WO2018209637A1 - 机床主轴的定位控制方法及系统 - Google Patents

机床主轴的定位控制方法及系统 Download PDF

Info

Publication number
WO2018209637A1
WO2018209637A1 PCT/CN2017/084874 CN2017084874W WO2018209637A1 WO 2018209637 A1 WO2018209637 A1 WO 2018209637A1 CN 2017084874 W CN2017084874 W CN 2017084874W WO 2018209637 A1 WO2018209637 A1 WO 2018209637A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mode
loop
current
output
machine tool
Prior art date
Application number
PCT/CN2017/084874
Other languages
English (en)
French (fr)
Inventor
张宁
Original Assignee
深圳市海浦蒙特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海浦蒙特科技有限公司 filed Critical 深圳市海浦蒙特科技有限公司
Priority to PCT/CN2017/084874 priority Critical patent/WO2018209637A1/zh
Priority to CN201780085316.7A priority patent/CN110235068B/zh
Publication of WO2018209637A1 publication Critical patent/WO2018209637A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/045Programme control other than numerical control, i.e. in sequence controllers or logic controllers using logic state machines, consisting only of a memory or a programmable logic device containing the logic for the controlled machine and in which the state of its outputs is dependent on the state of its inputs or part of its own output states, e.g. binary decision controllers, finite state controllers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P17/00Arrangements for controlling dynamo-electric gears

Definitions

  • the invention relates to the field of industrial control, in particular to a positioning control method and system for a machine tool spindle.
  • the electric spindle (referred to as the spindle) is a new technology that combines the machine tool spindle and the spindle motor in the field of CNC machine tools in recent years.
  • the machine tool spindle refers to the axis on the machine that drives the workpiece or the tool to rotate.
  • the spindle only performs speed control, but in some special cases, the spindle needs to be positionally controlled. For example, in the automatic tool change and the boring processing on the machining center, it is necessary to make the spindle and the lathe in the case of loading the workpiece, and the spindle needs to be accurately stopped at a specific position, that is, the spindle positioning is required.
  • Positioning of the spindle motor requires position detection, usually by installing a rotary encoder with a z-phase pulse signal, while for a spindle motor drive, a signal capable of receiving a rotary encoder is required.
  • closed-loop vector control is generally adopted.
  • the closed-loop vector control can decompose the excitation current and torque current by coordinate transformation of the three-phase current of the motor, which can better control the output torque of the motor. And output speed.
  • the spindle motor often requires high-frequency operation. Since the encoder pulse signal is a high-frequency signal, under the closed-loop vector control, if the motor is in a high-frequency operation state, the detection of the encoder pulse signal becomes extremely difficult, whether it is There are extremely high requirements for the detection circuit or the detection algorithm. Therefore, how to change the control mode of the spindle in the case of high-frequency operation of the spindle makes it unnecessary for the encoder to detect the pulse signal, and achieving accurate spindle positioning control becomes a technical problem to be solved.
  • the positioning control method and system of the machine tool spindle capable of realizing the precise positioning of the spindle.
  • a positioning control method for a machine tool spindle comprising:
  • the machine tool spindle is started by using a closed loop vector control mode, and when the output frequency is greater than the first preset frequency, the closed loop vector control mode is converted into a V/F control mode, and the machine tool spindle is continuously controlled in the V/F control mode. run;
  • the V/F control mode After receiving the positioning command or decelerating, after controlling the output frequency to decrease to the first preset frequency by the V/F control mode, converting the V/F control mode into a closed loop vector control mode, by using the closed loop vector
  • the control mode controls the positioning of the machine tool spindle
  • the closed loop vector control mode continues to reduce the output frequency.
  • the output frequency is less than the second preset frequency
  • the input positioning signal and the position signal fed back by the encoder pass through the position loop and the speed loop in the closed loop vector control mode. And the operation of the current loop to obtain a positioning control signal;
  • the positioning control signal is output to the machine tool spindle, and the machine tool spindle is controlled to run to the corresponding position.
  • a positioning control system for a machine tool spindle includes a driver for controlling a spindle of a machine tool and an encoder for measuring a position signal and a speed signal, the driver including a memory and a processor, wherein the memory stores computer readable instructions, When the instructions are executed by the processor, the processor is caused to perform the following steps:
  • the machine tool spindle is started by using a closed loop vector control mode, and when the output frequency is greater than the first preset frequency, the closed loop vector control mode is converted into a V/F control mode, and the machine tool spindle is continuously controlled in the V/F control mode. run;
  • the V/F control mode After receiving the positioning command or decelerating, after controlling the output frequency to decrease to the first preset frequency by the V/F control mode, converting the V/F control mode into a closed loop vector control mode, by using the closed loop vector
  • the control mode controls the positioning of the machine tool spindle
  • the closed loop vector control mode continues to reduce the output frequency.
  • the output frequency is less than the second preset frequency
  • the input positioning signal and the position signal fed back by the encoder pass through the position loop and the speed loop in the closed loop vector control mode. And the operation of the current loop to obtain a positioning control signal;
  • the positioning control signal is output to the machine tool spindle, and the machine tool spindle is controlled to run to the corresponding position.
  • the positioning control method and system of the above machine tool spindle realizes controlling the spindle operation of the machine tool by adopting the V/F control mode when the output is greater than the first preset frequency, and switching to the closed loop vector control mode to the spindle of the machine tool when the output is smaller than the first preset frequency Positioning control is performed so that it is not necessary to detect the encoder pulse signal in the case of high-frequency operation of the machine tool spindle.
  • Positioning control is performed so that it is not necessary to detect the encoder pulse signal in the case of high-frequency operation of the machine tool spindle.
  • FIG. 1 is a flow chart of a positioning control method of a machine tool spindle in an embodiment
  • FIG. 3 is a process flow diagram of a control module in an embodiment
  • Figure 4 is a block diagram of a positioning control system for a machine tool spindle in one embodiment.
  • FIG. 1 it is a flowchart of a positioning control method for a machine tool spindle in an embodiment, and the method includes the following steps S110-S140.
  • S110 Start the machine tool spindle by using a closed loop vector control mode, and when the output frequency is greater than the first preset frequency, convert the closed loop vector control mode into a V/F control mode, and continue to control in the V/F control mode.
  • the machine tool spindle runs.
  • the drive that controls the machine tool spindle starts the machine tool spindle by means of closed loop vector control. Since the drive spindle keeps the lower output frequency when the machine spindle is started, the output torque of the spindle motor gradually increases and the rotation speed gradually increases.
  • the drive works in the closed-loop vector control mode to receive the torque of the spindle motor in real time. Current feedback and rotational speed feedback allow for more efficient control of the machine spindle.
  • the spindle motor when the driver detects that the current output frequency is greater than the first preset frequency F1, the spindle motor is already in the high frequency running state at this time, and in the high speed operation, the operation of the spindle motor enters a steady state.
  • the closed loop vector control mode is converted into a V/F control mode, and in the V/F control mode, the output voltage is ensured to be proportional to the output frequency, and the control of the spindle motor is simple, and the spindle motor can be kept stable. Operating status.
  • the process of converting from the closed loop vector control mode to the V/F control mode is as shown in FIG. 2, first, the driver starts the V/F control mode, and then the current output frequency Fc in the closed loop vector control mode. Assigning to the output frequency Fv of the V/F control mode, and assigning the current output phase angle ⁇ c in the closed-loop vector control mode to the output phase angle ⁇ v of the V/F control mode, in which the output voltage of the driver remains unchanged. Change, close the closed-loop vector control mode, and output voltage from the V/F control mode is output to the PWM output module.
  • the output frequency is reduced by the V/F control mode.
  • the output frequency is detected to be less than the first preset frequency F1
  • the spindle motor ends the high-frequency running state at this time.
  • the V/F control mode is converted into a closed loop vector control mode to perform low frequency control on the spindle motor.
  • the flow of converting from the V/F control mode to the closed-loop vector control mode is as shown in FIG. 2, and the closed-loop vector control mode is first started, because the position loop, the speed loop, and the current loop need to be adjusted in the closed loop vector control mode. Obtain the output voltage, so you need to get the position loop, speed loop and The input data of the current loop can complete the conversion of the closed loop vector control mode.
  • the rotation speed of the machine tool spindle is detected by an encoder, and the rotation speed is fed back to a speed loop in the closed loop vector control, and the current loop is given after the operation of the speed loop.
  • the output phase angle ⁇ v in the V/F control mode is assigned to the output phase angle ⁇ c of the closed-loop vector control method.
  • the three-phase output currents Iu, Iv, Iw in the three-phase stationary coordinate system are transformed by the Clark transform into two-phase operating currents I ⁇ , I ⁇ in a two-phase stationary coordinate system.
  • the two-phase operating currents I ⁇ , I ⁇ in the two-phase stationary coordinate system are transformed by the Parker transform into two-phase rotating currents ImFed and ItFed in a two-phase rotating coordinate system.
  • the exciting current ImFed is taken as the current loop integral amount at this time, and the exciting current given ImRef is obtained by self-learning of the spindle motor parameters.
  • the current loop performs PID adjustment (proportional-integral-derivative adjustment) on the torque current given ItRef, the excitation current given ImRef, the torque current ItFed, and the excitation current ImFed to obtain the output voltage vector UmOut, UtOut, and the formula
  • the output voltage Uout is calculated, and the current loop outputs the output phase angle ⁇ c and the output voltage Uout to the PWM output module, and the PWM module outputs a PWM signal to the spindle motor.
  • S130 continue to reduce the output frequency by using the closed loop vector control mode, and when the output frequency is less than the second preset frequency, pass the input positioning signal and the position signal fed back by the encoder to the position loop in the closed loop vector control mode, The positioning control signal is obtained after the operation of the speed loop and the current loop.
  • the positioning instruction is executed, and the output frequency is continuously decreased in the closed loop vector control mode.
  • the output frequency is detected to be smaller than the second preset frequency F2
  • the second preset frequency F2 is smaller than the first preset frequency.
  • F1 the position given module inside the driver outputs the positioning signal to the position loop in the closed loop vector control, and the position signal detected by the encoder to the spindle motor is also fed back to the position loop.
  • the position loop compares the position signal input by the position given module with the position signal fed back by the encoder, and compares the compared difference value by the PID of the position loop to obtain the speed loop, and outputs the The speed loop is given to the speed loop in the closed loop vector control.
  • the speed loop compares the speed loop reference with the speed signal calculated by the encoder feedback signal, and compares the compared difference value by the PID of the speed loop to obtain a current loop reference, and outputs the current loop reference Current loop to closed loop vector control.
  • the current loop compares the current loop with the torque current sampled by the machine tool spindle, and compares the compared difference value by the PID of the current loop to obtain a positioning control signal.
  • the position given module outputs the pulse signal M to the position loop according to the preset positioning position
  • the pulse signal M is a pulse encoder z pulse as a zero point
  • the positioning position is a distance from the zero point
  • M is The number of pulses
  • the encoder feedback current position is the pulse signal N, where N is the number of pulses.
  • W is given as the speed loop
  • the speed loop in the closed-loop vector control is calculated according to the speed loop given W and the speed signal calculated by the encoder feedback signal, and then the output current loop is given, and the current loop operation in the closed loop vector control is performed. Then, the output voltage Uout and the vector angle ⁇ 1 are obtained, and the spindle motor is positioned and controlled according to the current loop output result.
  • S140 Output the positioning control signal to the machine tool spindle, and control the machine tool spindle to run to the corresponding position.
  • the current loop outputs a positioning control signal to the PWM output module, and the PWM output module outputs a PWM signal to control the three-phase inverter bridge circuit, thereby controlling the spindle motor to operate to a corresponding position.
  • the positioning control method of the above machine tool spindle controls the spindle operation of the machine tool by using the V/F control mode when the output is greater than the first preset frequency, and switches to the closed loop vector control mode to locate the machine tool spindle when the output is smaller than the first preset frequency. Control, so that in the case of high-frequency operation of the machine spindle, it is not necessary to detect the encoder pulse signal.
  • the precision of the machine tool spindle is realized. GPS.
  • a positioning control system for a machine tool spindle comprising a driver for controlling a spindle of a machine tool and an encoder for measuring a position signal and a speed signal, the driver comprising a memory and a processor, the memory There are stored computer readable instructions that, when executed by the processor, cause the processor to perform the methods of the various embodiments described above.
  • FIG. 4 is a block diagram of a positioning control system for a machine tool spindle in an embodiment, the system including a driver for controlling a machine spindle (not shown) and for measuring position signals and speed signals.
  • the encoder 90, the machine tool spindle adopts an AC asynchronous motor 80, and the driver includes a control module 100, a speed reference module 200, a position given module 300, a V/F control module 400, a closed loop vector control module 500, Current detection module 600 and PWM output module 700.
  • the process of the drive performing the positioning control performs the following control process through the control module 100.
  • the control module 100 selects the closed loop vector control module 500 to start the machine tool spindle.
  • the control module 100 converts the closed loop vector control module 500 into the V/F control module 400 by V/F.
  • the control module 400 continues to control the spindle operation of the machine tool.
  • the drive controlling the spindle of the machine tool selects a closed loop vector control
  • the module 500 activates the machine tool spindle. Since the drive spindle maintains a lower output frequency just after starting, during this period, the output torque of the AC asynchronous motor 80 gradually increases, and the rotational speed gradually increases, and the drive can receive the torque of the spindle motor in real time through the closed loop vector control module 500. Current feedback and rotational speed feedback allow for more efficient control of the machine spindle.
  • the AC asynchronous motor 80 when the driver detects that the current output frequency F is greater than the first preset frequency F1, the AC asynchronous motor 80 is already in the high frequency running state, and in the high speed operation, the operation of the AC asynchronous motor 80 enters a steady state.
  • the closed loop vector control module 500 is converted into the V/F control module 400.
  • the output voltage is ensured to be proportional to the output frequency, and the control of the AC asynchronous motor 80 is simple, and the AC asynchronous The motor 80 maintains a stable operating state.
  • control module 100 When the control module 100 receives the positioning command or the deceleration command, after the control V/F control module 400 reduces the output frequency F to the first preset frequency F1, the control module 100 converts the V/F control module 400 into a closed loop.
  • the vector control module 500 controls the positioning of the machine tool spindle by the closed loop vector control module 500.
  • the speed reference module 200 sends the speed to the V/F control module 400, and the V/F control module 400 receives the speed reference and reduces the output frequency F, and controls The AC asynchronous motor 80 decelerates.
  • the output frequency F is detected to be less than the first preset frequency F1
  • the AC asynchronous motor 80 ends the high frequency running state, and the V/F control module 400 is converted into the closed loop vector control module 500.
  • the AC asynchronous motor 80 is subjected to low frequency control.
  • the closed loop vector control module 500 is first started.
  • the closed loop vector control module 500 includes a position loop 510, a speed loop 520 and a current loop 530.
  • the position loop 510, the speed loop 520 and the current need to pass through the control of the closed loop vector control module 500.
  • the adjustment of the loop 530 can obtain the output voltage, so the input data of the position loop 510, the speed loop 520 and the current loop 530 needs to be acquired to complete the conversion of the closed loop vector control module 500.
  • the rotational speed of the machine tool spindle is detected by the encoder 90, and the rotational speed is fed back to the speed loop 520, and the current loop is given by the operation of the speed loop 520.
  • the torque current of the machine tool spindle is detected by the current detecting module 600 built in the driver, and the torque current is fed back to the current loop 530, and the output is controlled by the operation of the current loop 530.
  • the signal is turned off and the V/F control module 400 is turned off after the current loop 530 begins to output a control signal.
  • the closed loop vector control module 500 continues to reduce the output frequency.
  • the output frequency F is less than the second preset frequency F2
  • the positioning signal input by the position given module 300 and the position signal fed back by the encoder 90 pass through the position loop 510 and the speed loop 520.
  • the operation control signal is obtained after the operation of the current loop 530.
  • control module 100 executes the positioning instruction, and continues to reduce the output frequency F by the closed loop vector control module 500.
  • the output frequency F is detected to be smaller than the second preset frequency F2, wherein the second preset frequency F2 is smaller than The first preset frequency F1
  • the position given module 300 inside the driver outputs a positioning signal to the position loop 510, and the position signal detected by the encoder 90 to the AC asynchronous motor 80 is also fed back to the position loop 510.
  • the position loop 510 compares the position signal input by the position given module 300 with the position signal fed back by the encoder 90, and compares the compared difference value by the PID of the position loop 510 to obtain a speed loop.
  • the speed loop is output to the speed loop 520.
  • the speed loop 520 compares the speed loop reference with the speed signal calculated by the feedback signal of the encoder 90, and compares the compared difference value by the PID of the speed loop 520 to obtain a current loop reference, and outputs the current loop.
  • the current loop 530 compares the current loop and the torque current sampled by the current detecting module 600 to the machine tool spindle, and compares the compared difference value by the PID of the current loop 530 to obtain a positioning control signal.
  • the PWM output module outputs the positioning control signal to a machine tool spindle, and controls the spindle of the machine tool to operate to a corresponding position.
  • the current loop 530 outputs a positioning control signal to the PWM output module 700, and the PWM output module 700 outputs a PWM signal to control the three-phase inverter bridge circuit, thereby controlling the AC asynchronous motor 80 to operate to a corresponding position.
  • the positioning control system of the above machine tool spindle adopts a V/F control module to control the operation of the machine tool spindle when the output is greater than the first preset frequency, and switches to the closed loop vector control module to locate the machine tool spindle when the output is smaller than the first preset frequency. Control, so that in the case of high-frequency operation of the machine spindle, it is not necessary to detect the encoder pulse signal.
  • the position signal input by the position given module and the position signal fed back by the encoder are passed through the position in the closed loop vector control module under the control of the closed loop vector control module. After the operation of the ring, speed loop and current loop, the positioning control signal is obtained, which realizes the precise positioning function of the machine tool spindle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种机床主轴的定位控制方法及使用该定位控制方法的定位控制系统,该定位控制方法包括:采用闭环矢量控制方式启动机床主轴,当输出频率大于第一预设频率时,将闭环矢量控制方式转换为V/F控制方式,由V/F控制方式继续控制机床主轴运行;当接收到定位指令或减速时,通过V/F控制方式控制输出频率减小至所述第一预设频率后,将V/F控制方式转换为闭环矢量控制方式,通过闭环矢量控制方式对机床主轴进行定位控制;通过闭环矢量控制方式继续减小输出频率,当输出频率小于第二预设频率时,将输入的定位信号和编码器反馈的位置信号经过闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号;输出定位控制信号给机床主轴,控制机床主轴运行至相应位置。

Description

机床主轴的定位控制方法及系统 技术领域
本发明涉及工业控制领域,特别是涉及一种机床主轴的定位控制方法及系统。
背景技术
电主轴(简称主轴)是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术。机床主轴指的是机床上带动工件或刀具旋转的轴,通常主轴只是进行速度控制,但在一些特殊的情况下也需要对主轴进行位置控制。例如:在加工中心上进行自动换刀、镗孔加工中因工艺要求而需要让刀以及车床在装卡工件等情况下都需要主轴准确的停在一个特定的位置上,即需要实现主轴定位的功能。
主轴电机定位需要采用位置检测装置,一般通过安装带有z相脉冲信号的旋转编码器实现,而对于主轴电机驱动器,则要求能够接收旋转编码器的信号。
目前对于带编码器的电机控制算法,一般都采用闭环矢量控制,闭环矢量控制通过对电机三相电流进行坐标变换,可以分解出励磁电流和转矩电流,能够更好的控制电机的输出转矩和输出速度。
但主轴电机往往要求高频运行,由于编码器脉冲信号本就是高频信号,在闭环矢量控制下,若电机处于高频运行状态,此时编码器脉冲信号的检测就变得极为困难,无论是对检测电路还是检测算法都有极高要求。因此,如何在主轴高频运行情况下,改变主轴的控制方式使编码器不必检测脉冲信号,并且实现精确的主轴定位控制成为亟待解决的技术问题。
发明内容
基于此,有必要提供一种在机床主轴高频运行情况下使编码器不必检测 信号并能实现主轴精确定位的机床主轴的定位控制方法及系统。
一种机床主轴的定位控制方法,所述方法包括:
采用闭环矢量控制方式启动所述机床主轴,当输出频率大于第一预设频率时,将所述闭环矢量控制方式转换为V/F控制方式,在所述V/F控制方式下继续控制机床主轴运行;
当接收到定位指令或减速时,通过V/F控制方式控制输出频率减小至所述第一预设频率后,将所述V/F控制方式转换为闭环矢量控制方式,通过所述闭环矢量控制方式对机床主轴进行定位控制;
通过所述闭环矢量控制方式继续减小输出频率,当输出频率小于第二预设频率时,将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号;及
输出所述定位控制信号给机床主轴,控制所述机床主轴运行至相应位置。
一种机床主轴的定位控制系统,包括控制机床主轴的驱动器和用于测量位置信号和速度信号的编码器,所述驱动器包括存储器和处理器,所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行以下步骤:
采用闭环矢量控制方式启动所述机床主轴,当输出频率大于第一预设频率时,将所述闭环矢量控制方式转换为V/F控制方式,在所述V/F控制方式下继续控制机床主轴运行;
当接收到定位指令或减速时,通过V/F控制方式控制输出频率减小至所述第一预设频率后,将所述V/F控制方式转换为闭环矢量控制方式,通过所述闭环矢量控制方式对机床主轴进行定位控制;
通过所述闭环矢量控制方式继续减小输出频率,当输出频率小于第二预设频率时,将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号;及
输出所述定位控制信号给机床主轴,控制所述机床主轴运行至相应位置。
上述机床主轴的定位控制方法及系统,通过实现当输出大于第一预设频率时采用V/F控制方式控制机床主轴运行,当输出小于第一预设频率时切换至闭环矢量控制方式对机床主轴进行定位控制,使得在机床主轴高频运行情况下,不必检测编码器脉冲信号。通过在闭环矢量控制方式下将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号,实现了机床主轴的精确定位功能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一个实施例中机床主轴的定位控制方法的流程图;
图2为一个实施例中控制方式的切换流程图;
图3为一个实施例中控制模块的处理流程图;
图4为一个实施例中机床主轴的定位控制系统的框图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
以下提供一种机床主轴的定位控制方法,如图1所示,为一个实施例中机床主轴的定位控制方法的流程图,所述方法包括以下步骤S110~S140。
S110:采用闭环矢量控制方式启动所述机床主轴,当输出频率大于第一预设频率时,将所述闭环矢量控制方式转换为V/F控制方式,在所述V/F控制方式下继续控制机床主轴运行。
具体地,在启动机床主轴时,为了保证在较低的输出频率下有足够的输出转矩来驱动主轴电机转动,控制机床主轴的驱动器采用闭环矢量控制的方式启动所述机床主轴。由于机床主轴在刚启动时驱动器保持较低的输出频率,在这期间主轴电机的输出转矩逐渐增大,转动速度逐渐加快,驱动器工作在闭环矢量控制的模式下能够实时接收主轴电机的转矩电流反馈和转动速度反馈,因此能够更有效地控制机床主轴的运行。
进一步地,当驱动器检测到当前输出频率大于第一预设频率F1时,此时主轴电机已经处于高频运行状态,并且处于高速运转中,主轴电机的运行进入稳定状态。此时将所述闭环矢量控制方式转换为V/F控制方式,在所述V/F控制方式下,保证输出电压与输出频率成正比,对主轴电机的控制简单,能够使主轴电机保持稳定的运行状态。
在一个实施例中,由闭环矢量控制方式转换为V/F控制方式的处理过程如图2所示,首先驱动器启动V/F控制方式,然后将所述闭环矢量控制方式下的当前输出频率Fc赋值给V/F控制方式的输出频率Fv,并将所述闭环矢量控制方式下的当前输出相位角θc赋值给V/F控制方式的输出相位角θv,在这个过程中驱动器的输出电压保持不变,关闭闭环矢量控制方式,由V/F控制方式下的输出电压输出到PWM输出模块。
S120:当接收到定位指令或减速时,通过V/F控制方式控制输出频率减小至所述第一预设频率后,将所述V/F控制方式转换为闭环矢量控制方式,通过所述闭环矢量控制方式对机床主轴进行定位控制。
具体地,当驱动器接收到定位指令或减速指令时,通过V/F控制方式降低输出频率,当检测到输出频率小于第一预设频率F1时,此时主轴电机结束高频运行状态,将所述V/F控制方式转换为闭环矢量控制方式,对主轴电机进行低频控制。
进一步地,由V/F控制方式转换为闭环矢量控制方式的流程如图2所示,首先启动闭环矢量控制方式,由于在闭环矢量控制方式下需要经过位置环、速度环与电流环的调节才能获得输出电压,因此需要获取位置环、速度环与 电流环的输入数据才能完成闭环矢量控制方式的转换。通过编码器检测所述机床主轴的转动速度,将所述转动速度反馈至闭环矢量控制中的速度环,经过所述速度环的运算后得到电流环给定。再通过驱动器内置的电流检测模块检测所述机床主轴的转矩电流,将所述转矩电流反馈至闭环矢量控制中的电流环,经过所述电流环的运算后输出控制信号,并在所述电流环开始输出控制信号后关闭V/F控制方式。
在一个实施例中,将定位指令或减速指令中指定的目标频率定为当前的输出频率,即速度环给定与反馈相等,速度环输出的转矩电流给定ItRef=0。通过电流检测模块检测主轴电机的三相输出电流中的两相输出电流,如Iu、Iw,根据三相电流和为零,则可计算出第三相输出电流Iv=-Iu-Iw。将所述V/F控制方式下的输出相位角θv赋值给闭环矢量控制方式的输出相位角θc。
进一步地,通过克拉克变换(Clark变换)将三相静止坐标系下的所述三相输出电流Iu、Iv、Iw变换到两相静止坐标系下的两相运行电流Iα、Iβ。所述克拉克变换的公式为Iα=Iu,
Figure PCTCN2017084874-appb-000001
其中,Iu、Iv、Iw为时间上互相间隔120度的三相平衡交流电流,Iα和Iβ为时间上互相间隔90度的两相平衡交流电流。
通过帕克变换(Park变换)将所述两相静止坐标系下的两相运行电流Iα、Iβ变换到两相旋转坐标系下的两相旋转电流ImFed、ItFed。所述帕克变换的公式为ImFed=Iα*cosθc+Iβ*sinθc,ItFed=Iβ*cosθc-Iα*sinθc;其中,ImFed为励磁电流,ItFed为转矩电流。
进一步地,将励磁电流ImFed作为此时的电流环积分量,励磁电流给定ImRef通过对主轴电机参数的自学习获得。电流环通过对转矩电流给定ItRef、励磁电流给定ImRef、转矩电流ItFed和励磁电流ImFed进行PID调节(比例-积分-微分调节),获得输出电压矢量UmOut、UtOut,经过公式
Figure PCTCN2017084874-appb-000002
计算得到输出电压Uout,电流环将输出相位角θc和输出电压Uout输出至PWM输出模块,由PWM模块输出PWM信号至主轴 电机。
S130:通过所述闭环矢量控制方式继续减小输出频率,当输出频率小于第二预设频率时,将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号。
具体地,执行所述定位指令,在闭环矢量控制方式下继续减小输出频率,当检测到输出频率小于第二预设频率F2时,其中所述第二预设频率F2小于第一预设频率F1,驱动器内部的位置给定模块将定位信号输出至闭环矢量控制中的位置环,编码器对主轴电机检测到的位置信号也反馈至所述位置环。
进一步地,所述位置环将位置给定模块输入的定位信号和编码器反馈的位置信号进行差值比较,将比较后的差值经过位置环的PID调节后得到速度环给定,并输出所述速度环给定至闭环矢量控制中的速度环。所述速度环将速度环给定和通过编码器反馈信号运算所得的速度信号进行比较,将比较后的差值经过速度环的PID调节后得到电流环给定,并输出所述电流环给定至闭环矢量控制中的电流环。所述电流环将电流环给定和对机床主轴采样得到的转矩电流进行比较,将比较后的差值经过电流环的PID调节后得到定位控制信号。
在一个实施例中,位置给定模块根据预设的定位位置输出脉冲信号M至位置环,所述脉冲信号M是以脉冲编码器z脉冲作为零点,定位位置为与零点的距离,其中M为脉冲个数,编码器反馈当前位置为脉冲信号N,其中N为脉冲个数。闭环矢量控制中的位置环根据公式W=K(M-N)计算得到位置环输出,其中W为位置环输出,K为位置环系数。将W作为速度环给定,闭环矢量控制中的速度环根据速度环给定W和通过编码器反馈信号运算所得的速度信号进行运算后输出电流环给定,通过闭环矢量控制中的电流环运算后得到输出电压Uout和矢量角θ1,根据所述电流环输出结果对主轴电机进行定位控制。
S140:输出所述定位控制信号给机床主轴,控制所述机床主轴运行至相应位置。
具体地,所述电流环输出定位控制信号至PWM输出模块,由PWM输出模块输出PWM信号控制三相逆变桥电路,进而控制主轴电机运行至对应位置。
上述机床主轴的定位控制方法,通过实现当输出大于第一预设频率时采用V/F控制方式控制机床主轴运行,当输出小于第一预设频率时切换至闭环矢量控制方式对机床主轴进行定位控制,使得在机床主轴高频运行情况下,不必检测编码器脉冲信号。通过在闭环矢量控制方式下将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号,实现了机床主轴的精确定位功能。
基于相同发明构思,以下提供一种机床主轴的定位控制系统,所述系统包括控制机床主轴的驱动器和用于测量位置信号和速度信号的编码器,所述驱动器包括存储器和处理器,所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行上述各个实施例的方法。
在一个实施例中,如图4所示,为一个实施例中机床主轴的定位控制系统的框图,所述系统包括控制机床主轴的驱动器(图中未标)和用于测量位置信号和速度信号的编码器90,所述机床主轴采用的是交流异步电机80,所述驱动器包括控制模块100、速度给定模块200、位置给定模块300、V/F控制模块400、闭环矢量控制模块500、电流检测模块600和PWM输出模块700。
参阅图3所示,所述驱动器进行定位控制的过程通过控制模块100执行以下控制过程。
控制模块100选取闭环矢量控制模块500启动所述机床主轴,当输出频率F大于第一预设频率F1时,控制模块100将闭环矢量控制模块500转换为V/F控制模块400,由V/F控制模块400继续控制机床主轴运行。
具体地,在启动机床主轴时,为了保证在较低的输出频率下有足够的输出转矩来驱动交流异步电机80转动,控制机床主轴的驱动器选取闭环矢量控 制模块500启动所述机床主轴。由于机床主轴在刚启动时驱动器保持较低的输出频率,在这期间交流异步电机80的输出转矩逐渐增大,转动速度逐渐加快,驱动器通过闭环矢量控制模块500能够实时接收主轴电机的转矩电流反馈和转动速度反馈,因此能够更有效地控制机床主轴的运行。
进一步地,当驱动器检测到当前输出频率F大于第一预设频率F1时,此时交流异步电机80已经处于高频运行状态,并且处于高速运转中,交流异步电机80的运行进入稳定状态。此时将闭环矢量控制模块500转换为V/F控制模块400,在V/F控制模块400的控制下,保证输出电压与输出频率成正比,对交流异步电机80的控制简单,能够使交流异步电机80保持稳定的运行状态。
当控制模块100接收到定位指令或减速指令时,控制V/F控制模块400将输出频率F减小至所述第一预设频率F1后,控制模块100将V/F控制模块400转换为闭环矢量控制模块500,由闭环矢量控制模块500对机床主轴进行定位控制。
具体地,当驱动器接收到定位指令或减速指令时,速度给定模块200发送速度给定至V/F控制模块400,V/F控制模块400接收所述速度给定后降低输出频率F,控制交流异步电机80减速,当检测到输出频率F小于第一预设频率F1时,此时交流异步电机80结束高频运行状态,将所述V/F控制模块400转换为闭环矢量控制模块500,对交流异步电机80进行低频控制。
进一步地,首先启动闭环矢量控制模块500,闭环矢量控制模块500包括位置环510、速度环520与电流环530,由于在闭环矢量控制模块500的控制下需要经过位置环510、速度环520与电流环530的调节才能获得输出电压,因此需要获取位置环510、速度环520与电流环530的输入数据才能完成闭环矢量控制模块500的转换。通过编码器90检测所述机床主轴的转动速度,将所述转动速度反馈至速度环520,经过速度环520的运算后得到电流环给定。再通过驱动器内置的电流检测模块600检测所述机床主轴的转矩电流,将所述转矩电流反馈至电流环530,经过电流环530的运算后输出控制 信号,并在电流环530开始输出控制信号后关闭V/F控制模块400。
闭环矢量控制模块500继续减小输出频率,当输出频率F小于第二预设频率F2时,将位置给定模块300输入的定位信号和编码器90反馈的位置信号经过位置环510、速度环520和电流环530的运算后得到定位控制信号。
具体地,控制模块100执行所述定位指令,通过闭环矢量控制模块500继续减小输出频率F,当检测到输出频率F小于第二预设频率F2时,其中所述第二预设频率F2小于第一预设频率F1,驱动器内部的位置给定模块300将定位信号输出至位置环510,编码器90对交流异步电机80检测到的位置信号也反馈至位置环510。
进一步地,位置环510将位置给定模块300输入的定位信号和编码器90反馈的位置信号进行差值比较,将比较后的差值经过位置环510的PID调节后得到速度环给定,并输出所述速度环给定至速度环520。速度环520将速度环给定和通过编码器90的反馈信号运算所得的速度信号进行比较,将比较后的差值经过速度环520的PID调节后得到电流环给定,并输出所述电流环给定至电流环530。电流环530将电流环给定和电流检测模块600对机床主轴采样得到的转矩电流进行比较,将比较后的差值经过电流环530的PID调节后得到定位控制信号。
所述PWM输出模块输出所述定位控制信号给机床主轴,控制所述机床主轴运行至相应位置。
具体地,电流环530输出定位控制信号至PWM输出模块700,由PWM输出模块700输出PWM信号控制三相逆变桥电路,进而控制交流异步电机80运行至对应位置。
上述机床主轴的定位控制系统,通过实现当输出大于第一预设频率时采用V/F控制模块控制机床主轴运行,当输出小于第一预设频率时切换至闭环矢量控制模块对机床主轴进行定位控制,使得在机床主轴高频运行情况下,不必检测编码器脉冲信号。通过在闭环矢量控制模块的控制下将位置给定模块输入的定位信号和编码器反馈的位置信号经过闭环矢量控制模块中的位置 环、速度环和电流环的运算后得到定位控制信号,实现了机床主轴的精确定位功能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种机床主轴的定位控制方法,包括:
    采用闭环矢量控制方式启动所述机床主轴,当输出频率大于第一预设频率时,将所述闭环矢量控制方式转换为V/F控制方式,在所述V/F控制方式下继续控制机床主轴运行;
    当接收到定位指令或减速时,通过V/F控制方式控制输出频率减小至所述第一预设频率后,将所述V/F控制方式转换为闭环矢量控制方式,通过所述闭环矢量控制方式对机床主轴进行定位控制;
    通过所述闭环矢量控制方式继续减小输出频率,当输出频率小于第二预设频率时,将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号;及
    输出所述定位控制信号给机床主轴,控制所述机床主轴运行至相应位置。
  2. 根据权利要求1所述的方法,其特征在于,所述将闭环矢量控制方式转换为V/F控制方式包括:
    启动V/F控制方式;
    将所述闭环矢量控制方式下的当前输出频率赋值给V/F控制方式的输出频率;
    将所述闭环矢量控制方式下的当前输出相位角赋值给V/F控制方式的输出相位角;
    在所述V/F控制方式下开始输出控制信号后关闭闭环矢量控制方式。
  3. 根据权利要求1所述的方法,其特征在于,所述将V/F控制方式转换为闭环矢量控制方式包括:
    启动闭环矢量控制方式;
    检测所述机床主轴的转动速度,将所述转动速度反馈至闭环矢量控制中的速度环,经过所述速度环的运算后得到电流环给定;
    检测所述机床主轴的转矩电流,将所述转矩电流反馈至闭环矢量控制中 的电流环,经过所述电流环的运算后输出控制信号;
    在所述电流环开始输出控制信号后关闭V/F控制方式。
  4. 根据权利要求3所述的方法,其特征在于,所述检测所述机床主轴的转矩电流包括:
    检测主轴电机的三相输出电流中的两相输出电流,根据三相电流和为零,计算出第三相输出电流的大小;
    将所述V/F控制方式下的输出相位角赋值给闭环矢量控制方式的输出相位角;
    将所述三相输出电流和输出相位角通过坐标变换得到励磁电流和转矩电流。
  5. 根据权利要求1所述的方法,其特征在于,所述第二预设频率小于第一预设频率。
  6. 根据权利要求1所述的方法,其特征在于,所述位置环的运算包括:
    将输入的定位信号和编码器反馈的位置信号进行差值比较,将比较后的差值经过位置环的PID调节后得到速度环给定;
    输出所述速度环给定至闭环矢量控制中的速度环。
  7. 根据权利要求1所述的方法,其特征在于,所述速度环的运算包括:
    将所述速度环给定和通过编码器反馈信号运算所得的速度信号进行比较,将比较后的差值经过速度环的PID调节后得到电流环给定;
    输出所述电流环给定至闭环矢量控制中的电流环。
  8. 根据权利要求1所述的方法,其特征在于,所述电流环的运算包括:
    将所述电流环给定和对机床主轴采样得到的转矩电流进行比较,将比较后的差值经过电流环的PID调节后得到定位控制信号;
    输出所述定位控制信号至机床主轴,并控制所述机床主轴运行至对应位置。
  9. 一种机床主轴的定位控制系统,包括控制机床主轴的驱动器和用于测量位置信号和速度信号的编码器,所述驱动器包括存储器和处理器, 所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行以下步骤:
    采用闭环矢量控制方式启动所述机床主轴,当输出频率大于第一预设频率时,将所述闭环矢量控制方式转换为V/F控制方式,在所述V/F控制方式下继续控制机床主轴运行;
    当接收到定位指令或减速时,通过V/F控制方式控制输出频率减小至所述第一预设频率后,将所述V/F控制方式转换为闭环矢量控制方式,通过所述闭环矢量控制方式对机床主轴进行定位控制;
    通过所述闭环矢量控制方式继续减小输出频率,当输出频率小于第二预设频率时,将输入的定位信号和编码器反馈的位置信号经过所述闭环矢量控制方式中的位置环、速度环和电流环的运算后得到定位控制信号;及
    输出所述定位控制信号给机床主轴,控制所述机床主轴运行至相应位置。
  10. 根据权利要求9所述的系统,其特征在于,所述处理器将所述闭环矢量控制方式转换为V/F控制方式的过程包括:
    启动V/F控制方式;
    将所述闭环矢量控制方式下的当前输出频率赋值给V/F控制方式的输出频率;
    将所述闭环矢量控制方式下的当前输出相位角赋值给V/F控制方式的输出相位角;
    在所述V/F控制方式下开始输出控制信号后关闭闭环矢量控制方式。
  11. 根据权利要求9所述的系统,其特征在于,所述处理器将V/F控制方式转换为闭环矢量控制方式包括:
    启动闭环矢量控制方式;
    检测所述机床主轴的转动速度,将所述转动速度反馈至闭环矢量控制中的速度环,经过所述速度环的运算后得到电流环给定;
    检测所述机床主轴的转矩电流,将所述转矩电流反馈至闭环矢量控制中 的电流环,经过所述电流环的运算后输出控制信号;
    在所述电流环开始输出控制信号后关闭V/F控制方式。
  12. 根据权利要求11所述的系统,其特征在于,所述处理器检测所述机床主轴的转矩电流的过程包括:
    检测主轴电机的三相输出电流中的两相输出电流,根据三相电流和为零,计算出第三相输出电流的大小;
    将所述V/F控制方式下的输出相位角赋值给闭环矢量控制方式的输出相位角;
    将所述三相输出电流和输出相位角通过坐标变换得到励磁电流和转矩电流。
  13. 根据权利要求9所述的系统,其特征在于,所述第二预设频率小于第一预设频率。
  14. 根据权利要求9所述的系统,其特征在于,所述处理器进行位置环的运算过程包括:
    将输入的定位信号和编码器反馈的位置信号进行差值比较,将比较后的差值经过位置环的PID调节后得到速度环给定;
    输出所述速度环给定至闭环矢量控制中的速度环。
  15. 根据权利要求9所述的系统,其特征在于,所述处理器进行速度环的运算过程包括:
    将所述速度环给定和通过编码器反馈信号运算所得的速度信号进行比较,将比较后的差值经过速度环的PID调节后得到电流环给定;
    输出所述电流环给定至闭环矢量控制中的电流环。
  16. 根据权利要求9所述的系统,其特征在于,所述处理器进行电流环的运算过程包括:
    将所述电流环给定和对机床主轴采样得到的转矩电流进行比较,将比较后的差值经过电流环的PID调节后得到定位控制信号;
    输出所述定位控制信号至机床主轴,并控制所述机床主轴运行至对应 位置。
PCT/CN2017/084874 2017-05-18 2017-05-18 机床主轴的定位控制方法及系统 WO2018209637A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/084874 WO2018209637A1 (zh) 2017-05-18 2017-05-18 机床主轴的定位控制方法及系统
CN201780085316.7A CN110235068B (zh) 2017-05-18 2017-05-18 机床主轴的定位控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084874 WO2018209637A1 (zh) 2017-05-18 2017-05-18 机床主轴的定位控制方法及系统

Publications (1)

Publication Number Publication Date
WO2018209637A1 true WO2018209637A1 (zh) 2018-11-22

Family

ID=64273063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084874 WO2018209637A1 (zh) 2017-05-18 2017-05-18 机床主轴的定位控制方法及系统

Country Status (2)

Country Link
CN (1) CN110235068B (zh)
WO (1) WO2018209637A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109927681A (zh) * 2019-03-27 2019-06-25 四川中匠科技有限公司 一种双重闭环的功率跟踪接触式洗车机控制装置及方法
CN112713821A (zh) * 2020-12-17 2021-04-27 杭州海康威视数字技术股份有限公司 一种有刷电机闭环控制的方法及系统
CN112953321A (zh) * 2021-03-19 2021-06-11 北京自动化控制设备研究所 重载起动控制方法及系统
CN116449884A (zh) * 2023-04-14 2023-07-18 江苏吉泰科电气有限责任公司 一种电机主轴的定位方法、装置和计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371346B (zh) * 2021-05-17 2024-04-16 合肥美的电冰箱有限公司 变频压缩机的启动控制方法、启动控制装置及制冷设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206945A (ja) * 2009-03-03 2010-09-16 Mitsubishi Heavy Ind Ltd モータの駆動装置
JP2010268551A (ja) * 2009-05-13 2010-11-25 Fuji Electric Systems Co Ltd インバータ装置
CN102751944A (zh) * 2012-06-29 2012-10-24 华为技术有限公司 中高压变频器的控制方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845372A (en) * 1970-11-19 1974-10-29 Allis Chalmers Mfg Co Circuit for starting electric motor from standstill with maximum torque
CH533335A (de) * 1971-03-16 1973-01-31 Gildemeister Werkzeugmasch Verfahren zur adaptiven Regelung des Ablaufs einer Werkstückbearbeitung auf Drehmaschinen
US5212438A (en) * 1987-09-24 1993-05-18 Kabushiki Kaisha Toshiba Induction motor control system
JPH1127998A (ja) * 1997-06-30 1999-01-29 Meidensha Corp インバータ装置
CN2462679Y (zh) * 2000-12-29 2001-12-05 云南昆船第二机械有限公司 烟草切丝机刀鼓、排链主从随动控制装置
JP3783159B2 (ja) * 2002-07-10 2006-06-07 株式会社日立製作所 同期電動機の駆動制御装置
CN2701579Y (zh) * 2004-09-20 2005-05-25 沈阳建筑大学 一种基于pmac的高速精密数控磨削加工装置
GB2489434A (en) * 2011-03-25 2012-10-03 Technelec Ltd Controlling an electrical machine with an observer
KR101622011B1 (ko) * 2013-12-31 2016-05-17 현대모비스 주식회사 3상 교류 모터 제어 방법 및 장치
CN106602962B (zh) * 2017-02-07 2019-02-05 北京利德华福电气技术有限公司 基于高压变频器电机控制系统的工变频运行同步切换方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206945A (ja) * 2009-03-03 2010-09-16 Mitsubishi Heavy Ind Ltd モータの駆動装置
JP2010268551A (ja) * 2009-05-13 2010-11-25 Fuji Electric Systems Co Ltd インバータ装置
CN102751944A (zh) * 2012-06-29 2012-10-24 华为技术有限公司 中高压变频器的控制方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, MINGHONG: "Research of High-performance Drive Control Methods for High-speed Motorized Spindles", CHONGQING UNIVERSITY MASTER'S DISSERTATION, 31 May 2012 (2012-05-31) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109927681A (zh) * 2019-03-27 2019-06-25 四川中匠科技有限公司 一种双重闭环的功率跟踪接触式洗车机控制装置及方法
CN112713821A (zh) * 2020-12-17 2021-04-27 杭州海康威视数字技术股份有限公司 一种有刷电机闭环控制的方法及系统
CN112713821B (zh) * 2020-12-17 2023-03-14 杭州海康威视数字技术股份有限公司 一种有刷电机闭环控制的方法及系统
CN112953321A (zh) * 2021-03-19 2021-06-11 北京自动化控制设备研究所 重载起动控制方法及系统
CN112953321B (zh) * 2021-03-19 2023-12-05 北京自动化控制设备研究所 重载起动控制方法及系统
CN116449884A (zh) * 2023-04-14 2023-07-18 江苏吉泰科电气有限责任公司 一种电机主轴的定位方法、装置和计算机可读存储介质

Also Published As

Publication number Publication date
CN110235068B (zh) 2022-04-19
CN110235068A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2018209637A1 (zh) 机床主轴的定位控制方法及系统
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
EP1257049B1 (en) Control apparatus for alternating-current source
EP2696496B1 (en) Motor control device
CN103684209A (zh) 永磁同步电动机的控制装置及具备该控制装置的控制系统
US9459598B2 (en) Motor control device
US10095222B2 (en) Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
US9753452B2 (en) Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
JP2018007473A (ja) 永久磁石形同期電動機の制御装置
US10594242B2 (en) Motor controller
CN109687793B (zh) 电动机控制装置
WO2021215083A1 (ja) 電動工具システム、制御方法、及びプログラム
JPWO2018142445A1 (ja) 同期電動機の制御装置
JP7082369B2 (ja) 電動機の駆動装置
JP4579627B2 (ja) 回転機の制御装置
CN109309465A (zh) 电动机控制装置
JP2013063017A (ja) 主軸駆動用モータの制御装置
JP5802517B2 (ja) 工作機械及びそのモータ制御方法
US20180157237A1 (en) Servo motor controller, servo motor control method, and non-transitory computer-readable medium storing computer program
US11211887B2 (en) Motor control device and machine tool
JP4756464B2 (ja) 交流電動機駆動用インバータ装置及びその運転方法
JP2001197767A (ja) モータ制御装置
JP2003088154A (ja) 交流電動機の制御方法
US10630218B2 (en) Motor control device
JPH037084A (ja) 交流回転機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910322

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17910322

Country of ref document: EP

Kind code of ref document: A1