WO2018208097A1 - 레이저 가공 방법 및 장치 - Google Patents

레이저 가공 방법 및 장치 Download PDF

Info

Publication number
WO2018208097A1
WO2018208097A1 PCT/KR2018/005365 KR2018005365W WO2018208097A1 WO 2018208097 A1 WO2018208097 A1 WO 2018208097A1 KR 2018005365 W KR2018005365 W KR 2018005365W WO 2018208097 A1 WO2018208097 A1 WO 2018208097A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
soldering
inspection
nozzle
jig
Prior art date
Application number
PCT/KR2018/005365
Other languages
English (en)
French (fr)
Inventor
최병찬
강기석
Original Assignee
최병찬
주식회사 엔디테크
강기석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최병찬, 주식회사 엔디테크, 강기석 filed Critical 최병찬
Priority claimed from KR1020180053426A external-priority patent/KR102110764B1/ko
Publication of WO2018208097A1 publication Critical patent/WO2018208097A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor

Definitions

  • Embodiments of the present invention relate to laser processing methods and apparatus.
  • soldering performed by a laser processing apparatus and method is an apparatus for electrically connecting electrical components using a conductive material (for example, solder balls), and may be used for manufacturing various electronic products.
  • a conductive material for example, solder balls
  • Patent Document 1 Republic of Korea Patent Publication No. 10-0332378 (2002. 03. 30.)
  • An embodiment of the present invention relates to a laser processing apparatus, comprising: a vision inspection module or step for performing soldering using a laser but determining a soldering position, and a fast and highly efficient laser processing apparatus and method including a laser soldering module or step The purpose is to provide.
  • Detect and pre-inspect the alignment including loading the object into the jig, rotation and placement of the object loaded in the jig, move the jig to the soldering position, and move the object by laser
  • a laser processing method which allows soldering and unloading of a soldered object, and optionally performs a second post-inspection by moving the object to the inspection unit to inspect the quality of soldering.
  • the inspection of the quality may be an inspection for detecting the occurrence of internal cracks and pores of the soldering region.
  • the laser may be a solid state laser including one or more of a fiber laser or a diode laser.
  • Soldering may also be performed by a soldering head comprising a laser beam focusing optical head, a solder ball supply, and a nozzle.
  • Soldering may also be performed by a Pick and Place Soldering Head or Jet Soldering Head including one or more heads.
  • soldering may further comprise the step of cleaning or replacing the inspection of the predetermined state and quality of the nozzle for discharging the solder ball.
  • soldering may further include the step of recording the output of the laser and correcting the laser output.
  • the inspection by the inspection unit may be performed simultaneously with the soldering.
  • the inspection of quality may include discarding or collecting the solder balls used in the bonding test and defective solder balls defective in manufacturing.
  • the method may further include sorting the object by a predetermined quality standard after the post-inspection.
  • solder balls that do not meet the quality criteria determined by the post-inspection can be irradiated and melted to improve solder wettability or to be removed by remelting.
  • the method may further include resoldering.
  • the method may further include a cleaning step for removing dust and foreign matter after the second post-inspection step, wherein the cleaning step includes dry air blowing and carbon dioxide snow cleaning to provide dry air. ), And inert gas blowing.
  • soldering performed on the object may include post-soldering and pre-soldering.
  • the method may include correcting one or more of a laser beam position, a nozzle position at which the solder ball is discharged, and a vision inspection position during soldering.
  • Control unit A jig into which the subject is loaded; A first inspection unit for detecting and pre-inspecting an alignment state including rotation and placement of the object loaded in the jig; A moving unit for loading and unloading an object into a jig; Processing unit for soldering the object by the laser; Provided is a laser processing apparatus including a second inspection unit for selectively performing a second inspection (Post-Inspection) on the object under the control of a controller.
  • a second inspection unit for selectively performing a second inspection (Post-Inspection) on the object under the control of a controller.
  • the second test may be performed by vision inspection.
  • the second test may be a test for detecting an occurrence of internal cracks and pores of the soldering region.
  • the laser may be a solid state laser including one or more of a fiber laser or a diode laser.
  • soldering is performed by the processing unit, and the processing unit may include a soldering head including a laser beam focusing optical head, a solder ball supply device, and a nozzle for discharging solder balls.
  • a soldering head including a laser beam focusing optical head, a solder ball supply device, and a nozzle for discharging solder balls.
  • Soldering may also be performed by a pick and place soldering head (Pick and Place Soldering Head) comprising one or more heads or a laser soldering nozzle including a Jet Soldering Head.
  • a pick and place soldering head Pick and Place Soldering Head
  • a laser soldering nozzle including a Jet Soldering Head.
  • controller may control cleaning or replacement by inspecting a predetermined state and quality of the nozzle for discharging the solder ball.
  • controller may record the laser output and correct the laser output.
  • the inspection by the inspection unit may be performed simultaneously with the soldering.
  • the inspection of the quality can be controlled to discard or collect the solder balls used in the bonding test and defective solder balls defective in the manufacturing.
  • the apparatus may further include a classification apparatus for sorting the object by a predetermined quality standard after the post-inspection.
  • solder balls solder parts
  • solder parts solder parts that do not meet the quality standards determined by the second inspection (Post-inspection) under the control of the control unit may be irradiated and melted to improve solder wettability. Remelting can be removed and resoldering may be performed.
  • the apparatus may further include a cleaning device for removing dust and foreign matter after the post-inspection step, and the cleaning device may include a dry air blowing device for providing dry air and a carbon dioxide snow cleaning (CO2). Snow Cleaning) device and an inert gas blowing device.
  • a dry air blowing device for providing dry air and a carbon dioxide snow cleaning (CO2). Snow Cleaning) device and an inert gas blowing device.
  • CO2 carbon dioxide snow cleaning
  • soldering performed on the object may further include pre-soldering performed by the prepayment unit before post-soldering.
  • controller may perform control to correct a laser beam position, a nozzle position, and a vision inspection position.
  • the controller may be performed by the laser profile determined by the combination of the laser output, the laser irradiation time, the number of laser irradiation times, and the slope of the laser output and the irradiation time relationship.
  • Embodiments of the present invention may include a vision inspection module or step and a laser soldering module or step to implement a fast and high efficiency laser processing apparatus and method.
  • FIG. 1 is a view showing a camera module according to an embodiment of the present invention
  • FIG. 2 and 3 is a view showing a laser processing method according to an embodiment of the present invention
  • FIG. 4 is a view showing a camera module that is a soldering object according to an embodiment of the present invention.
  • FIG. 5 is a view showing a heating process according to an embodiment of the present invention.
  • FIG. 6 is a view showing that the solder ball is moved by the nozzle according to an embodiment of the present invention
  • FIG. 8 is a graph showing laser energy output according to an embodiment of the present invention.
  • VCM Vehicle Coil Motor
  • FIG. 10 is a view showing that the soldering is used for the connection of the terminal according to an embodiment of the present invention
  • FIG. 11 is a view showing an example of bonding through soldering according to an embodiment of the present invention.
  • FIG. 12 is a view showing a laser processing apparatus including a nozzle according to an embodiment of the present invention.
  • FIG. 13 is an enlarged cross-sectional view of a nozzle according to an embodiment of the present invention.
  • FIG. 16 is a perspective view showing a jig according to an embodiment of the present invention.
  • 17 is a view showing a laser processing apparatus according to an embodiment of the present invention.
  • the laser processing apparatus and method according to an embodiment of the present invention it is possible to perform marking, drilling, welding and soldering to the laser processing target.
  • the laser processing apparatus and method of the present invention will be described as an example of performing soldering. That is, the laser processing apparatus may be employed as the soldering apparatus to perform only the soldering process.
  • the laser processing apparatus can be described as a soldering apparatus.
  • the laser processing target may be applied to manufacturing various electronic components such as various electronic components including the camera module 20.
  • various electronic components including the camera module 20.
  • the soldered object will be described with an example of a camera module 20 of FIG. 1.
  • the camera module 20 described below can be used in various portable devices such as smartphones and tablet pcs, as well as smart televisions, home appliances including home appliances, vehicles, security cameras (CCTV), and various medical devices.
  • the optical element can be mounted and used in a variety of necessary devices.
  • it when used in automobiles, it can be applied to various electrical components, ABS sensors, vehicle batteries, and the like, and home appliances can be applied to turning cases, flat screen monitor PCBs, and photoelectric sensors.
  • CMOS sensors, smart watches, etc. included in various ICs and may be applied to a CCD camera module 20, a USB connection terminal, a battery terminal, etc. in the portable device.
  • the laser processing apparatus included in the laser processing apparatus according to the embodiment of the present invention may not only be included in various processes such as welding, soldering, and bonding, but also the material in which each process is performed may be polymer, metal, or electric. Of course, it can be applied to a variety of materials, such as semiconductor.
  • FIG. 1 is a diagram illustrating a configuration of an object.
  • the camera module 20 may include a lens module 21 (Lens Actuator) and an image sensor module 22 (Image Sensor Module).
  • the lens actuator may include a lens module 21 (Module Lens or Lens Module), a lens cover, a lens cover, a VCM driver, a holder, an IR filter, and the like.
  • the image sensor module 22 may include a semiconductor sensor chip, ACF, FPCB, and the like.
  • the camera module 20 or the compact camera module 20 may include a lens lens 21, an AF actuator, an optical image stabilizer, It may include an image sensor, an AF driver, a PCB, an FPCB, a socket, and the like.
  • the lens module 21 may include a plurality of lenses, for example, imaging lenses for imaging, and may include a support for supporting the plurality of lenses.
  • the lens module 21 may include a plurality of IR filters. Can be included on one side of the lens, the IR filter can be supported by the support.
  • the image sensor may be included in the image sensor module 22, and the image sensor module 22 may include a sensitivity enhancing MLA, a CCD, or a CMOS.
  • the image sensor is a sensor that converts the captured image into an electrical signal, and a plurality of lenses collect the images.
  • the PCB serves as a wire bonding support for the image sensor and serves as a path for inputting and outputting electrical signals from the sensor to the outside, and the FPCB includes a connection line directly connected to an external backend chip. Do it.
  • FIG. 2 is a view briefly illustrating a manufacturing process of the camera module 20 according to the embodiment of the present invention.
  • the camera module 20 is the manufacturing of the lens module 21, the manufacturing of the packaging module through the packaging (Packing) of the manufactured lens module 21, the camera module 20 through the further completion of the packaging module ) Production.
  • the manufacturing of the camera module 20 includes a process assembly and inspection process of the camera module 20, and more specifically, single lens injection, single lens cut, single lens coat, single lens Defect inspection, lens assembly, lens performance inspection, lens holder assembly.
  • Packaging module fabrication may include wafer saw, die attach, wire bond, clean, lens holder mount.
  • additional packaging modules are available for Lens Pre-Ass'y, Focus UV Lock, Sensor Test, FPCB Attach, Case Assembly, and Includes shipping inspection.
  • the manufacturing process of the camera module 20 used in the mobile device such as a smart phone and a mobile phone will be described in detail with reference to FIG. 3.
  • a laser processing apparatus (Laser Soldering Apparatus) may be used for FPCB attach, case assembly, and the like.
  • soldering that is, soldering, is required to connect the terminals.
  • the laser processing apparatus included in the embodiment of the present invention may be used.
  • such a laser processing apparatus may be used for two-side soldering or three-side soldering in the camera module 20.
  • 6 to 8 points soldering may be performed on the upper surface of the camera module 20, and 6 to 8 points soldering may be performed on the lower surface opposite to the upper surface.
  • 16 points can be made over three sides of the soldering as a whole.
  • the camera module 20 may be an OIS (Optical Image Stabilizer) camera module 20.
  • a process of pre-heating a laser by irradiating a laser to a soldering point may be performed.
  • the area irradiated with the laser emits heat, for example, planar heat such as a circle, a rectangle, and a ring. Heat is then transferred to the surrounding area and can raise the temperature.
  • a solder ball S may be supplied and a post-heat process may be performed by a laser.
  • a soldering process is performed through a cool down (CD). If necessary, the soldering process is completed through the supply of solder balls (S), post-heat (PH2) and cool down (CD) processes without preheating (PH1). You may.
  • the laser soldering apparatus may vary in device configuration and laser irradiation method depending on one of using a solder wire, using a solder ball S, and using a solder paste.
  • solder ball (S) As shown in Figure 6, by moving the solder ball (S) to position the solder ball (S) in the required position, and irradiated with a laser to the solder ball (S) melted dropping There may be a Pick and Place soldering method that allows for bonding.
  • solder jetting method of transferring the solder ball S through the nozzle to melt the inside of the nozzle and jetting.
  • the nozzle may be replaced when an abnormal state is detected.
  • the nozzle may further include a sensing unit configured to detect whether the abnormal state including contamination and deformation is present.
  • the sensing unit may include a first sensing unit and a second sensing unit.
  • the first sensing unit is a sensor for checking the state of the nozzle 100 and may be a charge-coupled device (CCD) camera.
  • CCD charge-coupled device
  • the detachable unit may detach the nozzle in the abnormal state, and may bring a new nozzle stored in the nozzle cartridge unit and attach it to the coupling unit.
  • alignment of the new nozzle can be performed through the alignment portion.
  • the second sensing unit may be a charge-coupled device (CCD) camera, an area sensor, a hall sensor, or a capacitive sensor.
  • CCD charge-coupled device
  • the abnormal state of the disk in particular the abnormal state of the solder ball transfer port, can be confirmed by the second sensing unit and transmitted to the controller. That is, the contamination state of the solder ball feed hole is checked to indicate a signal indicating that the solder ball feed hole is in an abnormal state when the contamination level interferes with the supply of the solder ball (for example, when the diameter in the solder ball feed hole is smaller than or equal to a predetermined value). It can be transmitted to the controller side.
  • the controller may provide information for the user to replace the disk by displaying it to the user when an abnormal state of the disk for moving and providing the solder ball S is confirmed.
  • the pick and place soldering method will be described in more detail with reference to FIG. 6.
  • one or more nozzles pick up one or more solder balls S (Step 1), and soldering (Step 2). Place it on top of this required position (Step 3).
  • Solder ball (S) located at the top is melted by the laser irradiation is to drop in the solder ball (S) required position (Step 4).
  • the laser may be sequentially irradiated to each solder ball (S).
  • FIG. 6 (a) one or more nozzles pick up one or more solder balls S (Step 1), and soldering (Step 2). Place it on top of this required position (Step 3).
  • Solder ball (S) located at the top is melted by the laser irradiation is to drop in the solder ball (S) required position (Step 4).
  • the laser may be sequentially irradiated to each solder ball (S).
  • FIG. 6 illustrates a case in which two or more solder balls S are picked up, but the present invention is not limited thereto, and may include a case in which a nozzle picks up one solder ball S to be dropped in a position where soldering is required.
  • FIG. 7 may be considered when examining solder wires, solder pastes, and prepaid solders, unlike FIG. 6 (Pick and Place).
  • the operation of the laser is necessary depending on the factors to be considered. Size of heated area by laser, prevention of error and securing focal length to make laser soldering smooth even if error occurs, and the surrounding components in the laser irradiation Consideration should be given to the cone angle of the laser to prevent it from being blocked by or damaging the surrounding components.
  • the size and focal length of the region heated by the laser can be adjusted by adjusting the cone angle and the wavelength of the laser having a conical shape. Further, by reducing the cone angle of the laser, it is possible to prevent the flaw due to contact with the peripheral configuration.
  • the laser processing apparatus may include a laser wavelength adjusting unit and a laser cone angle adjusting unit in the upper laser supply unit for supplying the laser of the nozzle 16. have.
  • considerations may be made in consideration of the cycle period of the laser processing apparatus, the operating temperature, and the temperature sensitivity of the material to be soldered, the contact sensitivity, and the allowable temperature for smooth performance of the following process.
  • the heat load of the soldering object may be considered.
  • the mass of the solder paste (solder ball S) may be considered. This is because the laser must add enough energy to evaporate the flux and liquefy the alloy. In addition, the flux vapor affects the heating rate and may even auto-ignite.
  • joint geometry can be considered. If the joint shape is a complex shape such as stranded wire, it may take longer for the alloy to be completely wet. This is because the alloy must be liquid enough to flow and wet across the surface.
  • thermal sensitivity can be considered. Components and solder must be heated quickly to limit the total amount of heat absorbed. This is because excessive heat can conduct to the surrounding composition and damage the composition.
  • the laser can control the laser power over time, it is possible to profile the heating to make the most of the required heating effect.
  • the profile can be a single power level at a time. If cycle time is critical and a minimum amount of time is required before the part is completely wetted, the laser has a high enough power to start reflow before falling to lower power to maintain a heated area to maintain reflow without overheating. Can be applied at the level.
  • the laser may be ramped from one output level to another by linearly changing the output level over time.
  • This laser soldering process can be automated. E.g. Vision recognition to recognize the object in the laser processing apparatus can be made, it can be controlled so that vision recognition and laser soldering can be performed on the same line.
  • a linear motor can be included to improve control efficiency and workability.
  • two nozzles 16 for performing laser soldering may be included (dual laser bonding heads) or more than two to improve workability.
  • two or more heads and two or more tables each having laser soldering are included so as to correspond to the head and two or more work can be done in parallel.
  • such a laser processing apparatus may include a moving table including a motor that allows the laser soldering nozzle 16 to be moved in two or more directions, as well as for supplying a laser.
  • Solder ball (S) supply for supplying the laser supply and the solder may be included.
  • the laser processing apparatus may include a rotating motor for rotating the nozzle 16, the nozzle 16 is rotated by the rotation of the rotating motor to be able to irradiate the laser obliquely to the portion requiring laser soldering on the object. have.
  • the laser processing apparatus may be manufactured in a desktop type, or may be provided in a robot automated type in which the laser soldering nozzle 16 may be moved by a robot. Furthermore, the configuration of the automated system on the manufacturing process line may be provided as an automated device or as a standalone system. Furthermore, as shown in FIG. 9, the voice coil motor terminal (VCM terminal) / yoke terminal and the ceramic multilayer substrate as a voice coil motor (VCM) soldering equipment of the camera module 20 process. (HTCC substrate, High Temperature Coried Ceramics) can also be applied as a device for soldering using a laser.
  • the laser processing apparatus may include a control unit to perform control necessary for laser soldering.
  • the controller may be started, the embedded system and the program upgrade through an external signal, or may be controlled or adjusted through the soldering parameter input and output.
  • Laser processing apparatus may include a display unit for easily grasping the operating state and control state of the device.
  • the laser processing apparatus may include a non-contact temperature sensor to measure the temperature of at least one of the object and the solder. It may also include a feeder for precise feeding of solder.
  • the control unit may also include two or more selectable soldering profiles to enable laser soldering without input of a separate control factor.
  • the laser processing apparatus according to the embodiment of the present invention may have a plurality of soldering profiles, and each laser soldering profile may be divided into three steps and eight steps in order to enable flexible and accurate parameter control.
  • the control unit of the laser processing apparatus may be provided to select two or more laser head options of the focal length, IR temperature sensing, and real-time soldering quality monitoring.
  • the laser soldering profile may include the slope of the laser output, the laser irradiation time, the number of laser irradiation and the relationship between the laser output and the irradiation time.
  • Various combinations of the four conditions may determine a laser profile corresponding to the size of the solder ball and the soldering environment. For example, when the solder ball is large, melting of the solder ball may not be completely performed, and thus laser irradiation for heating may be performed a plurality of times for melting of the soldering. Depending on the size of the solder balls, it may be to perform reflow soldering. In addition, when heating is completed, slow cooling may be performed. When quenching occurs, cold solder may occur and cracks may occur in the soldering part. Therefore, slow cooling can be performed at the time of cooling.
  • the slow cooling may also be performed by slow cooling performed by continuously decreasing the laser output and slow cooling performed by gradually decreasing the output. Even in slow cooling by continuously decreasing the laser output, the higher the slope between the laser output and the irradiation time, the more similar the quench and the effect can be selectively controlled.
  • various laser profiles may be selected to form one or more output sections in the soldering process through a combination of laser power, laser irradiation time, laser irradiation frequency, and inclination in the laser output and irradiation time relationship.
  • soldering may be applied to electrical connections of various terminals.
  • soldering can be performed smoothly even when the terminals are located on the same plane or at an angle.
  • corner connection Corner connection
  • Cav connection Cav connection
  • omnidirectional bonding All connection
  • a portion of the device according to an embodiment of the invention comprises an upper base 17 and a lower base 18 and comprises a hole disk located between the upper base 17 and the lower base 18.
  • the hole disk may be rotated by the rotation shaft 6, and may include a plurality of holes to move the solder balls located at each hole to the laser transmission channel 14 by rotation about the rotation shaft 6. That is, the solder ball S introduced through the solder ball inlet 2 is positioned in one of a plurality of holes provided in the hole disk, and the solder ball S located in one hole of the hole disk by the rotation of the rotation shaft 6. May be moved to the side of the laser transmission channel 14.
  • solder ball (S) supplied to the solder ball inlet (2) may be temporarily stored in the storage chamber (3), the outlet of the solder ball (S) by the supply of nitrogen gas through the nitrogen gas inlet (11) (4)
  • the solder ball S may be moved to the port 5 and the solder ball S may be located in one of a plurality of holes provided in the hole disk.
  • the upper base 17 is provided with a structure capable of rotatably supporting the rotating shaft 6, the adapter 7 may be included on the upper side.
  • a receiving port 10 and a transmission port 9 penetrating the upper base 17 and the lower base 18 may be included.
  • the solder ball S moved toward the laser transmission channel 14 may be moved toward the nozzle 16 through the solder ball S outlet channel 12.
  • the transparent glass 13 may be provided above the laser transmission channel 14, and the laser irradiated through the transparent glass 13 may be irradiated toward the nozzle 16 via the laser transmission channel 14. .
  • the nozzle 16 may be coupled to the nozzle 16 locking screw provided on the lower base 18. As such, replacement of the nozzle 16 may be facilitated by allowing the nozzle 16 to be coupled via the lower base 18 and the nozzle 16 lock screw.
  • the nozzle 16 has been described as an example of the locking screw, the coupling structure may be adopted to the nozzle 16 and the lower base 18 to enable the nozzle 16 to be replaced, of course, to be.
  • the nitrogen gas inlet 11 (4) for supplying nitrogen gas to the laser transmission channel 14 above so that the solder ball S inside the nozzle 16 melted by the laser can be discharged to a portion requiring laser soldering. ) Can be arranged.
  • An enlarged look at the nozzle 16 included in the laser processing apparatus according to the embodiment may be the same as that of FIG. 13.
  • the nozzle 16 illustrated in FIG. 13 may be provided with a through hole including a cylindrical portion and a truncated cone portion coupled to a lower portion of the cylindrical portion.
  • Solder ball (S) is introduced into the nozzle 16 via the solder ball (S) outlet channel 12, and then falls by gravity through the cylindrical shape. Falling solder ball (S) is caught in the truncated conical shape does not go out of the nozzle (16).
  • the laser is irradiated to the hanging solder fire of the truncated cone via the transparent glass 13, and the molten solder ball S is discharged to the outside by nitrogen gas.
  • a cap may be provided at one side of the solder ball inlet 2, and the cap may be opened only when the solder ball S is moved toward the solder ball inlet 2 in the solder ball S supply chamber in which the solder ball S is stored.
  • the cap provided in the solder ball inlet (2) can be opened so that the solder ball (S) can be supplied only when the laser processing apparatus according to the embodiment of the present invention is used.
  • any gas that can be used as a carrier as an inert gas such as helium gas or argon gas may be used.
  • FIGS. 14 and 15 sequentially illustrating some processes that are examples of laser processing apparatuses.
  • the flowcharts A to F described in FIG. 14 will be briefly described.
  • the object is moved (A) to the vision inspection position after the object is loaded, and then the alignment, rotation, and placement of the object is detected (B). Thereafter, it is moved to the soldering position (C) to be soldered (D) by the laser processing apparatus. Next, it is moved to the unloading position (E) and unloaded. When the next object is loaded (F), it is moved to the vision inspection position (A). On the other hand, the option of moving to the vision inspection position to check the quality of the soldering after laser soldering may be added, of course.
  • the flowcharts A 'to F' described in FIG. 15 will be briefly described.
  • the soldered object is taken out and the object to be soldered is loaded at the unloading position B' and then moved to the vision inspection position C '.
  • the alignment, rotation, and placement of the object are detected (D ').
  • it is moved to the soldering position (E ') to be soldered (F') by the laser processing apparatus.
  • An option that can be added here is the step of moving the object to a vision inspection position (position) to check the quality of the soldering after laser soldering, and the alignment, rotation after detecting the alignment, rotation, and placement of the object. And / or an option to move to the unloading position if the placement is not normal and again unload and load.
  • Soldering is performed by a processing unit, which includes the head 110.
  • the head 110 may include one or more of a laser beam focusing optical head and a solder ball feeding device.
  • the processing unit may further include a nozzle for discharging the solder ball.
  • the control unit 200 may determine a predetermined state of the nozzle 16, that is, a state such as contamination or damage, and determine a time of cleaning or replacement.
  • the controller 200 may record the laser output and correct the laser output.
  • the quality control of the solder portion which is a soldered portion, may be performed by the control of the controller, which may be controlled to discard or collect the solder balls used in the bonding test and defective solder balls defective in manufacturing. .
  • the laser beam may be irradiated to the solder part that does not meet the predetermined quality standard to re-melt the solder part to improve solder wettability, or may be removed and re-soldered through remelting. As another example, it may be classified by the classification device 150.
  • the controller 200 may control to correct the laser beam position, the nozzle position, and the vision inspection position.
  • the controller 200 may control the soldering to be performed by the laser profile determined by the combination of the laser output, the laser irradiation time, the number of laser irradiation times, and the slope of the laser output and the irradiation time relationship.
  • the apparatus or method according to the embodiment of the present invention may include the following configuration.
  • the inspection described below may include a first inspection (pre-inspection) and a second inspection (post-inspection) performed by the inspection unit (120, 130).
  • the first inspection pre-inspection
  • the second inspection post-inspection
  • It may be a test for detecting at least one of cracks and pores of the solder part.
  • an object that does not satisfy the quality standard as a result of the second test may be classified into an object CM that satisfies the quality standard, and resoldering is performed on the object CM that does not satisfy the quality standard. May be performed.
  • the laser supplied from the laser supply device may be a laser having a high laser absorption rate depending on the solder material. It may also be a solid state laser such as a fiber laser or a diode laser.
  • the laser beam generated from the laser generating device may be transmitted through the optical fiber to the laser soldering head without a separate optical mirror. As a result, precise operation may be possible at the time of soldering by stable supply of laser and laser irradiation.
  • the laser processing apparatus may include a pick and place soldering head or a jet soldering head including the laser soldering nozzle 16.
  • the laser soldering head may include a laser beam focusing optical head, a solder ball S supply, and a nozzle 16.
  • the laser soldering head means the head unit 110, and may not only be configured as a single head, but also as a dual head including two heads. Not only this, of course, it can be composed of a head body including three or more heads. Thus, when two or more laser soldering heads are included, productivity of an apparatus can be improved.
  • a vision inspection module Vision Inspection Module / unit
  • a vision inspection step By including such a vision inspection module or step, it is possible to perform the position inspection, alignment state inspection, etc. (Pre-Inspection) of the camera module 20 to be soldered, and to check the soldering quality after soldering (Post-Inspection) as necessary. can do.
  • a vision inspection module consisting of a low magnification and a high magnification lens
  • a motorized variable zoom lens (1X to x18: the maximum magnification can be increased according to the zoom lens design). High magnification at low magnification, narrow area can be inspected automatically.
  • Pre-Inpsection and Post-Inpsection can be combined into one vision inspection module, but can be configured as separate vision inspection modules to increase productivity (eg, pre-inspection). 1 for Pre-Inpsection and 1 for Post-Inpsection).
  • Pre-Inpsection and Post-Inpsection are provided with one vision inspection module
  • the object which has undergone the Pre-Inpsection is moved to the position for soldering and soldered. After that, it can be returned to the previous position and post-inspected.
  • the vision inspection module is equipped with two pre-inpsection functions, one for pre-inpsection and one for post-inpsection, the pre-inpsection module, laser soldering
  • the objects may be moved and inspected and soldered in turn in the order in which the modules and the post-inpsection modules are located.
  • it may further include an infrared inspection device for post-inspection, such as monitoring the soldering quality in real time to control parameters or for internal cracking of the soldered area, pore inspection, and the like.
  • an infrared inspection device for post-inspection, such as monitoring the soldering quality in real time to control parameters or for internal cracking of the soldered area, pore inspection, and the like.
  • the apparatus may further include a sorting device capable of classifying objects that do not meet the soldering quality standards required after the post-inspection.
  • a repair device that can repair the object that does not meet the soldering quality standards required after post-inspection (Post-inspection).
  • a repair apparatus may re-melt the solder by re-irradiating the laser to improve solder wettability or to remove and resold the pre-soldered solder.
  • When removing the soldered solder it can be removed automatically by using mechanical tools such as pins, or by remelting with a laser and suctioned.
  • the cleaning device may further include a cleaning device including a dust collecting device for removing dust and foreign matter for quality control after soldering (Soldering).
  • the cleaning device may further include one or more of a dry air blowing device, a carbon dioxide snow cleaning device, and an inert gas blowing device.
  • it may further include a soldering pre-paid pre-paid according to the type of substrate to be soldered. It also includes an additional laser soldering head to maximize soldering quality and productivity.
  • solder ball S solder ball S
  • the supply of the solder ball S which is a material
  • bonding between metals, bonding between metals and resins, and plastic welding may be performed.
  • Bonding of both base materials may be performed by varying the conditions such as the irradiation intensity, the irradiation time, and the irradiation period of the laser according to the properties of the object to which the laser is irradiated.
  • the laser processing apparatus may include a plurality of nozzles 16 described above. That is, when the solder ball S is supplied to the nozzle 16 by the hole disk 8, the solder ball S may be provided by the hole disk 8 so as to correspond to the plurality of nozzles 16. That is, the movement may be performed simultaneously instead of being provided to one nozzle 16 of the plurality of nozzles 16.
  • the solder balls S may be provided to two dual laser bonding heads and may be discharged from the head by discharging nitrogen gas after being dissolved by a laser. This process can be done at the two heads simultaneously, so that the soldering time can be shortened.
  • An apparatus in which two heads (dual laser bonding heads) are provided is, for example, provided that a larger number of heads may be provided to improve work efficiency.
  • the laser processing apparatus may further include a jig.
  • the jig may be a rotating fixture jig that is moved in a rotational manner.
  • a fixture jig channel including a plurality of jigs employing the rotatable movement method may be provided.
  • a three fixture jig channel may be provided in which three or more jigs which are moved in a rotatable manner are coupled to each other. In such a fixture jig channel, a plurality of objects to be soldered may be included or seated.
  • the jig when performing at least one of soldering and bonding at two or more points of the object, respectively, if soldering or bonding at one of the two points present in one object is present in the object
  • the jig can be moved so that laser processing can be performed at the remaining two points.
  • the movement of the jig may be a rotation, may be a movement by a linear movement, may be a movement by a combination of the rotation and linear movement.
  • soldering or bonding may be performed at the remaining points.
  • the first bonding (laser bonding head 1) performs the bonding (bonding) on the first jig portion (fixture jig channel 1)
  • the head 2 (laser bonding head 2) is a third jig portion (fixture jig channel) 3) bonding can be performed.
  • the first head can perform a bonding operation on the second jig portion.
  • the object on which the bonding operation is completed may be taken out.
  • a new object may be positioned on the first jig portion from which the object is taken out to wait for the bonding operation.
  • the object When the bonding operation is completed with respect to the object located in the third jig unit, the object may be taken out and a new object may be positioned on the third jig unit from which the object is taken out to wait for the bonding operation.
  • the first head When the first head is bonded to the object located on the second jig portion, the first head may perform the bonding operation to the object located on the first jig portion.
  • the second jig unit When the second jig unit is positioned at the unloading position, the object on which the bonding operation is completed is taken out, and a new object is positioned on the second jig unit to wait for the bonding operation.
  • the second head When the second head completes the bonding operation on the object on the third jig portion, the second head may perform the bonding operation on the second jig portion.
  • the above bonding operation is repeatedly performed, and laser processing can be performed.
  • each jig 30 in which a plurality of objects are disposed in the loaded or unloaded position may be mounted on the first jig portion.
  • each jig in which a plurality of objects are disposed may be mounted on the second jig unit in a position where the object is loaded or unloaded.
  • each jig in which a plurality of objects are disposed may be mounted on the third jig unit in a position where the object is loaded or unloaded.
  • the vision inspection unit may check whether the object to be worked is normally operated such as alignment, rotation, and placement.
  • the first head may bond the bonding surface formed on each object disposed on the first jig portion. While the first jig unit performs the joining operation, the vision inspection unit may check whether or not the rotation of the alignment state and the arrangement of each object disposed in the third jig unit are normally operated.
  • the second head may join the bonding surface formed on each object disposed on the second jig portion.
  • each jig included in the first jig portion may move to the bonding operation position of the other surface.
  • the movement may be rotation.
  • the vision inspection unit may check an alignment state, an arrangement, etc. of each object located on the first jig unit.
  • the other surface of the object on the first jig portion moved by the first head may be joined.
  • the first jig unit may be moved to the unloaded position.
  • the object may be taken out on the first jig part and a new object may be disposed on the first jig part.
  • the respective jig included in the third jig part may be moved to the bonding operation position of the other surface.
  • the vision inspection unit may inspect the alignment, placement, etc. of each object rotated by the third jig unit.
  • the second head may be bonded to the other surface of each object disposed on the third jig portion.
  • the vision inspection unit is used to check the alignment, rotation, placement, etc. of each object placed on the second jig part. Can be checked
  • the first head may be bonded to one surface of each object disposed in the second jig unit, and the first jig unit in which the object to be newly joined may be disposed may wait until the work of the second jig unit is completed. Therefore, the subsequent working process may repeat the above process.
  • Each object of the completed fixture jig channel may perform post-inspection with one or two vision inspection modules / units.
  • the nozzle 16 is pressurized through a gas such as nitrogen, the nozzle 16 in contact with the inner surface of the nozzle 16, that is, the dissolved material in the process of discharging the material (solder ball (S)) located on the inside
  • the inner side of the) may be contaminated.
  • the contamination may include a material that is not discharged and adheres to the remaining material, and a foreign material generated on the surface by repeated discharge of a gas (such as nitrogen) and foreign matters generated in the process of thermal damage by the temperature when the material is dissolved. can do. Accumulation of the foreign matter and the like may affect the laser processing efficiency and cause an indeterminate result.
  • a process of inspecting the condition and quality of the nozzle 16 it is necessary to clean it at predetermined intervals or intermittently.
  • the degree of contamination is measured to reach a predetermined contamination level or to be determined based on a predetermined unit time.
  • foreign matter, dust, and the like may be removed by a nozzle cleaning unit while being moved to the washing area to be cleaned or the object is not positioned. It may be cleaned by a method such as physical or chemical, and a configuration for performing this may include a vision unit and a nozzle monitor.
  • the laser intensity may be adjusted to compensate for the difference.
  • the control unit (not shown) and the laser power (energy) detection unit are connected to each other and received from the laser power (energy) detection unit (laser power (energy) detection unit). The intensity of the irradiated laser can be increased or decreased in comparison with the preset laser intensity based on the obtained information.
  • the laser processing apparatus further includes a waste ball collecting unit for discarding or collecting the solder balls S used in the bonding test and the defective solder balls S defective in manufacturing. can do.
  • the solder ball S may be collected and discarded in the process of being moved before being discharged from the nozzle 16 immediately after the solder ball S is provided to the laser processing apparatus by a waste ball collecting unit.
  • the control unit (not shown)
  • the calibration plate connected to the sensor immediately detects information of one or more of the absolute and relative coordinates of the laser beam, the nozzle 16, and the vision inspection to the control unit. Compensation for the difference from the preset setting value by comparing with the preset setting value, the actual beam position, the nozzle 16 (nozzle) position and the vision inspection (vision inspection) position You can move it to converge to the set value.
  • the laser irradiation step is not performed, thereby preventing a malfunction related to laser irradiation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Laser Beam Processing (AREA)

Abstract

대상체를 지그에 로딩시키고, 지그에 로딩된 대상체의 회전 및 배치를 포함하는 정렬상태를 감지(Detect) 및 제1검사(Pre-Inspection)하고, 지그를 솔더링 위치로 이동시키고, 대상체를 레이저에 의해 솔더링하고, 솔더링이 된 대상체를 언로딩시키되, 솔더링의 품질을 검사하기 위해 검사부로 상기 대상체대상체를 이동시켜 검사부에 의한 제2검사(Post-Inspection)를 선택적으로 수행할 수 있는, 레이저 가공 방법이 제공된다.

Description

레이저 가공 방법 및 장치
본 발명의 실시예는 레이저 가공 방법 및 장치에 관한 것이다.
일반적인 레이저 가공 방법 및 장치에 의한 가공은, 레이저를 이용하여 각종 전자부품을 대상으로 드릴링, 마스킹, 솔더링 등의 형태로 수행된다. 이 중, 레이저 가공 장치 및 방법에 의해 수행되는 솔더링은 전장부품들을 전도성 물질(예를 들어, 솔더볼)을 사용하여 전기적으로 연결시키는 장치로서, 다양한 전자제품의 제작에 사용될 수 있다.
[선행기술문헌]
(특허문헌 1) 대한민국 등록특허공보 제10-0332378호 (2002. 03. 30.)
본 발명의 실시예는 레이저 가공 장치에 관한 것으로서, 레이저를 이용하여 솔더링을 수행하되 솔더링 위치를 결정하는 비전 인스펙션 모듈 또는 단계, 및 레이저 솔더링 모듈 또는 단계를 포함하여 신속하고 고효율의 레이저 가공 장치 및 방법을 제공하는 하는 것을 목적으로 한다.
대상체를 지그에 로딩시키고, 지그에 로딩된 대상체의 회전 및 배치를 포함하는 정렬상태를 감지(Detect) 및 제1검사(Pre-Inspection)하고, 지그를 솔더링 위치로 이동시키고, 대상체를 레이저에 의해 솔더링하고, 솔더링이 된 대상체를 언로딩시키되, 솔더링의 품질을 검사하기 위해 검사부로 대상체를 이동시켜 검사부에 의한 제2검사(Post-Inspection)를 선택적으로 수행할 수 있는, 레이저 가공 방법이 제공된다.
그리고, 품질의 검사는 비전 인스펙션에 의해 수행될 수 있다.
또한, 품질의 검사는 솔더링 영역의 내부 크랙 및 포어(Pore) 발생 여부를 감지하는 검사일 수 있다.
또한, 레이저는 화이버 레이저(Fiber Laser) 또는 다이오드 레이저(Diode Laser) 중 하나 이상을 포함하는 고체 레이저일 수 있다.
또한, 솔더링은 레이저빔 집속 광학헤드, 솔더볼 공급장치, 및 노즐을 포함하는 솔더링 헤드에 의해 수행될 수 있다.
또한, 솔더링은 하나 이상의 헤드를 포함하는 픽앤플레이스 솔더링 헤드(Pick and Place Soldering Head) 또는 제트 솔더링 헤드(Jet Soldering Head)에 의해 수행될 수 있다.
또한, 솔더링은 솔더볼을 토출하는 노즐의 기 결정된 상태 및 품질을 검사하여 세척 또는 교체하는 단계를 더 포함할 수 있다.
또한, 솔더링은 레이저의 출력이 기록되고, 상기 레이저 출력을 보정하는 단계를 더 포함할 수 있다.
또한, 검사부에 의한 검사는 솔더링이 수행됨과 동시에 수행될 수 있다.
또한, 품질의 검사는 접합(bonding) 테스트 시 사용된 솔더볼 및 제조 시에 흠결이 있는 불량 솔더볼을 폐기 또는 수집하는 단계를 포함할 수 있다.
또한, 제2검사(Post-Inspection) 후에 기 결정된 품질기준에 의해 대상체를 분류(Sorting)하는 단계를 더 포함할 수 있다.
또한, 제2검사(Post-inspection)에 의해 기 결정된 품질기준에 부합하지 못한 솔더볼의 일부 또는 전부에 대하여, 레이저를 재조사하여 용융시켜 솔더 젖음성을 향상시키거나, 재용해(Remelting)를 통해 제거하고 재솔더링(Resoldering)하는 단계를 더 포함할 수 있다.
또한, 제2검사(Post-Inspection) 단계 후에 먼지 및 이물을 제거하기 위한 클리닝 단계를 더 포함하고, 상기 클리닝 단계는, 건조공기를 제공하는 블로잉(Dry Air Blowing), 이산화탄소 스노우 클리닝(CO2 Snow Cleaning), 및 불활성 가스 블로잉 중 하나 이상을 포함할 수 있다.
또한, 대상체에 수행되는 솔더링은 본납(Post-Soldering) 및 예납(Pre- Soldering)을 포함할 수 있다.
또한, 솔더링 수행 중 레이저 빔(laser beam) 위치, 솔더볼이 토출되는 노즐(nozzle) 위치 및 비전 인스펙션(vision inspection) 위치 중 하나 이상을 보정하기 위한 단계를 포함할 수 있다.
제어부; 대상체가 로딩되는 지그; 지그에 로딩된 대상체의 회전 및 배치를 포함하는 정렬상태를 감지(Detect) 및 제1검사(Pre-Inspection)하는 제1검사부; 대상체를 지그에 로딩 및 언로딩시키는 이동부; 대상체를 레이저에 의해 솔더링하는 가공부; 제어부의 제어에 의해 상기 대상체를 대상으로 제2검사(Post-Inspection)를 선택적으로 수행하는 제2검사부를 포함하는, 레이저 가공 장치가 제공된다.
그리고, 제2검사는 비전 인스펙션에 의해 수행될 수 있다.
또한, 제2검사는 솔더링 영역의 내부 크랙 및 포어(Pore) 발생 여부를 감지하는 검사일 수 있다.
또한, 레이저는 화이버 레이저(Fiber Laser) 또는 다이오드 레이저(Diode Laser) 중 하나 이상을 포함하는 고체 레이저일 수 있다.
또한, 가공부에 의해 솔더링이 수행되고, 가공부는, 레이저빔 집속 광학헤드, 솔더볼 공급장치, 및 솔더볼을 토출하는 노즐을 포함하는 솔더링 헤드를 포함할 수 있다.
또한, 솔더링은 하나 이상의 헤드를 포함하는 픽앤플레이스 솔더링 헤드(Pick and Place Soldering Head) 또는 제트 솔더링 헤드(Jet Soldering Head)를 포함하는 레이저 솔더링 노즐에 의해 수행될 수 있다.
또한, 제어부는 솔더볼을 토출하는 노즐의 기 결정된 상태 및 품질을 검사하여 세척 또는 교체를 제어할 수 있다.
또한, 제어부는 레이저의 출력을 기록하고, 레이저 출력을 보정할 수 있다.
또한, 검사부에 의한 검사는 솔더링이 수행됨과 동시에 수행될 수 있다.
또한, 제어부의 제어에 의해, 품질의 검사는 접합(bonding) 테스트 시 사용된 솔더볼 및 제조 시에 흠결이 있는 불량 솔더볼을 폐기 또는 수집하도록 제어될 수 있다.
또한, 제2검사(Post-Inspection) 후에 기 결정된 품질기준에 의해 대상체를 분류(Sorting)하는 분류 장치를 더 포함할 수 있다.
또한, 제어부의 제어에 의해서 제2검사(Post-inspection)에 의해 기 결정된 품질기준에 부합하지 못한 솔더볼의 전부 또는 일부(솔더부)를 대상으로, 레이저를 재조사하여 용융시켜 솔더 젖음성을 향상시키거나, 재용해(Remelting)를 통해 제거하고 재솔더링(Resoldering)이 수행될 수 있다.
또한, 검사(Post-Inspection) 단계 후에 먼지 및 이물을 제거하기 위한 클리닝 장치(Cleaning Device)를 더 포함하고, 클리닝 장치는, 건조공기를 제공하는 블로잉(Dry Air Blowing) 장치, 이산화탄소 스노우 클리닝(CO2 Snow Cleaning) 장치 및 불활성 가스 블로잉 장치 중 하나 이상을 포함할 수 있다.
또한, 대상체에 수행되는 솔더링은 본납(Post-Soldering) 전, 예납부에 의해 수행되는 예납(Pre- Soldering)을 더 포함할 수 있다.
또한, 제어부는, 레이저 빔(laser beam) 위치, 노즐(nozzle) 위치 및 비전 인스펙션(vision inspection) 위치를 보정하는 제어를 수행할 수 있다.
또한, 제어부는, 레이저의 출력, 레이저 조사시간, 레이저 조사횟수 및 레이저의 출력과 조사시간 관계에서의 기울기의 조합에 의해 결정되는 레이저의 프로파일에 의해 수행될 수 있다.
본 발명의 실시예들은, 비전 인스펙션 모듈 또는 단계, 및 레이저 솔더링 모듈 또는 단계를 포함하여 신속하고 고효율의 레이저 가공 장치 및 방법을 구현할 수 있다.
도 1은 본 발명의 실시예에 따른 카메라 모듈을 나타낸 도면,
도 2 및 3은 본 발명의 실시예에 따른 레이저 가공 방법을 나타낸 도면,
도 4는 본 발명의 일 실시예에 따른 솔더링 대상체인 카메라 모듈을 나타낸 도면,
도 5는 본 발명의 일 실시예에 따른 가열 공정을 나타낸 도면,
도 6은 본 발명의 일 실시예에 따른 노즐에 의해 솔더볼이 이동되는 것을 나타낸 도면,
도 7은 본 발명의 일 실시예에 따른 레이저의 원추각도 및 파장을 나타낸 도면,
도 8은 본 발명의 일 실시예에 따른 레이저 에너지 출력을 나타낸 그래프.
도 9는 본 발명의 일 실시예에 따른 카메라 제조 공정에서 채용되는 VCM(Voice Coil Motor) Soldering 장비를 나타낸 도면,
도 10은 본 발명의 일 실시예에 따른 솔더링이 단자의 연결에 이용된 것을 나타낸 도면,
도 11은 본 발명의 일 실시예에 따른 솔더링을 통한 접합예를 나타낸 도면,
도 12는 본 발명의 일 실시예에 따른 노즐을 포함하는 레이저 가공 장치를 나타낸 도면,
도 13은 본 발명의 일 실시예에 따른 노즐의 단면을 확대하여 나타낸 도면,
도 14 및 도 15는 본 발명의 일 실시예에 따른 솔더링 방법을 나타낸 순서도,
도 16은 본 발명의 일 실시예에 따른 지그를 타나낸 사시도,
도 17은 본 발명의 일 실시예에 따른 레이저 가공 장치를 나타낸 도면.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하의 실시예는 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.
본 발명의 실시예에 따른 레이저 가공 장치 및 방법을 통해서 레이저 가공대상에 마킹, 드릴링, 용접 및 솔더링 등을 수행할 수 있다. 이하에서는 솔더링을 수행하는 예시로 발명의 레이저 가공 장치 및 방법을 설명하기로 한다. 즉, 레이저 가공 장치를 솔더링 장치로 채용하여 솔더링을 위한 공정만을 수행할 수도 있을 것이다. 이하에서는, 이러한 경우에 레이저 가공 장치를 솔더링 장치로 기재할 수 있다.
상기 레이저 가공대상은 카메라모듈(20)을 포함한 각종 전자부품 등 다양한 전자 부품의 제조에 적용될 수 있음은 물론이다. 이하에서는 솔더링되는 대상체를 카메라모듈(도 1의 20)로 예시하여 설명하도록 한다.
이하 설명되는 카메라모듈(20)은, 스마트폰, 태블릿 pc 등 각종 휴대용 기기에 사용될 수 있음은 물론이며, 스마트텔레비전, 가전제품을 포함한 홈 어플라이언스, 차량, 또는 보안 카메라(CCTV), 각종 의료 기기 등 광학 요소가 필요한 각종 장치에 장착되어 사용될 수 있음은 물론이다. 예를 들어, 자동차에 사용되는 경우 각종 전장 부품들, ABS 센서, 차량용 배터리 등에 적용될 수 있으며, 홈 어플라이언스의 경우 터닝 케이스, 평면 스크린 모니터 PCB, 포토센서 등에 적용될 수 있다. 또한, 휴대기기에 적용 되는 경우 각종 IC에 포함되는 시모스 센서, 스마트 워치 등에 적용될 수 있으며, 휴대기기에 있어서 CCD 카메라모듈(20), USB 연결 단자, 배터리 단자 등에 적용될 수 있다.
나아가, 본 발명의 실시예에 따른 레이저 가공 장치에 포함되는 레이저 가공 장치는, 용접, 납땜, 본딩 등 다양한 공정에 포함될 수 있을 뿐만 아니라, 각 공정이 수행되는 재질도 폴리머, 금속, 디일렉트릭(dielectric), 반도체 등 다양한 재료상에 적용될 수 있음은 물론이다.
먼저, 도 1은 대상체의 구성을 도시한 도면이다. 카메라모듈(20)은 렌즈모듈(21)(Lens Actuator) 및 이미지 센서 모듈(22)(Image Sensor Module)을 포함할 수 있다.
렌즈 액츄에이터는 렌즈모듈(21)(Module Lens 또는 Lens Module), 렌즈 커버(Lens Cover), VCM구동부, 홀더(Holder), IR 필터(IR Filter) 등을 포함할 수 있다. 또한, 이미지센서 모듈(22)은 반도체 센서 칩, ACF, FPCB 등을 포함할 수 있다.
구체적으로 카메라모듈(20)(Camera Module) 또는 컴팩트 카메라모듈(20)(Compact Camera Module)은 렌즈모듈(21)(Module Lens), AF 액추에이터(AF Actuator), 손떨림방지장치(Optical Image Stabilizer), 이미지센서(Image Sensor), AF 드라이버(AF Driver), PCB, FPCB, 소켓(Socket) 등을 포함할 수 있다. 렌즈모듈(21)은 다수의 렌즈, 예를 들어 이미지화를 위한 이미징 렌즈들(Imaging Lens)을 포함할 수 있으며, 다수의 렌즈들을 지지하는 지지체를 포함할 수 있다 또한 IR 필터(IR Filter)를 다수의 렌즈 일측에 포함할 수 있으며, IR 필터는 지지체에 의하여 지지 될 수 있다. 또한, 이미지 센서는 이미지 센서 모듈(22)에 포함될 수 있고, 이미지 센서 모듈(22)은 민감도 향상 MLA(Sensitivity Improving MLA), CCD 또는 CMOS를 포함할 수 있다.
여기서 이미지 센서는 촬영된 영상을 전기적 신호로 변환하는 센서이며, 다수의 렌즈들은 영상을 모아주는 역할을 한다. 또한, PCB는 이미지 센서를 와이어본딩 하여 지지하는 역할 및 센서의 전기적 신호를 외부로 입출력 할 수 있는 통로의 역할을 하며, FPCB는 외부 백엔드칩 (Backend Chip)에 직접적으로 연결되는 연결선을 포함하는 역할을 한다.
다음으로, 도 2는 본 발명의 실시예에 따른 카메라모듈(20)의 제조공정을 간략히 도시한 도면이다.
본 발명의 실시예에 따른 카메라모듈(20)은 렌즈모듈(21) 제조, 제조된 렌즈모듈(21)의 패키징(Packaging)을 통한 패키징 모듈의 제조, 패키징 모듈의 추가 완성을 통한 카메라모듈(20)의 제조를 포함한다.
구체적으로, 카메라모듈(20)의 제조는, 카메라모듈(20)의 가공 조립 및 검사 공정을 포함하며, 보다 구체적으로 단렌즈 사출, 단렌즈 커트(cut), 단렌즈 코트(Coat), 단렌즈 결함검사, 렌즈 조립, 렌즈 성능 검사, 렌즈 홀더 조립을 포함한다. 패키징 모듈 제조는 웨이퍼 소우(Wafer Saw), 다이 어태치(Die Attach), 와이어 본드(Wire Bond), 클린(Clean), 렌즈 홀더 마운트(Lens Holder Mount)를 포함할 수 있다. 또한, 패키징 모듈 추가 완성은 렌즈 프리 어셈블리(Lens Pre-Ass'y), 포커스 UV락(Focus UV Lock), 센서 테스트(Sensor Test), FPCB 어태치(FPCB Attach), 케이스(Case) 조립, 및 출하 검사를 포함한다.
한편, 스마트폰 및 휴대폰 등 휴대기기에 사용되는 카메라모듈(20)의 제조공정을 도 3을 참조하여 구체적으로 설명하면 다음과 같다.
먼저, 센서 칩(Sensor Chip) 제조를 위한 웨이퍼를 공급(①)하고, 공급된 웨이퍼를 절단하여 센서 칩을 마련(②)하고, 마련된 센서 칩을 인쇄회로기판(PCB)에 부착(③)하고, 센서 칩과 인쇄회로기판을 골드와이어(Gold Wire)로 연결(④)한 후, 렌즈 기구물을 상부에 접착(⑤)한다. 다음으로 개별적 카메라모듈(20)로 분리(⑥)한 후, FPCB를 접합(⑦)하고 모듈을 회전시키며 초점을 세팅(⑧; Focus Setting) 한다. 다음으로 에폭시(Epoxy) 경화를 통해 모듈의 초점을 고정(⑨)한 후, 카메라모듈(20)(CM 모듈)을 경유한 광을 테스트 차트(Test Chart)에 조사하여 화상 및 색상 검사를 하여 셋팅(⑨⑩)한다.
상술한 공정에서 FPCB 어태치(FPCB Attach), 케이스(Case) 조립 등에 레이저 가공 장치(Laser Soldering Apparatus)가 사용될 수 있다. FPCB 어태치 및 케이스 조립 공정에서 단자들의 연결을 위해서 납땜, 즉 솔더링을 하는 공정이 필요하게 되며 이러한 과정에서 본 발명의 실시예에 포함되는 레이저 가공 장치를 사용할 수 있다.
도 4에 도시된 바와 같이, 이러한 레이저 가공 장치는, 카메라모듈(20)에서 2면 솔더링(two-side soldering) 또는 3면 솔더링(three-side soldering)에 사용될 수 있다. 2면 솔더링의 경우 카메라모듈(20)을 상면에 6 에서 8점 솔더링(6~8 points soldering)이 이루어질 수 있고 상면과 반대되는 하면에 6 에서 8점(6~8 points soldering)이 이루어질 수 있다. 한편, 3면 솔더링의 경우, 전체적으로 16점을 솔더링 3면에 걸쳐 이루어질 수 있다. 이 경우 카메라모듈(20)은 OIS(옵티컬 이미지 스테빌라이저, Optical Image Stabilizer) 카메라모듈(20)일 수 있다.
이와 같은 레이저 가공 장치가 수행하는 레이저 솔더링 과정에 대해서 도 5를 참조하여 설명하면 다음과 같다.
먼저, 레이저를 솔더링 포인트에 조사하여 프리히트(PH1; Pre-Heat)하는 공정을 수행할 수 있다. 레이저가 조사된 영역은 열, 예를 들어 원형, 사각형, 링형 등의 면상 열을 발산한다. 다음으로 열이 주위 영역에 전달되며 온도를 상승시킬 수 있다. 다음으로, 솔더볼(S; solder)가 공급(supply)되며 레이저에 의해 포스트 히트(PH2; Post-Heat) 과정이 이루어질 수 있다. 다음으로 쿨다운(CD; Cool Down)을 거쳐 솔더링 과정이 이루어지게 된다. 여기에 필요에 따라 프리히트(PH1; Pre-Heat) 공정 없이 솔더볼(S; solder) 공급, 포스트 히트(PH2; Post-Heat) 공정 및 쿨다운(CD; Cool Down) 과정을 거쳐 솔더링 과정을 완료할 수도 있다.
레이저 솔더링 장치는 솔더와이어를 이용하는 경우, 솔더볼(S)을 이용하는 경우 및 솔더패이스트를 이용하는 경우 중 하나에 따라 장치 구성 및 레이저 조사 방법이 달라질 수 있다.
특히, 솔더볼(S)을 이용하는 경우에는, 도 6에 도시된 바와 같이 솔더볼(S)을 집어서 이동시킴으로써 솔더볼(S)을 필요한 위치에 위치시키고, 솔더볼(S)에 레이저를 조사하여 용융시켜 적하되도록 하여 접합시키는 픽 앤 플레이스(Pick and Place) 솔더링 방법이 있을 수 있다.
그리고, 솔더볼(S)을 노즐을 통해 이송시켜서 노즐 내부에서 용용시켜 토출(Jetting) 하는 솔더 제팅(Solder Jetting) 방법이 있을 수 있다.
나아가, 상기 노즐의 경우 이상 상태가 감지되면 교체될 수 있다. 노즐은 오염 및 변형을 포함하는 상기 이상 상태 여부를 감지하는 센싱부를 더 포함할 수 있다. 센싱부는 제1센싱부 및 제2센싱부를 포함할 수 있다.
상기 제1센싱부는, 노즐(100)의 상태를 확인하기 위한 센서이며, 전하 결합 소자(charged-coupled device; CCD) 카메라일 수 있다. 제1센싱부가 노즐의 상태를 검사하여 노즐의 상태에 이상이 없을 경우에는 정상적인 솔더볼 적용 동작이 실행될 수 있다. 그런데, 제1센싱부가 노즐의 이상 상태를 감지하면, 탈착부에 의해 이상 상태의 노즐을 이탈시키고, 노즐 카트리지부에 보관된 신규 노즐을 가져와 결합부에 부착시킬 수 있다. 신규 노즐이 결합부에 부착되면, 신규 노즐의 얼라인먼트를 얼라인먼트부를 통해 행할 수 있다.
그리고, 상기 제2센싱부는 전하 결합 소자(charged-coupled device; CCD) 카메라, 에어리어 센서(area sensor), 홀 센서(hole sensor), 정전 용량 센서일 수 있다. 제2센싱부에 의해 디스크의 이상 상태 특히, 솔더볼 이송구의 이상 상태를 확인하여 제어부에 전송할 수 있다. 즉, 솔더볼 이송구의 오염 상태를 확인하여 오염 정도가 솔더볼의 공급을 방해할 정도(예를 들어, 솔더볼 이송구 내의 직경이 기 결정된 수치 이하인 경우)일 경우에 솔더볼 이송구가 이상 상태임을 나타내는 신호를 제어부 측으로 전송할 수 있다. 제어부는 솔더볼(S)을 이동 및 제공하는 디스크의 이상 상태가 확인되면 이를 사용자에게 표시하여 사용자가 디스크를 교체할 수 있도록 하는 정보를 제공할 수 있다.
일 예로써 픽 앤 플레이스 솔더링 방식을 보다 구체적으로 도 6을 통해 설명하자면, 도 6(a)에 도시된 바와 같이, 마련된 솔더볼(S)(Step 1)을 노즐이 하나 이상 집어(Step 2) 솔더링이 필요한 위치의 상부에 위치(Step 3)시킨다. 상부에 위치한 솔더볼(S)은 레이저 조사의 의해 용해되어 솔더볼(S)이 필요한 위치에 적하되게 된다(Step 4). 한편, 도 6(b)와 같이 노즐이 두 개 이상의 솔더볼(S)을 집는 경우 레이저는 순차적으로 각각의 솔더볼(S)에 조사 될 수 있다. 물론, 도 6은 두 개 이상의 솔더볼(S)을 노즐이 집는 경우에 대해서 도시하였으나, 이에 한정되지 않고 노즐이 하나의 솔더볼(S)을 집어 솔더링이 필요한 위치에 적하시키는 경우도 포함할 수 있음은 물론이다
이하의 기술적 내용 및 도 7은 도 6(픽 앤 플레이스; Pick and Place)과는 다르게, 솔더와이어, 솔더 패이스트, 예납된 솔더를 조사할 경우 고려될 수 있다.
이러한 레이저 가공 장치에 있어서, 고려되어야 되는 요소에 따라 레이저의 조작이 필요하다. 레이저에 의해서 가열되는 영역의 크기(size of heated area), 오차의 방지 및 오차가 발생하더라도 레이저 솔더링이 원활하게 이루어질 수 있도록 하는 초점거리(focus distance)의 확보, 레이저가 조사됨에 있어서 주변 구성요소에 의해 차단되거나 주변 구성 요소에 흠을 일으키는 것을 방지하기 위한 레이저의 원추각도에 대한 고려가 필요하다.
따라서, 도 7에 도시된 바와 같이, 원추 형상을 갖는 레이저의 원추각도 및 파장을 조절함으로써 레이저에 의하여 가열되는 영역의 크기 및 초점거리를 조절할 수 있다. 또한, 레이저의 원추각도를 작게 함으로써 주변 구성으로의 접촉에 의한 흠을 방지할 수 있게 될 수 있다. 이러한 레이저의 원추각도 및 파장의 조절을 위하여, 본 발명의 실시예에 따른 레이저 가공 장치는 노즐(16)의 레이저를 공급하는 상측 레이저 공급 부에 레이저 파장 조절부 및 레이저 원추 각도 조절부를 포함할 수 있다.
이뿐만 아니라, 레이저 가공 장치의 사이클 주기, 작동 온도, 및 솔더링이 이루어지는 재질의 온도 민감도, 접촉 민감도, 다음 공정의 원활한 수행을 위한 허용 온도 등의 고려들이 종합적으로 고려될 수 있다.
레이저 가공 장치에 있어서 리플로우(reflow) 타이밍(timing) 고려 사항에 대하여 구체적으로 살펴보면 다음과 같다.
첫째, 솔더링 대상체의 열부하를 고려할 수 있다. 대상체가 클수록 열전달은 늦어지게 되며, 열전도율이 높은 대상체는 히트 싱크(heat sink)와 같이 작용할 수 있다.
둘째, 솔더페이스트(솔더볼(S))의 질량을 고려할 수 있다. 레이저는 플럭스를 증발시키고 합금을 액화시키기에 충분한 에너지를 추가해야 하기 때문이다. 또한, 플럭스 증기는 가열 속도에 영향을 미치고 자동 점화 될 수도 있기 때문이다.
셋째, 웨트되는(wetted) 곳까지의 거리를 고려할 수 있다. 동 거리가 멀어 질수록 레이저 조사 시간이 더 길어질 수 있다. 합금은 표면을 가로 질러 흐르고 습윤하게 될 만큼 액체상태 이어야 하기 때문이다.
넷째, 조인트 형상(Joint geometry)을 고려할 수 있다. 조인트 형상이 연선과 같이 복잡한 형상인 경우, 합금이 완전히 젖어있는 데 시간이 더 소요될 수 있기 때문이다. 합금은 표면을 가로 질러 흐르고 습윤하게 될 만큼 액체 상태 여야 하기 때문이다.
다섯째, 열 민감도를 고려할 수 있다. 부품 및 솔더는 흡수되는 총 열량이 제한되도록 빠르게 가열되어야 한다. 과도한 열은 주변 구성에 전도되어 구성을 손상시킬 수 있기 때문이다.
도 8에 도시된 바와 같이, 레이저는 시간에 따라 에너지 출력(laser power)을 제어 할 수 있기 때문에, 필요한 가열 효과를 최대한 활용할 수 있도록 가열을 프로파일링 할 수 있다. 고려사항 없이 지점 간 가열하는 경우, 프로파일은 한 번에 단일 전력 레벨일 수 있다. 주기 시간이 중요시되고 부품이 완전히 젖을 때까지 최소한의 시간이 필요한 경우, 레이저는 과열없이 리플로우를 유지할 정도로 가열된 영역을 유지하기 위해서 더 낮은 전력으로 떨어지기 전에 리플로우를 시작할 수 있는 충분히 높은 전력 레벨로 인가될 수 있다. 레이저는 출력 레벨을 시간 경과에 따라 선형적으로 변경하여 한 출력 레벨에서 다른 출력 레벨로 램핑(ramping)될 수도 있다.
이러한 레이저 솔더링 공정은 자동화될 수 있다. 예를 들어. 레이저 가공 장치에서 대상체를 인식하는 비전 인식이 이루어질 수 있으며, 비전인식과 레이저 솔더링이 동일선상에서 이루어질 수 있도록 제어 될 수 있다. 또한, 선형모터를 포함하여 제어의 효율화 및 작업성 향상을 도모할 수 있다. 또한, 레이저 솔더링을 수행하는 노즐(16) 헤드가 2개(dual laser bonding head) 또는 2개 초과하도록 포함되어 작업성을 향상 시킬 수 있음은 물론이다. 또한, 2개 이상의 헤드를 포함하고 각각의 레이저 솔더링이 이루어지는 테이블(table)이 상기 헤드와 대응되도록 2개 이상 포함되어 병렬적으로 작업이 이루어질 수 있다. 나아가, 이러한 레이저 가공 장치는, 도면으로 자세히 도시 하지는 않았으나 레이저 솔더링 노즐(16)이 2 이상의 방향으로 이동 될 수 있도록 하는 모터를 포함하는 이동대를 포함할 수 있음은 물론이며, 레이저를 공급하기 위한 레이저 공급부 및 솔더를 공급할 수 있는 솔더볼(S) 공급부가 포함될 수 있다. 또한, 레이저 가공 장치 노즐(16)을 회전시킬 수 있도록 하는 회전 모터를 포함할 수 있으며, 회전 모터의 회전 의하여 노즐(16)이 회전됨으로써 대상체에서 레이저 솔더링이 필요한 부분에 비스듬하게 레이저를 조사할 수 있다.
레이저 가공 장치는 데스크탑 타입으로 제작될 수 있으며, 로봇에 의하여 레이저 솔더링 노즐(16)이 이동될 수 있는 로봇 자동화 타입으로 마련될 수도 있다. 나아가 제조 공정 라인 상 자동화된 시스템의 구성으로서 자동화 장치로써 마련될 수도 있고 독립형 시스템으로 마련될 수 있음은 물론이다. 나아가, 도 9에 도시된 바와 같이, 카메라모듈(20) 공정의 보이크 코일 모터(VCM; Voice Coil Motor) 솔더링 장비로서 보이크 코일 모터 터미널(VCM Terminal) / 요크(Yoke) 단자와 세라믹 다층 기판(HTCC 기판, High Temperature Coried Ceramics)을 레이저를 이용하여 솔더링하는 장비로 적용될 수도 있다.
또한, 본 발명의 실시예에 따른 레이저 가공 장치는 제어부를 포함하여, 레이저 솔더링에 필요한 제어를 수행할 수 있다. 제어부는 외부 신호를 통해 개시, 내장 시스템 및 프로그램 업그레이드가 가능할 수 있으며, 솔더링 매개 변수 입출력을 통해 제어 내지 조절될 수도 있다. 본 발명의 실시예에 따른 레이저 가공 장치는 장치의 작동 상태 및 제어 상태 등을 용이하게 파악할 수 있도록 하는 디스플레이부를 포함할 수 있다.
나아가, 본 발명의 실시예에 따른 레이저 가공 장치는, 대상체와 솔더 중 하나 이상의 온도를 측정할 수 있도록 하는 비접촉식 온도 센서를 포함할 수 있다. 또한, 정밀한 솔더의 피딩을 위한 피더를 포함할 수 있다. 또한 제어부는, 2개 이상의 선택가능한 솔더링 프로파일을 포함하여, 별도의 제어인자의 입력없이도 레이저 솔더링이 가능할 수도 있다. 예를 들어, 본 발명의 실시예에 따른 레이저 가공 장치는, 복수 개의 솔더링 프로파일을 가지고 있을 수 있으며, 각 레이저 솔더링 프로파일은 3 단계, 8 단계 순서로 나누어 유연하고 정확한 매개 변수 제어가 가능할 수 있다. 한편, 본 발명의 실시예에 따른 레이저 가공 장치의 제어부는, 초점 거리, IR 온도 감지, 및 실시간 솔더링 품질 모니터링 중 2 이상의 레이저 헤드 옵션을 선택할 수 있도록 마련될 수 있다.
한편으로, 레이저 솔더링 프로파일은 레이저의 출력, 레이저 조사시간, 레이저 조사횟수 및 레이저의 출력과 조사시간 관계에서의 기울기를 포함할 수도 있다.
상기 4 가지 조건의 다양한 조합에 의해 솔더볼의 크기 및 솔더링 환경에 대응되는 레이저 프로파일이 결정될 수 있다. 예를 들어, 솔더볼이 큰 경우에는 솔더볼의 용융이 완전히 이루어지지 않을 수 있으므로 솔더링의 용융을 위해 가열을 위한 레이저 조사가 복수회 이루어질 수 있다. 솔더볼의 크기에 따라 리플로우 솔더링을 수행하는 것이 될 수 있다. 또한, 가열이 완료되면, 서냉을 수행할 수 있는데, 급랭을 할 경우에는 냉납현상이 일어나, 솔더링부에 크랙이 발생할 수 있다. 따라서, 냉각시에는 서냉을 수행할 수 있다.
한편, 상기 서냉도 지속적으로 레이저 출력을 감소하여 수행되는 서냉과 단계적으로 출력을 감소하여 수행되는 서냉이 이루어질 수 있다. 지속적으로 레이저 출력을 감소하여 서냉을 할 경우에도 레이저의 출력과 조사시간 관계에서의 기울기가 클수록 급랭과 효과가 유사해지므로 이를 선택적으로 조절할 수 있다.
즉, 레이저의 출력, 레이저 조사시간, 레이저 조사횟수 및 레이저의 출력과 조사시간 관계에서의 기울기의 조합을 통해 솔더링 과정에서 하나 이상의 출력구간을 형성하기 위해, 다양한 레이저 프로파일이 선택될 수 있다.
상술한 레이저 가공 장치에 의하면, 도 10에 도시된 바와 같이, 다양한 단자의 전기적 연결에 솔더링을 적용할 수 있다. 예를 들어, 단자들이 동일 평면상에 위치하거나 각도를 가지면서 위치하는 경우에도 원활하게 솔더링을 수행할 수 있다. 이로써, 도 11(a) 내지 도 11(d)에 도시된 바와 같이, 본 발명의 실시예에 따른 레이저 가공 장치는, 코너 접합(Corner connection), 캐비티 접합(Cavity connection), 전방위 접합(All connection) 등 다양한 접속을 가능하게 할 수 있다.
먼저 본 발명의 실시예에 따른 레이저 가공 장치 노즐(16)을 포함하는 장치의 설명은 도 12를 통해 할 수 있다.
본 발명의 실시예에 따른 장치 일부는 상부베이스(17)와 하부베이스(18)를 포함하며, 상부베이스(17)와 하부베이스(18) 사이에 위치하는 홀 디스크를 포함한다. 홀 디스크는 회전축(6)에 의하여 회전될 수 있으며, 복수의 홀을 포함하고 있어 각각의 홀의 위치한 솔더볼을 회전축(6)을 중심으로 한 회전에 의하여 레이저 트랜스미션 채널(14)로 옮길 수 있다. 즉, 솔더볼 입구(2)를 통하여 유입된 솔더볼(S)이 홀 디스크에 마련된 복수개의 홀 중 하나에 위치하게 되고, 회전축(6)의 회전에 의하여 홀 디스크 하나의 홀에 위치된 솔더볼(S)은 레이저 트랜스미션 채널(14) 측으로 이동될 수 있다.
여기서, 솔더볼 입구(2)로 공급된 솔더볼(S)은 저장 챔버(3)에 일시적으로 저장될 수 있으며, 질소가스 입구(11)(4)를 통한 질소가스의 공급에 의해 솔더볼(S) 출구 포트(5)로 이동될 수 있고, 솔더볼(S) 출구 포트(5)로 이동된 솔더볼(S)은 홀 디스크에 마련된 복수 개의 홀 중 하나에 위치될 수 있게 된다.
상부베이스(17)에는 회전축(6)을 회전 가능하게 지지할 수 있는 구조가 마련되어 있으며, 상측에 어댑터(7)가 포함될 수 있다. 또한, 상부베이스(17)와 하부베이스(18)를 관통하는 리시빙 포트(10) 및 트랜스미션 포트(9)가 포함될 수 있다. 레이저 트랜스미션 채널(14) 측으로 이동된 솔더볼(S)은 솔더볼(S) 출구 채널(12)을 통하여 노즐(16) 측으로 이동될 수 있다.
레이저 트랜스미션 채널(14)을 상측에는 투명유리(13)가 마련될 수 있으며, 투명유리(13)를 경유하여 조사되는 레이저는 레이저 트랜스미션 채널(14)을 경유하여 노즐(16) 쪽으로 조사될 수 있다.
노즐(16)은 하부베이스(18)에 마련되는 노즐(16)락 스크류로 결합되어 있을 수 있다. 이와 같이, 노즐(16)이 하부베이스(18)와 노즐(16)락 스크류를 경유하여 결합될 수 있도록 함으로써 노즐(16)의 교체가 용이하게 될 수 있다. 본 발명의 실시예에서는 노즐(16)락 스크류를 예시로 설명하였으나, 노즐(16)을 교체가 가능하도록 하는 노즐(16)과 하부베이스(18)에 결합 구조는 다양하게 채용될 수 있음은 물론이다. 또한, 레이저에 의하여 용융된 노즐(16) 내부의 솔더볼(S)이 레이저 솔더링이 필요한 부분으로 토출될 수 있도록 레이저 트랜스미션 채널(14)을 상측에 질소 가스를 공급하는 질소가스 입구(11)(4)가 마련 될 수 있다.
본 발명을 실시예에 따른 레이저 가공 장치에 포함되는 노즐(16)을 확대하여 살펴보면 일 예로써 도 13과 같을 수 있다.
도 13에 도시된 노즐(16)에는 원기둥 형상부와, 원기둥 형상부의 하부에 결합된 원뿔대 형상부를 포함하는 통공이 마련될 수 있다. 솔더볼(S)은 솔더볼(S) 출구 채널(12)을 경유하여 노즐(16) 내부로 유입된 후, 원기둥 형상부를 경유하며 중력에 의하여 낙하한다. 낙하되던 솔더볼(S)은 원뿔대 형상부에 걸려 노즐(16) 외부로 나가지 못한다. 원뿔대 형상부의 걸려있는 솔더불에 투명유리(13)를 경유하여 레이저가 조사 되게 되고, 용융된 솔더볼(S)은 질소가스에 의하여 외부로 토출되게 된다
한편, 솔더볼 입구(2) 일측에는 캡이 마련될 수 있으며, 솔더볼(S)이 저장되는 솔더볼(S) 공급 챔버에서 솔더볼 입구(2) 쪽으로 솔더볼(S)이 이동 될때만 캡이 개방될 수 있다. 이 뿐만 아니라, 솔더볼 입구(2)에 마련되는 캡은, 본 발명을 실시예에 따른 레이저 가공 장치가 사용되는 경우에만 솔더볼(S)이 공급될 수 있도록 개방될 수 있다.
또한, 상술한 레이저 가공 장치에서는 질소가스에 대해서만 주로 설명하였으나 질소가스 이외에도 헬륨가스 아르곤가스 등 불활성가스로서 캐리어 것으로 사용될 수 있는 가스는 모두 사용될 수 있음은 물론이다.
이하에서는 레이저 가공 장치의 예들인 일부 공정을 순서대로 나타낸 도 14 및 도 15를 통해 A 내지 F와 A' 내지 F'을 후술하도록 한다. 도 14에 기재된 순서도(A 내지 F)에 대하여 간략히 설명한다.
먼저, 대상체가 로딩된 후 비전 인스펙션 위치로 대상체가 이동(A)하며 다음으로 대상체의 정렬상태, 회전 및 배치를 디텍트(B)한다. 이후, 솔더링 위치로 이동(C)되어 레이저 가공 장치에 의하여 솔더링(D)되게 된다. 다음으로 언로딩 위치로 이동(E)되어 언로딩된다. 다음 대상체가 로딩(F)되면 다시 비전 인스펙션 위치로 이동(A)되게 된다. 한편, 레이저 솔더링된 후 솔더링의 퀄러티를 검사하기 위하여 비전 인스펙션 위치로 이동되는 옵션이 부가될 수 있음은 물론이다.
도 15에 기재된 순서도(A' 내지 F')에 대하여 간략히 설명한다. 먼저, 솔더링된 대상체가 언로딩 위치에 위치(A')되면 솔더링된 대상체를 취출하고 솔더링할 대상체를 언로딩 위치(B')에서 로딩되어 이후 비전 인스펙션 위치로 이동(C')하게 된다. 다음으로 대상체의 정렬상태, 회전 및 배치를 디텍트(D')한다. 이후, 솔더링 위치로 이동(E')되어 레이저 가공 장치에 의하여 솔더링(F')되게 된다. 여기서 부가될 수 있는 옵션으로서 레이저 솔더링된 후 솔더링의 퀄러티를 검사하기 위하여 비전 인스펙션 포지션(위치)으로 대상체가 이동되는 단계, 및 대상체에 정렬상태, 회전, 및 배치를 디텍트한 후 정렬상태, 회전 및/또는 배치가 정상적이지 않은 경우 언로딩 위치로 이동되어 재차 언로딩 및 로딩 되는 옵션이 부가될 수 있다.
상기 도 14 및 도 15를 통해 설명한 가공순서는 제어부에 의해 제어되며, 개념도를 도시한 도 17을 통해 보다 구체적으로 설명할 수 있다. 솔더링은 가공부에 의해 수행되는데 가공부는 헤드(110)를 포함한다. 헤드(110)는 레이저빔 집속 광학헤드, 솔더볼 공금장치 중 하나 이상을 포함할 수 있다. 그리고 가공부는 솔더볼을 토출하는 노즐을 더 포함할 수 있다. 또한, 제어부(200)는 상기 노즐(16)의 기 결정된 상태, 즉 오염 또는 훼손 등의 상태를 판단하여, 세척 또는 교체시점을 결정할 수 있다. 나아가, 제어부(200)는 레이저 출력이 기록되고, 레이저 출력을 보정할 수 있다. 또한, 제어부의 제어에 의해 솔더링이 된 부분인 솔더부의 품질 검사가 수행될 수 있는데, 이는 접합(bonding) 테스트 시 사용된 솔더볼 및 제조 시에 흠결이 있는 불량 솔더볼을 폐기 또는 수집하도록 제어될 수 있다.
상기 품질 검사 과정에서 기 결정된 품질기준에 부합하지 못한 솔더부를 대상으로 레이저를 재조사하여 솔더부를 재용융시켜 솔더 젖음성을 향상시키거나, 재용해를 통해 제거하고 재솔더링을 수행할 수 있다. 다른 예로써는, 분류 장치(150)에 의해 분류될 수도 있다. 제어부(200)는 레이저 빔 위치, 노즐 위치 및 비전 인스펙션 위치를 보정하는 제어를 수행할 수 있다. 그리고, 제어부(200)는 레이저의 출력, 레이저 조사시간, 레이저 조사횟수 및 레이저의 출력과 조사시간 관계에서의 기울기의 조합에 의해 결정되는 상기 레이저의 프로파일에 의해 솔더링이 수행되도록 제어할 수 있다.
상술한 레이저 가공 장치 및 레이저 가공 장치 및 방법에 따르면, 본 발명의 실시예에 따른 장치 내지 방법은 다음과 같은 구성을 포함할 수 있다. 한편 이하에서 설명하는 검사는 검사부(120, 130)에 의해 수행되는 제1검사(pre-inspection) 및 제2검사(post-inspection)를 포함할 수 있다. 제1검사(pre-inspection)의 경우 솔더링이 수행되기 전에 대상체의 안착상태 즉, 회전 및 배치 상태를 포함하는 정렬상태를 감지하는 것이고, 제2검사(post-inspection)의 경우 솔더링이 수행된 후에 솔더부의 크랙 및 포어(Pore) 중 하나 이상을 감지하는 검사일 수 있다. 이하의 설명과 같이 제2검사 결과 품질기준을 만족시키지 못한 대상체는 품질기준을 만족시키는 대상체(CM)와 분류될 수 있고, 품질기준을 만족시키지 못하는 대상체(CM)에 대해서는 재솔더링(resoldering)이 수행될 수도 있다.
첫째, 레이저 공급 장치에서 공급되는 레이저는 솔더 재질에 따라 레이저 흡수율이 높은 파장을 갖은 레이저일 수 있다. 또한 화이버 레이저 또는 다이오드 레이저(Fiber Laser 또는 Diode Laser) 등 고체 레이저일 수 있다. 레이저 발생 장치로부터 발생된 레이저 빔은 광섬유를 통하여 레이저 솔더링 헤드까지 별도의 광학 미러 없이 전달될 수 있다. 이로써, 레이저의 안정적인 공급 및 레이저 조사에 의한 솔더링 시 정밀한 조작이 가능할 수 있다.
둘째, 레이저 가공 장치는 레이저 솔더링 노즐(16)을 포함하는 픽앤플레이스 솔더링 헤드(Pick and Place Soldering Head) 또는 제트 솔더링 헤드(Jet Soldering Head)를 포함할 수 있다. 레이저 솔더링 헤드는 레이저빔 집속 광학헤드, 솔더볼(S) 공급장치, 및 노즐(16)을 포함할 수 있다. 여기서 레이저 솔더링 헤드는 헤드부(110)를 의미하면, 싱글 헤드(single head)로 구성될 수 있을 뿐만 아니라 2개의 헤드를 포함하는 듀얼헤드(dual head)로 구성 될 수 있다. 이 뿐만 아니라, 3개 이상의 헤드를 포함하는 헤드체로 구성 될 수 있음은 물론이다. 이와 같이 레이저 솔더링 헤드를 2개 이상 포함하는 경우, 장치의 생산성을 높일 수 있다.
셋째, 비전 인스펙션 모듈(Vision Inspection Module/unit) 또는 비전 인스펙션 단계를 포함할 수 있다. 이와 같은 비전 인스펙션 모듈 또는 단계를 포함함으로써, 솔더링할 카메라모듈(20)의 위치 검사, 정렬 상태 검사 등(Pre-Inspection)을 할 수 있으며, 필요에 따라 솔더링 후의 솔더링 품질을 검사(Post-Inspection)할 수 있다.
따라서, 1) 저배율 및 고배율 렌즈로 구성된 비전 검사 모듈을 장착하거나 2) 모터라이즈드 가변 줌 렌즈(Motorized Variable Zoom Lens, 1X ~ x18: 최고배율은 Zoom Lens 설계에 따라 더 높일 수 있음)를 장착하여 저배율에서 고배율, 넓은 영역에서 좁은 영역을 자동 검사할 수 있다.
프리-인스펙션(Pre-Inpsection)과 포스트-인스펙션(Post-Inpsection)을 1개의 비전 인스펙션 모듈로 할 수도 있지만, 생산성을 높이기 위해 별도의 비전 인스펙션 모듈로 구성할 수 있다(예를 들어, 프리-인스펙션(Pre-Inpsection) 기능용 1개, 포스트-인스펙션(Post-Inpsection) 기능용 1개로 구성).
프리-인스펙션(Pre-Inpsection)과 포스트-인스펙션(Post-Inpsection)을 1개의 비전 인스펙션 모듈로 마련되는 경우, 프리-인스펙션(Pre-Inpsection)을 거친 대상체가 솔더링을 위한 위치로 이동되어 솔더링된 후, 이전 위치로 돌아와서 포스트-인스펙션(Post-Inpsection)될 수 있다. 비전검사 모듈이 2개, 즉, 프리-인스펙션(Pre-Inpsection) 기능용 1개 및 포스트-인스펙션(Post-Inpsection) 기능용 1개로 마련되는 경우, 프리-인스펙션(Pre-Inpsection) 모듈, 레이저 솔더링 모듈, 및 포스트-인스펙션(Post-Inpsection) 모듈이 위치하는 순서대로 대상체가 차례로 이동되며 인스펙션 및 솔더링될 수 있다.
더욱이, 솔더링 품질을 실시간으로 모니터링하여 파라미터를 제어하거나 솔더링된 영역의 내부 크랙, 포어(Pore) 검사 등 포스트-인스펙션(Post-Inspection)을 위해 적외선(Infra-red) 검사 장치를 더 포함할 수 있다.
넷째, 상기 포스트-인스펙션(Post-inspection) 후 요구되는 솔더링 품질기준에 적합하지 않은 대상체를 분류할 수 있는 분류(Sorting) 장치를 더 포함할 수 있다.
다섯째, 포스트-인스펙션(Post-inspection) 후 요구되는 솔더링 품질 기준에 적합하지 않은 대상체를 수리할 수 있는 수리장치를 더 포함할 수 있다. 이러한 수리장치는 레이저를 재조사하여 솔더부를 재용융시켜 솔더 젖음성을 향상시키거나 기납땜된 솔더를 제거하고 재솔더링(Resoldering)할 수 있다. 기납땜된 솔더 제거시에 핀(Pin)과 같은 기계적인 툴을 사용하여 자동 제거하거나 레이저를 이용하여 재용해(remelting)시켜 흡입하여 자동제거할 수 있다.
여섯 째, 솔더링(Soldering) 후의 품질 관리를 위해 먼지 및 이물질을 제거하기 위한 집진장치를 포함한 클리닝 디바이스(Cleaning Device)를 더 포함 할 수 있다. 클리닝 디바이스(Cleaning Device)로는 건조공기 블로잉(Dry Air Blowing) 장치, 이산화탄소 스노우 클리닝(CO2 Snow Cleaning) 장치, 및 불활성 가스 블로잉 장치 중 하나 이상의 장치를 더 포함할 수 있다.
일곱째, 솔더링해야 하는 기재 종류에 따라 미리 예납하는 솔더링 예납부를 더 포함할 수 있다. 또한 레이저 솔더링 헤드(Soldering Head)를 추가적으로 포함하여 솔더링 품질 향상 및 생산성 향상 극대화할 수 있다.
상술한 본 실시예에서는 설명하지 않았지만, 용재(솔더볼(S); Solder Ball)가 요구되지 않는 접합에도 사용될 수 있다. 즉, 용재인 솔더볼(S)의 공급은 선택적일 수 있고, 솔더볼(S)의 공급이 이루어지지 않는 레이저 가공 장치에서는 금속 간의 접합(bonding), 금속과 수지 간의 접합(bonding) 및 플라스틱 용접 등에도 적용될 수 있다. 레이저가 조사되는 대상체의 성질에 따라 레이저의 조사 강도, 조사 시간 및 조사 주기 등의 조건을 달리하여 양 모재의 접합(bonding)을 행할 수 있다.
이어서, 일 실시예로써 지그의 형태를 나타낸 도 16에 더하여 추가적인 레이저 가공 방법 및 장치를 설명하면, 레이저 가공 장치에는 상술한 노즐(16)이 복수 개가 포함될 수 있다. 즉, 솔더볼(S)이 홀디스크(8)에 의해 노즐(16) 측으로 공급될 때 복수 개의 노즐(16)에 대응되도록 홀디스크(8)에 의해 솔더볼(S)은 제공될 수 있다. 즉, 선택적으로 복수 개의 노즐(16) 중 하나의 노즐(16)에 제공되는 것이 아니라 동시에 제공되는 움직임이 이루어질 수 있다. 예를 들면, 상술한 움직임에 따라, 두 개의 헤드(dual laser bonding head) 측으로 솔더볼(S)이 제공되고 레이저에 의해 용해된 후 질소가스의 토출에 의해 상기 헤드로부터 토출될 수 있다. 이러한 과정이 두 개의 헤드에서 동시에 행해질 수 있으므로 솔더링 시간은 단축될 수 있다. 두 개의 헤드(dual laser bonding head)가 마련되는 장치는 일 예로서, 더 많은 수의 헤드가 마련되어 작업능률을 증진시킬 수 있음은 물론이다.
그리고, 레이저 가공 장치는 지그(jig)를 더 포함할 수 있다. 상기 지그는 회전형 이동 방식으로 이동되는 지그(rotating fixture jig)일 수 있다. 상기 회전형 이동 방식을 채용한 지그를 복수 개 포함하는 지그부(fixture jig channel)가 마련될 수 있다. 예를 들어, 회전형 이동 방식으로 이동되는 지그가 3개 이상 결합되어 마련되는 지그부(three fixture jig channel)가 마련될 수 있다. 이러한 지그부(fixture jig channel)에는 솔더링 작업이 수행될 대상체가 다수 포함 또는 안착될 수 있다. 여기서 대상체의 두 지점 이상에 각각 솔더링 및 접합(bonding) 중 하나 이상의 작업을 수행할 때, 하나의 대상체에 존재하는 상기 두 지점 중 한 지점에 솔더링 또는 접합(bonding) 작업을 수행하면, 대상체에 존재하는 두 지점 중 나머지 지점에 레이저 가공이 될 수 있도록 지그는 이동될 수 있다. 여기서 상기 지그의 상기 이동은 회전이 될 수고 있고, 직선운동에 의한 이동이 될 수도 있으며, 상기 회전 및 직선운동의 조합에 의한 이동이 될 수 있다. 상기 이동이 완료되면, 상기 나머지 지점에 솔더링 또는 접합(bonding)이 수행될 수 있다.
구체적인 예로서, 제1헤드(laser bonding head 1)가 제1지그부(fixture jig channel 1) 상에서 접합(bonding)을 수행하고, 헤드2(laser bonding head 2)는 제3지그부(fixture jig channel 3) 상에서 접합(bonding)을 수행할 수 있다.
각각의 위치에서 헤드(laser bonding head 1 및 laser bonding head 2)가 접합(bonding)을 완료하면, 제1헤드는 제2지그부 상에서 접합(bonding) 작업을 수행할 수 있다.
그리고, 상기 제1지그부가 레이저 조사위치에서 벗어난 언로딩 위치에 위치되면, 접합 작업이 완료된 대상체는 취출될 수 있다. 대상체가 취출된 제1지그부 상에는 새로운 대상체가 위치되어 접합 작업을 대기할 수 있다.
제3지그부에 위치된 대상체에 대하여 접합작업이 완료되면 상기 대상체는 취출되고 상기 대상체가 취출된 제3지그부 상에는 새로운 대상체가 위치되어 접합작업을 대기할 수 있다.
제1헤드는 제2지그부 상에 위치된 대상체에 접합 작업이 완료되면 제1헤드는 제1지그부 상에 위치된 대상체에 접합 작업을 수행할 수 있다.
그리고 제2지그부가 상기 언로딩 위치에 위치되면 접합 작업이 완료된 대상체가 취출되고, 제2지그부 상에는 새로운 대상체가 위치되어 접합 작업을 대기할 수 있다.
제2헤드는 제3지그부 상의 대상체를 접합 작업 완료하면 제2헤드는 제2지그부를 접합 작업 수행할 수 있다. 상기의 접합 작업을 반복적으로 수행하며, 레이저 가공을 할 수 있다.
더욱 구체적으로, 로드 또는 언로드되는 위치에서 다수의 대상체가 배치된 각각의 지그(30)가 제1지그부에 장착될 수 있다. 그리고, 로드 또는 언로드되는 위치에서 다수의 대상체가 배치된 각각의 지그가 제2지그부에 장착될 수 있다. 또한, 로드 또는 언로드되는 위치에서 다수의 대상체가 배치된 각각의 지그가 제3지그부에 장착될 수 있다.
제1지그부가 접합 작업 위치로 위치되면, 비전 검사(인스펙션) 유닛(vision inspection unit)이 작업할 대상체의 정렬상태, 회전, 배치 등의 정상적인 작동 여부를 체크할 수 있다.
제1헤드는 제1지그부 상에 배치된 각각의 대상체에 형성된 접합면을 접합할 수 있다. 제1지그부가 접합 작업을 수행하는 동안 비전 검사(인스펙션) 유닛(vision inspection unit)은 제3지그부에 배치된 각각의 대상체의 정렬상태 회전, 배치 등의 정상적인 작동 여부를 체크할 수 있다.
제2헤드가 제2지그부에 상에 배치된 각각의 대상체에 형성된 접합면을 접합할 수 있다. 제1지그부 상에 배치된 각각의 대상체의 한 면의 접합 작업이 완료되면 제1지그부에 포함되는 각각의 지그가 다른 한 면의 접합 작업 위치로 이동할 수 있다. 상기 이동은 회전일 수 있다.
제3지그부에 배치된 대상체에 접합 작업이 수행되는 동안에 비전 검사(인스펙션) 유닛(vision inspection unit)은 제1지그부 상에 위치된 각각의 대상체의 정렬상태, 배치 등을 체크할 수 있다.
그리고, 제1헤드에 의해 이동 배치된 제1지그부 상의 대상체는 다른 한 면이 접합 될 수 있다. 접합 작업이 완료되면 제1지그부는 언로드 위치로 이동될 수 있다. 접합이 완료되면 제1지그부 상에 대상체는 취출되어 새로운 대상체가 제1지그부 상에 배치될 수 있다.
제3지그부에 배치된 각각의 대상체의 접합되는 두 면 중 한 면이 접합 작업이 완료되면 제3지그부에 포함되는 각각의 지그가 다른 한 면의 접합 작업 위치로 이동될 수 있다.
이후에 vision inspection unit은 제3지그부에 회전된 각각의 대상체의 정렬상태, 배치 등을 검사할 수 있다. 그리고, 제2헤드가 제3지그부 상에 배치된 각각의 대상체의 다른 한 면을 접합할 수 있다.
제2헤드는 제3지그부 상에 위치된 대상체를 접합 작업하는 동안, 비전 검사(인스펙션) 유닛(vision inspection unit)은 제2지그부에 배치된 각각의 대상체의 정렬상태, 회전, 배치 등을 검사할 수 있다.
제1헤드가 제2지그부에 배치된 각각의 대상체의 한 면을 접합하고, 새로 접합 작업할 대상체가 배치된 제1지그부는 제2지그부의 작업이 완료될 때까지 대기할 수 있다. 따라서, 이후의 작업 과정은 상기의 과정을 반복할 수 있다.
작업이 완료된 지그부(Fixture jig channel)의 각각의 대상체는 한 개 또는 두 개의 비전 검사(인스펙션) 모듈/유닛(vision inspection module/unit)으로 접합 품질 검사(post-inspection)를 수행할 수 있다.
한편, 노즐(16)은 질소 등의 가스를 통한 가압으로, 내측에 위치된 용재(솔더볼(S))를 토출하는 과정에서 노즐(16)의 내측면 즉, 용해된 용재와 접촉되는 노즐(16)의 내측면이 오염될 수 있다. 상기 오염은 토출되지 못하고 잔류하여 고착되는 용재, 용재가 용해될 시의 온도에 의해 열손상되는 과정에서 발생하는 이물 및 가스(질소 등의)의 반복적인 토출에 의해 표면에 발생하는 이물 등을 포함할 수 있다. 상기 이물 등이 누적되면 레이저 가공 효율에 영향을 미쳐서 부정정인 결과를 초래할 가능성이 있다. 따라서, 노즐(16)의 상태 및 품질을 검사하는 과정으로서, 기 결정된 주기 또는 간헐적으로 이를 제거(cleaning) 해야 하는데, 오염 정도를 측정하여 기 결정된 오염 수준에 도달되거나 기 결정된 단위시간을 기준으로 정해진 주기에는, 세척영역으로 이동되어 세척되거나 대상체가 위치되지 않은 상태에서 노즐 세척 유닛(nozzle cleaning unit)에 의해 이물질 및 분진 등이 제거될 수 있다. 물리적 또는 화학적 등의 방법에 의해 세척(cleaning)될 수 있으며, 이를 수행하기 위한 구성으로서, 비전유닛(vision unit), 노즐(16) 모니터(nozzle monitor)가 포함될 수 있다.
나아가, 레이저 가공 정도에 대응되는 기 설정된 레이저 조사 강도로 레이저가 조사될 때, 레이저 강도(에너지, 출력) 디텍션 유닛(laser power(energy) detection unit)에 의해 조사되는 실제 레이저 강도(laser power; energy)를 체크하고, 상기 기 설정된 레이저 조사 강도와 차이가 발생될 경우에, 레이저 강도가 상기 차이만큼 보상되도록 조정될 수 있다. 따라서, 제어부(미도시)와 레이저 강도(에너지, 출력) 디텍션 유닛(laser power(energy) detection unit)이 서로 연결되어 레이저 강도(에너지, 출력) 디텍션 유닛(laser power(energy) detection unit)으로부터 수신된 정보를 기초로 기 설정된 레이저 강도와 비교하여 조사되는 레이저의 강도를 증감시킬 수 있다.
또한, 레이저 가공 장치는, 접합(bonding) 테스트시 사용된 솔더볼(S) 및 제조시에 흠결이 있는 불량 솔더볼(S)을 폐기 또는 수집하는 웨이스터 볼 수집 유닛(waster ball collecting unit)을 더 포함할 수 있다. 예를 들면, 웨이스터 볼 수집 유닛(waster ball collecting unit)에 의해 솔더볼(S)이 레이저 가공 장치에 제공된 직후부터 노즐(16)로부터 토출되기 전에 이동되는 과정에서 수집되어 폐기될 수도 있다.
한편, 레이저 빔(laser beam) 위치, 노즐(16)(nozzle) 위치 및 비전 인스펙션(검사)(vision inspection) 위치를 보정하기 위한 캘리브레이션 플레이트(calibration plate)를 더 포함하고, 상기 제어부(미도시)와 연결된 캘리브레이션 플레이트(calibration plate)는 레이저 빔(laser beam), 노즐(16)(nozzle) 및 비전 인스펙션(검사)(vision inspection)의 절대좌표 및 상대좌표 중 하나 이상의 정보를 즉각적으로 감지하여 제어부에 기 설정된 세팅값과의 비교를 통해 상기 기 설정된 세팅값과의 차이를 보상하여 실제 빔(laser beam) 위치, 노즐(16)(nozzle) 위치 및 비전 인스펙션(검사)(vision inspection) 위치를 상기 기 설정된 세팅값에 수렴하도록 이동시킬 수 있다. 나아가, 기 설정된 값에 위치되지 않을 경우에는 레이저 조사 단계가 수행되지 않음으로써 레이저 조사와 관련한 오작동을 방지할 수 있다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
[부호의 설명]
1: 캡
2 : 솔더볼 입구
3 : 저장 챔버
4 : 질소가스 입구
5 : 솔더볼 출구 포트
6 : 회전축
7 : 어댑터
8 : 홀디스크
9 : 트랜스미션 포트
10 : 리시빙 포트
11 : 질소가스 입구
12 : 솔더볼 출구 채널
13 : 투명유리
14 : 레이저 트랜스미션 채널
15 : 노들락 스크류
16 : 노즐
17 : 상부베이스
18 : 하부베이스
20 : 카메라 모듈
21 : 렌즈모듈
22 : 센서 모듈
100 : 레이저 가공 장치
110 : 헤드부
111 : 예납부
120 : 제1검사부
130 : 제2검사부
140 : 이동부
150 : 분류장치
200 : 제어부
300 : 지그
400 : 클리닝 장치
CM : 대상체

Claims (31)

  1. 대상체를 지그에 로딩시키고,
    상기 지그에 로딩된 대상체의 회전 및 배치를 포함하는 정렬상태를 감지(Detect) 및 제1검사(Pre-Inspection)하고,
    상기 지그를 솔더링 위치로 이동시키고,
    상기 대상체를 레이저에 의해 솔더링하고,
    상기 솔더링이 된 상기 대상체를 언로딩시키되,
    상기 솔더링의 품질을 검사하기 위해 검사부로 상기 대상체를 이동시켜 상기 검사부에 의한 제2검사(Post-Inspection)를 선택적으로 수행할 수 있는, 레이저 가공 방법.
  2. 청구항 1에 있어서,
    상기 품질의 검사는 비전 인스펙션에 의해 수행되는, 레이저 가공 방법.
  3. 청구항 1에 있어서,
    상기 품질의 검사는 솔더링 영역의 내부 크랙 및 포어(Pore) 발생 여부를 감지하는 검사인, 레이저 가공 방법.
  4. 청구항 1에 있어서,
    상기 레이저는 화이버 레이저(Fiber Laser) 또는 다이오드 레이저(Diode Laser) 중 하나 이상을 포함하는 고체 레이저인, 레이저 가공 방법.
  5. 청구항 1에 있어서,
    상기 솔더링은 레이저빔 집속 광학헤드, 솔더볼 공급장치, 및 노즐을 포함하는 솔더링 헤드에 의해 수행되는, 레이저 가공 방법
  6. 청구항 1에 있어서,
    상기 솔더링은 하나 이상의 헤드를 포함하는 픽앤플레이스 솔더링 헤드(Pick and Place Soldering Head) 또는 제트 솔더링 헤드(Jet Soldering Head)에 의해 수행되는, 레이저 가공 방법.
  7. 청구항 1에 있어서,
    상기 솔더링은 솔더볼을 토출하는 노즐의 기 결정된 상태 및 품질을 검사하여 세척 또는 교체하는 단계를 더 포함하는, 레이저 가공 방법
  8. 청구항 1에 있어서,
    상기 솔더링은 상기 레이저의 출력이 기록되고, 상기 레이저 출력을 보정하는 단계를 더 포함하는, 레이저 가공 방법
  9. 청구항 1에 있어서,
    상기 검사부에 의한 검사는 상기 솔더링이 수행됨과 동시에 수행될 수 있는, 레이저 가공 방법.
  10. 청구항 1에 있어서,
    상기 품질의 검사는 접합(bonding) 테스트 시 사용된 솔더볼 및 제조 시에 흠결이 있는 불량 솔더볼을 폐기 또는 수집하는 단계를 포함하는, 레이저 가공 방법.
  11. 청구항 1에 있어서,
    상기 제2검사(Post-Inspection) 후에 기 결정된 품질기준에 의해 상기 대상체를 분류(Sorting)하는 단계를 더 포함하는, 레이저 가공 방법.
  12. 청구항 1에 있어서,
    상기 제2검사(Post-inspection)에 의해 기 결정된 품질기준에 부합하지 못한 솔더부에 대하여,
    레이저를 재조사하여 용융시켜 솔더 젖음성을 향상시키거나, 재용해(Remelting)를 통해 제거하고 재솔더링(Resoldering)하는 단계를 더 포함하는, 레이저 가공 방법.
  13. 청구항 1에 있어서,
    상기 제2검사(Post-Inspection) 단계 후에 먼지 및 이물을 제거하기 위한 클리닝 단계를 더 포함하고,
    상기 클리닝 단계는, 건조공기를 제공하는 블로잉(Dry Air Blowing), 이산화탄소 스노우 클리닝(CO2 Snow Cleaning) 및 불활성 가스 블로잉 중 하나 이상을 수행하는, 레이저 가공 방법.
  14. 청구항 1에 있어서,
    상기 대상체에 수행되는 솔더링은 본납(Post-Soldering) 및 예납(Pre- Soldering)을 포함하는, 레이저 가공 방법.
  15. 청구항 1에 있어서,
    상기 솔더링 수행 중 레이저 빔(laser beam) 위치, 솔더볼이 토출되는 노즐(nozzle) 위치 및 비전 인스펙션(vision inspection) 위치 중 하나 이상을 보정하기 위한 단계를 포함하는, 레이저 가공 방법.
  16. 제어부;
    대상체가 로딩되는 지그;
    상기 지그에 로딩된 대상체의 회전 및 배치를 포함하는 정렬상태를 감지(Detect) 및 제1검사(Pre-Inspection)하는 제1검사부;
    상기 대상체를 지그에 로딩 및 언로딩시키는 이동부;
    상기 대상체를 레이저에 의해 솔더링하는 가공부;
    상기 제어부의 제어에 의해 상기 대상체를 대상으로 제2검사(Post-Inspection)를 선택적으로 수행하는 제2검사부를 포함하는, 레이저 가공 장치.
  17. 청구항 16에 있어서,
    상기 제2검사는 비전 인스펙션에 의해 수행되는, 레이저 가공 장치.
  18. 청구항 16에 있어서,
    상기 제2검사는 솔더링 영역의 내부 크랙 및 포어(Pore) 발생 여부를 감지하는 검사인, 레이저 가공 장치.
  19. 청구항 16에 있어서,
    상기 레이저는 화이버 레이저(Fiber Laser) 또는 다이오드 레이저(Diode Laser) 중 하나 이상을 포함하는 고체 레이저인, 레이저 가공 장치.
  20. 청구항 16에 있어서,
    가공부에 의해 솔더링이 수행되고,
    상기 가공부는, 레이저빔 집속 광학헤드, 솔더볼 공급장치, 및 솔더볼을 토출하는 노즐을 포함하는 솔더링 헤드를 포함하는, 레이저 가공 장치.
  21. 청구항 16에 있어서,
    상기 솔더링은 하나 이상의 헤드를 포함하는 픽앤플레이스 솔더링 헤드(Pick and Place Soldering Head) 또는 제트 솔더링 헤드(Jet Soldering Head)를 포함하는 레이저 솔더링 노즐을 포함하는, 레이저 가공 장치.
  22. 청구항 16에 있어서,
    상기 제어부는 솔더링은 솔더볼을 토출하는 노즐의 기 결정된 상태 및 품질을 검사하여 세척 또는 교체를 제어하는, 레이저 가공 장치.
  23. 청구항 16에 있어서,
    상기 제어부는 상기 레이저의 출력을 기록하고, 상기 레이저 출력을 보정하는, 레이저 가공 장치.
  24. 청구항 16에 있어서,
    상기 검사부에 의한 검사는 상기 솔더링이 수행됨과 동시에 수행되는, 레이저 가공 장치.
  25. 청구항 16에 있어서,
    상기 제어부의 제어에 의해, 상기 품질의 검사는 접합(bonding) 테스트 시 사용된 솔더볼 및 제조 시에 흠결이 있는 불량 솔더볼을 폐기 또는 수집하도록 제어되는, 레이저 가공 장치.
  26. 청구항 16에 있어서,
    상기 제2검사(Post-Inspection) 후에 기 결정된 품질기준에 의해 상기 대상체를 분류(Sorting)하는 분류 장치를 더 포함하는, 레이저 가공 장치.
  27. 청구항 16에 있어서,
    상기 제어부의 제어에 의해서 상기 제2검사(Post-inspection)에 의해 기 결정된 품질기준에 부합하지 못한 솔더부를 대상으로,
    레이저를 재조사하여 용융시켜 솔더 젖음성을 향상시키거나, 재용해(Remelting)를 통해 제거하고 재솔더링(Resoldering)이 수행되는, 레이저 가공 장치.
  28. 청구항 16에 있어서,
    상기 검사(Post-Inspection) 단계 후에 먼지 및 이물을 제거하기 위한 클리닝 장치(Cleaning Device)를 더 포함하고,
    상기 클리닝 장치는, 건조공기를 제공하는 블로잉(Dry Air Blowing) 장치, 이산화탄소 스노우 클리닝(CO2 Snow Cleaning) 장치 및 불활성 가스 블로잉 장치 중 하나 이상을 포함하는, 레이저 가공 장치.
  29. 청구항 11에 있어서,
    상기 대상체에 수행되는 솔더링은 본납(Post-Soldering) 전, 예납(Pre- Soldering)을 수행하는 예납부를 더 포함하는, 레이저 가공 장치.
  30. 청구항 16에 있어서,
    상기 제어부는,
    레이저 빔(laser beam) 위치, 노즐(nozzle) 위치 및 비전 인스펙션(vision inspection) 위치를 보정하는 제어를 수행하는, 레이저 가공 장치.
  31. 청구항 16에 있어서,
    상기 제어부는,
    상기 레이저의 출력, 상기 레이저 조사시간, 상기 레이저 조사횟수 및 상기 레이저의 출력과 상기 조사시간 관계에서의 기울기의 조합에 의해 결정되는 상기 레이저의 프로파일에 의해 수행되는, 레이저 가공 장치.
PCT/KR2018/005365 2017-05-10 2018-05-10 레이저 가공 방법 및 장치 WO2018208097A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0058353 2017-05-10
KR20170058353 2017-05-10
KR10-2017-0063892 2017-05-24
KR20170063892 2017-05-24
KR1020180053426A KR102110764B1 (ko) 2017-05-10 2018-05-10 레이저 가공 방법 및 장치
KR10-2018-0053426 2018-05-10

Publications (1)

Publication Number Publication Date
WO2018208097A1 true WO2018208097A1 (ko) 2018-11-15

Family

ID=64105399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005365 WO2018208097A1 (ko) 2017-05-10 2018-05-10 레이저 가공 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2018208097A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060219760A1 (en) * 2005-03-30 2006-10-05 Tdk Corporation Soldering method, soldering device, bonding method, bonding device, and nozzle unit
US20080272112A1 (en) * 2004-06-01 2008-11-06 Soutec Soudronic Ag Hard-Soldering Method and Device
KR20110018074A (ko) * 2009-08-17 2011-02-23 (주)미래컴퍼니 레이저 가공 및 검사장치 및 방법
KR20130026725A (ko) * 2011-09-06 2013-03-14 엘지디스플레이 주식회사 레이저 가공장치 및 이를 이용한 가공방법
KR20170017044A (ko) * 2015-08-04 2017-02-15 크루셜머신즈 주식회사 카메라 모듈용 솔더링 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272112A1 (en) * 2004-06-01 2008-11-06 Soutec Soudronic Ag Hard-Soldering Method and Device
US20060219760A1 (en) * 2005-03-30 2006-10-05 Tdk Corporation Soldering method, soldering device, bonding method, bonding device, and nozzle unit
KR20110018074A (ko) * 2009-08-17 2011-02-23 (주)미래컴퍼니 레이저 가공 및 검사장치 및 방법
KR20130026725A (ko) * 2011-09-06 2013-03-14 엘지디스플레이 주식회사 레이저 가공장치 및 이를 이용한 가공방법
KR20170017044A (ko) * 2015-08-04 2017-02-15 크루셜머신즈 주식회사 카메라 모듈용 솔더링 장치

Similar Documents

Publication Publication Date Title
KR102110764B1 (ko) 레이저 가공 방법 및 장치
WO2021100960A1 (ko) 레이저 리플로우 장치 및 레이저 리플로우 방법
WO2013066113A1 (ko) 드릴비트의 자동 재연마장치
WO2021002610A1 (en) Micro led display module and method of manufacturing the same
WO2021002622A1 (en) Micro led display module and method of manufacturing the same
WO2018208095A1 (ko) 솔더링 장치, 레이저 가공 장치 및 가공 방법
JPH08340195A (ja) 電子部品実装方法及び装置
WO2018208097A1 (ko) 레이저 가공 방법 및 장치
WO2018208096A1 (ko) 지그 조립체 및 이를 포함하는 레이저 가공 장치
WO2017142150A1 (ko) 레이저 솔더링 수선 공정, 레이저 솔더링 공정 및 레이저 솔더링 시스템
WO2018117510A2 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2023054966A1 (ko) 레이저 조사위치가 조절되는 레이저 솔더링 장치 및 이를 포함하는 솔더링 방법
WO2018199363A1 (ko) 물품 검사 방법 및 물품 검사 장치
WO2023003105A1 (ko) 브레이징 시스템 및 브레이징 방법
TWI467197B (zh) An electronic component operating unit for an image capturing device, and a working device for its application
WO2015088090A1 (ko) Tco 제조장치 및 제조방법
WO2020251287A1 (ko) 전자모듈 핸들러
WO2021002572A1 (ko) 디스플레이 패널 검사를 위한 프로브 블록 조립체, 이의 제어 방법 및 디스플레이 패널 검사 장치
WO2016099197A1 (ko) 정션 온도의 동적특성을 이용한 반도체 소자의 검사 장치 및 방법
WO2023068388A1 (ko) 레이저 조사위치가 조절되는 레이저 솔더링 장치 및 이를 포함하는 솔더링 방법
WO2020005001A1 (ko) 기판에 실장된 부품의 실장 불량 원인을 결정하는 전자 장치 및 방법
WO2021172731A1 (ko) 원장 패널 흡착 장치
WO2023128670A1 (ko) 전지 제조 장치
WO2023234565A1 (ko) S-ecam 프린팅 장치 및 이의 제어방법
WO2021086009A1 (ko) 디스플레이 패널 전극 형성 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797936

Country of ref document: EP

Kind code of ref document: A1