WO2018207945A1 - Cnf molding device and cnf molding method - Google Patents

Cnf molding device and cnf molding method Download PDF

Info

Publication number
WO2018207945A1
WO2018207945A1 PCT/JP2018/018450 JP2018018450W WO2018207945A1 WO 2018207945 A1 WO2018207945 A1 WO 2018207945A1 JP 2018018450 W JP2018018450 W JP 2018018450W WO 2018207945 A1 WO2018207945 A1 WO 2018207945A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnf
bottom plate
molding
containing slurry
mold
Prior art date
Application number
PCT/JP2018/018450
Other languages
French (fr)
Japanese (ja)
Inventor
橋場洋美
Original Assignee
中越パルプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中越パルプ工業株式会社 filed Critical 中越パルプ工業株式会社
Priority to JP2019517737A priority Critical patent/JP6864816B2/en
Publication of WO2018207945A1 publication Critical patent/WO2018207945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Definitions

  • the present invention relates to a CNF molding method.
  • Cellulose is a natural and fibrous form of plants, for example, woody plants such as broad-leaved trees and conifers, and herbaceous plants such as bamboo and bamboo, some animals represented by sea squirts, and some represented by acetic acid bacteria. It is known that it is produced by fungi and the like.
  • a cellulose fiber having a structure in which cellulose molecules are aggregated in a fibrous form is called a cellulose fiber.
  • a cellulose fiber having a fiber width of 100 nm or less and an aspect ratio of 100 or more is generally called cellulose nanofiber (CNF), and has excellent properties such as light weight, high strength, and low thermal expansion coefficient.
  • CNF cellulose nanofiber
  • CNF does not exist as a single fiber except for CNF produced by some fungi represented by acetic acid bacteria. Most of CNF exists in the state which has the fiber width of the micro size tightly assembled by the interaction represented by the hydrogen bond between CNF. The fibers having the micro-sized fiber width also exist as higher order aggregates.
  • the fiber aggregate wood is defibrated to a pulp state with a micro-sized fiber width by a pulping method represented by kraft cooking, which is one of chemical pulping methods.
  • the paper is made from this.
  • the fiber width of this pulp varies depending on the raw material, but it is 5-30 ⁇ m for bleached kraft pulp made from hardwood, 20-100 ⁇ m for bleached kraft pulp made from softwood, and 5-30 ⁇ m for bleached kraft pulp made from bamboo. Degree.
  • the pulp having these micro-sized fiber widths is an aggregate of single fibers having a fibrous form in which CNF is firmly assembled by an interaction typified by hydrogen bonding, and by further defibrating.
  • CNF having nano-sized fiber width can be obtained.
  • CNF CNF is basically obtained in a state of being dispersed in water.
  • Patent Document 1 discloses a step of bringing a liquid containing one or two or more solvents and one or two or more polymers into contact with the surface of a porous substrate, and removing the solvent by the porous substrate to obtain a solid content concentration of the liquid.
  • a polymer used to form a molded product by a step of forming a molded product with a content of 4% or more there is a fibrous polymer having a minor axis direction of 1 nm to 500 nm and a major axis direction of 500 nm to 1000 ⁇ m.
  • a method for producing a molded product was disclosed.
  • Patent Document 2 discloses a cellulose nanofiber having an average fiber diameter of 10 to 100 nm and an average aspect ratio of 1000 or more for solving the problem of providing a high-strength and light-weight material that does not generate combustion residues upon disposal.
  • High-strength material having a density of 1.2 g / cm 3 or more and 1.4 g / cm 3 or less, a bending strength of 200 MPa or more, and a bending elastic modulus of 14 GPa or more by pressing the fiber at a high temperature and a high pressure.
  • the CNF molded body obtained by the CNF molding method disclosed in these patent documents is about 2 mm at most, for example, it cannot be desired to obtain some shaped article by cutting the molded body.
  • CNF is dispersed in water, and the CNF content in the dispersion is about 0.1 to 10%.
  • the amount of solvent in the CNF dispersion inevitably increases. Therefore, the time for removing the solvent from the CNF dispersion increases. If much time is required, even if a CNF molded body can be produced, a CNF layer or cavity is generated inside the molded body, and a uniform molded body cannot be obtained.
  • the present invention reduces the time required for solvent removal, and has a thickness that enables cutting, and can obtain a molded body having a uniform inside. It aims at providing a shaping
  • a first aspect of the present invention is a CNF molding apparatus in which a load is applied using a vapor permeation means for allowing vapor to permeate through a slurry containing cellulose nanofiber (hereinafter referred to as CNF), and a molding cavity is formed by a main body portion and a bottom plate.
  • CNF vapor permeation means for allowing vapor to permeate through a slurry containing cellulose nanofiber
  • a molding cavity is formed by a main body portion and a bottom plate.
  • a molding die to be formed, CNF feeding means for the molding cavity is provided, the bottom plate is fitted inside the main body, and has pressurizing means for pressurizing the main body toward the bottom plate. It is a feature.
  • a CNF molding method in which a load is applied using a vapor permeation means that allows vapor to permeate the CNF-containing slurry.
  • CNF insertion means for the cavity is provided, and the bottom plate can be fitted inside the main body, and has a step of pressurizing the main body in the direction of the bottom plate.
  • the CNF molding apparatus 1 of the present embodiment includes a main body 2 and a bottom plate 3 that are supported in a movable state and use vapor transmission means.
  • the bottom plate 3 is held in a non-movable state.
  • a molding cavity 4 is formed by the main body 2 and the bottom plate 3.
  • the main body 2 is composed of a mold part 2a, a mold part 2a using a vapor transmission means, and an upper plate 2b, and the upper plate 2b is disposed on the opposite side of the bottom plate 3 through the mold part 2a.
  • the upper plate 2b is equipped with a hydraulic actuator 5 which is a pressurizing means, and by applying a load to the hydraulic actuator 5, the mold part 2a can be pressed in the direction of the bottom plate 3 by the upper die 2b. Further, the upper die 2b is provided with a nozzle 6 as means for feeding CNF into the molding cavity 4.
  • a far infrared ray generator 7 as a heating means for heating the mold part 2a is arranged.
  • a belt heater etc. can be used as another heating means.
  • the inner diameter of the mold part 2a and the outer diameter of the bottom plate 3 are made to substantially coincide with each other so that the bottom plate 3 can be fitted inside the mold part 2a. .
  • a porous body using a porous material can be used.
  • various materials such as organic, inorganic, metal, or composites thereof, specifically stainless steel, SiC, ceramic, resin, rubber, glass, paper, etc. can be used. . These may be used in combination as necessary.
  • the average pore diameter and porosity of the porous body to be used can be those having an average pore diameter of 5 to 200 ⁇ m and a porosity of 30 to 85%, preferably an average pore diameter of 5 to 60 ⁇ m and a porosity. It is recommended to use 40 to 70%.
  • the porosity is (1) the sum of the volume of pores communicating with the outside and the volume of pores enclosed inside divided by the total volume (apparent volume), and (2) leading to the outside.
  • the pore volume divided by the total volume There are two types: the pore volume divided by the total volume. In the present invention, any one of the calculation methods can be used.
  • Vapor-permeable objects include fabrics, felts, various filters such as membrane filters and sintered filters, filter paper, materials with a permeation mechanism such as holes, stacked plates and rods, porous and fine substances. Aggregates (pseudo porous structure formed of fine substances such as sand and silica) are also possible. Further, when a hydrophilic base material is used, water can be easily dehydrated. Furthermore, if the transmission mechanism is 1 ⁇ m or less, CNF can be prevented from flowing out. Furthermore, these can be used alone or in combination.
  • the nozzle 6 which is a CNF charging unit for the inside of the molding cavity 4
  • the volume of the obtained molded body can be adjusted. Without this nozzle, the size of the molded body obtained is extremely small compared to the size of the molding cavity of the mold part, but by adding CNF-containing slurry from the nozzle The mold shape can be maintained.
  • the CNF-containing slurry is introduced into the molding cavity 4 from the nozzle 6 mounted on the upper plate 2 b in a state where the molding cavity 4 is formed by the bottom plate 3 and the main body 2.
  • heating of the mold part 2a by the far infrared ray generator 7 is started.
  • the upper plate 2b is pressurized in the direction of the bottom plate 3 by the hydraulic actuator 5 in a state where a certain amount or more of CNF is stored in the molding cavity 4, the entire main body 2 supported in a movable state moves in the direction of the bottom plate 3, 3 fits inside the mold part 2a, and the volume of the molding cavity 4 decreases.
  • the heated CNF inside the mold part 2 a is reduced while discharging steam to the outside through the upper plate 2 b made of a porous body, and is predetermined according to the shape of the molding cavity 4.
  • the required molded body 8 can be obtained by molding into a shape.
  • the CNF compact 8 having a required volume can be obtained by replenishing CNF from the nozzle 6 in the molding process.
  • the time can be shortened.
  • CNF-containing slurry examples of CNF include polysaccharide-derived CNF including natural plants such as wood fiber, bamboo fiber, sugarcane fiber, seed hair fiber, and leaf fiber. These CNFs may be used alone or in combination of two or more. May be used in combination.
  • the CNF used in the present invention has an average thickness of 3 to 200 nm and an average length of 0.1 ⁇ m or more.
  • the CNF can be prepared by defibrating a polysaccharide with a high-pressure water stream.
  • the defibration of the polysaccharide with a high-pressure water stream is carried out by colliding high-pressure water of about 50 to 400 MPa with the polysaccharide in a 0.5 to 10% by mass water mixture.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • CNF chemical oxidation
  • a physical method such as a grinder method or a high-pressure homogenizer method.
  • a CNF-containing slurry is prepared by adding a metal salt, a hardwood, a conifer or a pulp made from bamboo or a cross-linking agent to a CNF aqueous dispersion. Furthermore, what replaced the water solvent with the organic solvent can also be used as a CNF containing slurry.
  • CNF generally has a large number of hydroxyl groups in its molecule and is known to be extremely hydrophilic. Therefore, when a CNF molded body is produced with a number of hydroxyl groups in the molecule, the hydrophilicity and water absorption of the CNF molded body itself can be a problem. That is, it may be required that the CNF molded body can be used even in a situation where water resistance is required.
  • hydrophobic CNF in which a part of the functional group is modified to vinyl esters or organic acid vinyl esters.
  • vinyl esters or organic acid vinyl esters include linear or branched C2 such as vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, vinyl versatate, etc. -20 aromatic carboxylic acids such as vinyl esters of aliphatic carboxylic acids and vinyl benzoates.
  • the CNF concentration in the CNF-containing slurry is preferably in the range of 2% to 10%. If it is 2% or less, the amount of solvent is large, and it takes time to dehydrate. Further, if it is 10% or more, the inside of the CNF compact is hollow. Further, the temperature range of the CNF-containing slurry is adjusted to 20 to 95 ° C., preferably 40 to 80 ° C., using the heating means. When the liquid temperature is 20 ° C. or lower, dehydration takes time. Moreover, when it becomes more than the boiling point of a solvent, it will be in a boiling state, a bubble trace will generate
  • the metal salt added to the CNF aqueous dispersion is preferably, for example, one or more compounds selected from the group consisting of inorganic phosphorus compounds, phosphorous acid or hypophosphorous acid metal salts. If a light aggregate of CNFs is formed by adding a metal salt, the time for dehydrating the solvent can be reduced.
  • inorganic phosphorus compounds include phosphoric acid compounds, phosphorous acid compounds, and hypophosphorous acid compounds.
  • Specific examples of such phosphoric acid compounds include phosphoric acid, diphosphoric acid, triphosphoric acid, lithium phosphate, beryllium phosphate, sodium phosphate, magnesium phosphate, aluminum phosphate, potassium phosphate, calcium phosphate and the like.
  • phosphite compounds include phosphorous acid, lithium phosphite, beryllium phosphite, sodium phosphite, magnesium phosphite, aluminum phosphite, potassium phosphite, calcium phosphite and the like.
  • hypophosphite compound include hypophosphorous acid, lithium hypophosphite, beryllium hypophosphite, sodium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, Examples thereof include potassium phosphite and calcium hypophosphite.
  • hydroxides such as potassium hydroxide, sodium hydroxide, barium hydroxide, lithium hydroxide
  • Chlorides such as cupric chloride, barium chloride, manganese chloride, manganese chloride, manganese chloride, sodium chloride, potassium chloride
  • Sulfates such as sodium, magnesium sulfate, manganese sulfate
  • nitrates such as zinc nitrate, aluminum nitrate, potassium nitrate, calcium nitrate, strontium nitrate, copper nitrate, sodium nitrate, barium nitrate, magnesium nitrate, manganese nitrate
  • a divalent metal ion such as magnesium or calcium or a trivalent metal ion such as aluminum is more preferable.
  • the amount to be added is 1% or more, more preferably 5% to 10%, relative to the obtained CNF molded product. If it is added in an amount of 10% or more, the strength of the CNF compact may be lowered.
  • the pulp added to the CNF aqueous dispersion may be any of pulp made from hardwood, pulp made from softwood, pulp made from bamboo, or a combination thereof.
  • a pulp fiber length of 0.5 to 5.0 mm and a pulp fiber length of 10 to 100 ⁇ m may be appropriately selected and used.
  • the addition amount is preferably in the range of 10 to 30% with respect to the obtained CNF molded product. At this time, when the amount of pulp added is 10% or less, the time required for filtration is not shortened. When 30% or more is added, even if more is added, the filtration time is reduced. This is because it does not have much influence on shortening.
  • Crosslinking agent As a crosslinking agent, it has reactivity with a functional group modified by a hydroxyl group possessed by cellulose nanofiber or modified cellulose nanofiber, a hydroxyl group having another functional group such as a carboxyl group, a phosphate group, or an amino group.
  • a functional group modified by a hydroxyl group possessed by cellulose nanofiber or modified cellulose nanofiber a hydroxyl group having another functional group such as a carboxyl group, a phosphate group, or an amino group.
  • an isocyanate crosslinking agent an epoxy crosslinking agent, an amine crosslinking agent, a melamine crosslinking agent, an aziridine crosslinking agent, a hydrazine crosslinking agent, an aldehyde crosslinking agent, an oxazoline crosslinking agent, a metal alkoxide.
  • Examples thereof include a system crosslinking agent, a metal chelate crosslinking agent, a metal salt crosslinking agent, and an ammonium salt crosslinking agent. Furthermore, these polymerization initiators can be used in combination. Among them, the isocyanate-based crosslinking agent has an advantage of excellent reactivity with the hydroxyl group.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types. The crosslinking agent can be used for the purpose of improving physical properties such as bending strength and bending elastic modulus of the CNF molded body, or for adding other functions to the CNF molded body.
  • the content of the additive is preferably 1% to 10% with respect to the solid content of the cellulose nanofiber. If it is 1% or less, it is conceivable that the crosslinking agent and the cellulose nanofibers do not react. If it is 10% or more, the crosslinking agent is excessive and the characteristics of the cellulose nanofiber may be reduced.
  • polyfunctional isocyanate refers to a compound having an average of two or more isocyanate groups per molecule, including those having an isocyanurate structure
  • aromatic polyisocyanates such as isocyanate acrylate or tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, and the like
  • An isocyanate type crosslinking such as isocyanate acrylate or tolylene diisocyan
  • a CNF-containing slurry obtained by replacing the solvent of the CNF-containing slurry from an aqueous solvent to an organic solvent may be used.
  • the organic solvent can be used without any particular limitation, for example, alcohols, saturated aliphatic hydrocarbons, esters, ethers, nitriles, aprotic polar solvents, ketones, amides, aromatic carbonization. Hydrogen, nitrogen-containing aromatic compound, ionic liquid, and water are preferable.
  • hexane, toluene, chloroform, dichloromethane, diethyl ether, THF, ethyl acetate, acetone, acetonitrile, DMF, DMSO, ethanol, methanol, acetic acid, methyl methacrylate, and the like can be used.
  • a volatile solvent By using a volatile solvent, the time required for dehydration can be reduced, and CNF can aggregate to improve dehydration.
  • an example of the substitution treatment with methanol is as follows. First, CNF and methanol in the same amount as the water contained in the CNF are mixed and stirred, and then the mixed stirring solution is vacuum filtered. The water is removed. Then, an appropriate amount of methanol is further supplied to the CNF obtained by this removal, and the CNF is evenly dispersed in the methanol solution.
  • methanol was used as a substitution medium was illustrated here, it is also possible to perform the said substitution process using solvents other than methanol.
  • the method of solvent replacement is not limited to the above, and other methods can be employed.
  • the CNF-containing slurry may be freeze-dried to remove moisture in the CNF-containing slurry.
  • Example 1 Liquid temperature and amount of drainage of CNF-containing slurry
  • Pure water is added to CNF1.816% aqueous dispersion (BB 5pass product) to dilute to 0.1% concentration, and 0.1% CNF aqueous solution is used at 12, 27.5, 50, and 80 ° C using a water bath.
  • the drainage amount was measured by setting the temperature.
  • the amount of drainage refers to the amount of water dehydrated in each time such as 10, 20, 30 min after suction filtration of 200 ml of 0.1% CNF dispersion. That is, the greater the amount of drainage, the better the dehydration and the less time for dehydrating the solvent.
  • Table 1 shows the results. As is apparent from Table 1, the amount of drainage increases as the liquid temperature increases. Therefore, the time for dehydrating the solvent can be shortened by heating the CNF-containing slurry. Therefore, the time required for solvent removal can be shortened by heating the mold part of the CNF molding apparatus in the present invention.
  • Example 2 The amount of drainage of the CNF-containing slurry to which the metal salt is added
  • Pure water is added to CNF1.816% aqueous dispersion (BB-5pass product) and diluted to a concentration of 0.1%, and tricalcium phosphate is blended at a ratio of 0, 1, 3, 5, 10%, The amount of drainage was measured for each CNF-containing slurry at room temperature.
  • Table 2 shows the results. As is apparent from Table 2, the amount of drainage increased by 5% rather than 3%. Therefore, the time required for solvent removal can be shortened by adding more than 3% of tricalcium phosphate.
  • Example 3 Using CNF 1.817% aqueous dispersion (BB-5 pass product), blended with water-dispersed pulp in advance so that the pulp has a prescribed blending ratio, 0.1% CNF and pulp The amount of filtrate in the aqueous dispersion was measured. The temperature was room temperature.
  • Table 3 shows the results. As apparent from Table 3, the amount of drainage increased when the pulp content was 10%. Moreover, when it was in the range of 30% or more, it was found that the drainage amount did not increase even if the pulp amount was increased. Therefore, a CNF-containing slurry having a pulp content of 10 to 30% can shorten the time required for solvent removal.
  • Example 4 (The amount of drainage of CNF-containing slurry substituted with an organic solvent) Tricalcium phosphate 10% was added to the CNF 2% aqueous dispersion, and suction filtration was performed twice with methanol to obtain 2.5% methanol wet CNF. This was made into 0.1% CNF methanol solution, and it was set as Example 4. Comparative Example 2 was prepared by adding 10% tricalcium phosphate to a CNF 2% aqueous dispersion and diluting the resulting solution to 0.1%. The amount of filtrate and solution stability evaluation apparatus (Eihiro Seiki Co., Ltd.) was used to measure the sedimentation rate.
  • Table 4 shows the result of the drainage amount
  • Table 5 shows the measurement result of the sedimentation rate.
  • Example 4 substituted with a methanol solvent has a higher sedimentation rate. Therefore, the CNF-containing slurry substituted with the organic solvent can shorten the time required for solvent removal.
  • Example 5 CNF forming body using CNF-containing slurry of water solvent and cutting using this
  • a CNF-containing slurry was prepared by mixing 7.91 kg of CNF 2% aqueous dispersion (158 g of CNF), 135.8 g (67.8 g) of 50% pulp and 11 g of calcium phosphate (5% with respect to the CNF compact). Subsequently, it put into the CNF shaping
  • the obtained CNF compact had a bottom diameter of 12 cm, a height of 20 mm, and a weight of 226 g.
  • FIG. 2 shows a photograph of the molded body obtained by the CNF molding apparatus.
  • FIG. 3 shows the CNF compact after cutting. As described above, according to the present invention, it is possible to obtain a molded body having a thickness that enables cutting and a uniform inside.
  • Example 6 (Preparation of CNF compact using CNF-containing slurry substituted with methanol solvent and cutting using the same)
  • the CNF 2% aqueous dispersion was 12.5 kg (CNF 250 g) and calcium phosphate 12.5 g (5% with respect to the CNF compact).
  • die part were set to 100 degreeC, and the molded object was created.
  • the obtained CNF compact had a bottom diameter of 12 cm, a height of 20 mm, and a weight of 256 g.
  • a denture base portion of a full denture was created using the CNF molded body obtained in this example.
  • FIG. 4 shows the CNF compact after cutting. As described above, according to the present invention, it is possible to obtain a molded body having a thickness that enables cutting and a uniform inside.
  • Examples 7 to 18 Physical property evaluation of CNF compact
  • CNF compacts were prepared and (1) three-point bending test, (2) surface hardness measurement (3) contact angle measurement, (4) water absorption measurement (5) density measurement.
  • each measurement condition is described below.
  • (1) Three-point bending test CNF compacts obtained in each example were tested with a specimen size of 64 x 10 x 2 mm, using an Instron Japan material testing machine INSTRON5565, crosshead speed of 5 mm / min, distance between supports The test was conducted under the condition of 50 mm, and bending strength (MPa) and bending elastic modulus (MPa) were calculated.
  • MPa bending strength
  • MPa bending elastic modulus
  • Example 7 2000 g of CNF 2% aqueous dispersion was used as a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • Example 8 About 4000 g of CNF 1% aqueous dispersion was subjected to suction filtration twice with methanol to obtain 2.6% methanol wet CNF to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • Example 9 To 2000 g of CNF 2% aqueous dispersion, 2 g of tricalcium phosphate (5% based on the solid content of CNF) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • Example 10 To 2000 g of CNF 2% aqueous dispersion, 4 g of tricalcium phosphate (10% with respect to the solid content of CNF) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • Example 11 To 1400 g of CNF 2% aqueous dispersion, 4 g of tricalcium phosphate (10% with respect to the total solid content of CNF and pulp) and bamboo pulp were added so that the weight ratio of CNF to pulp was 7: 3. It was. Subsequently, it put into the CNF shaping
  • Example 12 A 2000% CNF 2% aqueous dispersion was subjected to suction filtration twice with methanol to obtain 2.5% methanol wet CNF. To this, 2 g of tricalcium phosphate (5% based on CNF solid content) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • Example 13 5 mL of a mixed solution of 94% DMSO / 6% water (v / v) containing 1.5% (w / v) CNF aqueous dispersion and potassium carbonate (vs. pulp weight 20%) was added at room temperature until a good dispersion was obtained. Stir with. Next, after dispersion, the mixture was heated to 70 ° C., vinyl laurate was added and sealed so as to be equivalent to 1.2 mol per anhydroglucose unit (AGU), and the mixture was reacted for 2 hours at 70 ° C. Then, it wash
  • AGU anhydroglucose unit
  • Example 14 Stir 5 mL of a mixed solution of 94% DMSO / 6% water (v / v) containing 1% (w / v) CNF aqueous dispersion and potassium carbonate (vs. pulp weight 20%) at room temperature until a good dispersion is obtained. did. Next, after dispersion, the mixture was heated to 70 ° C., vinyl laurate was added and sealed so as to be equivalent to 1.2 mol per anhydroglucose unit (AGU), and the mixture was reacted for 2 hours at 70 ° C. Then, it wash
  • AGU anhydroglucose unit
  • Example 15 4000 g of CNF 1% aqueous dispersion was subjected to suction filtration twice with methanol to obtain about 2.6% methanol wet CNF. To this, 2 g of isocyanate acrylate (Laromer LR9000, dual cure acrylate manufactured by BASF) (5% based on CNF solid content) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • isocyanate acrylate (Laromer LR9000, dual cure acrylate manufactured by BASF) (5% based on CNF solid content) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • Example 16 4000 g of CNF 1% aqueous dispersion was subjected to suction filtration twice with methanol to obtain about 2.6% methanol wet CNF. This was dissolved in methanol in 4 g of isocyanate acrylate (Laromer LR9000, dual cure acrylate manufactured by BASF) (10% based on CNF solid content), and added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • isocyanate acrylate (Laromer LR9000, dual cure acrylate manufactured by BASF) (10% based on CNF solid content)
  • Example 17 A 4000% CNF aqueous dispersion was subjected to suction filtration with methanol twice to obtain about 2.4% methanol wet CNF. To this, 2 g of isocyanate acrylate (BASF acrylate Laromer LR9000) (5% based on CNF solid content) was dissolved in methanol, and 100 mg of a polymerization initiator (Wako Pure Chemical Industries, Ltd. V-65) was added. Thus, a CNF-containing slurry was obtained. Subsequently, it put into the CNF shaping
  • BASF acrylate Laromer LR9000 isocyanate acrylate (BASF acrylate Laromer LR9000) (5% based on CNF solid content) was dissolved in methanol, and 100 mg of a polymerization initiator (Wako Pure Chemical Industries, Ltd. V
  • Example 18 CNF 1% aqueous dispersion 4000g, suction filtered twice with acetone to make about 2.4% acetone solution, 2g of isocyanate acrylate (BASF's dual cure acrylate Laromer LR9000) (5% to CNF solid content) was dissolved in acetone, and 100 mg of a polymerization initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) was further added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping
  • BASF's dual cure acrylate Laromer LR9000 5% to CNF solid content
  • Example 7 For Examples 7, 8, 9, 10, 11, 12, 15, 16, 17, and 18, the above-mentioned (1) three-point bending test and (5) density measurement were performed. Moreover, as Comparative Example 3, a test piece of the same size was prepared using an acrylic resin and measured together.
  • Table 6 shows the results. As can be seen from the table, the flexural modulus values were higher for all examples. In Examples 10, 11, and 12, since the density is low, it is not possible to add a metal salt, a pulp, or both to a CNF-containing slurry in a product field where low density is required. Is very useful.
  • Table 7 shows the results. As can be seen from Table 7, the values were almost the same as or higher than those of the comparative example.
  • Table 8 shows the results. As can be seen from Table 8, the contact angle was larger than that of the comparative example. As a result, it was possible to maintain the hydrophobicity of the CNF compact.
  • Table 9 shows the results. As can be seen from Table 9, in Example 7, the result was “unmeasured”, but in other examples, good results were obtained. From the results of Examples 13 and 14, it is clear that the CNF compact using hydrophobic CNF has sufficient hydrophobicity, and from the results of Examples 15, 16, 17, and 18, It was revealed that hydrophobicity can be imparted to the CNF compact without using modified CNF.

Abstract

[Problem] To provide a CNF molding device with which a CNF molded body having a 3-dimensional shape can be obtained. [Solution] In a state in which a mold cavity 4 is formed by a bottom plate 3 and a body portion 2, cellulose nanofiber (CNF) is loaded into the mold cavity 4 from a nozzle 6 mounted to an upper plate 2b. At around the same time, heating of a mold portion 2a is started. In a state in which a certain amount or more of CNF has been accumulated in the mold cavity 4, the upper plate 2b is pressurized in the direction of the bottom plate 3, whereby the entire body portion 2 being supported in a movable state moves in the direction of the bottom plate 3, the bottom plate 3 is fitted into the mold portion 2a, and the volume of the mold cavity 4 decreases. In the process, the CNF in the heated mold portion 2a contracts while externally discharging vapor via the upper plate 2b, which comprises a porous body, and is molded into a predetermined shape due to the shape of the mold cavity 4, producing a required molded body 9.

Description

CNF成形装置及びCNF成形方法CNF molding apparatus and CNF molding method
 本発明はCNF成形方法に関する。 The present invention relates to a CNF molding method.
 セルロースは、天然で繊維形態として、植物、例えば、広葉樹や針葉樹などの木本植物、及び竹や葦などの草本植物、ホヤに代表される一部の動物、および酢酸菌に代表される一部の菌類等によって産生されることが知られている。このセルロース分子が繊維状に集合した構造を有するものをセルロースファイバーと呼ぶ。特に繊維幅が100nm以下でアスペクト比が100以上のセルロースファイバーは一般的にセルロースナノファイバー(CNF)と呼ばれ、軽量、高強度、低熱膨張率等の優れた性質を有する。 Cellulose is a natural and fibrous form of plants, for example, woody plants such as broad-leaved trees and conifers, and herbaceous plants such as bamboo and bamboo, some animals represented by sea squirts, and some represented by acetic acid bacteria. It is known that it is produced by fungi and the like. A cellulose fiber having a structure in which cellulose molecules are aggregated in a fibrous form is called a cellulose fiber. In particular, a cellulose fiber having a fiber width of 100 nm or less and an aspect ratio of 100 or more is generally called cellulose nanofiber (CNF), and has excellent properties such as light weight, high strength, and low thermal expansion coefficient.
 天然においてCNFは、酢酸菌に代表される一部の菌類等によって産生されたCNFを除くと、単繊維として存在しない。CNFの殆どはCNF間の水素結合に代表される相互作用によって強固に集合したマイクロサイズの繊維幅を有した状態で存在する。そのマイクロサイズの繊維幅を有した繊維もさらに高次の集合体として存在する。 Naturally, CNF does not exist as a single fiber except for CNF produced by some fungi represented by acetic acid bacteria. Most of CNF exists in the state which has the fiber width of the micro size tightly assembled by the interaction represented by the hydrogen bond between CNF. The fibers having the micro-sized fiber width also exist as higher order aggregates.
 製紙の過程では、これらの繊維集合体である木材を化学パルプ化法の一つであるクラフト蒸解法に代表されるパルプ化法によって、マイクロサイズの繊維幅を有するパルプの状態にまで解繊し、これを原料に紙を製造している。このパルプの繊維幅は、原料によって異なるが、広葉樹を原料とした晒クラフトパルプで5-30μm、針葉樹を原料とした晒クラフトパルプで20-100μm、竹を原料とした晒クラフトパルプで5-30μm程度である。 In the papermaking process, the fiber aggregate wood is defibrated to a pulp state with a micro-sized fiber width by a pulping method represented by kraft cooking, which is one of chemical pulping methods. The paper is made from this. The fiber width of this pulp varies depending on the raw material, but it is 5-30 μm for bleached kraft pulp made from hardwood, 20-100 μm for bleached kraft pulp made from softwood, and 5-30 μm for bleached kraft pulp made from bamboo. Degree.
 前述のとおりこれらマイクロサイズの繊維幅を有するパルプは、CNFが水素結合に代表される相互作用によって強固に集合した繊維状の形態を有する単繊維の集合体であり、さらに解繊を進めることによってナノサイズの繊維幅を有するCNFを得ることができる。 As described above, the pulp having these micro-sized fiber widths is an aggregate of single fibers having a fibrous form in which CNF is firmly assembled by an interaction typified by hydrogen bonding, and by further defibrating. CNF having nano-sized fiber width can be obtained.
 CNFの調製方法は多々報告されているが、酸加水分解法やTEMPO触媒酸化法といった化学的方法と、グラインダー法や高圧ホモジナイザー法、水中対向衝突法といった物理的方法の2種類に大別される。いずれの方法を使用してもCNFは基本的に水に分散した状態で得られる。 Many methods for preparing CNF have been reported, but they are roughly classified into two types: chemical methods such as acid hydrolysis and TEMPO catalytic oxidation, and physical methods such as grinder method, high-pressure homogenizer method, and underwater facing collision method. . Whichever method is used, CNF is basically obtained in a state of being dispersed in water.
 CNFを含むスラリーに対する成形方法及び成形体の作成方法には、以下の特許文献が公開されている。 The following patent documents are disclosed in the molding method for slurry containing CNF and the method for producing a molded body.
 特許文献1は多孔質基材の表面に、1または2以上の溶媒と1または2以上の高分子とを含む液を接触させる工程と、多孔質基材により溶媒を除去し液の固形分濃度を4%以上にして成形物を形成する工程により成形物を形成する、用いられる高分子として、短軸方向が1nm以上500nm以下、長軸方向が500nm以上1000μm以下の繊維状高分子がある、とする成形物の製造方法を開示した。 Patent Document 1 discloses a step of bringing a liquid containing one or two or more solvents and one or two or more polymers into contact with the surface of a porous substrate, and removing the solvent by the porous substrate to obtain a solid content concentration of the liquid. As a polymer used to form a molded product by a step of forming a molded product with a content of 4% or more, there is a fibrous polymer having a minor axis direction of 1 nm to 500 nm and a major axis direction of 500 nm to 1000 μm. A method for producing a molded product was disclosed.
 また特許文献2は廃棄時に燃焼残渣が生じない高強度でしかも軽量な材料を提供するという課題を解決するための平均繊維径が10~100nmであり、かつ平均アスペクト比が1000以上であるセルロースナノファイバーを、高温下に高圧でプレス処理することにより、密度が1.2g/cm3以上1.4g/cm3以下であり、曲げ強度が200MPa以上であり、更に曲げ弾性率が14GPa以上の高強度材料を開示した。 Patent Document 2 discloses a cellulose nanofiber having an average fiber diameter of 10 to 100 nm and an average aspect ratio of 1000 or more for solving the problem of providing a high-strength and light-weight material that does not generate combustion residues upon disposal. High-strength material having a density of 1.2 g / cm 3 or more and 1.4 g / cm 3 or less, a bending strength of 200 MPa or more, and a bending elastic modulus of 14 GPa or more by pressing the fiber at a high temperature and a high pressure. Disclosed.
特開2011-038031JP2011-038031 特開2013-11026JP2013-11026A
 しかし、これらの特許文献に開示されたCNF成形方法で得られるCNF成形体は、高々2mm程度であるから、例えば、成形体を切削加工して、何らかの造形物を得ることは望むべくもない。前述の通りCNFは水に分散しており、また、分散液中のCNF含量は、0.1~10%程度のものであるから、切削加工が可能となるような厚みを有し、内部が均一なCNF成形体を得ようとした場合には、CNF分散液の溶媒量が必然的に多くなる。したがって、CNF分散液から溶媒を除去するための時間が多くなる。前記時間を多く要してしまうと、CNF成形体を作成することができても、成形体内部にCNFの層や空洞が発生し、均一な成形体を得ることができない。 However, since the CNF molded body obtained by the CNF molding method disclosed in these patent documents is about 2 mm at most, for example, it cannot be desired to obtain some shaped article by cutting the molded body. As described above, CNF is dispersed in water, and the CNF content in the dispersion is about 0.1 to 10%. When trying to obtain a uniform CNF compact, the amount of solvent in the CNF dispersion inevitably increases. Therefore, the time for removing the solvent from the CNF dispersion increases. If much time is required, even if a CNF molded body can be produced, a CNF layer or cavity is generated inside the molded body, and a uniform molded body cannot be obtained.
 本発明は、以上の従来技術に於ける問題に鑑み、溶媒除去に要する時間を削減し、かつ、切削加工が可能となる厚みを有し、内部が均一である成形体を得ることのできるCNF成形装置及びCNF成形方法を提供することを目的とする。 In view of the problems in the prior art described above, the present invention reduces the time required for solvent removal, and has a thickness that enables cutting, and can obtain a molded body having a uniform inside. It aims at providing a shaping | molding apparatus and a CNF shaping | molding method.
 本発明の第1の態様は、セルロースナノファイバー(以下、CNFと記す)含有スラリーに蒸気を透過させる蒸気透過手段を使用して荷重を加えるCNF成形装置において、本体部と底板とによって成形キャビティを形成する成形型を備え、前記成形キャビティに対するCNF投入手段を設けてなり、前記底板は前記本体部内側に嵌入可能にされ、かつ前記本体部を前記底板方向に加圧する加圧手段を有することを特徴としている。 A first aspect of the present invention is a CNF molding apparatus in which a load is applied using a vapor permeation means for allowing vapor to permeate through a slurry containing cellulose nanofiber (hereinafter referred to as CNF), and a molding cavity is formed by a main body portion and a bottom plate. A molding die to be formed, CNF feeding means for the molding cavity is provided, the bottom plate is fitted inside the main body, and has pressurizing means for pressurizing the main body toward the bottom plate. It is a feature.
 本発明の第2の態様は、CNF含有スラリーに蒸気を透過させる蒸気透過手段を使用して荷重を加えるCNF成形方法において、本体部と底板とによって成形キャビティを形成する成形型を備え、 前記成形キャビティに対するCNF投入手段を設けてなり、前記底板は前記本体部内側に嵌入可能にされ、かつ前記本体部を前記底板方向に加圧する工程を有することを特徴としている。 According to a second aspect of the present invention, there is provided a CNF molding method in which a load is applied using a vapor permeation means that allows vapor to permeate the CNF-containing slurry. CNF insertion means for the cavity is provided, and the bottom plate can be fitted inside the main body, and has a step of pressurizing the main body in the direction of the bottom plate.
 本発明によれば、溶媒除去に要する時間を削減し、かつ、切削加工が可能となる厚みを有し、内部が均一であるCNF成形体を得ることができる。 According to the present invention, it is possible to obtain a CNF molded body that has a thickness that enables a cutting process and a uniform inside while reducing the time required for solvent removal.
本発明の一実施の形態のCNF成形装置の概念図である。It is a conceptual diagram of the CNF shaping | molding apparatus of one embodiment of this invention. 本発明の一実施の形態のCNF成形装置によって得られた成形体の写真である。It is a photograph of the molded object obtained by the CNF shaping | molding apparatus of one embodiment of this invention. 図2に示す成形体から削り出して得られた製品の写真である。3 is a photograph of a product obtained by cutting out from the molded body shown in FIG. 2. 図2に示す成形体から削り出して得られた製品の他の写真である。It is another photograph of the product obtained by shaving from the molded body shown in FIG. 表6に示す曲げ強さのデータを図示したものである。The bending strength data shown in Table 6 are illustrated. 表8に示す曲げ弾性率のデータを図示したものである。The data of the bending elastic modulus shown in Table 8 is illustrated. 表9に示す接触角のデータを図示したものである。The contact angle data shown in Table 9 are illustrated.
 図1に示すように本実施の形態のCNF成形装置1は、可動状態で支持され、蒸気透過手段を使用してなる本体部2及び底板3と、を有する。底板3は非可動状態に保持される。本体部2と底板3とによって成形キャビティ4が形成される。さらに本体部2は金型部2aと蒸気透過手段を使用してなる金型部2aと上板2bとよりなり、上板2bは金型部2aを介して底板3とは反対側に配置される。その上板2bには加圧手段である油圧アクチュエータ5が装着されて、この油圧アクチュエータ5に負荷をかけることによって、上型2bによって金型部2aを底板3方向に加圧することができる。さらに上型2bには成形キャビティ4内へのCNF投入手段であるノズル6が装着される As shown in FIG. 1, the CNF molding apparatus 1 of the present embodiment includes a main body 2 and a bottom plate 3 that are supported in a movable state and use vapor transmission means. The bottom plate 3 is held in a non-movable state. A molding cavity 4 is formed by the main body 2 and the bottom plate 3. Furthermore, the main body 2 is composed of a mold part 2a, a mold part 2a using a vapor transmission means, and an upper plate 2b, and the upper plate 2b is disposed on the opposite side of the bottom plate 3 through the mold part 2a. The The upper plate 2b is equipped with a hydraulic actuator 5 which is a pressurizing means, and by applying a load to the hydraulic actuator 5, the mold part 2a can be pressed in the direction of the bottom plate 3 by the upper die 2b. Further, the upper die 2b is provided with a nozzle 6 as means for feeding CNF into the molding cavity 4.
 金型部2a近傍には金型部2aを加熱する加熱手段である遠赤外線発生装置7が配置される。また、他の加熱手段として帯ヒータ等も使用することができる。
以上の本実施の形態のCNF成形装置1では、金型部2aの内径と底板3の外径とはほぼ一致する様にされて、底板3が金型部2a内側に嵌入可能にされている。
一方、上型2bの外径と金型部2aの外径とはほぼ一致する様にされる結果、油圧アクチュエータ5によって上板2bが底板3方向に加圧されると、加圧力は金型部2aに伝達されて、可動状態で支持される本体部2全体が底板3方向に移動する。
一方、非可動状態に保持される底板3は一定位置に保持される結果、本体部2全体が底板3方向に移動すると底板3は金型部2a内側に嵌入し、成形キャビティ4の容積は減少する。
In the vicinity of the mold part 2a, a far infrared ray generator 7 as a heating means for heating the mold part 2a is arranged. Moreover, a belt heater etc. can be used as another heating means.
In the CNF molding apparatus 1 of the present embodiment as described above, the inner diameter of the mold part 2a and the outer diameter of the bottom plate 3 are made to substantially coincide with each other so that the bottom plate 3 can be fitted inside the mold part 2a. .
On the other hand, as a result of the outer diameter of the upper mold 2b and the outer diameter of the mold part 2a being substantially matched, when the upper plate 2b is pressed in the direction of the bottom plate 3 by the hydraulic actuator 5, the applied pressure is The entire main body 2 that is transmitted to the portion 2a and supported in a movable state moves in the direction of the bottom plate 3.
On the other hand, as a result of the bottom plate 3 held in a non-movable state being held at a fixed position, when the entire main body portion 2 moves in the direction of the bottom plate 3, the bottom plate 3 is fitted inside the mold portion 2a, and the volume of the molding cavity 4 decreases. To do.
 前記蒸気透過手段として、例えば多孔質素材を用いてなる多孔質体を使用することができる。多孔質素材としては有機、無機、金属、またはそれらの複合物、具体的にはステンレス製、SiC製、セラミック製、樹脂製、ゴム製、ガラス製、紙製など多様なものを用いることができる。またこれらを必要に応じて組み合わせて用いても良い。また、用いる多孔質体の平均気孔径、気孔率については、平均気孔径5~200μm、気孔率30~85%のものを使用することができ、好ましくは、平均気孔径5~60μm、気孔率40~70%のものを使用するとよい。
なお、気孔率には (1)外部に連絡する気孔の容積と,内部に封入された気孔の容積の和を,全容積 (見かけの容積) で割ったもの、 (2) 外部に通じている気孔の容積を,全容積で割ったもの、の2種類があるが、本発明においては、いずれの計算方法を利用したものを利用することができる。
As the vapor transmission means, for example, a porous body using a porous material can be used. As the porous material, various materials such as organic, inorganic, metal, or composites thereof, specifically stainless steel, SiC, ceramic, resin, rubber, glass, paper, etc. can be used. . These may be used in combination as necessary. Further, the average pore diameter and porosity of the porous body to be used can be those having an average pore diameter of 5 to 200 μm and a porosity of 30 to 85%, preferably an average pore diameter of 5 to 60 μm and a porosity. It is recommended to use 40 to 70%.
The porosity is (1) the sum of the volume of pores communicating with the outside and the volume of pores enclosed inside divided by the total volume (apparent volume), and (2) leading to the outside. There are two types: the pore volume divided by the total volume. In the present invention, any one of the calculation methods can be used.
 透過を改善させる方法として、蒸気を透過させる物体を使用して濃縮する方法が考えられる。蒸気を透過させる物体としては、織物やフェルト、メンブレンフィルターや焼結フィルター等の各種フィルター、ろ紙、穴などの透過機構を設けた物質、板及び棒を重ねた状態、多孔質、微粒な物質の集合体(砂やシリカ等微粒な物質で疑似的に多孔質のような構造を形成)でも可能である。また、親水性の基材を用いると容易に水を脱水することができる。さらに、前記透過機構が1μm以下であればCNFが流出を防止することがでる
。さらに、これらの単独使用、または併用が考えられる。また、荷重及び蒸気を透過させる方向については制限しない。また、真空条件下や減圧条件下において蒸気を透過させることが可能であり、その手段は特には制限されない。
As a method of improving permeation, a method of concentrating using an object that allows vapor to permeate can be considered. Vapor-permeable objects include fabrics, felts, various filters such as membrane filters and sintered filters, filter paper, materials with a permeation mechanism such as holes, stacked plates and rods, porous and fine substances. Aggregates (pseudo porous structure formed of fine substances such as sand and silica) are also possible. Further, when a hydrophilic base material is used, water can be easily dehydrated. Furthermore, if the transmission mechanism is 1 μm or less, CNF can be prevented from flowing out. Furthermore, these can be used alone or in combination. Moreover, there is no restriction | limiting about the direction which permeate | transmits a load and vapor | steam. Moreover, it is possible to permeate | transmit a vapor | steam under vacuum conditions and pressure reduction conditions, and the means in particular is not restrict | limited.
 成形キャビティ4内に対するCNF投入手段であるノズル6を設けることにより、得られる成形体の体積を調整することができる。このノズルがない場合は、得られる成形体の大きさは、金型部の成形キャビティの大きさに比べて極端に小さい体積のものとなってしまうが、ノズルからCNF含有スラリーを追加することによって、金型形状を維持することができる。 By providing the nozzle 6 which is a CNF charging unit for the inside of the molding cavity 4, the volume of the obtained molded body can be adjusted. Without this nozzle, the size of the molded body obtained is extremely small compared to the size of the molding cavity of the mold part, but by adding CNF-containing slurry from the nozzle The mold shape can be maintained.
 以上の本実施の形態のCNF成形装置1を用いて行われるCNF成形プロセスについて
説明する。
 先ず、底板3と本体部2とによって成形キャビティ4が形成された状態で上板2bに装着されたノズル6から成形キャビティ4内側にCNF含有スラリーを投入する。これと前後して遠赤外線発生装置7による金型部2aの加熱を開始する。
一定以上のCNFが成形キャビティ4に貯留された状態で、油圧アクチュエータ5によって上板2bを底板3方向に加圧すると、可動状態で支持される本体部2全体が底板3方向に移動し、底板3は金型部2a内側に嵌入し、成形キャビティ4の容積は減少する。 その過程で、加熱された金型部2a内側のCNFは多孔質体を用いてなる上板2bを介して外部に蒸気を排出しながら縮小していき、成形キャビティ4の形状によって予め予定される形状に成形され、所要の成形体8を得ることができる。この場合に、成形過程でノズル6からCNFを補充することによって、所要の容積を具えるCNF成形体8を得ることができる。
 また、以上の場合に上板2bや底板3も予め遠赤外線発生装置7によって加温しておけば時間短縮することが可能となる。
The CNF molding process performed using the CNF molding apparatus 1 of the above embodiment will be described.
First, the CNF-containing slurry is introduced into the molding cavity 4 from the nozzle 6 mounted on the upper plate 2 b in a state where the molding cavity 4 is formed by the bottom plate 3 and the main body 2. Around this time, heating of the mold part 2a by the far infrared ray generator 7 is started.
When the upper plate 2b is pressurized in the direction of the bottom plate 3 by the hydraulic actuator 5 in a state where a certain amount or more of CNF is stored in the molding cavity 4, the entire main body 2 supported in a movable state moves in the direction of the bottom plate 3, 3 fits inside the mold part 2a, and the volume of the molding cavity 4 decreases. In the process, the heated CNF inside the mold part 2 a is reduced while discharging steam to the outside through the upper plate 2 b made of a porous body, and is predetermined according to the shape of the molding cavity 4. The required molded body 8 can be obtained by molding into a shape. In this case, the CNF compact 8 having a required volume can be obtained by replenishing CNF from the nozzle 6 in the molding process.
In the above case, if the top plate 2b and the bottom plate 3 are also preheated by the far infrared ray generator 7, the time can be shortened.
[CNF含有スラリー]
 本発明において、CNFとしては例えば、木材繊維、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維等の天然の植物を含む多糖由来のCNFが挙げられ、これらCNFは一種を単独で又は二種以上を混合して用いてもよい。
本発明に用いるCNFは、平均太さ3~200nm、平均長さ0.1μm以上であり、例えば多糖を高圧水流にて解繊して作成することができる。多糖の高圧水流による解繊は、0.5~10質量%の水混合液にした多糖に対し、50~400MPa程度の高圧水を衝突させて行う。平均太さと平均繊維長さの測定は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等を適宜選択し、CNFを観察・測定し、得られた写真から20本以上を選択し、これをそれぞれ平均化することにより求める。ただし、本発明に用いるCNFの調製方法はこれに限らず、その他に酸加水分解法や TEMPO触媒酸化法といった化学的手法や、グラインダー法や高圧ホモジナイザー法といった物理的手法によっても作成することができる。
[CNF-containing slurry]
In the present invention, examples of CNF include polysaccharide-derived CNF including natural plants such as wood fiber, bamboo fiber, sugarcane fiber, seed hair fiber, and leaf fiber. These CNFs may be used alone or in combination of two or more. May be used in combination.
The CNF used in the present invention has an average thickness of 3 to 200 nm and an average length of 0.1 μm or more. For example, the CNF can be prepared by defibrating a polysaccharide with a high-pressure water stream. The defibration of the polysaccharide with a high-pressure water stream is carried out by colliding high-pressure water of about 50 to 400 MPa with the polysaccharide in a 0.5 to 10% by mass water mixture. For measurement of average thickness and average fiber length, select a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc., observe and measure CNF, and select 20 or more from the obtained photographs. This is obtained by averaging each. However, the preparation method of CNF used in the present invention is not limited to this, and can also be prepared by a chemical method such as an acid hydrolysis method or a TEMPO catalytic oxidation method, or a physical method such as a grinder method or a high-pressure homogenizer method. .
 本発明においては、CNF水分散液に金属塩、広葉樹、針葉樹又は竹を原料としたパルプ、又は、架橋剤を添加して、CNF含有スラリーとする。さらに、水溶媒を有機溶媒に置換したものもCNF含有スラリーとして使用することもできる。 In the present invention, a CNF-containing slurry is prepared by adding a metal salt, a hardwood, a conifer or a pulp made from bamboo or a cross-linking agent to a CNF aqueous dispersion. Furthermore, what replaced the water solvent with the organic solvent can also be used as a CNF containing slurry.
 一方、一般的にCNFは、その分子内に多数の水酸基を有しており、極めて親水性が高いことが知られている。したがって、その分子内に多数の水酸基を有したままの状態で、CNF成形体を作成した場合、CNF成形体自身の親水性・吸水性が問題となり得る。すなわち、耐水性が要求されるような状況においてもCNF成形体を使用可能であることが要求されることがある。 On the other hand, CNF generally has a large number of hydroxyl groups in its molecule and is known to be extremely hydrophilic. Therefore, when a CNF molded body is produced with a number of hydroxyl groups in the molecule, the hydrophilicity and water absorption of the CNF molded body itself can be a problem. That is, it may be required that the CNF molded body can be used even in a situation where water resistance is required.
 そこで、この問題を解決するため、官能基の一部をビニルエステル類又は有機酸ビニルエステル類に変性した疎水性を有するCNFを使用することができる。これらビニルエステル類又は有機酸ビニルエステル類としては、酢酸ビニル、ビニルブチレート、ビニルステアレート、ビニルラウレート、ビニルミリステート、ビニルプロピオネート、バーサティク酸ビニル等の直鎖状又は分岐鎖状C2-20脂肪族カルボン酸のビニルエステル、安息香酸ビニルなどの芳香族カルボン酸を例示できる。このような疎水性を有するCNFを用いると、疎水性CNF成形体を作成することができる。 Therefore, in order to solve this problem, it is possible to use a hydrophobic CNF in which a part of the functional group is modified to vinyl esters or organic acid vinyl esters. These vinyl esters or organic acid vinyl esters include linear or branched C2 such as vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, vinyl versatate, etc. -20 aromatic carboxylic acids such as vinyl esters of aliphatic carboxylic acids and vinyl benzoates. When such hydrophobic CNF is used, a hydrophobic CNF molded product can be prepared.
 次いで、CNF含有スラリー中のCNF濃度は2%~10%範囲にするとよい。2%以下では溶媒量が多く、脱水に時間がかかる。また、10%以上ではCNF成形体内部が空洞となってしまう。さらに、前記加熱手段を用いて、CNF含有スラリーの液温の範囲を20~95℃、好ましくは、40~80℃の範囲に調節するとよい。20℃以下の液温では、脱水に時間を要することになる。また、溶媒の沸点以上になると沸騰状態となり、成形体に気泡跡が発生し、均一な成形体を得ることができない。 Next, the CNF concentration in the CNF-containing slurry is preferably in the range of 2% to 10%. If it is 2% or less, the amount of solvent is large, and it takes time to dehydrate. Further, if it is 10% or more, the inside of the CNF compact is hollow. Further, the temperature range of the CNF-containing slurry is adjusted to 20 to 95 ° C., preferably 40 to 80 ° C., using the heating means. When the liquid temperature is 20 ° C. or lower, dehydration takes time. Moreover, when it becomes more than the boiling point of a solvent, it will be in a boiling state, a bubble trace will generate | occur | produce in a molded object, and a uniform molded object cannot be obtained.
[金属塩]
 CNF水分散液に添加する金属塩は、例えば、無機リン化合物、亜リン酸若しくは次亜リン酸の金属塩からなる群より選ばれる1種又は2種以上の化合物を用いることが好ましい。金属塩を添加することにより、CNF同士の軽い凝集体を形成しおくと、溶媒を脱水する時間を削減することができる。
無機リン化合物としては、例えば、リン酸系化合物、亜リン酸系化合物、次亜リン酸系化合物が挙げられる。かかるリン酸系化合物の具体例としては、リン酸、二リン酸、三リン酸、リン酸リチウム、リン酸ベリリウム、リン酸ナトリウム、リン酸マグネシウム、リン酸アルミニウム、リン酸カリウム、リン酸カルシウムなどが挙げられ、亜リン酸系化合物の具体例としては亜リン酸、亜リン酸リチウム、亜リン酸ベリリウム、亜リン酸ナトリウム、亜リン酸マグネシウム、亜リン酸アルミニウム、亜リン酸カリウム、亜リン酸カルシウムなどが挙げられ、次亜リン酸系化合物の具体例としては次亜リン酸、次亜リン酸リチウム、次亜リン酸ベリリウム、次亜リン酸ナトリウム、次亜リン酸マグネシウム、次亜リン酸アルミニウム、次亜リン酸カリウム、次亜リン酸カルシウムなどが挙げられる。
また、他には、例えば、水酸化カリウム、水酸化ナトリウム、水酸化バリウム、水酸化リチウム等の水酸化物;塩化亜鉛、塩化アルミニウム、塩化カルシウム、塩化ストロンチウム、塩化第二鉄、塩化第三鉄、塩化第二銅、塩化バリウム、塩化第二マンガン、塩化第三マンガン、塩化第四マンガン、塩化ナトリウム、塩化カリウム等の塩化物;塩化亜鉛、硫酸アルミニウム、硫酸カリウム、硫酸ジルコニウム、硫酸銅、硫酸ナトリウム、硫酸マグネシウム、硫酸マンガン等の硫酸塩;硝酸亜鉛、硝酸アルミニウム、硝酸カリウム、硝酸カルシウム、硝酸ストロンチウム、硝酸銅、硝酸ナトリウム、硝酸バリウム、硝酸マグネシウム、硝酸マンガン等の硝酸塩;酢酸亜鉛、酢酸カリウム、酢酸カルシウム、酢酸ストロンチウム、酢酸ナトリウム、酢酸バリウム、酢酸マグネシウム等の酢酸塩;等が挙げられる。
 これらの化合物の中でも、より好ましくは、マグネシウム、カルシウム等の2価の金属イオン、若しくは、アルミニウムなどの3価の金属イオンがよい。
 また、添加する量は、得られるCNF成形品に対して、1%以上、より好ましくは、5%~10%の範囲において添加するとよい。10%以上添加すると、CNF成形体の強度が低下するおそれがある。
[Metal salt]
The metal salt added to the CNF aqueous dispersion is preferably, for example, one or more compounds selected from the group consisting of inorganic phosphorus compounds, phosphorous acid or hypophosphorous acid metal salts. If a light aggregate of CNFs is formed by adding a metal salt, the time for dehydrating the solvent can be reduced.
Examples of inorganic phosphorus compounds include phosphoric acid compounds, phosphorous acid compounds, and hypophosphorous acid compounds. Specific examples of such phosphoric acid compounds include phosphoric acid, diphosphoric acid, triphosphoric acid, lithium phosphate, beryllium phosphate, sodium phosphate, magnesium phosphate, aluminum phosphate, potassium phosphate, calcium phosphate and the like. Specific examples of phosphite compounds include phosphorous acid, lithium phosphite, beryllium phosphite, sodium phosphite, magnesium phosphite, aluminum phosphite, potassium phosphite, calcium phosphite and the like. Specific examples of the hypophosphite compound include hypophosphorous acid, lithium hypophosphite, beryllium hypophosphite, sodium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, Examples thereof include potassium phosphite and calcium hypophosphite.
Besides, for example, hydroxides such as potassium hydroxide, sodium hydroxide, barium hydroxide, lithium hydroxide; zinc chloride, aluminum chloride, calcium chloride, strontium chloride, ferric chloride, ferric chloride , Chlorides such as cupric chloride, barium chloride, manganese chloride, manganese chloride, manganese chloride, sodium chloride, potassium chloride; zinc chloride, aluminum sulfate, potassium sulfate, zirconium sulfate, copper sulfate, sulfuric acid Sulfates such as sodium, magnesium sulfate, manganese sulfate; nitrates such as zinc nitrate, aluminum nitrate, potassium nitrate, calcium nitrate, strontium nitrate, copper nitrate, sodium nitrate, barium nitrate, magnesium nitrate, manganese nitrate; zinc acetate, potassium acetate, Calcium acetate, strontium acetate, sodium acetate Barium acetate, acetates such as magnesium acetate, and the like.
Among these compounds, a divalent metal ion such as magnesium or calcium or a trivalent metal ion such as aluminum is more preferable.
Further, the amount to be added is 1% or more, more preferably 5% to 10%, relative to the obtained CNF molded product. If it is added in an amount of 10% or more, the strength of the CNF compact may be lowered.
[パルプ] 
 CNF水分散液に添加するパルプは、広葉樹を原料としたパルプ、針葉樹を原料としたパルプ、竹を原料としたパルプのいずれか又はこれらを組み合わせて用いることができる。また、パルプ繊維長は、0.5~5.0mm及びパルプ繊維長は10~100μmの範囲にあるものを、適宜選択して使用するとよい。さらに、添加量は、得られるCNF成形品に対して、10~30%の範囲にするとよい。このとき、パルプの添加量が10%以下である場合には、濾過に要する時間を短縮することとならず、また、30%以上添加した場合には、これ以上添加しても、濾過時間を短縮することにあまり影響を及ぼさないからである。
[pulp]
The pulp added to the CNF aqueous dispersion may be any of pulp made from hardwood, pulp made from softwood, pulp made from bamboo, or a combination thereof. A pulp fiber length of 0.5 to 5.0 mm and a pulp fiber length of 10 to 100 μm may be appropriately selected and used. Furthermore, the addition amount is preferably in the range of 10 to 30% with respect to the obtained CNF molded product. At this time, when the amount of pulp added is 10% or less, the time required for filtration is not shortened. When 30% or more is added, even if more is added, the filtration time is reduced. This is because it does not have much influence on shortening.
[架橋剤]
 架橋剤としては、セルロースナノファイバー又は変性セルロースナノファイバーが有する水酸基、水酸基がカルボキシル基、リン酸基、アミノ基等の他の官能基を有するものに変性された官能基に対して反応性を有するものであればよく、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アミン系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、オキサゾリン系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、アンモニウム塩系架橋剤等が挙げられる。さらに、これらの重合開始剤を併用することもできる。中でもイソシアネート系架橋剤は、当該水酸基との反応性に優れるという利点がある。架橋剤は、1種を単独で、または2種以上を組み合わせて使用することができる。架橋剤は、CNF成形体の曲げ強度、曲げ弾性率等の物性値の向上を目的として、又は、CNF成形体に他の機能を追加することを目的として使用することができる。
[Crosslinking agent]
As a crosslinking agent, it has reactivity with a functional group modified by a hydroxyl group possessed by cellulose nanofiber or modified cellulose nanofiber, a hydroxyl group having another functional group such as a carboxyl group, a phosphate group, or an amino group. For example, an isocyanate crosslinking agent, an epoxy crosslinking agent, an amine crosslinking agent, a melamine crosslinking agent, an aziridine crosslinking agent, a hydrazine crosslinking agent, an aldehyde crosslinking agent, an oxazoline crosslinking agent, a metal alkoxide. Examples thereof include a system crosslinking agent, a metal chelate crosslinking agent, a metal salt crosslinking agent, and an ammonium salt crosslinking agent. Furthermore, these polymerization initiators can be used in combination. Among them, the isocyanate-based crosslinking agent has an advantage of excellent reactivity with the hydroxyl group. A crosslinking agent can be used individually by 1 type or in combination of 2 or more types. The crosslinking agent can be used for the purpose of improving physical properties such as bending strength and bending elastic modulus of the CNF molded body, or for adding other functions to the CNF molded body.
添加剤の含有量は、セルロースナノファイバー固形分に対し、1%~10%であることが好ましい。1%以下では、架橋剤とセルロースナノファイバーとが反応しないことが考えられ、10%以上では、架橋剤が過剰すぎてセルロースナノファイバーの特徴が減少する可能性がある。 The content of the additive is preferably 1% to 10% with respect to the solid content of the cellulose nanofiber. If it is 1% or less, it is conceivable that the crosslinking agent and the cellulose nanofibers do not react. If it is 10% or more, the crosslinking agent is excessive and the characteristics of the cellulose nanofiber may be reduced.
 イソシアネート系架橋剤としては、多官能イソシアネート(1分子当たり平均2個以上のイソシアネート基を有する化合物をいい、イソシアヌレート構造を有するものを包含する。)が好ましく使用され得る。例えば、イソシアネートアクリレート又はトリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂環式ポリイソシアネートなど、及びそれらのビウレット体、イソシアヌレート体、さらにはエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ヒマシ油等の低分子活性水素含有化合物との反応物であるアダクト体などが挙げられる。イソシアネート系架橋剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。 As the isocyanate-based crosslinking agent, polyfunctional isocyanate (refers to a compound having an average of two or more isocyanate groups per molecule, including those having an isocyanurate structure) can be preferably used. For example, aromatic polyisocyanates such as isocyanate acrylate or tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, and the like Biuret bodies, isocyanurate bodies, and adduct bodies that are a reaction product with a low molecular active hydrogen-containing compound such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. An isocyanate type crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
[溶媒置換]
 CNF含有スラリーの溶媒を水溶媒から有機溶媒へ置換したものをCNF含有スラリーとしてもよい。有機溶媒は、特に制限されることなく使用することでき、例えば、アルコール類、飽和脂肪族炭化水素、エステル類、エーテル類、ニトリル類、非プロトン性極性溶媒、ケトン類、アミド類、芳香族炭化水素、含窒素芳香族化合物、イオン性液体、水が好ましい。一例を挙げると、ヘキサン、トルエン、クロロホルム、ジクロロメタン、ジエチルエーテル、THF、酢酸エチル、アセトン、アセトニトリル、DMF、DMSO、エタノール、メタノール、酢酸、メタクリル酸メチル等を用いることができる。揮発性溶媒を使用することにより、脱水に要する時間を削減することができ、また、CNFが凝集して脱水性が向上させることができる。
[Solvent substitution]
A CNF-containing slurry obtained by replacing the solvent of the CNF-containing slurry from an aqueous solvent to an organic solvent may be used. The organic solvent can be used without any particular limitation, for example, alcohols, saturated aliphatic hydrocarbons, esters, ethers, nitriles, aprotic polar solvents, ketones, amides, aromatic carbonization. Hydrogen, nitrogen-containing aromatic compound, ionic liquid, and water are preferable. For example, hexane, toluene, chloroform, dichloromethane, diethyl ether, THF, ethyl acetate, acetone, acetonitrile, DMF, DMSO, ethanol, methanol, acetic acid, methyl methacrylate, and the like can be used. By using a volatile solvent, the time required for dehydration can be reduced, and CNF can aggregate to improve dehydration.
 溶媒の置換処理方法として、メタノールへの置換処理の一例を挙げると、まずCNFと、当該CNFに含まれる水分と同量のメタノールを混合攪拌し、然る後、この混合攪拌液を真空ろ過することで水分の除去を行う。そして、この除去により得られたCNFにさらに適量のメタノールを供給し、メタノール液中に均等に分散させる。なお、ここでは、メタノールを置換媒体として使用した場合を例示したが、メタノール以外の溶媒を用いて上記置換処理を行うことも可能である。 As an example of the solvent substitution treatment method, an example of the substitution treatment with methanol is as follows. First, CNF and methanol in the same amount as the water contained in the CNF are mixed and stirred, and then the mixed stirring solution is vacuum filtered. The water is removed. Then, an appropriate amount of methanol is further supplied to the CNF obtained by this removal, and the CNF is evenly dispersed in the methanol solution. In addition, although the case where methanol was used as a substitution medium was illustrated here, it is also possible to perform the said substitution process using solvents other than methanol.
 もちろん、溶媒置換の方法は上記に限られるものではなく、他の方法を採ることもできる。例えば、CNF含有スラリーに対してフリーズドライ処理を施し、CNF含有スラリー中の水分を除去するようにしてもよい。 Of course, the method of solvent replacement is not limited to the above, and other methods can be employed. For example, the CNF-containing slurry may be freeze-dried to remove moisture in the CNF-containing slurry.
 次に、実施例に基づき、本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に記載しない限り、本発明において、%等は重量基準であり、数値範囲はその端点を含むものとする。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples. Unless otherwise specified, in the present invention,% and the like are based on weight, and the numerical range includes the end points.
実施例1
(CNF含有スラリーの液温と濾水量)
 CNF1.816%水分散液(BB 5pass品)に純水を加えて0.1%濃度に希釈し、ウォーターバスを使用して0.1%CNF水溶液を12、27.5、50、80℃の各温度に設定して濾水量の測定を行った。
 ここで、濾水量とは、CNFの0.1%分散液200mlを吸引ろ過して、10、20、30min等の各時間において脱水された量を示す。すなわち、濾水量が多いほど脱水性がよいこととなり、溶媒を脱水する時間がより少ないこととなる。
Example 1
(Liquid temperature and amount of drainage of CNF-containing slurry)
Pure water is added to CNF1.816% aqueous dispersion (BB 5pass product) to dilute to 0.1% concentration, and 0.1% CNF aqueous solution is used at 12, 27.5, 50, and 80 ° C using a water bath. The drainage amount was measured by setting the temperature.
Here, the amount of drainage refers to the amount of water dehydrated in each time such as 10, 20, 30 min after suction filtration of 200 ml of 0.1% CNF dispersion. That is, the greater the amount of drainage, the better the dehydration and the less time for dehydrating the solvent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に結果を示す。表1から明らかなように濾水量は液温が高くなるにつれて、増加している。したがって、CNF含有スラリーを加熱することによって、溶媒を脱水する時間を短縮することができる。したがって、本発明におけるCNF成形装置の金型部を加熱することによって、溶媒除去に要する時間を短縮することができる。 Table 1 shows the results. As is apparent from Table 1, the amount of drainage increases as the liquid temperature increases. Therefore, the time for dehydrating the solvent can be shortened by heating the CNF-containing slurry. Therefore, the time required for solvent removal can be shortened by heating the mold part of the CNF molding apparatus in the present invention.
実施例2
(金属塩を添加したCNF含有スラリーの濾水量)
 CNF1.816%水分散液(BBー5pass品)に純水を加えて0.1%濃度に希釈し、リン酸三カルシウムを0、1、3、5,10%の割合で配合して、室温において、それぞれのCNF含有スラリーについて、その濾水量を測定した。
Example 2
(The amount of drainage of the CNF-containing slurry to which the metal salt is added)
Pure water is added to CNF1.816% aqueous dispersion (BB-5pass product) and diluted to a concentration of 0.1%, and tricalcium phosphate is blended at a ratio of 0, 1, 3, 5, 10%, The amount of drainage was measured for each CNF-containing slurry at room temperature.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に結果を示す。表2から明らかなように3%よりも5%の方が濾水量が増加している。したがって、3%よりも多い量のリン酸三カルシウムを添加することで、溶媒除去に要する時間を短縮することができる。 Table 2 shows the results. As is apparent from Table 2, the amount of drainage increased by 5% rather than 3%. Therefore, the time required for solvent removal can be shortened by adding more than 3% of tricalcium phosphate.
実施例3
 CNF 1.817%水分散液(BB-5パス品)を使用して、パルプが所定の配合率になるように、あらかじめ水分散させたパルプを配合し、0.1%濃度のCNF、パルプ水分散液の濾水量を測定した。温度は室温にて実施した。
Example 3
Using CNF 1.817% aqueous dispersion (BB-5 pass product), blended with water-dispersed pulp in advance so that the pulp has a prescribed blending ratio, 0.1% CNF and pulp The amount of filtrate in the aqueous dispersion was measured. The temperature was room temperature.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に結果を示す。表3から明らかなようにパルプ配合量10%の場合には、濾水量が増加した。また、30%以上の範囲にある場合には、パルプ量を増加させても濾水量が増加しないことが分かった。したがって、パルプ配合量を10~30%としたCNF含有スラリーは、溶媒除去に要する時間を短縮することができる。 Table 3 shows the results. As apparent from Table 3, the amount of drainage increased when the pulp content was 10%. Moreover, when it was in the range of 30% or more, it was found that the drainage amount did not increase even if the pulp amount was increased. Therefore, a CNF-containing slurry having a pulp content of 10 to 30% can shorten the time required for solvent removal.
実施例4
(有機溶媒に置換したCNF含有スラリーの濾水量)
 CNF2%水分散液にリン酸三カルシウム10%を添加して、メタノールで吸引ろ過を2回行い2.5%のメタノール湿潤CNFとした。これを0.1%CNFメタノール溶液とし、実施例4とした。また、CNF2%水分散液にリン酸三カルシウム10%を添加し、0.1%に希釈したものを比較例2とした。
 これらの濾水量及び溶液安定性評価装置(英弘精機株式会社)を使用して、沈降速度の
測定を行った。
Example 4
(The amount of drainage of CNF-containing slurry substituted with an organic solvent)
Tricalcium phosphate 10% was added to the CNF 2% aqueous dispersion, and suction filtration was performed twice with methanol to obtain 2.5% methanol wet CNF. This was made into 0.1% CNF methanol solution, and it was set as Example 4. Comparative Example 2 was prepared by adding 10% tricalcium phosphate to a CNF 2% aqueous dispersion and diluting the resulting solution to 0.1%.
The amount of filtrate and solution stability evaluation apparatus (Eihiro Seiki Co., Ltd.) was used to measure the sedimentation rate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4に濾水量の結果を示し、表5に沈降速度の測定結果を示す。表4から明らかなようにメタノール溶媒に置換した実施例は、1分で200mlをろ過することができた。また、表5から、メタノール溶媒に置換した実施例4の方が、沈降速度が早いことが分かる。したがって、有機溶媒に置換したCNF含有スラリーは、溶媒除去に要する時間を短縮することができる。 Table 4 shows the result of the drainage amount, and Table 5 shows the measurement result of the sedimentation rate. As is clear from Table 4, in the example in which the methanol solvent was replaced, 200 ml could be filtered in 1 minute. In addition, from Table 5, it can be seen that Example 4 substituted with a methanol solvent has a higher sedimentation rate. Therefore, the CNF-containing slurry substituted with the organic solvent can shorten the time required for solvent removal.
実施例5
(水溶媒のCNF含有スラリーを用いたCNF成形体の作成及びこれを用いた切削加工)
CNF2%水分散液 7.91kg(CNF158g)、パルプ50%品135.8g(67.8g)及びリン酸カルシウム11g(CNF成形体に対して5%)を混合してCNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。得られたCNF成形体は、底直径12cm、高さ20mmであり、重量は226gであった。本実施例で得られたCNF成形体を用いて総入れ歯の歯床部分を作成した。図2にCNF成形装置によって得られた成形体の写真を示す。また、図3に切削加工後のCNF成形体を示す。以上より、本発明により、切削加工が可能となる厚さを有し、内部が均一となる成形体が得られることができる。
Example 5
(CNF forming body using CNF-containing slurry of water solvent and cutting using this)
A CNF-containing slurry was prepared by mixing 7.91 kg of CNF 2% aqueous dispersion (158 g of CNF), 135.8 g (67.8 g) of 50% pulp and 11 g of calcium phosphate (5% with respect to the CNF compact). Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created. The obtained CNF compact had a bottom diameter of 12 cm, a height of 20 mm, and a weight of 226 g. A denture base portion of a full denture was created using the CNF molded body obtained in this example. FIG. 2 shows a photograph of the molded body obtained by the CNF molding apparatus. FIG. 3 shows the CNF compact after cutting. As described above, according to the present invention, it is possible to obtain a molded body having a thickness that enables cutting and a uniform inside.
実施例6
(メタノール溶媒に置換したCNF含有スラリーを用いたCNF成形体の作成及びこれを用いた切削加工)
CNF2%水分散液 12.5kg(CNF250g)、及びリン酸カルシウム12.5g(CNF成形体に対して5%)とした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。得られたCNF成形体は、底直径12cm、高さ20mmであり、重量は256gであった。本実施例で得られたCNF成形体を用いて総入れ歯の歯床部分を作成した。図4に切削加工後のCNF成形体を示す。以上より、本発明により、切削加工が可能となる厚さを有し、内部が均一となる成形体が得ることができる。
Example 6
(Preparation of CNF compact using CNF-containing slurry substituted with methanol solvent and cutting using the same)
The CNF 2% aqueous dispersion was 12.5 kg (CNF 250 g) and calcium phosphate 12.5 g (5% with respect to the CNF compact). Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created. The obtained CNF compact had a bottom diameter of 12 cm, a height of 20 mm, and a weight of 256 g. A denture base portion of a full denture was created using the CNF molded body obtained in this example. FIG. 4 shows the CNF compact after cutting. As described above, according to the present invention, it is possible to obtain a molded body having a thickness that enables cutting and a uniform inside.
実施例7~実施例18
(CNF成形体の物性評価)
CNF成形体を作成し、(1)3点曲げ試験、(2)表面硬さの測定(3)接触角の測定、(4)吸水量の測定(5)密度の測定を行った。まず、それぞれの測定条件について以下に記載する。
(1)3点曲げ試験
各実施例で得られたCNF成形体を試験片サイズ 64×10×2mm とし、インストロンジャパン製材料試験機INSTRON5565を用いて、クロスヘッドスピード5mm/min,サポート間距離50mmの条件で試験を行い、曲げ強度(MPa)及び曲げ弾性率(MPa)を算出した。
(2)表面硬さの測定
硬度計(テクロックデュロメータタイプD、テクロック社製)を用いて、試験片3本、各4か所について測定した。押針が試験片測定面に垂直になるように加圧面を密着させて、3秒後の値(HDD)を測定した。
(3)接触角の測定
協和界面科学株式会社製全自動接触角計を用い、液滴法により蒸留水滴下10秒後の接触角(°)を測定した。10点の測定を行い、最大値、最小値を除く8点の平均値を算出した。
(4)吸水量の測定
試験片を水中に浸漬させ、3日経過後の重量を測定した。元の重量から3日後の重量の差を求め、給水量(μg/mm3)とした。
(5)密度の測定
試験片の体積及び重量から密度を測定した。
Examples 7 to 18
(Physical property evaluation of CNF compact)
CNF compacts were prepared and (1) three-point bending test, (2) surface hardness measurement (3) contact angle measurement, (4) water absorption measurement (5) density measurement. First, each measurement condition is described below.
(1) Three-point bending test CNF compacts obtained in each example were tested with a specimen size of 64 x 10 x 2 mm, using an Instron Japan material testing machine INSTRON5565, crosshead speed of 5 mm / min, distance between supports The test was conducted under the condition of 50 mm, and bending strength (MPa) and bending elastic modulus (MPa) were calculated.
(2) Measurement of surface hardness Using a hardness tester (Tecrock durometer type D, manufactured by Tecrock Co., Ltd.), three test pieces were measured for each of four locations. The pressure surface was brought into close contact so that the push needle was perpendicular to the test piece measurement surface, and the value (HDD) after 3 seconds was measured.
(3) Measurement of contact angle Using a fully automatic contact angle meter manufactured by Kyowa Interface Science Co., Ltd., the contact angle (°) 10 seconds after dropping of distilled water was measured by the droplet method. Ten points were measured, and an average of eight points excluding the maximum and minimum values was calculated.
(4) Measurement of water absorption The test piece was immersed in water, and the weight after 3 days was measured. The difference in weight after 3 days from the original weight was determined and used as the amount of water supply (μg / mm 3).
(5) Measurement of density The density was measured from the volume and weight of the test piece.
(実施例7)
CNF 2%水分散液 2000gをCNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 7)
2000 g of CNF 2% aqueous dispersion was used as a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例8)
CNF1%水分散液 約4000gを、メタノールで吸引ろ過を2回行い、2.6%のメタノール湿潤CNFとし、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 8)
About 4000 g of CNF 1% aqueous dispersion was subjected to suction filtration twice with methanol to obtain 2.6% methanol wet CNF to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例9)
CNF2%水分散液 2000gに、リン酸三カルシウム2g(CNF固形分に対し5%)を加え、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
Example 9
To 2000 g of CNF 2% aqueous dispersion, 2 g of tricalcium phosphate (5% based on the solid content of CNF) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例10)
CNF2%水分散液 2000gに、リン酸三カルシウム4g(CNF固形分に対し10%)を加えCNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 10)
To 2000 g of CNF 2% aqueous dispersion, 4 g of tricalcium phosphate (10% with respect to the solid content of CNF) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例11)
CNF2%水分散液 1400gに、リン酸三カルシウム4g(CNFとパルプとの合計固形分に対し10%)及びCNFとパルプの重量比が7:3となるように竹パルプを加え、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 11)
To 1400 g of CNF 2% aqueous dispersion, 4 g of tricalcium phosphate (10% with respect to the total solid content of CNF and pulp) and bamboo pulp were added so that the weight ratio of CNF to pulp was 7: 3. It was. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例12)
CNF2%水分散液 2000gに、メタノールで吸引ろ過を2回行い2.5%のメタノール湿潤CNFとした。これに、リン酸三カルシウム2g(CNF固形分に対し5%)加え、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 12)
A 2000% CNF 2% aqueous dispersion was subjected to suction filtration twice with methanol to obtain 2.5% methanol wet CNF. To this, 2 g of tricalcium phosphate (5% based on CNF solid content) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例13)
CNF1.5%(w/v)水分散液及び炭酸カリウム(対パルプ重量20%)を含む、94%DMSO/6%水(v/v)の混合溶液5mLを、良分散液になるまで室温で撹拌した。次いで、分散後70℃に加熱し、ラウリン酸ビニルを無水グルコース単位(AGU)当たり1.2モル相当となるように添加・密栓し、2時間・70℃の条件で反応させた。
その後、洗浄し、メタクリル酸メチル溶液湿潤CNFとした。これを2%CNFメタクリル酸メチル溶液とし、CNF含有スラリーとした。
次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 13)
5 mL of a mixed solution of 94% DMSO / 6% water (v / v) containing 1.5% (w / v) CNF aqueous dispersion and potassium carbonate (vs. pulp weight 20%) was added at room temperature until a good dispersion was obtained. Stir with. Next, after dispersion, the mixture was heated to 70 ° C., vinyl laurate was added and sealed so as to be equivalent to 1.2 mol per anhydroglucose unit (AGU), and the mixture was reacted for 2 hours at 70 ° C.
Then, it wash | cleaned and it was set as the methyl methacrylate solution wet CNF. This was made into a 2% CNF methyl methacrylate solution to make a CNF-containing slurry.
Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例14)
CNF1%(w/v)水分散液及び炭酸カリウム(対パルプ重量20%)を含む、94%DMSO/6%水(v/v)の混合溶液5mLを、良分散液になるまで室温で撹拌した。次いで、分散後70℃に加熱し、ラウリン酸ビニルを無水グルコース単位(AGU)当たり1.2モル相当となるように添加・密栓し、2時間・70℃の条件で反応させた。
その後、洗浄し、メタクリル酸メチル溶液湿潤CNFとした。これを2%CNFメタクリル酸メチル溶液とし、イソシアネートアクリレート(BASF社製 デュアルキュア用アクリレートLaromer LR9000)2g(CNFの固形分濃度に対し5%)を加えたものをCNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 14)
Stir 5 mL of a mixed solution of 94% DMSO / 6% water (v / v) containing 1% (w / v) CNF aqueous dispersion and potassium carbonate (vs. pulp weight 20%) at room temperature until a good dispersion is obtained. did. Next, after dispersion, the mixture was heated to 70 ° C., vinyl laurate was added and sealed so as to be equivalent to 1.2 mol per anhydroglucose unit (AGU), and the mixture was reacted for 2 hours at 70 ° C.
Then, it wash | cleaned and it was set as the methyl methacrylate solution wet CNF. This was made into a 2% CNF methyl methacrylate solution, and what added 2 g of isocyanate acrylates (Laromer LR9000 for dual cure manufactured by BASF) (5% with respect to the solid content concentration of CNF) was used as a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例15)
CNF1%水分散液 4000gを、メタノールで吸引ろ過を2回行い2.6%程度のメタノール湿潤CNFとした。これに、イソシアネートアクリレート(BASF社製 デュアルキュア用アクリレートLaromer LR9000)2g(CNF固形分に対し5%)を加えて、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 15)
4000 g of CNF 1% aqueous dispersion was subjected to suction filtration twice with methanol to obtain about 2.6% methanol wet CNF. To this, 2 g of isocyanate acrylate (Laromer LR9000, dual cure acrylate manufactured by BASF) (5% based on CNF solid content) was added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例16)
CNF1%水分散液 4000gを、メタノールで吸引ろ過を2回行い、2.6%程度のメタノール湿潤CNFとした。これに、イソシアネートアクリレート(BASF社製 デュアルキュア用アクリレートLaromer LR9000)4g(CNF固形分に対し10%)にメタノールに溶かし、これを加え、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 16)
4000 g of CNF 1% aqueous dispersion was subjected to suction filtration twice with methanol to obtain about 2.6% methanol wet CNF. This was dissolved in methanol in 4 g of isocyanate acrylate (Laromer LR9000, dual cure acrylate manufactured by BASF) (10% based on CNF solid content), and added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例17)
CNF1%水分散液 4000gにメタノールで吸引ろ過を2回行い、2.4%程度のメタノール湿潤CNFとした。これにイソシアネートアクリレート(BASF社製 デュアルキュア用アクリレートLaromer LR9000)2g(CNF固形分に対し5%)をメタノールに溶かし、さらに、重合開始剤(和光純薬工業株式会社製 V-65)100mgを加えて、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 17)
A 4000% CNF aqueous dispersion was subjected to suction filtration with methanol twice to obtain about 2.4% methanol wet CNF. To this, 2 g of isocyanate acrylate (BASF acrylate Laromer LR9000) (5% based on CNF solid content) was dissolved in methanol, and 100 mg of a polymerization initiator (Wako Pure Chemical Industries, Ltd. V-65) was added. Thus, a CNF-containing slurry was obtained. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
(実施例18)
CNF1%水分散液 4000gに、アセトンで吸引ろ過を2回行い、2.4%程度のアセトン溶液とし、イソシアネートアクリレート(BASF社製 デュアルキュア用アクリレートLaromer LR9000)2g(CNF固形分に対し5%)をアセトンに溶かし、さらに、重合開始剤(和光純薬工業株式会社製 V-65)100mgを加えて、CNF含有スラリーとした。次いで、円筒型の金型を用いたCNF成形装置に投入し、荷重60kg、金型部を100℃に設定し、成形体を作成した。
(Example 18)
CNF 1% aqueous dispersion 4000g, suction filtered twice with acetone to make about 2.4% acetone solution, 2g of isocyanate acrylate (BASF's dual cure acrylate Laromer LR9000) (5% to CNF solid content) Was dissolved in acetone, and 100 mg of a polymerization initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) was further added to obtain a CNF-containing slurry. Subsequently, it put into the CNF shaping | molding apparatus using a cylindrical type | mold, the load 60kg and the metal mold | die part were set to 100 degreeC, and the molded object was created.
実施例7、8、9、10、11、12、15、16,17、18について、前述の(1)3点曲げ試験、(5)密度の測定を実施した。また、比較例3として、アクリルレジンを用いて、同サイズの試験片を作製し、共に測定した。 For Examples 7, 8, 9, 10, 11, 12, 15, 16, 17, and 18, the above-mentioned (1) three-point bending test and (5) density measurement were performed. Moreover, as Comparative Example 3, a test piece of the same size was prepared using an acrylic resin and measured together.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に結果を示す。表から分かるように、全ての実施例について曲げ弾性率の値が上回っていた。実施例10、11、12については、密度が低いものであるため、低密度性が要求される製品分野においては、CNF含有スラリーに金属塩の添加、パルプの添加又はその両方を添加することは、非常に有用である。 Table 6 shows the results. As can be seen from the table, the flexural modulus values were higher for all examples. In Examples 10, 11, and 12, since the density is low, it is not possible to add a metal salt, a pulp, or both to a CNF-containing slurry in a product field where low density is required. Is very useful.
実施例15、16,17、18について、前述の(2)表面硬度試験を実施した。また、比較例3として用いたアクリルレジンを用いて、共に測定した。 For Examples 15, 16, 17, and 18, the above-described (2) surface hardness test was performed. Moreover, it measured together using the acrylic resin used as the comparative example 3.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に結果を示す。表7から分かるように比較例と略同一若しくはこれ以上の値となった。 Table 7 shows the results. As can be seen from Table 7, the values were almost the same as or higher than those of the comparative example.
実施例13,14について、前述の(3)接触角の測定及び(5)密度の測定を実施した。また、比較例3として用いたアクリルレジンを用いて、共に測定した。 For Examples 13 and 14, the above-described (3) measurement of contact angle and (5) measurement of density were performed. Moreover, it measured together using the acrylic resin used as the comparative example 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に結果を示す。表8から分かるように、比較例よりも大きい接触角となった。この結果により、CNF成形体に疎水性を維持することができた。 Table 8 shows the results. As can be seen from Table 8, the contact angle was larger than that of the comparative example. As a result, it was possible to maintain the hydrophobicity of the CNF compact.
実施例7,13、14、15、16、17、18について、前述の(4)の吸水量の測定を実施した。なお、1500μg/mm3以上の結果については、「未測定」という評価基準を採用した。 For Examples 7, 13, 14, 15, 16, 17, and 18, the water absorption amount of (4) described above was measured. For the results of 1500 μg / mm 3 or more, the evaluation criterion “unmeasured” was adopted.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に結果を示す。表9から分かるように、実施例7においては、「未測定」という結果になったものの、他の実施例については良好な結果となった。実施例13、14の結果から、疎水化CNFを使用したCNF成形体は、十分な疎水性を有していることが明らかとなり、また、実施例15、16、17、18の結果から、疎水化CNFを使用しなくとも、疎水性をCNF成形体に付与することができることが明らかとなった。 Table 9 shows the results. As can be seen from Table 9, in Example 7, the result was “unmeasured”, but in other examples, good results were obtained. From the results of Examples 13 and 14, it is clear that the CNF compact using hydrophobic CNF has sufficient hydrophobicity, and from the results of Examples 15, 16, 17, and 18, It was revealed that hydrophobicity can be imparted to the CNF compact without using modified CNF.

Claims (15)

  1.  セルロースナノファイバー(以下、CNFと記す)含有スラリーに蒸気を透過させる蒸気透過手段を使用して荷重を加えるCNF成形装置において、本体部と底板とによって成形キャビティを形成する成形型を備え、 前記成形キャビティに対するCNF投入手段を設けてなり、前記底板は前記本体部内側に嵌入可能にされ、かつ前記本体部を前記底板方向に加圧する加圧手段を有することを特徴とするCNF成形装置。 In a CNF molding apparatus that applies a load using vapor permeation means that allows vapor to permeate through a slurry containing cellulose nanofiber (hereinafter referred to as CNF), the molding includes a molding die that forms a molding cavity with a main body and a bottom plate, and the molding A CNF forming apparatus comprising a CNF throwing means for the cavity, wherein the bottom plate can be fitted inside the main body, and has a pressurizing means for pressing the main body toward the bottom plate.
  2.  前記底板は少なくとも一部に蒸気透過手段を使用してなる請求項1に記載のCNF成形装置。 2. The CNF molding apparatus according to claim 1, wherein the bottom plate uses a vapor transmission means at least partially.
  3.  前記本体部は、金型部と上板とよりなり、前記上板は前記金型部を介して前記底板とは反対側に配置され、前記上型によって前記金型部を前記底板方向に加圧可能にされた請求項1又は請求項2に記載のCNF成形装置。 The main body portion includes a mold portion and an upper plate, and the upper plate is disposed on the opposite side of the bottom plate via the mold portion, and the mold portion is added in the direction of the bottom plate by the upper die. The CNF molding apparatus according to claim 1 or 2, wherein the pressurization is possible.
  4.  前記上板及び金型部は少なくとも一部に蒸気透過手段を使用してなる請求項3に記載のCNF成形装置。 4. The CNF molding apparatus according to claim 3, wherein the upper plate and the mold part are formed by using vapor transmission means at least in part.
  5.  前記金型部に対する加熱手段を設けてなる請求項3又は請求項4記載のCNF成形装置。 The CNF molding apparatus according to claim 3 or 4, wherein heating means for the mold part is provided.
  6. CNF含有スラリーに蒸気を透過させる蒸気透過手段を使用して荷重を加えるCNF成形方法において、本体部と底板とによって成形キャビティを形成する成形型を備え、 前記成形キャビティに対するCNF投入手段を設けてなり、前記底板は前記本体部内側に嵌入可能にされ、かつ前記本体部を前記底板方向に加圧する工程を有することを特徴とするCNF成形方法。 In a CNF molding method in which a load is applied using vapor transmission means for allowing vapor to pass through the CNF-containing slurry, a molding die for forming a molding cavity is formed by a main body portion and a bottom plate, and CNF charging means for the molding cavity is provided. The CNF molding method is characterized in that the bottom plate can be fitted inside the main body, and the main plate is pressed in the direction of the bottom plate.
  7. 前記底板は少なくとも一部に蒸気透過手段を使用することを特徴とする請求項7に記載のCNF成形方法。 8. The CNF molding method according to claim 7, wherein the bottom plate uses a vapor transmission means at least in part.
  8. 前記本体部は、金型部と上板とよりなり、前記上板は前記金型部を介して前記底板とは反対側に配置され、前記上型によって前記金型部を前記底板方向に加圧する工程を有することを請求項6又は請求項7に記載のCNF成形方法。 The main body portion includes a mold portion and an upper plate, and the upper plate is disposed on the opposite side of the bottom plate via the mold portion, and the mold portion is added in the direction of the bottom plate by the upper die. The CNF molding method according to claim 6, further comprising a pressing step.
  9.  前記上板及び金型部は少なくとも一部に蒸気透過手段を使用してなる請求項8に記載のCNF成形方法。 The CNF molding method according to claim 8, wherein the upper plate and the mold part are formed by using a vapor transmission means at least in part.
  10.  前記金型部に対する加熱手段を設けてなる請求項8又は請求項9記載のCNF成形方法。 The CNF molding method according to claim 8 or 9, wherein heating means for the mold part is provided.
  11. 前記CNF含有スラリーは、水溶媒及び/又は有機溶媒に、平均太さ3~200nm、平均長さ0.1μm以上のCNFを2~10%の範囲において含むCNF含有スラリーであることを特徴とする請求項6~請求項10のいずれか一に記載のCNF成形方法。 The CNF-containing slurry is a CNF-containing slurry containing CNF having an average thickness of 3 to 200 nm and an average length of 0.1 μm or more in a range of 2 to 10% in an aqueous solvent and / or an organic solvent. The CNF molding method according to any one of claims 6 to 10.
  12. 請求項11に記載のCNF含有スラリーに、さらに、金属塩を3~10%の範囲において含むCNF含有スラリーとしたことを特徴とする請求項6~請求項10のいずれか一に記載のCNF成形方法。 The CNF-containing slurry according to any one of claims 6 to 10, wherein the CNF-containing slurry according to claim 11 is a CNF-containing slurry further containing a metal salt in a range of 3 to 10%. Method.
  13. 請求項11に記載のCNF含有スラリーに、さらに、パルプを10~30%の範囲で含むCNF含有スラリーとしたことを特徴とする請求項6~請求項10のいずれか一に記載のCNF成形方法。 The CNF-forming slurry according to any one of claims 6 to 10, wherein the CNF-containing slurry according to claim 11 is a CNF-containing slurry further containing pulp in a range of 10 to 30%. .
  14.  請求項11に記載のCNF含有スラリーに、パルプを10~30%の範囲で含み、さらに、金属塩を3~10%の範囲において含むCNF含有スラリーとしたことを特徴とする請求項6~請求項10のいずれか一に記載のCNF成形方法。 The CNF-containing slurry according to claim 11, wherein the CNF-containing slurry contains pulp in a range of 10 to 30% and further contains a metal salt in a range of 3 to 10%. Item 11. The CNF molding method according to any one of Items 10.
  15.  請求項11~請求項14に記載のCNF含有スラリーに、さらに、架橋剤を含むCNF含有スラリーとしたことを特徴とする請求項6~請求項10のいずれか一に記載のCNF成形方法。 The CNF-forming method according to any one of claims 6 to 10, wherein the CNF-containing slurry according to claims 11 to 14 is further converted into a CNF-containing slurry containing a crosslinking agent.
PCT/JP2018/018450 2017-05-12 2018-05-14 Cnf molding device and cnf molding method WO2018207945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517737A JP6864816B2 (en) 2017-05-12 2018-05-14 CNF molding equipment and CNF molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095652 2017-05-12
JP2017095652 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207945A1 true WO2018207945A1 (en) 2018-11-15

Family

ID=64105445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018450 WO2018207945A1 (en) 2017-05-12 2018-05-14 Cnf molding device and cnf molding method

Country Status (2)

Country Link
JP (2) JP6864816B2 (en)
WO (1) WO2018207945A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078630B2 (en) * 2016-11-03 2021-08-03 Oregon State University Molded pomace pulp products and methods
JP2023027933A (en) * 2021-08-18 2023-03-03 中越パルプ工業株式会社 Production method of cnf molded body, cnf molded body, and cnf molded body as dentin alternative material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392766A (en) * 1986-10-02 1988-04-23 尾藤 仁己 Pulp material reinforcing and precise molding method
JPH10183500A (en) * 1996-12-18 1998-07-14 Nippon Beet Sugar Mfg Co Ltd Cellulosic molding product
JPH1193100A (en) * 1997-09-10 1999-04-06 Oji Paper Co Ltd Production of formed product
JPH11222794A (en) * 1998-02-02 1999-08-17 Oji Paper Co Ltd Low-density formed product
JP2000027099A (en) * 1998-07-03 2000-01-25 Oji Paper Co Ltd Production of uneven molded product
JP2000054300A (en) * 1998-08-06 2000-02-22 Oji Paper Co Ltd Production of heat-insulation vessel
JP2001123400A (en) * 1999-10-22 2001-05-08 Oji Packaging Systems Co Ltd Method for producing pulp mold
JP2011149124A (en) * 2010-01-21 2011-08-04 Oji Paper Co Ltd Method for producing fine-fibrous cellulose composite sheet-laminated form
JP2012136808A (en) * 2010-12-27 2012-07-19 Daio Paper Corp Sheet for molding and molding obtained from the same
JP2016094683A (en) * 2014-11-14 2016-05-26 中越パルプ工業株式会社 Cnf formation method and cnf molded body obtained by the same method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392766A (en) * 1986-10-02 1988-04-23 尾藤 仁己 Pulp material reinforcing and precise molding method
JPH10183500A (en) * 1996-12-18 1998-07-14 Nippon Beet Sugar Mfg Co Ltd Cellulosic molding product
JPH1193100A (en) * 1997-09-10 1999-04-06 Oji Paper Co Ltd Production of formed product
JPH11222794A (en) * 1998-02-02 1999-08-17 Oji Paper Co Ltd Low-density formed product
JP2000027099A (en) * 1998-07-03 2000-01-25 Oji Paper Co Ltd Production of uneven molded product
JP2000054300A (en) * 1998-08-06 2000-02-22 Oji Paper Co Ltd Production of heat-insulation vessel
JP2001123400A (en) * 1999-10-22 2001-05-08 Oji Packaging Systems Co Ltd Method for producing pulp mold
JP2011149124A (en) * 2010-01-21 2011-08-04 Oji Paper Co Ltd Method for producing fine-fibrous cellulose composite sheet-laminated form
JP2012136808A (en) * 2010-12-27 2012-07-19 Daio Paper Corp Sheet for molding and molding obtained from the same
JP2016094683A (en) * 2014-11-14 2016-05-26 中越パルプ工業株式会社 Cnf formation method and cnf molded body obtained by the same method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078630B2 (en) * 2016-11-03 2021-08-03 Oregon State University Molded pomace pulp products and methods
JP2023027933A (en) * 2021-08-18 2023-03-03 中越パルプ工業株式会社 Production method of cnf molded body, cnf molded body, and cnf molded body as dentin alternative material
JP7270689B2 (en) 2021-08-18 2023-05-10 中越パルプ工業株式会社 CNF molded article manufacturing method, CNF molded article and CNF molded article as ivory substitute material

Also Published As

Publication number Publication date
JP7238002B2 (en) 2023-03-13
JP2021101054A (en) 2021-07-08
JPWO2018207945A1 (en) 2020-03-12
JP6864816B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP7238002B2 (en) CNF molding device and CNF molding method
KR20180070598A (en) The laminated sheet and the laminate
JP6503182B2 (en) Molded body and method for producing the same
WO2018062501A1 (en) Composition
JP2021004374A (en) Method for producing fibrous cellulose, fibrous cellulose dispersion, and sheet
JP7346873B2 (en) Seat manufacturing method
KR102058922B1 (en) Nanocomposite sheet for speaker diaphragm and manufacturing method of nanocomposite sheet for diaphragm of speaker
JP7268338B2 (en) Molded body manufacturing method
KR20200105704A (en) Sheet
JP7346878B2 (en) Method for producing phosphorus oxo-oxidized pulp
JP7395836B2 (en) Method for producing fine fibrous cellulose-containing dispersion
JP7090023B2 (en) Fibrous Cellulose, Fibrous Cellulose Containing Material, Molded Body and Method for Producing Fibrous Cellulose
JP6805731B2 (en) Laminate
CN112654746B (en) Fibrous cellulose-containing material, fluffed cellulose, and composition
JP7415675B2 (en) Fibrous cellulose dispersion and molded body
JP7452108B2 (en) Fibrous cellulose, fibrous cellulose-containing material, fibrous cellulose-containing liquid composition, and molded article
JP2020165062A (en) Sheet
JP7342873B2 (en) Solid body, sheet and method for producing solid body
JP7375319B2 (en) Method for producing fibrous cellulose-containing sheet
JP6828759B2 (en) Sheets and laminates
JP7107267B2 (en) Composition
JP6579284B1 (en) Fibrous cellulose-containing resin composition, sheet and molded article
JP6805730B2 (en) Laminate
JP2021528273A (en) Crosslinkable cellulose as a 3D printing material
Berglund Toughness and strength of wood cellulose-based nanopaper and nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799146

Country of ref document: EP

Kind code of ref document: A1