WO2018207995A1 - 무선통신 시스템에서 srs 설정 정보를 수신하는 방법 및 이를 위한 단말 - Google Patents

무선통신 시스템에서 srs 설정 정보를 수신하는 방법 및 이를 위한 단말 Download PDF

Info

Publication number
WO2018207995A1
WO2018207995A1 PCT/KR2018/000857 KR2018000857W WO2018207995A1 WO 2018207995 A1 WO2018207995 A1 WO 2018207995A1 KR 2018000857 W KR2018000857 W KR 2018000857W WO 2018207995 A1 WO2018207995 A1 WO 2018207995A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
information
block
blocks
terminal
Prior art date
Application number
PCT/KR2018/000857
Other languages
English (en)
French (fr)
Inventor
최국헌
박종현
강지원
김규석
안민기
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/611,576 priority Critical patent/US11165546B2/en
Publication of WO2018207995A1 publication Critical patent/WO2018207995A1/ko
Priority to US17/480,796 priority patent/US11683140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for receiving SRS configuration information in a wireless communication system and a terminal for the same.
  • RAT radio access technology
  • massive MTC Machine Type Communications
  • eMBB enhanced mobile broadband communication
  • mMTC massive MTC
  • URLLC Ultra-Reliable and Low Latency Communication
  • An object of the present invention is to provide a method for a terminal to receive SRS configuration information in a wireless communication system.
  • Another object of the present invention is to provide a terminal for receiving SRS configuration information in a wireless communication system.
  • a method for receiving a Sounding Reference Symbol (SRS) configuration information by a terminal in a wireless communication system may include SRS in units of concatenated SRS blocks from a base station. Receiving SRS configuration information for transmission; And transmitting the SRS to the base station on the concatenated SRS blocks based on the SRS configuration information, wherein the SRS configuration information includes (1) information indicating the length of one SRS block, and (2) SRS bandwidth. (3) information indicating a number of SRS blocks, (4) information indicating a start position or an end position of an SRS block in a frequency domain, and (5) generating a sequence for the concatenated SRS blocks. It may include at least two or more information of the information of the parameter.
  • SRS Sounding Reference Symbol
  • the information on the sequence generation parameter for the concatenated SRS blocks may include information about the value of the sequence generation parameters or the number of the sequence generation parameters.
  • the SRS configuration information may be received through Downlink Control Information (DCI), MAC Control Element (MAC), or Radio Resource Control (RRC) signaling.
  • the SRS configuration information may further include information indicating an SRS block in which truncation is performed among the concatenated SRS blocks and information on the truncated frequency domain range.
  • the length of the SRS block in which the truncation is performed is different in length from the remaining SRS blocks in the frequency domain.
  • the information about the frequency domain range to be cut may include at least one of cutting start positions and cutting end positions.
  • the information on the value of the sequence generation parameters may include at least one of a root index, a cyclic shift (CS) index, a transmission comb (TC), and a TC offset value for sequence generation.
  • a method for receiving a Sounding Reference Symbol (SRS) configuration information by a terminal in a wireless communication system is provided in units of concatenated SRS blocks from a base station.
  • the method may further include transmitting information on the SRS configuration capability of the terminal to the base station, wherein the SRS configuration information may be determined based on the information on the SRS configuration capability of the terminal.
  • the information on the SRS configuration capability of the terminal may include at least one of information on a requested Peak-to-Average Power Ratio (PAPR), a desired SRS bandwidth, and a desired SRS allocation position.
  • the unit of the SRS block may be a resource block (RB) unit or a resource elemet (RE) unit.
  • a terminal for receiving control information for transmitting a Sounding Reference Symbol (SRS) in a wireless communication system the transmitter; receiving set; And a processor, wherein the processor controls the receiver to receive SRS configuration information for SRS transmission in units of concatenated SRS blocks from a base station, and wherein the transmitter is based on the SRS configuration information.
  • the SRS configuration information includes (1) information indicating the length of one SRS block, (2) information indicating the SRS bandwidth, and (3) the SRS block.
  • the SRS configuration information may further include information indicating an SRS block in which truncation is performed among the concatenated SRS blocks and information on the truncated frequency domain range.
  • a terminal for receiving control information for transmitting a Sounding Reference Symbol (SRS) in a wireless communication system includes: a transmitter; receiving set; And a processor, wherein the processor controls the receiver to receive SRS configuration information for SRS transmission in units of concatenated SRS blocks from a base station, and wherein the transmitter is based on the SRS configuration information.
  • the SRS is controlled to be transmitted to the base station on the concatenated SRS blocks, wherein the SRS configuration information includes information indicating the length of one SRS block, information indicating the number of SRS blocks, and truncation among the concatenated SRS blocks. It may include information indicating an SRS block on which truncation is performed.
  • the processor may control the transmitter to transmit information about the SRS configuration capability of the terminal to the base station, and the SRS configuration information may be determined based on the information on the SRS configuration capability of the terminal.
  • concatenated blocks SRS is set to improve flexible resource utilization, and SRS is set to truncate SRS resource length in one block to further increase flexiblity for communication. It can improve performance.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2A illustrates a TXRU virtualization model option 1 (sub-array model)
  • FIG. 2B illustrates a TXRU virtualization model option 2 (full connection model).
  • 3 is a block diagram for hybrid beamforming.
  • FIG. 4 is a diagram illustrating an example of a beam mapped to BRS symbols in hybrid beamforming.
  • 5 is an exemplary diagram illustrating symbol / sub-symbol alignment between different numerologies.
  • FIG. 6 illustrates the performance of 52-length autocorrelation using two 26-length Golay Complementary Sequence pairs.
  • FIG. 7 is a diagram illustrating cross-correlation between sequences having different CSs in a Golay sequence of length 52.
  • FIG. 8 is a diagram illustrating cross-correlation and cubic-metric evaluation of ZC, Golay, and PN sequences.
  • FIG. 10 is a diagram illustrating a method of generating an SRS sequence according to TC.
  • FIG. 11 illustrates a difficulty in maintaining orthogonality for overlapping portions in free frequency mapping when using a ZC sequence.
  • FIG. 12 is a diagram illustrating a structure of a concatenated block SRS configured in units of multiple ZC sequences.
  • 13 is a diagram illustrating SRS unit overlapping.
  • Figure 14 is a block of ZC sequence (the length M 1) and the CS index Figure is an illustration.
  • FIG. 16 is a diagram illustrating PAPR with a SRS BW of 96RB and a variable block length. .
  • FIG. 17 is a diagram illustrating a method for allocating (SRS) block length according to a link budget.
  • SRS 18 is a diagram illustrating setting of (SRS) block length according to SRS resource location.
  • FIG. 19 is a diagram illustrating SRS bandwidth setting and truncation setting according to block and sub-band number settings.
  • 21 is a diagram illustrating SRS block truncation through SRS resource location information transmission.
  • FIG. 22 is a diagram illustrating an example of frequency resource setting and SRS arrangement (aligning the start position of the SRS bandwidth to the smallest block length position).
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • a UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types:-trigger type 0: higher layer signaling-trigger type 1: DCI formats 0/4 / 1A for FDD and TDD and DCI formats 2B / 2C / 2D for TDD.
  • SRS Sounding Reference Symbol
  • a UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell.
  • SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1.
  • -Transmission comb as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-Starting physical resource block assignment n RRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-duration: single or indefinite (until disabled), as defined in [11] for trigger type 0-srs-ConfigIndex I SRS for SRS periodicity T SRS and SRS subframe offset T offset , as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity T SRS, 1 , and SRS subframe offset T SRS, 1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1-SRS bandwidth B SRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-Frequency hopping bandwidth, b hop , as
  • the 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1.
  • a single set of SRS parameters srs-ConfigApDCI-Format0
  • a single common set of SRS parameters srs-ConfigApDCI-Format1a2b2c
  • the SRS request field is 1 bit [4] for DCI formats 0 / 1A / 2B / 2C / 2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'.
  • a 1-bit SRS request field shall be included in DCI formats 0 / 1A for frame structure type 1 and 0 / 1A / 2B / 2C / 2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0 / 1A / 2B / 2C / 2D by higher-layer signalling.
  • Table 2 below shows a SRS Request Value for trigger type 1 in DCI format 4 in 3GPP LTE / LTE-A system.
  • Table 3 is a table for further explaining the additional information related to the SRS transmission in the 3GPP LTE / LTE-A system.
  • the serving cell specific SRS transmission bandwidths C SRS are configured by higher layers.
  • the allowable values are given in subclause 5.5.3.2 of [3].
  • the serving cell specific SRS transmission sub-frames are configured by higher layers.
  • the allowable values are given in subclause 5.5.3.3 of [3].
  • SRS transmissions can occur in UpPTS and uplink subframes of the UL / DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.
  • a UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling.
  • Np may be configured by higher layer signalling.
  • a UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell.
  • the SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.
  • a UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.
  • TDD serving cell when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission.
  • both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.
  • a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2 / 2a / 2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2 / 2a / 2b transmissions happen to coincide in the same subframe;
  • the UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a / 2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe;
  • -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.
  • the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and / or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.
  • a UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and / or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.
  • the UE shall not transmit SRS whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell.
  • the parameter ackNackSRS-Simultaneous Transmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and
  • the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4. 1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured.
  • This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe.
  • the cell specific SRS subframes are defined in subclause 5.5.3.3 of [3].
  • the UE shall use the normal PUCCH format 1 / 1a / 1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, T SRS , and SRS subframe offset, T offset , is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively .
  • the periodicity T SRS of the SRS transmission is serving cell specific and is selected from the set ⁇ 2, 5, 10, 20, 40, 80, 160, 320 ⁇ ms or subframes.
  • T SRS For the SRS periodicity T SRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe (s) of the given serving cell.
  • TDD serving cell For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL / DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.
  • Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, T SRS, 1 , and SRS subframe offset, T offset, 1 is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively.
  • the periodicity T SRS, 1 of the SRS transmission is serving cell specific and is selected from the set ⁇ 2, 5, 10 ⁇ ms or subframes.
  • a UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH / EPDCCH scheduling PUSCH / PDSCH on serving cell c
  • a UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH / EPDCCH scheduling PUSCH / PDSCH with the value of carrier indicator field corresponding to serving cell c .
  • a UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signaling, for the same subframe and the same serving cell.
  • the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL / DL-con
  • Table 4 shows a subframe offset configuration (T offset) and UE-specific SRS periodicity (T SRS ) for trigger type 0 in FDD.
  • Table 5 below shows subframe offset configuration (T offset) and UE-specific SRS periodicity (T SRS ) for trigger type 0 in TDD.
  • SRS Configuration Index I SRS SRS Periodicity (ms) SRS Subframe Offset 0 2 0, 1 One 2 0, 2 2 2 1, 2 3 2 0, 3 4 2 1, 3 5 2 0, 4 6 2 1, 4 7 2 2, 3 8 2 2, 4 9 2 3, 4 10-14 5 I SRS -10 15-24 10 I SRS -15 25-44 20 I SRS -25 45-84 40 I SRS -45 85-164 80 I SRS -85 165-324 160 I SRS -165 325-644 320 I SRS -325 645-1023 reserved reserved reserved
  • Table 7 shows k SRS for TDD.
  • Table 8 shows a subframe offset configuration (T offset, 1 ) and UE-specific SRS periodicity (T SRS, 1 ) for trigger type 1 in FDD.
  • Table 9 shows a subframe offset configuration (T offset, 1 ) and UE-specific SRS periodicity (T SRS, 1 ) for trigger type 1 in TDD.
  • mmW millimeter wave
  • the wavelength is shortened, and multiple antenna elements can be installed in the same area. That is, in the 30GHz band, the wavelength is 1cm, and 64 (8x8) antenna elements can be installed in a 2-dimension array in 0.5 lambda (wavelength) intervals on 4 by 4 cm panels. Therefore, in mmW, multiple antenna elements can be used to increase the beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • TXRU Transceiver Unit
  • hybrid beamforming having B TXRUs having a smaller number than Q antenna elements in an intermediate form between digital beamforming and analog beamforming may be considered.
  • hybrid BF hybrid beamforming
  • FIG. 2A illustrates a TXRU virtualization model option 1 (sub-array model)
  • FIG. 2B illustrates a TXRU virtualization model option 2 (full connection model).
  • FIGS. 2A and 2B show representative examples of a connection method between a TXRU and an antenna element.
  • the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna elements.
  • 2A shows how a TXRU is connected to a sub-array, in which case the antenna element is connected to only one TXRU.
  • FIG. 2B shows how the TXRU is connected to all antenna elements, in which case the antenna element is connected to all TXRUs.
  • W represents the phase vector multiplied by the analog phase shifter. In other words, W determines the direction of analog beamforming.
  • the mapping between the CSI-RS antenna ports and the TXRUs may be 1-to-1 or 1-to-many.
  • Hybrid Beamforming Hybrid Beamforming
  • 3 is a block diagram for hybrid beamforming.
  • analog beamforming refers to an operation of performing precoding (or combining) at an RF terminal.
  • the baseband and RF stages use precoding (or combining), respectively, to reduce the number of RF chains and the number of D / A (or A / D) converters, while reducing the number of digital beams. It has the advantage of being close to forming.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas.
  • TXRUs transceiver units
  • M physical antennas.
  • the digital beamforming for the L data layers to be transmitted at the transmitter may be represented by an N by L matrix, and then the converted N digital signals are converted into analog signals via TXRU and then represented by an M by N matrix. Analog beamforming is applied.
  • FIG. 3 schematically illustrates a hybrid beamforming structure in terms of the TXRU and physical antenna.
  • the number of digital beams is L and the number of analog beams is N.
  • the base station is designed to change the analog beamforming in units of symbols, thereby considering a direction for supporting more efficient beamforming for a terminal located in a specific region.
  • a method of introducing a plurality of antenna panels to which hybrid beamforming independent of each other is applicable may be introduced. Considering.
  • the analog beams advantageous for signal reception may be different for each terminal, and thus, the base station needs at least a specific subframe (Synchronization signal, System information, Paging, etc.) In SF), a beam sweeping operation may be considered in which a plurality of analog beams to be applied by a base station are changed for each symbol so that all terminals have a reception opportunity.
  • a specific subframe Synchronization signal, System information, Paging, etc.
  • a beam sweeping operation may be considered in which a plurality of analog beams to be applied by a base station are changed for each symbol so that all terminals have a reception opportunity.
  • FIG. 4 is a diagram illustrating an example of a beam mapped to BRS symbols in hybrid beamforming.
  • FIG. 4 schematically illustrates the beam sweeping operation for a synchronization signal and system information during downlink (DL) transmission.
  • a physical resource or physical channel
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously, and a single analog beam (corresponding to a specific antenna panel) is applied to measure channels for analog beams as shown in FIG. 4.
  • a method of introducing a beam RS (BRS) which is a transmitted reference signal (RS) may be considered.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • RS transmitted reference signal
  • the RS used as a reference signal (RS) for measuring a beam is referred to as a BRS, but may be referred to as another name.
  • the synchronization signal or the xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive it well.
  • 5 is an exemplary diagram illustrating symbol / sub-symbol alignment between different numerologies.
  • NR is considering a way to support Scalable Numerology.
  • NR subcarrier spacing is represented by (2n ⁇ 15) kHz, n is an integer, and the above subset or superset (at least 15,30,60,120,240, and 480kHz) is considered as the main subcarrier spacing from a nested viewpoint. Accordingly, it is set to support symbol or sub-symbol alignment between different numerologies by adjusting to have the same CP overhead ratio.
  • numerology is determined by a structure in which the time / frequency granularity is dynamically allocated according to each service (eMMB, URLLC, mMTC) and scenarios (high speed, etc.).
  • the LTE system designs the SRS design differently according to the sounding bandwidth.
  • computer generated sequences are used for sequence design with length less than 24, and Zadoff-Chu (ZC) sequence is used for 36 (3RB) or more.
  • ZC sequences exhibit low PAPR or low Cubic Metric, while at the same time having the ideal autocorrelation and low cross-correlation properties.
  • the lengths of the required sequences (indicating the sounding bandwidth) must be the same. Therefore, in order to support terminals having different sounding bandwidths, a method of allocating them to different resource regions is needed, and in order to minimize degradation of channel estimation performance, the IFDMA comb structure has different sounding bandwidths to simultaneously transmit terminals.
  • the sequence length may be smaller than the minimum orthogonal sequence length (generally represented by the length 24). It was limited to. In the case of having the same TC in the same sounding resource, a dimension that provides orthogonality is needed, and this is to use a CDM using Cyclic Shift.
  • PAPR and correlation performance may be slightly lower than ZC sequence sequences, there are sequences that can be resource mapped regardless of sounding bandwidth. Examples include Golay sequences and PN (Pseudo random) sequences.
  • FIG. 7 is a diagram illustrating cross-correlation between sequences having different CSs in a Golay sequence of length 52.
  • a plurality of Golay sequences may be generated by applying a plurality of CSs to a sequence having a length of 52.
  • Cross-correlation between Golay sequences having different CSs is shown in FIG. 8.
  • FIG. 8 is a diagram illustrating cross-correlation and cubic-metric evaluation of ZC, Golay, and PN sequences.
  • the sounding bandwidth is set to 4, 8, 12, 16, 20, 24, 32, 36 and 48 RB, respectively. (Based on LTE SRS Design)
  • LTE system 30 groups number as in LTE system Is determined as follows, Is determined based on the cell ID. At this time, 4RB selects one base sequence v and the other two base sequence number v.
  • Golay sequence we used truncated binary Golay sequence of length 2048 in 802.16m system and showed QPSK PN sequence as an example of independent bandwidth SRS design. At this time, in order to represent 30 groups in the ZC sequence, a Golay sequence was generated using 30 CS, and PN was used to generate 30 sequences based on Matlab.
  • Cubic metric evaluation set the over sampling factor (OSF) to 8 for better resolution.
  • cross correlation performance was found in the order of ZC> Golay> PN, and CM performance was in order of ZC> Golay> PN.
  • the ZC series looks good as in LTE system, but in order to increase the freedom of allocation of each terminal of sounding bandwidth, the Golay sequence or PN sequence is also excluded as an SRS sequence candidate of New RAT. You can't.
  • FIG. 9 illustrates an example for a position depedent sequence, and a Truncated ZC sequence is considered as a representative method for generating a sequence among one position dependent sequence.
  • a mother sequence is generated over a maximum UL system bandwidth (UL system BW), and the base station allocates a portion of the mother sequence to each terminal according to the SRS resource location and the SRS BW, and each terminal generates the corresponding SRS sequence.
  • UL system BW maximum UL system bandwidth
  • the base station allocates the same sequence to the terminals allocating the same frequency domain in any region.
  • orthogonal CDMs for example, cyclic shift values
  • it can be applied in low correlated ways. For example, it may be expressed as Equation 1 below.
  • the base station allocates the same sequence to the same resource for the terminals having the same sequence generation parameter (eg, TC, TC offset) in any same frequency domain. Then, by applying different CS, it becomes low-correlated.
  • sequence generation parameter eg, TC, TC offset
  • FIG. 10 is a diagram illustrating a method of generating an SRS sequence according to TC.
  • SRS sequence generation method shown in FIG. 10 An advantage of the SRS sequence generation method shown in FIG. 10 is that SRS allocation flexibility is good. However, resource allocation capability is not as efficient as short block concatenated method, because different CS must always be applied between overlapping resources.
  • Table 10 below shows methods for generating an SRS sequence.
  • Alt-1 SRS sequence is a function of the sounding bandwidth and does not depend on the sounding bandwidth position or the PRB position. Sequence design and other design details are FFS.Alt-2: SRS sequence is a function of the sounding bandwidth position or the PRB position. Sequence design and other design details are FFS. Taking into account metrics such as PAPR, capacity / flexibility, etc.Other parameters, if any, determining SRS sequence are FFS (e.g. SRS sequence ID)
  • Alt-1 is a structure in which a sequence is generated by using the SRS bandwidth after it is set, but a sequence is generated regardless of a start position of an SRS resource.
  • an LTE SRS sequence generation and mapping method is described. Can be mentioned.
  • the sequence once a function of sounding bandwidth, represents the ZC series.
  • a form capable of generating a sequence may be a PN sequence or a Golay sequence.
  • ZC sequence sequence is one of the sequences that satisfy the Alt-1 method of Table 10 because the sequence generation does not vary according to the SRS mapping position.
  • FIG. 11 illustrates a difficulty in maintaining orthogonality for overlapping portions in free frequency mapping when using a ZC sequence.
  • LTE system uses a ZC sequence to allow each terminal to provide a variety of SRS bandwidth, to reduce the channel estimation performance degradation, to mitigate intra-cell interference by using Transmsission Comb (TC), CS (Cyclic Shift) was used to maintain orthogonality between ports.
  • TC Transmsission Comb
  • CS Cyclic Shift
  • PAPR is the lowest form and is a useful sequence design method that can provide more transmit power to cell-edge terminals.
  • this structure has a problem that the degree of freedom in resource allocation occurs.
  • FDM that is, different TCs may be used.
  • NR needs a method for maintaining orthogonality in the overlapping of one or multiple partial bands due to more orthogonal terminals and TRP numbers.
  • One more consideration in this requirement is determining how far to allow overlapping. If the degree of freedom of overlapping is set to allow the degree of orthogonality to the Golay series or the PN series sequence, there is a method of sharing the overlapping sequences and having different CSs. This method shows that sequence generation differs according to the location of the SRS placement (also considered as the Alt-2 example in Table 10).
  • a sequence should be nested from an overlapping position. That is, orthogonality may be maintained by assigning resources in a nested structure between terminals having different bandwidths at a specific frequency position i.
  • G (u) is time-domain cyclic shifts (CDM) of the truncated Golay sequence. This characteristic means that the sequence becomes dependent on the SRS resource location, and corresponds to a design method that satisfies the Alt-2 method of Table 10.
  • a block described in the present invention is a length unit on the frequency domain for transmitting an SRS, and may be variously named such as an SRS block length or a sounding length.
  • FIG. 12 is a diagram illustrating a structure of a concatenated block SRS configured in units of multiple ZC sequences.
  • the base station is configured to perform SRS resource allocation based on a unit bandwidth (Unit BW) starting point and to generate a bandwidth-based sequence allocated to the unit bandwidth orthogonally for each terminal.
  • Unit bandwidth Unit BW
  • the advantage is that you can generate sequences regardless.
  • UE 1 and UE 2 have different bandwidths, orthogonally designating sequence generation per unit bandwidth between the two UEs, UEs 1 and UE 2 have different bandwidths. You can set the starting position.
  • 13 is a diagram illustrating SRS unit overlapping.
  • FIG. 13A illustrates an example in which one SRS unit overlaps
  • FIG. 13B illustrates two SRS units overlapping.
  • the resource mapping start position in units of SRS bandwidth units can be freely specified.
  • This structure can easily represent the SRS bandwidth setting in the number of SRS bandwidth units. That is, in FIG. 13, the bandwidth of UE 1 may be represented by 2 SRS units, and the SRS bandwidth of UE 2 may be configured by 3 SRS units.
  • the concatenated SRS structure may be a structure that satisfies the Alt-1 method that uses a ZC sequence sequence and can freely allocate an SRS to each UE in unit units. If the root value of the ZC series is changed according to the location of the SRS in this structure, it may be a sequence that satisfies the Alt-2 structure.
  • a terminal can be a structure having a plurality of bandwidth units. If the overhead for setting one SRS bandwidth is L, the overhead required for the SRS bandwidth of the UE composed of M bandwidth units is intuitively required to L * M (characteristic of Alt-2 method). .
  • CS Cyclic Shift
  • Different CS values are provided in one block for SRS resource allocation of a large number of terminals or units requiring orthogonal SRS (orthogonal SRS) mapping in one block (ie UE TRPs, UE panels, etc.).
  • Different CS values can be applied to the block. That is, as shown in FIG. 12, an SRS sequence may be mapped to blocks over an SRS BW so as to have different CS values in one short block.
  • a sequence length and a M 1 length in a block may be set to be the same. Therefore, it is possible to generate a sequence with more low correlated properties in one block.
  • FIG. 16 is a diagram illustrating PAPR with a SRS BW of 96RB and variable block lengths.
  • the base station may allocate the SRS composed of concatenated blocks according to the uplink SRS capability in the entire UL band to which the SRS is allocated.
  • the uplink SRS capability a block length for generating an uplink SRS, that is, terminals in a specific UE group allocate SRSs having the same block length, and partial or full overlapping between the terminals is performed. Can be granted.
  • SRSs may be set in a frequency division multiplex (FDM) scheme for UE groups (for example, different TCs and TC offsets are applied).
  • FDM frequency division multiplex
  • the base station may provide each of the following information to the terminal in the form of a combination.
  • a value representing one (SRS) block length (e.g., (SRS) block length index indicating the (SRS) block length, SRS bandwidth (SRS BW) and the number of (SRS) blocks allocated to the SRS bandwidth)
  • start and / or end position for example, in the frequency domain of the resource block units, the block length is 4 RB, if the SRS BW of the terminal 16, k 0 representing the start position , Or the end position k 1 is May appear.
  • sequence generation parameters for resources allocated to the terminal eg, TC, TC offset, CS, root, etc.
  • FIG. 17 is a diagram illustrating a method for allocating (SRS) block length according to a link budget.
  • the base station may provide the terminals with indexes indicating different block lengths for UL SRS allocation based on the reported CQI.
  • the number of (SRS) block lengths may be determined as 50 RB for UE 2 and UE 4, 25 RB for UE 5, and 10 RB for UE 1 and UE 3 to inform the UE.
  • SRS 18 is a diagram illustrating setting of (SRS) block length according to SRS resource location.
  • the base station transmits SRS resource location information to the terminal, so that the terminal can infer a corresponding (SRS) block length.
  • SRS SRS
  • Table 11 shows an example in which the SRS sequence generation parameter and the block length information work together.
  • the terminal When the terminal receives the information and the position information about the SRS sequence generation parameters shown in Table 11, the terminal can infer the SRS block length corresponding thereto.
  • Table 11 may be transmitted by the base station to the terminal through RRC signaling, MAC-CE, DCI.
  • the UE may infer the block length according to the number of SRS sequence generation parameters and the SRS BW.
  • the terminal for example, ⁇ TC1, TC offset 1, CS 1, root 1 ⁇ , ⁇ TC 2, TC offset 2, CS 2, root 2 ⁇
  • the UE may understand its block length as 25 RB.
  • the information transmitted by the base station in order to infer the (SRS) block length of the terminal in the proposal 1 is transmitted through L3 (RRC), L1 (MAC-CE or DCI), etc. Can be.
  • the transmission setting combination of each parameter is as follows.
  • the value representing one (SRS) block length is RRC.
  • the information on the frequency side allocation start and / or end position of the resource in block units is DCI, and the information on the number of sequence generation parameter sets for the allocated resource is MAC. Can be transmitted via CE.
  • the value indicating one (SRS) block length is RRC.
  • the information on the frequency side allocation start and / or end position of a resource in a block unit is DCI, and the information on the number of sequence generation parameter sets for the allocated resource is also DCI. Can be transmitted through.
  • the value indicating one (SRS) block length is DCI.
  • the information on the frequency side allocation start and / or end position of a resource in a block unit is DCI, and the information on the number of sequence generation parameter sets for the allocated resource is also RRC. Can be transmitted through.
  • a value indicating the length of one SRS block is DCI
  • information on the frequency side allocation start and / or end position of a resource in a block unit is DCI
  • information on the number of sequence generation parameter sets for the allocated resource is transmitted through RRC. Can be.
  • the value indicating the length of one SRS block is DCI
  • the information on the frequency side allocation start and / or end positions of resources in a block unit is MAC-CE
  • the information on the number of sequence generation parameter sets for the allocated resources is RRC. Can be sent through. In addition to these four combinations may be configured in more various combinations.
  • the block length and the number of blocks can be determined and configured. For example, if the uplink system bandwidth is 100RB, if the block length is set to 20RB, the base station can indicate to the terminal that the number of blocks is five.
  • Each terminal sets an allocated SRS band in units of blocks, and if the SRS bandwidth is difficult to represent as an integer number of blocks (for example, when the block length is 10 RB but the SRS bandwidth is 25 RB), the terminal corresponds to You can perform truncation in a block. For example, if the block length is 10RB but the SRS bandwidth is 25RB, the SRS bandwidth is composed of three blocks, and the block value for the UE to perform truncation is 3 (third block). Therefore, the terminal generates the sequence of the third block according to the independently set sequence generation parameter, and allocates 5RB after the truncation at block length 10RB according to the truncation setting.
  • SRS bandwidth can be represented by n sub-bands, where n is an integer. Where sub-band is a smaller unit than block. For example, when the block length is 10RB, the sub-band may be set to 2RB. Therefore, if the SRS bandwidth is set to 24 RB, it can be set to two blocks and two sub-bands, or 12 sub-bands when expressed in the number of sub-bands. One block may consist of an integer multiple of sub-bands. Therefore, according to the SRS bandwidth and the SRS allocation position, truncation may be performed within the block position where truncation occurs and within the block.
  • FIG. 19 is a diagram illustrating SRS bandwidth setting and truncation setting according to block and sub-band number settings.
  • the uplink system bandwidth is 50 RB
  • the block length is 10 RB
  • the sub-band length is 2 RB
  • the SRS bandwidth is allocated to 16 RB
  • the starting position k is allocated.
  • 0 12 (12 RB).
  • ⁇ TC1, CS 1, root 1 ⁇ is set
  • the second block is ⁇ TC 2, CS 2, root 2 ⁇ .
  • the base station when truncated in each (SRS) block, the base station provides the terminal with information related to such truncation.
  • Resource location information of the terminal to which the truncation is applied may be one or a combination of the following.
  • sequence generation parameters eg, TC, TC offset, CS, root, etc.
  • Truncation operation enabler information on a flag indicating permission of a truncation operation for each block.
  • the truncation operation enabler is a flag for indicating which of the blocks to allow truncation among the allocated blocks. According to an embodiment, when the base station transmits a truncation operation enabler indicated by '101' to a terminal having three blocks of SRS bandwidth, the terminal may transmit the first block and the third block indicated by '1'. It can be seen that cutting is allowed only in the block.
  • a system bandwidth is 50 RB and a block length of a specific terminal is set to 25 RB.
  • the SRS bandwidth is allocated to 30RB
  • the SRS resource of the contiguous 30RB may be allocated to the specific terminal through the following configuration.
  • the second block ⁇ TC 2, TC offset 2, CS 2, root 2 ⁇
  • the terminal may generate a sequence for the first block and cut if the cutting block index is zero. In this case, the cutting region is from 0 to 25 RB. If the cutting block index is indicated as 1, the terminal performs cutting from 30RB to 50RB in the second block. Even if the first block is cut or the second block is cut, a contiguous SRS resource of 30 RBs is formed when the two blocks are combined. The terminal transmits the SRS to the base station in the region of contiguous 30RBs formed by combining two blocks.
  • 21 is a diagram illustrating SRS block truncation through SRS resource location information transmission.
  • the base station may directly inform the terminal of the location of the resource being cut by transmitting information on the SRS frequency resource start position k 0 and / or end position k 1 to the terminal.
  • the terminal is 2 Notice that the first block is cut. Therefore, the UE cuts the region of 11 RB to 12 RB of the second block in the uplink system bandwidth.
  • the base station may be transmitted to the terminal through the L3 (RRC) or L1 (MAC-CE or DCI) for the block setting (example of cutting resource location transmission) to which the truncation is applied.
  • the transmission setting combination of each parameter is as follows.
  • the block index to be truncated is an RRC signal
  • the information on the frequency side allocation start position and / or the end position of the SRS resource is signaled by DCI
  • the information on the number of sequence generation parameter sets for the block resource to be truncated is signaled by MAC-CE. Can be.
  • the block index to be truncated is an RRC signal, and information on the frequency side allocation start position and / or end position of the SRS resource can be signaled to the DCI, and information on the number of sequence generation parameter sets for the block resource to be truncated can be signaled to the DCI. have.
  • the block index to be truncated is DCI
  • the information on the frequency side allocation start position and / or end position of the SRS resource is also DCI
  • the information on the number of sequence generation parameter sets for the block resource to be truncated may be signaled as an RRC signal.
  • the block index to be truncated is DCI
  • the information on the frequency side allocation start position and / or end position of the SRS resource is signaled to MACK-CE
  • the information on the number of sequence generation parameter sets for the block resource to be truncated is signaled by an RRC signal.
  • RRC Radio Resource Control
  • MAC-CE Packet Control Channel
  • DCI may be configured in more various ways.
  • the base station sets some of the sequence generation parameters (for example, TC and root value) of the block to be allocated to the terminal. Can provide.
  • the base station may set the CS value applied to the block differently to each terminal so that the sequence between the terminals may be low correlation. Therefore, the sequence generation setting for the following truncation block can be considered.
  • sequence generation parameters in the block to be cut can be set as follows.
  • the base station transmits the TC, TC offset and root value of the block to be truncated to the terminal in semi-static manner as a cell-specific and / or terminal-specific RRC signal, and the CS value is terminal-specifically as DCI.
  • Can transmit
  • the base station transmits only the root value of the block to be cut to the terminal in semi-static state as a cell-specific and / or terminal-specific RRC signal, and the TC, TC offset and CS values are terminal-specifically transmitted in DCI. Can be.
  • the base station may use some of the sequence generation parameters (e.g. TC / TC offset and / or Root value) assigned to the block in the instance where the most recent SRS was transmitted at the time the triggering block was triggered
  • the remaining part e.g, the CS value
  • the base station may provide the terminal with sequence parameters of each block so as not to receive much performance degradation such as peak-to-average power (PAPR) and cubic metric (CM) while improving SRS resource flexibility compared to concatenated blocks SRS.
  • PAPR peak-to-average power
  • CM cubic metric
  • SRS rules can be set for the hybrid configuration of Concatenated blocks SRS and Truncation SRS.
  • the base station determines the block length and the number of blocks set according to the SRS bandwidth setting of the terminal and the SRS configuration capability (for example, the maximum possible PAPR / CM of the terminal and power back-off according to PA performance of the transmitter of the terminal). And the position of the block to be cut and the length to be cut in the block can be set or determined.
  • the base station determines the number of blocks, block length, truncation, etc. that can satisfy this requirement. Decide As an example, if the number of blocks within 6 dB of the PAPR is 3, each block length may be set to 20 RB, and the index of the cutting block may be set to 3 to transmit information about these to the terminal. Therefore, 10RB is cut in the third block, and one 10RB block in which two 20RB blocks are cut can be concatenated to set a total SRS bandwidth of 50 RB.
  • the terminal may report the feedback for recommending the SRS bandwidth and the SRS resource allocation position of the terminal to the base station.
  • the base station provides the terminal with the number of (SRS) blocks, the length of one (SRS) block, and the setting of the (SRS) block to be cut (for example, cutting information such as the degree of cutting). Can be instructed to the terminal.
  • the base station determines the SRS bandwidth of the specific terminal.
  • the decision is made up of two blocks, and the length of each block can be determined as 25 RB.
  • 25RB may indicate truncation to 20RB, and a sequence generation parameter for each block may be provided. Therefore, the PAPR according to the total SRS bandwidth is set not to exceed 6 dB.
  • UEs having different block lengths may maintain orthogonality by applying FDM (for example, different TC and different TC offset) schemes for SRS transmission.
  • FDM for example, different TC and different TC offset
  • Either the start position or the end position of the SRS bandwidth can be set to align to the smallest sounding length K1 unit position that can be set.
  • K1 may be composed of multiple RBs or REs.
  • 22 is a diagram illustrating an example of frequency resource setting and SRS arrangement (aligning the start position of the SRS bandwidth to the smallest sounding length position).
  • one of the start position or the end position of the SRS bandwidth may be set to align to the smallest sounding length K1 unit position that can be set.
  • One base sequence allocated to the smallest sounding length may be mapped to one SRS resource.
  • the SRS may be transmitted in a manner corresponding to one beam in one SRS resource.
  • the same Tx beam may be transmitted to the SRS resource.
  • a base sequence allocated to one block of the smallest sounding length may be equally allocated to a block corresponding to the SRS resource for each symbol.
  • the SRS resource may be allocated to one block of a set sounding length, and the base sequence allocated to the block corresponding to the SRS resource for each symbol may be equally allocated to each symbol.
  • the block when one SRS resource spans a plurality of symbols, the block includes a plurality of blocks having a set block length.
  • each symbol has a base sequence allocated to a plurality of blocks corresponding to the SRS resource. The same can be assigned.
  • a method for receiving SRS configuration information in a wireless communication system and a terminal for the same can be industrially used in various wireless communication systems such as 3GPP LTE / LTE-A system and 5G communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신 시스템에서 단말이 Sounding Reference Symbol(SRS) 설정 정보를 수신하는 방법은 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하는 단계; 및 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하는 단계를 포함하되, 상기 SRS 설정 정보는 하나의 SRS 블록의 길이를 나타내는 정보, SRS 블록의 수를 나타내는 정보 및 상기 연접된 SRS 블록들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보를 포함할 수 있다.

Description

무선통신 시스템에서 SRS 설정 정보를 수신하는 방법 및 이를 위한 단말
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 무선통신 시스템에서 SRS 설정 정보를 수신하는 방법 및 이를 위한 단말에 관한 것이다.
New radio access technology (RAT) 시스템이 도입되는 경우 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존 RAT에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다.
또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이, New RAT에서는 enhanced mobile broadband communication (eMBB), massive MTC (mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 서비스들을 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 단말이 SRS 설정 정보를 수신하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 SRS 설정 정보를 수신하는 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 일 실시 예로서, 무선통신 시스템에서 단말이 Sounding Reference Symbol(SRS) 설정 정보를 수신하는 방법은, 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하는 단계; 및 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하는 단계를 포함하되, 상기 SRS 설정 정보는 (1) 하나의 SRS 블록의 길이를 나타내는 정보, (2) SRS 대역폭을 나타내는 정보, (3) SRS 블록의 수를 나타내는 정보, (4) 주파수 도메인에서의 SRS 블록의 시작 위치 또는 SRS 블록의 끝 위치를 나타내는 정보 및 (5) 상기 연접된 SRS 블록들에 대한 시퀀스 생성 파라미터의 정보 중 적어도 두 개 이상의 정보를 포함할 수 있다.
상기 연접된 SRS 블록들에 대한 시퀀스 생성 파라미터의 정보는 상기 시퀀스 생성 파라미터들의 값 또는 상기 시퀀스 생성 파라미터의 수에 대한 정보를 포함할 수 있다. 상기 SRS 설정 정보는 DCI(Downlink Control Information), MAC CE(Control Element), 또는 RRC(Radio Resource Control) 시그널링을 통해 수신될 수 있다. 상기 SRS 설정 정보는 상기 연접된 SRS 블록(block)들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보 및 상기 절단되는 주파수 영역 범위에 대한 정보를 더 포함할 수 있다. 상기 절단이 수행되는 SRS 블록의 길이는 나머지 SRS 블록들과 주파수 영역에서의 길이가 다르다. 상기 절단되는 주파수 영역 범위에 대한 정보는 절단 시작 위치 및 절단 끝 위치 중 적어도 어느 하나의 정보를 포함할 수 있다. 상기 시퀀스 생성 파라미터들의 값에 대한 정보는 시퀀스 생성을 위한 루트(root) 인덱스, cyclic shift (CS) 인덱스, TC(Transmission Comb) 및 TC 옵셋 값 중 적어도 하나를 포함할 수 있다.
상기의 기술적 과제를 달성하기 위한, 다른 일 실시 예로서, 무선통신 시스템에서 단말이 Sounding Reference Symbol(SRS) 설정 정보를 수신하는 방법은, 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하는 단계; 및 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하는 단계를 포함하되, 상기 SRS 설정 정보는 하나의 SRS 블록의 길이를 나타내는 정보, SRS 블록의 수를 나타내는 정보 및 상기 연접된 SRS 블록들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보를 포함할 수 있다.
상기 단말의 SRS 설정 능력(capability)에 대한 정보를 상기 기지국으로 전송하는 단계를 더 포함하고, 상기 SRS 설정 정보는 상기 단말의 SRS 설정 능력에 대한 정보에 기초하여 결정된 것일 수 있다. 상기 단말의 SRS 설정 능력(capability)에 대한 정보는 요구하는 Peak-to-Average Power Ratio (PAPR), 원하는 SRS 대역폭 및 원하는 SRS 할당 위치에 대한 정보 중 적어도 어느 하나를 포함할 수 있다. 상기 SRS 블록의 단위는 RB(Resource Block) 단위 또는 RE(Resource Elemet) 단위일 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 일 실시예로서, 무선통신 시스템에서 Sounding Reference Symbol(SRS) 전송을 위한 제어 정보를 수신하는 단말은, 송신기; 수신기; 및 프로세서를 포함하되, 상기 프로세서는, 상기 수신기가 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하도록 제어하고, 상기 송신기가 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하도록 제어하되, 상기 SRS 설정 정보는 (1) 하나의 SRS 블록의 길이를 나타내는 정보, (2) SRS 대역폭을 나타내는 정보, (3) SRS 블록의 수를 나타내는 정보, (4) 주파수 도메인에서의 SRS 블록의 시작 위치 또는 SRS 블록의 끝 위치를 나타내는 정보 및 (5) 상기 연접된 SRS 블록들에 대한 시퀀스 생성 파라미터의 정보 중 적어도 하나 이상의 정보를 포함할 수 있다. 상기 SRS 설정 정보는 상기 연접된 SRS 블록(block)들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보 및 상기 절단되는 주파수 영역 범위에 대한 정보를 더 포함할 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 다른 일 실시예로서, 무선통신 시스템에서 Sounding Reference Symbol(SRS) 전송을 위한 제어 정보를 수신하는 단말은, 송신기; 수신기; 및 프로세서를 포함하되, 상기 프로세서는, 상기 수신기가 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하도록 제어하고, 상기 송신기가 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하도록 제어하되,상기 SRS 설정 정보는 하나의 SRS 블록의 길이를 나타내는 정보, SRS 블록의 수를 나타내는 정보 및 상기 연접된 SRS 블록들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보를 포함할 수 있다.
상기 프로세서는 상기 송신기가 상기 단말의 SRS 설정 능력(capability)에 대한 정보를 상기 기지국으로 전송하도록 제어하고, 상기 SRS 설정 정보는 상기 단말의 SRS 설정 능력에 대한 정보에 기초하여 결정된 것일 수 있다.
네트워크 상에서 셀-중앙(cell-centered) 단말들 경우 concatenated blocks SRS로 설정하여 flexible 자원 utilization을 향상시키고, 하나의 block 내에서 SRS 자원 길이를 절단(truncation)하는 SRS 설정을 수행함으로써 flexiblity를 더욱 높여 통신 성능을 향상시킬 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2a TXRU virtualization model option 1(sub-array model)을 나타낸 도면이고, 도 2b는 TXRU virtualization model option 2(full connection model)을 나타낸 도면이다.
도 3은 하이브리드 빔포밍을 위한 블록도를 나타낸 도면이다.
도 4는 하이브리드 빔포밍에서 BRS 심볼들에 맵핑된 빔의 예를 도시한 도면이다.
도 5는 다른 numerology 간의 심볼/서브-심볼 alignment를 나타내는 예시적인 도면이다.
도 6은 26-length Golay Complementary Sequence pair 두 개를 이용한 52-길이 autocorrelation의 성능을 도시한 도면이다.
도 7은 길이 52의 Golay 시퀀스에서 서로 다른 CS를 갖는 시퀀스 사이의 cross-correlation을 도시한 도면이다.
도 8은 ZC, Golay, PN 시퀀스의 Cross-correlation 과 cubic-metric evaluation을 도시한 도면이다.
도 9는 Truncated ZC 시퀀스의 일 예를 도시한 도면이다.
도 10은 TC에 따른 SRS 시퀀스 생성 방법을 예시한 도면이다.
도 11은 ZC 계열 사용 시에 자유로운 주파수 맵핑에서 오버랩핑(Overlapping) 부분에 대한 직교성 유지의 어려움을 예시한 도면이다.
도 12는 Multiple ZC 시퀀스 단위로 구성되는 연접된(Concatenated) block SRS의 구조를 도시한 도면이다.
도 13은 SRS unit 오버랩핑을 예시한 도면이다.
도 14는 하나의 block의 ZC 시퀀스 (길이 M1 )와 CS 인덱스
Figure PCTKR2018000857-appb-I000001
를 예시한 도면이다.
도 15는 고정된 block length = 4RB를 갖는 ZC 시퀀스 block들로 SRS BW에 걸쳐 배치될 때의 PAPR을 나타낸 도면이고, 도 16은 SRS BW를 96RB로 하고 block l길이를 가변하여 PAPR를 나타낸 도면이다.
도 17은 링크 버짓(link budget)에 따른 (SRS) block 길이 할당 방법을 예시한 도면이다.
도 18은 SRS 자원 위치에 따른 (SRS) block 길이의 설정을 예시한 도면이다.
도 19는 block과 sub-band 수 설정에 따른 SRS 대역폭 설정 및 절단(truncation) 설정을 예시한 도면이다.
도 20은 하나의 block에서의 절단으로 인한 contiguous SRS 자원(contiguous SRS BW= 30RB)을 예시한 도면이다.
도 21은 SRS 자원 위치 정보 전송을 통한 SRS block 절단을 예시한 도면이다.
도 22는 주파수 자원 설정과 SRS 배치(가장 작은 block 길이 위치에 SRS 대역폭의 시작 위치를 align 함)의 예를 도시한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
먼저, 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 내용을 다음 표 1에서 설명한다.
A UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types: - trigger type 0: higher layer signalling - trigger type 1: DCI formats 0/4/1A for FDD and TDD and DCI formats 2B/2C/2D for TDD. In case both trigger type 0 and trigger type 1 SRS transmissions would occur in the same subframe in the same serving cell, the UE shall only transmit the trigger type 1 SRS transmission.A UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell. The following SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1. - Transmission comb
Figure PCTKR2018000857-appb-I000002
, as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Starting physical resource block assignment nRRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - duration: single or indefinite (until disabled), as defined in [11] for trigger type 0 - srs-ConfigIndex ISRS for SRS periodicity TSRS and SRS subframe offset Toffset , as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity TSRS,1,and SRS subframe offset TSRS,1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1 - SRS bandwidth BSRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Frequency hopping bandwidth, bhop , as defined in subclause 5.5.3.2 of [3] for trigger type 0 - Cyclic shift
Figure PCTKR2018000857-appb-I000003
, as defined in subclause 5.5.3.1 of [3] for trigger type 0 and each configuration of trigger type 1 - Number of antenna ports Np for trigger type 0 and each configuration of trigger type 1For trigger type 1 and DCI format 4 three sets of SRS parameters, srs-ConfigApDCI-Format4, are configured by higher layer signalling. The 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1. For trigger type 1 and DCI format 0, a single set of SRS parameters, srs-ConfigApDCI-Format0, is configured by higher layer signalling. For trigger type 1 and DCI formats 1A/2B/2C/2D, a single common set of SRS parameters, srs-ConfigApDCI-Format1a2b2c, is configured by higher layer signalling. The SRS request field is 1 bit [4] for DCI formats 0/1A/2B/2C/2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'. A 1-bit SRS request field shall be included in DCI formats 0/1A for frame structure type 1 and 0/1A/2B/2C/2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0/1A/2B/2C/2D by higher-layer signalling.
다음 표 2는 3GPP LTE/LTE-A 시스템에서 DCI 포맷 4에서의 트리거 타입 1를 위한 SRS Request Value를 나타낸 표이다.
Value of SRS request field Description
'00' No type 1 SRS trigger
'01' The 1st SRS parameter set configured by higher layers
'10' The 2nd SRS parameter set configured by higher layers
'11' The 3rd SRS parameter set configured by higher layers
다음 표 3은 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 추가 내용을 더 설명하기 위한 표이다.
The serving cell specific SRS transmission bandwidths CSRS are configured by higher layers. The allowable values are given in subclause 5.5.3.2 of [3]. The serving cell specific SRS transmission sub-frames are configured by higher layers. The allowable values are given in subclause 5.5.3.3 of [3]. For a TDD serving cell, SRS transmissions can occur in UpPTS and uplink subframes of the UL/DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.When closed-loop UE transmit antenna selection is enabled for a given serving cell for a UE that supports transmit antenna selection, the index a(nSRS), of the UE antenna that transmits the SRS at time nSRS is given bya(nSRS) = nSRS mod 2, for both partial and full sounding bandwidth, and when frequency hopping is disabled (i.e.,
Figure PCTKR2018000857-appb-I000004
),
Figure PCTKR2018000857-appb-I000005
when frequency hopping is enabled (i.e.
Figure PCTKR2018000857-appb-I000006
),where values BSRS, bhop, Nb, and nSRS are given in subclause 5.5.3.2 of [3], and
Figure PCTKR2018000857-appb-I000007
(where
Figure PCTKR2018000857-appb-I000008
regardless of the Nb value), except when a single SRS transmission is configured for the UE. If a UE is configured with more than one serving cell, the UE is not expected to transmit SRS on different antenna ports simultaneously.A UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling. For PUSCH transmission mode 1
Figure PCTKR2018000857-appb-I000009
and for PUSCH transmission mode 2
Figure PCTKR2018000857-appb-I000010
with two antenna ports configured for PUSCH and
Figure PCTKR2018000857-appb-I000011
with 4 antenna ports configured for PUSCH. A UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell. The SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.A UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.For TDD serving cell, when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission. When two SC-FDMA symbols exist in UpPTS of the given serving cell, both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2/2a/2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2/2a/2b transmissions happen to coincide in the same subframe; -The UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a/2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe; -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is FALSE; -For FDD-TDD and primary cell frame structure 1, the UE shall not transmit SRS in a symbol whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to overlap in the same symbol if the parameter ackNackSRS-SimultaneousTransmission is TRUE. -Unless otherwise prohibited, the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.A UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and/or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.In UpPTS, whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell, the UE shall not transmit SRS.The parameter ackNackSRS-SimultaneousTransmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe. If it is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe, then in the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured. This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe. The cell specific SRS subframes are defined in subclause 5.5.3.3 of [3]. Otherwise, the UE shall use the normal PUCCH format 1/1a/1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS, and SRS subframe offset, Toffset, is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively. The periodicity TSRS of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10, 20, 40, 80, 160, 320} ms or subframes. For the SRS periodicity TSRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. Type 0 triggered SRS transmission instances in a given serving cell for TDD serving cell with TSRS > 2 and for FDD serving cell are the subframes satisfying
Figure PCTKR2018000857-appb-I000012
, where for FDD kSRS ={0, 1,,,,0} is the subframe index within the frame, for TDD serving cell kSRS is defined in Table 8.2-3. The SRS transmission instances for TDD serving cell with TSRS =2 are the subframes satisfying kSRS - Toffset . For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL/DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS,1, and SRS subframe offset, Toffset,1, is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively. The periodicity TSRS,1 of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10} ms or subframes. For the SRS periodicity TSRS,1 of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. A UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH on serving cell c.A UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH with the value of carrier indicator field corresponding to serving cell c. A UE configured for type 1 triggered SRS transmission on serving cell c upon detection of a positive SRS request in subframe n of serving cell c shall commence SRS transmission in the first subframe satisfying
Figure PCTKR2018000857-appb-I000013
and
Figure PCTKR2018000857-appb-I000014
for TDD serving cell c with TSRS,1 > 2 and for FDD serving cell c,
Figure PCTKR2018000857-appb-I000015
for TDD serving cell c with TSRS,1 =2where for FDD serving cell c
Figure PCTKR2018000857-appb-I000016
is the subframe index within the frame nf , for TDD serving cell c kSRS is defined in Table 8.2-3.A UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signalling, for the same subframe and the same serving cell.For TDD serving cell c, and a UE configured with EIMTA-MainConfigServCell-r12 for a serving cell c, the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL/DL-configuration as a downlink subframe.A UE shall not transmit SRS whenever SRS and a PUSCH transmission corresponding to a Random Access Response Grant or a retransmission of the same transport block as part of the contention based random access procedure coincide in the same subframe.
다음 표 4는 FDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(Toffset) 및 UE-specific SRS periodicity (TSRS)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS - 17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS - 77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS - 317
637 - 1023 reserved reserved
다음 표 5는 TDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(Toffset) 및 UE-specific SRS periodicity (TSRS)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS -17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS -77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS -317
637 - 1023 reserved reserved
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 2 0, 1
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 44 20 ISRS - 25
45 - 84 40 ISRS - 45
85 - 164 80 ISRS - 85
165 - 324 160 ISRS - 165
325 - 644 320 ISRS - 325
645 - 1023 reserved reserved
표 7은 TDD를 위한 kSRS를 나타낸 표이다.
subframe index n
0 1 2 3 4 5 6 7 8 9
1st symbol of UpPTS 2nd symbol of UpPTS 1st symbol of UpPTS 2nd symbol of UpPTS
kSRS in case UpPTS length of 2 symbols 0 1 2 3 4 5 6 7 8 9
kSRS in case UpPTS length of 1 symbol 1 2 3 4 6 7 8 9
다음 표 8은 FDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(Toffset,1) 및 UE-specific SRS periodicity (TSRS,1)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 31 reserved reserved
다음 표 9는 TDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(Toffset, 1) 및 UE-specific SRS periodicity (TSRS, 1)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 reserved reserved
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 31 reserved reserved
아날로그 빔포밍 (Analog Beamforming )
Millimeter Wave(mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 element의 설치가 가능하다. 즉 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 panel에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)의 안테나 element 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 element를 사용하여 빔포밍(BF) 이득을 높여 커버리지를 증가시키거나 쓰루풋(throughput)을 높일수 있다.
이 경우에 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나, 100여개의 안테나 element 모두에 TXRU를 설치하기에는 비용 측면에서 실효적이지 못하다. 그러므로 하나의 TXRU에 다수개의 안테나 element를 맵핑(mapping)하고 아날로그 위상 쉬프터(analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점이 있다.
디지털 빔포밍(Digital BF)와 아날로그 빔포밍(analog BF)의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(하이브리드 BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
도 2a TXRU virtualization model option 1(sub-array model)을 나타낸 도면이고, 도 2b는 TXRU virtualization model option 2(full connection model)을 나타낸 도면이다.
도 2a 및 도 2b는 TXRU와 안테나 element의 연결 방식의 대표적인 일 예들을 나타낸다. 여기서 TXRU virtualization 모델은 TXRU의 출력 신호와 antenna elements의 출력 신호의 관계를 나타낸다. 도 2a는 TXRU가 sub-array에 연결된 방식을 나타내는데, 이 경우에 안테나 element는 하나의 TXRU에만 연결된다. 이와 달리 도 2b는 TXRU가 모든 안테나 element에 연결된 방식을 나타내는데, 이 경우에 안테나 element는 모든 TXRU에 연결된다. 도 2a 및 도 2b에서 W는 아날로그 위상 쉬프터에 의해 곱해지는 위상 벡터를 나타낸다. 즉 W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트들과 TXRU들과의 맵핑은 1-to-1 또는 1-to-many 일 수 있다.
하이브리드 빔포밍 (Hybrid Beamforming )
도 3은 하이브리드 빔포밍을 위한 블록도를 나타낸 도면이다.
New RAT 시스템에서는 다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법의 사용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 RF 단에서 프리코딩(Precoding) (또는 컴바이닝(Combining))을 수행하는 동작을 의미한다. 상기 하이브리드 빔포밍 기법은 Baseband 단과 RF 단은 각각 프리코딩(Precoding) (또는 컴바이닝(Combining))을 방식을 사용함으로써 RF chain 수와 D/A (또는 A/D) converter 수를 줄이면서도 Digital 빔포밍에 근접하는 성능을 낼 수 있다는 장점을 가진다. 설명의 편의상 도 4에 도시한 바와 같이 상기 하이브리드 빔포밍 구조는 N개 Transceiver unit (TXRU)와 M개의 물리적 안테나로 표현될 수 있다. 그러면, 송신 측에서 전송할 L개 Data layer에 대한 디지털 빔포밍은 N by L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M by N 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 3은 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도식화한 것이다. 이때, 도 3에서 디지털 빔의 개수는 L개 이며, 아날로그 빔의 개수는 N개이다. 더 나아가서 New RAT 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방향을 고려하고 있다. 더 나아가, 도 3에서 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, New RAT 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려하고 있다.
기지국이 복수의 아날로그 빔을 활용하는 경우 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 기지국은 적어도 동기 신호(Synchronization signal), 시스템 정보(System information), 페이징(Paging) 등에 대해서는 특정 서브프레임(SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼 별로 바꾸어 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 동작을 고려할 수 있다.
도 4는 하이브리드 빔포밍에서 BRS 심볼들에 맵핑된 빔의 예를 도시한 도면이다.
도 4는 하향링크(DL) 전송 과정에서 동기 신호와 시스템 정보에 대해 상기 빔 스위핑 동작을 도식화하여 도시하고 있다. 도 4에서 New RAT 시스템의 시스템 정보가 브로드캐스팅 방식으로 전송되는 물리 자원(또는 물리 채널)을 xPBCH(physical broadcast channel)으로 명명하였다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시 전송될 수 있으며, 아날로그 빔 별 채널을 측정하기 위해 도 4에 도시한 바와 같이 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 Reference signal (RS)인 Beam RS (BRS)를 도입하는 방안을 고려할 수 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 도 5에서는 빔을 측정하기 위한 RS(Reference Signal)로 사용되는 RS로 BRS로 명명하였으나 다른 호칭으로 명명될 수도 있다. 이때, BRS와는 달리 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 group 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
도 5는 다른 numerology 간의 심볼/서브-심볼 alignment를 나타내는 예시적인 도면이다.
New RAT( NR ) Numerology 특징
NR에서는 Scalable Numerology를 지원하는 방식을 고려하고 있다. 즉 NR의 subcarrier spacing은 (2n×15)kHz, n은 정수로 나타내고 있으며, nested 관점에서 위의 subset 또는 superset (at least 15,30,60,120,240, and 480kHz)가 주요 subcarrier spacing으로 고려되고 있다. 이에 따른 동일한 CP 오버헤드 비율을 갖도록 조절함으로써 다른 numerology 간의 심볼 또는 서브-심볼 alignment를 지원하도록 설정되었다.
또한, 각 서비스들(eMMB, URLLC, mMTC) 과 시나리오들(high speed 등등)에 따라 위의 시간/주파수 granularity가 dynamic 하게 할당되는 구조로 numerology가 결정된다.
직교화를 위한 대역폭 의존/ 비의존 시퀀스 (Bandwidth dependent/non-dependent sequence for orthogonalization )
LTE 시스템은 사운딩 대역폭(sounding bandwidth)에 따라 SRS 설계를 다르게 설계한다. 즉 길이 24 이하의 시퀀스 설계 경우 computer generated 시퀀스를 사용 하고, 36(3RB) 이상 경우 Zadoff-Chu(ZC) 시퀀스를 사용한다. ZC 시퀀스의 가장 큰 장점은 low PAPR 또는 low Cubic Metric을 나타내며, 동시에 이상적인 autocorrelation 과 낮은 cross-correlation 성질을 가지는 것이다. 그러나, 위의 성질을 만족하기 위해서는 필요한 시퀀스들의 길이(사운딩 대역폭을 나타냄)가 같아야 한다. 따라서, 다른 사운딩 대역폭들 갖는 단말들을 지원하기 위해서는 다른 자원 영역에 할당해주는 방법이 필요하고, 채널 추정 성능 열화를 최소화할 수 있게 IFDMA comb 구조가 서로 다른 사운딩 대역폭을 갖게 하여 동시 전송하는 단말들의 직교성을 지원하였다. 만약에 작은 사운딩 대역폭을 갖는 단말에 이러한 transmission comb (TC) 구조를 사용하게 되면, 직교성을 갖는 최소한의 시퀀스 길이(일반적으로 길이 24로 나타냄)보다 적은 시퀀스 길이를 갖게 될 수도 있어서, TC는 2로 한정하게 되었다. 동일 사운딩 자원에 동일 TC를 갖게 하는 경우 직교성을 제공하는 dimension이 필요하고, 이것이 Cyclic Shift를 이용한 CDM을 사용하는 것이다.
한편, PAPR 과 correlation 성능이 ZC 계열 시퀀스들에 비해 조금 떨어질 수 있지만, 사운딩 대역폭에 상관없이 자원 맵핑이 가능한 시퀀스들이 있다. 그 예로서 Golay 시퀀스와 PN(Pseudo random) 시퀀스가 있다. Golay 시퀀스 경우 어떤 시퀀스 a, b의 각 autocorrelation 값을 Aa, Ab 라고 할 때, 이 두 개의 autocorrelation 값의 합이 다음의 조건을 만족하게 하는 a, b를 Golay complementary 시퀀스 pair라고 부른다(Aa + Ab =δ(x)).
일 예로서, 길이 26의 Golay 시퀀스 a,b가 다음과 같을 때, a=[1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1], b=[-1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1], 이 두 개를 연접하여 총 52 길이의 시퀀스로 구성하여, 양쪽 4개의 RE(Resource Element)에 0을 맵핑할 때, Auto-correlation 성능은 도 7과 같이 나타낼 수 있다. 도 6은 26-length Golay Complementary Sequence pair 두 개를 이용한 52-길이 autocorrelation의 성능을 도시한 도면이다.
도 7은 길이 52의 Golay 시퀀스에서 서로 다른 CS를 갖는 시퀀스 사이의 cross-correlation을 도시한 도면이다.
길이 52로 구성한 시퀀스에 다수의 CS(Cyclic Shift)를 적용하여, 다수 개의 Golay 시퀀스를 생성할 수 있다. 서로 다른 CS를 갖는 Golay 시퀀스 사이의 Cross-correlation를 도 8에 도시한 것과 같다.
도 8은 ZC, Golay, PN 시퀀스의 Cross-correlation 과 cubic-metric evaluation을 도시한 도면이다.
ZC, Golay, PN 사이의 관계를 각 TC가 1,2,4 일 경우에 따른 CM(cubic metric)와 cross-correlation을 계산하고 비교하였다. 평가를 위한 가정은 다음과 같다.
- 사운딩 대역폭(sounding 대역폭)는 각 4,8,12,16,20,24,32,36,48RB로 정한다. (LTE SRS 설계 기반)
- LTE 시스템과 같이 30 groups number
Figure PCTKR2018000857-appb-I000017
는 다음과 같이 결정하고,
Figure PCTKR2018000857-appb-I000018
는 셀 ID 기반으로 결정한다. 이때, 4RB에서는 하나의 base 시퀀스 v를 선택하고, 나머지는 두 개의 base sequence number v를 선택한다.
- Golay 시퀀스 경우 802.16m 시스템에서의 길이 2048의 truncated binary Golay 시퀀스를 이용하였고, QPSK PN 시퀀스을 independent 대역폭 SRS 설계 예시로 보였다. 이때, ZC 시퀀스에서 30 group을 나타내기 위해, Golay 시퀀스는 30 CS를 이용하여 생성하였고, PN은 Matlab 기반으로 30개의 시퀀스를 생성하여 사용하였다.
- TC=1,2 와 4로 평가하였다.
- Cubic metric 평가는 더 좋은 resolution을 위해 over sampling factor(OSF)를 8로 정하였다.
도 8에서 (a) 도면을 살펴보면, cross correlation 성능은 ZC>Golay>PN 시퀀스 순으로 나타났으며, CM 성능은 ZC>Golay>PN 순 이였다. UL 전송을 위한 SRS 시퀀스 생성 관점에서 LTE 시스템와 같이 ZC 계열이 좋은 성능으로 보이지만, 사운딩 대역폭(sounding 대역폭)의 각 단말의 할당 자유도를 높이기 위해서는 Golay 시퀀스 또는 PN 시퀀스도 New RAT의 SRS 시퀀스 후보로 배제할 수는 없다.
도 9는 Truncated ZC 시퀀스의 일 예를 도시한 도면이다.
도 9는 position 종속적인 시퀀스(position depedent sequence)를 위한 예를 도시한 것으로, Truncated ZC 시퀀스는 하나의 position dependent 시퀀스 중 대표적인 시퀀스 생성 방법으로 고려되고 있다. 먼저, 최대 상향링크 시스템 대역폭(UL system BW)에 걸쳐 mother 시퀀스를 생성하고, 기지국은 각 단말은에게 SRS 자원 위치와 SRS BW에 따라 mother 시퀀스의 일부분을 할당하여, 각 단말이 해당 SRS 시퀀스를 생성하여 SRS를 전송하도록 하는 방법이다. 특히, 부분 오버래핑(partial overlapping)을 허가 시에서는 기지국은 어떤 영역에서든지 같은 주파수 영역을 할당한 단말들에게는 동일 시퀀스를 할당하게 되어, 이때 서로 다른 직교 CDM (예를 들어, Cyclic Shift value)을 적용하면, 이론상 low correlated 하게 적용될 수 있다. 예를 들어, 다음 수학식 1과 같이 나타낼 수 있다.
[수학식 1]
Figure PCTKR2018000857-appb-I000019
위의 특성에서 다른 주파수 위치에 있는 truncated ZC 시퀀스 사이에는 위상(phase) 변화만 있기 때문에, 시간 축으로 바꾼 후 PAPR을 구하면, 이론상 같다. z1(k), z2(k)의 오버랩(overlap) 되는 부분의 Cross correlation은 다음 수학식 2와 같이 나타낼 수 있다.
[수학식 2]
Figure PCTKR2018000857-appb-I000020
k'=0일 때를 보면,
Figure PCTKR2018000857-appb-I000021
즉, CS 값 α와 β가 다르면, 거의 quasi-orthogonal 하다고 볼 수 있다. TC 와 TC offset을 적용 시에도 다음과 같이 전체 시퀀스에서 TC에 해당하는 시퀀스를 찾아서 쓰게 한다. 그러면, 기지국은 어느 동일 주파수 영역에서 동일 시퀀스 생성 파라미터 (예를 들어, TC, TC offset) 갖는 단말들에 대해 동일 시퀀스를 동일 자원에 할당한다. 그러면, 서로 다른 CS를 적용하여, low-correlated 하게 된다.
도 10은 TC에 따른 SRS 시퀀스 생성 방법을 예시한 도면이다.
도 10에 도시한 SRS 시퀀스 생성 방법의 장점은 SRS 할당 flexibility가 좋다는 것이다. 그러나, 오버랩되는 자원 사이에는 항상 다른 CS를 적용해야 하기 때문에, 자원 할당 capability는 short block의 concatenated 방법보다는 효율이 좋지 못하다.
다음 표 10은 SRS 시퀀스 생성을 위한 방법들을 나타낸 표이다.
To down-select one method for NR SRS sequence generation based on at least the following alternatives:Alt-1: SRS sequence is a function of the sounding bandwidth and does not depend on the sounding bandwidth position or the PRB position. Sequence design and other design details are FFS.Alt-2: SRS sequence is a function of the sounding bandwidth position or the PRB position. Sequence design and other design details are FFS. Taking into account metrics such as PAPR, capacity/flexibility, etc.Other parameters, if any, determining SRS sequence are FFS (e.g. SRS sequence ID)
NR에서 SRS 시퀀스 생성 방법을 위해 표 10의 Alt-1 방법과 Alt-2 방법을 고려할 수 있다. Alt-1은 SRS 대역폭이 설정이 된 후, 이것을 이용하여, 시퀀스가 생성되는 형태로, 단 SRS 자원 시작 위치에 관계없이 시퀀스 생성이 되는 구조로 이것의 예시로는 LTE SRS 시퀀스 생성 및 맵핑 방법을 들 수 있다.
일단 사운딩 대역폭(Sounding 대역폭)의 함수가 되는 시퀀스는 ZC 계열을 나타내고 있다. 즉 ZC 계열 시퀀스
Figure PCTKR2018000857-appb-I000022
에서
Figure PCTKR2018000857-appb-I000023
은 대역폭의 함수로 보여진다. SRS 대역폭에 상관없이 시퀀스를 생성 가능한 형태는 PN 계열 시퀀스나 Golay 계열 시퀀스 등이 될 수 있다. 또한, ZC 계열 시퀀스는 SRS 맵핑 위치에 따라 시퀀스 생성이 달라지지 않기 때문에, 표 10의 Alt-1 방법을 만족하는 시퀀스들 중 하나가 된다.
도 11은 ZC 계열 사용 시에 자유로운 주파수 맵핑에서 오버랩핑(Overlapping) 부분에 대한 직교성 유지의 어려움을 예시한 도면이다.
LTE 시스템은 ZC 시퀀스를 이용하여, 각 단말에게 다양한 SRS 대역폭을 제공하는 것을 허가하고, 채널 추정 성능 열화도 줄이기 위해서, Transmsission Comb(TC)를 사용하는 방법으로 intra-cell 간섭을 완화 시켰으며, CS(Cyclic Shift)를 이용하여, port 간의 직교성을 유지하도록 하기 위한 방법을 이용하였다. 이 구조의 가장 큰 장점은 PAPR이 가장 낮은 형태여서 셀 에지(cell-edge) 단말들에게 더 많은 송신 전력 제공이 가능한 유용한 시퀀스 설계 방법이라는 것이다. 다만, 이 구조는 자원 할당에 자유도가 떨어짐이 발생한다는 문제는 있다. 특히 다른 SRS 대역폭 갖는 단말들의 오버랩핑을 허가하기 위해서는 FDM 즉 서로 다른 TC를 사용할 수밖에 없다.
NR은 더 많은 직교 단말들과 TRP 수들로 인해 하나 또는 다수의 부분 대역(partial band)들의 오버랩핑 속에서도 직교성을 유지하기 위한 방법이 필요하다. 이러한 요구 사항에서 한가지 더 고려해야 할 것은 오버랩핑을 어느 정도까지 허용할 것인지 결정하는 것이다. 오버랩핑 정도 자유도를 허용하게 설정 시, Golay 계열 또는 PN 계열 시퀀스로 직교성을 유지하는 방법을 이용한다면 각 오버랩핑 하는 부분의 시퀀스를 공유하고, 서로 다른 CS를 갖게 하는 방법이 있다. 이 방법은 즉 SRS 배치 위치에 따라 시퀀스 생성이 다름을 보여 준다(표 10에서 Alt-2 예시로 고려됨).
일 예로서, Golay 계열 경우, 각 단말에 다른 대역폭이 할당될 때, 오버랩되는 위치로부터 시퀀스가 nested 되는 구조가 되어야 한다. 즉 특정 주파수 위치 i 에서 각 다른 대역폭 갖는 단말 사이에서 nested 구조로 자원을 할당되어야 직교성을 유지할 수 있다.즉, UE-1 sounding sequence = [G( u,i ) G( u,i +2) G( u,i +4) G(u,i+6)],UE-2 sounding sequence = [G( u,i ) G( u,i +2) G( u,i +4) G( u,i +6) G( u,i +8) G( u,i +10) G( u,i +12) G( u,i +14) ]×e(-2jπα (k)). 단, G(u)는 truncated Golay sequence의 time-domain cyclic shifts (CDM)이다. 이러한 특성은 SRS 자원 위치에 종속적인(dependent) 시퀀스가 됨을 의미하며, 표 10의 Alt-2 방법을 만족하는 설계 방법에 해당한다.
그러나, ZC 계열을 사용할 경우, 이러한 방법은 성립할 수 없다. 만약에 서로 다른 SRS 대역폭을 갖는 두 단말이 부분(partial) 오버랩핑 되면, 오버랩핑되는 부분의 시퀀스를 직교하게 할 수 없다. 직교할 수 없는 이유는 SRS 시퀀스가 대역폭에 종속적인 시퀀스이기 때문이다. 이를 허용하기 위해서는, 어떤 특정한 block (혹은 SRS block으로도 호칭 가능)만큼만 오버랩핑을 허용하고, 시퀀스를 block 단위로 구성하는 방법을 고려할 수 있다. 따라서, 특정 block 단위로 시퀀스를 생성하고, 이 block들의 그룹으로 SRS 대역폭을 표현하는 concatenated block SRS를 고려해 볼 수 있다.
이하 본 발명에서 기술하는 block는 SRS를 전송하기 위한 주파수 도메인 상에서의 길이 단위로서, SRS block 길이, 사운딩(sounding) 길이 등 다양하게 명명될 수 있다.
도 12는 Multiple ZC 시퀀스 단위로 구성되는 연접된(Concatenated) block SRS의 구조를 도시한 도면이다.
도 12에 도시한 구조에서는, 기지국이 단위 대역폭(Unit BW) 시작점 기준으로 SRS 자원 할당을 수행하고 단위 대역폭에 할당된 대역폭 기반 시퀀스를 직교하게 각 단말 마다 생성하도록 설정하면, 단위 대역폭 기준으로 위치에 상관없이 시퀀스를 생성할 수 있다는 장점이 있다. 일 예로서, 단말 1(UE 1)과 단말 2(UE 2)가 다른 대역폭을 갖는다고 할 때, 이 두 단말 사이의 단위 대역폭 당 시퀀스 생성을 직교하게 지정해 주면, 단위 대역폭 기준으로 단말들에게 다양한 시작 위치를 설정해 줄 수 있다.
도 13은 SRS unit 오버랩핑을 예시한 도면이다.
도 13의 (a)는 한 SRS unit이 오버랩핑되는 예시를, 도 13의 (b) 두 개 SRS unit들이 오버랩핑되는 것을 예시한 도면이다.
SRS 대역폭 유닛(unit) 단위로 자원 맵핑 시작 위치는 자유롭게 지정 가능하다. 이러한 구조는 SRS 대역폭 설정을 SRS 대역폭 유닛(unit) 개수로 쉽게 나타낼 수 있다. 즉 도 13에서 UE 1의 대역폭은 2 SRS 유닛(unit)으로 표현될 수 있고, UE 2의 SRS 대역폭은 3 SRS 유닛(unit)으로 구성될 수 있다.
따라서, Concatenated SRS 구조는 ZC 계열 시퀀스를 사용하고, unit 단위에서 자유롭게 각 단말에게 SRS를 할당할 수 있는 Alt-1 방법을 만족하는 구조가 될 수 있다. 만약에 이 구조에서 SRS 배치 위치에 따라 ZC 계열의 root 값이 다르게 된다면, Alt-2 구조를 만족하는 시퀀스도 될 수 있다.
그러나, concatenated short 시퀀스를 고려한 SRS 설계를 위해서 몇 가지 해결해야 할 점이 있다.
- Short 시퀀스 대역폭 기반 시퀀스이기 때문에, 한 대역폭 unit에 오버랩될 수 있는 단말 수가 제한적이다. 즉, SRS 대역폭 유닛(unit) 길이=4 RB, TC=2 일 때, 한 대역폭 유닛(unit) 당 길이 24의 ZC계열 시퀀스를 생성할 수 있고, 22가지 직교시퀀스를 생성할 수 있다. 즉, 기지국은 22개의 단말까지 그 대역폭 유닛에 직교하게 할당할 수 있다. 따라서, 많은 수의 단말을 지원할 경우 자원 할당 및 각 단말에 할당된 시퀀스 설계는 오버랩 지원 시 신중하게 할당해 줄 필요가 있다.
- Overhead 증가: 한 단말이 다수의 대역폭 유닛을 갖는 구조가 될 수 있다. 만약에 하나의 SRS 대역폭 설정을 위한 오버헤드를 L이라고 하면, M 개의 대역폭 유닛으로구성된 단말의 SRS 대역폭을 위하여 필요한 오버헤드는 직관적으로 L*M이 필요하게 된다(Alt-2 방법의 특징임).
도 14는 하나의 block의 ZC 시퀀스 (길이 M1 )와 CS 인덱스
Figure PCTKR2018000857-appb-I000024
를 예시한 도면이다.
한 block에서의 많은 수의 단말 또는 직교 SRS(orthogonal SRS) 맵핑이 필요한 units (즉, UE TRPs, UE panels 등)의 SRS 자원 할당을 위해서 한 block에 서로 다른 CS(Cyclic Shift) 값이 제공되어 한 block에 서로 다른 CS 값이 적용될 수 있다. 즉, 도 12에서와 같이 하나의 short block에 각각 다른 CS 값을 갖도록 SRS BW에 걸쳐 block들에 SRS 시퀀스가 맵핑될 수 있다.
도 14의 예시에서 각각 다른 CS 인덱스를 갖는 단말 또는 UE TRP들의 low correlation을 위해, block 내의 시퀀스 길이와 M1 길이는 같게 설정할 수 있다. 따라서, 한 block에서 더 많은 low correlated 성질을 갖는 시퀀스를 생성할 수 있게 된다.
도 15는 고정된 block length = 4RB를 갖는 ZC 시퀀스 block들로 SRS BW에 걸쳐 배치될 때의 PAPR을 나타낸 도면이고, 도 16은 SRS BW를 96RB로 하고 block length를 가변하여 PAPR를 나타낸 도면이다.
도 15는 SRS BW dependent PAPR (block length=4RB, TC=4, ZC 시퀀스, IFFT =2048), 도 16은 block dependent PAPR (SRS BW=96RB, TC=4, ZC 시퀀스, IFFT =2048)을 예시하고 있다.
도 15는 고정된 block length = 4RB를 갖는 ZC 시퀀스 block 들로 SRS BW에 걸쳐 배치될 때의 PAPR을 나타낸 것으로, SRS BW가 8 RB 이면 2개의 block으로 구성됨을 알 수 있다. 도 16은 SRS BW를 96RB로 하고 block length를 가변하여 PAPR를 나타낸 것이다. 즉 block length가 8RB 이면 12개의 block으로 구성됨을 알 수 있다.
도 15 및 도 16에 도시한 결과로부터, block 수가 증가하게 되면 PAPR이 증가하게 되어, 적절히 각 단말들의 PAPR 요구사항에 따라, block 수를 제한할 필요가 있음을 알 수 있다.
제안 1
기지국은 SRS가 할당되는 전체 상향링크 대역(UL Band)에서 상향링크 SRS capability에 따라 concatenated blocks으로 구성된 SRS를 할당할 수 있다. 상향링크 SRS capability의 일 예로서, 상향링크 SRS 생성을 위한 block 길이 즉 특정 단말 그룹에서의 단말들은 동일 block 길이를 갖게 SRS를 할당하고, 그 단말들 사이의 일부(partial) 또는 전부(full) 오버래핑을 허가할 수 있다. 또한 서로 다른 block 길이를 갖는 단말 그룹 사이의 직교성을 위해 단말 그룹들에 대해서는 SRS를 주파수 분할 다중(FDM) 방식으로 설정할 수 있다(예를 들어, 서로 다른 TC, TC offset 적용).
기지국은 단말에게 다음의 정보 각각을 혹은 조합의 형태로 제공할 수 있다.
(1) 하나의 (SRS) block 길이를 나타내는 값 (예를 들어, (SRS) block 길이를 가리키는 (SRS) block 길이 인덱스, SRS 대역폭(SRS BW)와 SRS 대역폭에 할당되는 (SRS) block 수)
(2) block 단위의 자원의 주파수 도메인에서의 할당 시작 및/또는 끝 위치(예를 들어, block 길이가 4 RB 이고, SRS BW가 16인 단말의 경우, 시작 위치를 나타내는 k0
Figure PCTKR2018000857-appb-I000025
로 나타내거나, 끝 위치 k1
Figure PCTKR2018000857-appb-I000026
로 나타날 수 있다.)
(3) 단말에 할당된 자원에 대한 시퀀스 생성 파라미터들(예를 들어, TC, TC offset, CS, root 등)
(4) 단말에 할당된 자원에 대한 시퀀스 생성 파라미터 세트 수 (예를 들어, 하나의 세트 {TC, TC offset, CS, root} 수 n개)
도 17은 링크 버짓(link budget)에 따른 (SRS) block 길이 할당 방법을 예시한 도면이다.
일 실시 예로서, 하향링크 링크 버짓(DL link budget) 계산 및 획득 후(예를 들어, 단말들은 하향링크 참조신호들로 RSRP 계산 후에 각각 기지국으로 CQI를 보고하고, CQI 대신에 RSRP 자체를 보고 할 수도 있다. 기지국은 보고받은 CQI에 기초하여 UL SRS 할당을 위해 서로 다른 block 길이를 나타내는 인덱스를 단말들에게 제공할 수 있다.
도 17에서, 기지국이 각 단말(UE)로부터 CQI를 각각 UE 1: CQI = 12, UE 2: CQI = 4, UE 3: CQI = 15, UE 4: CQI = 2, UE 5: CQI = 7 로 보고받았을 때, 일반적으로 (SRS) block 길이 수는 UE 2와 UE 4는 50 RB로, UE 5는 25 RB로, UE 1과 UE 3은 10 RB로 결정하여, 해당 단말에게 알려 줄 수 있다.
도 18은 SRS 자원 위치에 따른 (SRS) block 길이의 설정을 예시한 도면이다.
도 17의 예시에서 기지국이 단말에게 SRS 자원 위치 정보를 전송함으로써, 단말이 해당 (SRS) block 길이를 유추할 수 있다. 자원 할당 위치는 block 길이에 따라 고정되게 설정된다. 즉, 50RB 길이를 block을 갖는 단말이 할당받을 수 있는 시작 위치는 k0=0RB, 50RB 가 되고, 10RB 길이 block을 갖는 단말이 할당받을 수 있는 시작 위치는 k0={0, 10, 20, 30, ...., 90 RB} 가 된다. 따라서, 기지국은 UE 1의 SRS 자원 할당 시작 위치를 k0=20RB, SRS BW을 70 RB로 설정하여 UE 1에게 알려줄 수 있다. 그리고, 기지국이 UE 2의 SRS 자원 할당 시작 위치를 k0=50RB, SRS BW를 50 RB로 설정하여 UE 2에게 제공하면, 기본적으로 block 설정 위치가 도 18과 같다면, 그러면, UE 1은 (SRS) block 길이가 10RB임을 파악할 수 있고, UE 2는 (SRS) block 길이가 50RB임을 파악할 수 있다.
중복되는 위치가 상기 도 18의 예시에서 k0=50RB인 경우, 기지국은 단말에게 SRS 자원 끝 위치에 대한 정보를 전송하면(예를 들어, UE 1 k1=70RB, UE 2 k1=100RB 로 전송), UE 1은 자신의 block 길이를 10 RB로 이해하고, 이에 기초하여 해당 자원에서 SRS를 생성하고, UE 2는 자신의 block 길이를 50 RB로 이해하고 이에 기초하여 해당 자원에서 SRS를 생성한다. 이러한 방법으로도 block 길이가 모호하면, 기지국이 단말에게 직접 (SRS) block 길이에 대한 정보를 전송해 줄 수 있다.
일 실시 예로서, 다음 표 11은 SRS 시퀀스 생성 파라미터와 block 길이 정보가 연동하는 예시를 나타내고 있다.
Root id CS 자원 위치 (SRS) block 길이
2 3 k0=50RB 50RB
4 5 k0=10RB 10RB
6 12 k0=50RB 25RB
9 2 k0=50RB 10RB
단말이 표 11과 같은 SRS 시퀀스 생성 파라미터에 대한 정보 및 위치 정보를 보고받았을 때, 단말은 이에 해당하는 SRS Block 길이를 유추할 수 있다. 표 11은 기지국이 RRC 시그널링, MAC-CE, DCI 등을 통해 단말에게 전송해 줄 수 있다. 단말은 SRS 시퀀스 생성 파라미터 수와 SRS BW에 따라 block 길이를 유추해 낼 수 있다.
만약, 기지국이 상기 파라미터 세트 수 n = 2를 단말에 전송하면(예를 들어, {TC1, TC offset 1, CS 1, root 1}, {TC 2, TC offset 2, CS 2, root 2}), 이때 SRS BW가 50 RB라고 하면, 해당 단말은 자신의 block 길이를 25 RB로 이해할 수 있다.
제안 1-1
제안 1의 구체적은 제안으로서, 상기 제안 1에서 단말이 자신의 (SRS) block 길이를 유추해 내도록 하기 위해 기지국이 전송하는 정보들은 L3(RRC), L1 (MAC-CE 또는 DCI) 등을 통해 전송될 수 있다. 각 파라미터들의 전송 설정 조합은 다음과 같다.
- 하나의 (SRS) block 길이를 나타내는 값은 RRC로, block 단위의 자원의 주파수 측 할당 시작 및/또는 끝 위치에 대한 정보는 DCI, 할당받는 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보는 MAC-CE를 통해 전송될 수 있다.
- 하나의 (SRS) block 길이를 나타내는 값은 RRC로, block 단위의 자원의 주파수 측 할당 시작 및/또는 끝 위치에 대한 정보는 DCI, 할당받는 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보도 DCI를 통해 전송될 수 있다.
- 하나의 (SRS) block 길이를 나타내는 값은 DCI로, block 단위의 자원의 주파수 측 할당 시작 및/또는 끝 위치에 대한 정보는 DCI, 할당받는 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보도 RRC를 통해 전송될 수 있다.
-하나의 SRS block 길이를 나타내는 값은 DCI, block 단위의 자원의 주파수 측 할당 시작 및/또는 끝 위치에 대한 정보는 DCI, 할당받는 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보는 RRC를 통해 전송될 수 있다.
-하나의 SRS block 길이를 나타내는 값은 DCI, block 단위의 자원의 주파수 측 할당 시작 및또는 끝 위치에 대한 정보는 MAC-CE로, 할당받는 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보는 RRC를 통해 전송될 수 있다. 이러한 4가지 조합 이외에 더 다양한 조합으로 구성될 수도 있다.
제안 2
Concatenated blocks SRS 와 Truncation SRS의 하이브리드(Hybrid) 설정에 대한 구성을 위해, 다음과 같은 SRS 규칙을 설정할 수 있다.
(1) 전체 상향링크 시스템 대역폭에 걸쳐, block 길이와 block 수가 결정되고, 구성될 수 있다. 예를 들어, 상향링크 시스템 대역폭이 100RB인 경우, block 길이가 20RB 설정되면, 기지국은 block 수는 5개임을 해당 단말에게 지시해 줄 수 있다.
(2) 각 단말은 할당된 SRS 대역을 block 단위로 설정하고, 만약 SRS 대역폭이 정수개의 block으로 나타내기 어려우면(예를 들어, block 길이는 10RB인데 SRS 대역폭이 25RB인 경우), 단말은 해당 block에서 절단(truncation)을 수행할 수 있다. 예를 들어, block 길이는 10RB인데 SRS 대역폭이 25RB인 경우, SRS 대역폭은 3개의 block으로 구성되고, 단말이 절단(truncation)을 수행할 block 값은 3(세 번째 block)이다. 따라서 단말은 3번째 block의 시퀀스는 독립적으로 설정된 시퀀스 생성 파라미터에 따라 생성하고, 절단(truncation) 설정에 따라 block 길이 10RB에서 5RB가 절단(truncation) 수행 후 할당한다.
SRS 대역폭은 n개의 sub-band로 나타낼 수 있다 단, n은 정수이다. 여기서 sub-band는 block 보다 더 작은 단위이다. 예를 들어, block 길이가 10RB 일때, sub-band는 2RB로 설정될 수 있다. 따라서, SRS 대역폭이 24 RB로 설정된다면, 2개의 block과 2개의 sub-band로 설정되거나, sub-band 수로 표현할 때면 12개 sub-bands로 설정될 수 있다. 하나의 block은 정수배의 sub-band 수로 구성될 수 있다. 따라서, SRS 대역폭과 SRS 할당 위치에 따라, 절단(truncation)이 발생하는 block 위치와 그 block 내에서 절단(truncation)이 수행될 수 있다.
도 19는 block과 sub-band 수 설정에 따른 SRS 대역폭 설정 및 절단(truncation) 설정을 예시한 도면이다.
일 실시 예로서, 도 19에 도시한 바와 같이, 상향링크 시스템 대역폭이 50RB 이고, block 길이는 10RB, sub-band 길이는 2RB라고 할 때, SRS 대역폭이 16 RB로 할당되고, 할당되는 시작 위치 k0=12 (12 RB)로 설정될 수 있다. 상향링크 시스템 대역폭에 걸친 block에 해당하는 SRS 시퀀스 생성 파라미터가 첫 번째 block에서는 {TC1, CS 1, root 1}가 설정되고, 두 번째 block에는 {TC 2, CS 2, root 2})가 설정되며, … , 다섯 번째 block = {TC5, CS 5, root 5} 로 설정된다고 할 때, 도 19에서와 같이 SRS 대역폭이 8 sub-bands 로 구성되고, k0=12이므로, 단말은 2번째 block 경우 1번째 sub-band를 잘라내고, 3번째 block 경우 5번째 sub-band를 잘라내고 난 후 해당 자원(도 19에서 빗금친 영역)에서 SRS를 전송한다. 따라서, 단말은 절단된 2,3 번째 block을 concatenation 한 후에 concatenated blocks(도 19에서는 빗금친 영역)에서 SRS를 전송한다.
제안 2-1
제안 2의 구체적인 제안으로서, SRS 자원 할당 flexibility 향상을 위해, 각 (SRS) block에서 절단(truncated) 되는 경우, 이러한 절단과 관련된 정보를 기지국이 단말에게 제공한다. 절단이 적용되는 단말의 자원 위치 정보는 다음 중 하나 또는 다수 개의 조합이 될 수 있다.
(1) 절단되는 block 인덱스
(2) SRS 주파수 자원 시작 위치 k0 및/또는 끝 위치 k1
(3) 절단되는 주파수 영역 범위 (예를 들어, 제거 시작 위치 k0' 와 제거 끝 위치 k1' )에 대한 정보
(4) 절단되는 block의 시퀀스 생성 파라미터들(예를 들어, TC, TC offset, CS, root 등)에 대한 정보
(5) 절단되는 block의 시퀀스 생성 파라미터 세트 수(예를 들어, 하나의 셋 {TC, TC offset, CS, root} 수 n개)에 대한 정보
(6) 절단 동작 인에블러(Truncation operation enabler): 각 block에 대한 절단 동작을 허가를 지시하는 flag에 대한 정보
(7) 상기 (1) 내지 (6)의 정보들을 다양하게 조합한 정보
절단 동작 인에블러(Truncation operation enabler)는 할당된 block 중에 절단을 허가하는 block이 어느 block인지를 지시해주기 위한 flag이다. 일 실시 예로 SRS 대역폭이 3개의 block으로 구성된 단말에 대해, 기지국이 '101'로 지시된 절단 동작 인에블러(Truncation operation enabler)를 전송하면, 단말은 '1'로 표시된 첫 번째 block와 세 번째 block에서만 절단이 허용됨을 알 수 있다.
이하에서 일 실시 예로서 절단이 적용되는 block 설정의 예를 기술한다.
도 20은 하나의 block에서의 절단으로 인한 contiguous SRS 자원(contiguous SRS BW= 30RB)을 예시한 도면이다.
도 20을 참조하면, 시스템 대역폭은 50RB 이고, 특정 단말의 block 길이는 25RB로 설정되었다고 하자. 이때, SRS 대역폭이 30RB로 할당되면, 다음의 설정을 통해 contiguous 30RB의 SRS 자원이 상기 특정 단말에게 할당될 수 있다.
도 20에서와 같이, 기지국이 특정 단말에 20RB에서 시작하여(k0= 20), 50RB까지 SRS 대역폭으로 할당하는 경우, 기지국은 block 2개에 대한 시퀀스 생성 파라미터들 (예를 들어, 첫 번째 block = {TC1, TC offset 1, CS 1, root 1}, 두 번째 block = {TC 2, TC offset 2, CS 2, root 2})을 단말에게 전송해 주고, 이때, 절단 block을 지시하는 절단 block 인덱스 정보를 단말에게 전송해 줄 수 있다.
단말은 각 block에 대한 시퀀스 생성 파라미터들에 대한 정보 및 절단 block을 지시하는 정보들을 수신한 후에 절단 block 인덱스가 0이라면 첫 번째 block에 대하여 시퀀스를 생성하고, 절단을 수행할 수 있다. 이 경우, 절단 영역은 0에서 25RB까지 이다. 절단 block 인덱스가 1로 지시된다면, 단말은 두 번째 block에서 30RB부터 50RB까지 절단을 수행한다. 첫 번째 block에서 절단하거나 두 번째 block에서 절단하더라도, 두 block의 결합 시 30RB의 contiguous SRS 자원이 형성된다. 단말은 두 block이 결합하여 형성된 contiguous 30RBs 의 영역에서 SRS를 기지국으로 전송한다.
도 21은 SRS 자원 위치 정보 전송을 통한 SRS block 절단을 예시한 도면이다.
절단이 적용되는 block 설정(절단 자원 위치 전송의 예)을 설명한다. 기지국은 직접적으로 SRS 주파수 자원 시작 위치 k0 및/또는 끝 위치 k1에 대한 정보를 단말로 전송하는 방법으로, 단말에게 절단되는 자원의 위치를 알려줄 수 있다. 일 예로서, 기지국이 block 길이는 10 RB이고, 단말의 SRS 자원 시작 위치가 12 RB (k0 =12)이고 끝 위치가 40RB (k1 =40)로 지정하여 단말에게 전송하면, 단말은 2번째 block이 절단됨을 인지할 수 있다. 따라서, 단말은 상향링크 시스템 대역폭에서 2번째 block의 11 RB 부터 12 RB까지의 영역을 잘라버린다.
제안 2-2
기지국은 절단이 적용되는 block 설정(절단 자원 위치 전송의 예)을 위한 정보들을 단말에게 L3(RRC) 또는 L1 (MAC-CE 또는 DCI)를 통해 전송될 수 있다. 각 파라미터들의 전송 설정 조합은 다음과 같다.
- 절단되는 block 인덱스는 RRC 시그널로, SRS 자원의 주파수 측 할당 시작 위치 및/또는 끝 위치에 대한 정보는 DCI로, 절단되는 block 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보는 MAC-CE로 시그널링될 수 있다.
- 절단되는 block 인덱스는 RRC 시그널로, SRS 자원의 주파수 측 할당 시작 위치 및/또는 끝 위치에 대한 정보는 DCI로, 절단되는 block 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보도 DCI로 시그널링될 수 있다.
- 절단되는 block 인덱스는 DCI로, SRS 자원의 주파수 측 할당 시작 위치 및/또는 끝 위치에 대한 정보도 DCI로, 절단되는 block 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보는 RRC 시그널로 시그널링될 수 있다.
- 절단되는 block 인덱스는 DCI로, SRS 자원의 주파수 측 할당 시작 위치 및/또는 끝 위치에 대한 정보는 MACK-CE로, 절단되는 block 자원에 대한 시퀀스 생성 파라미터 세트 수에 대한 정보는 RRC 시그널로 시그널링될 수 있다. 이들 정보들의 RRC, MAC-CE, DCI에 대한 조합은 더 다양하게 구성될 수 있다.
절단되는 block에서 오버랩핑(overlapping)되는 단말 간의 시퀀스가 low correlation을 만족하기 위해서, 기지국은 할당하는 block의 시퀀스 생성 파라미터들 중 일부분 (예를 들어, TC 와 root값)은 동일하게 설정하여 단말에 제공할 수 있다. 그리고, 기지국은 각 단말에게 그 block에 적용하는 CS 값을 다르게 설정해 줌으로써 단말 간의 시퀀스가 low correlation하도록 할 수 있다. 따라서, 다음과 같은 절단(truncation) block에 대한 시퀀스 생성 설정을 고려할 수 있다.
제안 2-3
절단되는 block 내의 시퀀스 생성 파라미터들의 조합은 다음과 같이 설정할 수 있다.
- 기지국은 절단되는 block의 TC, TC 옵셋과 Root 값은 셀-특정 및/또는 단말-특정한 RRC 시그널로 준-정적(semi-static)으로 단말에게 전송하고, CS 값은 DCI로 단말-특정하게 전송할 수 있다.
- 기지국은 절단되는 block의 Root 값만 셀-특정 및/또는 단말-특정한 RRC 시그널로 준-정적(semi-static)으로 단말에게 전송하고, TC, TC 옵셋과 CS 값은 DCI로 단말-특정하게 전송할 수 있다.
- 기지국은 절단되는 block이 트리거링 시에 가장 최근 SRS가 전송되었던 예(instance)에서 그 block에 할당되었던 시퀀스 생성 파라미터들 일부(예를 들어, TC/TC 옵셋 및/또는 Root 값)은 이용할 수 있고, 나머지 일부(예를 들어, CS 값)은 DCI를 통해 동적으로 전송할 수 있다.
기지국은 단말에게 Concatenated blocks SRS과 대비하여 SRS 자원 flexibility를 향상시키면서 peak-to-average power(PAPR)과 cubic metric(CM) 등의 성능 열화를 많이 받지 않도록 각 block의 시퀀스 파라미터들을 제공할 수 있다.
제안 3
Concatenated blocks SRS 와 Truncation SRS의 하이브리드(Hybrid) 설정에 대한 구성을 위해서 다음과 같은 SRS 규칙을 설정할 수 있다.
(1) 기지국은 단말의 SRS 대역폭 설정과 SRS 설정 capability(예를 들어, 단말의 최대 가능 PAPR/CM, 단말의 송신기의 PA 성능에 따른 power back-off)에 따라 설정되는 block 길이, block 수를 결정하고, 절단할 수 있는 block 위치 및 그 block 내에서 절단되는 길이 등을 설정 혹은 결정할 수 있다.
예를 들어, SRS 대역폭이 50 RB로 설정되고, 이때, 그 단말의 SRS 설정 capability로써 최대 가능 PAPR이 6dB로 보고된다면, 기지국은 이 요구사항을 만족할 수 있는 block 수와 block 길이, truncation 정도 등을 결정한다. 일 예로서 PAPR 6dB 이내가 되는 block 수는 3개이면, 각 block 길이는 20RB로 설정하고, 절단하는 block의 인덱스를 3으로 설정하여 단말에게 이들에 대한 정보를 전송해 줄 수 있다. 따라서, 3번째 block에서 10RB가 절단되어, 20RB의 block이 2개 절단된 10RB block이 1개가 연접하여(Concatenated) 총 50 RB의 SRS 대역폭을 설정할 수 있다.
(2) 단말은 단말의 SRS 대역폭 및 SRS 자원 할당 위치를 추천하기 위한 피드백을 기지국에 보고할 수 있다. 기지국은 SRS 설정 capability와 이 피드백을 고려하여, 단말에게 (SRS) block 수, 하나의 (SRS) block 길이, 절단되는 (SRS) block 설정(예를 들어, 절단되는 정도 등의 절단에 대한 정보)을 단말에게 지시해 줄 수 있다.
예를 들어, 특정 단말이 원하는 SRS 대역폭이 45RB이고, 원하는 SRS 대역폭 위치는 20RB~65RB임을 지시하는 피드백을 기지국에 전송하였을 때, PAPR 요구 사항이 6dB 이내로 된다면, 기지국은 상기 특정 단말의 SRS 대역폭을 2개의 block으로 구성하도록 결정하고, 각 block 길이는 25RB로 결정할 수 있다. 이때, 2번째 block에서 25RB가 20RB로 절단(truncation)을 수행됨을 지시하고, 각 block에 대한 시퀀스 생성 파라미터를 제공할 수 있다. 따라서, 총 SRS 대역폭에 따른 PAPR은 6dB를 넘지 않게 설정한다.
(3) 서로 다른 block 길이를 갖는 단말들은 SRS 전송의 경우 FDM(예를 들어, 다른 TC, 다른 TC offset) 방식을 적용하여 직교성을 유지할 수 있다.
제안 4
SRS 대역폭의 시작 위치 또는 끝 위치 중 하나는 설정할 수 있는 가장 작은 사운딩 길이 K1 단위 위치에 align 하도록 설정될 수 있다. K1은 multiple RBs 또는 REs로 구성될 수 있다.
도 22는 주파수 자원 설정과 SRS 배치(가장 작은 사운딩 길이 위치에 SRS 대역폭의 시작 위치를 align 함)의 예를 도시한 도면이다.
도 22를 참조하면, SRS 대역폭의 시작 위치 또는 끝 위치 중 하나는 설정할 수 있는 가장 작은 사운딩 길이 K1 단위 위치에 정렬(align) 하도록 설정될 수 있다. 즉 전 대역에 SRS 대역폭 배치를 위한 자원 시작 또는 끝 위치는 설정할 수 있는 가장 작은 사운딩 길이 K1 단위 (즉, k×K, k=0,.....,Nk1 )에 align 되도록 셀-특정하게 고정될 수 있다. 또는 이러한 common grid는 미리 네트워크에서 규정될 수 있다.
가장 작은 사운딩 길이에 할당되는 하나의 base 시퀀스는 하나의 SRS 자원으로 맵핑될 수 있다. 하나의 SRS 자원에 하나의 빔에 대응되는 방식으로 SRS가 전송될 수 있다.
또는, 복수의 심볼에 하나의 SRS 자원이 span 되는 경우에는 그 SRS 자원에는 동일 송신 빔(Tx beam)이 전송될 수 있다. 가장 작은 사운딩 길이의 하나의 block에 할당되는 base 시퀀스가 각 심볼마다 그 SRS 자원에 대응되는 block에 동일하게 할당될 수 있다. 또는, 그 SRS 자원은 설정된 사운딩 길이의 하나의 block에 할당되며, 각 심볼 마다 그 SRS 자원에 대응되는 block에 할당되는 base 시퀀스는 각 심볼 마다 동일하게 할당될 수 있다.
또는, 복수의 심볼에 하나의 SRS 자원이 span 될 때, 설정하는 block 길이를 갖는 다수의 block으로 구성되고, 이때, 각 심볼 마다 그 SRS 자원에 대응되는 다수 block에 할당되는 base 시퀀스는 각 심볼 마다 동일하게 할당될 수 있다.
셀-중앙(Cell-centered) 단말들 경우 flexible 자원 utilization을 위해 concatenated blocks SRS로 설정될 때, 기본적으로 높은 PAPR을 낮추기 위해 SRS 대역에 따라 block 수에 제한을 두고, 그 대신 하나의 block에 맵핑되는 시퀀스 길이를 길게 함으로써, SRS 대역폭에 SRS를 구성하는 방법과 좀 더 SRS 할당 flexibility를 향상하기 위해, 하나의 block 내에서 SRS 자원 길이를 절단(truncation)하여 할당하는 기법을 하이브리드하게 접목할 수 있다.
이상에서 설명된 실시예들 및 제안들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
무선통신 시스템에서 SRS 설정 정보를 수신하는 방법 및 이를 위한 단말은 3GPP LTE/LTE-A 시스템, 5G 통신 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (15)

  1. 무선통신 시스템에서 단말이 Sounding Reference Symbol(SRS) 설정 정보를 수신하는 방법에 있어서,
    기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하는 단계; 및
    상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하는 단계를 포함하되,
    상기 SRS 설정 정보는 (1) 하나의 SRS 블록의 길이를 나타내는 정보, (2) SRS 대역폭을 나타내는 정보, (3) SRS 블록의 수를 나타내는 정보, (4) 주파수 도메인에서의 SRS 블록의 시작 위치 또는 SRS 블록의 끝 위치를 나타내는 정보 및 (5) 상기 연접된 SRS 블록들에 대한 시퀀스 생성 파라미터의 정보 중 적어도 두 개 이상의 정보를 포함하는, SRS 설정 정보 수신 방법.
  2. 제 1항에 있어서,
    상기 연접된 SRS 블록들에 대한 시퀀스 생성 파라미터의 정보는 상기 시퀀스 생성 파라미터들의 값 또는 상기 시퀀스 생성 파라미터의 수에 대한 정보를 포함하는, SRS 설정 정보 수신 방법.
  3. 제 1항에 있어서,
    상기 SRS 설정 정보는 DCI(Downlink Control Information), MAC CE(Control Element), 또는 RRC(Radio Resource Control) 시그널링을 통해 수신되는, SRS 설정 정보 수신 방법.
  4. 제 1항에 있어서,
    상기 SRS 설정 정보는 상기 연접된 SRS 블록(block)들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보 및 상기 절단되는 주파수 영역 범위에 대한 정보를 더 포함하는, SRS 설정 정보 수신 방법.
  5. 제 1항에 있어서,
    상기 절단이 수행되는 SRS 블록의 길이는 나머지 SRS 블록들과 주파수 영역에서의 길이가 다른, SRS 설정 정보 수신 방법.
  6. 제 4항에 있어서,
    상기 절단되는 주파수 영역 범위에 대한 정보는 절단 시작 위치 및 절단 끝 위치 중 적어도 어느 하나의 정보를 포함하는, SRS 설정 정보 수신 방법.
  7. 제 1항에 있어서,
    상기 시퀀스 생성 파라미터들의 값에 대한 정보는 시퀀스 생성을 위한 루트(root) 인덱스, cyclic shift (CS) 인덱스, TC(Transmission Comb) 및 TC 옵셋 값 중 적어도 하나를 포함하는, SRS 설정 정보 수신 방법.
  8. 무선통신 시스템에서 단말이 Sounding Reference Symbol(SRS) 설정 정보를 수신하는 방법에 있어서,
    기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하는 단계; 및
    상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하는 단계를 포함하되,
    상기 SRS 설정 정보는 하나의 SRS 블록의 길이를 나타내는 정보, SRS 블록의 수를 나타내는 정보 및 상기 연접된 SRS 블록들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보를 포함하는, SRS 설정 정보 수신 방법.
  9. 제 8항에 있어서,
    상기 단말의 SRS 설정 능력(capability)에 대한 정보를 상기 기지국으로 전송하는 단계를 더 포함하고,
    상기 SRS 설정 정보는 상기 단말의 SRS 설정 능력에 대한 정보에 기초하여 결정된 것인, SRS 설정 정보 수신 방법.
  10. 제 9항에 있어서,
    상기 단말의 SRS 설정 능력(capability)에 대한 정보는 요구하는 Peak-to-Average Power Ratio (PAPR), 원하는 SRS 대역폭 및 원하는 SRS 할당 위치에 대한 정보 중 적어도 어느 하나를 포함하는, SRS 설정 정보 수신 방법.
  11. 제 8항에 있어서,
    상기 SRS 블록의 단위는 RB(Resource Block) 단위 또는 RE(Resource Elemet) 단위인, SRS 설정 정보 수신 방법.
  12. 무선통신 시스템에서 Sounding Reference Symbol(SRS) 전송을 위한 제어 정보를 수신하는 단말에 있어서,
    송신기;
    수신기; 및
    프로세서를 포함하되,
    상기 프로세서는, 상기 수신기가 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하도록 제어하고, 상기 송신기가 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하도록 제어하되,
    상기 SRS 설정 정보는 (1) 하나의 SRS 블록의 길이를 나타내는 정보, (2) SRS 대역폭을 나타내는 정보, (3) SRS 블록의 수를 나타내는 정보, (4) 주파수 도메인에서의 SRS 블록의 시작 위치 또는 SRS 블록의 끝 위치를 나타내는 정보 및 (5) 상기 연접된 SRS 블록들에 대한 시퀀스 생성 파라미터의 정보 중 적어도 하나 이상의 정보를 포함하는, 단말.
  13. 제 12항에 있어서,
    상기 SRS 설정 정보는 상기 연접된 SRS 블록(block)들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보 및 상기 절단되는 주파수 영역 범위에 대한 정보를 더 포함하는, 단말.
  14. 무선통신 시스템에서 Sounding Reference Symbol(SRS) 전송을 위한 제어 정보를 수신하는 단말에 있어서,
    송신기;
    수신기; 및
    프로세서를 포함하되,
    상기 프로세서는, 상기 수신기가 기지국으로부터 연접된(concatenated) SRS 블록(block)들 단위로 SRS 전송을 위한 SRS 설정 정보를 수신하도록 제어하고, 상기 송신기가 상기 SRS 설정 정보에 기초하여 상기 연접된 SRS 블록들 상에서 SRS를 상기 기지국으로 전송하도록 제어하되,
    상기 SRS 설정 정보는 하나의 SRS 블록의 길이를 나타내는 정보, SRS 블록의 수를 나타내는 정보 및 상기 연접된 SRS 블록들 중에서 절단(truncation)이 수행되는 SRS 블록을 가리키는 정보를 포함하는, 단말.
  15. 제 14항에 있어서,
    상기 프로세서는 상기 송신기가 상기 단말의 SRS 설정 능력(capability)에 대한 정보를 상기 기지국으로 전송하도록 제어하고,
    상기 SRS 설정 정보는 상기 단말의 SRS 설정 능력에 대한 정보에 기초하여 결정된 것인, 단말.
PCT/KR2018/000857 2017-05-08 2018-01-18 무선통신 시스템에서 srs 설정 정보를 수신하는 방법 및 이를 위한 단말 WO2018207995A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/611,576 US11165546B2 (en) 2017-05-08 2018-01-18 Method for receiving SRS configuration information in wireless communication system and terminal therefor
US17/480,796 US11683140B2 (en) 2017-05-08 2021-09-21 Method for receiving SRS configuration information in wireless communication system and terminal therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762502781P 2017-05-08 2017-05-08
US62/502,781 2017-05-08
US201762520566P 2017-06-16 2017-06-16
US62/520,566 2017-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/611,576 A-371-Of-International US11165546B2 (en) 2017-05-08 2018-01-18 Method for receiving SRS configuration information in wireless communication system and terminal therefor
US17/480,796 Continuation US11683140B2 (en) 2017-05-08 2021-09-21 Method for receiving SRS configuration information in wireless communication system and terminal therefor

Publications (1)

Publication Number Publication Date
WO2018207995A1 true WO2018207995A1 (ko) 2018-11-15

Family

ID=64104662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000857 WO2018207995A1 (ko) 2017-05-08 2018-01-18 무선통신 시스템에서 srs 설정 정보를 수신하는 방법 및 이를 위한 단말

Country Status (2)

Country Link
US (2) US11165546B2 (ko)
WO (1) WO2018207995A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080805A4 (en) * 2020-02-13 2023-04-26 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR REFERENCE SIGNAL TRANSMISSION OR RECEPTION IN A WIRELESS COMMUNICATION SYSTEM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4318972A3 (en) * 2018-08-17 2024-04-03 InterDigital Patent Holdings, Inc. Beam management for multi-trp
US11456896B2 (en) * 2018-12-20 2022-09-27 Qualcomm Incorporated RRC configuration for aperiodic SRS on additional SRS symbols

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019878A1 (ja) * 2007-08-08 2009-02-12 Panasonic Corporation 無線送信装置及び無線通信方法
CN101651469B (zh) * 2008-08-15 2013-07-24 三星电子株式会社 用于lte系统中发送上行监测参考符号的跳频方法
CN102362441B (zh) * 2009-03-22 2016-12-21 Lg电子株式会社 使用多个天线的信道探测方法以及用于其的装置
WO2011083746A1 (en) * 2010-01-08 2011-07-14 Sharp Kabushiki Kaisha Mobile communication method and system for sounding reference signal transmission, and base station, user equipment and integrated circuit therein
TWI462622B (zh) * 2010-06-18 2014-11-21 Mediatek Inc 載波聚合下之探測方法以及使用者設備
KR101963819B1 (ko) * 2011-05-03 2019-03-29 삼성전자주식회사 복수의 요청에 대한 응답에서 사용자 단말로부터의 사운딩 기준 신호의 전송
CN103457690B (zh) * 2012-05-31 2017-11-03 中兴通讯股份有限公司 探测参考信号的传输方法、装置及系统和用户设备
US9154267B2 (en) * 2012-07-02 2015-10-06 Intel Corporation Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
CN104518845B (zh) * 2013-09-27 2020-08-04 中兴通讯股份有限公司 一种时分双工系统中测量参考信号功率控制参数配置方法和系统
US10411929B2 (en) * 2014-04-05 2019-09-10 Shanghai National Engineering Research Center Of Digital Television Co., Ltd. Preamble symbol receiving method and device
US10827491B2 (en) * 2014-10-07 2020-11-03 Qualcomm Incorporated Techniques for transmitting a sounding reference signal or scheduling request over an unlicensed radio frequency spectrum band
US10826661B2 (en) * 2015-08-10 2020-11-03 Apple Inc. Enhanced sounding reference signaling for uplink beam tracking
CN106506127B (zh) * 2015-09-06 2021-03-16 中兴通讯股份有限公司 一种传输信息的方法和装置
US10477528B2 (en) * 2016-02-02 2019-11-12 Ofinno, Llc Downlink control information in a wireless device and wireless network
US10333670B2 (en) * 2016-05-06 2019-06-25 Qualcomm Incorporated Sounding reference signals with collisions in asymmetric carrier aggregation
JP2020511037A (ja) * 2017-02-14 2020-04-09 エルジー エレクトロニクス インコーポレイティド Srs設定情報を受信する方法及びそのための端末
US10680866B2 (en) * 2017-03-24 2020-06-09 Huawei Technologies Co., Ltd. Sounding reference signal design
CN108667579B (zh) * 2017-03-30 2021-08-03 华为技术有限公司 一种数据发送方法、相关设备及系统
CN108809578B (zh) * 2017-05-05 2021-07-16 华为技术有限公司 传输数据的方法、终端设备和网络设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Discussion on SRS for NR", R1-1707368, 3GPP TSG RAN WG1 MEETING #89, 7 May 2017 (2017-05-07), Hangzhou, P.R. China, XP051263027 *
"SRS Design", R1-1702805, 3GPP TSG RAN WG1 MEETING #88, 7 February 2017 (2017-02-07), Athens, Greece, XP051221632 *
ERICSSON: "Concatenated Block RS Design", R1-1612327. 3GPP TSG-RAN WG1 #87, 5 November 2016 (2016-11-05), Reno, USA, XP051190387 *
ZTE ET AL.: "Discussion on SRS Design for NR", R1-1701818, 3GPP TSG RAN WG1 MEETING #88, 7 February 2017 (2017-02-07), Athens, Greece, XP051220884 *
ZTE: "Discussion on SRS Design for NR", R1-1707133, 3GPP TSG RAN WG1 MEETING #89, 7 May 2017 (2017-05-07), Hangzhou, P.R. China, XP051262921 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080805A4 (en) * 2020-02-13 2023-04-26 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR REFERENCE SIGNAL TRANSMISSION OR RECEPTION IN A WIRELESS COMMUNICATION SYSTEM

Also Published As

Publication number Publication date
US11683140B2 (en) 2023-06-20
US11165546B2 (en) 2021-11-02
US20200204313A1 (en) 2020-06-25
US20220006587A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2018151554A1 (ko) Srs 설정 정보를 수신하는 방법 및 이를 위한 단말
WO2019022329A1 (ko) Srs를 전송하는 방법 및 이를 위한 단말
WO2018030791A1 (ko) 무선 통신 시스템에서 단말의 d2d 데이터 전송 방법 및 장치
WO2018231024A1 (ko) Srs 시퀀스를 생성하는 방법 및 이를 위한 단말
WO2018159939A1 (ko) 무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말
WO2018159967A1 (ko) 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치
WO2018174494A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기, 및 임의 접속 프리앰블을 수신하는 방법 및 기지국
WO2018203674A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203628A1 (ko) 임의 접속 채널 신호를 전송하는 방법과 사용자기기, 및 임의 접속 채널 신호를 수신하는 방법 및 기지국
WO2018151533A1 (ko) 무선 통신 시스템에서, 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019203530A1 (ko) 무선 통신 시스템에서 단말의 전력 소모 감소를 위한 방법 및 장치
WO2018174401A1 (ko) 무선통신 시스템에서 srs 전송을 위한 제어 정보를 수신하는 방법 및 이를 위한 단말
WO2018231030A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2018030854A1 (ko) 무선 통신 시스템에서 단말이 다른 단말에게 데이터를 전송하는 방법
WO2017057987A1 (ko) D2d 통신에서의 참조신호 송신 방법 및 단말
WO2018221882A1 (ko) 무선 통신 시스템에서, 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2016053047A1 (ko) 상향링크 신호를 전송하는 방법 및 사용자기기와, 상향링크 신호를 수신하는 방법 및 사용자기기
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2016182394A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2013006006A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2016018056A1 (ko) 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
WO2016022000A1 (ko) D2d 통신에서의 단말의 송신 자원 블록 풀의 결정 방법 및 이를 위한 장치
WO2010082756A2 (en) Method and apparatus of transmitting sounding reference signal in multiple antenna system
WO2019059739A1 (ko) 피드백 정보의 송신 및 수신 방법과 이를 위한 차량체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798316

Country of ref document: EP

Kind code of ref document: A1