WO2018208025A1 - Thermo-photovoltaic device - Google Patents

Thermo-photovoltaic device Download PDF

Info

Publication number
WO2018208025A1
WO2018208025A1 PCT/KR2018/004453 KR2018004453W WO2018208025A1 WO 2018208025 A1 WO2018208025 A1 WO 2018208025A1 KR 2018004453 W KR2018004453 W KR 2018004453W WO 2018208025 A1 WO2018208025 A1 WO 2018208025A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
combustor
fuel
inlet
heat
Prior art date
Application number
PCT/KR2018/004453
Other languages
French (fr)
Korean (ko)
Inventor
한보현
나원산
박진표
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170058794A external-priority patent/KR101968657B1/en
Priority claimed from KR1020170058795A external-priority patent/KR101977042B1/en
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2018208025A1 publication Critical patent/WO2018208025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • thermoelectric generator and more particularly, to a thermoelectric generator for supplying power to small portable devices and mobile military equipment.
  • small mobile electronic devices such as small portable devices and mobile military equipment
  • secondary batteries used in the present invention have a long charging time because they are composed of lithium-ion. There is a problem that the use time is short.
  • the ultra-small heat engine (engine) power generator includes a high speed moving part for converting heat into electricity, which causes excessive heat and friction loss and difficulty in microfabrication.
  • the micro thermoelectric conversion device has a simple configuration including transferring heat radiation energy generated from an ultra small emitter to a photovoltaic cell through a dielectric filter to acquire electricity and cooling the device, and is easy to manufacture. Therefore, there are advantages such as convenience and low maintenance cost as power source for small mobile electronic devices.
  • ThermoPhotoVoltaic is a system that converts photons generated by heat directly into energy. It consists of a control unit.
  • the photovoltaic generator applies heat to a heat radiator using heat, and then, through black body radiation generated from the heat radiator, scans a photovoltic cell (PV) having a low energy band gap to form electrical energy.
  • PV photovoltic cell
  • thermoelectric generators have high energy density (more than 100 times the energy density per unit mass compared to lithium-ion batteries), instant charging and sufficient charging life, and non-power dynamometers, development of on-board generators with noise, environmental friendliness and emergency application As a result, it is emerging as a strong candidate for the next generation mobile power supply that will replace the existing secondary battery.
  • thermoelectric generators comprise a combustor (emitter) and a thermoluminescent element array.
  • the thermoelectric element array is configured by arranging a plurality of thermoluminescent elements on an inner surface (that is, a combustor direction) of a base substrate having a hollow cylindrical shape.
  • the thermoluminescent element array is disposed spaced apart from the outer circumference of the combustor by a predetermined interval, and collects the light generated by the combustion of the fuel in the combustor and converts it into electrical energy.
  • an air fan for supplying external air (that is, oxygen) used for fuel combustion is disposed at one end of the fuel inlet direction.
  • the outside air sucked by the air fan is mixed with the fuel injected through the fuel inlet and supplied to the combustor.
  • thermoelectric generator when the external temperature is low, the external air sucked by the air fan is mixed with fuel in a state in which the external air sucked by the air fan is not preheated to the required temperature in the heat exchanger, so that combustion in the combustor does not occur smoothly, and thus the power generation efficiency decreases. There is a problem.
  • thermoelectric generator a heat radiation fan for discharging the air heated by the heat generated from the heat radiation fins disposed on the outer circumference of the thermoelectric element array to the outside is installed at the other end of the combustor direction.
  • thermoelectric generator has a problem that the power generation efficiency is lowered because the driving power of the air fan and the heat radiation fan is supplied with the electric energy converted in the thermoelectric element array.
  • thermoelectric generator since the air fan and the heat dissipation fan are disposed at both ends, the manufacturing cost increases and miniaturization is difficult.
  • thermoelectric generator since the thermoelectric element array is disposed outside the combustor, the thermoelectric element array is deformed due to the high temperature generated in the combustor during power generation, which causes a problem in that power generation efficiency and product life are reduced.
  • the present invention has been proposed to solve the above-mentioned conventional problems, by circulating oxygen (air) preheated by the heat radiating fins to the combustor through a circulation fan disposed at the end of the combustor direction, miniaturization and low cost
  • An object of the present invention is to provide a photovoltaic device capable of being manufactured.
  • the present invention has been proposed to solve the above-mentioned conventional problems, and an object of the present invention is to provide a photovoltaic device that maximizes a product life while maintaining power generation efficiency by preventing deformation of a thermoelectric device array due to heat generated in a combustor. .
  • a photovoltaic device includes a fuel inlet through which fuel is injected, an oxygen inlet through which oxygen is injected, a fuel introduced through a fuel inlet, and a first transfer line for transferring oxygen introduced into the oxygen inlet.
  • thermoelectric element array for converting light generated by the combustor into electrical energy
  • circulation fan for blowing oxygen preheated by the heat conducted in the thermoelectric element array to be injected into the oxygen inlet.
  • thermoelectric element array includes a base substrate, a plurality of thermoelectric elements arranged on one surface of the base substrate and a heat insulating member formed on one surface of the base substrate.
  • the photovoltaic device has an effect of maximizing combustion characteristics by increasing the temperature of oxygen used for fuel combustion by injecting oxygen preheated by the heat radiation fin into the oxygen inlet through a circulation fan. That is, the photovoltaic device has an effect of maximizing combustion efficiency by increasing the temperature of the combustor by supplying oxygen preheated by the heat dissipation fin to the combustor (that is, emitter) by the preheater. .
  • the photovoltaic device performs heat dissipation and oxygen injection through a single fan (that is, a circulation fan), thereby miniaturizing a product compared to a conventional thermoelectric power generation device having a heat radiation fan for heat radiation and an air fan for oxygen injection. While there is an effect that can minimize the manufacturing cost.
  • the photovoltaic device generates heat by minimizing the power consumption of the photovoltaic device compared to the conventional photovoltaic device having a heat radiating fan and an air fan by performing heat radiation and oxygen injection through one fan (that is, a circulation fan).
  • a circulation fan that is, a circulation fan.
  • the heat generating apparatus has an effect of preventing deformation of the heat generating element array due to the high temperature generated in the combustor by disposing the heat insulating member on one surface of the base substrate.
  • the thermal photovoltaic device may be disposed on one surface of the base substrate to prevent deformation of the thermal photovoltaic device array, thereby preventing the collection efficiency of the thermal photovoltaic device from being lowered, thereby maximizing product life while minimizing the reduction in power generation efficiency.
  • the thermal photovoltaic device has an effect of minimizing thermal light loss by blocking heat absorbed or radiated to an area other than the thermal device by forming an insulating member on one surface of the base substrate.
  • the photovoltaic device has an effect of maximizing the combustion efficiency of the combustor by increasing the temperature in the combustor by forming a heat insulating member on one surface of the base substrate to reflect heat generated in the combustor in the direction of the combustor.
  • FIG. 1 and 2 are views for explaining a photovoltaic device according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the discharge line of FIG.
  • thermoelectric element array of FIG. 4 to 7 are views for explaining the thermoelectric element array of FIG.
  • FIG. 8 and 9 are views for explaining the circulation fan of FIG.
  • the photovoltaic device 100 includes a fuel inlet 110, an oxygen inlet 120, a first transfer line 130, a preheater 140, a combustor 150, and an exhaust line 160. ), A thermoelectric element array 170, a circulation fan 180, and a second transfer line 190.
  • the photovoltaic device 100 may be divided into a first body 200 and a second body 300.
  • the first body 200 may include a fuel inlet 110, an oxygen inlet 120, a portion of the first transfer line 130, a preheater 140, a portion of the discharge line 160, and a portion of the second transfer line 190. May include some.
  • the second body 300 may include a combustor 150, the remaining part of the discharge line, the thermoelectric element array 170, the circulation fan 180, and the remaining part of the second transfer line 190.
  • the first body 200 and the second body 300 are separately formed and then coupled, but the coupling is not limited thereto.
  • the 200 and the second body 300 may be integrally formed.
  • the fuel inlet 110 is a fuel for generating a light source that is a hot light source.
  • the fuel inlet 110 is formed in the form of a pipe. One end of the fuel inlet 110 is connected to an external fuel supply source (not shown). Fuel injected from the fuel supply source through the fuel inlet 110 is introduced into the first transfer line 130 connected to the other end of the fuel inlet 110.
  • the fuel inlet 110 receives fuel such as H 2 and NH.
  • oxygen transferred through the second transfer line 190 is input.
  • the oxygen inlet 120 is first preheated by the heat dissipation fin 176 to receive the oxygen transferred through the second transfer line 190.
  • the first transfer line 130 transfers the injected fuel and oxygen to the combustor 150. That is, the first transfer line 130 is formed in a pipe shape. One end of the first transfer line 130 is connected to the fuel inlet 110 and the oxygen inlet 120. The other end of the first transfer line 130 is connected to the combustor 150. The first transfer line 130 transfers fuel and oxygen introduced through the fuel inlet 110 and the oxygen inlet 120 to the combustor 150.
  • the preheater 140 secondary preheats the fuel and oxygen transferred through the first transfer line 130. That is, the preheater 140 is disposed on the outer circumference of the first transfer line 130. The preheater 140 preheats the fuel and oxygen which are conveyed through the first transfer line 130. At this time, the preheater 140 raises the temperature of the oxygen preheated by the heat dissipation fin 176 through the second preheating and transfers the oxygen to the combustor 150.
  • the preheater 140 is an example of a recuperator.
  • the combustor 150 burns fuel supplied through the first transfer line 130 to generate light (light) and heat. To this end, the combustor 150 mixes fuel and oxygen transferred through the first transfer line 130. The combustor 150 burns mixed fuel (ie, fuel mixed with oxygen) to generate light (light) and heat.
  • mixed fuel ie, fuel mixed with oxygen
  • the combustor 150 may include a mixer (not shown) for mixing fuel and oxygen connected to the first transfer line 130, a chamber (not shown) into which the mixed fuel mixed in the mixer is introduced, and a combustion bar disposed in the chamber. (Not shown).
  • the discharge line 160 discharges the exhaust gas generated during the combustion of the mixed fuel in the combustor 150 to the outside of the photovoltaic device 100.
  • the discharge line 160 is formed in a pipe shape that is formed along the outer circumference of the combustor 150, the preheater 140, and the first transfer line 130.
  • the discharge line 160 transfers the exhaust gas A generated by the combustor 150 and discharges it to the discharge port.
  • the preheater 140 is disposed in the discharge line 160, but the present invention is not limited thereto, and the discharge line 160 may be formed along the outer circumference of the preheater 140.
  • the thermal element array 170 is disposed along the outer circumference of the combustor 150.
  • the thermoelectric element array 170 generates power using light generated by the combustor 150.
  • the thermoelectric element 174 since the thermoelectric element 174 has a good power generation efficiency when the temperature is low, the thermoelectric element array 170 is disposed spaced apart from the combustor 150 by a predetermined interval.
  • thermoelectric element array 170 includes a base substrate 172, a plurality of thermoelectric elements 174, and heat dissipation fins 176.
  • the base substrate 172 is composed of a rectangular flat plate.
  • the base substrate 172 may be formed of a resin material used for a metal substrate of a metal material or a general circuit board.
  • the plurality of light emitting elements 174 are arranged in a matrix on one surface of the base substrate 172. That is, the plurality of luminescent elements 174 are arranged in a matrix on one surface of the base substrate 172 disposed in the direction of the combustor 150 to condense the light generated by the combustion of the fuel in the combustor 150 and convert the light into electrical energy. do.
  • the thermoelectric element 174 may be thermophotovoltaic (TPV).
  • the heat dissipation fin 176 is disposed on the other surface of the base substrate 172.
  • the heat dissipation fin 176 absorbs heat from the plurality of light emitting elements 174 through heat conduction and releases the heat to the outside. That is, since the thermal element 174 has a good power generation efficiency when the temperature is low, the heat radiation fin 176 is disposed on the other surface opposite to one surface of the base substrate 172 on which the thermal element 174 is formed, the thermal element The heat generated at 174 is released.
  • the thermal element array 170 is formed in a cylindrical shape through deformation of the base substrate 172.
  • the thermoelectric element array 170 is configured by arranging a plurality of thermoelectric elements 174 on an inner surface (ie, the combustor 150 direction) of the base substrate 172 having a hollow cylindrical shape.
  • the thermal element array 170 is disposed spaced apart from the outer circumference of the combustor 150 by a predetermined interval.
  • the base substrate 172 is formed of a metal material or a resin material, deformation (for example, shrinkage or expansion) may occur due to a high temperature generated during fuel combustion of the combustor. The flatness of the base substrate 172 is lowered when deformation due to high temperature occurs.
  • the light emitting element 174 is disposed on one surface of the base substrate 172, when the flatness of the base substrate 172 is lowered, the light collection efficiency is lowered. That is, when the flatness of the thermoelectric element 174 decreases due to the deformation of the base substrate 172, the heat dissipation characteristic is lowered, and the surface temperature of the thermoelectric element 174 increases.
  • the thermoluminescent element 174 is deteriorated in optical characteristics (ie, condensing efficiency) as the surface temperature increases. For this reason, in the heat generating apparatus 100, as the light collecting efficiency of the heat generating element 174 is lowered, the power generating efficiency is lowered.
  • thermoelectric element array 170 may further include a heat insulating member 178 formed on one surface of the base substrate 172. 6 and 7 show that the base sheet 172 is in a flat state in order to easily explain the formation position of the heat insulating member 178.
  • the heat insulating member 178 When the heat insulating member 178 is disposed on the surface of the light emitting element 174, the light collecting efficiency of the light emitting element 174 is lowered because the light is refracted, absorbed, or reflected by the heat insulating member 178.
  • the heat insulating member 178 is formed on one surface of the base substrate 172, but is formed so as not to cover the surface of the light emitting element 174 disposed on one surface of the base substrate. That is, the heat insulating member 178 is formed on one surface of the base substrate 172, but is formed only in an area where the plurality of light emitting elements 174 are not formed.
  • the heat insulating member 178 is made of a resin material having high ductility and no deformation at high temperature, such as silver epoxy or polyimide.
  • Insulating member 178 is formed on the base substrate 172 through the printing of the silver paste, and then is formed by etching the region in which the thermal element 174 is disposed.
  • the thermoelectric element 174 is disposed on the base substrate 172 on which the heat insulating member 178 is formed.
  • the heat insulating member 178 may be formed by printing a silver paste on the base substrate 172 on which the light emitting element 174 is disposed.
  • the heat insulating member 178 may minimize heat light loss by blocking heat absorbed or radiated to a region other than the heat light emitting device 174.
  • the heat insulating member 178 may reflect the heat generated from the combustor 150 in the direction of the combustor 150 to increase the temperature in the combustor 150 to maximize the combustion efficiency of the combustor 150.
  • the thermal element array 170 is formed in a cylindrical shape through deformation of the base substrate 172.
  • a plurality of thermoelectric elements 174 are disposed on an inner surface of the base substrate 172 (ie, in the direction of the combustor 150) formed in a hollow cylindrical shape.
  • the thermoelectric element array 170 is disposed spaced apart from the outer circumference of the combustor 150 by a predetermined interval.
  • thermoelectric element array 170 a heat insulating member 178 is disposed on an inner surface of the base substrate 172 (that is, the combustor 150 direction). At this time, the heat insulating member 178 is formed in the spaced space between the thermal element 174 to prevent the deformation of the base substrate 172 due to the high temperature generated in the combustor 150.
  • the circulation fan 180 circulates oxygen (ie, air) located in the space around the heat dissipation fin 176 to the oxygen inlet 120 through the second transfer line 190. That is, referring to FIGS. 8 and 9, the circulation fan 180 is disposed in the other direction of the combustor 150 to blow oxygen C toward the combustor 150. At this time, the circulation fan 180 rotates to circulate the oxygen (C; primary air) preheated by the heat discharged from the heat dissipation fin 176 to the oxygen inlet 120 through the second transfer line 190. Let's do it. As a result, the fuel B and the oxygen C injected into the fuel inlet 110 are supplied to the combustor 150 through the first transfer line 130. At this time, the oxygen preheated by the heat dissipation fin 176 is primarily preheated. (Ie, air) is introduced into the oxygen inlet 120 through the second transfer line 190 by the circulation fan 180.
  • oxygen ie, air
  • the photovoltaic device 100 injects oxygen preheated by the heat dissipation fin 176 into the oxygen inlet 120 through the circulation fan 180, thereby increasing the temperature of oxygen used in fuel combustion to increase combustion characteristics. It has the effect of maximizing. That is, the heat generating apparatus 100 supplies the oxygen preheated by the heat dissipation fin 176 to the combustor 150 (that is, the emitter) by the preheater 140, and thus the combustor 150. By increasing the temperature of the combustion effect can be maximized.
  • the photovoltaic device 100 performs heat radiation and oxygen injection through one fan (that is, the circulation fan 180), thereby providing a conventional photovoltaic power generation device including a heat radiation fan for heat radiation and an air fan for oxygen injection. Compared to the device 100, while miniaturizing the product, it is possible to minimize the manufacturing cost.
  • the photovoltaic device 100 performs heat radiation and oxygen injection through one fan (that is, the circulation fan 180), so that heat is generated compared to the conventional photovoltaic device 100 having a heat radiation fan and an air fan.
  • Minimizing the power consumption of the power generation device 100 has the effect of maximizing power generation efficiency. That is, since the photovoltaic device 100 drives only the circulating fan 180 by using the generated power, it uses the generated power to drive the heat dissipation fan and the air fan, thereby consuming more power than the conventional photovoltaic device 100. There is an effect that can maximize the power generation efficiency by minimizing.
  • the second transfer line 190 is formed along the outer circumference of the heat dissipation fin 176 and the preheater 140 to transfer the oxygen blown by the circulation fan 180 to the oxygen inlet 120. That is, referring to FIGS. 4 to 7, the oxygen preheated by the heat dissipation fin 176 is blown to the combustor 150 by the circulation fan 180 and introduced into the second transfer line 190. It is transferred to the oxygen inlet 120 through the second transfer line 190.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a thermo-photovoltaic device for circulating oxygen (air), which has been preheated by radiation fins, to a combustor using a circulation fan disposed at an end in a direction toward the combustor to increase power generation efficiency while allowing miniaturization and low cost manufacturing. The disclosed thermo-photovoltaic device maximizes combustion characteristics of the combustor by disposing the radiation fins on the other surface of a thermo-photo element, performing primary pre-heating of the oxygen through heat emitted via the radiation fins when a fuel in the combustor is combusted, and performing secondary pre-heating on the oxygen, which has undergone primary preheating, by using a pre-heater and injecting the heated oxygen into the combustor.

Description

열광 발전 장치A photovoltaic device
본 발명은 열광 발전 장치에 관한 것으로, 더욱 상세하게는 소형 휴대 기기 및 이동형 군용 장비 등에 전원을 공급하는 열광 발전 장치(THERMOPHOTOVOLTAIC DEVICE)에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator, and more particularly, to a thermoelectric generator for supplying power to small portable devices and mobile military equipment.
소형 휴대 기기 및 이동형 군용 장비의 개발 및 보급이 증가함에 따라 이들의 전원 공급을 위한 이차 전지, 소형 발전기 등과 같이 다양한 장치들이 개발되고 있다.As the development and dissemination of small portable devices and mobile military equipment increases, various devices such as secondary batteries and small generators for power supply thereof are being developed.
일반적으로, 소형 휴대 기기 및 이동형 군용 장비 등의 소형 이동전자기기는 휴대성 확보를 위해 소형으로 제작되기 때문에 이차 전지가 사용되고 있지만, 현재 사용되는 이차 전지는 리튬-이온으로 구성되기 때문에 충전시간이 길고, 사용시간이 짧은 문제점이 있다.In general, small mobile electronic devices, such as small portable devices and mobile military equipment, are used because they are made small in order to ensure portability. However, secondary batteries used in the present invention have a long charging time because they are composed of lithium-ion. There is a problem that the use time is short.
최근에는 이러한 이차전지의 문제점을 해결하기 위해, 소형 발전 장치에 관한 연구/개발이 활발하게 진행되고 있으며, 마이크로 가스터빈, 마이크로 왕복기관 등의 초소형 열기관(엔진) 동력발생장치에 대한 연구가 진행되고 있다.Recently, in order to solve the problem of the secondary battery, research / development of a small power generation device has been actively conducted, and research on a small heat engine (engine) power generator such as a micro gas turbine and a micro reciprocating engine is being conducted. have.
하지만, 초소형 열기관(엔진) 동력발생장치는 열을 전기로 변환하기 위한 고속의 동적 장치(moving parts)를 포함하고 있어 과도한 열 및 마찰손실의 발생과 미세제작의 어려움이 발생하는 문제점이 있다.However, the ultra-small heat engine (engine) power generator includes a high speed moving part for converting heat into electricity, which causes excessive heat and friction loss and difficulty in microfabrication.
이에, 초소형 열전(thermoelectric) 시스템, 초소형 열광전(thermophotovoltaic, TPV) 변환 장치 등과 같이 동적 장치를 포함하지 않고, 직접 에너지 변환이 가능한 방식의 소형 발전 장치에 대한 개발이 진행되고 있다.Accordingly, development of a small power generation apparatus capable of directly converting energy without including a dynamic device such as a miniature thermoelectric system and a miniature photovoltaic (TPV) converter, is being conducted.
초소형 열광전 변환 장치는 초소형 이미터(emitter, 연소기)에서 발생하는 열복사에너지를 유전필터를 통해 광전셀에 전달하여 전기를 획득하고, 장치를 냉각하는 과정을 포함하는 단순한 구성으로 되어있으며 제작의 용이성 때문에 소형 이동전자기기의 전원으로 편리성과 저렴한 유지비 등의 장점이 있다.The micro thermoelectric conversion device has a simple configuration including transferring heat radiation energy generated from an ultra small emitter to a photovoltaic cell through a dielectric filter to acquire electricity and cooling the device, and is easy to manufacture. Therefore, there are advantages such as convenience and low maintenance cost as power source for small mobile electronic devices.
열광발전기(ThermoPhotoVoltaic; TPV)는 열에 의해 발생된 광자(photon)를 직접 에너지로 변환하는 시스템으로 보통 열방사체(thermal emitter)와 열광 소자(photovoltaic diode cell)로 구성된 발전부와 전력을 공급하기 위한 전기제어부로 구성된다. 열광 발전기는 열을 이용해 열방사체에 해당 열을 가하고 이를 통해 열방사체에서 발생되는 흑체 복사(black body radiation)를 통해 낮은 에너지 밴드갭을 가지는 photovoltic cell(PV)에 주사시켜 전기 에너지를 형성한다.ThermoPhotoVoltaic (TPV) is a system that converts photons generated by heat directly into energy. It consists of a control unit. The photovoltaic generator applies heat to a heat radiator using heat, and then, through black body radiation generated from the heat radiator, scans a photovoltic cell (PV) having a low energy band gap to form electrical energy.
열광발전기는 고에너지밀도(리튬이온 전지대비 단위질량당 에너지 밀도 100배 이상), 즉각적인 충전 및 충분한 충전수명, 비동력계이므로 무소음, 환경 친화성, 비상시 응용성 등 장점을 갖는 탑재형 발전기의 개발이 가능하여 기존 이차전지를 대체할 차세대 이동전원장치의 강력한 후보로 대두되고 있다.Since thermoelectric generators have high energy density (more than 100 times the energy density per unit mass compared to lithium-ion batteries), instant charging and sufficient charging life, and non-power dynamometers, development of on-board generators with noise, environmental friendliness and emergency application As a result, it is emerging as a strong candidate for the next generation mobile power supply that will replace the existing secondary battery.
일반적으로, 종래의 열광발전기는 연소기(이미터(emitter)) 및 열광 소자 어레이를 포함하여 구성된다. 이때, 열광 소자 어레이는 내부가 빈 원통 형상으로 형성된 베이스 기재의 내부면(즉, 연소기 방향)에 복수의 열광 소자들이 배치되어 구성된다. 열광 소자 어레이는 연소기의 외주와 소정 간격 이격되어 배치되어, 연소기에서 연료의 연소에 따라 발생하는 광을 집광하여 전기 에너지로 변환한다.In general, conventional thermoelectric generators comprise a combustor (emitter) and a thermoluminescent element array. In this case, the thermoelectric element array is configured by arranging a plurality of thermoluminescent elements on an inner surface (that is, a combustor direction) of a base substrate having a hollow cylindrical shape. The thermoluminescent element array is disposed spaced apart from the outer circumference of the combustor by a predetermined interval, and collects the light generated by the combustion of the fuel in the combustor and converts it into electrical energy.
종래의 열광발전기는 연료 연소시 사용되는 외부 공기(즉, 산소)의 공급을 위한 공기 팬이 연료 주입구 방향의 일측 단부에 배치된다. 공기 팬에 의해 흡입된 외부 공기는 연료 주입구를 통해 주입된 연료와 혼합되어 연소기로 공급된다.In a conventional thermoelectric generator, an air fan for supplying external air (that is, oxygen) used for fuel combustion is disposed at one end of the fuel inlet direction. The outside air sucked by the air fan is mixed with the fuel injected through the fuel inlet and supplied to the combustor.
이때, 종래의 열광발전기는 외부 온도가 낮은 경우 공기 팬에 의해 흡입된 외부 공기가 환열기에서 요구 온도까지 예열되지 않은 상태에서 연료와 혼합되어 연소기에서의 원활하게 연소가 이루어지지 않아 발전 효율이 저하되는 문제점이 있다.In this case, in the conventional thermoelectric generator, when the external temperature is low, the external air sucked by the air fan is mixed with fuel in a state in which the external air sucked by the air fan is not preheated to the required temperature in the heat exchanger, so that combustion in the combustor does not occur smoothly, and thus the power generation efficiency decreases. There is a problem.
또한, 종래의 열광발전기는 열광 소자 어레이의 외주에 배치된 방열 핀에서 발생하는 열에 의해 가열된 공기를 외부로 배출하는 방열 팬이 연소기 방향의 타측 단부에 설치된다.In addition, in the conventional thermoelectric generator, a heat radiation fan for discharging the air heated by the heat generated from the heat radiation fins disposed on the outer circumference of the thermoelectric element array to the outside is installed at the other end of the combustor direction.
이때, 종래의 열광발전기는 열광 소자 어레이에서 변환된 전기 에너지를 공기 팬 및 방열 팬의 구동 전원을 공급하기 때문에 발전 효율이 저하되는 문제점이 있다.In this case, the conventional thermoelectric generator has a problem that the power generation efficiency is lowered because the driving power of the air fan and the heat radiation fan is supplied with the electric energy converted in the thermoelectric element array.
또한, 종래의 열광발전기는 양단에 공기 팬 및 방열 팬이 배치되기 때문에 제조 단가가 증가하고, 소형화가 어려운 문제점이 있다.In addition, in the conventional thermoelectric generator, since the air fan and the heat dissipation fan are disposed at both ends, the manufacturing cost increases and miniaturization is difficult.
한편, 종래의 열광발전기는 연소기의 외부에 열광 소자 어레이가 배치되기 때문에, 장시가 발전시 연소기에서 발생하는 고온에 의해 열광 소자 어레이가 변형되어 발전 효율 및 제품 수명이 저하되는 문제점이 있다.On the other hand, in the conventional thermoelectric generator, since the thermoelectric element array is disposed outside the combustor, the thermoelectric element array is deformed due to the high temperature generated in the combustor during power generation, which causes a problem in that power generation efficiency and product life are reduced.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 연소기 방향의 단부에 배치된 순환 팬을 통해 방열 핀에 의해 예열된 산소(공기)를 연소기로 순환시켜 발전 효율을 증대시키면서 소형화 및 저비용 제조가 가능하도록 한 열광 발전 장치를 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above-mentioned conventional problems, by circulating oxygen (air) preheated by the heat radiating fins to the combustor through a circulation fan disposed at the end of the combustor direction, miniaturization and low cost An object of the present invention is to provide a photovoltaic device capable of being manufactured.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 연소기에서 발생하는 열에 의한 열광 소자 어레이의 변형을 방지하여 발전 효율 유지하면서 제품 수명을 최대화하도록 한 열광 발전 장치를 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above-mentioned conventional problems, and an object of the present invention is to provide a photovoltaic device that maximizes a product life while maintaining power generation efficiency by preventing deformation of a thermoelectric device array due to heat generated in a combustor. .
상기한 목적을 달성하기 위하여 본 발명의 실시 예에 따른 열광 발전 장치는 연료가 투입되는 연료 투입구, 산소가 투입되는 산소 투입구, 연료 투입구로 투입된 연료 및 산소 투입구로 투입된 산소를 이송하는 제1 이송 라인, 제1 이송 라인의 외주에 배치되고, 제1 이송 라인을 통해 이송되는 연료 및 산소를 예열하는 예열기, 예열기에서 예열된 연료 및 산소를 연소하여 열과 빛을 발생하는 연소기, 연소기의 외주에 배치되어 연소기에서 발생하는 빛을 전기 에너지로 변환하는 열광 소자 어레이 및 열광 소자 어레이에서 전도된 열에 의해 예열된 산소를 송풍하여 산소 투입구로 투입하는 순환 팬을 포함한다.In order to achieve the above object, a photovoltaic device according to an embodiment of the present invention includes a fuel inlet through which fuel is injected, an oxygen inlet through which oxygen is injected, a fuel introduced through a fuel inlet, and a first transfer line for transferring oxygen introduced into the oxygen inlet. Is disposed on the outer periphery of the first transfer line, a preheater for preheating the fuel and oxygen transported through the first transfer line, a combustor for generating heat and light by burning the fuel and oxygen preheated in the preheater, the outer periphery of the combustor It includes a thermoelectric element array for converting light generated by the combustor into electrical energy and a circulation fan for blowing oxygen preheated by the heat conducted in the thermoelectric element array to be injected into the oxygen inlet.
상기한 목적을 달성하기 위하여 본 발명의 다른 실시 예에 따른 열광 발전 장치는 연료를 연소하여 열과 빛을 발생하는 연소기 및 연소기의 외주를 따라 배치되고, 연소기에서 발생하는 빛을 전기에너지로 변환하는 열광 소자 어레이를 포함하고, 열광 소자 어레이는 베이스 기재, 베이스 기재의 일면에 행렬 배치된 복수의 열광 소자 및 베이스 기재의 일면에 형성된 단열 부재를 포함한다.In order to achieve the above object, a photovoltaic device according to another embodiment of the present invention is disposed along a circumference of a combustor and a combustor that generates heat and light by burning fuel, and converts light generated by the combustor into electrical energy. An element array, wherein the thermoelectric element array includes a base substrate, a plurality of thermoelectric elements arranged on one surface of the base substrate and a heat insulating member formed on one surface of the base substrate.
본 발명에 의하면, 열광 발전 장치는 방열 핀에 의해 1차 예열된 산소를 순환 팬을 통해 산소 투입구로 투입함으로써, 연료 연소시 사용되는 산소의 온도를 높여 연소 특성을 최대화할 수 있는 효과가 있다. 즉, 열광 발전 장치는 방열 핀에 의해 1차 예열되고, 예열기에 의해 2차 예열되는 산소를 연소기(즉, 이미터)로 공급함으로써, 연소기의 온도를 높여 연소 효율을 최대화할 수 있는 효과가 있다.According to the present invention, the photovoltaic device has an effect of maximizing combustion characteristics by increasing the temperature of oxygen used for fuel combustion by injecting oxygen preheated by the heat radiation fin into the oxygen inlet through a circulation fan. That is, the photovoltaic device has an effect of maximizing combustion efficiency by increasing the temperature of the combustor by supplying oxygen preheated by the heat dissipation fin to the combustor (that is, emitter) by the preheater. .
또한, 열광 발전 장치는 방열 및 산소 투입을 하나의 팬(즉, 순환 팬)을 통해 수행함으로써, 방열을 위한 방열 팬 및 산소 투입을 위한 공기 팬을 구비하는 종래의 열광 발전 장치에 비해 제품을 소형화하면서 제조 단가를 최소화할 수 있는 효과가 있다.In addition, the photovoltaic device performs heat dissipation and oxygen injection through a single fan (that is, a circulation fan), thereby miniaturizing a product compared to a conventional thermoelectric power generation device having a heat radiation fan for heat radiation and an air fan for oxygen injection. While there is an effect that can minimize the manufacturing cost.
또한, 열광 발전 장치는 방열 및 산소 투입을 하나의 팬(즉, 순환 팬)을 통해 수행함으로써, 방열 팬 및 공기 팬을 구비하는 종래의 열광 발전 장치에 비해 열광 발전 장치의 전력 소모를 최소화하여 발전 효율을 최대화할 수 있는 효과가 있다. 즉, 열광 발전 장치는 발전한 전력을 이용하여 순환 팬만을 구동시키기 때문에, 발전한 전력을 이용하여 방열 팬 및 공기 팬을 구동시키기 때문에 종래의 열광 발전 장치에 비해 전력 소모를 최소화하여 발전 효율을 최대화할 수 있는 효과가 있다.In addition, the photovoltaic device generates heat by minimizing the power consumption of the photovoltaic device compared to the conventional photovoltaic device having a heat radiating fan and an air fan by performing heat radiation and oxygen injection through one fan (that is, a circulation fan). There is an effect that can maximize the efficiency. That is, since the photovoltaic device drives only the circulating fan using the generated power, the heat generating fan and the air fan are driven using the generated power, thereby minimizing power consumption compared to the conventional photovoltaic device, thereby maximizing power generation efficiency. It has an effect.
또한, 열광 발전 장치는 베이스 기재의 일면에 단열 부재를 배치함으로써, 연소기에 발생하는 고온에 의한 열광 소자 어레이의 변형을 방지할 수 있는 효과가 있다.In addition, the heat generating apparatus has an effect of preventing deformation of the heat generating element array due to the high temperature generated in the combustor by disposing the heat insulating member on one surface of the base substrate.
또한, 열광 발전 장치는 베이스 기재의 일면에 단열 부재를 배치하여 열광 소자 어레이의 변형을 방지함으로써, 열광 소자의 집광 효율 저하를 방지하여 발전 효율이 저하를 최소화하면서 제품 수명을 최대화할 수 있다.In addition, the thermal photovoltaic device may be disposed on one surface of the base substrate to prevent deformation of the thermal photovoltaic device array, thereby preventing the collection efficiency of the thermal photovoltaic device from being lowered, thereby maximizing product life while minimizing the reduction in power generation efficiency.
또한, 열광 발전 장치는 베이스 기재의 일면에 단열 부재를 형성함으로써, 열광 소자 이외의 영역으로 흡수 또는 방사되는 열을 차단하여 열광 손실을 최소화할 수 있는 효과가 있다.In addition, the thermal photovoltaic device has an effect of minimizing thermal light loss by blocking heat absorbed or radiated to an area other than the thermal device by forming an insulating member on one surface of the base substrate.
또한, 열광 발전 장치는 베이스 기재의 일면에 단열 부재를 형성하여 연소기에서 발생하는 열을 연소기 방향으로 반사시킴으로써, 연소기 내의 온도를 높여 연소기의 연소 효율을 최대화할 수 있는 효과가 있다.In addition, the photovoltaic device has an effect of maximizing the combustion efficiency of the combustor by increasing the temperature in the combustor by forming a heat insulating member on one surface of the base substrate to reflect heat generated in the combustor in the direction of the combustor.
도 1 및 도 2는 본 발명의 실시 예에 따른 열광 발전 장치를 설명하기 위한 도면.1 and 2 are views for explaining a photovoltaic device according to an embodiment of the present invention.
도 3은 도 2의 배출 라인을 설명하기 위한 도면.3 is a view for explaining the discharge line of FIG.
도 4 내지 도 7는 도 2의 열광 소자 어레이를 설명하기 위한 도면.4 to 7 are views for explaining the thermoelectric element array of FIG.
도 8 및 도 9는 도 2의 순환 팬을 설명하기 위한 도면.8 and 9 are views for explaining the circulation fan of FIG.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. . First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1 및 도 2를 참조하면, 열광 발전 장치(100)는 연료 투입구(110), 산소 투입구(120), 제1 이송 라인(130), 예열기(140), 연소기(150), 배출 라인(160), 열광 소자 어레이(170), 순환 팬(180) 및 제2 이송 라인(190)을 포함하여 구성된다. 1 and 2, the photovoltaic device 100 includes a fuel inlet 110, an oxygen inlet 120, a first transfer line 130, a preheater 140, a combustor 150, and an exhaust line 160. ), A thermoelectric element array 170, a circulation fan 180, and a second transfer line 190.
이때, 열광 발전 장치(100)는 제1 본체(200) 및 제2 본체(300)로 구분될 수 있다.In this case, the photovoltaic device 100 may be divided into a first body 200 and a second body 300.
제1 본체(200)는 연료 투입구(110), 산소 투입구(120), 제1 이송 라인(130)의 일부, 예열기(140), 배출 라인(160)의 일부 및 제2 이송 라인(190)의 일부를 포함할 수 있다.The first body 200 may include a fuel inlet 110, an oxygen inlet 120, a portion of the first transfer line 130, a preheater 140, a portion of the discharge line 160, and a portion of the second transfer line 190. May include some.
제2 본체(300)는 연소기(150), 배출라인의 나머지 일부, 열광 소자 어레이(170), 순환 팬(180) 및 제2 이송 라인(190)의 나머지 일부를 포함할 수 있다.The second body 300 may include a combustor 150, the remaining part of the discharge line, the thermoelectric element array 170, the circulation fan 180, and the remaining part of the second transfer line 190.
여기서, 도 1 및 도 2에서는 열광 발전 장치(100)를 용이하게 설명하기 위해서 제1 본체(200) 및 제2 본체(300)로 분리 형성된 후 결합되는 것으로 도시하였으나, 이에 한정되지 않고 제1 본체(200) 및 제2 본체(300)가 일체로 형성될 수 있다.Here, in FIGS. 1 and 2, in order to easily explain the photovoltaic device 100, the first body 200 and the second body 300 are separately formed and then coupled, but the coupling is not limited thereto. The 200 and the second body 300 may be integrally formed.
연료 투입구(110)는 열광 발전원인 광원 생성을 위한 연료가 투입된다. 연료 투입구(110)는 파이프 형태로 형성된다. 연료 투입구(110)의 일단은 외부 연료 공급원(미도시)과 연결된다. 연료 투입구(110)를 통해 연료 공급원으로부터 투입된 연료는 연료 투입구(110)의 타단에 연결된 제1 이송 라인(130)으로 투입된다. 여기서, 연료 투입구(110)는 H2, NH 등의 연료를 투입받는 것을 일례로 한다.The fuel inlet 110 is a fuel for generating a light source that is a hot light source. The fuel inlet 110 is formed in the form of a pipe. One end of the fuel inlet 110 is connected to an external fuel supply source (not shown). Fuel injected from the fuel supply source through the fuel inlet 110 is introduced into the first transfer line 130 connected to the other end of the fuel inlet 110. Here, as an example, the fuel inlet 110 receives fuel such as H 2 and NH.
산소 투입구(120)는 제2 이송 라인(190)을 통해 이송된 산소가 투입된다. 이때, 산소 투입구(120)는 방열 핀(176)에서 1차 예열되어 제2 이송 라인(190)을 통해 이송된 산소를 투입받는다.In the oxygen inlet 120, oxygen transferred through the second transfer line 190 is input. At this time, the oxygen inlet 120 is first preheated by the heat dissipation fin 176 to receive the oxygen transferred through the second transfer line 190.
제1 이송 라인(130)은 투입된 연료 및 산소를 연소기(150)로 이송한다. 즉, 제1 이송 라인(130)은 파이프 형태로 형성된다. 제1 이송 라인(130)의 일단은 연료 투입구(110) 및 산소 투입구(120)와 연결된다. 제1 이송 라인(130)의 타단은 연소기(150)와 연결된다. 제1 이송 라인(130)은 연료 투입구(110) 및 산소 투입구(120)를 통해 투입된 연료 및 산소를 연소기(150)로 이송한다.The first transfer line 130 transfers the injected fuel and oxygen to the combustor 150. That is, the first transfer line 130 is formed in a pipe shape. One end of the first transfer line 130 is connected to the fuel inlet 110 and the oxygen inlet 120. The other end of the first transfer line 130 is connected to the combustor 150. The first transfer line 130 transfers fuel and oxygen introduced through the fuel inlet 110 and the oxygen inlet 120 to the combustor 150.
예열기(140)는 제1 이송 라인(130)을 통해 이송되는 연료 및 산소를 2차 예열한다. 즉, 예열기(140)는 제1 이송 라인(130)의 외주에 배치된다. 예열기(140)는 제1 이송 라인(130)을 통해 이송되는 연료 및 산소를 예열한다. 이때, 예열기(140)는 2차 예열을 통해 방열 핀(176)에 의해 1차 예열된 산소의 온도를 상승시켜 연소기(150)로 이송한다. 여기서, 예열기(140)는 환열기(Recuperator)인 것을 일례로 한다.The preheater 140 secondary preheats the fuel and oxygen transferred through the first transfer line 130. That is, the preheater 140 is disposed on the outer circumference of the first transfer line 130. The preheater 140 preheats the fuel and oxygen which are conveyed through the first transfer line 130. At this time, the preheater 140 raises the temperature of the oxygen preheated by the heat dissipation fin 176 through the second preheating and transfers the oxygen to the combustor 150. Here, the preheater 140 is an example of a recuperator.
연소기(150)는 제1 이송 라인(130)을 통해 공급된 연료를 연소하여 광(빛)과 열을 발생시킨다. 이를 위해, 연소기(150)는 제1 이송 라인(130)을 통해 이송된 연료 및 산소를 혼합한다. 연소기(150)는 혼합 연료(즉, 산소가 혼합된 연료)를 연소시켜 광(빛) 및 열을 발생시킨다.The combustor 150 burns fuel supplied through the first transfer line 130 to generate light (light) and heat. To this end, the combustor 150 mixes fuel and oxygen transferred through the first transfer line 130. The combustor 150 burns mixed fuel (ie, fuel mixed with oxygen) to generate light (light) and heat.
일례로, 연소기(150)는 제1 이송 라인(130)에 연결된 연료 및 산소를 혼합하는 혼합기(미도시), 혼합기에서 혼합된 혼합 연료가 유입되는 챔버(미도시) 및 챔버 내에 배치되는 연소바(미도시)로 구성될 수 있다.For example, the combustor 150 may include a mixer (not shown) for mixing fuel and oxygen connected to the first transfer line 130, a chamber (not shown) into which the mixed fuel mixed in the mixer is introduced, and a combustion bar disposed in the chamber. (Not shown).
배출 라인(160)은 연소기(150)에서 혼합 연료의 연소시 발생하는 배기가스를 열광 발전 장치(100)의 외부로 배출한다. 일례로, 도 3을 참조하면, 배출 라인(160)은 연소기(150), 예열기(140) 및 제1 이송 라인(130)의 외주를 따라 형성되는 파이프 형상으로 형성된다. 배출 라인(160)은 연소기(150)에서 발생하는 배기가스(A)를 이송하여 배출구로 배출한다. 여기서, 도 3에서는 배출 라인(160) 내부에 예열기(140)가 배치된 것으로 도시하였으나, 이에 한정되지 않고, 예열기(140)의 외주를 따라 배출 라인(160)이 형성될 수도 있다.The discharge line 160 discharges the exhaust gas generated during the combustion of the mixed fuel in the combustor 150 to the outside of the photovoltaic device 100. For example, referring to FIG. 3, the discharge line 160 is formed in a pipe shape that is formed along the outer circumference of the combustor 150, the preheater 140, and the first transfer line 130. The discharge line 160 transfers the exhaust gas A generated by the combustor 150 and discharges it to the discharge port. Here, in FIG. 3, the preheater 140 is disposed in the discharge line 160, but the present invention is not limited thereto, and the discharge line 160 may be formed along the outer circumference of the preheater 140.
열광 소자 어레이(170)는 연소기(150) 외주를 따라 배치된다. 열광 소자 어레이(170)는 연소기(150)에서 발생하는 광을 이용하여 전력을 생성한다. 이때, 열광 소자(174)는 온도가 낮을 때 발전효율이 좋은 특성이 있기 때문에, 열광 소자 어레이(170)는 연소기(150)와 소정 간격 이격되어 배치된다.The thermal element array 170 is disposed along the outer circumference of the combustor 150. The thermoelectric element array 170 generates power using light generated by the combustor 150. At this time, since the thermoelectric element 174 has a good power generation efficiency when the temperature is low, the thermoelectric element array 170 is disposed spaced apart from the combustor 150 by a predetermined interval.
도 4를 참조하면, 열광 소자 어레이(170)는 베이스 기재(172), 복수의 열광 소자(174) 및 방열 핀(176)을 포함하여 구성된다.Referring to FIG. 4, the thermoelectric element array 170 includes a base substrate 172, a plurality of thermoelectric elements 174, and heat dissipation fins 176.
베이스 기재(172)는 직사각형 형상의 평판으로 구성된다. 이때, 베이스 기재(172)는 금속 재질의 금속 기판 또는 일반적인 회로기판에 사용되는 수지 재질로 형성될 수 있다.The base substrate 172 is composed of a rectangular flat plate. In this case, the base substrate 172 may be formed of a resin material used for a metal substrate of a metal material or a general circuit board.
복수의 열광 소자(174)는 베이스 기재(172)의 일면에 행렬 배치된다. 즉, 복수의 열광 소자(174)는 연소기(150) 방향으로 배치되는 베이스 기재(172)의 일면에 행렬 배치되어, 연소기(150)에서 연료의 연소에 따라 발생하는 광을 집광하여 전기 에너지로 변환한다. 여기서, 열광 소자(174)는 TPV(Thermophotovoltaic)일 수 있다.The plurality of light emitting elements 174 are arranged in a matrix on one surface of the base substrate 172. That is, the plurality of luminescent elements 174 are arranged in a matrix on one surface of the base substrate 172 disposed in the direction of the combustor 150 to condense the light generated by the combustion of the fuel in the combustor 150 and convert the light into electrical energy. do. Here, the thermoelectric element 174 may be thermophotovoltaic (TPV).
방열 핀(176)은 베이스 기재(172)의 타면에 배치된다. 방열 핀(176)은 열 전도를 통해 복수의 열광 소자(174)로부터 열을 흡수하여 외부로 방출한다. 즉, 열광 소자(174)는 온도가 낮을 때 발전효율이 좋은 특성이 있기 때문에, 방열 핀(176)은 열광 소자(174)가 형성된 베이스 기재(172)의 일면에 대향되는 타면에 배치되어 열광 소자(174)에서 발생하는 열을 방출시킨다.The heat dissipation fin 176 is disposed on the other surface of the base substrate 172. The heat dissipation fin 176 absorbs heat from the plurality of light emitting elements 174 through heat conduction and releases the heat to the outside. That is, since the thermal element 174 has a good power generation efficiency when the temperature is low, the heat radiation fin 176 is disposed on the other surface opposite to one surface of the base substrate 172 on which the thermal element 174 is formed, the thermal element The heat generated at 174 is released.
열광 소자 어레이(170)는 베이스 기재(172)의 변형을 통해 원통 형상으로 형성된다. 이때, 열광 소자 어레이(170)는 내부가 빈 원통 형상으로 형성된 베이스 기재(172)의 내부면(즉, 연소기(150) 방향)에 복수의 열광 소자(174)들이 배치되어 구성된다. 열광 소자 어레이(170)는 연소기(150)의 외주와 소정 간격 이격되어 배치된다.The thermal element array 170 is formed in a cylindrical shape through deformation of the base substrate 172. In this case, the thermoelectric element array 170 is configured by arranging a plurality of thermoelectric elements 174 on an inner surface (ie, the combustor 150 direction) of the base substrate 172 having a hollow cylindrical shape. The thermal element array 170 is disposed spaced apart from the outer circumference of the combustor 150 by a predetermined interval.
한편, 베이스 기재(172)는 금속 재질 또는 수지 재질로 형성되기 때문에 연소기의 연료 연소시 발생하는 고온에 의해 변형(예를 들면, 수축, 팽창)이 발생할 수 있다. 베이스 기재(172)는 고온에 의한 변형이 발생하는 경우 평탄도가 저하된다.On the other hand, since the base substrate 172 is formed of a metal material or a resin material, deformation (for example, shrinkage or expansion) may occur due to a high temperature generated during fuel combustion of the combustor. The flatness of the base substrate 172 is lowered when deformation due to high temperature occurs.
열광 소자(174)는 베이스 기재(172)의 일면에 배치되기 때문에 베이스 기재(172)의 평탄도가 저하되면 집광 효율이 저하된다. 즉, 열광 소자(174)는 베이스 기재(172)의 변형에 따라 평탄도가 저하되면 방열 특성이 저하되어 열광 소자(174)의 표면 온도가 증가한다. 열광 소자(174)는 표면 온도가 증가함에 따라 광 특성(즉, 집광 효율)이 저하된다. 이로 인해, 열광 발전 장치(100)는 열광 소자(174)의 집광 효율이 저하됨에 따라 발전 효율이 저하된다.Since the light emitting element 174 is disposed on one surface of the base substrate 172, when the flatness of the base substrate 172 is lowered, the light collection efficiency is lowered. That is, when the flatness of the thermoelectric element 174 decreases due to the deformation of the base substrate 172, the heat dissipation characteristic is lowered, and the surface temperature of the thermoelectric element 174 increases. The thermoluminescent element 174 is deteriorated in optical characteristics (ie, condensing efficiency) as the surface temperature increases. For this reason, in the heat generating apparatus 100, as the light collecting efficiency of the heat generating element 174 is lowered, the power generating efficiency is lowered.
따라서, 열광 발전 장치(100)의 발전 효율을 일정하게 유지하면서 제품 수명을 증가시키기 위해서는 연소기(150)에서 발생하는 열에 의한 베이스 기재(172)의 변형을 방지해야 한다.Therefore, in order to increase the life of the product while maintaining a constant power generation efficiency of the photovoltaic device 100, it is necessary to prevent deformation of the base substrate 172 due to heat generated from the combustor 150.
도 5 내지 도 7을 참조하면, 열광 소자 어레이(170)는 베이스 기재(172)의 일면에 형성되는 단열 부재(178)를 더 포함할 수 있다. 여기서, 도 6 및 도 7은 단열 부재(178)의 형성 위치를 용이하게 설명하기 위해 베이스 시트(172)가 평판 상태인 것으로 도시한다.5 to 7, the thermoelectric element array 170 may further include a heat insulating member 178 formed on one surface of the base substrate 172. 6 and 7 show that the base sheet 172 is in a flat state in order to easily explain the formation position of the heat insulating member 178.
단열 부재(178)가 열광 소자(174)의 표면에 배치되면 단열 부재(178)에 의한 광의 굴절, 흡수 또는 반사되기 때문에 열광 소자(174)의 집광 효율이 저하된다.When the heat insulating member 178 is disposed on the surface of the light emitting element 174, the light collecting efficiency of the light emitting element 174 is lowered because the light is refracted, absorbed, or reflected by the heat insulating member 178.
이에, 단열 부재(178)는 베이스 기재(172)의 일면에 형성되되, 베이스 기재의 일면에 배치된 열광 소자(174)의 표면을 덮지 않도록 형성된다. 즉, 단열 부재(178)는 베이스 기재(172)의 일면에 형성되되, 복수의 열광 소자(174)가 형성되지 않은 영역에만 형성된다.Thus, the heat insulating member 178 is formed on one surface of the base substrate 172, but is formed so as not to cover the surface of the light emitting element 174 disposed on one surface of the base substrate. That is, the heat insulating member 178 is formed on one surface of the base substrate 172, but is formed only in an area where the plurality of light emitting elements 174 are not formed.
단열 부재(178)는 은 에폭시(Ag Epoxy), 폴리이미드(Polyimide) 등과 같이, 연성을 가지면서 고열에 변형이 없는 수지 재질인 것을 일례로 한다.For example, the heat insulating member 178 is made of a resin material having high ductility and no deformation at high temperature, such as silver epoxy or polyimide.
단열 부재(178)는 은 페이스트의 인쇄를 통해 베이스 기재(172)에 형성된 후, 열광 소자(174)가 배치되는 영역을 식각하여 형성되는 것을 일례로 한다. 이때, 열광 소자(174)는 단열 부재(178)가 형성된 베이스 기재(172)에 배치된다.Insulating member 178 is formed on the base substrate 172 through the printing of the silver paste, and then is formed by etching the region in which the thermal element 174 is disposed. In this case, the thermoelectric element 174 is disposed on the base substrate 172 on which the heat insulating member 178 is formed.
물론, 단열 부재(178)는 열광 소자(174)가 배치된 베이스 기재(172)에 은 페이스트를 인쇄하여 형성될 수도 있다.Of course, the heat insulating member 178 may be formed by printing a silver paste on the base substrate 172 on which the light emitting element 174 is disposed.
단열 부재(178)는 열광 소자(174) 이외의 영역으로 흡수 또는 방사되는 열을 차단하여 열광 손실을 최소화할 수 있다.The heat insulating member 178 may minimize heat light loss by blocking heat absorbed or radiated to a region other than the heat light emitting device 174.
또한, 단열 부재(178)는 연소기(150)에서 발생하는 열을 연소기(150) 방향으로 반사시켜 연소기(150) 내의 온도를 높여 연소기(150)의 연소 효율을 최대화할 수 있다.In addition, the heat insulating member 178 may reflect the heat generated from the combustor 150 in the direction of the combustor 150 to increase the temperature in the combustor 150 to maximize the combustion efficiency of the combustor 150.
열광 소자 어레이(170)는 베이스 기재(172)의 변형을 통해 원통 형상으로 형성된다. 열광 소자 어레이(170)는 내부가 빈 원통 형상으로 형성된 베이스 기재(172)의 내부면(즉, 연소기(150) 방향)에 복수의 열광 소자(174)들이 배치된다. 이때, 열광 소자 어레이(170)는 연소기(150)의 외주와 소정 간격 이격되어 배치된다.The thermal element array 170 is formed in a cylindrical shape through deformation of the base substrate 172. In the thermoelectric element array 170, a plurality of thermoelectric elements 174 are disposed on an inner surface of the base substrate 172 (ie, in the direction of the combustor 150) formed in a hollow cylindrical shape. In this case, the thermoelectric element array 170 is disposed spaced apart from the outer circumference of the combustor 150 by a predetermined interval.
열광 소자 어레이(170)는 베이스 기재(172)의 내부면(즉, 연소기(150) 방향)에 단열 부재(178)가 배치된다. 이때, 단열 부재(178)는 열광 소자(174) 사이의 이격 공간에 형성되어 연소기(150)에 발생하는 고온에 의한 베이스 기재(172)의 변형을 방지한다.In the thermoelectric element array 170, a heat insulating member 178 is disposed on an inner surface of the base substrate 172 (that is, the combustor 150 direction). At this time, the heat insulating member 178 is formed in the spaced space between the thermal element 174 to prevent the deformation of the base substrate 172 due to the high temperature generated in the combustor 150.
순환 팬(180)은 방열 핀(176) 외주의 공간에 위치한 산소(즉, 공기)를 제2 이송 라인(190)을 통해 산소 투입구(120)로 순환시킨다. 즉, 도 8 및 도 9를 참조하면, 순환 팬(180)은 연소기(150)의 타측 방향에 배치되어 연소기(150) 방향으로 산소(C)를 송풍한다. 이때, 순환 팬(180)은 회전 구동하여 방열 핀(176)에서 방출되는 열에 의해 1차 예열된 산소(C; 즉, 공기)를 제2 이송 라인(190)을 통해 산소 투입구(120)로 순환시킨다. 이를 통해, 연료 투입구(110)로 투입된 연료(B)와 산소(C)가 제1 이송 라인(130)을 통해 연소기(150)로 공급된다 이때, 방열 핀(176)에 의해 1차 예열된 산소(즉, 공기)는 순환 팬(180)에 의해 제2 이송 라인(190)을 통해 산소 투입구(120)로 투입된다..The circulation fan 180 circulates oxygen (ie, air) located in the space around the heat dissipation fin 176 to the oxygen inlet 120 through the second transfer line 190. That is, referring to FIGS. 8 and 9, the circulation fan 180 is disposed in the other direction of the combustor 150 to blow oxygen C toward the combustor 150. At this time, the circulation fan 180 rotates to circulate the oxygen (C; primary air) preheated by the heat discharged from the heat dissipation fin 176 to the oxygen inlet 120 through the second transfer line 190. Let's do it. As a result, the fuel B and the oxygen C injected into the fuel inlet 110 are supplied to the combustor 150 through the first transfer line 130. At this time, the oxygen preheated by the heat dissipation fin 176 is primarily preheated. (Ie, air) is introduced into the oxygen inlet 120 through the second transfer line 190 by the circulation fan 180.
이처럼, 열광 발전 장치(100)는 방열 핀(176)에 의해 1차 예열된 산소를 순환 팬(180)을 통해 산소 투입구(120)로 투입함으로써, 연료 연소시 사용되는 산소의 온도를 높여 연소 특성을 최대화할 수 있는 효과가 있다. 즉, 열광 발전 장치(100)는 방열 핀(176)에 의해 1차 예열되고, 예열기(140)에 의해 2차 예열되는 산소를 연소기(150; 즉, 이미터)로 공급함으로써, 연소기(150)의 온도를 높여 연소 효율을 최대화할 수 있는 효과가 있다.As such, the photovoltaic device 100 injects oxygen preheated by the heat dissipation fin 176 into the oxygen inlet 120 through the circulation fan 180, thereby increasing the temperature of oxygen used in fuel combustion to increase combustion characteristics. It has the effect of maximizing. That is, the heat generating apparatus 100 supplies the oxygen preheated by the heat dissipation fin 176 to the combustor 150 (that is, the emitter) by the preheater 140, and thus the combustor 150. By increasing the temperature of the combustion effect can be maximized.
또한, 열광 발전 장치(100)는 방열 및 산소 투입을 하나의 팬(즉, 순환 팬(180))을 통해 수행함으로써, 방열을 위한 방열 팬 및 산소 투입을 위한 공기 팬을 구비하는 종래의 열광 발전 장치(100)에 비해 제품을 소형화하면서 제조 단가를 최소화할 수 있는 효과가 있다.In addition, the photovoltaic device 100 performs heat radiation and oxygen injection through one fan (that is, the circulation fan 180), thereby providing a conventional photovoltaic power generation device including a heat radiation fan for heat radiation and an air fan for oxygen injection. Compared to the device 100, while miniaturizing the product, it is possible to minimize the manufacturing cost.
또한, 열광 발전 장치(100)는 방열 및 산소 투입을 하나의 팬(즉, 순환 팬(180))을 통해 수행함으로써, 방열 팬 및 공기 팬을 구비하는 종래의 열광 발전 장치(100)에 비해 열광 발전 장치(100)의 전력 소모를 최소화하여 발전 효율을 최대화할 수 있는 효과가 있다. 즉, 열광 발전 장치(100)는 발전한 전력을 이용하여 순환 팬(180)만을 구동시키기 때문에, 발전한 전력을 이용하여 방열 팬 및 공기 팬을 구동시키기 때문에 종래의 열광 발전 장치(100)에 비해 전력 소모를 최소화하여 발전 효율을 최대화할 수 있는 효과가 있다.In addition, the photovoltaic device 100 performs heat radiation and oxygen injection through one fan (that is, the circulation fan 180), so that heat is generated compared to the conventional photovoltaic device 100 having a heat radiation fan and an air fan. Minimizing the power consumption of the power generation device 100 has the effect of maximizing power generation efficiency. That is, since the photovoltaic device 100 drives only the circulating fan 180 by using the generated power, it uses the generated power to drive the heat dissipation fan and the air fan, thereby consuming more power than the conventional photovoltaic device 100. There is an effect that can maximize the power generation efficiency by minimizing.
제2 이송 라인(190)은 방열 핀(176)과 예열기(140)의 외주를 따라 형성되어, 순환 팬(180)에 의해 송풍된 산소를 산소 투입구(120)로 이송시킨다. 즉, 도 4 내지 도 7을를 참조하면, 방열 핀(176)에 의해 1차 예열된 산소는 순환 팬(180)에 의해 연소기(150) 방향으로 송풍되어 제2 이송 라인(190)으로 투입되고, 제2 이송 라인(190)을 통해 산소 투입구(120)로 이송된다.The second transfer line 190 is formed along the outer circumference of the heat dissipation fin 176 and the preheater 140 to transfer the oxygen blown by the circulation fan 180 to the oxygen inlet 120. That is, referring to FIGS. 4 to 7, the oxygen preheated by the heat dissipation fin 176 is blown to the combustor 150 by the circulation fan 180 and introduced into the second transfer line 190. It is transferred to the oxygen inlet 120 through the second transfer line 190.
이상에서 본 발명에 따른 바람직한 실시 예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형 예 및 수정 예를 실시할 수 있을 것으로 이해된다.Although a preferred embodiment according to the present invention has been described above, modifications can be made in various forms, and those skilled in the art may make various modifications and modifications without departing from the scope of the claims of the present invention. It is understood that it may be practiced.

Claims (12)

  1. 연료가 투입되는 연료 투입구;A fuel inlet through which fuel is injected;
    산소가 투입되는 산소 투입구;An oxygen inlet port through which oxygen is introduced;
    상기 연료 투입구로 투입된 연료 및 상기 산소 투입구로 투입된 산소를 이송하는 제1 이송 라인;A first transfer line configured to transfer fuel introduced into the fuel inlet and oxygen introduced into the oxygen inlet;
    상기 제1 이송 라인의 외주에 배치되고, 상기 제1 이송 라인을 통해 이송되는 연료 및 산소를 예열하는 예열기;A preheater disposed on an outer circumference of the first transfer line and preheating fuel and oxygen transferred through the first transfer line;
    상기 예열기에서 예열된 연료 및 산소를 연소하여 열과 빛을 발생하는 연소기;A combustor which generates heat and light by burning fuel and oxygen preheated in the preheater;
    상기 연소기의 외주에 배치되어 상기 연소기에서 발생하는 빛을 전기 에너지로 변환하는 열광 소자 어레이; 및A thermoelectric element array disposed at an outer circumference of the combustor to convert light generated by the combustor into electrical energy; And
    상기 열광 소자 어레이에서 전도된 열에 의해 예열된 산소를 송풍하여 상기 산소 투입구로 투입하는 순환 팬을 포함하는 열광 발전 장치.And a circulation fan for blowing oxygen preheated by the heat conducted from the thermoelectric element array and injecting the oxygen into the oxygen inlet.
  2. 제1항에 있어서,The method of claim 1,
    상기 연소기, 상기 예열기 및 상기 열광 소자 어레이의 외주에 배치되어 상기 순환 팬에 의해 송풍된 산소를 상기 산소 투입구로 이송하는 제2 이송 라인을 더 포함하는 열광 발전 장치.And a second transfer line disposed on an outer circumference of the combustor, the preheater, and the thermoelectric element array, to transfer the oxygen blown by the circulation fan to the oxygen inlet.
  3. 제1항에 있어서,The method of claim 1,
    상기 열광 소자 어레이는,The thermoelectric element array,
    베이스 기재;Base substrate;
    상기 베이스 기재의 일면에 상호 이격 배치된 복수의 열광 소자; 및A plurality of thermoelectric elements spaced apart from each other on one surface of the base substrate; And
    상기 베이스 기재의 타면에 배치된 방열 핀을 포함하는 열광 발전 장치.And a heat dissipation fin disposed on the other side of the base substrate.
  4. 제3항에 있어서,The method of claim 3,
    상기 순환 팬은 상기 방열 핀이 배치된 공간의 산소를 제2 이송 라인을 통해 상기 산소 투입구로 투입하되,The circulation fan injects oxygen in the space where the heat dissipation fin is disposed to the oxygen inlet through a second transfer line,
    상기 산소 투입구로 투입된 산소는 상기 방열 핀에 의해 1차 예열된 열광 발전 장치.Oxygen injected into the oxygen inlet is preheated by the heat radiation fins first pre-heating device.
  5. 제1항에 있어서,The method of claim 1,
    상기 연소기는 일단이 상기 제1 이송 라인과 연결되고, 타단이 상기 순환 팬과 이격 배치된 열광 발전 장치.One end of the combustor is connected to the first transfer line, the other end of the heat generating device is disposed apart from the circulation fan.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 이송 라인의 일단은 상기 연료 투입구 및 산소 투입구와 연결되고, 상기 제1 이송 라인의 타단은 상기 연소기에 연결된 열광 발전 장치.One end of the first transfer line is connected to the fuel inlet and the oxygen inlet, and the other end of the first transfer line is connected to the combustor.
  7. 연료를 연소하여 열과 빛을 발생하는 연소기; 및A combustor that burns fuel and generates heat and light; And
    상기 연소기의 외주를 따라 배치되고, 상기 연소기에서 발생하는 빛을 전기에너지로 변환하는 열광 소자 어레이를 포함하고,It is disposed along the outer periphery of the combustor, and includes a thermoelectric element array for converting light generated in the combustor into electrical energy,
    상기 열광 소자 어레이는,The thermoelectric element array,
    베이스 기재;Base substrate;
    상기 베이스 기재의 일면에 행렬 배치된 복수의 열광 소자; 및A plurality of luminescent elements arranged in a matrix on one surface of the base substrate; And
    상기 베이스 기재의 일면에 형성된 단열 부재를 포함하는 열광 발전 장치.The photovoltaic device comprising a heat insulating member formed on one surface of the base substrate.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 단열 부재는 The heat insulating member
    상기 연소기의 방향으로 배치된 상기 베이스 기재의 일면에 형성되고, Is formed on one surface of the base substrate disposed in the direction of the combustor,
    상기 복수의 열광 소자가 형성된 영역을 제외한 영역에 형성된 열광 발전 장치.A photovoltaic device formed in a region other than the region in which the plurality of thermoelectric elements are formed.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 단열 부재는 은(Ag) 에폭시 및 폴리이미드 중 선택된 하나인 열광 발전 장치.The heat insulating member is a photovoltaic device of one selected from silver (Ag) epoxy and polyimide.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 열광 소자 어레이는 상기 베이스 기재의 타면에 배치된 방열 핀을 더 포함하는 열광 발전 장치.The photovoltaic device array further includes a heat radiation fin disposed on the other surface of the base substrate.
  11. 제7항에 있어서,The method of claim 7, wherein
    연료가 투입되는 연료 투입구;A fuel inlet through which fuel is injected;
    산소가 투입되는 산소 투입구;An oxygen inlet port through which oxygen is introduced;
    상기 연료 투입구로 투입된 연료 및 상기 산소 투입구로 투입된 산소를 이송하는 제1 이송 라인;A first transfer line configured to transfer fuel introduced into the fuel inlet and oxygen introduced into the oxygen inlet;
    상기 열광 소자 어레이에서 전도된 열에 의해 예열된 산소를 송풍하여 상기 산소 투입구로 투입하는 순환 팬; 및A circulation fan for blowing oxygen preheated by the heat conducted from the thermoelectric element array and introducing the oxygen into the oxygen inlet; And
    상기 연소기 및 상기 열광 소자 어레이의 외주에 배치되어 상기 순환 팬에 의해 송풍된 산소를 상기 산소 투입구로 이송하는 제2 이송 라인을 더 포함하는 열광 발전 장치.And a second transfer line disposed at an outer circumference of the combustor and the thermoelectric element array to transfer oxygen blown by the circulation fan to the oxygen inlet.
  12. 제11항에 있어서,The method of claim 11,
    상기 순환 팬은 The circulation fan is
    상기 베이스 기재의 타면에 배치된 방열 핀이 배치된 공간의 산소를 제2 이송 라인을 통해 상기 산소 투입구로 투입하되,Oxygen in the space in which the heat dissipation fin disposed on the other side of the base substrate is placed into the oxygen inlet through the second transfer line,
    상기 산소 투입구로 투입된 산소는 상기 방열 핀에 의해 1차 예열된 열광 발전 장치.Oxygen injected into the oxygen inlet is preheated by the heat radiation fins first pre-heating device.
PCT/KR2018/004453 2017-05-11 2018-04-17 Thermo-photovoltaic device WO2018208025A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170058794A KR101968657B1 (en) 2017-05-11 2017-05-11 Thermophotovoltaic device
KR1020170058795A KR101977042B1 (en) 2017-05-11 2017-05-11 Thermophotovoltaic device
KR10-2017-0058794 2017-05-11
KR10-2017-0058795 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018208025A1 true WO2018208025A1 (en) 2018-11-15

Family

ID=64104738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004453 WO2018208025A1 (en) 2017-05-11 2018-04-17 Thermo-photovoltaic device

Country Status (1)

Country Link
WO (1) WO2018208025A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106452A (en) * 1998-09-28 2000-04-11 Ishikawajima Harima Heavy Ind Co Ltd Thermal photovoltaic generation method and device for that
US6218607B1 (en) * 1997-05-15 2001-04-17 Jx Crystals Inc. Compact man-portable thermophotovoltaic battery charger
JP2002315371A (en) * 2001-04-13 2002-10-25 Toyota Motor Corp Thermal-optical power generator
JP2002354854A (en) * 2001-05-22 2002-12-06 Tokyo Gas Co Ltd Generating equipment and power generation system using thermal-photovoltaic power generation
WO2015098025A1 (en) * 2013-12-24 2015-07-02 日本電気株式会社 Thermovoltaic power generation apparatus and thermovoltaic power generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218607B1 (en) * 1997-05-15 2001-04-17 Jx Crystals Inc. Compact man-portable thermophotovoltaic battery charger
JP2000106452A (en) * 1998-09-28 2000-04-11 Ishikawajima Harima Heavy Ind Co Ltd Thermal photovoltaic generation method and device for that
JP2002315371A (en) * 2001-04-13 2002-10-25 Toyota Motor Corp Thermal-optical power generator
JP2002354854A (en) * 2001-05-22 2002-12-06 Tokyo Gas Co Ltd Generating equipment and power generation system using thermal-photovoltaic power generation
WO2015098025A1 (en) * 2013-12-24 2015-07-02 日本電気株式会社 Thermovoltaic power generation apparatus and thermovoltaic power generation method

Similar Documents

Publication Publication Date Title
WO2012091459A2 (en) Battery module storage device, battery module temperature adjustment device, and electric power storage system having same
WO2016200144A1 (en) Battery pack thermal management system for electric vehicle
WO2012148160A2 (en) Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
WO2020009465A1 (en) Battery module
CN107112608B (en) Thermal management device of battery pack
WO2011002261A2 (en) Solar energy ac generating apparatus
WO2011002213A2 (en) Photovoltaic power-generating apparatus
WO2013165098A1 (en) Battery module and method for manufacturing the same
WO2013137612A1 (en) Battery cooling system using thermoelectric element
WO2012169750A2 (en) Lighting apparatus for broadcasting
WO2018208025A1 (en) Thermo-photovoltaic device
WO2011126176A1 (en) Solar power generator and streetlamp having same
CN108282981A (en) Wireless telemetering gas-meter data station radiating shell
WO2013042812A1 (en) Integral apparatus for generating x-rays
CN104578975A (en) Portable power supply device based on micro-combustion
WO2016003088A1 (en) Thermoelectric generator comprising liquid metal heat exchange unit
WO2014003334A1 (en) Photovoltaic module cooling device applied to solar energy conversion apparatus
WO2018117337A1 (en) Solar cell cooling device
KR101968657B1 (en) Thermophotovoltaic device
KR101977042B1 (en) Thermophotovoltaic device
WO2017191992A1 (en) Thermophotovoltaic device
KR101946971B1 (en) Apparatus and method for controlling fuel and oxygen input for thermophotovoltaic device
WO2015160151A1 (en) Thermoelectric device and thermoelectric system comprising same
CN111818252B (en) Electronic equipment and camera module thereof
WO2019245156A1 (en) Multifunctional heat storage thermoelectric hybrid power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797929

Country of ref document: EP

Kind code of ref document: A1