WO2018207696A1 - Thermally conductive silicone composition - Google Patents

Thermally conductive silicone composition Download PDF

Info

Publication number
WO2018207696A1
WO2018207696A1 PCT/JP2018/017490 JP2018017490W WO2018207696A1 WO 2018207696 A1 WO2018207696 A1 WO 2018207696A1 JP 2018017490 W JP2018017490 W JP 2018017490W WO 2018207696 A1 WO2018207696 A1 WO 2018207696A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
thermally conductive
silicone composition
mass
Prior art date
Application number
PCT/JP2018/017490
Other languages
French (fr)
Japanese (ja)
Inventor
山田 邦弘
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2018207696A1 publication Critical patent/WO2018207696A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages

Definitions

  • a component is a component used as the main ingredient of a component (A).
  • the component (D) is an organopolysiloxane having at least one alkenyl group bonded to a silicon atom (hereinafter referred to as “silicon atom-bonded alkenyl group”) in one molecule represented by the above average composition formula (2).
  • the alkenyl group preferably has at least two, more preferably 2 to 50, and particularly preferably 2 to 20 in one molecule.
  • organohydrogenpolysiloxane satisfying the above requirements, for example, those represented by the following average composition formula (5) are preferable.
  • R 6 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond
  • e is a number from 0.7 to 2.2
  • f is from 0.001 to 0 .5, where e + f is a number satisfying 0.8 to 2.5.
  • the molecular structure of the organohydrogenpolysiloxane represented by the above formula (5) is not particularly limited, and may be any of linear, cyclic, branched, three-dimensional network (resin), and the like. Among them, the number of silicon atoms in one molecule and the kinematic viscosity satisfy the above-mentioned ranges, and in particular, a linear one is preferable.
  • Component (G) Component nonfunctional liquid silicone oil (G) is 25 kinematic viscosity at °C is 10 ⁇ 500,000mm 2 / s, preferably 30 ⁇ 10,000mm 2 / s, more preferably 50 ⁇ 5,000mm 2 / s Is an organopolysiloxane having When the kinematic viscosity of the organopolysiloxane is lower than the lower limit, oil bleeding of the obtained heat conductive silicone composition is facilitated. Moreover, when larger than the said upper limit, the viscosity of the composition obtained will become high too much and it will become a thing with bad handleability.
  • the organopolysiloxane as the non-functional liquid silicone oil can be represented by the following average composition formula (6).
  • R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond.
  • the thermally conductive filler of component (C) is for imparting thermal conductivity to the thermally conductive silicone composition of the present invention.
  • the thermally conductive filler include aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, and graphite. These may be used alone or in combination of two or more. May be used in combination.
  • These heat conductive fillers preferably have an average particle size of 0.1 to 150 ⁇ m, more preferably 1 to 120 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

Provided is a thermally conductive silicone composition which contains: (A) a silicone gel crosslinked product; (B) a silicone oil which is a surface treatment agent of component (C) below and does not contain each of an aliphatic unsaturated bond and a SiH group; and (C) a thermally conductive filler, wherein the loss factor Tanδ at a frequency of 0.2 Hz at 25°C is 2.0 or less as measured by a viscoelasticity measuring device. This composition has fluidity and markedly improved shift resistance.

Description

熱伝導性シリコーン組成物Thermally conductive silicone composition
 本発明は、耐ズレ性に優れた熱伝導性シリコーン組成物に関する。 The present invention relates to a thermally conductive silicone composition having excellent misalignment resistance.
 一般に電気・電子部品は使用中に熱が発生するので、電気部品を適切に動作させるため除熱が必要であり、除熱用の種々の熱伝導性材料が提案されている。この熱伝導性材料は大別して、1)取り扱いが容易なシート状のもの、2)ペースト状のもの、の2種類の形態がある。 Generally, since heat is generated during use of electric / electronic parts, heat removal is necessary for proper operation of the electric parts, and various heat conductive materials for heat removal have been proposed. This heat conductive material is roughly classified into two types: 1) a sheet-like material that is easy to handle, and 2) a paste-like material.
 シート状のものは、取り扱いが容易であり、かつ安定性に優れるメリットがあるが、接触熱抵抗が性質上大きくなるため、放熱性能はペースト状のものに劣ってしまう。また、シート状を保たせるためにある程度の強度/硬さが必要となり、電気・電子部品素子と放熱部材の間に生じる公差を吸収できず、それら応力によって素子を破壊してしまうこともある。 The sheet-like material is easy to handle and has the advantage of being excellent in stability, but since the contact thermal resistance increases in nature, the heat dissipation performance is inferior to the paste-like material. In addition, a certain degree of strength / hardness is required to maintain the sheet shape, the tolerance generated between the electric / electronic component element and the heat radiating member cannot be absorbed, and the element may be destroyed by the stress.
 一方、ペースト状のものは、塗布装置等を用いれば、大量生産にも適応できるし、接触熱抵抗が低いことから放熱性能は優れる。但し、スクリーン印刷等で大量生産する場合、そのペーストの粘度は低い方がよいが、その場合、素子の冷熱衝撃等でそのペーストがズレてしまい(ポンプアウト現象)、除熱が十分できないため、結果素子が誤作動を起こしてしまうようなことがあった。また、過去の技術として以下のようなシリコーン組成物などが提案されているが、更に十分な性能を与え、耐ズレ性に優れた熱伝導性シリコーン組成物が求められていた。 On the other hand, the paste-like material can be applied to mass production by using a coating device or the like, and the heat dissipation performance is excellent because the contact thermal resistance is low. However, when mass-produced by screen printing or the like, the viscosity of the paste should be low, but in that case, the paste will shift due to the thermal shock of the element (pump-out phenomenon), and heat removal cannot be sufficiently performed. As a result, the device sometimes malfunctions. In addition, the following silicone compositions and the like have been proposed as past techniques, but there has been a demand for a thermally conductive silicone composition that provides more sufficient performance and is excellent in misalignment resistance.
特許第3948642号公報Japanese Patent No. 3948642 特許第3195277号公報Japanese Patent No. 3195277 特開2000-169873号公報JP 2000-169873 A 特開2006-143978号公報JP 2006-143978 A 特開2004-210856号公報JP 2004-210856 A 特開2005-162975号公報JP 2005-162975 A 特許第5300408号公報Japanese Patent No. 5300408 特許第4796704号公報Japanese Patent No. 4796704 特許第3541390号公報Japanese Patent No. 3541390 特許第4130091号公報Japanese Patent No. 4130091 特許第5388329号公報Japanese Patent No. 5388329
 本発明は、上記事情に鑑みなされたもので、耐ズレ性に優れる熱伝導性シリコーン組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone composition having excellent misalignment resistance.
 本発明者は、上記目的を達成するため鋭意検討した結果、シリコーンゲル架橋物、特定のシリコーンオイル、特に片末端加水分解性オルガノポリシロキサン、及び熱伝導性充填剤を含み、かつ特定の周波数において、特定の損失係数Tanδ値を示す組成物が、流動性を有しながらも、耐ズレ性が飛躍的に向上することを見出し、本発明をなすに至ったものである。 As a result of intensive investigations to achieve the above object, the present inventor has found that a silicone gel cross-linked product, a specific silicone oil, particularly a one-end hydrolyzable organopolysiloxane, and a thermally conductive filler are included, and at a specific frequency. The present inventors have found that a composition exhibiting a specific loss coefficient Tanδ value has drastic improvement in misalignment resistance while having fluidity, and has led to the present invention.
 従って、本発明は下記熱伝導性シリコーン組成物を提供する。
〔1〕
 (A)シリコーンゲル架橋物、
(B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記成分(C)の表面処理剤としてのシリコーンオイル、
(C)熱伝導性充填剤
を含有してなり、粘弾性測定装置による25℃における周波数0.2ヘルツの損失係数Tanδが2.0以下であることを特徴とする熱伝導性シリコーン組成物。
〔2〕
 (A)シリコーンゲル架橋物:100質量部、
(B)下記一般式(1)で表される片末端加水分解性オルガノポリシロキサンからなるシリコーンオイル:201~500質量部、
Figure JPOXMLDOC01-appb-C000002
(式中、R1は、それぞれ独立に、炭素数1~6のアルキル基、R2は、それぞれ独立に、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは5~120の整数である。)
(C)平均粒径0.1~150μmの熱伝導性充填剤:2,001~10,000質量部
を含有してなる〔1〕記載の熱伝導性シリコーン組成物。
〔3〕
 成分(A)が、下記(D)成分と(E)成分とのシリコーンゲル架橋物である〔1〕又は〔2〕記載の熱伝導性シリコーン組成物。
(D)下記平均組成式(2)
  R3 b4 cSiO(4-b-c)/2     (2)
(式中、R3は、アルケニル基を表し、R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
で表されるケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
(E)分子鎖非末端にケイ素原子に結合した水素原子を1分子中に少なくとも4個以上有し、下記式(3)
  0.1<α/β     (3)
(式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(E)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサン:(D)成分中のケイ素原子に結合したアルケニル基1個に対して、(E)成分中のケイ素原子に結合した水素原子が0.3~2.0個となる量。
〔4〕
 更に、(G)25℃における動粘度が10~500,000mm2/sである無官能性液状シリコーンオイルを成分(A)100質量部に対して10~500質量部を含有する〔1〕~〔3〕のいずれかに記載の熱伝導性シリコーン組成物。
〔5〕
 25℃における粘度が100~1,500Pa・sである〔1〕~〔4〕のいずれかに記載の熱伝導性シリコーン組成物。
Accordingly, the present invention provides the following thermally conductive silicone composition.
[1]
(A) a silicone gel crosslinked product,
(B) Silicone oil that does not contain an aliphatic unsaturated bond and SiH group, and serves as a surface treatment agent for the following component (C):
(C) A thermally conductive silicone composition comprising a thermally conductive filler and having a loss coefficient Tanδ at a frequency of 0.2 hertz at 25 ° C. measured by a viscoelasticity measuring device is 2.0 or less.
[2]
(A) Silicone gel crosslinked product: 100 parts by mass,
(B) Silicone oil comprising a one-end hydrolyzable organopolysiloxane represented by the following general formula (1): 201 to 500 parts by mass,
Figure JPOXMLDOC01-appb-C000002
Wherein R 1 is independently an alkyl group having 1 to 6 carbon atoms, and R 2 is each independently an unsubstituted or substituted monovalent group having no aliphatic unsaturated bond having 1 to 18 carbon atoms. One or more groups selected from the group of hydrocarbon groups, a is an integer of 5 to 120)
(C) Thermally conductive filler having an average particle size of 0.1 to 150 μm: The thermally conductive silicone composition according to [1], comprising 2,001 to 10,000 parts by mass.
[3]
The heat conductive silicone composition according to [1] or [2], wherein the component (A) is a crosslinked silicone gel of the following component (D) and component (E).
(D) The following average composition formula (2)
R 3 b R 4 c SiO (4-bc) / 2 (2)
(Wherein R 3 represents an alkenyl group, R 4 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and b is a number of 0.0001 to 0.2. And c is a number from 1.7 to 2.2, where b + c is a number satisfying 1.9 to 2.4.)
An organopolysiloxane having at least one alkenyl group bonded to a silicon atom represented by
(E) At least 4 hydrogen atoms bonded to a silicon atom at the non-terminal end of the molecular chain are contained in one molecule, and the following formula (3)
0.1 <α / β (3)
(In the formula, α represents the number of hydrogen atoms bonded to non-terminal silicon atoms of the molecular chain, and β represents the total number of silicon atoms in the component (E).)
Organohydrogenpolysiloxane satisfying the following: 0.3 to 2.0 hydrogen atoms bonded to silicon atoms in component (E) for one alkenyl group bonded to silicon atoms in component (D) Amount to be.
[4]
Furthermore, (G) a non-functional liquid silicone oil having a kinematic viscosity at 25 ° C. of 10 to 500,000 mm 2 / s is contained in an amount of 10 to 500 parts by weight per 100 parts by weight of component (A) [1] to [3] The thermally conductive silicone composition according to any one of [3].
[5]
The heat conductive silicone composition according to any one of [1] to [4], wherein the viscosity at 25 ° C. is 100 to 1,500 Pa · s.
 本発明の熱伝導性シリコーン組成物は、流動性がありながら、大幅に耐ズレ性の向上が認められる。 The heat conductive silicone composition of the present invention has a fluidity, but a significant improvement in misalignment resistance is recognized.
 以下、本発明について詳細に記載する。
 本発明の熱伝導性シリコーン組成物において、耐ズレ性は損失係数Tanδ値と相関があり、粘弾性測定装置による25℃における周波数0.2ヘルツの損失係数Tanδが2.0より大きいと耐ズレ性が悪くなる。従って、Tanδは2.0以下がよく、好ましくは1.8以下であり、更に好ましくは1.6以下となる。この場合、Tanδの下限値は特に制限されないが、通常0.8以上、特に1.0以上である。なお、便宜的に0.2ヘルツでのTanδを規定するが、0.1~0.5ヘルツ領域ではそれぞれのTanδは大きく変わらないため、その範囲ならば、どこの周波数のTanδ値で規定しても問題はない。
Hereinafter, the present invention will be described in detail.
In the thermally conductive silicone composition of the present invention, the deviation resistance correlates with the loss coefficient Tanδ value, and if the loss coefficient Tanδ at a frequency of 0.2 Hertz at 25 ° C. by a viscoelasticity measuring device is greater than 2.0, Sexuality gets worse. Accordingly, Tan δ is preferably 2.0 or less, preferably 1.8 or less, and more preferably 1.6 or less. In this case, the lower limit value of Tan δ is not particularly limited, but is usually 0.8 or more, particularly 1.0 or more. For convenience, Tanδ at 0.2 Hz is specified. However, since each Tanδ does not change significantly in the range of 0.1 to 0.5 Hz, the Tanδ value at any frequency is specified within that range. There is no problem.
 ここで、Tanδは、粘弾性測定装置による測定値であり、特に本発明の場合、サーモフィッシャーサイエンティフィック社製の粘弾性測定装置(モデル名:HAAKE MAS)を用い、ひずみ量0.5%、直径20mmの円形パラレルプレートを使用し、温度25℃、材料厚み1mmにて、各周波数での損失係数Tanδを測定し、周波数0.2ヘルツでのTanδを値としたものである。 Here, Tan δ is a value measured by a viscoelasticity measuring device, and in the case of the present invention, a viscoelasticity measuring device (model name: HAAKE MAS) manufactured by Thermo Fisher Scientific Co. is used, and a strain amount is 0.5%. Using a circular parallel plate with a diameter of 20 mm, the loss coefficient Tanδ at each frequency was measured at a temperature of 25 ° C. and a material thickness of 1 mm, and Tanδ at a frequency of 0.2 Hertz was used as a value.
 本発明において、上記の損失係数Tanδを得るための熱伝導性シリコーン組成物は、
(A)シリコーンゲル架橋物、
(B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記成分(C)の表面処理剤としてのシリコーンオイル、
(C)熱伝導性充填剤
を含有する。
In the present invention, the thermally conductive silicone composition for obtaining the loss factor Tanδ is as follows:
(A) a silicone gel crosslinked product,
(B) Silicone oil that does not contain an aliphatic unsaturated bond and SiH group, and serves as a surface treatment agent for the following component (C):
(C) A heat conductive filler is contained.
 以下、これらの成分について詳述する。
[成分(A)]
 シリコーンゲル架橋物は本発明の熱伝導性シリコーン組成物のマトリックスとして使用される。成分(A)は、下記(D)成分と(E)成分を(F)成分の存在下でハイドロシリル化反応(付加反応)させることによって得られる。
(D)下記平均組成式(2)
  R3 b4 cSiO(4-b-c)/2     (2)
(式中、R3は、アルケニル基を表し、R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
で表されるケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
(E)分子鎖非末端にケイ素原子に結合した水素原子を1分子中に少なくとも4個以上有し、下記式(3)
  0.1<α/β     (3)
(式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(E)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサン:(D)成分中のケイ素原子に結合したアルケニル基1個に対して、(E)成分中のケイ素原子に結合した水素原子が0.3~2.0個となる量、
(F)白金系触媒:有効量。
Hereinafter, these components will be described in detail.
[Component (A)]
The silicone gel crosslinked product is used as a matrix of the thermally conductive silicone composition of the present invention. Component (A) is obtained by subjecting the following components (D) and (E) to a hydrosilylation reaction (addition reaction) in the presence of component (F).
(D) The following average composition formula (2)
R 3 b R 4 c SiO (4-bc) / 2 (2)
(Wherein R 3 represents an alkenyl group, R 4 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and b is a number of 0.0001 to 0.2. And c is a number from 1.7 to 2.2, where b + c is a number satisfying 1.9 to 2.4.)
An organopolysiloxane having at least one alkenyl group bonded to a silicon atom represented by
(E) At least 4 hydrogen atoms bonded to a silicon atom at the non-terminal end of the molecular chain are contained in one molecule, and the following formula (3)
0.1 <α / β (3)
(In the formula, α represents the number of hydrogen atoms bonded to non-terminal silicon atoms of the molecular chain, and β represents the total number of silicon atoms in the component (E).)
Organohydrogenpolysiloxane satisfying the following: 0.3 to 2.0 hydrogen atoms bonded to silicon atoms in component (E) for one alkenyl group bonded to silicon atoms in component (D) The amount of
(F) Platinum-based catalyst: effective amount.
[(D)成分]
 (D)成分は、成分(A)の主剤となる成分である。(D)成分は、上記平均組成式(2)で表される1分子中にケイ素原子に結合したアルケニル基(以下、「ケイ素原子結合アルケニル基」という)を少なくとも1個有するオルガノポリシロキサンである。前記アルケニル基は、1分子中に、少なくとも2個有することが好ましく、2~50個有することがより好ましく、2~20個有することが特に好ましい。これらのアルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖非末端(即ち、分子鎖両末端以外)のケイ素原子に結合していても、あるいはそれらの組み合わせであってもよい。
[(D) component]
(D) A component is a component used as the main ingredient of a component (A). The component (D) is an organopolysiloxane having at least one alkenyl group bonded to a silicon atom (hereinafter referred to as “silicon atom-bonded alkenyl group”) in one molecule represented by the above average composition formula (2). . The alkenyl group preferably has at least two, more preferably 2 to 50, and particularly preferably 2 to 20 in one molecule. These alkenyl groups may be bonded to the silicon atom at the end of the molecular chain, bonded to the silicon atom at the non-terminal end of the molecular chain (that is, other than both ends of the molecular chain), or a combination thereof. Good.
 上記式(2)中、R3は、通常、炭素数が2~6、好ましくは2~4のアルケニル基を表す。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等の低級アルケニル基が挙げられ、ビニル基が好ましい。R4は、通常、炭素数が1~12、好ましくは1~10、より好ましくは1~6の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表す。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換されたクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられるが、合成の容易さ等の観点から、メチル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましい。 In the above formula (2), R 3 usually represents an alkenyl group having 2 to 6, preferably 2 to 4 carbon atoms. Specific examples thereof include lower alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group and isobutenyl group, with vinyl group being preferred. R 4 usually represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12, preferably 1 to 10, more preferably 1 to 6 carbon atoms and not having an aliphatic unsaturated bond. Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, cyclohexyl, octyl, decyl, dodecyl and the like. An aryl group such as a phenyl group or a tolyl group; an aralkyl group such as a benzyl group or a phenylethyl group; a chloromethyl group in which some or all of the hydrogen atoms of these groups are substituted with a halogen atom such as fluorine or chlorine; 3,3,3-trifluoropropyl group and the like can be mentioned, and from the viewpoint of ease of synthesis, a methyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are preferable.
 上記式(2)中、b、c、b+cの値は上述した通りであるが、bは0.0005~0.1の数であることが好ましく、cは1.9~2.0の数であることが好ましく、b+cは1.95~2.05を満たす数であることが好ましい。 In the above formula (2), the values of b, c and b + c are as described above, but b is preferably a number from 0.0005 to 0.1, and c is a number from 1.9 to 2.0. And b + c is preferably a number satisfying 1.95 to 2.05.
 本成分のオルガノポリシロキサンの分子構造は、特に限定されず、直鎖状;分子鎖の一部にR3SiO3/2単位、R4SiO3/2単位、SiO2単位(式中、R3及びR4で表される基は、上記で定義した通りである。)等を含む分岐状;環状;三次元網状(樹脂状)等のいずれでもよいが、通常、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンである。 The molecular structure of the organopolysiloxane of this component is not particularly limited, but is linear; R 3 SiO 3/2 units, R 4 SiO 3/2 units, SiO 2 units (in the formula, R The groups represented by 3 and R 4 are as defined above.) Any of branched, cyclic, three-dimensional network (resinous) and the like, but the main chain is usually basically It is a linear diorganopolysiloxane composed of repeating diorganosiloxane units and having both ends of the molecular chain blocked with triorganosiloxy groups.
 本成分のオルガノポリシロキサンの動粘度は、好ましくは25℃において50~100,000mm2/sであり、より好ましくは100~10,000mm2/s、更に好ましくは100~1,000mm2/sである。この動粘度が50~100,000mm2/sである場合には、得られる硬化物は、流動性、作業性により優れたものとなる。なお、この動粘度は、オストワルド粘度計による25℃における値である(以下、同じ)。 The kinematic viscosity of the organopolysiloxane of this component is preferably 50 to 100,000 mm 2 / s at 25 ° C., more preferably 100 to 10,000 mm 2 / s, still more preferably 100 to 1,000 mm 2 / s. It is. When the kinematic viscosity is 50 to 100,000 mm 2 / s, the obtained cured product is excellent in fluidity and workability. In addition, this kinematic viscosity is a value at 25 ° C. by an Ostwald viscometer (hereinafter the same).
 以上の要件を満たす本成分のオルガノポリシロキサンとしては、例えば、下記一般式(4)
Figure JPOXMLDOC01-appb-C000003
(式中、R5は、それぞれ独立に、非置換又は置換の1価炭化水素基を表し、但しR5の少なくとも1個、好ましくは2個以上がアルケニル基であり、dは20~2,000の整数である。)
で表されるものが挙げられる。この式(4)中、R5で表される非置換又は置換の1価炭化水素基は、前記R3(アルケニル基)及びR4(脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基)で定義したものと同じであり、その炭素数、具体例等も同じである。また、dは好ましくは40~1,200、より好ましくは50~600の整数である。
Examples of the organopolysiloxane of this component that satisfies the above requirements include, for example, the following general formula (4):
Figure JPOXMLDOC01-appb-C000003
(In the formula, each R 5 independently represents an unsubstituted or substituted monovalent hydrocarbon group, provided that at least one, preferably two or more of R 5 are alkenyl groups, and d is from 20 to 2, An integer of 000.)
The thing represented by is mentioned. In this formula (4), the unsubstituted or substituted monovalent hydrocarbon group represented by R 5 is the above R 3 (alkenyl group) and R 4 (unsubstituted or substituted 1 having no aliphatic unsaturated bond). The number of carbon atoms, specific examples, and the like are the same. Further, d is preferably an integer of 40 to 1,200, more preferably 50 to 600.
 上記式(4)で表されるオルガノポリシロキサンの具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体等が挙げられる。
 本成分のオルガノポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
Specific examples of the organopolysiloxane represented by the above formula (4) include molecular chain both ends dimethylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain one-end trimethylsiloxy group and one-end dimethylvinylsiloxy group-capped dimethylpolysiloxane, Molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain one-end trimethylsiloxy group / one-end dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, both ends dimethylvinylsiloxy Examples thereof include a group-capped dimethylsiloxane / methylvinylsiloxane copolymer, a molecular chain both-end dimethylvinylsiloxy group-capped dimethylsiloxane / diphenylsiloxane copolymer, and the like.
The organopolysiloxane of this component may be used alone or in combination of two or more.
[(E)成分]
 (E)成分は、上記(D)成分と反応して、架橋剤として作用するものである。(E)成分は、分子鎖非末端にケイ素原子に結合した水素原子(即ち、SiH基であり、以下、「ケイ素原子結合水素原子」という)が1分子中に3個以下だと十分な耐ズレ性が発揮できないため、少なくとも4個有していることが必要である。かつ、下記式(3)
  0.1<α/β     (3)
(式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(E)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサンである。上記α/βの範囲が0.1以下と小さい場合、本組成物の耐ズレ性が悪くなることから、0.1<α/βであることも同時に必要である。この場合、α/βは好ましくは0.11以上、特に0.12以上であり、その上限は特に制限されないが、0.95以下、特に0.90以下、とりわけ0.5以下であることが好ましい。
[(E) component]
The component (E) reacts with the component (D) to act as a crosslinking agent. The component (E) has sufficient resistance to hydrogen atoms bonded to silicon atoms at the non-terminal end of the molecular chain (that is, SiH groups, hereinafter referred to as “silicon atom-bonded hydrogen atoms”) of 3 or less in one molecule. It is necessary to have at least four, because the misalignment cannot be exhibited. And the following formula (3)
0.1 <α / β (3)
(In the formula, α represents the number of hydrogen atoms bonded to non-terminal silicon atoms of the molecular chain, and β represents the total number of silicon atoms in the component (E).)
An organohydrogenpolysiloxane satisfying the above requirements. When the range of α / β is as small as 0.1 or less, the composition has poor misalignment resistance. Therefore, it is also necessary that 0.1 <α / β. In this case, α / β is preferably 0.11 or more, particularly 0.12 or more, and the upper limit is not particularly limited, but it is 0.95 or less, particularly 0.90 or less, especially 0.5 or less. preferable.
 本成分の分子構造は、上記要件を満たすものであれば特に限定されず、従来公知の、例えば、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、取り扱い作業性、及び(D)成分を架橋して得られる硬化物の耐ズレ性の観点から、1分子中のケイ素原子数(又は重合度)が、通常、3~1,000個、好ましくは5~400個、より好ましくは10~300個、更に好ましくは10~100個、特に好ましくは10~60個のものが望ましい。 The molecular structure of this component is not particularly limited as long as it satisfies the above requirements, and may be any conventionally known, for example, linear, cyclic, branched, or three-dimensional network (resinous). . Among them, from the viewpoint of handling workability and resistance to misalignment of the cured product obtained by crosslinking the component (D), the number of silicon atoms (or polymerization degree) in one molecule is usually 3 to 1,000. The number is preferably 5 to 400, more preferably 10 to 300, still more preferably 10 to 100, and particularly preferably 10 to 60.
 本成分のオルガノハイドロジェンポリシロキサンの動粘度は、通常、1~10,000mm2/s、好ましくは3~5,000mm2/s、より好ましくは5~3,000mm2/s、更に好ましくは10~1,000mm2/sであり、室温(25℃)で液状のものが望ましい。 The kinematic viscosity of the organohydrogenpolysiloxane of this component is usually 1 to 10,000 mm 2 / s, preferably 3 to 5,000 mm 2 / s, more preferably 5 to 3,000 mm 2 / s, still more preferably. It is preferably 10 to 1,000 mm 2 / s and liquid at room temperature (25 ° C.).
 上記要件を満たすオルガノハイドロジェンポリシロキサンとしては、例えば、下記平均組成式(5)で表されるものが好ましい。
  R6 efSiO(4-e-f)/2     (5)
(式中、R6は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、eは0.7~2.2の数であり、fは0.001~0.5の数であり、但しe+fは0.8~2.5を満たす数である。)
As the organohydrogenpolysiloxane satisfying the above requirements, for example, those represented by the following average composition formula (5) are preferable.
R 6 e H f SiO (4-ef) / 2 (5)
Wherein R 6 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, e is a number from 0.7 to 2.2, and f is from 0.001 to 0 .5, where e + f is a number satisfying 0.8 to 2.5.)
 上記式(5)中、R6は、通常、炭素数が1~10、好ましくは1~6の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。 In the above formula (5), R 6 is usually an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and having no aliphatic unsaturated bond. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group. An alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, etc .; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group; some or all of hydrogen atoms of these groups are fluorine And a 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine, preferably an alkyl group, an aryl group, or a 3,3,3-trifluoropropyl group, more preferably methyl Group, phenyl group and 3,3,3-trifluoropropyl group.
 上記式(5)中、e、f、e+fは上述した通りであるが、eは0.9~2.1の数であることが好ましく、fは0.002~0.2の数、特に0.005~0.1の数であることが好ましく、e+fは1.0~2.3、特に1.5~2.2を満たす数であることが好ましい。 In the above formula (5), e, f and e + f are as described above, and e is preferably a number from 0.9 to 2.1, and f is a number from 0.002 to 0.2. The number is preferably 0.005 to 0.1, and e + f is preferably a number satisfying 1.0 to 2.3, particularly 1.5 to 2.2.
 上記式(5)で表されるオルガノハイドロジェンポリシロキサンの分子構造は、特に限定されず、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、1分子中のケイ素原子数及び動粘度が上述した範囲を満たすもので、特には直鎖状のものが好ましい。 The molecular structure of the organohydrogenpolysiloxane represented by the above formula (5) is not particularly limited, and may be any of linear, cyclic, branched, three-dimensional network (resin), and the like. Among them, the number of silicon atoms in one molecule and the kinematic viscosity satisfy the above-mentioned ranges, and in particular, a linear one is preferable.
 上記式(5)で表されるオルガノハイドロジェンポリシロキサンの具体例としては、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位と(C653SiO1/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(C652SiO2/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体等が挙げられる。 Specific examples of the organohydrogenpolysiloxane represented by the above formula (5) include molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group. Blocked methylhydrogensiloxane / dimethylsiloxane / diphenylsiloxane copolymer, molecular chain single-ended dimethylhydrogensiloxy group / single terminal trimethylsiloxy group blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain single-ended dimethylhydrogensiloxy group, one terminal blocked with trimethylsiloxy groups methylhydrogensiloxane-dimethylsiloxane-diphenylsiloxane copolymers, (CH 3) 2 HSiO 1/2 units and (CH 3) 3 and SiO 1/2 units ( H 3) HSiO 2/2 consisting of units and SiO 4/2 units, and copolymers thereof, (CH 3) 2 HSiO 1/2 units and (CH 3) 3 SiO 1/2 units and (CH 3) HSiO 2 / A copolymer comprising 2 units, (CH 3 ) 2 SiO 2/2 units and SiO 4/2 units, (CH 3 ) 2 HSiO 1/2 units, (CH 3 ) HSiO 2/2 units and (CH 3 ) A copolymer comprising 2 SiO 2/2 units and SiO 4/2 units, (CH 3 ) 2 HSiO 1/2 units, SiO 4/2 units, (CH 3 ) HSiO 2/2 units and (CH 3 ) A copolymer comprising 2 SiO 2/2 units and (C 6 H 5 ) 3 SiO 1/2 units, (CH 3 ) 2 HSiO 1/2 units and (CH 3 ) 3 SiO 1/2 units ( Examples thereof include copolymers composed of C 6 H 5 ) 2 SiO 2/2 units, (CH 3 ) HSiO 2/2 units, (CH 3 ) 2 SiO 2/2 units, and SiO 4/2 units.
 (E)成分の配合量は、(D)成分中のケイ素原子結合アルケニル基1個に対して、(E)成分中のケイ素原子結合水素原子が0.3~2.0個となる量であり、好ましくは0.4~1.5個となる量であり、更に好ましくは0.5~1.0個となる量である。このケイ素原子結合水素原子が0.3個より少ない場合には、架橋密度が低くなりすぎ、得られる熱伝導性シリコーン組成物の耐ズレ性が悪くなるし、2.0個より多いと得られる熱伝導性シリコーン組成物の粘度が高くなりすぎ、取り扱い性が悪くなるためである。
 本成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
The blending amount of the component (E) is such that the silicon-bonded hydrogen atom in the component (E) is 0.3 to 2.0 with respect to one silicon-bonded alkenyl group in the component (D). The amount is preferably 0.4 to 1.5, and more preferably 0.5 to 1.0. When the number of silicon atom-bonded hydrogen atoms is less than 0.3, the crosslinking density becomes too low, and the resulting heat conductive silicone composition has poor resistance to slippage. This is because the viscosity of the thermally conductive silicone composition becomes too high, and the handleability becomes poor.
The organohydrogenpolysiloxane of this component may be used alone or in combination of two or more.
[(F)白金系触媒]
 (F)成分は、前記(D)成分中のケイ素原子結合アルケニル基と前記(E)成分中のケイ素原子結合水素原子との付加反応を促進させるための成分である。(F)成分は白金系触媒であり、具体的には白金及び/又は白金系化合物である。
 この白金及び白金系化合物としては従来公知のものを使用することができ、具体的には、例えば、白金ブラック;塩化白金酸;塩化白金酸のアルコール変性物;塩化白金酸とオレフィンアルデヒド、ビニルシロキサン、アセチレンアルコール類等の錯体等が挙げられる。
[(F) Platinum-based catalyst]
The component (F) is a component for promoting the addition reaction between the silicon atom-bonded alkenyl group in the component (D) and the silicon atom-bonded hydrogen atom in the component (E). The component (F) is a platinum-based catalyst, specifically platinum and / or a platinum-based compound.
As the platinum and platinum-based compounds, conventionally known compounds can be used. Specifically, for example, platinum black; chloroplatinic acid; alcohol-modified chloroplatinic acid; chloroplatinic acid and olefin aldehyde, vinylsiloxane And complexes of acetylene alcohols and the like.
 (F)成分の配合量は、有効量であればよく、所望の硬化速度により適宜増減すればよいが、(D)成分に対して、白金原子の質量換算で、通常、0.1~1,000ppmであり、好ましくは1~300ppmである。この配合量が少なすぎると、付加反応が著しく遅くなったり、架橋しなくなったりする場合がある。この配合量が多すぎると、硬化物の耐熱性が低下するだけでなく、白金は高価であることからコスト面でも不利となる。
 本成分の白金系触媒は、1種単独で用いても2種以上を併用してもよい。
The blending amount of the component (F) may be an effective amount, and may be appropriately increased or decreased depending on the desired curing rate, but is usually 0.1 to 1 in terms of the mass of platinum atoms relative to the component (D). 1,000 ppm, preferably 1 to 300 ppm. If the amount is too small, the addition reaction may be remarkably slow or may not be crosslinked. When the amount is too large, not only the heat resistance of the cured product is lowered, but also platinum is expensive, which is disadvantageous in terms of cost.
The platinum catalyst of this component may be used individually by 1 type, or may use 2 or more types together.
[その他の任意成分]
 本発明の成分(A)を得る場合には、上記(D)~(F)成分以外にも、反応制御剤を使用してもよい。該反応制御剤は、付加硬化型シリコーン組成物に使用される従来公知の反応制御剤を使用することができる。例えば、アセチレンアルコール類(例えば、1-エチニル-1-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
[Other optional ingredients]
In the case of obtaining the component (A) of the present invention, a reaction control agent may be used in addition to the above components (D) to (F). As the reaction control agent, a conventionally known reaction control agent used in addition-curable silicone compositions can be used. For example, acetylene compounds such as acetylene alcohols (for example, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol), various nitrogen compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole And organic phosphorus compounds such as triphenylphosphine, oxime compounds, and organic chloro compounds.
 成分(A)のシリコーンゲル架橋物は、(F)成分の白金系触媒存在下において、(D)成分と(E)成分を加熱混合することで、架橋、即ちハイドロシリル化反応(付加反応)が進むことで得られる。反応温度は、通常、50~180℃程度であるが、それに制限されるものではない。反応時間は加熱する温度にも影響されるが、通常、0.5~12時間で十分に反応は進む。このような処理が行われたものを「架橋物」と定義している。 The silicone gel crosslinked product of component (A) is crosslinked by heating (D) component and (E) component in the presence of platinum catalyst of component (F), that is, hydrosilylation reaction (addition reaction). It is obtained by progressing. The reaction temperature is usually about 50 to 180 ° C., but is not limited thereto. Although the reaction time is affected by the heating temperature, usually the reaction proceeds sufficiently in 0.5 to 12 hours. What has been subjected to such treatment is defined as "crosslinked product".
 成分(B)と成分(C)の詳細は後述するが、(D)成分と(E)成分を架橋させ、成分(A)を得てから、成分(B)と成分(C)を混合してもよいし、成分(A)を得るために、加熱前に予め成分(B)を投入してから(D)、(E)成分を加熱混合させ、その後成分(C)を混合してもよいし、更に、成分(A)を得るために、加熱前に成分(B)及び成分(C)の全てを予め投入してから(D)、(E)成分を加熱混合するのでもよいが、効率を考慮した場合、この最後の方法が最も好ましい。 Although the details of the component (B) and the component (C) will be described later, after the component (D) and the component (E) are cross-linked to obtain the component (A), the component (B) and the component (C) are mixed. Alternatively, in order to obtain the component (A), the component (B) is added before heating, the components (D) and (E) are heated and mixed, and then the component (C) is mixed. In addition, in order to obtain the component (A), all of the component (B) and the component (C) may be added in advance before heating, and then the components (D) and (E) may be heated and mixed. In view of efficiency, this last method is most preferable.
[成分(B)]
 成分(B)は、上記(D)、(E)成分の架橋に関与しない成分であり、従って脂肪族不飽和結合及びSiH基を含まないシリコーンオイルで、特に、下記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、それぞれ独立に、炭素数1~6のアルキル基、R2は、それぞれ独立に、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは5~120の整数である。)
[Component (B)]
Component (B) is a component that does not participate in crosslinking of the above components (D) and (E), and is therefore a silicone oil that does not contain an aliphatic unsaturated bond and SiH group, and is represented by the following general formula (1). It is preferable to be a one-terminal trifunctional hydrolyzable organopolysiloxane.
Figure JPOXMLDOC01-appb-C000004
Wherein R 1 is independently an alkyl group having 1 to 6 carbon atoms, and R 2 is each independently an unsubstituted or substituted monovalent group having no aliphatic unsaturated bond having 1 to 18 carbon atoms. One or more groups selected from the group of hydrocarbon groups, a is an integer of 5 to 120)
 一般式(1)のオルガノポリシロキサンは、成分(C)の熱伝導性充填剤の表面を処理するために用いるものであるが、粉末の高充填化を補助するばかりでなく、粉末表面を覆うことにより粉末同士の凝集を起こり難くし、高温下でもその効果は持続するため、本発明の熱伝導性シリコーン組成物の耐熱性を向上させる働きがある。 The organopolysiloxane of the general formula (1) is used for treating the surface of the thermally conductive filler of the component (C), but not only helps to increase the powder filling but also covers the powder surface. This makes it difficult for the powders to agglomerate and the effect persists even at high temperatures, and therefore has the function of improving the heat resistance of the thermally conductive silicone composition of the present invention.
 上記式(1)中、R1は、例えば、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基が挙げられるが、特にメチル基、エチル基が好ましい。R2は、互いに独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 aは5~120の整数であり、好ましくは10~90の整数である。
In the above formula (1), R 1 includes, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, and a methyl group and an ethyl group are particularly preferable. R 2 is independently of each other an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group. An alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, etc .; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group; some or all of hydrogen atoms of these groups are fluorine And a 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine, preferably an alkyl group, an aryl group, or a 3,3,3-trifluoropropyl group, more preferably methyl Group, phenyl group and 3,3,3-trifluoropropyl group.
a is an integer of 5 to 120, preferably an integer of 10 to 90.
 成分(B)の25℃における動粘度は5~500mm2/sが好ましく、10~300mm2/sがより好ましく、10~100mm2/sが更に好ましい。 The kinematic viscosity is preferably 5 ~ 500mm 2 / s at 25 ° C. of component (B), more preferably 10 ~ 300mm 2 / s, more preferably 10 ~ 100mm 2 / s.
 成分(B)のシリコーンオイルを配合する場合の配合量は、成分(A)100質量部に対して201~500質量部の範囲が好ましく、より好ましくは210~450質量部であり、更に好ましくは220~400質量部である。201質量部より少ないと、得られる組成物の粘度が高くなり取り扱い性の悪いものになるし、500質量部より多いと組成物の耐ズレ性が悪くなる。
 上記架橋に関与しないシリコーンオイルとしては、前述した片末端3官能の加水分解性オルガノポリシロキサンに加え、反応性基のない成分(G)を添加してもよい。
The blending amount when component (B) silicone oil is blended is preferably in the range of 201 to 500 parts by weight, more preferably 210 to 450 parts by weight, still more preferably 100 parts by weight of component (A). 220 to 400 parts by mass. When the amount is less than 201 parts by mass, the viscosity of the resulting composition is increased and the handleability is poor, and when the amount is more than 500 parts by mass, the misalignment resistance of the composition is deteriorated.
As the silicone oil not involved in the crosslinking, a component (G) having no reactive group may be added in addition to the above-mentioned trifunctional hydrolyzable organopolysiloxane.
[成分(G)]
 成分(G)の無官能性液状シリコーンオイルは、25℃における動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/s、より好ましくは50~5,000mm2/sを有するオルガノポリシロキサンである。該オルガノポリシロキサンの動粘度が上記下限値より低いと得られる熱伝導性シリコーン組成物のオイルブリードがで易くなる。また、上記上限値より大きいと、得られる組成物の粘度が高くなりすぎて取り扱い性の悪いものになる。
[Component (G)]
Component nonfunctional liquid silicone oil (G) is 25 kinematic viscosity at ℃ is 10 ~ 500,000mm 2 / s, preferably 30 ~ 10,000mm 2 / s, more preferably 50 ~ 5,000mm 2 / s Is an organopolysiloxane having When the kinematic viscosity of the organopolysiloxane is lower than the lower limit, oil bleeding of the obtained heat conductive silicone composition is facilitated. Moreover, when larger than the said upper limit, the viscosity of the composition obtained will become high too much and it will become a thing with bad handleability.
 上記シリコーンオイル(G)は、上記動粘度を有するものであればよく、従来公知のオルガノポリシロキサンを使用することができる。オルガノポリシロキサン(シリコーンオイル)の分子構造は特に限定されず、直鎖状、分岐状、環状等のいずれであってもよい。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するのがよい。該オルガノポリシロキサンは、1種単独で用いても2種以上を併用してもよい。 The silicone oil (G) is not particularly limited as long as it has the above kinematic viscosity, and conventionally known organopolysiloxanes can be used. The molecular structure of the organopolysiloxane (silicone oil) is not particularly limited, and may be any of linear, branched, and cyclic. In particular, the main chain is preferably composed of a repeating diorganosiloxane unit and has a linear structure in which both ends of the molecular chain are blocked with a triorganosiloxy group. These organopolysiloxanes may be used alone or in combination of two or more.
 この無官能性液状シリコーンオイルとしてのオルガノポリシロキサンは、下記平均組成式(6)で表すことができる。
  R7 gSiO(4-g)/2     (6)
 上記式(6)において、R7は、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
The organopolysiloxane as the non-functional liquid silicone oil can be represented by the following average composition formula (6).
R 7 g SiO (4-g) / 2 (6)
In the above formula (6), R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group. An alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, etc .; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group; some or all of hydrogen atoms of these groups are fluorine And a 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine, preferably an alkyl group, an aryl group, or a 3,3,3-trifluoropropyl group, more preferably methyl Group, phenyl group and 3,3,3-trifluoropropyl group.
 上記式(6)において、gは1.8~2.2の範囲、特には1.9~2.1の範囲にある数である。gが上記範囲内にあることにより、得られる熱伝導性シリコーン組成物は要求される良好な動粘度を有することができる。 In the above formula (6), g is a number in the range of 1.8 to 2.2, particularly in the range of 1.9 to 2.1. By making g into the said range, the heat conductive silicone composition obtained can have the favorable kinematic viscosity requested | required.
 上記平均組成式(6)で表されるオルガノポリシロキサンとしては、下記式(7)で表される直鎖状オルガノポリシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記式(7)において、R8は、互いに独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。該1価炭化水素基としては、上述した基が挙げられる。中でも、R8は全てメチル基であることが好ましい。hは該オルガノポリシロキサンの25℃における動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/s、更に好ましくは100~8,000mm2/sとなる数である。
The organopolysiloxane represented by the average composition formula (6) is preferably a linear organopolysiloxane represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000005
In the above formula (7), R 8 s are each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond. Examples of the monovalent hydrocarbon group include the groups described above. Of these, all R 8 are preferably methyl groups. h is the organo kinematic viscosity at 25 ° C. polysiloxane 10 ~ 500,000mm 2 / s, preferably 30 ~ 10,000mm 2 / s, more preferably a number which is a 100 ~ 8,000mm 2 / s.
 また成分(G)を配合する場合、その含有量は、成分(A)100質量部に対して10~500質量部が好ましく、より好ましくは50~400質量部であり、更に好ましくは100~300質量部である。 When the component (G) is blended, the content thereof is preferably 10 to 500 parts by weight, more preferably 50 to 400 parts by weight, and still more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the component (A). Part by mass.
[成分(C)]
 成分(C)の熱伝導性充填剤は、本発明の熱伝導性シリコーン組成物に熱伝導性を付与するためのものである。熱伝導性充填剤としては、例えば、アルミニウム、銀、銅、ニッケル、酸化亜鉛、アルミナ、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ダイヤモンド、グラファイトが挙げられ、これらは1種でも2種以上を組み合わせて用いてもよい。これら熱伝導性充填剤の平均粒径は、0.1~150μmが好ましく、より好ましくは1~120μmである。平均粒径が小さすぎると組成物の粘度が高くなりすぎて取り扱い性の悪いものになるし、大きすぎると得られる組成物が不均一となり易い。また、これら熱伝導性充填剤の形状は球状、不定形状どちらでもよい。
[Component (C)]
The thermally conductive filler of component (C) is for imparting thermal conductivity to the thermally conductive silicone composition of the present invention. Examples of the thermally conductive filler include aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, and graphite. These may be used alone or in combination of two or more. May be used in combination. These heat conductive fillers preferably have an average particle size of 0.1 to 150 μm, more preferably 1 to 120 μm. If the average particle size is too small, the viscosity of the composition becomes too high and the handleability is poor, and if it is too large, the resulting composition tends to be non-uniform. Moreover, the shape of these heat conductive fillers may be either spherical or indefinite.
 本発明において「平均粒径」は、レーザー回折・散乱法によって求めた体積基準の粒度分布における積算値50%での粒径を意味する。レーザー回折・散乱法による測定は、例えば、マイクロトラック粒度分析計MT3300EX(日機装(株)製)により行えばよい。 In the present invention, “average particle diameter” means a particle diameter at an integrated value of 50% in a volume-based particle size distribution obtained by a laser diffraction / scattering method. Measurement by the laser diffraction / scattering method may be performed by, for example, a microtrack particle size analyzer MT3300EX (manufactured by Nikkiso Co., Ltd.).
 成分(C)の配合量は、成分(A)100質量部に対して2,001質量部より少ないと、得られる熱伝導率が低いものとなるし、10,000質量部より多いと粘度が高くなりすぎるため取り扱い性が悪くなるため、2,001~10,000質量部の範囲が好ましい。より好ましくは2,100~9,000質量部であり、更に好ましくは2,200~8,000質量部であり、特に好ましくは2,200~6,000質量部である。 If the blending amount of component (C) is less than 2,001 parts by mass with respect to 100 parts by mass of component (A), the resulting thermal conductivity will be low, and if it is greater than 10,000 parts by mass, the viscosity will be low. Since it becomes too high and the handleability deteriorates, the range of 2,001 to 10,000 parts by mass is preferable. The amount is more preferably 2,100 to 9,000 parts by mass, still more preferably 2,200 to 8,000 parts by mass, and particularly preferably 2,200 to 6,000 parts by mass.
 本発明の熱伝導性シリコーン組成物の25℃の粘度は、100~1,500Pa・sであることが好ましい。より好ましくは200~1,000Pa・sであり、更に好ましくは200~900Pa・sである。100Pa・sより小さいと耐ズレ性が悪くなるし、1,500Pa・sより大きいと取り扱い性が悪くなるためである。なお、この粘度値は、回転粘度計(後述するマルコム粘度計)による値である。
 また、本発明の熱伝導性シリコーン組成物の熱伝導率は、1.0W/mKより小さいと十分な放熱効果がないため1.0W/mK以上、好ましくは1.5W/mK以上である。
The heat conductive silicone composition of the present invention preferably has a viscosity at 25 ° C. of 100 to 1,500 Pa · s. More preferably, it is 200 to 1,000 Pa · s, and still more preferably 200 to 900 Pa · s. If it is less than 100 Pa · s, misalignment resistance is deteriorated, and if it is greater than 1,500 Pa · s, handleability is deteriorated. In addition, this viscosity value is a value by a rotational viscometer (Malcom viscometer mentioned later).
The thermal conductivity of the thermally conductive silicone composition of the present invention is 1.0 W / mK or more, preferably 1.5 W / mK or more because there is no sufficient heat dissipation effect if it is less than 1.0 W / mK.
 本発明の熱伝導性シリコーン組成物を製造するには、上記各成分をトリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて前述したような手順・条件で撹拌混合することで得ることができる。
 この場合、上記した本発明のTanδ値を有する熱伝導性シリコーン組成物は、上述した成分(A)~(C)を選定し、またその配合量を上述した範囲で適宜選定することによって得ることができる。
In order to produce the heat conductive silicone composition of the present invention, each of the above components is mixed with Trimix, Twin Mix, Planetary Mixer (all are registered trademarks of a mixer manufactured by Inoue Mfg. Co., Ltd.), Ultra Mixer (Mizuho Industry ( It can be obtained by stirring and mixing in the above-mentioned procedures and conditions in a mixer such as a registered trademark of a mixer manufactured by the same company), Hibis Disper Mix (registered trademark of a mixer manufactured by Special Machine Industries Co., Ltd.), etc. it can.
In this case, the above-described thermally conductive silicone composition having the Tan δ value of the present invention is obtained by selecting the above-described components (A) to (C) and appropriately selecting the blending amount within the above-mentioned range. Can do.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 本発明に関する試験は、次のように行った。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
The test relating to the present invention was performed as follows.
〔Tanδ〕
 サーモフィッシャーサイエンティフィック社製の粘弾性測定装置(モデル名:HAAKE MAS)を用い、ひずみ量0.5%、直径20mmの円形パラレルプレートを使用し、温度25℃、材料厚み1mmにて、各周波数での損失係数Tanδを測定し、周波数0.2ヘルツでのTanδを値とした。
[Tanδ]
Using a viscoelasticity measuring device (model name: HAAKE MAS) manufactured by Thermo Fisher Scientific, using a circular parallel plate with a strain amount of 0.5% and a diameter of 20 mm, at a temperature of 25 ° C. and a material thickness of 1 mm, The loss coefficient Tanδ at a frequency was measured, and Tanδ at a frequency of 0.2 Hertz was taken as a value.
〔熱伝導率〕
 熱伝導率は、京都電子工業(株)製のTPS-2500Sにより、いずれも25℃において測定した。
〔Thermal conductivity〕
The thermal conductivity was measured at 25 ° C. using TPS-2500S manufactured by Kyoto Electronics Industry Co., Ltd.
〔平均粒径測定〕
 平均粒径測定は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。
(Average particle size measurement)
The average particle diameter measurement is a volume-based cumulative average diameter measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
〔ズレ性〕
 2mmのスペーサーを設け、2枚のスライドガラス板の間に、直径1.5cmの円状になるように熱伝導性シリコーン組成物を挟みこみ、この試験片を地面に対し90度傾くように、-40℃と125℃(各30分)を交互に繰り返すようにセットされたエスペック(株)製の熱衝撃試験機(型番:TSE-11-A)の中に配置し、500サイクル試験を行った。500サイクル後、熱伝導性シリコーン組成物が元の場所からどのくらいズレたかを測定した。
<基準>
 1mm以下であれば耐ズレ性は優れていると言える。
[Displacement]
A 2 mm spacer is provided, and a thermally conductive silicone composition is sandwiched between two slide glass plates so as to form a circle having a diameter of 1.5 cm. The test piece is tilted by 90 degrees with respect to the ground. It was placed in a thermal shock tester (model number: TSE-11-A) manufactured by ESPEC Co., Ltd., which was set so as to alternately repeat at 125 ° C. and 30 ° C. (30 minutes each), and a 500 cycle test was conducted. After 500 cycles, how much the thermally conductive silicone composition shifted from its original location was measured.
<Standard>
If it is 1 mm or less, it can be said that the displacement resistance is excellent.
〔ズレ試験後外観〕
 上記500サイクル後の熱伝導性シリコーン組成物の状態を観察した。
 組成物中、ボイド、ひび割れがない状態を○、ボイドやひび割れがあった状態を×と評価した。
[Appearance after displacement test]
The state of the thermally conductive silicone composition after 500 cycles was observed.
In the composition, a state having no voids or cracks was evaluated as ◯, and a state having voids or cracks was evaluated as ×.
〔熱伝導性シリコーン組成物の粘度〕
 熱伝導性シリコーン組成物の粘度は、25℃にて(株)マルコムのマルコム粘度計(タイプPC-10AA)にて測定を行った。
[Viscosity of thermally conductive silicone composition]
The viscosity of the thermally conductive silicone composition was measured at 25 ° C. using a Malcolm viscometer (type PC-10AA).
[実施例1~6、比較例1~4]
 表1,2に示すように各成分をプラネタリーミキサーに仕込み、以下の手順にて熱伝導性シリコーン組成物を調製した。
 即ち、成分(B)、成分(C)、(D)成分、及び必要に応じて成分(G)をプラネタリーミキサーに投入し、まず室温にて10分間撹拌した。その後、(E)成分、(F)成分を投入してから、170℃に温度を上げ、そのまま2時間加熱混合して、(D)、(E)成分によるハイドロシリル化反応を行わせて成分(A)のシリコーンゲル架橋物を調製し、組成物を得た。得られた組成物を用いて上述した各種試験を行った。結果を表1,2に併記する。
[Examples 1 to 6, Comparative Examples 1 to 4]
As shown in Tables 1 and 2, each component was charged into a planetary mixer, and a heat conductive silicone composition was prepared by the following procedure.
That is, the component (B), the component (C), the component (D), and the component (G) as necessary were put into a planetary mixer and stirred at room temperature for 10 minutes. Thereafter, the components (E) and (F) are added, the temperature is raised to 170 ° C., and the mixture is heated and mixed as it is for 2 hours to cause the hydrosilylation reaction by the components (D) and (E) to be performed. A crosslinked silicone gel (A) was prepared to obtain a composition. The various tests mentioned above were done using the obtained composition. The results are shown in Tables 1 and 2.
[成分(B)]
(B-1)
Figure JPOXMLDOC01-appb-C000006

動粘度35mm2/s
[Component (B)]
(B-1)
Figure JPOXMLDOC01-appb-C000006

Kinematic viscosity 35mm 2 / s
[成分(C)]
(C-1)アルミナ粉末(平均粒径:140μm)
(C-2)アルミナ粉末(平均粒径:110μm)
(C-3)アルミナ粉末(平均粒径:45μm)
(C-4)アルミナ粉末(平均粒径:10μm)
(C-5)アルミナ粉末(平均粒径:1.5μm)
(C-6)酸化亜鉛粉末(平均粒径:1.0μm)
[Component (C)]
(C-1) Alumina powder (average particle size: 140 μm)
(C-2) Alumina powder (average particle size: 110 μm)
(C-3) Alumina powder (average particle size: 45 μm)
(C-4) Alumina powder (average particle size: 10 μm)
(C-5) Alumina powder (average particle size: 1.5 μm)
(C-6) Zinc oxide powder (average particle size: 1.0 μm)
[(D)成分]
(D-1)
 両末端にビニル基を有する直鎖状の動粘度600mm2/sのジメチルポリシロキサン。
(D-2)
 両末端にビニル基を有する直鎖状の動粘度30,000mm2/sのジメチルポリシロキサン。
[(D) component]
(D-1)
A linear dimethylpolysiloxane having a kinematic viscosity of 600 mm 2 / s having vinyl groups at both ends.
(D-2)
A linear dimethylpolysiloxane having a linear kinematic viscosity of 30,000 mm 2 / s and having vinyl groups at both ends.
[(E)成分]
(E-1)
Figure JPOXMLDOC01-appb-C000007

α/β=0.35、動粘度113mm2/s
(E-2)
Figure JPOXMLDOC01-appb-C000008

α/β=0.13、動粘度25mm2/s
(E-3)<比較例用>
Figure JPOXMLDOC01-appb-C000009
α/β=0.09、動粘度28mm2/s
(E-4)<比較例用>
Figure JPOXMLDOC01-appb-C000010
α/β=0.06、動粘度72mm2/s
[(E) component]
(E-1)
Figure JPOXMLDOC01-appb-C000007

α / β = 0.35, kinematic viscosity 113 mm 2 / s
(E-2)
Figure JPOXMLDOC01-appb-C000008

α / β = 0.13, kinematic viscosity 25 mm 2 / s
(E-3) <For comparative example>
Figure JPOXMLDOC01-appb-C000009
α / β = 0.09, kinematic viscosity 28 mm 2 / s
(E-4) <For comparative example>
Figure JPOXMLDOC01-appb-C000010
α / β = 0.06, kinematic viscosity 72 mm 2 / s
[(F)成分]
(F-1)
 白金-ジビニルテトラメチルジシロキサン錯体を上記(D-1)と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)。
[(F) component]
(F-1)
A solution in which a platinum-divinyltetramethyldisiloxane complex is dissolved in the same dimethylpolysiloxane as (D-1) (platinum atom content: 1% by mass).
[成分(G)]
(G-1)
 両末端がトリメチルシリル基を有する直鎖状の1,000mm2/sのジメチルポリシロキサン。
[Component (G)]
(G-1)
A linear 1,000 mm 2 / s dimethylpolysiloxane having trimethylsilyl groups at both ends.
Figure JPOXMLDOC01-appb-T000011
*(D)成分中のケイ素原子結合アルケニル基1個に対する(E)成分のケイ素原子結合水素原子の個数を便宜的にH/Viと標記する(以下、同じ)。
Figure JPOXMLDOC01-appb-T000011
* The number of silicon atom-bonded hydrogen atoms in component (E) with respect to one silicon-bonded alkenyl group in component (D) is denoted as H / Vi for convenience (the same applies hereinafter).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Claims (5)

  1.  (A)シリコーンゲル架橋物、
    (B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記成分(C)の表面処理剤としてのシリコーンオイル、
    (C)熱伝導性充填剤
    を含有してなり、粘弾性測定装置による25℃における周波数0.2ヘルツの損失係数Tanδが2.0以下であることを特徴とする熱伝導性シリコーン組成物。
    (A) a silicone gel crosslinked product,
    (B) Silicone oil that does not contain an aliphatic unsaturated bond and SiH group, and serves as a surface treatment agent for the following component (C):
    (C) A thermally conductive silicone composition comprising a thermally conductive filler and having a loss coefficient Tanδ at a frequency of 0.2 hertz at 25 ° C. measured by a viscoelasticity measuring device is 2.0 or less.
  2.  (A)シリコーンゲル架橋物:100質量部、
    (B)下記一般式(1)で表される片末端加水分解性オルガノポリシロキサンからなるシリコーンオイル:201~500質量部、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、それぞれ独立に、炭素数1~6のアルキル基、R2は、それぞれ独立に、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは5~120の整数である。)
    (C)平均粒径0.1~150μmの熱伝導性充填剤:2,001~10,000質量部
    を含有してなる請求項1記載の熱伝導性シリコーン組成物。
    (A) Silicone gel crosslinked product: 100 parts by mass,
    (B) Silicone oil comprising a one-end hydrolyzable organopolysiloxane represented by the following general formula (1): 201 to 500 parts by mass,
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is independently an alkyl group having 1 to 6 carbon atoms, and R 2 is each independently an unsubstituted or substituted monovalent group having no aliphatic unsaturated bond having 1 to 18 carbon atoms. One or more groups selected from the group of hydrocarbon groups, a is an integer of 5 to 120)
    2. The heat conductive silicone composition according to claim 1, comprising (C) a heat conductive filler having an average particle size of 0.1 to 150 μm: 2,001 to 10,000 parts by mass.
  3.  成分(A)が、下記(D)成分と(E)成分とのシリコーンゲル架橋物である請求項1又は2記載の熱伝導性シリコーン組成物。
    (D)下記平均組成式(2)
      R3 b4 cSiO(4-b-c)/2     (2)
    (式中、R3は、アルケニル基を表し、R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
    で表されるケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
    (E)分子鎖非末端にケイ素原子に結合した水素原子を1分子中に少なくとも4個以上有し、下記式(3)
      0.1<α/β     (3)
    (式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(E)成分中の全ケイ素原子数を表す。)
    を満たすオルガノハイドロジェンポリシロキサン:(D)成分中のケイ素原子に結合したアルケニル基1個に対して、(E)成分中のケイ素原子に結合した水素原子が0.3~2.0個となる量。
    The thermally conductive silicone composition according to claim 1 or 2, wherein the component (A) is a silicone gel crosslinked product of the following components (D) and (E).
    (D) The following average composition formula (2)
    R 3 b R 4 c SiO (4-bc) / 2 (2)
    (Wherein R 3 represents an alkenyl group, R 4 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and b is a number of 0.0001 to 0.2. And c is a number from 1.7 to 2.2, where b + c is a number satisfying 1.9 to 2.4.)
    An organopolysiloxane having at least one alkenyl group bonded to a silicon atom represented by
    (E) At least 4 hydrogen atoms bonded to a silicon atom at the non-terminal end of the molecular chain are contained in one molecule, and the following formula (3)
    0.1 <α / β (3)
    (In the formula, α represents the number of hydrogen atoms bonded to non-terminal silicon atoms of the molecular chain, and β represents the total number of silicon atoms in the component (E).)
    Organohydrogenpolysiloxane satisfying the following: 0.3 to 2.0 hydrogen atoms bonded to silicon atoms in component (E) for one alkenyl group bonded to silicon atoms in component (D) Amount to be.
  4.  更に、(G)25℃における動粘度が10~500,000mm2/sである無官能性液状シリコーンオイルを成分(A)100質量部に対して10~500質量部を含有する請求項1~3のいずれか1項記載の熱伝導性シリコーン組成物。 Furthermore, (G) 10 to 500 parts by mass of non-functional liquid silicone oil having a kinematic viscosity at 25 ° C. of 10 to 500,000 mm 2 / s with respect to 100 parts by mass of component (A). 4. The thermally conductive silicone composition according to any one of 3 above.
  5.  25℃における粘度が100~1,500Pa・sである請求項1~4のいずれか1項記載の熱伝導性シリコーン組成物。 The thermally conductive silicone composition according to any one of claims 1 to 4, which has a viscosity at 25 ° C of 100 to 1,500 Pa · s.
PCT/JP2018/017490 2017-05-09 2018-05-02 Thermally conductive silicone composition WO2018207696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092742 2017-05-09
JP2017092742A JP6705426B2 (en) 2017-05-09 2017-05-09 Thermally conductive silicone composition

Publications (1)

Publication Number Publication Date
WO2018207696A1 true WO2018207696A1 (en) 2018-11-15

Family

ID=64104676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017490 WO2018207696A1 (en) 2017-05-09 2018-05-02 Thermally conductive silicone composition

Country Status (3)

Country Link
JP (1) JP6705426B2 (en)
TW (1) TW201903117A (en)
WO (1) WO2018207696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729194A (en) * 2019-11-15 2022-07-08 信越化学工业株式会社 Thermally conductive addition-curable silicone composition and method for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311609B2 (en) * 2018-12-29 2023-07-19 ダウ グローバル テクノロジーズ エルエルシー Thermally conductive compositions containing MGO fillers and methods and devices in which the compositions are used
JP7116703B2 (en) * 2019-04-24 2022-08-10 信越化学工業株式会社 Thermally conductive silicone composition, method for producing the same, and cured thermally conductive silicone
JP2021051905A (en) * 2019-09-25 2021-04-01 富士高分子工業株式会社 Heat conductive sheet for sealing material and heat-generating electrical/electronic part incorporated with the same
JP7285231B2 (en) * 2020-05-08 2023-06-01 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
JP7355767B2 (en) 2021-01-13 2023-10-03 信越化学工業株式会社 Thermal conductive silicone composition
WO2023149175A1 (en) * 2022-02-02 2023-08-10 信越化学工業株式会社 Thermally conductive silicone composition and production method therefor
JP2024035628A (en) * 2022-09-02 2024-03-14 信越化学工業株式会社 Thermally conductive silicone composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060624A (en) * 2000-08-21 2002-02-26 Dow Corning Toray Silicone Co Ltd Silicone rubber composition
JP2007177001A (en) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof
JP2010126568A (en) * 2008-11-26 2010-06-10 Denso Corp Silicone grease composition for heat dissipation
JP2011016923A (en) * 2009-07-09 2011-01-27 Shin-Etsu Chemical Co Ltd Thermally conductive silicone composition and thermally conductive silicone molding using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2896300C (en) * 2013-01-22 2020-10-27 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition, heat conductive layer, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060624A (en) * 2000-08-21 2002-02-26 Dow Corning Toray Silicone Co Ltd Silicone rubber composition
JP2007177001A (en) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof
JP2010126568A (en) * 2008-11-26 2010-06-10 Denso Corp Silicone grease composition for heat dissipation
JP2011016923A (en) * 2009-07-09 2011-01-27 Shin-Etsu Chemical Co Ltd Thermally conductive silicone composition and thermally conductive silicone molding using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729194A (en) * 2019-11-15 2022-07-08 信越化学工业株式会社 Thermally conductive addition-curable silicone composition and method for producing same
CN114729194B (en) * 2019-11-15 2023-10-20 信越化学工业株式会社 Thermally conductive addition-curable silicone composition and method for producing same

Also Published As

Publication number Publication date
TW201903117A (en) 2019-01-16
JP6705426B2 (en) 2020-06-03
JP2018188559A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6705426B2 (en) Thermally conductive silicone composition
KR102176435B1 (en) Thermally conductive silicone composition
TWI667291B (en) Thermally conductive fluorenone composition
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
KR102345272B1 (en) Thermally Conductive Silicone Composition
JP5472055B2 (en) Thermally conductive silicone grease composition
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP7070320B2 (en) Thermally conductive silicone composition
JP6933198B2 (en) Thermally conductive silicone composition and its manufacturing method
JP7276493B2 (en) Thermally conductive silicone composition and method for producing the same
JP7082563B2 (en) Cured product of thermally conductive silicone composition
TWI824104B (en) High thermal conductivity polysiloxane composition and manufacturing method thereof
JP6579272B2 (en) Thermally conductive silicone composition
JP2020193250A (en) Thermally conductive silicone composition, semiconductor device, and method of manufacturing the same
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
TWI796457B (en) Silicone composition
WO2020031669A1 (en) Silicone composition and method for manufacturing same
JP7088123B2 (en) Method for Producing Thermally Conductive Silicone Composition
JP7034980B2 (en) Surface-treated Alumina powder manufacturing method
WO2023149175A1 (en) Thermally conductive silicone composition and production method therefor
WO2024048335A1 (en) Thermally conductive silicone composition
WO2023162636A1 (en) Thermally conductive silicone composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798983

Country of ref document: EP

Kind code of ref document: A1