in an off-state.
PCT/CN2018/086763 2017-05-15 2018-05-14 Lighting control system, sensor lamp, and control method thereof WO2018210210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710338595.5A CN107135572B (en) 2017-05-15 2017-05-15 Sense light
CN201710338595.5 2017-05-15

Publications (1)

Publication Number Publication Date
WO2018210210A1 true WO2018210210A1 (en) 2018-11-22

Family

ID=59731687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086763 WO2018210210A1 (en) 2017-05-15 2018-05-14 Lighting control system, sensor lamp, and control method thereof

Country Status (2)

Country Link
CN (1) CN107135572B (en)
WO (1) WO2018210210A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135572B (en) * 2017-05-15 2019-03-19 浙江生辉照明有限公司 Sense light
CN108601136B (en) * 2018-03-19 2024-06-14 厦门阳光恩耐照明有限公司 Driving circuit for switching different states of toggle switch
CN109491287B (en) * 2018-11-08 2022-02-15 深圳迈睿智能科技有限公司 Working mode switching method, control equipment and microwave inductor
CN109548257B (en) * 2018-12-28 2019-08-13 广州市番禺奥莱照明电器有限公司 A kind of lighting system and control method based on microwave sensing
CN113791110B (en) * 2021-09-15 2023-06-20 苏州热工研究院有限公司 Device and method for measuring glass transition temperature of blade of wind generating set

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264168A (en) * 2010-05-25 2011-11-30 合肥三川自控工程有限责任公司 Induction lighting lamp and induction lighting system
JP2016149214A (en) * 2015-02-10 2016-08-18 パナソニックIpマネジメント株式会社 Illumination system and method for controlling illumination system
CN107135572A (en) * 2017-05-15 2017-09-05 浙江生辉照明有限公司 Sense lamp
CN207118017U (en) * 2017-05-15 2018-03-16 浙江生辉照明有限公司 Sensing lamp

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607518B1 (en) * 2010-12-20 2016-03-30 무스코 코포레이션 Apparatus, method, and system for event and backup lighting
CN203340359U (en) * 2013-06-20 2013-12-11 西安重装渭南光电科技有限公司 Novel LED emergency lamp control circuit
CN203810254U (en) * 2014-04-02 2014-09-03 宁波永和电子有限公司 Induction lamp
CN204425704U (en) * 2014-11-13 2015-06-24 西安重装渭南光电科技有限公司 A kind of LED emergency light
CN205560437U (en) * 2015-12-23 2016-09-07 顶峰工业公司 Multi -functional lamp with night lamp module formula
CN205998828U (en) * 2016-09-05 2017-03-08 西继迅达(许昌)电梯有限公司 A kind of lighting device of lift car
CN207118107U (en) * 2017-09-08 2018-03-16 惠州市睿诚自动化设备有限公司 A kind of FPC soft arranging wires automatic insertion machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264168A (en) * 2010-05-25 2011-11-30 合肥三川自控工程有限责任公司 Induction lighting lamp and induction lighting system
JP2016149214A (en) * 2015-02-10 2016-08-18 パナソニックIpマネジメント株式会社 Illumination system and method for controlling illumination system
CN107135572A (en) * 2017-05-15 2017-09-05 浙江生辉照明有限公司 Sense lamp
CN207118017U (en) * 2017-05-15 2018-03-16 浙江生辉照明有限公司 Sensing lamp

Also Published As

Publication number Publication date
CN107135572B (en) 2019-03-19
CN107135572A (en) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2018210210A1 (en) Lighting control system, sensor lamp, and control method thereof
CN106105396B (en) The controllable electric power of LED (light emitting diode) string drivings
CN104145412B (en) Self-adaptive current for docking with dimmer controls timing and response current controls
US9018847B2 (en) Thyristor dimming circuit with lossless discharging circuit and method thereof
US8810160B2 (en) Switched mode power converter and method of operating the same
KR101306538B1 (en) A cascade boost and inverting buck converter with independent control
US9307601B2 (en) Input voltage sensing for a switching power converter and a triac-based dimmer
EP2810532B1 (en) Driver device and driving method for driving a load, in particular in led unit comprising one or more leds
WO2017020670A1 (en) Constant current driving method and circuit enabling dimming of led lamp
JP2015510667A5 (en)
CN102655701A (en) Illumination system
CN104883799B (en) Control method, control circuit, system and LED lamp for LED driving
CN204836696U (en) Constant -current drive circuit that LED lamp can be adjusted luminance
WO2014179001A1 (en) Method and apparatus for dimmable led driver
CN102415217B (en) Method and apparatus for controlling brightness of light emitting diodes
CN101511141B (en) Control technique for switch power supply, inductance and current
CN106255273B (en) The color-temperature regulating chip that can intelligently switch during output open circuit
US9980355B2 (en) LED driver provided with time delay circuit
CN206963154U (en) By the control circuit for detecting power switch action regulation light-source brightness
CN204256983U (en) A kind of traffic signal light fault testing circuit
CN203911887U (en) Intelligent sound control switch
CN206024175U (en) The color-temperature regulating chip that intelligently can switch during output open circuit
CN207118017U (en) Sensing lamp
CN205830092U (en) A kind of pulse width modulation control signal adjusting control circuit and LED drive system
US20150289348A1 (en) Control device and method for data transmission via a load line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802319

Country of ref document: EP

Kind code of ref document: A1