WO2018207535A1 - Resolving power measurement method and device, program, and printing device - Google Patents

Resolving power measurement method and device, program, and printing device Download PDF

Info

Publication number
WO2018207535A1
WO2018207535A1 PCT/JP2018/015043 JP2018015043W WO2018207535A1 WO 2018207535 A1 WO2018207535 A1 WO 2018207535A1 JP 2018015043 W JP2018015043 W JP 2018015043W WO 2018207535 A1 WO2018207535 A1 WO 2018207535A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixels
contrast
value
interval
Prior art date
Application number
PCT/JP2018/015043
Other languages
French (fr)
Japanese (ja)
Inventor
完司 永島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019517515A priority Critical patent/JP6761543B2/en
Publication of WO2018207535A1 publication Critical patent/WO2018207535A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof

Definitions

  • the present invention relates to a resolution measuring method and apparatus, a program, and a printing apparatus, and more particularly, to a data processing technique suitable for measuring a contrast transfer function (CTF) of an optical reading apparatus.
  • CTF contrast transfer function
  • Patent Document 1 As one of the methods for measuring the resolving power of the optical reader, data of the read image obtained by reading a CTF measurement chart including a rectangular wave pattern in which the density end face changes into a rectangular shape such as black and white stripes by the optical reader.
  • a method for analyzing CTF characteristics is known (Patent Document 1 and Patent Document 2).
  • the maximum value and the minimum value (that is, black and white peak and bottom) of the read value are obtained from the read image data of the CTF measurement chart.
  • the CTF value is calculated using the Michelson contrast definition formula shown below.
  • Problem 1 There are undischargeable nozzles that do not discharge among a plurality of nozzles in an ink jet head, and line missing of a chart may occur. In addition to a case where a part of the line is missing, a part of the line may be missing, such as a thin line or a shortened line.
  • a nozzle inspection chart for inspecting the ejection state of each nozzle of the ink jet head is drawn during execution of a job, before the start of a job, or between jobs. From the drawing result of the nozzle test chart, it is possible to detect ejection failure such as undischarge, ejection bending, or drop volume abnormality.
  • the nozzle inspection chart is, for example, a so-called 1-on-N-off type ladder chart, and includes a line pattern drawn individually by each nozzle.
  • a line drawn by a nozzle adjacent to the main scanning direction that is the nozzle arrangement direction of the line-type inkjet head is shifted by one pixel in the main scanning direction. It is drawn adjacent.
  • a line drawn by adjacent nozzles is close to the line (a joint part of steps of a line pattern drawn in a staircase pattern) )
  • the read value by the in-line scanner becomes a value affected by the line width. Therefore, in order to obtain an accurate CTF value, it is desirable to exclude the influence of the read data on the portion where the line is close (joint portion). If the calculation process is advanced while excluding some specific data from the read image, the algorithm becomes complicated.
  • problems 1 to 3 are remarkable problems for the inline scanner, but are common to various optical reading apparatuses including not only the inline scanner but also an offline scanner. Further, Problem 1 is a problem regarding the ink jet printing apparatus. However, even in an image forming method other than the ink jet method, the chart line may be lost due to some factor. Therefore, there is a problem similar to the problem 1 for various types of printing apparatuses.
  • the present invention has been made in view of such circumstances, and a resolution measuring method capable of solving at least one of the plurality of problems described above by a relatively simple algorithm and calculating an accurate CTF, and
  • An object is to provide an apparatus, a program, and a printing apparatus.
  • the resolution measurement method is a read image that obtains image data of a read image obtained by reading a chart including light and shade fringes in which a density cross section changes into a rectangular shape at a specific interval at least in part.
  • a pixel-to-pixel contrast calculation step for calculating the contrast between pixels and a resolving power calculation for calculating a contrast transfer function at each stripe position of the gray stripes from the maximum contrast value calculated for each pixel by the pixel-to-pixel contrast calculation step.
  • the specific pixel number is a pixel number corresponding to the specific interval of the gray stripes in the image data of the read image.
  • a pixel number that is defined as the number of pixels that satisfies the condition below and satisfying one or more, d is the specific pixel number, and represents the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range of the image data of the read image and n, the value of pixel X n represented by the pixel number n X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1
  • the CTF can be obtained by a simple algorithm that combines the calculation of the contrast between pixels and the maximum value search. Further, according to the aspect 1, even when a line defect occurs in the chart, the contrast calculated for the pixel corresponding to the position of the line defect is a low value. It is excluded and does not remain in the calculation result. Therefore, the process according to the aspect 1 includes a process for dealing with line defects.
  • Aspect 2 is the resolving power measurement method according to Aspect 1, in the inter-pixel contrast calculation step, for all m satisfying 1 ⁇ m ⁇ d or ⁇ d ⁇ m ⁇ ⁇ 1 with respect to the pixel Xn .
  • CTF (X n, X n + m) is calculated, and, of all the m, CTF (X n, X n + m) the maximum value of, in resolution measurement method for performing processing for the contrast value of the pixel in the pixel X n is there.
  • Aspect 3 is the resolving power measurement method according to Aspect 2, and the resolving power calculation step sets a group of pixels equal to or greater than the number of fringe interval pixels for pixels arranged in the interval direction of light and shade fringes,
  • This is a resolution measurement method including a process in which the maximum value among the contrast values of the pixels calculated for the pixels is set as the contrast value at each pixel position belonging to the group.
  • Embodiment 4 a resolution measuring method aspect 2 or aspect 3, the pixel resolution calculation step, the relative pixel X n, a plurality of pixels arranged in a row in a line parallel direction streaks are calculated respectively Is the resolution measurement method including the process of setting the maximum value among the contrast values in the contrast value at the position of the pixel column to which the pixel Xn belongs.
  • Aspect 5 is the resolution measurement method according to any one of aspects 2 to 4, wherein the chart includes a plurality of gray stripes in which two or more gray stripes are arranged in a line direction parallel to the gray stripes, The plurality of gray stripes have the same stripe interval, and the positions of the stripes are shifted from each other by a specific distance in the interval direction of the gray stripes, and the resolution calculation step includes image data of the read image of the chart including the plurality of gray stripes From the pixel contrast values calculated for a plurality of pixels arranged in a line in a direction parallel to the line direction with respect to the pixel Xn , the maximum value is determined at the position of the pixel column to which the pixel Xn belongs. It is a resolution measuring method including the process which makes it a contrast value.
  • Aspect 6 is the resolution measurement method according to aspect 5, wherein the specific distance in the interval direction of the gray stripes is a positive integer of the number of pixels in the stripe interval, and the number of gray stripes arranged in the line direction is (stripes). This is a resolution measurement method that is a positive integer multiple of (number of spaced pixels / specific distance).
  • Embodiment 7 a resolution measuring method of any one of Embodiments 6 from embodiment 3, the resolution calculating step, with respect to pixel X n, a plurality of pixels arranged in a row in a line parallel direction streaks
  • This is a resolution measurement method including a process of excluding, as an abnormal value, a value that is greater than a specified ratio among the calculated contrast values of pixels in comparison with the average contrast value of pixels in the line direction.
  • Aspect 8 is the resolving power measurement method according to any one of Aspects 3 to 6, wherein the resolving power calculation step is performed for a plurality of pixels arranged in a line in a line direction parallel to the gray stripes with respect to pixel Xn .
  • the resolving power calculation step is performed for a plurality of pixels arranged in a line in a line direction parallel to the gray stripes with respect to pixel Xn .
  • a value greater than a specified ratio compared to the average contrast value of pixels in the line direction is defined as an abnormal value
  • the contrast value of a pixel indicating an abnormal value is within a range of the specified number of surrounding pixels.
  • Aspect 9 is the resolving power measurement method according to any one of aspects 1 to 8, wherein the interval between the gray stripes is P millimeters, and the interval between the reading pixels of the optical reading device on the chart is S millimeters.
  • ⁇ 2 ⁇ S and the specific pixel number is the smallest integer d that satisfies d ⁇ P / (2 ⁇ S).
  • Aspect 10 is the method of measuring a resolving power according to any one of aspects 1 to 8, wherein the interval between the light and shade stripes is P millimeters, and the interval between the reading pixels of the optical reading device on the chart is S millimeters.
  • ⁇ S and the specific number of pixels is a minimum integer d that satisfies d ⁇ P / S.
  • Aspect 11 is the resolving power measurement method according to any one of aspects 1 to 8, where P is a millimeter stripe interval, and S millimeters is an interval between read pixels of the optical reading device on the chart.
  • Resolution measuring method in which ⁇ 2 ⁇ S and the number of specific pixels is an integer d equal to or larger than a minimum integer satisfying d ⁇ P / (2 ⁇ S) and less than or equal to a minimum integer satisfying d ⁇ P / S It is.
  • Aspect 12 is the resolution measurement method according to any one of aspects 1 to 11, wherein the chart includes a plurality of patterns of gray stripes at different specific intervals.
  • Aspect 13 is the resolving power measurement method according to any one of aspects 1 to 12, wherein the direction of the gray stripes included in the chart is the first direction, the second direction intersecting the first direction, or the first direction. And a resolution measuring method that is both in the second direction.
  • Aspect 14 is the resolution measurement method according to any one of aspects 1 to 13, wherein the focus state of the optical reader is determined from the calculation result of the contrast transfer function calculated for the pixels in the entire reading range of the optical reader. It is a resolution measuring method including a process.
  • Determining the focus state means determining whether the calculation result of the contrast transfer function is within a predetermined range defined by the optical reader, and determining whether the focus state of the optical reader is normal. To do.
  • Aspect 15 is the resolution measurement method according to any one of aspects 1 to 14, and the chart is a resolution measurement method in which a shading pattern is printed on a recording medium using a printing apparatus.
  • Aspect 16 is the resolution measuring method according to any one of aspects 1 to 15, and includes a chart reading step of reading a chart using an optical reading device.
  • Aspect 17 is the resolving power measurement method according to Aspect 16, wherein the optical system of the optical reader includes an imaging lens having a single optical axis or a lens array having a plurality of optical axes.
  • Aspect 18 is the resolution measuring method according to any one of Aspects 1 to 17, and includes a chart printing step of printing a chart including light and shade stripes using a printing apparatus.
  • Aspect 19 is the resolution measurement method according to Aspect 18, wherein the printing apparatus includes an optical reading device, and the chart is printed by the printing device, and the chart is read by the optical reading device in the printing device. Is the method.
  • Aspect 20 is the resolving power measuring method according to Aspect 18 or Aspect 19, wherein the printing apparatus is a resolving power measuring method which is an ink jet printing apparatus.
  • Aspect 21 is the resolving power measurement method according to Aspect 20, wherein each line of light and shade stripes is recorded by droplet ejection from a single nozzle in the ink jet head.
  • Aspect 22 is the resolution measuring method according to Aspect 20 or 21, wherein the optical reader is an inline scanner mounted on an ink jet printing apparatus.
  • the resolution measuring device obtains image data of a read image obtained by reading a chart including light and shade stripes in which a density cross section changes into a rectangular shape at a specific interval at least in part by an optical reading device.
  • An inter-pixel contrast calculation unit that calculates the contrast between pixels, and a resolving power calculation that calculates the contrast transfer function at each stripe position of the gray stripes from the maximum contrast value calculated for each pixel by the inter-pixel contrast calculation unit
  • the specific pixel number is less than or equal to the stripe interval pixel number, which is the number of pixels corresponding to the specific interval of the gray stripes in the image data of the read image It is defined as the number of pixels satisfying one or more conditions, the specific pixel number is d, and the pixel number indicating the position in the interval
  • the same matters as the specific matters specified in the aspects 2 to 22 can be appropriately combined.
  • the process or step (step) specified in the invention of the resolving power measurement method can be grasped as an element of a processing unit or a functional unit serving as a means responsible for the corresponding processing or operation.
  • the program according to the aspect 24 has the resolution of the optical reader based on the image data of the read image obtained by reading the chart including at least a density stripe whose density cross section changes to a rectangular shape at a specific interval by the optical reader.
  • a program for causing a computer to execute data processing to be measured the computer having a read image data acquisition step of acquiring data of a read image of a chart, and each of the image data of the read image belonging to at least a part of a calculation target range
  • a pixel-to-pixel contrast calculating step for calculating a contrast between pixels with respect to a pixel from a pixel separated by a number of pixels equal to or greater than 1 and a specific number of pixels in the grayscale stripe interval direction, and a pixel-by-pixel contrast calculating step From the maximum value of the contrast calculated in the And a resolution calculation step for calculating the image, wherein the specific pixel number is equal to or less than the number of fringe interval pixels, which is the number of pixels corresponding to the specific interval of the gray
  • the program includes a process for calculating the contrast between the pixels and a process for obtaining the maximum value
  • the printing apparatus includes an image forming unit that forms an image on a recording medium, an optical reading device that optically reads an image formed on the recording medium using the image forming unit, and an optical reading device that reads the image. And a data processing device that performs arithmetic processing on the image data of the read image that has been read, and the image forming unit prints a chart including light and shade stripes in which the density cross section changes into a rectangular shape at a specific interval, at least partially, and optical The reading device reads a chart, the data processing device acquires a read image data acquisition unit that acquires image data of a read image of the chart read by the optical reading device, and at least a part of calculation objects of the image data of the read image A pixel that calculates the contrast between pixels with respect to each pixel belonging to the range from a pixel that is 1 or more and not more than a specific number of pixels in the interval direction of the gray stripes A contrast calculation unit, and a resolution calculation unit that calculates a contrast transfer function at each stripe position
  • the pixel number indicating the position in the interval direction of the gray stripes is n
  • the value of the pixel Xn represented by the pixel number n is X (n)
  • the gray level from the pixel Xn is an integer value satisfying 1 ⁇ m ⁇ d or ⁇ d ⁇ m ⁇ ⁇ 1
  • the same matters as the specific matters specified in aspects 2 to 22 can be appropriately combined.
  • the process or step (step) specified in the invention of the resolving power measurement method can be grasped as an element of a processing unit or a functional unit serving as a means responsible for the corresponding processing or operation.
  • Aspect 26 is the printing apparatus according to aspect 25, wherein the image forming unit includes a line-type inkjet head configured by connecting a plurality of head modules, and the data processing device transmits the contrast transmitted by the resolving power calculation unit.
  • This is a printing apparatus that performs processing for detecting local non-uniformity in the ink discharge amount of the head module using a function.
  • the data is acquired, and for each pixel belonging to at least a part of the calculation target range of the acquired read image data, a pixel that is 1 or more and a specific pixel number or less apart in the interval direction of the gray stripes And having at least one processor for calculating a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel.
  • the number is defined as the number of pixels satisfying one or more of the stripe interval pixel number which is the number of pixels corresponding to the specific interval of the gray stripes in the image data of the read image.
  • the CTF can be obtained with a relatively simple algorithm even when a line defect in the chart occurs.
  • FIG. 1 is a diagram illustrating an example of a chart image displayed on a chart used for CTF inspection.
  • FIG. 2 is a schematic diagram of digital image data of a read image obtained by reading a chart using an optical reading device.
  • FIG. 3 is obtained by adding an identification code for identifying the position of each pixel to a part of the pixels of the digital image data shown in FIG.
  • FIG. 4 is a schematic diagram of the digital image data of 3 rows and 15 columns shown in FIG.
  • FIG. 5 is a diagram illustrating a C position obtained by shifting the position of the image data to the left by two pixels with respect to the A position illustrated in FIG.
  • FIG. 6 is a diagram illustrating a D position in which the position of the image data is shifted to the left by 3 pixels with respect to the A position illustrated in FIG.
  • FIG. 7 is a diagram illustrating an E position obtained by shifting the position of the image data to the left by 4 pixels with respect to the A position illustrated in FIG.
  • FIG. 8 is a diagram illustrating an F position obtained by shifting the position of the image data to the right by one pixel with respect to the A position illustrated in FIG.
  • FIG. 9 is a diagram illustrating a G position obtained by shifting the position of the image data to the right by two pixels with respect to the A position illustrated in FIG.
  • FIG. 10 is a diagram illustrating an H position obtained by shifting the position of the image data to the right by 3 pixels with respect to the A position illustrated in FIG.
  • FIG. 11 is a diagram illustrating an I position obtained by shifting the position of the image data to the right by 4 pixels with respect to the A position illustrated in FIG.
  • FIG. 12 is a diagram illustrating an example of a strip-shaped matrix partitioned by the search width.
  • FIG. 13 is a diagram illustrating an example of a chart image including stepped black and white stripes.
  • FIG. 14 is a diagram illustrating an example of a pixel group in the read image data illustrated in FIG. 3.
  • FIG. 15 is a diagram illustrating an example of the read pixels arranged in a line in the column direction parallel to the chart line in the read image data illustrated in FIG. 3.
  • FIG. 16 is a flowchart illustrating an overall process flow related to the CTF measurement process in the inkjet printing apparatus according to the embodiment.
  • FIG. 17 is a flowchart showing the contents of print image data generation processing.
  • FIG. 18 is a flowchart showing the processing contents of the printing process.
  • FIG. 19 is a flowchart showing the processing contents of the reading processing step.
  • FIG. 20 is a flowchart showing the contents of the CTF calculation process.
  • FIG. 21 is a flowchart showing the contents of the contrast calculation process.
  • FIG. 22 is a flowchart showing the contents of the contrast calculation process.
  • FIG. 23 is an example of an image of light and shade stripes as a chart image.
  • FIG. 24 is a chart showing an example of the data array IM (L, C) of the read image.
  • FIG. 25 is a chart showing an example of the CTF midway calculation array CTFT (L, C).
  • FIG. 26 is a chart showing an example of the CTF calculation array CTF (BC).
  • FIG. 27 is a diagram illustrating an example of a rectangular range in the CTF midway calculation array.
  • FIG. 28 is a block diagram illustrating functions of a data processing apparatus that performs CTF calculation according to the resolution measurement method according to the embodiment.
  • FIG. 29 is a side view illustrating the configuration of the inkjet printing apparatus according to the embodiment.
  • FIG. 30 is a block diagram illustrating a main configuration of a control system of the inkjet printing apparatus.
  • FIG. 31 is a graph illustrating an example of a calculation result of CTF.
  • Resolution refers to the closest distance at which two close points to be read can be reproduced and read as two points in an optical reader using an optical system.
  • Resolution power refers to the reciprocal of the resolution distance.
  • the resolution is the degree of ability to correctly read the degree of contrast (contrast) of images of various finenesses by quantifying the extent that two points can be reproduced and read as two points for each distance of the two points. .
  • CTF is an abbreviation for Contrast Transfer Function and refers to a contrast transfer function.
  • CTF is one of indices indicating the resolution.
  • MTF modulation transfer function
  • the “light / dark stripe” is a pattern in which the density cross section changes into a rectangular shape, and corresponds to a rectangular light / dark pattern having a specific frequency.
  • “Monochrome stripe” is an example of light and shade stripes. The arrangement direction of the stripes in the light and shade stripes is called the stripe interval direction, and the direction parallel to the stripes is called the line direction.
  • “Chart” is an object to be read on which a chart image including at least light and shade stripes is displayed.
  • “Resolution” is the reciprocal of the interval between dots in the printer. In the reading side scanner (optical reading device), it is the reciprocal of the reading pixel interval. When the subject (reading object) and the scanner are relatively stationary, in a scanner using a lens and an image sensor, the resolution is determined from the imaging magnification of the lens and the pixel interval of the image sensor. The resolution of the scanner is called “reading resolution” or scanner resolution. The resolution of dots drawn by the printer is called “drawing resolution”. The resolution is usually represented by the number of dots per inch (dpi: dot per inch) for both the drawing resolution and the reading resolution. One inch is 25.4 millimeters. “Scanner” corresponds to “optical reading device”. “Printer” corresponds to “printing apparatus”. An imaging sensor is synonymous with a reading sensor.
  • FIG. 1 is a diagram illustrating an example of a chart image displayed on a chart used for CTF measurement.
  • a chart 10 shown in FIG. 1 is a black and white stripe chart, and includes a vertical stripe pattern in which black vertical lines are arranged at regular intervals in the horizontal direction.
  • FIG. 1 shows an enlarged part of the black and white stripes displayed on the chart 10. Note that the actual chart further spreads in the vertical and horizontal directions of FIG. 1, a larger number of vertical lines are arranged in the horizontal direction, and the vertical lines extend further in the vertical direction of FIG. 1.
  • the white portion between the black line 12 and the line 12 in the chart image is called a white portion 14.
  • the white and black stripes of the chart 10 have the same white and black intervals, and the density cross section changes to a rectangular shape at specific intervals. That is, the white width Ww of the white portion 14 is equal to the black width Wb that is the thickness (line width) of the line 12.
  • the interval Pb between the lines 12 and 12 is equal to the interval Pw between the white portion 14 and the white portion 14.
  • the interval Pb corresponds to the repetition period of the line 12.
  • the line 12 may be referred to as “black line” or “stripes”. Note that a chart including black and white stripes having different white widths Ww and black widths Wb is not limited to a chart including black and white stripes having the same white width Ww and black width Wb.
  • FIG. 2 is a schematic diagram of digital image data of a read image obtained by reading a chart using an optical reading device.
  • a chart for CTF measurement is read by an optical reader, and image information is digitized into digital image data.
  • FIG. 2 shows a part of the image data of the read image 20 obtained by reading the chart image shown in FIG. Note that the image data of the read image obtained by reading the actual chart has a larger number of pixels in both the vertical direction and the horizontal direction.
  • the image data of the read image 20 may be referred to as “read data”.
  • a small square 22 displayed at the upper left indicates the size of one pixel of the digital image data.
  • the size of one pixel of the digital image data corresponds to the size of the reading pixel of the optical reading device. That is, the reading of the chart 10 is performed using an optical reading device of a reading pixel having a width smaller than the line width of the black and white stripes.
  • the white portion of the chart 10 is brightly read, and the read value is a relatively large value.
  • the black portion of the chart 10 is read darkly, and the read value is a relatively small value.
  • the read value is a pixel value in the read image data.
  • the pixel value is synonymous with “pixel signal value” or “pixel value”.
  • the black and white stripes of the chart 10 are read with a slight blur and the contrast is lowered, so in FIG. 2, the pixels near the black line position center 24 of the chart are displayed darkly. Pixels around the part position 26 are displayed in a slightly light gray color.
  • the line interval is an integral multiple of the read pixel interval.
  • the example of FIG. 2 is an example in which the line interval is four times the read pixel interval, that is, the line interval is 4 pixels when the line interval is expressed by the number of read pixels.
  • the line interval is not an integral multiple of the read pixel interval
  • a moiré in which the phase relationship between the line position and the read pixel position is shifted and the density of the read image changes in a complicated manner occurs.
  • the line interval is an integral multiple of the read pixel interval
  • the phase of the line position and the read pixel position are aligned, and as shown in FIG. 2, for each pixel position in the line arrangement direction, black,
  • the read image changes in light and shade with a constant repeating pattern of gray, white, gray, black, gray, white. A method for dealing with moire will be described later.
  • FIG. 3 shows a part of the pixels of the digital image data shown in FIG. 2 with an identification code for identifying the position of each pixel.
  • FIG. 3 shows an example in which each pixel belonging to a part of the pixel range of the digital image data shown in FIG. 2 is associated with an identification code in which alphabet symbols and numbers are combined so that each position can be recognized. That is, the pixel position is represented by a combination of a symbol and a number corresponding to the column and row, such as “a1”.
  • the alphabetical symbol of the identification code represents the position of “column”, and the number represents the position of “row”.
  • the center of one of the vertical lines of the chart is read by the pixels b1, b2, and b3. Therefore, the positions of the pixels b1, b2, and b3 are displayed darkly.
  • the line interval is 4 pixels when expressed in terms of the number of read pixels, the line positions arrive at every 4 pixels arranged in the column direction.
  • the read data shown in FIG. 3 is digital image data including pixels of 3 rows and 15 columns from w1 to k3.
  • digital image data is schematically represented using an identification code indicating the position of each pixel, and a CTF calculation procedure according to the resolution measurement method of the present disclosure will be described.
  • FIG. 4 is a schematic diagram of the digital image data of 3 rows and 15 columns shown in FIG.
  • a range of “A position” is displayed by enclosing a 3 ⁇ 7 square range from a1 to g3 with a frame line.
  • Each position obtained by shifting the position of the image data by one pixel to the left in FIG. 4 with respect to the A position is defined as a B position, a C position, a D position, and an E position.
  • positions where the position of the image data is shifted by one pixel to the right in FIG. 4 with respect to the A position are defined as an F position, a G position, an H position, and an I position.
  • FIG. 4 shows the B position where the position of the image data is shifted by one pixel to the left of the figure with respect to the A position. That is, the A position is shifted by one pixel to the left in FIG.
  • FIG. 5 shows a position C in which the position of the image data is shifted by 2 pixels to the left of the figure with respect to the position A. That is, the A position is shifted to the left in FIG. Similarly, the A position is shifted to the left by 3 pixels to obtain the D position. Further, the A position is shifted to the left by 4 pixels to be the E position.
  • FIG. 6 shows a D position in which the position of the image data is shifted to the left by 3 pixels with respect to the A position.
  • FIG. 7 shows an E position obtained by shifting the position of the image data to the left by 4 pixels with respect to the A position.
  • the A position shown in the upper part of FIG. 4 is shifted by one pixel to the right to the F position, two pixels to the G position, three pixels to the H position, and four pixels. Each position is determined by shifting.
  • FIG. 8 shows an F position obtained by shifting the position of the image data to the right by one pixel with respect to the A position.
  • FIG. 9 shows the G position where the position of the image data is shifted to the right by 2 pixels with respect to the A position.
  • FIG. 10 shows an H position in which the position of the image data is shifted to the right by 3 pixels with respect to the A position.
  • FIG. 11 shows an I position obtained by shifting the position of the image data to the right by 4 pixels with respect to the A position.
  • the position of image data is shifted by one pixel to the left in FIG. 4 from the position A, and the position of image data is 1 on the right in FIG.
  • the contrast between pixels is calculated for each combination of pixels at the same row position and column position at the F position to I position shifted by pixels.
  • the contrast between pixels is a contrast evaluation value calculated using a value of two pixels according to a calculation formula according to the definition formula of CTF.
  • the contrast between pixels is called “inter-pixel CTF”.
  • CTF calculation comparison range The range of pixels to be compared when obtaining the inter-pixel CTF is referred to as a CTF calculation comparison range.
  • the CTF calculation comparison range is a range up to “+ d” pixels on the right side and “ ⁇ d” pixels on the left side, where d is the inter-pixel distance with the pixel farthest among the pixels to be compared.
  • d indicates the maximum pixel shift amount, and is a positive integer.
  • X (n + m) is the value of pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n.
  • N is a pixel number representing the position in the interval direction of the gray stripes of each pixel belonging to the calculation target range.
  • M takes an integer value satisfying 1 ⁇ m ⁇ d or ⁇ d ⁇ m ⁇ ⁇ 1.
  • each of X (n) and X (n + m) is a single value (a value of one channel not including color information).
  • each of X (n) and X (n + m) has values of R, G, and B channels, for example. Therefore, CTF (X n , Xn + m ) is calculated for each of R, G, and B.
  • the identification code of each pixel described in the example of FIG. 3 corresponds to the pixel number n.
  • the pixel identification code is also used as a notation of the pixel value represented by the identification code. More specifically, the expression [2] is applied to the example of FIG. 3, for example, the following calculation is performed on the pixel a1 shown in FIG. 3 by combining the A position and the B position.
  • CTF (a1, b1) (b1-a1) / (b1 + a1) Formula [3]
  • the value of the pixel a1 is represented as a1
  • the value of the pixel b1 is represented as b1.
  • the pixel identification code is also used as a notation of the pixel value represented by the identification code.
  • CTF (X n , X n + m ) is calculated for all m satisfying 1 ⁇ m ⁇ d or ⁇ d ⁇ m ⁇ ⁇ 1 for each pixel X n ,
  • the maximum value among the CTFs (X n , X n + m ) of m is defined as the contrast for the pixel X n , CTF (X n ).
  • the maximum value among the calculation results CTF (a1, b1) to CTF (a1, w1) of the eight inter-pixel CTFs calculated by the equations [3] to [10] The contrast for a1 is set, and the maximum value is CTF (a1). Similar calculation is performed for each of the pixels a2 and a3. Further, the same calculation is performed from the b column to the g column that is the calculation target range. Thereby, the contrast for each pixel from the pixel a1 to the pixel g3 belonging to the calculation target range, that is, CTF (a1) to CTF (g3) can be obtained.
  • the contrast with respect to the pixel Xn is expressed as CTF ( Xn ). In this way, CTF (X n ) specified for each pixel is referred to as a “pixel CTF value”.
  • CTF (a1), CTF (a2), and CTF (a3) which are the CTF values of the pixels a1 to a3 belonging to the same vertical column (a column)
  • the maximum value is the CTF value of the a column.
  • CTF (a) the maximum CTF value of each pixel is obtained for each column from the b column to the g column, and is set as CTF (b) to CTF (g) of each column.
  • the CTF values at the respective column positions from the a column to the g column can be obtained.
  • the chart 10 for measuring CTF illustrated in FIG. 1 is a chart including a vertical line pattern
  • the comparison target pixel when calculating the CTF value of each pixel is a horizontal direction orthogonal to the line of the chart 10.
  • the comparison range when obtaining the maximum value from the calculation result of the CTF value of each pixel is a pixel in the vertical direction parallel to the line.
  • the vertical / horizontal relationship described above changes by 90 degrees. That is, if the CTF measurement chart is a horizontal chart, pixels in the vertical direction perpendicular to the chart line are used as comparison target pixels when calculating the CTF value of each pixel.
  • the comparison range when obtaining the maximum value from the calculation result of the CTF value is a horizontal pixel parallel to the line.
  • the calculation result of the CTF value of each pixel does not become negative.
  • the number to be subtracted is larger than the subtracted number so that the numerator of the fractional part on the right side does not become negative.
  • the CTF calculation method according to the present disclosure does not require special consideration. It is because the image is dark at the position of each line of the chart (for example, b1), so the read data becomes a relatively small value (for example, the relationship between b1 and d1), and the numerator on the right side of Equation [2] is positive Because.
  • the calculation of the inter-pixel CTF always involves the replacement of the calculation target between the pair of pixels used for the calculation. Therefore, if the inter-pixel CTF is calculated for each pixel belonging to the calculation target range, the absolute value is the same. And negative values occur in pairs.
  • the maximum value among the CTF values of each pixel in the pixel range within the line interval of the chart is determined, and this CTF maximum value Is a CTF value in the vicinity of the line, so that the calculation result of the CTF maximum value is not affected even if the negative sign is not taken into consideration. That is, when the maximum CTF value within the line interval of the chart is obtained, the negative value is ignored, and eventually the CTF value near the line becomes a positive value as defined in Equation [1].
  • the chart stripe interval is not an integer multiple of the read pixel interval
  • the phase relationship between the line position and the read pixel position gradually shifts, and at some line, the line position and The position of the read pixel most closely matches.
  • the read value becomes the minimum value.
  • the search width that is the search range of the maximum value search is determined based on the period of black and white stripes on the chart image.
  • the period of black and white stripes is a repeated spatial period of stripes, and is synonymous with the interval of stripes arranged at regular intervals. For example, if the black and white period is 4 pixels as in the example shown in FIGS. 1 to 3, the search width is 4 pixels.
  • a matrix is vertically divided for each search width, and the maximum value of the CTF value of the pixel in the strip matrix is obtained. The maximum value thus obtained is the CTF of the vertical line within the strip width.
  • FIG. 12 is an example of a strip-like matrix delimited by the search width.
  • a striped matrix of 3 rows and 4 columns from b columns to e columns divided by a search width of 4 pixels is shown.
  • the maximum CTF value is searched from the pixel range of the strip-like matrix shown in FIG.
  • the maximum CTF value obtained in this way is the CTF at the position of the strip matrix.
  • the maximum value among CTF (b) to CTF (e) is the CTF value representing the position of the strip matrix.
  • the interval between the stripes of the chart is not an integral multiple of the interval between the read pixels, and moire is caused in the read image of the chart due to the relationship between the interval between the chart lines and the reading resolution of the optical reading device.
  • moire occurs in the read image due to the relationship between the drawing resolution of the chart and the reading resolution of the inline scanner.
  • Moire countermeasure processing 1 Since the moire cycle is known in advance, a positive integer multiple of the moire cycle is set as the CTF calculation cycle. Further, in the column direction, the number of read data pixels close to the print interval for which CTF is to be calculated is obtained, and the maximum value is obtained from the CTF calculation result of the pixel range of the distance defined by the read data pixel number. Note that Pb> Pr, and the moire interval is 2 ⁇ Pb ⁇ Pr / (Pb ⁇ Pr) where Pb is the interval between the light and shade stripes on the print and Pr is the interval between the pixels of the read image.
  • the CTF calculation period is the width per section for calculating the CTF value. For example, if the moire period is 10 mm, the CTF calculation period is set to 10 mm. Thereby, CTF can be calculated
  • the read image data of the chart is shifted in the line interval direction, and the difference and sum of the values are calculated between the corresponding pixels.
  • a contrast data group for each pixel in a pixel range of approximately the same size as the read image can be obtained. It can. Since this data group includes the influence of moiré, the maximum value (value with the smallest influence of moiré) is searched for every section of the pixel range in the moire cycle that has been grasped in advance, and the maximum value is found in the corresponding section.
  • Moiré countermeasure processing 2 An average value is obtained by excluding extremely distant values (abnormal values) from CTF values of each pixel which is a data group of contrast of each pixel.
  • Moiré countermeasure process 3 An average value is obtained using only data within “average value ⁇ 2 ⁇ ” known as a statistical calculation method among the CTF values of each pixel which is a data group of contrast of each pixel. ⁇ is a standard deviation.
  • FIG. 13 is an example of a chart image including stepped black and white stripes.
  • a chart image 30 shown in FIG. 13 includes a plurality of black and white stripes 31, 32, and 33 in which vertical lines 12 are arranged at a constant interval Pb in the horizontal direction.
  • FIG. 13 an example of three-stage black and white stripes in which three black and white stripes 31, 32, and 33 are arranged in a stepwise manner in the line direction is shown.
  • the line direction is a direction parallel to the line of the black and white stripes, and corresponds to the vertical direction in the case of the black and white stripes of the vertical stripes illustrated in FIG.
  • the stripe interval Pb and the interval Pw of the white portion 14 are equal.
  • the black width Wb and the white width Ww are equal in each of the black and white stripes 31, 32, and 33.
  • the second black and white stripe 32 is arranged at a position shifted by a specified distance r in the stripe interval direction with respect to the position of the first black and white stripe 31 displayed at the top.
  • the third-stage black and white stripes 33 are arranged at positions shifted by a specified distance r in the stripe interval direction with respect to the position of the second-stage black and white stripes 32.
  • the specified distance r is an example of a “specific distance”.
  • the “interval direction” is a direction in which stripes are arranged at a constant interval Pb. In the case of this example, it indicates a direction (lateral direction in FIG. 13) orthogonal to the line direction of the line 12.
  • three steps of black and white stripes are illustrated, but stepped black and white stripes having two or more steps and an arbitrary number of steps can be used.
  • the specified distance r in the stripe interval direction is a positive integer of the stripe interval Pb, and the number of monochrome stripes arranged in the line direction, that is, the number of stages, is ( It is desirable to be a positive integer multiple of the interval Pb / the specified distance r).
  • the unit of the specified distance r and the unit of the black-and-white stripe interval Pb is millimeters.
  • the specified distance and the black-and-white stripe interval Pb may be expressed by the number of pixels in units of the size of one read pixel.
  • a chart including such stepped black and white stripes is read by an optical reading device, and the CTF calculation method according to the present embodiment is applied from the obtained read image data to calculate the CTF value of each pixel.
  • the maximum value among the calculation results of the CTF values of the pixels arranged in a line in a direction substantially parallel to the chart line is the CTF value of the pixel Xn. can do.
  • the interval between the stripes of the chart is not an integral multiple of the interval between the reading pixels. From the relationship between the interval between the stripes of the chart and the reading resolution of the optical reading device, the position of the line and the position of the reading pixel are Thus, data with the phase relationship shifted can be obtained.
  • a chart including stepped black and white stripes as shown in FIG. 13 is read, there is a place where the center of the line of some stage and the center of the read pixel are more coincident among the plurality of stages of black and white stripes. Probability of existence increases.
  • Each line of the black and white stripes shown in FIG. 13 can be recorded one by one for each nozzle of the inkjet head. That is, each line of black and white stripes can be recorded by a single nozzle.
  • FIG. 13 shows an example in which the black and white stripes 31 to 33 at each stage are connected in contact with each other in the line direction. May be.
  • the inter-pixel CTF cannot be calculated as it is, the four columns at both ends are excluded from the calculation, or the data of the average value of the pixels in the peripheral range is applied to a position where there is no pixel data as a result of shifting the pixels. Then, the inter-pixel CTF is calculated.
  • “u” in the first row shown in the rightmost column at position B shown in FIG. 4 contains an average value of h1 to k1.
  • the average value of h2 to k2 is entered in “u” in the second row shown in the rightmost column at position B shown in FIG.
  • the average value of h3 to k3 is entered in “u” in the third row shown in the rightmost column at position B shown in FIG.
  • the average value of h1 to k1 is entered in “u” in the first row in both columns.
  • the average value of the pixel values of the peripheral pixels is an intermediate brightness value because the data of the dark portion and the light portion of the gray stripe image is averaged as an image. Since the value is “gray” for black and white stripes, the calculation result of the inter-pixel contrast is a relatively small value. That is, when the method of applying the average value data of the peripheral pixels to the pixel position of the singular part where the pixel data disappears by shifting the pixel, the calculation of the inter-pixel CTF using the pixels to which the average value is applied Since the result does not become the maximum value, it does not remain in the calculation result of the CTF value of each pixel and does not affect the calculation result for obtaining the maximum value.
  • the method of applying the average value data of the peripheral pixels to the singular part is more preferable because it does not require exception processing and can simplify the calculation algorithm.
  • Example of pixel group settings Not only the grouping like the strip matrix described with reference to FIG. 12, but the calculation result of the CTF value of each pixel belonging to the calculation target range, the stripe interval in the arrangement direction (interval direction) of black and white stripe lines.
  • a group of pixels equal to or more than the number of pixels (number of fringe spacing pixels) is set, and for each group, the maximum value among the calculation results in the group is determined as the CTF at each pixel position belonging to the pixel group. Also good.
  • FIG. 14 is an example of a pixel group in the read image data shown in FIG. FIG. 14 shows an example in which a range of five pixels a1 to e1 is set as one group.
  • the maximum value for example, CTF (b1) may be used as the CTF value of each pixel of a1 to e1.
  • Example of handling pixels lined up in the line direction of the chart A chart at each pixel position with respect to the calculation result of the CTF value of each pixel belonging to the calculation target range or the calculation result of the CTF value of each pixel obtained by setting the pixel group described with reference to FIG.
  • the maximum value may be determined as the CTF at each pixel position belonging to the pixel line position of that line.
  • FIG. 15 shows an example of the read pixels arranged in a line in the column direction parallel to the chart line in the read image data shown in FIG.
  • FIG. 15 shows b pixel columns in which the pixels b1 to b3 are arranged in the vertical direction.
  • the maximum value for example, CTF (b2) may be used as the CTF value of each of the pixels b1 to b3.
  • the CTF (X n ) value of a certain pixel X n in the CTF value data group of each pixel is at least compared with the CTF values of the pixels before and after that.
  • a process of excluding the CTF value of the pixel Xn as an abnormal value may be performed.
  • the “CTF value of the pixels before and after that” may be, for example, an average value of CTF (X n ) of pixels arranged in the line direction, that is, an average value of contrast of pixels in the line direction.
  • the predetermined ratio can be 10%.
  • the predetermined ratio set in advance corresponds to the “specified ratio”.
  • a process of replacing the CTF value of the pixel Xn with the average value of the CTF values of pixels that are not abnormal values out of the predetermined number of pixels before and after the pixel Xn may be performed.
  • the predetermined number of pixels may be 10 pixels.
  • the range of the predetermined number of pixels before and after corresponds to the “range of the predetermined number of surrounding pixels”.
  • the optical system of the optical reader may be an imaging lens having a single optical axis or a lens array having a plurality of optical axes.
  • a lens array having a plurality of optical axes for example, a SELFOC (registered trademark) lens array can be used.
  • an optical reading device that reads a wider range by using a plurality of optical reading devices using an imaging lens having a single optical axis may be used.
  • a two-dimensional array sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (complementary metal oxide semiconductor) image sensor, or a one-dimensional line sensor can be used.
  • An optical reader using a one-dimensional line sensor includes a scanning device that relatively moves the chart and the optical system of the optical reader to acquire a two-dimensional image of the chart.
  • the scanning device may be a transport device that transports the chart to the optical reading device.
  • P, S, and d may be described with their units omitted for ease of viewing.
  • the CTF can be obtained by using the darkest read value and the thinnest read value in the pixel range of the number of read pixels.
  • pixel ⁇ For each pixel of the read image data, attention is paid to “one pixel” (hereinafter referred to as “pixel ⁇ ”), and this is referred to as “another pixel” (hereinafter referred to as “pixel ⁇ ”).
  • the contrast is calculated with the above to obtain the contrast of light and shade stripes.
  • “Another pixel” refers to a pixel that is a predetermined number of pixels away (d) from the adjacent pixel in the stripe arrangement direction.
  • d is made as small as possible in order to reduce the calculation amount.
  • the following condition 2 is added from the viewpoint of reducing the amount of calculation.
  • the pixel ⁇ is described as “when the pixel includes the center position of the dark stripe”, but in the calculation using the pixel when the pixel ⁇ is not, the calculation result of the CTF calculation method of the present disclosure is Since it does not become a large value, it is excluded by the processing by the pixel group setting described in FIG.
  • the calculation result is the same as the pixel including the center position of the dark stripe except that the sign of the calculation result is different.
  • the processing by the pixel group setting described in FIG. 14 is not affected.
  • the length of the d pixel (d ⁇ S (mm)) d ⁇ S ⁇ P Formula [15] If so, one or more periods of gray stripes can be included between the pixel ⁇ and the pixel ⁇ that is d (pixels) away.
  • Equation [15] can be written as d ⁇ P / S, d may be “select the smallest integer among d satisfying d ⁇ P / S” from Method [15] (Method 4). ).
  • the local image height error is set not to exceed twice at most. Further, it is set so that the gray stripes at the distant positions are not subject to calculation as lens design values for the pixel ⁇ .
  • the integer d is equal to or larger than the minimum integer satisfying d ⁇ P / (2 ⁇ S) and equal to or smaller than the minimum integer satisfying d ⁇ P / S. Further, in view of the calculation amount, it is preferable to be closer to the smaller “method 1” in this range.
  • FIG. 16 is a flowchart illustrating an overall process flow related to the CTF measurement process in the inkjet printing apparatus according to the embodiment.
  • the ink jet printing apparatus according to the embodiment includes an inline scanner, and a printing process and a reading process after printing are executed as a series of operations.
  • the CTF measurement method in the inkjet printing apparatus of this example includes a print image data generation step (step S1), a print processing step (step S2), a reading processing step (step S3) executed in parallel with step S2, and a CTF. Calculation processing step (step S4).
  • step S1 Print image data generation process>
  • the inkjet printing apparatus generates print image data for printing the CTF measurement chart.
  • FIG. 17 is a flowchart showing the contents of print image data generation processing.
  • the print image data generation process shown in FIG. 17 is executed by the control device of the inkjet printing apparatus.
  • step S11 the control device acquires chart size information.
  • the chart size information includes information on the main scanning direction size and the sub scanning direction size of the chart image.
  • the chart size information may be specified in advance by a program or may be input via a user interface.
  • the chart size information may be expressed in units of millimeters or may be expressed in units of pixels based on the recording resolution.
  • step S12 the control device acquires chart arrangement coordinate information.
  • the chart arrangement coordinate information includes coordinate information for specifying the position of each of the light and dark stripes that make up the chart image.
  • the chart arrangement coordinate information includes information defining the position, length, and thickness of each stripe.
  • the chart arrangement coordinate information may be designated in advance by a program, or may be input via a user interface.
  • the coordinate axes of the chart arrangement coordinate information may be expressed in units of millimeters or may be expressed in units of pixels based on the recording resolution.
  • step S13 the control device acquires chart shading stripe interval information.
  • the chart shading stripe interval information may be specified in advance by a program, or may be input via a user interface. Further, the chart shading stripe interval may be calculated from the information of the chart arrangement coordinates acquired in step S12.
  • step S14 the control device generates print image data for chart printing. Based on the information acquired in steps S11 to S13, the control device generates print image data for chart printing for printing the CTF measurement chart defined in the information.
  • step S15 the control device stores the print image data.
  • the control device performs processing for storing the print image data for chart printing generated in step S14 in a data storage unit such as a memory.
  • step S15 When the print image data is saved in step S15, the flowchart of FIG. 17 is terminated and the process returns to the main flow of FIG.
  • ⁇ S2 Printing process>
  • the ink jet printing apparatus performs printing based on the print image data generated in the print image data generation process in step S1.
  • FIG. 18 is a flowchart showing the processing contents of the printing processing step (S2).
  • step S21 the control device sets printing conditions.
  • the printing conditions include paper type, number of printed sheets, printing mode, and the like.
  • step S22 the control device reads the print image data.
  • the control device reads the print image data saved in step S15 in FIG. 17 from the data storage unit.
  • step S23 the control device waits for a page sync input.
  • the page sync is a synchronization signal that controls the start timing of printing for one page on the recording medium.
  • the page sync is generated based on an encoder signal output from a rotary encoder that detects a rotation angle of a drum that conveys a recording medium.
  • the page sync may be generated based on a paper leading edge detection signal output from a sensor that detects the leading edge position of the recording medium.
  • control device After receiving the page sync, the control device executes printing in step S24.
  • the control device executes printing according to the print image data read in step S22.
  • step S25 the control device determines whether or not to complete printing. If printing is to be continued, the process returns to step S21, and the processes in steps S21 to S24 are repeated. If the control device determines in step S25 that printing is to be completed, the flowchart of FIG. 18 is terminated and the process returns to the main flow of FIG.
  • the printing process (S2) is an example of a chart printing process.
  • Step S3 Read Processing Step>
  • the ink jet printing apparatus reads the chart printed in the printing process (step S2) with an inline scanner.
  • FIG. 19 is a flowchart showing the processing contents of the reading processing step (step S3).
  • the control device calculates reading range coordinates to be read using an inline scanner in the recording area of the recording medium.
  • the control device calculates reading range coordinates based on the information of the chart arrangement position coordinates.
  • step S32 the control device waits for a page sync input. After receiving the page sync, the control device reads the chart image after printing in step S33. When receiving the read image data from the inline scanner, the control device performs shading correction processing on the read data in step S34.
  • step S35 the control device stores the read image data after the shading correction.
  • the read image data is stored in a data storage unit such as an internal memory and / or an external storage device of the control device.
  • Step S2 and step S3 are parallel processes, and the processes are performed in parallel. Therefore, in step S36, the control device determines whether printing has been completed. If printing continues, the process returns to step S31, and the processes of steps S31 to S36 are repeated.
  • step S36 determines in step S36 that printing has been completed. If the control device determines in step S36 that printing has been completed, the flowchart of FIG. 19 is terminated and the process returns to the main flow of FIG.
  • the reading process (step S3) is an example of a chart reading process.
  • Step S4 CTF calculation processing step>
  • the control device performs a CTF calculation process after the reading process step (step S3).
  • FIG. 20 is a flowchart showing the contents of the CTF calculation process.
  • step S41 the control device reads the read image.
  • the control device reads the read image data saved in step S35 of FIG. 19 from the data storage unit.
  • Step S41 is an example of a read image data acquisition process.
  • step S42 of FIG. 20 the control device performs contrast calculation processing using the read image data that has been read.
  • the content of the contrast calculation process will be described later.
  • step S43 the control device stores the data of the CTF calculation result calculated in the contrast calculation processing step (step S42).
  • the data of the CTF calculation result is stored in a data storage unit such as an internal memory and / or an external storage device of the control device.
  • step S44 the control device determines whether or not processing of all images has been completed. If an unprocessed image remains, the control device returns to step S41 and repeats the processing of steps S41 to S44.
  • step S44 determines in step S44 that the processing of all images has been completed.
  • Step> 21 and 22 are flowcharts showing the contents of the contrast calculation process.
  • step S51 the control device determines the pixel interval d.
  • the pixel interval d is a pixel interval that is a combination of the most distant pixels when calculating contrast between two pixels distant in the stripe arrangement direction.
  • the pixel interval d is referred to as a comparison pixel maximum interval.
  • IM (LI, CI) represents the read data of the pixel position represented by the row index LI and the column index CI.
  • FIG. 23 is an example of an image of light and shade stripes as a chart image.
  • a data array obtained by reading the vertical stripes shown in FIG. 23 is assumed to be IM (L, C).
  • L is an index representing a position in the row direction
  • C is an index representing a position in the column direction.
  • the position of the pixel of the read image is specified by (L, C).
  • FIG. 24 is a chart showing an example of the data array IM (L, C) of the read image.
  • FIG. 24 shows an example of a data array including pixels of 1 to C columns in the column direction and 1 to L rows of pixels in the row direction.
  • Step S55 is an example of a contrast calculation process between pixels.
  • FIG. 25 is an example of a CTF midway calculation array CTFT (L, C) that stores the CTF midway calculation result shown in step S55.
  • step S56 If it is determined in step S56 that CI ⁇ C ⁇ d, the process proceeds to step S57, the column index CI is incremented by “+1”, the process returns to step S54, and the processes of steps S54 to S56 are repeated.
  • step S58 If it is determined in step S58 that LI ⁇ L, the process proceeds to step S59, the row index LI is incremented by "+1", the process returns to step S53, and the processes in steps S53 to S58 are repeated.
  • FIG. 26 is a chart showing an example of the CTF calculation array CTF (BC).
  • the CTF calculation array CTF (BC) is a data array including pixels of 1 to BC columns in the column direction.
  • BC represents a value obtained by discarding the decimal part of (L-2 ⁇ d) / d.
  • BCI is an index indicating a pixel position in the range of 1 to BC.
  • step S62 in FIG. 22 the control device excludes an abnormal value from the CTFT value in the rectangular range of CTFT (1, BCI ⁇ d + 1) to CTFT (L, BCI ⁇ d + d) and has a value near 0. After excluding (for example, 0.05 or less), an average value of three values from the larger value is obtained and held in CTF (BC).
  • Step S62 is an example of a resolving power calculation step.
  • FIG. 27 shows an example of a “rectangular range” in the CTF midway calculation array.
  • a rectangular range of two columns is shown, but the rectangular range can be the range of the strip matrix described with reference to FIG.
  • FIG. 28 is a block diagram illustrating functions of a data processing apparatus that performs CTF calculation according to the resolution measurement method according to the embodiment.
  • the function of the data processing apparatus 110 shown in FIG. 28 can be incorporated in the control device of the ink jet printing apparatus.
  • Each function of the data processing device 110 can be realized by computer hardware and software.
  • the resolution evaluation method according to the present embodiment can be understood as a calculation method for measuring the CTF of the optical reader.
  • the chart 102 is used to measure CTF, the optical reading device 100 that reads the chart 102, and the data processing device 110 that performs arithmetic processing on the read image data read by the optical reading device 100. And are used.
  • the optical reader 100 optically reads the black and white shading chart 102 and generates image data of the read image.
  • the optical reading device 100 reads at least a portion of the chart 102 where the gray stripes are displayed, and generates the read gray stripe image information.
  • the gray stripe image information read by the optical reading device 100 is digitized and input to the data processing device 110. “To be digitized” means that the image information is converted into digital image data.
  • the data processing device 110 acquires image data of a read image of the chart 102 read by the optical reading device 100 and performs data processing.
  • the data processing device 110 includes a data acquisition unit 112, a data storage unit 114, a contrast calculation processing unit 116, and a data output unit 118. Further, an input device 120 and a display device 122 are connected to the data processing device 110.
  • the data acquisition unit 112 is an interface that acquires image data of a read image of the chart 102 read via the optical reading device 100.
  • the data acquisition unit 112 may be configured by any one or a combination of a data input terminal, a communication interface, and a media interface.
  • the data acquisition unit 112 is an example of a read image data acquisition unit.
  • the data storage unit 114 includes a storage device such as a memory and / or a hard disk.
  • the data storage unit 114 includes a read image storage unit 132, an inter-pixel CTF storage unit 134, and a CTF calculation result storage unit 136.
  • the read image storage unit 132 stores the data array IM (L, C) of the read image described with reference to FIG.
  • the inter-pixel CTF storage unit 134 stores the CTF intermediate calculation array CTFT (L, C) described in FIG.
  • the CTF calculation result storage unit 136 stores the CTF calculation array CTF (BC) described in FIG.
  • Each of the read image storage unit 132, the inter-pixel CTF storage unit 134, and the CTF calculation result storage unit 136 may be a storage area in one storage device, or may be a different storage device. .
  • the contrast calculation processing unit 116 executes the contrast calculation processing described with reference to FIG.
  • the contrast calculation processing unit 116 includes a pixel interval determination unit 142, an inter-pixel CTF calculation unit 144, and a CTF calculation unit 146.
  • the pixel interval determination unit 142 determines the pixel interval d with the pixel farthest from the pixels to be compared when obtaining the inter-pixel CTF.
  • the pixel interval determination unit 142 determines an appropriate d based on the stripe interval of the chart. d may be defined in advance by a program, or may be determined based on information appropriately designated by the user through the input device 120.
  • the inter-pixel CTF calculation unit 144 executes the process of step S55 in FIG.
  • the inter-pixel CTF calculation unit 144 is an example of an inter-pixel contrast calculation unit.
  • the calculation result of the inter-pixel CTF calculation unit 144 is stored in the inter-pixel CTF storage unit 134.
  • the CTF calculation unit 146 executes the process of step S62 in FIG.
  • the CTF calculator 146 is an example of a resolving power calculator.
  • the calculation result of the CTF calculation unit 146 is stored in the CTF calculation result storage unit 136.
  • the data output unit 118 is an interface that outputs each data stored in the data storage unit 114 to a processing unit inside the data processing device 110 or to the outside of the device.
  • the input device 120 can employ various input devices such as a keyboard, a mouse, a touch panel, and a trackball, and may be an appropriate combination thereof.
  • various display devices such as a liquid crystal display can be employed.
  • the input device 120 and the display device 122 function as a user interface. The user can set various parameters and input and edit various information using the input device 120 while confirming the content displayed on the screen of the display device 122.
  • the display device 122 functions as a measurement result information providing unit that provides the CTF measurement result to the user.
  • the display device 122 displays CTF measurement result information and / or evaluation result information.
  • the data processing device 110 is an example of a resolution measuring device.
  • the data processing device 110 has a function of inputting information on the stripe interval of light and shade stripes from the outside, or a function of detecting a predetermined interval from the read image.
  • the data processing device 110 converts the acquired value of the stripe interval into the number of pixels in the read image of light and shade stripes.
  • the fringe interval expressed by the number of pixels in the read image is called the fringe interval pixel number.
  • the pixel that is the furthest away pixel in the stripe arrangement direction Specifies the inter-distance (maximum comparison pixel interval).
  • the comparison pixel maximum interval is represented by the number of pixels, and is set to a value that is 1 or more and less than or equal to the stripe interval pixel number.
  • the comparison pixel maximum interval is a specific number of pixels, and this is d [pixel].
  • the data processing apparatus 110 is separated in the stripe interval direction by the number m of pixels not less than 1 and not more than d with respect to at least some pixels Xn of the read image. to calculate the inter-pixel CTF between the pixel, the contrast value of each pixel X n from the maximum value of those (CTF (X n)) and was determined and calculated for each pixel X n CTF (X n) The CTF at each fringe position is calculated from the maximum value.
  • the data processing device 110 is an example of a resolution measuring device. Note that “1 or more and d or less” means one or more and a specific number of pixels or less.
  • the CTF is calculated for the pixels in the entire reading range of the optical reading device 100 by the above-described method, and based on the calculation result, it is determined whether the CTF is within a predetermined range defined by the optical reading device. It is possible to determine whether or not the focus state is normal.
  • the data processing apparatus 110 performs a process of determining the focus state of the optical reading apparatus 100 from the CTF calculation result, and causes the display apparatus 122 to display the determination result.
  • FIG. 29 is a side view illustrating the configuration of the inkjet printing apparatus 201 according to the embodiment.
  • the ink jet printing apparatus 201 is an example of a printing apparatus.
  • the ink jet printing apparatus 201 includes a paper feed unit 210, a treatment liquid application unit 220, a treatment liquid drying unit 230, a drawing unit 240, an ink drying unit 250, and an accumulation unit 260.
  • the paper feeding unit 210 automatically feeds the paper P one by one.
  • the paper feeding unit 210 includes a paper feeding device 212, a feeder board 214, and a paper feeding drum 216.
  • the type of the paper P is not particularly limited. For example, printing paper mainly composed of cellulose, such as high-quality paper, coated paper, and art paper, can be used.
  • the paper P corresponds to one form of a medium on which an image is recorded.
  • the paper P is placed on the paper feed table 212A in a bundled state in which a large number of sheets are stacked.
  • the sheet feeding device 212 takes out the bundled sheets P set on the sheet feeding table 212A one by one from the top and feeds them to the feeder board 214.
  • the feeder board 214 conveys the paper P received from the paper feeding device 212 to the paper feeding drum 216.
  • the paper supply drum 216 receives the paper P fed from the feeder board 214 and conveys the received paper P to the processing liquid application unit 220.
  • the processing liquid application unit 220 applies the processing liquid to the paper P.
  • the treatment liquid is a liquid having a function of aggregating, insolubilizing or increasing the viscosity of the color material component in the ink.
  • the treatment liquid application unit 220 includes a treatment liquid application drum 222 and a treatment liquid application device 224.
  • the processing liquid application drum 222 receives the paper P from the paper supply drum 216 and transfers the received paper P to the processing liquid drying unit 230.
  • the treatment liquid coating drum 222 includes a gripper 223 on the peripheral surface, and the gripper 223 grips and rotates the leading end portion of the paper P, so that the paper P is wound around the peripheral surface and conveyed.
  • the processing liquid coating device 224 applies the processing liquid to the paper P conveyed by the processing liquid coating drum 222.
  • the treatment liquid is applied with a roller.
  • the processing liquid drying unit 230 performs a drying process on the paper P coated with the processing liquid.
  • the processing liquid drying unit 230 includes a processing liquid drying drum 232 and a hot air blower 234.
  • the processing liquid drying drum 232 receives the paper P from the processing liquid coating drum 222 and transfers the received paper P to the drawing unit 240.
  • the treatment liquid drying drum 232 includes a gripper 233 on the peripheral surface. The treatment liquid drying drum 232 conveys the paper P by gripping and rotating the leading end of the paper P with the gripper 233.
  • the hot air blower 234 is installed inside the processing liquid drying drum 232.
  • the hot air blower 234 blows hot air onto the paper P conveyed by the processing liquid drying drum 232 to dry the processing liquid.
  • the drawing unit 240 includes a drawing drum 242, a head unit 244, and an inline scanner 248.
  • the drawing drum 242 receives the paper P from the treatment liquid drying drum 232 and transfers the received paper P to the ink drying unit 250.
  • the drawing drum 242 includes a gripper 243 on the circumferential surface, and grips and rotates the leading edge of the paper P with the gripper 243, whereby the paper P is wound around the circumferential surface and conveyed.
  • the drawing drum 242 includes a suction mechanism (not shown), and transports the paper P wound around the peripheral surface while attracting the peripheral surface to the peripheral surface. A negative pressure is used for the adsorption.
  • the drawing drum 242 has a large number of suction holes on the peripheral surface, and sucks the paper P onto the peripheral surface by suction from the inside through the suction holes.
  • the head unit 244 includes inkjet heads 246C, 246M, 246Y, and 246K.
  • the inkjet head 246C is a recording head that discharges cyan (C) ink droplets.
  • the ink-jet head 246M is a recording head that ejects magenta (M) ink droplets.
  • the inkjet head 246Y is a recording head that discharges yellow (Y) ink droplets.
  • the ink jet head 246K is a recording head that ejects black (K) ink droplets.
  • Ink is supplied to each of the inkjet heads 246C, 246M, 246Y, and 246K from an ink tank (not shown) that is an ink supply source of a corresponding color via a pipe path (not shown).
  • Each of the inkjet heads 246 ⁇ / b> C, 246 ⁇ / b> M, 246 ⁇ / b> Y, and 246 ⁇ / b> K is configured by a line head corresponding to the paper width, and each nozzle surface is disposed to face the peripheral surface of the drawing drum 242.
  • the paper width here refers to the paper width in a direction orthogonal to the conveyance direction of the paper P.
  • the inkjet heads 246C, 246M, 246Y, and 246K are arranged at a constant interval along the conveyance path of the paper P by the drawing drum 242.
  • a plurality of nozzles serving as ink ejection openings are two-dimensionally arranged on the nozzle surfaces of the inkjet heads 246C, 246M, 246Y, and 246K.
  • “Nozzle surface” refers to an ejection surface on which nozzles are formed, and is synonymous with terms such as “ink ejection surface” or “nozzle formation surface”.
  • a nozzle arrangement of a plurality of nozzles arranged two-dimensionally is called a “two-dimensional nozzle arrangement”.
  • Each of the inkjet heads 246C, 246M, 246Y, and 246K can be configured by connecting a plurality of head modules in the paper width direction.
  • Each of the inkjet heads 246C, 246M, 246Y, and 246K has a nozzle row that can record an image with a specified recording resolution in one scan of the entire recording area of the paper P in the paper width direction orthogonal to the transport direction of the paper P.
  • a full-line type recording head is also called a page wide head.
  • the specified recording resolution may be a recording resolution determined in advance by the ink jet printing apparatus 201, or may be a recording resolution set by user selection or by automatic selection by a program corresponding to the printing mode. Also good.
  • the recording resolution can be set to 1200 dpi, for example.
  • the paper width direction perpendicular to the paper P transport direction may be referred to as the nozzle row direction of the line head, and the paper P transport direction may be referred to as the nozzle row vertical direction.
  • the projection nozzle array in which the nozzles in the two-dimensional nozzle array are projected (orthographically projected) along the nozzle array direction achieves the maximum recording resolution in the nozzle array direction.
  • the nozzle density is equivalent to a single nozzle row in which each nozzle is arranged at approximately equal intervals.
  • the “substantially equidistant” means that the droplet ejection points that can be recorded by the ink jet printing apparatus are substantially equidistant.
  • the concept of “equally spaced” also includes cases where the intervals are slightly different in consideration of manufacturing errors and movement of droplets on the medium due to landing interference.
  • a nozzle number representing a nozzle position can be associated with each nozzle in the arrangement order of the projection nozzles arranged along the nozzle row direction.
  • the nozzle arrangement form in each of the inkjet heads 246C, 246M, 246Y, and 246K is not limited, and various nozzle arrangement forms can be adopted.
  • a linear array of lines, a V-shaped nozzle array, a polygonal nozzle array such as a W-shape with a V-shaped array as a repeating unit, and the like are also possible. It is.
  • Ink droplets are ejected from the inkjet heads 246C, 246M, 246Y, and 246K toward the paper P conveyed by the drawing drum 242, and the ejected liquid droplets adhere to the paper P, whereby an image is formed on the paper P. To be recorded.
  • the drawing drum 242 functions as a means for relatively moving the inkjet heads 246C, 246M, 246Y, 246K and the paper P.
  • the drawing drum 242 moves the paper P relative to the inkjet heads 246C, 246M, 246Y, and 246K, and corresponds to one form of relative moving means.
  • the ejection timings of the ink jet heads 246C, 246M, 246Y, and 246K are synchronized with a rotary encoder signal obtained from a rotary encoder installed on the drawing drum 242. 29, the rotary encoder is not shown, and is illustrated as a rotary encoder 382 in FIG.
  • the ejection timing is the timing at which ink droplets are ejected, and is synonymous with the droplet ejection timing.
  • CMYK standard colors four colors
  • the combination of ink colors and the number of colors is not limited to this embodiment, and light ink, dark ink, and special color ink are used as necessary. Etc. may be added.
  • an inkjet head that ejects light-colored inks such as light cyan and light magenta
  • an inkjet head that ejects special color inks such as green and orange.
  • the arrangement order of the heads is not particularly limited.
  • the inkjet heads 246C, 246M, 246Y, and 246K are examples of image forming units.
  • the in-line scanner 248 is an optical reading device that optically reads an image recorded on the paper P by the ink jet heads 246C, 246M, 246Y, and 246K and generates electronic image data indicating the read image.
  • the inline scanner 248 includes an imaging device that captures an image recorded on the paper P and converts it into an electrical signal indicating image information.
  • the inline scanner 248 may include an imaging optical device, an illumination optical system that illuminates a reading target, and a signal processing circuit that processes a signal obtained from the imaging device and generates digital image data.
  • the inline scanner 248 is composed of, for example, a line scanner using a CCD line sensor.
  • the inline scanner 248 corresponds to the optical reading device 100 shown in FIG.
  • the inline scanner 248 is preferably configured to be able to read a color image.
  • a color CCD linear image sensor is used as an imaging device.
  • the color CCD linear image sensor is an image sensor in which light receiving elements having color filters of R (red), G (green), and B (blue) colors are arranged linearly.
  • a color CMOS linear image sensor can be used.
  • the inline scanner 248 reads an image on the paper P while the paper P is being conveyed by the drawing drum 242.
  • the drawing drum 242 serves as a scanning device that relatively moves the inline scanner 248 and the chart.
  • CTF measurement is performed based on the data of the read image read by the inline scanner 248. Further, based on the data of the read image read by the in-line scanner 248, information such as image density and ejection defects of the inkjet heads 246C, 246M, 246Y, and 246K can be obtained.
  • the ink drying unit 250 performs a drying process on the paper P on which the image is recorded by the drawing unit 240.
  • the ink drying unit 250 includes a chain delivery 310, a paper guide 320, and a hot air blowing unit 330.
  • the chain delivery 310 receives the paper P from the drawing drum 242 and transfers the received paper P to the stacking unit 260.
  • the chain delivery 310 includes a pair of endless chains 312 that travel along a prescribed travel route, and grips the leading end of the paper P with a gripper 314 provided on the pair of chains 312 to convey the paper P in a prescribed manner. Transport along the route.
  • a plurality of grippers 314 are provided in the chain 312 at regular intervals.
  • the paper guide 320 is a member that guides the conveyance of the paper P by the chain delivery 310.
  • the paper guide 320 includes a first paper guide 322 and a second paper guide 324.
  • the first paper guide 322 guides the paper P that is transported in the first transport section of the chain delivery 310.
  • the second sheet guide 324 guides the sheet conveyed in the second conveyance section subsequent to the first conveyance section.
  • the hot air blowing unit 330 blows hot air on the paper P conveyed by the chain delivery 310.
  • the stacking unit 260 includes a stacking device 262 that receives and stacks the paper P conveyed from the ink drying unit 250 by the chain delivery 310.
  • the chain delivery 310 releases the paper P at a predetermined stacking position.
  • the stacking device 262 includes a stacking tray 262A, receives the paper P released from the chain delivery 310, and stacks the sheets P on the stacking tray 262A.
  • the stacking unit 260 corresponds to a paper discharge unit.
  • FIG. 30 is a block diagram illustrating a main configuration of a control system of the inkjet printing apparatus 201.
  • the ink jet printing apparatus 201 is controlled by the control apparatus 202.
  • the control device 202 includes a system controller 350, a communication unit 352, a display device 122, an input device 120, an image processing unit 358, a CTF measurement device 360, a conveyance control unit 362, an image recording control unit 364, Is provided. These elements of each part can be realized by one or a plurality of computers. That is, the control device 202 can be configured by a combination of computer hardware and software.
  • the system controller 350 functions as a control unit that performs overall control of each unit of the ink jet printing apparatus 201 and also functions as a calculation unit that performs various calculation processes.
  • the system controller 350 includes a CPU (Central Processing Unit) 370, a ROM (read-only memory) 372, and a RAM (random access memory) 374, and operates according to a predetermined program.
  • the ROM 372 stores programs executed by the system controller 350 and various data necessary for control.
  • the communication unit 352 includes a required communication interface.
  • the inkjet printing apparatus 201 is connected to a host computer (not shown) via the communication unit 352, and can send and receive data to and from the host computer.
  • the “connection” here includes a wired connection, a wireless connection, or a combination thereof.
  • the communication unit 352 may be equipped with a buffer memory for speeding up communication.
  • the communication unit 352 serves as an image input interface unit for acquiring image data representing an image to be printed.
  • the image processing unit 358 performs various conversion processes, correction processes, and halftone processes on image data to be printed.
  • the conversion process includes pixel number conversion, gradation conversion, color conversion, and the like.
  • the correction processing includes density correction, non-ejection correction for suppressing the visibility of image defects due to non-ejection nozzles, and the like.
  • the image processing unit 358 performs correction processing based on the read image obtained from the inline scanner 248.
  • the halftone process is a digital halftoning process represented by a dither method or an error diffusion method. Further, the image processing unit 358 generates print image data for printing a chart used for CTF measurement.
  • the CTF measuring device 360 is equivalent to the device configuration of the data processing device 110 described in FIG.
  • the function of the CTF measurement device 360 may be configured by a computer different from the control device including the system controller 350, or may be included as a functional block in the control device including the system controller 350. Good.
  • the transport control unit 362 controls the medium transport mechanism 380.
  • the medium transport mechanism 380 includes the entire mechanism of the paper transport unit related to transport of the paper P from the paper feed unit 210 to the stacking unit 260 described in FIG.
  • the medium transport mechanism 380 includes the paper feed drum 216, the processing liquid coating drum 222, the processing liquid drying drum 232, the drawing drum 242, the chain delivery 310, and the like described with reference to FIG.
  • the medium transport mechanism 380 includes a drive unit such as a motor and a motor drive circuit (not shown) as a power source.
  • the conveyance control unit 362 controls the medium conveyance mechanism 380 in accordance with a command from the system controller 350 so as to convey the paper P from the paper feeding unit 210 to the stacking unit 260.
  • the inkjet printing apparatus 201 includes a rotary encoder 382 as means for detecting the rotation angle of the drawing drum 242 (see FIG. 29) in the medium transport mechanism 380.
  • the ink jet heads 246C, 246M, 246Y, and 246K each have a discharge timing controlled according to a discharge timing signal generated from a rotary encoder signal output from the rotary encoder 382.
  • the image recording control unit 364 controls each drive of the ink jet heads 246C, 246M, 246Y, and 246K in accordance with a command from the system controller 350.
  • the image recording control unit 364 records the predetermined image on the paper P conveyed by the drawing drum 242 based on the dot data of each ink color generated through the halftone process of the image processing unit 358.
  • Each discharge operation of 246C, 246M, 246Y, and 246K is controlled.
  • the image recording control unit 364 performs control for printing a chart used for CTF measurement.
  • the control device 202 includes a storage device such as a hard disk drive (not shown).
  • the storage device can store a program executed by the CPU 370 and various types of data necessary for calculation.
  • the storage device may be built in the control device 202 or may be configured to be connected to the control device 202 via a communication line.
  • the hardware structure of a processing unit (processing unit) that executes various processes such as the image recording control unit 364, the image processing unit 358, and the CTF measuring apparatus 360 includes, for example, various processors (processors) as shown below. ).
  • processors that can change their circuit configuration after manufacturing, such as a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array) that is a general-purpose processor that functions as various processing units by executing programs. Examples include a dedicated electric circuit that is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (PLD) and an ASIC (Application Specific Integrated Circuit).
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types.
  • one processing unit may be configured by a plurality of FPGAs or a combination of a CPU and an FPGA.
  • the plurality of processing units may be configured by one processor.
  • configuring a plurality of processing units with one processor first, as represented by a computer such as a client or a server, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units.
  • SoC system-on-chip
  • a form of using a processor that implements the functions of the entire system including a plurality of processing units with a single IC (integrated circuit) chip. is there.
  • various processing units are configured using one or more of the various processors as a hardware structure.
  • circuitry circuitry in which circuit elements such as semiconductor elements are combined.
  • An ejector of an inkjet head includes a nozzle that discharges liquid, a pressure chamber that communicates with the nozzle, and a discharge energy generating element that applies discharge energy to the liquid in the pressure chamber.
  • the means for generating the ejection energy is not limited to the piezoelectric element, and various ejection energy generating elements such as a heating element and an electrostatic actuator can be applied.
  • Corresponding ejection energy generating elements are provided in the flow path structure according to the ejection method of the inkjet head.
  • an accurate CTF can be obtained by a simple algorithm that combines contrast calculation of each pixel and maximum value search.
  • the CTF is obtained even when the line width or drawing resolution of the chart is close to the resolution of the read pixel and the read data changes periodically depending on the phase of the read position. be able to.
  • the density and / or width of the CTF measurement chart line slightly changes due to variations in the ink discharge amount of the inkjet head that records each line. If the ink discharge amount is small, the darkness becomes light and the width becomes narrow.
  • the above-described dispersion effect of the ink discharge amount affects the CTF calculation result. That is, if the ink discharge amount is small, the CTF calculation result is small.
  • FIG. 31 is a graph showing an example of the CTF calculated from the read image data of the chart printed using the ink jet printing apparatus 201.
  • the horizontal axis represents the pixel number of the reading sensor (imaging sensor) of the optical reader, and the vertical axis represents the CTF value.
  • the discontinuous portion is a boundary portion between two head modules in a line-type inkjet head configured by connecting a plurality of head modules. There is a difference in the ink discharge amount between the head modules, and the difference appears in the CTF calculation result at the boundary between the two head modules.
  • the CTF of the optical reading device is high or low within the reading range, but it does not change rapidly locally unless there is a lens striae (defect due to nonuniformity of glass components). Therefore, the local non-uniformity of the ink discharge amount of each head module can be captured from the CTF calculation result as shown in FIG.
  • the process which excludes as an abnormal value and / or smoothing processes, such as a moving average, is processed into the data according to the purpose of use suitably May be.
  • the control device 202 functioning as the data processing device 110 includes a detection processing unit that performs processing for detecting local non-uniformity in the ink ejection amount of the head module in the line-type inkjet head using the CTF calculation result. Also good.
  • the process for detecting the local non-uniformity of the ink discharge amount includes at least one of the detection process of the variation in the ink discharge amount and the non-discharge detection.
  • the chart is not limited to black and white stripes, as long as at least a part of the image area to be read includes light and shade stripes.
  • the gray stripes can be applied as white red stripes, white blue stripes, white green stripes, white cyan stripes, white magenta stripes, or white yellow stripes.
  • a chart may be printed for each ink color used in the printing apparatus.
  • the CTF can be calculated by applying the CTF measurement method of the present disclosure.
  • One chart may include a plurality of gray stripes having different stripe intervals. That is, the first gray stripe with the stripe interval P1 and the second gray stripe with the stripe interval P2 may be included in one chart.
  • the direction of the light and shade stripes displayed on the chart is not limited to the vertical stripes, and may be horizontal stripes, or both vertical stripes and horizontal stripes.
  • the first shading stripe may be a vertical stripe
  • the second shading stripe may be a horizontal stripe.
  • the CTF can be calculated by the CTF measurement method of the present disclosure for each of the first and the second light and shade stripes.
  • the line direction of the vertical stripe is an example of the first direction
  • the line direction of the horizontal stripe is an example of the second direction.
  • the single-pass inkjet printing apparatus has been described as an example of the printing apparatus.
  • the present invention can be applied to various forms of printing apparatuses.
  • the present invention can be applied to a multi-scan ink jet printing apparatus that forms an image by reciprocating a short ink jet head.
  • the means for forming an image on a recording medium in the practice of the present invention is not limited to an ink jet printing apparatus, but may be an electrophotographic apparatus or a plate type printing apparatus such as an offset printing apparatus.
  • ⁇ Modification 4 The configuration of the data processing apparatus 110 illustrated in FIG. 28 can be grasped as a resolution measuring apparatus that performs a calculation process of CTF measurement separately from the printing apparatus.
  • the configuration of the control device 202 illustrated in FIG. 30 can be understood as one form of the resolution measuring device.
  • a program for causing a computer to function is recorded on an optical disk, a magnetic disk, or other computer-readable medium (a non-transitory information storage medium that is a tangible object), It is possible to provide a program through this information storage medium.
  • the program data can be provided as a download service using a communication network such as the Internet.
  • the function of the resolution measuring device can be realized by the computer.
  • a mode in which a part or all of a program for realizing control of the printing apparatus including the CTF calculation processing function described in the present embodiment is incorporated in a host control apparatus such as a host computer, or operation of the CPU of the printing apparatus It is also possible to apply as a program.
  • Paper is a medium used for image recording, and is included in the concept of a recording medium.
  • the term “recording medium” is a collective term for a variety of terms such as recording paper, printing paper, printing medium, printing medium, printing medium, image forming medium, image forming medium, image receiving medium, and ejection medium.
  • the material, shape, and the like of the recording medium are not particularly limited, and various sheet bodies can be used regardless of the sealing paper, resin sheet, film, cloth, nonwoven fabric, and other materials and shapes.
  • the recording medium is not limited to a single sheet medium, and may be a continuous medium such as continuous paper. Further, the sheet recording medium is not limited to a cut sheet that is preliminarily adjusted to a predetermined size, and may be obtained by cutting a continuous medium to a predetermined size at any time.
  • printing apparatus is synonymous with terms such as a printing press, a printer, a printing apparatus, a printing apparatus, an image forming apparatus, an image recording apparatus, an image output apparatus, or a drawing apparatus.
  • Image is to be interpreted in a broad sense and includes color images, black and white images, single color images, gradation images, uniform density (solid) images, and the like.
  • the “image” is not limited to a photographic image, but is used as a comprehensive term including a pattern, a character, a symbol, a line drawing, a mosaic pattern, a color painting pattern, other various patterns, or an appropriate combination thereof.
  • Image recording includes the concept of terms such as image formation, printing, printing, drawing, and printing.
  • Print includes the concept of digital printing based on digital data.
  • orthogonal or “perpendicular” refers to a case of intersecting at an angle of substantially 90 ° in an aspect of intersecting at an angle of less than 90 ° or greater than 90 °.
  • parallel includes a permissible range that can be treated as substantially parallel.
  • the image height is a value representing the image position in terms of the distance from the optical axis on the evaluation surface of the optical system (usually, the in-focus position on the imaging surface).
  • the image height includes an ideal image height and a real image height.
  • the imaginary height is an ideal image height that can be obtained by paraxial magnification.
  • the image height of a normal optical system deviates from the ideal image height due to lens aberration.
  • the real image height is a position where an image is actually formed on the evaluation surface, and is an image height including aberration.
  • the paraxial magnification is defined as follows.
  • Paraxial magnification ⁇ Lens magnification obtained by paraxial ray tracing.
  • Distortion and distortion are optical aberrations, and are geometric distortion (position error) of an image. Distortion and distortion are caused by the fact that the magnification of an image changes depending on the location, resulting in an image height error. Simply, there are a pincushion type (positive distortion aberration) and a barrel type (negative distortion aberration).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ink Jet (AREA)

Abstract

Provided are a resolving power measurement method and device, program, and printing device that make it possible to calculate a contrast transfer function using a relatively simple algorithm even if a chart has a missing line. In the present invention, a chart including dark and light stripes having concentration profiles that change in rectangular shapes at a prescribed interval is read by an optical reader. For each pixel in a range for calculation in image data for the read image, the interpixel contrasts between the pixel and each pixel removed from the pixel by 1 to d pixels in the stripe interval direction are calculated. The contrast transfer function for each stripe position in the dark and light stripes is calculated from the maximum values from among the contrast values calculated for each pixel.

Description

解像力測定方法及び装置、プログラム並びに印刷装置Resolution measuring method and apparatus, program, and printing apparatus
 本発明は、解像力測定方法及び装置、プログラム並びに印刷装置に係り、特に、光学読取装置のコントラスト伝達関数(CTF:Contrast Transfer Function)の測定に好適なデータ処理技術に関する。 The present invention relates to a resolution measuring method and apparatus, a program, and a printing apparatus, and more particularly, to a data processing technique suitable for measuring a contrast transfer function (CTF) of an optical reading apparatus.
 光学読取装置の解像力を測定する方法の1つとして、白黒縞のように濃度端面が矩形状に変化する矩形波パターンを含むCTF測定用チャートを光学読取装置によって読み取り、得られた読取画像のデータからCTF特性を解析する方法が知られている(特許文献1及び特許文献2)。 As one of the methods for measuring the resolving power of the optical reader, data of the read image obtained by reading a CTF measurement chart including a rectangular wave pattern in which the density end face changes into a rectangular shape such as black and white stripes by the optical reader. A method for analyzing CTF characteristics is known (Patent Document 1 and Patent Document 2).
 一般に、CTF測定用チャートの読取画像のデータを処理してCTF値を求める場合、CTF測定用チャートの読取画像のデータから、読取値の最大値と最小値(つまり、白黒のピークとボトム)を求め、次式に示すMichelsonコントラストの定義式を用いてCTF値を計算する。 Generally, when the CTF value is obtained by processing the read image data of the CTF measurement chart, the maximum value and the minimum value (that is, black and white peak and bottom) of the read value are obtained from the read image data of the CTF measurement chart. The CTF value is calculated using the Michelson contrast definition formula shown below.
 CTF=(Max-Min)/(Max+Min)    式[1]
 式[1]中のMaxは読取値の最大値であり、Minは読取値の最小値である。
CTF = (Max−Min) / (Max + Min) Equation [1]
In Expression [1], Max is the maximum value of the reading value, and Min is the minimum value of the reading value.
特開2007-259360号公報JP 2007-259360 A 特開2007-158846号公報JP 2007-158846 A
 CTFを測定するために用意された専用のCTF測定用チャートのように、白黒縞に関して欠陥のないチャートを用い、チャートの細かさよりも十分に高い読取解像度の光学読取装置を用いてチャートを読み取る場合には、読取画像のデータから読取値の最大値及び最小値の探索が必要な程度で、CTFの計算処理は難しくない。 When reading a chart using an optical reader having a reading resolution sufficiently higher than the fineness of the chart, using a chart free of defects in black and white stripes, such as a dedicated CTF measurement chart prepared for measuring CTF However, the CTF calculation process is not difficult to the extent that it is necessary to search for the maximum value and the minimum value of the read value from the read image data.
 しかし、例えば、インクジェット印刷装置に搭載されているインラインスキャナの性能状態を市場において検査する場合に、そのインクジェット印刷装置の印刷機能を用いて印刷したチャートからCTFを測定するには、下記の課題1~3に示すように、通常のCTF測定とは異なる課題がある。 However, for example, when inspecting the performance state of an inline scanner mounted on an inkjet printing apparatus in the market, in order to measure CTF from a chart printed using the printing function of the inkjet printing apparatus, the following problem 1 As shown in (3) to (3), there are problems different from those of normal CTF measurement.
 課題1:インクジェットヘッドにおける複数のノズルのうち、吐出しない不吐ノズルが存在し、チャートの線欠けが発生する場合がある。チャートの線欠けには、一部の線が欠落する場合の他、線が細くなったり、或いは、線が短くなったりなど、線の一部分が欠ける場合があり得る。 Problem 1: There are undischargeable nozzles that do not discharge among a plurality of nozzles in an ink jet head, and line missing of a chart may occur. In addition to a case where a part of the line is missing, a part of the line may be missing, such as a thin line or a shortened line.
 課題2:インクジェット印刷装置を用いて描画するチャートの線幅、若しくは描画解像度と、インラインスキャナにおける読取画素の解像度(読取解像度)とが近い関係にあると、チャートの読取位置の位相によって読取データは周期的に変化する。具体的には、線幅と読取画素の大きさが近いと、線が2つの読取画素に跨った場合には、濃度が薄い線として読み取られる。このような読取値をつかって直接にCTF値を算出すると、CTF値が小さくなり、正確なCTF値を求めることができない。なお、チャートにおける縞の位置と読取画素との位置関係の位相によって読取データが周期的に変化する現象はモアレ現象と呼ばれる。 Problem 2: When the line width or drawing resolution of a chart drawn using an inkjet printing apparatus is close to the resolution of the reading pixel (reading resolution) in the in-line scanner, the read data depends on the phase of the reading position of the chart. Change periodically. Specifically, when the line width is close to the size of the reading pixel, the line is read as a thin line when the line straddles two reading pixels. If the CTF value is directly calculated using such a reading value, the CTF value becomes small and an accurate CTF value cannot be obtained. A phenomenon in which the read data periodically changes depending on the phase of the positional relationship between the stripe position and the read pixel in the chart is called a moire phenomenon.
 課題3:インクジェット印刷装置では、ジョブの実行中、又は、ジョブの開始前、若しくはジョブ間において、インクジェットヘッドの各ノズルの吐出状態を検査するためのノズル検査用チャートが描画される。ノズル検査用チャートの描画結果から、不吐、吐出曲がり、又は滴量異常などの吐出不良を検知することができる。ノズル検査用チャートは、例えば、いわゆる1オンNオフ型のラダーチャートであり、個々のノズルが単独で描画するラインパターンを含む。例えば、シングルパス方式のインクジェット印刷装置によって描画されるノズル検査用チャートでは、ライン型インクジェットヘッドのノズル並び方向である主走査方向に隣接するノズルによって描画した線が、主走査方向に1画素ずれて隣接して描画される。このようなノズル検査用チャートをCTF測定用チャートに利用しようとする場合、隣り合うノズルによって描画された線と線とが近接している部分(階段状に描画されたラインパターンの段のつなぎ目部分)では、線幅が広くなったような状態になっているため、インラインスキャナによる読取値が線幅の影響を受けた値になる。したがって、正確なCTF値を求めるには、この線と線とが近接している部分(つなぎ目部分)の読取データによる影響を除外することが望ましい。読取画像から一部の特定箇所のデータを除外しながら計算処理を進めようとすると、アルゴリズムが複雑になる。 Problem 3: In the ink jet printing apparatus, a nozzle inspection chart for inspecting the ejection state of each nozzle of the ink jet head is drawn during execution of a job, before the start of a job, or between jobs. From the drawing result of the nozzle test chart, it is possible to detect ejection failure such as undischarge, ejection bending, or drop volume abnormality. The nozzle inspection chart is, for example, a so-called 1-on-N-off type ladder chart, and includes a line pattern drawn individually by each nozzle. For example, in a nozzle inspection chart drawn by a single-pass inkjet printing apparatus, a line drawn by a nozzle adjacent to the main scanning direction that is the nozzle arrangement direction of the line-type inkjet head is shifted by one pixel in the main scanning direction. It is drawn adjacent. When such a nozzle inspection chart is to be used as a CTF measurement chart, a line drawn by adjacent nozzles is close to the line (a joint part of steps of a line pattern drawn in a staircase pattern) ), Since the line width is in a wide state, the read value by the in-line scanner becomes a value affected by the line width. Therefore, in order to obtain an accurate CTF value, it is desirable to exclude the influence of the read data on the portion where the line is close (joint portion). If the calculation process is advanced while excluding some specific data from the read image, the algorithm becomes complicated.
 上述の課題1~3は、インラインスキャナについて顕著な課題である一方、インラインスキャナに限らず、オフラインスキャナも含む各種の光学読取装置に共通の課題である。また、課題1は、インクジェット印刷装置についての課題であるが、インクジェット方式以外の画像形成方式においても、何らかの要因により、チャートの線が欠ける可能性がある。したがって、各種方式の印刷装置について、課題1に類する課題がある。 The above-mentioned problems 1 to 3 are remarkable problems for the inline scanner, but are common to various optical reading apparatuses including not only the inline scanner but also an offline scanner. Further, Problem 1 is a problem regarding the ink jet printing apparatus. However, even in an image forming method other than the ink jet method, the chart line may be lost due to some factor. Therefore, there is a problem similar to the problem 1 for various types of printing apparatuses.
 本発明はこのような事情に鑑みてなされたもので、上述した複数の課題のうち少なくとも1つの課題を、比較的簡単なアルゴリズムによって解決でき、正確なCTFを算出することができる解像力測定方法及び装置、プログラム、並びに印刷装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a resolution measuring method capable of solving at least one of the plurality of problems described above by a relatively simple algorithm and calculating an accurate CTF, and An object is to provide an apparatus, a program, and a printing apparatus.
 課題を解決するために、次の発明態様を提供する。 In order to solve the problem, the following aspects of the invention are provided.
 態様1に係る解像力測定方法は、少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データを取得する読取画像データ取得工程と、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出工程と、画素間コントラスト算出工程によって画素ごとに算出されたコントラストの値の最大値から、濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出工程と、を含み、特定画素数は、読取画像の画像データにおいて濃淡縞の特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、特定画素数をd、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、画素間コントラスト算出工程は、次式、
 CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
 に従って、画素間のコントラストを算出する処理と、画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、を含む。
The resolution measurement method according to aspect 1 is a read image that obtains image data of a read image obtained by reading a chart including light and shade fringes in which a density cross section changes into a rectangular shape at a specific interval at least in part. Between the data acquisition step and the pixels that belong to at least a part of the calculation target range in the image data of the read image, and pixels that are separated by a number of pixels that is greater than or equal to 1 and less than or equal to the specific number of pixels in the grayscale stripe interval A pixel-to-pixel contrast calculation step for calculating the contrast between pixels and a resolving power calculation for calculating a contrast transfer function at each stripe position of the gray stripes from the maximum contrast value calculated for each pixel by the pixel-to-pixel contrast calculation step. The specific pixel number is a pixel number corresponding to the specific interval of the gray stripes in the image data of the read image. A pixel number that is defined as the number of pixels that satisfies the condition below and satisfying one or more, d is the specific pixel number, and represents the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range of the image data of the read image and n, the value of pixel X n represented by the pixel number n X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 When taking an integer value satisfying ≦ m ≦ d or −d ≦ m ≦ −1, the inter-pixel contrast calculating step has the following formula:
CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
Accordingly, a process for calculating the contrast between the pixels and a process for obtaining the maximum value among the CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n are included.
 態様1によれば、画素間のコントラストの計算と、最大値探索とを組み合わせた簡単なアルゴリズムによって、CTFを求めることができる。また、態様1によれば、チャートに線欠けが発生した場合であっても、その線欠けの位置に対応する画素に対して算出されるコントラストは低い値となるため、最大値を選ぶ際に除外され、計算結果に残らない。したがって、態様1による処理には、線欠けへの対処処理が含まれている。 According to the aspect 1, the CTF can be obtained by a simple algorithm that combines the calculation of the contrast between pixels and the maximum value search. Further, according to the aspect 1, even when a line defect occurs in the chart, the contrast calculated for the pixel corresponding to the position of the line defect is a low value. It is excluded and does not remain in the calculation result. Therefore, the process according to the aspect 1 includes a process for dealing with line defects.
 態様2は、態様1の解像力測定方法であって、画素間コントラスト算出工程において、画素Xに対して、1≦m≦d、又は、-d≦m≦-1を満たす全てのmについて、CTF(X,Xn+m)を算出し、かつ、全てのmのうち、CTF(X,Xn+m)の最大値を、画素Xにおける画素のコントラスト値とする処理を行う解像力測定方法である。 Aspect 2 is the resolving power measurement method according to Aspect 1, in the inter-pixel contrast calculation step, for all m satisfying 1 ≦ m ≦ d or −d ≦ m ≦ −1 with respect to the pixel Xn . CTF (X n, X n + m) is calculated, and, of all the m, CTF (X n, X n + m) the maximum value of, in resolution measurement method for performing processing for the contrast value of the pixel in the pixel X n is there.
 態様3は、態様2の解像力測定方法であって、解像力算出工程は、濃淡縞の間隔方向に並ぶ画素に対して、縞間隔画素数以上の画素のグループを設定し、かつ、グループごとの各画素について算出された画素のコントラスト値のうち、最大の値を、グループに属する各画素位置でのコントラスト値とする処理を含む解像力測定方法である。 Aspect 3 is the resolving power measurement method according to Aspect 2, and the resolving power calculation step sets a group of pixels equal to or greater than the number of fringe interval pixels for pixels arranged in the interval direction of light and shade fringes, This is a resolution measurement method including a process in which the maximum value among the contrast values of the pixels calculated for the pixels is set as the contrast value at each pixel position belonging to the group.
 態様4は、態様2又は態様3の解像力測定方法であって、解像力算出工程は、画素Xに対して、濃淡縞に平行な線方向に一列に並んだ複数の画素についてそれぞれ算出された画素のコントラスト値のうち、最大の値を、画素Xが属する画素列の位置でのコントラスト値とする処理を含む解像力測定方法である。 Embodiment 4, a resolution measuring method aspect 2 or aspect 3, the pixel resolution calculation step, the relative pixel X n, a plurality of pixels arranged in a row in a line parallel direction streaks are calculated respectively Is the resolution measurement method including the process of setting the maximum value among the contrast values in the contrast value at the position of the pixel column to which the pixel Xn belongs.
 態様5は、態様2から態様4のいずれか一態様の解像力測定方法であって、チャートは、濃淡縞に平行な線方向に、濃淡縞が2つ以上並んでいる複数の濃淡縞を含み、複数の濃淡縞は、縞の間隔が等しく、かつ、互いに濃淡縞の間隔方向に特定距離だけ縞の位置がずれており、解像力算出工程は、複数の濃淡縞を含むチャートの読取画像の画像データから、画素Xに対して、線方向に平行な方向に一列に並んだ複数の画素についてそれぞれ算出された画素のコントラスト値のうち、最大の値を、画素Xが属する画素列の位置でのコントラスト値とする処理を含む解像力測定方法である。 Aspect 5 is the resolution measurement method according to any one of aspects 2 to 4, wherein the chart includes a plurality of gray stripes in which two or more gray stripes are arranged in a line direction parallel to the gray stripes, The plurality of gray stripes have the same stripe interval, and the positions of the stripes are shifted from each other by a specific distance in the interval direction of the gray stripes, and the resolution calculation step includes image data of the read image of the chart including the plurality of gray stripes From the pixel contrast values calculated for a plurality of pixels arranged in a line in a direction parallel to the line direction with respect to the pixel Xn , the maximum value is determined at the position of the pixel column to which the pixel Xn belongs. It is a resolution measuring method including the process which makes it a contrast value.
 態様6は、態様5の解像力測定方法であって、濃淡縞の間隔方向の特定距離は、縞間隔画素数の正の整数分の1であり、線方向に並ぶ濃淡縞の数は、(縞間隔画素数/特定距離)の正の整数倍である解像力測定方法である。 Aspect 6 is the resolution measurement method according to aspect 5, wherein the specific distance in the interval direction of the gray stripes is a positive integer of the number of pixels in the stripe interval, and the number of gray stripes arranged in the line direction is (stripes). This is a resolution measurement method that is a positive integer multiple of (number of spaced pixels / specific distance).
 態様7は、態様3から態様6のいずれか一態様の解像力測定方法であって、解像力算出工程は、画素Xに対して、濃淡縞に平行な線方向に一列に並んだ複数の画素についてそれぞれ算出された画素のコントラスト値のうち、線方向の画素のコントラスト平均値に比べて、規定割合以上大きい値を異常値として除外する処理を含む解像力測定方法である。 Embodiment 7, a resolution measuring method of any one of Embodiments 6 from embodiment 3, the resolution calculating step, with respect to pixel X n, a plurality of pixels arranged in a row in a line parallel direction streaks This is a resolution measurement method including a process of excluding, as an abnormal value, a value that is greater than a specified ratio among the calculated contrast values of pixels in comparison with the average contrast value of pixels in the line direction.
 態様8は、態様3から態様6のいずれか一態様の解像力測定方法であって、解像力算出工程は、画素Xに対して、濃淡縞に平行な線方向に一列に並んだ複数の画素についてそれぞれ算出された画素のコントラスト値のうち、線方向の画素のコントラスト平均値に比べて、規定割合以上大きい値を異常値とし、異常値を示す画素のコントラスト値を、周囲の規定画素数の範囲のうち異常値に該当しない画素のコントラスト値の平均値に置き換える処理を含む解像力測定方法である。 Aspect 8 is the resolving power measurement method according to any one of Aspects 3 to 6, wherein the resolving power calculation step is performed for a plurality of pixels arranged in a line in a line direction parallel to the gray stripes with respect to pixel Xn . Among the calculated contrast values of pixels, a value greater than a specified ratio compared to the average contrast value of pixels in the line direction is defined as an abnormal value, and the contrast value of a pixel indicating an abnormal value is within a range of the specified number of surrounding pixels. Is a resolution measurement method including a process of replacing the average value of the contrast values of pixels not corresponding to an abnormal value.
 態様9は、態様1から態様8のいずれか一態様の解像力測定方法であって、濃淡縞の間隔をPミリメートル、チャート上における光学読取装置の読取画素の間隔をSミリメートルとする場合に、P≧2×Sであって、特定画素数は、d≧P/(2×S)を満たす最小の整数dである解像力測定方法である。 Aspect 9 is the resolving power measurement method according to any one of aspects 1 to 8, wherein the interval between the gray stripes is P millimeters, and the interval between the reading pixels of the optical reading device on the chart is S millimeters. In the resolution measurement method, ≧ 2 × S and the specific pixel number is the smallest integer d that satisfies d ≧ P / (2 × S).
 態様10は、態様1から態様8のいずれか一態様の解像力測定方法であって、濃淡縞の間隔をPミリメートル、チャート上における光学読取装置の読取画素の間隔をSミリメートルとする場合に、P≧Sであって、特定画素数は、d≧P/Sを満たす最小の整数dである解像力測定方法である。 Aspect 10 is the method of measuring a resolving power according to any one of aspects 1 to 8, wherein the interval between the light and shade stripes is P millimeters, and the interval between the reading pixels of the optical reading device on the chart is S millimeters. In the resolution measurement method, ≧ S and the specific number of pixels is a minimum integer d that satisfies d ≧ P / S.
 態様11は、態様1から態様8のいずれか一態様の解像力測定方法であって、濃淡縞の間隔をPミリメートル、チャート上における光学読取装置の読取画素の間隔をSミリメートルとする場合に、P≧2×Sであって、特定画素数は、d≧P/(2×S)を満たす最小の整数以上、かつ、d≧P/Sを満たす最小の整数以下の整数dである解像力測定方法である。 Aspect 11 is the resolving power measurement method according to any one of aspects 1 to 8, where P is a millimeter stripe interval, and S millimeters is an interval between read pixels of the optical reading device on the chart. Resolution measuring method in which ≧ 2 × S and the number of specific pixels is an integer d equal to or larger than a minimum integer satisfying d ≧ P / (2 × S) and less than or equal to a minimum integer satisfying d ≧ P / S It is.
 態様12は、態様1から態様11のいずれか一態様の解像力測定方法であって、チャートには、複数の異なる特定間隔の濃淡縞のパターンが含まれている解像力測定方法である。 Aspect 12 is the resolution measurement method according to any one of aspects 1 to 11, wherein the chart includes a plurality of patterns of gray stripes at different specific intervals.
 態様13は、態様1から態様12のいずれか一態様の解像力測定方法において、チャートに含まれる濃淡縞の方向は、第1方向、又は第1方向に交差する第2方向、若しくは、第1方向と第2方向の両方である解像力測定方法である。 Aspect 13 is the resolving power measurement method according to any one of aspects 1 to 12, wherein the direction of the gray stripes included in the chart is the first direction, the second direction intersecting the first direction, or the first direction. And a resolution measuring method that is both in the second direction.
 態様14は、態様1から態様13のいずれか一態様の解像力測定方法であって、光学読取装置の読取範囲全体の画素について算出したコントラスト伝達関数の算出結果から光学読取装置のピント状態を判断する工程を含む解像力測定方法である。 Aspect 14 is the resolution measurement method according to any one of aspects 1 to 13, wherein the focus state of the optical reader is determined from the calculation result of the contrast transfer function calculated for the pixels in the entire reading range of the optical reader. It is a resolution measuring method including a process.
 ピント状態を判断するとは、コントラスト伝達関数の算出結果が光学読取装置で規定された所定範囲内にあるかどうかを判断し、光学読取装置のピント状態が正常であるかどうかを判断することを意味する。 Determining the focus state means determining whether the calculation result of the contrast transfer function is within a predetermined range defined by the optical reader, and determining whether the focus state of the optical reader is normal. To do.
 態様15は、態様1から態様14のいずれか一態様の解像力測定方法であって、チャートは、印刷装置を用いて記録媒体に濃淡縞が印刷されたチャートである解像力測定方法である。 Aspect 15 is the resolution measurement method according to any one of aspects 1 to 14, and the chart is a resolution measurement method in which a shading pattern is printed on a recording medium using a printing apparatus.
 態様16は、態様1から態様15のいずれか一態様の解像力測定方法であって、光学読取装置を用いてチャートを読み取るチャート読取工程を含む解像力測定方法である。 Aspect 16 is the resolution measuring method according to any one of aspects 1 to 15, and includes a chart reading step of reading a chart using an optical reading device.
 態様17は、態様16の解像力測定方法であって、光学読取装置の光学系は、単一の光軸を持つ結像レンズ、又は複数の光軸を持つレンズアレイを含む解像力測定方法である。 Aspect 17 is the resolving power measurement method according to Aspect 16, wherein the optical system of the optical reader includes an imaging lens having a single optical axis or a lens array having a plurality of optical axes.
 態様18は、態様1から態様17のいずれか一態様の解像力測定方法であって、印刷装置を用いて濃淡縞を含むチャートを印刷するチャート印刷工程を含む解像力測定方法である。 Aspect 18 is the resolution measuring method according to any one of Aspects 1 to 17, and includes a chart printing step of printing a chart including light and shade stripes using a printing apparatus.
 態様19は、態様18の解像力測定方法であって、印刷装置は光学読取装置を備えており、印刷装置によってチャートを印刷し、かつ、印刷装置内において光学読取装置によってチャートの読み取りを行う解像力測定方法である。 Aspect 19 is the resolution measurement method according to Aspect 18, wherein the printing apparatus includes an optical reading device, and the chart is printed by the printing device, and the chart is read by the optical reading device in the printing device. Is the method.
 態様20は、態様18又は態様19の解像力測定方法であって、印刷装置は、インクジェット印刷装置である解像力測定方法である。 Aspect 20 is the resolving power measuring method according to Aspect 18 or Aspect 19, wherein the printing apparatus is a resolving power measuring method which is an ink jet printing apparatus.
 態様21は、態様20の解像力測定方法であって、濃淡縞の各線はそれぞれ、インクジェットヘッドにおける単一のノズルからの打滴によって記録される解像力測定方法である。 Aspect 21 is the resolving power measurement method according to Aspect 20, wherein each line of light and shade stripes is recorded by droplet ejection from a single nozzle in the ink jet head.
 態様22は、態様20又は態様21の解像力測定方法であって、光学読取装置は、インクジェット印刷装置に搭載されたインラインスキャナである解像力測定方法である。 Aspect 22 is the resolution measuring method according to Aspect 20 or 21, wherein the optical reader is an inline scanner mounted on an ink jet printing apparatus.
 態様23に係る解像力測定装置は、少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データを取得する読取画像データ取得部と、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出部と、画素間コントラスト算出部によって画素ごとに算出されたコントラストの値の最大値から、濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出部と、を備え、特定画素数は、読取画像の画像データにおいて濃淡縞の特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、特定画素数をd、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、画素間コントラスト算出部は、次式、
 CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
に従って、画素間のコントラストを算出する処理と、画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、を行う解像力測定装置である。
The resolution measuring device according to aspect 23 obtains image data of a read image obtained by reading a chart including light and shade stripes in which a density cross section changes into a rectangular shape at a specific interval at least in part by an optical reading device. Between the data acquisition unit and the pixels that belong to at least a part of the calculation target range of the image data of the read image, and pixels that are separated by a number of pixels that is 1 or more and a specific number of pixels or less in the interval direction of the gray stripes An inter-pixel contrast calculation unit that calculates the contrast between pixels, and a resolving power calculation that calculates the contrast transfer function at each stripe position of the gray stripes from the maximum contrast value calculated for each pixel by the inter-pixel contrast calculation unit The specific pixel number is less than or equal to the stripe interval pixel number, which is the number of pixels corresponding to the specific interval of the gray stripes in the image data of the read image It is defined as the number of pixels satisfying one or more conditions, the specific pixel number is d, and the pixel number indicating the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range in the image data of the read image is n , the value of a pixel X n represented by the pixel number n X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m When taking an integer value satisfying ≦ d or −d ≦ m ≦ −1, the inter-pixel contrast calculation unit has the following formula:
CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
Thus, the resolution measurement apparatus performs the processing for calculating the contrast between the pixels and the processing for obtaining the maximum value among CTFs (X n , X n + m ) obtained for different m for the pixel X n .
 態様23に係る解像力測定装置において、態様2から態様22にて特定した特定事項と同様の事項を適宜組み合わせることができる。その場合、解像力測定方法の発明において特定される処理や動作の工程(ステップ)は、これに対応する処理や動作を担う手段としての処理部や機能部の要素として把握することができる。 In the resolution measuring device according to the aspect 23, the same matters as the specific matters specified in the aspects 2 to 22 can be appropriately combined. In that case, the process or step (step) specified in the invention of the resolving power measurement method can be grasped as an element of a processing unit or a functional unit serving as a means responsible for the corresponding processing or operation.
 態様24に係るプログラムは、少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データから光学読取装置の解像力を測定するデータ処理をコンピュータに実行させるプログラムであって、コンピュータに、チャートの読取画像のデータを取得する読取画像データ取得工程と、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出工程と、画素間コントラスト算出工程によって画素ごとに算出されたコントラストの値の最大値から、濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出工程と、を実行させるプログラムであり、特定画素数は、読取画像の画像データにおいて濃淡縞の特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、特定画素数をd、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、画素間コントラスト算出工程は、次式、
 CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
に従って、画素間のコントラストを算出する処理と、画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、を含むプログラムである。
The program according to the aspect 24 has the resolution of the optical reader based on the image data of the read image obtained by reading the chart including at least a density stripe whose density cross section changes to a rectangular shape at a specific interval by the optical reader. A program for causing a computer to execute data processing to be measured, the computer having a read image data acquisition step of acquiring data of a read image of a chart, and each of the image data of the read image belonging to at least a part of a calculation target range A pixel-to-pixel contrast calculating step for calculating a contrast between pixels with respect to a pixel from a pixel separated by a number of pixels equal to or greater than 1 and a specific number of pixels in the grayscale stripe interval direction, and a pixel-by-pixel contrast calculating step From the maximum value of the contrast calculated in the And a resolution calculation step for calculating the image, wherein the specific pixel number is equal to or less than the number of fringe interval pixels, which is the number of pixels corresponding to the specific interval of the gray stripes in the image data of the read image. It is defined as the number of pixels, and the specific pixel number is represented by d, the pixel number representing the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range in the image data of the read image is represented by n, and the pixel number n X (n) the value of a pixel X n is the value of pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m ≦ d, or - When taking an integer value satisfying d ≦ m ≦ −1, the inter-pixel contrast calculating step is performed by the following equation:
CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
The program includes a process for calculating the contrast between the pixels and a process for obtaining the maximum value among CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n .
 態様24に係るプログラムにおいて、態様2から態様22にて特定した特定事項と同様の事項を適宜組み合わせることができる。なおこのプログラムを記録したコンピュータ読み取り可能な記録媒体を含む非一時的有形媒体は本発明の態様に含まれる。 In the program according to aspect 24, the same matters as the specific matters specified in aspects 2 to 22 can be appropriately combined. Note that a non-transitory tangible medium including a computer-readable recording medium in which the program is recorded is included in an aspect of the present invention.
 態様25に係る印刷装置は、記録媒体に画像を形成する画像形成部と、画像形成部を用いて記録媒体に形成された画像を光学的に読み取る光学読取装置と、光学読取装置によって用いて読み取られた読取画像の画像データを演算処理するデータ処理装置と、を備え、画像形成部は、少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを印刷し、光学読取装置は、チャートを読み取り、データ処理装置は、光学読取装置によって読み取られたチャートの読取画像の画像データを取得する読取画像データ取得部と、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出部と、画素間コントラスト算出部によって画素ごとに算出されたコントラストの値の最大値から、濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出部と、を備え、特定画素数は、読取画像の画像データにおいて濃淡縞の特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、特定画素数をd、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、画素間コントラスト算出部は、次式、
 CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
 に従って、画素間のコントラストを算出する処理と、画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、を行う印刷装置である。
The printing apparatus according to aspect 25 includes an image forming unit that forms an image on a recording medium, an optical reading device that optically reads an image formed on the recording medium using the image forming unit, and an optical reading device that reads the image. And a data processing device that performs arithmetic processing on the image data of the read image that has been read, and the image forming unit prints a chart including light and shade stripes in which the density cross section changes into a rectangular shape at a specific interval, at least partially, and optical The reading device reads a chart, the data processing device acquires a read image data acquisition unit that acquires image data of a read image of the chart read by the optical reading device, and at least a part of calculation objects of the image data of the read image A pixel that calculates the contrast between pixels with respect to each pixel belonging to the range from a pixel that is 1 or more and not more than a specific number of pixels in the interval direction of the gray stripes A contrast calculation unit, and a resolution calculation unit that calculates a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel by the inter-pixel contrast calculation unit. Is defined as the number of pixels satisfying one or more of the stripe interval pixel number, which is the number of pixels corresponding to the specific interval of the gray stripes in the image data of the read image, and the specific pixel number is d and the image data of the read image Among these, at least a part of the calculation target range, the pixel number indicating the position in the interval direction of the gray stripes is n, the value of the pixel Xn represented by the pixel number n is X (n), and the gray level from the pixel Xn When the value of a pixel X n + m separated by m pixels in the stripe interval direction is X (n + m), and m is an integer value satisfying 1 ≦ m ≦ d or −d ≦ m ≦ −1, Contrast calculator The following equation,
CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
Thus, the printing apparatus performs the processing for calculating the contrast between the pixels and the processing for obtaining the maximum value among the CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n .
 態様25に係る印刷装置において、態様2から態様22にて特定した特定事項と同様の事項を適宜組み合わせることができる。その場合、解像力測定方法の発明において特定される処理や動作の工程(ステップ)は、これに対応する処理や動作を担う手段としての処理部や機能部の要素として把握することができる。 In the printing apparatus according to aspect 25, the same matters as the specific matters specified in aspects 2 to 22 can be appropriately combined. In that case, the process or step (step) specified in the invention of the resolving power measurement method can be grasped as an element of a processing unit or a functional unit serving as a means responsible for the corresponding processing or operation.
 態様26は、態様25の印刷装置において、画像形成部は、複数個のヘッドモジュールを繋ぎ合わせて構成されたライン型のインクジェトヘッドを含み、データ処理装置は、解像力算出部で算出されたコントラスト伝達関数を用いて、ヘッドモジュールのインク吐出量の局所的不均一を検出する処理を行う印刷装置である。 Aspect 26 is the printing apparatus according to aspect 25, wherein the image forming unit includes a line-type inkjet head configured by connecting a plurality of head modules, and the data processing device transmits the contrast transmitted by the resolving power calculation unit. This is a printing apparatus that performs processing for detecting local non-uniformity in the ink discharge amount of the head module using a function.
 また、他の態様として、次の発明態様を開示する。 In addition, as another aspect, the following invention aspect is disclosed.
 光学読取装置の解像力を測定する解像力測定装置であって、少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データを取得し、取得した読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出し、かつ、画素ごとに算出されたコントラストの値の最大値から、濃淡縞の各縞位置でのコントラスト伝達関数を算出する少なくとも1つのプロセッサを有し、特定画素数は、読取画像の画像データにおいて濃淡縞の特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、特定画素数をd、読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、プロセッサは、次式、
 CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
 に従って、画素間のコントラストを算出する処理と、画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、を行う解像力測定装置である。
An image of a read image obtained by reading a chart including at least a density stripe whose density cross section changes into a rectangular shape at a specific interval by an optical reader, which measures the resolution of the optical reader. The data is acquired, and for each pixel belonging to at least a part of the calculation target range of the acquired read image data, a pixel that is 1 or more and a specific pixel number or less apart in the interval direction of the gray stripes And having at least one processor for calculating a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel. The number is defined as the number of pixels satisfying one or more of the stripe interval pixel number which is the number of pixels corresponding to the specific interval of the gray stripes in the image data of the read image. Is, a specific number of pixels d, pixels represented the pixel number n, the pixel number n representing the position of the spacing direction streaks of pixels belonging to at least part of the calculation target range of the image data of the read image X the value of n X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m ≦ d, or, -d ≦ m ≦ When taking an integer value satisfying -1, the processor:
CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
Thus, the resolution measurement apparatus performs the processing for calculating the contrast between the pixels and the processing for obtaining the maximum value among CTFs (X n , X n + m ) obtained for different m for the pixel X n .
 本発明によれば、チャートの線欠けが発生する場合であっても、比較的簡単なアルゴリズムでCTFを求めることができる。 According to the present invention, the CTF can be obtained with a relatively simple algorithm even when a line defect in the chart occurs.
図1は、CTF検査に用いるチャートに表示されるチャート画像の例を示す図である。FIG. 1 is a diagram illustrating an example of a chart image displayed on a chart used for CTF inspection. 図2は、光学読取装置を用いてチャートを読み取ることによって得られた読取画像のデジタル画像データの模式図である。FIG. 2 is a schematic diagram of digital image data of a read image obtained by reading a chart using an optical reading device. 図3は、図2に示したデジタル画像データの画素の一部に、各画素の位置を識別するための識別符号を付したものである。FIG. 3 is obtained by adding an identification code for identifying the position of each pixel to a part of the pixels of the digital image data shown in FIG. 図4は、図3に示した3行15列のデジタル画像データの模式図である。FIG. 4 is a schematic diagram of the digital image data of 3 rows and 15 columns shown in FIG. 図5は、図4に示したA位置に対し、画像データの位置を左に2画素ずらしたC位置を示す図である。FIG. 5 is a diagram illustrating a C position obtained by shifting the position of the image data to the left by two pixels with respect to the A position illustrated in FIG. 図6は、図4に示したA位置に対し、画像データの位置を左に3画素ずらしたD位置を示す図である。FIG. 6 is a diagram illustrating a D position in which the position of the image data is shifted to the left by 3 pixels with respect to the A position illustrated in FIG. 4. 図7は、図4に示したA位置に対し、画像データの位置を左に4画素ずらしたE位置を示す図である。FIG. 7 is a diagram illustrating an E position obtained by shifting the position of the image data to the left by 4 pixels with respect to the A position illustrated in FIG. 図8は、図4に示したA位置に対し、画像データの位置を右に1画素ずらしたF位置を示す図である。FIG. 8 is a diagram illustrating an F position obtained by shifting the position of the image data to the right by one pixel with respect to the A position illustrated in FIG. 図9は、図4に示したA位置に対し、画像データの位置を右に2画素ずらしたG位置を示す図である。FIG. 9 is a diagram illustrating a G position obtained by shifting the position of the image data to the right by two pixels with respect to the A position illustrated in FIG. 図10は、図4に示したA位置に対し、画像データの位置を右に3画素ずらしたH位置を示す図である。FIG. 10 is a diagram illustrating an H position obtained by shifting the position of the image data to the right by 3 pixels with respect to the A position illustrated in FIG. 図11は、図4に示したA位置に対し、画像データの位置を右に4画素ずらしたI位置を示す図である。FIG. 11 is a diagram illustrating an I position obtained by shifting the position of the image data to the right by 4 pixels with respect to the A position illustrated in FIG. 図12は、探索幅で区切られた短冊状行列の一例を示す図である。FIG. 12 is a diagram illustrating an example of a strip-shaped matrix partitioned by the search width. 図13は、階段状の白黒縞を含むチャート画像の例を示す図である。FIG. 13 is a diagram illustrating an example of a chart image including stepped black and white stripes. 図14は、図3に示した読取画像のデータにおける画素グループの一例を示す図である。FIG. 14 is a diagram illustrating an example of a pixel group in the read image data illustrated in FIG. 3. 図15は、図3に示した読取画像のデータにおいてチャートの線に平行な列方向に一列に並んだ読取画素の一例を示す図である。FIG. 15 is a diagram illustrating an example of the read pixels arranged in a line in the column direction parallel to the chart line in the read image data illustrated in FIG. 3. 図16は、実施形態に係るインクジェット印刷装置におけるCTF測定処理に関する全体的な処理の流れを示すフローチャートである。FIG. 16 is a flowchart illustrating an overall process flow related to the CTF measurement process in the inkjet printing apparatus according to the embodiment. 図17は、印刷画像データ生成処理の内容を示すフローチャートである。FIG. 17 is a flowchart showing the contents of print image data generation processing. 図18は、印刷処理工程の処理内容を示すフローチャートである。FIG. 18 is a flowchart showing the processing contents of the printing process. 図19は、読み取り処理工程の処理内容を示すフローチャートである。FIG. 19 is a flowchart showing the processing contents of the reading processing step. 図20は、CTF算出処理の内容を示すフローチャートである。FIG. 20 is a flowchart showing the contents of the CTF calculation process. 図21は、コントラスト算出処理の内容を示すフローチャートである。FIG. 21 is a flowchart showing the contents of the contrast calculation process. 図22は、コントラスト算出処理の内容を示すフローチャートである。FIG. 22 is a flowchart showing the contents of the contrast calculation process. 図23は、チャート画像としての濃淡縞の画像の一例である。FIG. 23 is an example of an image of light and shade stripes as a chart image. 図24は、読取画像のデータ配列IM(L,C)の例を示す図表である。FIG. 24 is a chart showing an example of the data array IM (L, C) of the read image. 図25は、CTF途中計算配列CTFT(L,C)の例を示す図表である。FIG. 25 is a chart showing an example of the CTF midway calculation array CTFT (L, C). 図26は、CTF計算配列CTF(BC)の例を示す図表である。FIG. 26 is a chart showing an example of the CTF calculation array CTF (BC). 図27は、CTF途中計算配列における矩形範囲の例を示す図である。FIG. 27 is a diagram illustrating an example of a rectangular range in the CTF midway calculation array. 図28は、実施形態に係る解像力測定方法に従ってCTFの計算を実行するデータ処理装置の機能を示すブロック図である。FIG. 28 is a block diagram illustrating functions of a data processing apparatus that performs CTF calculation according to the resolution measurement method according to the embodiment. 図29は、実施形態に係るインクジェット印刷装置の構成を示す側面図である。FIG. 29 is a side view illustrating the configuration of the inkjet printing apparatus according to the embodiment. 図30は、インクジェット印刷装置の制御系の要部構成を示すブロック図である。FIG. 30 is a block diagram illustrating a main configuration of a control system of the inkjet printing apparatus. 図31は、CTFの算出結果の例を示すグラフである。FIG. 31 is a graph illustrating an example of a calculation result of CTF.
 以下、添付図面に従って本発明の実施の形態について詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 《用語の説明》
 本開示において使用する用語について説明する。
<Explanation of terms>
Terms used in the present disclosure will be described.
 「分解能」とは、光学系を用いた光学読取装置において、読み取り対象の接近した2つの点が2つの点として再現して読み取れる最も近い距離をいう。 “Resolution” refers to the closest distance at which two close points to be read can be reproduced and read as two points in an optical reader using an optical system.
 「解像力」とは、分解能の距離の逆数をいう。解像力は、2つの点が2つの点として再現して読み取れる程度を2つの点の距離毎に定量化すれば、様々な細かさの画像の明暗の度合い(コントラスト)を正しく読み取れる能力の度合いである。 “Resolving power” refers to the reciprocal of the resolution distance. The resolution is the degree of ability to correctly read the degree of contrast (contrast) of images of various finenesses by quantifying the extent that two points can be reproduced and read as two points for each distance of the two points. .
 「CTF」は、Contrast Transfer Functionの略語表記であり、コントラスト伝達関数を指す。CTFは、解像力を表す指標の一つである。CTFは、特定周波数の矩形状明暗パターンで測定した解像力である。明暗の度合いを正しく読み取れればCTF=1とし、全く読み取れなければCTF=0とする。なお、正弦波状明暗パターンで測定したものは変調伝達関数(MTF:Modulation Transfer Function)である。 “CTF” is an abbreviation for Contrast Transfer Function and refers to a contrast transfer function. CTF is one of indices indicating the resolution. CTF is the resolving power measured with a rectangular bright and dark pattern having a specific frequency. If the brightness level can be read correctly, CTF = 1 is set, and if it is not read at all, CTF = 0 is set. In addition, what was measured with the sinusoidal light / dark pattern is a modulation transfer function (MTF).
 CTFについてのMichelsonコントラストによる定義式は、式[1]のとおりである。 The definition formula by Michelson contrast for CTF is as shown in Formula [1].
 「濃淡縞」は、濃度断面が矩形状に変化するパターンであり、特定周波数の矩形状明暗パターンに相当する。「白黒縞」は濃淡縞の一例である。濃淡縞における縞の並び方向を縞の間隔方向といい、縞に平行な方向を線方向という。 The “light / dark stripe” is a pattern in which the density cross section changes into a rectangular shape, and corresponds to a rectangular light / dark pattern having a specific frequency. “Monochrome stripe” is an example of light and shade stripes. The arrangement direction of the stripes in the light and shade stripes is called the stripe interval direction, and the direction parallel to the stripes is called the line direction.
 「チャート」は、少なくとも濃淡縞を含むチャート画像が表示された読取対象物である。 “Chart” is an object to be read on which a chart image including at least light and shade stripes is displayed.
 「解像度」とは、プリンタでは、描画するドットの間隔の逆数である。読み取り側のスキャナ(光学読取装置)では、読取画素間隔の逆数である。被写体(読取対象物)とスキャナが相対的に静止している場合、レンズと撮像センサとを用いたスキャナでは、レンズの結像倍率と、撮像センサの画素間隔とから解像度が定まる。スキャナの解像度を「読取解像度」若しくはスキャナ解像度という。プリンタが描画するドットについての解像度を「描画解像度」という。解像度は、描画解像度及び読取解像度のいずれも、通常、1インチ当たりのドット数(dpi:dot per inch)で表される。1インチは、25.4ミリメートルである。「スキャナ」は「光学読取装置」に相当する。「プリンタ」は「印刷装置」に相当する。撮像センサは、読取センサと同義である。 “Resolution” is the reciprocal of the interval between dots in the printer. In the reading side scanner (optical reading device), it is the reciprocal of the reading pixel interval. When the subject (reading object) and the scanner are relatively stationary, in a scanner using a lens and an image sensor, the resolution is determined from the imaging magnification of the lens and the pixel interval of the image sensor. The resolution of the scanner is called “reading resolution” or scanner resolution. The resolution of dots drawn by the printer is called “drawing resolution”. The resolution is usually represented by the number of dots per inch (dpi: dot per inch) for both the drawing resolution and the reading resolution. One inch is 25.4 millimeters. “Scanner” corresponds to “optical reading device”. “Printer” corresponds to “printing apparatus”. An imaging sensor is synonymous with a reading sensor.
 《実施形態に係る解像力測定方法の概要》
 図1は、CTF測定に用いるチャートに表示されるチャート画像の例を示す図である。図1に示すチャート10は、白黒縞のチャートであり、黒色の縦線が横方向に一定の間隔で並んだ縦縞のパターンを含んでいる。図1は、チャート10に表示される白黒縞の一部を拡大して示している。なお、実際のチャートは、図1の縦方向及び横方向にさらに広がっており、横方向にさらに多数の縦線が並び、かつ、図1の縦方向に縦線がさらに長く延びている。
<< Outline of Resolution Measurement Method According to Embodiment >>
FIG. 1 is a diagram illustrating an example of a chart image displayed on a chart used for CTF measurement. A chart 10 shown in FIG. 1 is a black and white stripe chart, and includes a vertical stripe pattern in which black vertical lines are arranged at regular intervals in the horizontal direction. FIG. 1 shows an enlarged part of the black and white stripes displayed on the chart 10. Note that the actual chart further spreads in the vertical and horizontal directions of FIG. 1, a larger number of vertical lines are arranged in the horizontal direction, and the vertical lines extend further in the vertical direction of FIG. 1.
 チャート画像における黒色の線12と線12の間の白い部分を白部14と呼ぶ。チャート10の白黒縞は、白と黒の間隔がそれぞれ等しく、濃度断面が特定間隔で矩形状に変化する。すなわち、白部14の白幅Wwと、線12の太さ(線幅)である黒幅Wbは、等しい。また、線12と線12の間隔Pbは、白部14と白部14の間隔Pwと等しい。間隔Pbは線12の繰り返し周期に相当する。線12を「黒線」又は「縞」と呼ぶ場合がある。なお、白幅Wwと黒幅Wbが等幅である白黒縞を含むチャートに限らず、白幅Wwと黒幅Wbが異なる幅の白黒縞を含むチャートを用いてもよい。 The white portion between the black line 12 and the line 12 in the chart image is called a white portion 14. The white and black stripes of the chart 10 have the same white and black intervals, and the density cross section changes to a rectangular shape at specific intervals. That is, the white width Ww of the white portion 14 is equal to the black width Wb that is the thickness (line width) of the line 12. The interval Pb between the lines 12 and 12 is equal to the interval Pw between the white portion 14 and the white portion 14. The interval Pb corresponds to the repetition period of the line 12. The line 12 may be referred to as “black line” or “stripes”. Note that a chart including black and white stripes having different white widths Ww and black widths Wb is not limited to a chart including black and white stripes having the same white width Ww and black width Wb.
 図2は、光学読取装置を用いてチャートを読み取ることによって得られた読取画像のデジタル画像データの模式図である。CTF測定用のチャートを光学読取装置によって読み取り、画像情報を数値化してデジタル画像データとする。図2は、図1に示したチャート画像を光学読取装置で読み取ることで得られた読取画像20の画像データの一部を拡大し、濃淡で表示したものである。なお、実際のチャートを読み取った読取画像の画像データは、縦方向及び横方向ともに、より多い数の画素がある。読取画像20の画像データを「読取データ」と表記する場合がある。 FIG. 2 is a schematic diagram of digital image data of a read image obtained by reading a chart using an optical reading device. A chart for CTF measurement is read by an optical reader, and image information is digitized into digital image data. FIG. 2 shows a part of the image data of the read image 20 obtained by reading the chart image shown in FIG. Note that the image data of the read image obtained by reading the actual chart has a larger number of pixels in both the vertical direction and the horizontal direction. The image data of the read image 20 may be referred to as “read data”.
 図2中、左上に表示した小さな正方形22は、デジタル画像データの一画素の大きさを示している。デジタル画像データの一画素の大きさは、光学読取装置の読取画素の大きさに相当する。つまり、白黒縞の線幅よりも小さい幅の読取画素の光学読取装置を用いてチャート10の読み取りが行われる。チャート10の白い部分は明るく読み取られ、読取値は、相対的に大きな値となる。チャート10の黒い部分は暗く読み取られ、読取値は相対的に小さな値となる。読取値は、読取画像のデータにおける画素の値である。画素の値は、「画素の信号値」或いは「画素値」と同義である。 In FIG. 2, a small square 22 displayed at the upper left indicates the size of one pixel of the digital image data. The size of one pixel of the digital image data corresponds to the size of the reading pixel of the optical reading device. That is, the reading of the chart 10 is performed using an optical reading device of a reading pixel having a width smaller than the line width of the black and white stripes. The white portion of the chart 10 is brightly read, and the read value is a relatively large value. The black portion of the chart 10 is read darkly, and the read value is a relatively small value. The read value is a pixel value in the read image data. The pixel value is synonymous with “pixel signal value” or “pixel value”.
 光学読取装置の光学系の特性により、チャート10の白黒縞は少しぼけて読み取られ、コントラストが低下するため、図2では、チャートの黒線部位置中央24に近い画素が濃く表示され、黒線部位置周辺26の画素がやや薄い灰色によって表示されている。ここでは、説明を簡単にするために、線の間隔が読取画素の間隔の整数倍になっている例が示されている。図2の例は、線の間隔が読取画素の間隔の4倍、つまり、線の間隔を読取画素の画素数で表すと、4画素となっている例である。線の間隔が読取画素の間隔の整数倍になっていない場合、線の位置と読取画素の位置の位相関係がずれて読取画像の濃淡が複雑に変化するモアレが発生する。線の間隔が読取画素の間隔の整数倍になっていれば、線の位置と読取画素の位置の位相が揃い、図2に示したように、線の並び方向の画素位置ごとに、黒、グレー、白、グレー、黒、グレー、白・・・の一定の繰り返しパターンで濃淡が変化する読取画像になる。モアレへの対処方法については、後述する。 Due to the characteristics of the optical system of the optical reading device, the black and white stripes of the chart 10 are read with a slight blur and the contrast is lowered, so in FIG. 2, the pixels near the black line position center 24 of the chart are displayed darkly. Pixels around the part position 26 are displayed in a slightly light gray color. Here, in order to simplify the description, an example is shown in which the line interval is an integral multiple of the read pixel interval. The example of FIG. 2 is an example in which the line interval is four times the read pixel interval, that is, the line interval is 4 pixels when the line interval is expressed by the number of read pixels. When the line interval is not an integral multiple of the read pixel interval, a moiré in which the phase relationship between the line position and the read pixel position is shifted and the density of the read image changes in a complicated manner occurs. If the line interval is an integral multiple of the read pixel interval, the phase of the line position and the read pixel position are aligned, and as shown in FIG. 2, for each pixel position in the line arrangement direction, black, The read image changes in light and shade with a constant repeating pattern of gray, white, gray, black, gray, white. A method for dealing with moire will be described later.
 図3は、図2に示したデジタル画像データの画素の一部に、各画素の位置を識別するための識別符号を付したものである。図3では、図2に示したデジタル画像データの一部の画素範囲に属する各画素に、それぞれの位置が分かるようにアルファベット記号と数字とを組み合わせた識別符号を対応付けた例を示す。すなわち、「a1」のように、列と行に対応した記号と数字の組み合わせにより、画素の位置を表記する。識別符号のアルファベット記号は「列」の位置を表し、数字は「行」の位置を表す。 FIG. 3 shows a part of the pixels of the digital image data shown in FIG. 2 with an identification code for identifying the position of each pixel. FIG. 3 shows an example in which each pixel belonging to a part of the pixel range of the digital image data shown in FIG. 2 is associated with an identification code in which alphabet symbols and numbers are combined so that each position can be recognized. That is, the pixel position is represented by a combination of a symbol and a number corresponding to the column and row, such as “a1”. The alphabetical symbol of the identification code represents the position of “column”, and the number represents the position of “row”.
 図3の場合、例えば、b1、b2、及びb3の画素によって、チャートの縦線の内の1本の中央付近が読み取られている。したがって、b1、b2、及びb3の画素の位置は、濃く表示されている。本例の場合、線の間隔は、読取画素の画素数で表すと4画素となっているため、列方向に並ぶ4画素ごとに、線の位置が到来する関係になっている。 In the case of FIG. 3, for example, the center of one of the vertical lines of the chart is read by the pixels b1, b2, and b3. Therefore, the positions of the pixels b1, b2, and b3 are displayed darkly. In the case of this example, since the line interval is 4 pixels when expressed in terms of the number of read pixels, the line positions arrive at every 4 pixels arranged in the column direction.
 図3に示した読取データは、w1~k3までの3行15列の画素を含むデジタル画像データである。以下の説明では、各画素の位置を示す識別符号を用いてデジタル画像データを模式的に表し、本開示の解像力測定方法によるCTFの計算手順を説明する。 The read data shown in FIG. 3 is digital image data including pixels of 3 rows and 15 columns from w1 to k3. In the following description, digital image data is schematically represented using an identification code indicating the position of each pixel, and a CTF calculation procedure according to the resolution measurement method of the present disclosure will be described.
 《実施形態に係るCTFの計算手順の概要》
 本例では、図3におけるa1~g3までの3行7列の四角の範囲を「A位置」とし、この「A位置」に注目して説明する。A位置として示した画素群のように、CTF計算の演算対象とする注目画素範囲を「計算対象範囲」という。
<< Outline of CTF Calculation Procedure According to Embodiment >>
In this example, a 3 × 7 square range from a1 to g3 in FIG. 3 is referred to as “A position”, and this “A position” will be described. Like the pixel group indicated as the A position, a target pixel range that is a calculation target of CTF calculation is referred to as a “calculation target range”.
 図4は、図3に示した3行15列のデジタル画像データの模式図である。図4の上段において、a1~g3までの3行7列の四角の範囲を枠線で囲み「A位置」の範囲を表示した。このA位置に対し、画像データの位置を図4の左に1画素ずつずらした各位置を、B位置、C位置、D位置及びE位置とする。また、A位置に対し、画像データの位置を図4の右に1画素ずつずらした各位置を、F位置、G位置、H位置及びI位置とする。 FIG. 4 is a schematic diagram of the digital image data of 3 rows and 15 columns shown in FIG. In the upper part of FIG. 4, a range of “A position” is displayed by enclosing a 3 × 7 square range from a1 to g3 with a frame line. Each position obtained by shifting the position of the image data by one pixel to the left in FIG. 4 with respect to the A position is defined as a B position, a C position, a D position, and an E position. Further, positions where the position of the image data is shifted by one pixel to the right in FIG. 4 with respect to the A position are defined as an F position, a G position, an H position, and an I position.
 図4の下段は、A位置に対し、画像データの位置を図の左に1画素ずらしたB位置を示している。すなわち、A位置を図4の左に1画素ずらしてB位置とする。 The lower part of FIG. 4 shows the B position where the position of the image data is shifted by one pixel to the left of the figure with respect to the A position. That is, the A position is shifted by one pixel to the left in FIG.
 図5は、A位置に対し、画像データの位置を図の左に2画素ずらしたC位置を示している。すなわち、A位置を図4の左に2画素ずらしてC位置とする。同様に、A位置を左に3画素ずらしてD位置とする。また、A位置を左に4画素ずらしてE位置とする。 FIG. 5 shows a position C in which the position of the image data is shifted by 2 pixels to the left of the figure with respect to the position A. That is, the A position is shifted to the left in FIG. Similarly, the A position is shifted to the left by 3 pixels to obtain the D position. Further, the A position is shifted to the left by 4 pixels to be the E position.
 図6は、A位置に対し、画像データの位置を左に3画素ずらしたD位置を示している。 FIG. 6 shows a D position in which the position of the image data is shifted to the left by 3 pixels with respect to the A position.
 図7は、A位置に対し、画像データの位置を左に4画素ずらしたE位置を示している。 FIG. 7 shows an E position obtained by shifting the position of the image data to the left by 4 pixels with respect to the A position.
 右方向への画像データのシフトについても同様に、図4の上段に示したA位置を右に1画素ずらしてF位置、2画素ずらしてG位置、3画素ずらしてH位置、並びに、4画素ずらしてI位置とそれぞれ定める。 Similarly, for the shift of the image data in the right direction, the A position shown in the upper part of FIG. 4 is shifted by one pixel to the right to the F position, two pixels to the G position, three pixels to the H position, and four pixels. Each position is determined by shifting.
 図8は、A位置に対し、画像データの位置を右に1画素ずらしたF位置を示している。 FIG. 8 shows an F position obtained by shifting the position of the image data to the right by one pixel with respect to the A position.
 図9は、A位置に対し、画像データの位置を右に2画素ずらしたG位置を示している。 FIG. 9 shows the G position where the position of the image data is shifted to the right by 2 pixels with respect to the A position.
 図10は、A位置に対し、画像データの位置を右に3画素ずらしたH位置を示している。 FIG. 10 shows an H position in which the position of the image data is shifted to the right by 3 pixels with respect to the A position.
 図11は、A位置に対し、画像データの位置を右に4画素ずらしたI位置を示している。 FIG. 11 shows an I position obtained by shifting the position of the image data to the right by 4 pixels with respect to the A position.
 なお、図4に示したA位置から左に画像データをずらすと、画像データの右側に、画像データが無い位置ができ、A位置から右に画像データをずらすと、画像データの左側に、画素の値が無い位置ができるため、そのデータ不足位置は、図4~図11の各図面において「u」を付して示した。画素の値が不足する特異部分の取り扱いについては後述する。 If the image data is shifted to the left from the A position shown in FIG. 4, a position where there is no image data is formed on the right side of the image data, and if the image data is shifted to the right from the A position, a pixel is displayed on the left side of the image data. Since there is a position where there is no value, the data shortage position is indicated by “u” in each of FIGS. The handling of the singular part where the pixel value is insufficient will be described later.
 本実施形態に係るCTFの計算方法では、A位置に対し、画像データの位置を図4の左に1画素ずつずらしたB位置~E位置、及び、画像データの位置を図4の右に1画素ずつずらしたF位置~I位置の、同じ行位置かつ列位置の画素同士の各組み合わせについて、画素間のコントラストを計算する。 In the CTF calculation method according to this embodiment, the position of image data is shifted by one pixel to the left in FIG. 4 from the position A, and the position of image data is 1 on the right in FIG. The contrast between pixels is calculated for each combination of pixels at the same row position and column position at the F position to I position shifted by pixels.
 画素間のコントラストは、2つの画素の値を用い、CTFの定義式に準じた計算式に従って算出されるコントラスト評価値である。画素間のコントラストを「画素間CTF」と呼ぶ。 The contrast between pixels is a contrast evaluation value calculated using a value of two pixels according to a calculation formula according to the definition formula of CTF. The contrast between pixels is called “inter-pixel CTF”.
 〈CTF計算比較範囲〉
 画素間CTFを求める際の比較する画素の範囲をCTF計算比較範囲という。CTF計算比較範囲は、比較する画素のうち最も離れた位置の画素との画素間距離をdとして、各画素について右に「+d」画素まで、左に「-d」画素までの範囲である。dは画素のずらし量の最大値を示しており、正の整数である。図4~図11に示す本例は、d=4の場合である。dの好ましい条件については後述する。dは、特定画素数に相当する。
<CTF calculation comparison range>
The range of pixels to be compared when obtaining the inter-pixel CTF is referred to as a CTF calculation comparison range. The CTF calculation comparison range is a range up to “+ d” pixels on the right side and “−d” pixels on the left side, where d is the inter-pixel distance with the pixel farthest among the pixels to be compared. d indicates the maximum pixel shift amount, and is a positive integer. The examples shown in FIGS. 4 to 11 are for d = 4. Preferred conditions for d will be described later. d corresponds to the specific number of pixels.
 〈各画素間CTFの計算について〉
 画素間CTFは、次の式[2]に従って計算される。
<Calculation of inter-pixel CTF>
The inter-pixel CTF is calculated according to the following equation [2].
 CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)} 式[2]
 X(n)は、画素Xの値である。
CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)} Formula [2]
X (n) is the value of pixel X n.
 X(n+m)は、画素Xから濃淡縞の間隔方向にm画素離れた画素Xn+mの値である。 X (n + m) is the value of pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n.
 nは、計算対象範囲に属する各画素の濃淡縞の間隔方向の位置を表す画素番号である。 N is a pixel number representing the position in the interval direction of the gray stripes of each pixel belonging to the calculation target range.
 mは、1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる。 M takes an integer value satisfying 1 ≦ m ≦ d or −d ≦ m ≦ −1.
 光学読取装置の撮像センサが白黒センサである場合、X(n)とX(n+m)のそれぞれは単一の値(色情報を含まない1チャンネルの値)である。 When the imaging sensor of the optical reader is a monochrome sensor, each of X (n) and X (n + m) is a single value (a value of one channel not including color information).
 光学読取装置の撮像センサがカラーセンサである場合、X(n)とX(n+m)のそれぞれは、例えば、R,G,Bの各チャンネルの値を持つため、式[2]によるCTF(X,Xn+m)は、R,G,Bごとに計算される。 When the imaging sensor of the optical reading device is a color sensor, each of X (n) and X (n + m) has values of R, G, and B channels, for example. Therefore, CTF (X n , Xn + m ) is calculated for each of R, G, and B.
 図3の例で説明した各画素の識別符号は画素番号nに相当している。また、画素の識別符号は、その識別符号で表される画素の値の表記としても用いられる。図3の例に式[2]を適用して具体的に説明すると、例えば、図3に示した画素a1に対して、A位置とB位置の組み合わせにより、以下の計算を行う。
CTF(a1,b1)=(b1-a1)/(b1+a1)    式[3]
 式[3]の右辺において、画素a1の値をa1、画素b1の値をb1と表記した。画素の識別符号は、その識別符号で表される画素の値の表記としても用いられる。
The identification code of each pixel described in the example of FIG. 3 corresponds to the pixel number n. The pixel identification code is also used as a notation of the pixel value represented by the identification code. More specifically, the expression [2] is applied to the example of FIG. 3, for example, the following calculation is performed on the pixel a1 shown in FIG. 3 by combining the A position and the B position.
CTF (a1, b1) = (b1-a1) / (b1 + a1) Formula [3]
On the right side of Equation [3], the value of the pixel a1 is represented as a1, and the value of the pixel b1 is represented as b1. The pixel identification code is also used as a notation of the pixel value represented by the identification code.
 また、A位置とC位置の組み合わせにより、以下の計算を行う。
CTF(a1,c1)=(c1-a1)/(c1+a1)    式[4]
 以下、同様にD位置からI位置まで、以下の計算を行う。
CTF(a1,d1)=(d1-a1)/(d1+a1)    式[5]
CTF(a1,e1)=(e1-a1)/(e1+a1)    式[6]
CTF(a1,z1)=(z1-a1)/(z1+a1)    式[7]
CTF(a1,y1)=(y1-a1)/(y1+a1)    式[8]
CTF(a1,x1)=(x1-a1)/(x1+a1)    式[9]
CTF(a1,w1)=(w1-a1)/(w1+a1)    式[10]
 本例ではA位置に対して左右それぞれ4ポジションの合計8ポジション(B位置~I位置)のシフト(ずらし)位置が存在し、計算対象範囲に属する各画素に対して、それぞれ左右4画素ずつの合計8画素との間でそれぞれ画素間CTFの計算が行われる。
Further, the following calculation is performed depending on the combination of the A position and the C position.
CTF (a1, c1) = (c1-a1) / (c1 + a1) Formula [4]
Similarly, the following calculation is performed from the D position to the I position.
CTF (a1, d1) = (d1-a1) / (d1 + a1) Formula [5]
CTF (a1, e1) = (e1-a1) / (e1 + a1) Equation [6]
CTF (a1, z1) = (z1-a1) / (z1 + a1) Equation [7]
CTF (a1, y1) = (y1-a1) / (y1 + a1) Formula [8]
CTF (a1, x1) = (x1-a1) / (x1 + a1) Equation [9]
CTF (a1, w1) = (w1-a1) / (w1 + a1) Formula [10]
In this example, there are a total of 8 shift positions (B position to I position), 4 positions on the left and right with respect to the A position. The inter-pixel CTF is calculated for each of the 8 pixels in total.
 つまり、画素a1に対して説明した式[3]~式[10]と同様の計算が、画素a1~g3の全ての画素について行われる。 That is, the same calculation as in the equations [3] to [10] described for the pixel a1 is performed for all the pixels a1 to g3.
 〈画素間CTFの最大値探索、及び、各画素に対するコントラストの決定〉
 式[2]に従い、各画素Xに対して、1≦m≦d、又は、-d≦m≦-1を満たす全てのmについて、CTF(X,Xn+m)を算出し、これら全てのmのCTF(X,Xn+m)の内で最大の値を、画素Xに対するコントラスト、CTF(X)とする。例えば、画素a1に対して、式[3]~式[10]により計算された8つの画素間CTFの計算結果CTF(a1,b1)~CTF(a1,w1)のうち、最大の値を画素a1に対するコントラストとし、その最大値をCTF(a1)とする。同様の計算を画素a2及び画素a3の各画素に対しても行う。さらに、b列から計算対象範囲であるg列まで同様の計算を行う。これによって、計算対象範囲に属する画素a1から画素g3までの各画素に対するコントラスト、つまり、CTF(a1)からCTF(g3)までを求めることができる。画素Xに対するコントラストをCTF(X)と表す。このようにして、画素ごとに特定されるCTF(X)を「画素のCTF値」と呼ぶ。
<Maximum search for inter-pixel CTF and determination of contrast for each pixel>
According to the equation [2], CTF (X n , X n + m ) is calculated for all m satisfying 1 ≦ m ≦ d or −d ≦ m ≦ −1 for each pixel X n , The maximum value among the CTFs (X n , X n + m ) of m is defined as the contrast for the pixel X n , CTF (X n ). For example, for the pixel a1, the maximum value among the calculation results CTF (a1, b1) to CTF (a1, w1) of the eight inter-pixel CTFs calculated by the equations [3] to [10] The contrast for a1 is set, and the maximum value is CTF (a1). Similar calculation is performed for each of the pixels a2 and a3. Further, the same calculation is performed from the b column to the g column that is the calculation target range. Thereby, the contrast for each pixel from the pixel a1 to the pixel g3 belonging to the calculation target range, that is, CTF (a1) to CTF (g3) can be obtained. The contrast with respect to the pixel Xn is expressed as CTF ( Xn ). In this way, CTF (X n ) specified for each pixel is referred to as a “pixel CTF value”.
 さらに、同じ縦方向の列(a列)に属する画素a1~a3の各CTF値であるCTF(a1)、CTF(a2)、及びCTF(a3)のうち、最大の値をa列のCTF値とし、CTF(a)とする。同様に、b列からg列まで列ごとに、各画素のCTF値の最大値を求め、それぞれの列のCTF(b)~CTF(g)とする。こうして、a列からg列までの各列位置のCTF値を求めることができる。 Furthermore, among CTF (a1), CTF (a2), and CTF (a3), which are the CTF values of the pixels a1 to a3 belonging to the same vertical column (a column), the maximum value is the CTF value of the a column. And CTF (a). Similarly, the maximum CTF value of each pixel is obtained for each column from the b column to the g column, and is set as CTF (b) to CTF (g) of each column. Thus, the CTF values at the respective column positions from the a column to the g column can be obtained.
 〈チャートの線方向について〉
 図1に例示したCTF測定用のチャート10は、縦線のパターンを含むチャートであるので、各画素のCTF値を計算する場合の比較対象画素には、チャート10の線と直交方向の横方向にある画素を用い、各画素のCTF値の計算結果から、最大値を求める際の比較範囲は線と平行な縦方向の画素である。
<About the line direction of the chart>
Since the chart 10 for measuring CTF illustrated in FIG. 1 is a chart including a vertical line pattern, the comparison target pixel when calculating the CTF value of each pixel is a horizontal direction orthogonal to the line of the chart 10. The comparison range when obtaining the maximum value from the calculation result of the CTF value of each pixel is a pixel in the vertical direction parallel to the line.
 これに対し、横線のチャートに対してCTFを計算する場合は、上述した説明の縦横の関係が90度変わる。すなわち、仮に、CTF測定用のチャートが横線のチャートの場合は、各画素のCTF値を計算する場合の比較対象画素には、チャートの線と直交方向の縦方向にある画素を用い、各画素のCTF値の計算結果から、最大値を求める際の比較範囲は、線と平行な横方向の画素となる。 On the other hand, when calculating the CTF for the horizontal chart, the vertical / horizontal relationship described above changes by 90 degrees. That is, if the CTF measurement chart is a horizontal chart, pixels in the vertical direction perpendicular to the chart line are used as comparison target pixels when calculating the CTF value of each pixel. The comparison range when obtaining the maximum value from the calculation result of the CTF value is a horizontal pixel parallel to the line.
 〈CTF計算における正負の符号について〉
 本開示によるCTF計算方法によれば、各画素のCTF値の計算結果が負にならない。式[2]のような計算式を用いて値を計算する場合、一般的には、右辺の分数部分の分子が負にならないように、引かれる数が引く数より大きくなるようにする制約を設ける。しかし、本開示によるCTF計算方法においては、この点は特別考慮する必要が無い。それは、チャートの各線の位置(例えばb1)では、画像が暗いため、読取データが相対的に小さな値になり(例えば、b1とd1の関係)、式[2]の右辺の分子は正になるためである。
<About positive and negative signs in CTF calculation>
According to the CTF calculation method according to the present disclosure, the calculation result of the CTF value of each pixel does not become negative. When calculating a value using a formula such as Equation [2], in general, there is a constraint that the number to be subtracted is larger than the subtracted number so that the numerator of the fractional part on the right side does not become negative. Provide. However, the CTF calculation method according to the present disclosure does not require special consideration. It is because the image is dark at the position of each line of the chart (for example, b1), so the read data becomes a relatively small value (for example, the relationship between b1 and d1), and the numerator on the right side of Equation [2] is positive Because.
 一方、チャート各線の間の位置(例えばd1)では逆に式[2]の右辺の分子が負になる(例えばd1とb1の場合)。しかし、式[2]の計算式からb1に対してd1との画素間CTFを求めたCTF(b1,d1)と、d1に対してb1との画素間CTFを求めたCTF(d1,b1)は、CTF(b1,d1)=-CTF(d1,b1)となり、絶対値では同じ大きさの計算結果が存在する。 On the other hand, at the position between the chart lines (for example, d1), the numerator on the right side of the formula [2] is negative (for example, in the case of d1 and b1). However, CTF (b1, d1) for obtaining the inter-pixel CTF of d1 with respect to b1 from the calculation formula of Equation [2], and CTF (d1, b1) for obtaining the inter-pixel CTF of b1 with respect to d1 Is CTF (b1, d1) = − CTF (d1, b1), and there is a calculation result of the same magnitude in absolute value.
 つまり、画素間CTFの計算は、計算に用いる画素の対(ペア)同士で計算対象の入れ換えが必ず発生するため、計算対象範囲に属する各画素について画素間CTFを計算すると、絶対値が同じ正の値と負の値が対で発生する。 In other words, the calculation of the inter-pixel CTF always involves the replacement of the calculation target between the pair of pixels used for the calculation. Therefore, if the inter-pixel CTF is calculated for each pixel belonging to the calculation target range, the absolute value is the same. And negative values occur in pairs.
 計算対象範囲に属する全ての画素についてそれぞれ画素のCTF値を求めた後、以降の計算では、チャートの線間隔内の画素範囲における各画素のCTF値のうち最大の値を求め、このCTF最大値を線付近のCTF値とするため、上記の負号を考慮しなくとも、CTF最大値の算出結果に影響しない。つまり、チャートの線間隔内でのCTF最大値を求める際に、負の値は無視され、結局、線付近のCTF値は、式[1]の定義どおりに、正の値になる。 After calculating the CTF value of each pixel for all the pixels belonging to the calculation target range, in the subsequent calculation, the maximum value among the CTF values of each pixel in the pixel range within the line interval of the chart is determined, and this CTF maximum value Is a CTF value in the vicinity of the line, so that the calculation result of the CTF maximum value is not affected even if the negative sign is not taken into consideration. That is, when the maximum CTF value within the line interval of the chart is obtained, the negative value is ignored, and eventually the CTF value near the line becomes a positive value as defined in Equation [1].
 〈最大値を探索する探索幅について〉
 計算対象範囲に属する各画素のCTF値を求めた計算の段階、又は、各列のCTF値を求めた計算の段階では、式[1]に定義されるような白黒のMax,Minの組み合わせによって計算される保証はない。Max,Minの組み合わせから計算された部分はCTF値が最大になる。
<Search width for searching the maximum value>
At the stage of calculation for obtaining the CTF value of each pixel belonging to the calculation target range or the stage of calculation for obtaining the CTF value of each column, a combination of black and white Max and Min as defined in Equation [1] is used. There is no guarantee that it will be calculated. The portion calculated from the combination of Max and Min has the maximum CTF value.
 例えば、チャートの縞の間隔が読取画素の間隔の整数倍の関係にない場合、線の位置と読取画素の位置の位相関係が少しずつずれていき、どこかの線のところで、線の位置と読取画素の位置が最も一致する。線の位置と読取画素の位置が最も一致した場所は、読取値が最小の値になる。 For example, if the chart stripe interval is not an integer multiple of the read pixel interval, the phase relationship between the line position and the read pixel position gradually shifts, and at some line, the line position and The position of the read pixel most closely matches. At the place where the position of the line and the position of the read pixel are the same, the read value becomes the minimum value.
 つまり、縞の間隔方向にある程度広い範囲で、CTFを計算すると、位相関係が少しずれた場合でも、Max,Minに近い組み合わせのCTF値を求めることができる。 That is, if the CTF is calculated in a certain wide range in the fringe spacing direction, a combination of CTF values close to Max and Min can be obtained even when the phase relationship is slightly shifted.
 例えば、以下に示す短冊状行列の画素範囲内の全ての画素について各画素のCTF値を計算すると、その中のどこかには、Max,Minに近い組み合わせから計算された部分が含まれるので、それを最大値探索で見つける。 For example, if the CTF value of each pixel is calculated for all the pixels within the pixel range of the strip matrix shown below, a portion calculated from a combination close to Max and Min is included somewhere in it. Find it with a maximum search.
 最大値探索の探索範囲となる探索幅は、チャート画像上の白黒縞の周期を基に定める。白黒縞の周期とは、縞の繰り返し空間周期であり、一定の間隔で並ぶ縞の間隔と同義である。例えば、図1~図3に示す例のように白黒の周期が4画素ならば、探索幅は4画素幅とする。図4で説明した位置Aに対し、探索幅ごとに縦に短冊状に行列を区切り、その短冊状行列の中で画素のCTF値の最大値を求める。こうして求めた最大値が、その短冊幅内の縦線のCTFである。 The search width that is the search range of the maximum value search is determined based on the period of black and white stripes on the chart image. The period of black and white stripes is a repeated spatial period of stripes, and is synonymous with the interval of stripes arranged at regular intervals. For example, if the black and white period is 4 pixels as in the example shown in FIGS. 1 to 3, the search width is 4 pixels. For the position A described with reference to FIG. 4, a matrix is vertically divided for each search width, and the maximum value of the CTF value of the pixel in the strip matrix is obtained. The maximum value thus obtained is the CTF of the vertical line within the strip width.
 図12は、探索幅で区切られた短冊状行列の一例である。ここでは、探索幅4画素で区切られたb列からe列の3行4列の短冊状行列が示されている。図12に示した短冊所状行列の画素範囲から最大のCTF値を探索する。こうして求めた最大のCTF値が、この短冊状行列の位置のCTFである。なお、各列のCTF値が得られている場合、CTF(b)~CTF(e)のうち最大の値が、この短冊状行列の位置を代表するCTFの値である。 FIG. 12 is an example of a strip-like matrix delimited by the search width. Here, a striped matrix of 3 rows and 4 columns from b columns to e columns divided by a search width of 4 pixels is shown. The maximum CTF value is searched from the pixel range of the strip-like matrix shown in FIG. The maximum CTF value obtained in this way is the CTF at the position of the strip matrix. When the CTF value of each column is obtained, the maximum value among CTF (b) to CTF (e) is the CTF value representing the position of the strip matrix.
 〈チャートの線欠けが発生した場合〉
 例えば、インクジェット印刷装置を用いて濃淡縞のチャートを印刷した場合、インクジェットヘッドに不吐出ノズルがあると、濃淡縞の一部が欠ける。この場合、読取画像において、その欠落部分は白くなって、欠けた線位置に対応する画素のCTF値=0となる。つまり、線が欠落した位置を読み取った画素のCTF値は0になるので、最大値の探索において除外(無視)されることになる。
<In case of missing line on the chart>
For example, when a chart of light and shade stripes is printed using an ink jet printing apparatus, if there are non-ejection nozzles in the ink jet head, a part of the light and shade stripes is lost. In this case, in the read image, the missing portion becomes white, and the CTF value of the pixel corresponding to the missing line position = 0. That is, since the CTF value of the pixel that has read the position where the line is missing is 0, it is excluded (ignored) in the search for the maximum value.
 〈測定ノイズの影響を低減するための処理〉
 上記の短冊状行列において、測定ノイズの影響を低減する目的で、次のような処理を実施してもよい。すなわち、図1のような白黒縞の線画像を読み取った画素について、短冊状行列の縦が3行なら、この3行は同じ線を読み取っていると考え、短冊状行列内の最大値から大きい方の3個のデータを平均し、その平均値を列のCTF値とする。ただし、不吐出が線の描画の途中から起きた場合、不吐出による線の欠落部分を読み取った画素のCTF値はCTF=0になるので、大きい方から3個のデータには、0付近のデータは含めないものとする。
<Process to reduce the influence of measurement noise>
In the above striped matrix, the following processing may be performed for the purpose of reducing the influence of measurement noise. That is, for a pixel from which a line image of black and white stripes as shown in FIG. 1 is read, if the length of the strip matrix is 3 rows, it is considered that these 3 rows read the same line, and is larger than the maximum value in the strip matrix. These three data are averaged, and the average value is used as the CTF value of the column. However, if non-ejection occurs in the middle of line drawing, the CTF value of the pixel that has read the missing portion of the line due to non-ejection is CTF = 0. Data shall not be included.
 〈モアレ対策〉
 一般には、チャートの縞の間隔は、読取画素の間隔の整数倍とはならず、チャートの線の間隔と光学読取装置の読取解像度との関係から、チャートの読取画像でモアレを引き起こす。例えば、インラインスキャナを搭載したインクジェット印刷装置の印刷機能によって印刷した濃淡縞のチャートをインラインスキャナによって読み取ると、チャートの描画解像度とインラインスキャナの読取解像度との関係から、読取画像においてモアレが発生する。CTF計算に際して、このモアレの影響を除くために下記の3つの対策処理のうち、いずれかの処理を行うことが好ましい。
<Moire countermeasures>
In general, the interval between the stripes of the chart is not an integral multiple of the interval between the read pixels, and moire is caused in the read image of the chart due to the relationship between the interval between the chart lines and the reading resolution of the optical reading device. For example, when a shading chart printed by a printing function of an inkjet printing apparatus equipped with an inline scanner is read by an inline scanner, moire occurs in the read image due to the relationship between the drawing resolution of the chart and the reading resolution of the inline scanner. In calculating the CTF, it is preferable to perform any one of the following three countermeasure processes in order to eliminate the influence of the moire.
 モアレ対策処理1:モアレの周期は事前に分かっているので、モアレの周期の正の整数倍をCTFの算出周期とする。さらに、列方向に、CTFを算出したいプリント上の間隔に近い読取データ画素数を求め、その読取データ画素数により規定される距離の画素範囲のCTF計算結果から最大値を求める。なお、プリント上の濃淡縞の間隔をPb、読取画像の画素の間隔をPrとすると、Pb>Prであり、モアレの間隔は、2×Pb×Pr/(Pb-Pr)である。 Moire countermeasure processing 1: Since the moire cycle is known in advance, a positive integer multiple of the moire cycle is set as the CTF calculation cycle. Further, in the column direction, the number of read data pixels close to the print interval for which CTF is to be calculated is obtained, and the maximum value is obtained from the CTF calculation result of the pixel range of the distance defined by the read data pixel number. Note that Pb> Pr, and the moire interval is 2 × Pb × Pr / (Pb−Pr) where Pb is the interval between the light and shade stripes on the print and Pr is the interval between the pixels of the read image.
 CTFの算出周期とは、CTFの値を算出する1区画あたりの幅である。例えば、モアレの周期が10mmであるとすると、CTFの算出周期を10mmにする。これにより、モアレの周期が一巡する範囲の細かさでCTFを求めることができる。モアレの周期の正の整数倍の算出周期でCTFを算出すれば、モアレの濃淡の最大のところの情報を取り出すことができる。 The CTF calculation period is the width per section for calculating the CTF value. For example, if the moire period is 10 mm, the CTF calculation period is set to 10 mm. Thereby, CTF can be calculated | required with the fineness of the range where the period of a moire goes around. If the CTF is calculated at a calculation cycle that is a positive integer multiple of the moire cycle, the information on the maximum moire shading can be extracted.
 既に説明したとおり、本開示によるCTF計算方法によれば、チャートの読取画像のデータを、線の間隔方向にシフトして、対応する画素間で値の差と和を計算して、差/和の割り算を行うという単純な演算処理と、その計算結果から最大値を探すという単純な処理とを組み合わせて、読取画像とほぼ同じ大きさの画素範囲の各画素に対するコントラストのデータ群を得ることができる。このデータ群は、モアレの影響を含んでいるため、予め把握されているモアレの周期で画素範囲の区間ごとに最大値(モアレの影響が最も小さい値)を探して、その最大値を該当区間の代表値とする。 As described above, according to the CTF calculation method according to the present disclosure, the read image data of the chart is shifted in the line interval direction, and the difference and sum of the values are calculated between the corresponding pixels. By combining a simple calculation process of dividing the image and a simple process of finding the maximum value from the calculation result, a contrast data group for each pixel in a pixel range of approximately the same size as the read image can be obtained. it can. Since this data group includes the influence of moiré, the maximum value (value with the smallest influence of moiré) is searched for every section of the pixel range in the moire cycle that has been grasped in advance, and the maximum value is found in the corresponding section. The representative value of.
 モアレ対策処理2:各画素のコントラストのデータ群である各画素のCTF値のうち、極端に離れた値(異常値)を除いて平均値を求める。 Moiré countermeasure processing 2: An average value is obtained by excluding extremely distant values (abnormal values) from CTF values of each pixel which is a data group of contrast of each pixel.
 モアレ対策処理3:各画素のコントラストのデータ群である各画素のCTF値のうち、統計演算の手法として知られる「平均値±2σ」内のデータだけを用いて平均値を求める。σは標準偏差である。 Moiré countermeasure process 3: An average value is obtained using only data within “average value ± 2σ” known as a statistical calculation method among the CTF values of each pixel which is a data group of contrast of each pixel. σ is a standard deviation.
 上述のモアレ対策処理1~3のいずれかを行うことにより、モアレの影響を排除して、読み取り幅に渡ってCTFを求めることができる。 By performing any one of the above moire countermeasure processes 1 to 3, it is possible to eliminate the influence of moire and obtain the CTF over the reading width.
 〈階段状の白黒縞を含むチャートの利用について〉
 図13は、階段状の白黒縞を含むチャート画像の例である。図13に示すチャート画像30は、縦の線12が横方向に一定の間隔Pbで並んだ複数の白黒縞31、32、33を含む。ここでは、3つの白黒縞31、32、33が線方向に階段状に位置をずらして配列された3段の白黒縞の例が示されている。線方向とは、白黒縞の線に平行な方向であり、図13に例示の縦縞の白黒縞の場合、縦方向に相当する。
<Use of charts with stair-like black and white stripes>
FIG. 13 is an example of a chart image including stepped black and white stripes. A chart image 30 shown in FIG. 13 includes a plurality of black and white stripes 31, 32, and 33 in which vertical lines 12 are arranged at a constant interval Pb in the horizontal direction. Here, an example of three-stage black and white stripes in which three black and white stripes 31, 32, and 33 are arranged in a stepwise manner in the line direction is shown. The line direction is a direction parallel to the line of the black and white stripes, and corresponds to the vertical direction in the case of the black and white stripes of the vertical stripes illustrated in FIG.
 白黒縞31、32、33の各々は、縞の間隔Pbと白部14の間隔Pwが等しい。また、図1で説明した例と同様に、白黒縞31、32、33の各々において、黒幅Wbと白幅Wwは等しい。 In each of the black and white stripes 31, 32, 33, the stripe interval Pb and the interval Pw of the white portion 14 are equal. Similarly to the example described in FIG. 1, the black width Wb and the white width Ww are equal in each of the black and white stripes 31, 32, and 33.
 図13において最上段に表示された第1段目の白黒縞31の位置に対して、第2段目の白黒縞32は、縞の間隔方向に規定距離rだけ位置をずらした位置に配置される。第3段目の白黒縞33は、第2段目の白黒縞32の位置に対して、縞の間隔方向にさらに規定距離rだけ位置をずらした位置に配置される。規定距離rは「特定距離」の一例である。「間隔方向」とは、縞が一定の間隔Pbで並ぶ方向である。本例の場合、線12の線方向に直交する方向(図13において横方向)を指す。図13では、3段の白黒縞を例示したが、2段以上、任意の段数の階段状の白黒縞を用いることができる。 In FIG. 13, the second black and white stripe 32 is arranged at a position shifted by a specified distance r in the stripe interval direction with respect to the position of the first black and white stripe 31 displayed at the top. The The third-stage black and white stripes 33 are arranged at positions shifted by a specified distance r in the stripe interval direction with respect to the position of the second-stage black and white stripes 32. The specified distance r is an example of a “specific distance”. The “interval direction” is a direction in which stripes are arranged at a constant interval Pb. In the case of this example, it indicates a direction (lateral direction in FIG. 13) orthogonal to the line direction of the line 12. In FIG. 13, three steps of black and white stripes are illustrated, but stepped black and white stripes having two or more steps and an arbitrary number of steps can be used.
 図13では3段の例を示したが、縞の間隔方向の規定距離rは、縞の間隔Pbの正の整数分の1であり、線方向に並ぶ白黒縞の数、すなわち段数は、(間隔Pb/規定距離r)の正の整数倍であることが望ましい。 Although the example of three stages is shown in FIG. 13, the specified distance r in the stripe interval direction is a positive integer of the stripe interval Pb, and the number of monochrome stripes arranged in the line direction, that is, the number of stages, is ( It is desirable to be a positive integer multiple of the interval Pb / the specified distance r).
 図13に示したチャート画像は、規定距離=1、白黒縞の間隔Pb=4であるので、線方向の白黒縞の数(段数)=(4/1)=4が望ましい。規定距離rの単位と白黒縞の間隔Pbの単位は、ミリメートルである。なお、規定距離と白黒縞の間隔Pbは、それぞれ読取画素の1画素の大きさを単位として画素数によって表されてもよい。 The chart image shown in FIG. 13 has a specified distance = 1 and a black-and-white stripe interval Pb = 4, so the number of black-and-white stripes in the line direction (number of stages) = (4/1) = 4 is desirable. The unit of the specified distance r and the unit of the black-and-white stripe interval Pb is millimeters. The specified distance and the black-and-white stripe interval Pb may be expressed by the number of pixels in units of the size of one read pixel.
 このような階段状の白黒縞を含むチャートを光学読取装置によって読み取り、得られた読取画像のデータから、本実施形態によるCTF計算方法を適用して、各画素のCTF値を計算する。こうして得られた各画素のCTF値の計算結果に対して、チャートの線にほぼ平行な方向に一列に並んだ画素のCTF値の計算結果のうち、最大の値を画素XのCTF値とすることができる。 A chart including such stepped black and white stripes is read by an optical reading device, and the CTF calculation method according to the present embodiment is applied from the obtained read image data to calculate the CTF value of each pixel. For the CTF value calculation result of each pixel thus obtained, the maximum value among the calculation results of the CTF values of the pixels arranged in a line in a direction substantially parallel to the chart line is the CTF value of the pixel Xn. can do.
 一般に、チャートの縞の間隔は、読取画素の間隔の整数倍とはなっておらず、チャートの縞の間隔と、光学読取装置の読取解像度との関係から、線の位置と読取画素の位置との位相関係がずれたデータが得られる。図13のような、階段状の白黒縞を含むチャートを読み取ると、複数段の白黒縞のうち、どこかの段の線の中心と読取画素の中心とがより一致する位置関係となる場所が存在する確率が高くなる。 In general, the interval between the stripes of the chart is not an integral multiple of the interval between the reading pixels. From the relationship between the interval between the stripes of the chart and the reading resolution of the optical reading device, the position of the line and the position of the reading pixel are Thus, data with the phase relationship shifted can be obtained. When a chart including stepped black and white stripes as shown in FIG. 13 is read, there is a place where the center of the line of some stage and the center of the read pixel are more coincident among the plurality of stages of black and white stripes. Probability of existence increases.
 したがって、階段状の白黒縞を含むチャートを用いて、本実施形態のCTF計算方法を適用することにより、光学読取装置の読取画素の大きさが、チャートの縞の間隔に近い場合であっても、実際のCTFに近い値を求めることができる。 Therefore, by applying the CTF calculation method of the present embodiment using a chart including stepped black and white stripes, even when the size of the read pixel of the optical reader is close to the interval between the stripes of the chart. A value close to the actual CTF can be obtained.
 図13に示した白黒縞の各々の線は、インクジェットヘッドの各ノズル1個ずつ記録することができる。つまり、白黒縞の各線は、それぞれ単一のノズルによって記録することができる。 Each line of the black and white stripes shown in FIG. 13 can be recorded one by one for each nozzle of the inkjet head. That is, each line of black and white stripes can be recorded by a single nozzle.
 また、図13では、各段の白黒縞31~33が線方向に接して繋がっている例を示しているが、異なる段の白黒縞同士は、必ずしも繋がっている必要はなく、互いに離間していてもよい。 FIG. 13 shows an example in which the black and white stripes 31 to 33 at each stage are connected in contact with each other in the line direction. May be.
 〈CTF計算の前準備と両端特異部分の扱い〉
 図4に示したA位置のa~g(n=1,2,3)に対して、B位置~I位置は、それぞれ画素をずらした後も同じ列と行に画素がある。一方、画像データの内、A位置の1~4列及び12~15列の4画素列は、画素をずらす方向によって、B位置~I位置で「u」で示す対応する位置の画素データが無くなる。したがって、このままでは、画素間CTFを計算できないので、両端4列は計算から除外するか、若しくは、画素をずらした結果、画素データが無い位置には、周辺範囲の画素の平均値のデータを当てはめて、画素間CTFの計算を行う。
<Preparation for CTF calculation and handling of singular parts at both ends>
With respect to a n to g n (n = 1, 2, 3) at the A position shown in FIG. 4, the B position to the I position have pixels in the same column and row even after the pixels are shifted. On the other hand, among the image data, the pixel data of the corresponding positions indicated by “u” from the B position to the I position are lost in the four pixel columns of the 1st to 4th lines and the 12th to 15th lines of the A position depending on the direction of shifting the pixels. . Therefore, since the inter-pixel CTF cannot be calculated as it is, the four columns at both ends are excluded from the calculation, or the data of the average value of the pixels in the peripheral range is applied to a position where there is no pixel data as a result of shifting the pixels. Then, the inter-pixel CTF is calculated.
 例えば、図4に示したB位置の最右列に示した1行目の「u」には、h1~k1の平均値が入る。図4に示したB位置の最右列に示した2行目の「u」には、h2~k2の平均値が入る。図4に示したB位置の最右列に示した3行目の「u」には、h3~k3の平均値が入る。図5に示したC位置の右端2列に示した「u」についても、1行目の「u」には2列ともh1~k1の平均値が入る。以下、同様であるので説明を省略する。 For example, “u” in the first row shown in the rightmost column at position B shown in FIG. 4 contains an average value of h1 to k1. The average value of h2 to k2 is entered in “u” in the second row shown in the rightmost column at position B shown in FIG. The average value of h3 to k3 is entered in “u” in the third row shown in the rightmost column at position B shown in FIG. As for “u” shown in the rightmost two columns at the C position shown in FIG. 5, the average value of h1 to k1 is entered in “u” in the first row in both columns. Hereinafter, since it is the same, description is abbreviate | omitted.
 周辺画素の画素値の平均値は、画像として濃淡縞画像の濃い部分と薄い部分のデータを平均するため、中間の明るさの値となる。白黒縞であれば「グレー」の値となるため、画素間コントラストの計算結果は比較的小さい値になる。つまり、画素をずらすことによって画素データが無くなる特異部分の画素位置に対して、周辺画素の平均値のデータを当てはめる方法を採用した場合、その平均値を当てはめた画素を用いた画素間CTFの計算結果は最大値にはならないため、各画素のCTF値の計算結果に残らず、最大値を求める計算結果に影響しない。 The average value of the pixel values of the peripheral pixels is an intermediate brightness value because the data of the dark portion and the light portion of the gray stripe image is averaged as an image. Since the value is “gray” for black and white stripes, the calculation result of the inter-pixel contrast is a relatively small value. That is, when the method of applying the average value data of the peripheral pixels to the pixel position of the singular part where the pixel data disappears by shifting the pixel, the calculation of the inter-pixel CTF using the pixels to which the average value is applied Since the result does not become the maximum value, it does not remain in the calculation result of the CTF value of each pixel and does not affect the calculation result for obtaining the maximum value.
 画素をずらすことによって画素データが無くなる端部の特異部分を計算の処理から除外するという例外処理を加えると、計算アルゴリズムが複雑化する。 If the exception process of excluding the singular part at the end where the pixel data is lost by shifting the pixel is excluded from the calculation process, the calculation algorithm becomes complicated.
 これに対し、特異部分に周辺画素の平均値のデータを当てはめる方法は、例外処理が不要であり、計算アルゴリズムが簡略化できる点でより好ましい。 On the other hand, the method of applying the average value data of the peripheral pixels to the singular part is more preferable because it does not require exception processing and can simplify the calculation algorithm.
 〈チャートの両端及び線欠けを考慮した処理〉
 白黒縞のチャートにおける両端の線の外側、及び、チャート内で線が欠落した部分など、線がない部分では、白地が広くなるため、白黒のコントラストが上がる。よって、周辺の画素に対して特異的に解像力が高く計算された画素は、不吐出による線欠け、又は、チャートの外側の影響を疑い、その画素のデータを除外するか、若しくは、特異的でない周辺の画素のCTF値の平均値とする。
<Processing taking into account both ends of the chart and missing lines>
In a black and white striped chart, the white background is widened at a portion where there is no line, such as the outside of the line at both ends and a portion where the line is missing in the chart, so that the black and white contrast increases. Therefore, a pixel that has been calculated with a high resolving power specifically with respect to the surrounding pixels is suspected of missing lines due to non-ejection or an influence outside the chart, and excludes the data of the pixel, or is not specific The average value of CTF values of surrounding pixels is used.
 〈画素グループの設定例〉
 図12で説明した短冊状行列のようなグループ分けに限らず、計算対象範囲に属する各画素のCTF値の計算結果に対して、白黒縞の線の並び方向(間隔方向)に、縞の間隔に相当する画素数(縞間隔画素数)以上の画素のグループを設定し、グループごとに、グループ内の計算結果のうち最大の値を、その画素グループに属する各画素位置でのCTFとして定めてもよい。
<Example of pixel group settings>
Not only the grouping like the strip matrix described with reference to FIG. 12, but the calculation result of the CTF value of each pixel belonging to the calculation target range, the stripe interval in the arrangement direction (interval direction) of black and white stripe lines. A group of pixels equal to or more than the number of pixels (number of fringe spacing pixels) is set, and for each group, the maximum value among the calculation results in the group is determined as the CTF at each pixel position belonging to the pixel group. Also good.
 図14は、図3に示した読取画像のデータにおける画素グループの一例である。図14には、画素a1~e1の5画素の範囲を1つのグループとして設定した例が示されている。このグループ内の各画素のCTF値のうち、最大の値、例えばCTF(b1)を、a1~e1の各画素のCTF値としてもよい。 FIG. 14 is an example of a pixel group in the read image data shown in FIG. FIG. 14 shows an example in which a range of five pixels a1 to e1 is set as one group. Of the CTF values of each pixel in this group, the maximum value, for example, CTF (b1) may be used as the CTF value of each pixel of a1 to e1.
 〈チャートの線方向に並ぶ画素の扱いの例〉
 計算対象範囲に属する各画素のCTF値の計算結果に対して、又は、図14で説明した画素グループの設定を行って求めた各画素のCTF値の計算結果に対して、各画素位置でチャートの線にほぼ平行な方向に一列に並んだ読取画素の計算結果のうち、最大の値を、その一列の画素列位置に属する各画素位置でのCTFとして定めてもよい。
<Example of handling pixels lined up in the line direction of the chart>
A chart at each pixel position with respect to the calculation result of the CTF value of each pixel belonging to the calculation target range or the calculation result of the CTF value of each pixel obtained by setting the pixel group described with reference to FIG. Among the calculation results of the read pixels arranged in a line in a direction substantially parallel to the line, the maximum value may be determined as the CTF at each pixel position belonging to the pixel line position of that line.
 図15は、図3に示した読取画像のデータにおいてチャートの線に平行な列方向に一列に並んだ読取画素の一例である。図15には、画素b1~b3が縦方向に並んだb列の画素列が示されている。これら画素b1~b3のそれぞれのCTF値のうち、最大の値、例えばCTF(b2)を、画素b1~b3の各画素のCTF値としてもよい。 FIG. 15 shows an example of the read pixels arranged in a line in the column direction parallel to the chart line in the read image data shown in FIG. FIG. 15 shows b pixel columns in which the pixels b1 to b3 are arranged in the vertical direction. Of the CTF values of the pixels b1 to b3, the maximum value, for example, CTF (b2) may be used as the CTF value of each of the pixels b1 to b3.
 この方法は、図13で説明した階段状の白黒縞を用いる場合や、測定ノイズの影響で画素値が変動している場合、或いは、チャートの読取画素が白黒縞の線の方向に対して僅かに傾いている場合などに、有益である。 In this method, when the staircase-shaped black and white stripes described in FIG. 13 are used, the pixel value fluctuates due to the influence of measurement noise, or the read pixel of the chart is slightly in the direction of the black and white stripe line. This is useful when you are leaning to
 〈異常値の除外処理について〉
 図13及び図14を用いて説明した処理などにおいて、各画素のCTF値のデータ群の中のある画素XのCTF(X)の値が、少なくとも、その前後の画素のCTF値に比べて、所定割合以上大きい場合、その画素XのCTF値を異常値として除外する処理を行ってもよい。「その前後の画素のCTF値」は、例えば、線方向に並ぶ画素のCTF(X)の平均値、すなわち、線方向の画素のコントラスト平均値であってよい。所定割合として、例えば、10%とすることができる。予め定められている所定割合が「規定割合」に相当する。
<Exclusion processing of abnormal values>
In the processing described with reference to FIGS. 13 and 14, the CTF (X n ) value of a certain pixel X n in the CTF value data group of each pixel is at least compared with the CTF values of the pixels before and after that. When the ratio is larger than the predetermined ratio, a process of excluding the CTF value of the pixel Xn as an abnormal value may be performed. The “CTF value of the pixels before and after that” may be, for example, an average value of CTF (X n ) of pixels arranged in the line direction, that is, an average value of contrast of pixels in the line direction. For example, the predetermined ratio can be 10%. The predetermined ratio set in advance corresponds to the “specified ratio”.
 また、異常値として除外する処理に代えて、画素XのCTF値を、その前後の所定画素数のうち、異常値でない画素のCTF値の平均値に置き換える処理を行ってもよい。所定画素数として、例えば10画素とすることができる。前後の所定画素数の範囲が、「周囲の規定画素数の範囲」に相当する。 Further, instead of the process of excluding as an abnormal value, a process of replacing the CTF value of the pixel Xn with the average value of the CTF values of pixels that are not abnormal values out of the predetermined number of pixels before and after the pixel Xn may be performed. For example, the predetermined number of pixels may be 10 pixels. The range of the predetermined number of pixels before and after corresponds to the “range of the predetermined number of surrounding pixels”.
 《光学読取装置について》
 光学読取装置の光学系は、単一の光軸を持つ結像レンズであってもよいし、複数の光軸を持つレンズアレイであってもよい。複数の光軸を持つレンズアレイとして、例えば、セルフォック(登録商標)レンズアレイを用いることができる。また、単一の光軸を持つ結像レンズを用いた光学読取装置を複数台用いて、より広い範囲を読み取る光学読取装置でもよい。
<About optical reader>
The optical system of the optical reader may be an imaging lens having a single optical axis or a lens array having a plurality of optical axes. As a lens array having a plurality of optical axes, for example, a SELFOC (registered trademark) lens array can be used. Further, an optical reading device that reads a wider range by using a plurality of optical reading devices using an imaging lens having a single optical axis may be used.
 光学読取装置の撮像センサには、CCD(Charge Coupled Device)イメージセンサ又はCMOS(complementary metal oxide semiconductor)イメージセンサなどの2次元アレイセンサ、若しくは1次元ラインセンサを用いることができる。1次元ラインセンサを用いた光学読取装置では、チャートと光学読取装置の光学系を相対的に移動し、チャートの2次元画像を取得する走査装置を備える。走査装置は、光学読取装置に対してチャートを搬送する搬送装置であってよい。 As the imaging sensor of the optical reader, a two-dimensional array sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (complementary metal oxide semiconductor) image sensor, or a one-dimensional line sensor can be used. An optical reader using a one-dimensional line sensor includes a scanning device that relatively moves the chart and the optical system of the optical reader to acquire a two-dimensional image of the chart. The scanning device may be a transport device that transports the chart to the optical reading device.
 《CTF計算に関連するパラメータについて》
 本開示のCTF計算方法に関連する主なパラメータと好ましい条件について説明する。
<Parameters related to CTF calculation>
The main parameters and preferable conditions related to the CTF calculation method of the present disclosure will be described.
 ・チャートの濃淡縞の間隔:P(mm)  ここで P>0である。 ・ Distance between shading stripes of the chart: P (mm) where P> 0.
 ・チャート上での読取画素の間隔:S(mm)  ここで S>0である。 · Spacing of read pixels on the chart: S (mm) where S> 0.
 ・チャートの読み取りデータから、各画素に対して縞の並び方向(間隔方向)に離れた画素との間で濃淡縞のコントラストを計算する際に、最も離れた画素との間隔:d(画素)
 ここで d≧1 かつ、画素数なので正の整数である。
When calculating contrast of light and dark stripes from the chart reading data with pixels separated in the stripe arrangement direction (interval direction) for each pixel, the distance from the most distant pixel: d (pixel)
Here, since d ≧ 1 and the number of pixels, it is a positive integer.
 以下、P、S、及びdについて、見やすくするため単位を省略して記述する場合がある。 In the following, P, S, and d may be described with their units omitted for ease of viewing.
 PとSの関係について、仮にS>Pとすると、読み取りの1画素中に、縞の一部分の場合も含めて複数の濃淡縞が含まれてしまうので、S<Pでなければならない。
よって、
 P/S≧1          式[11]
である。      
一方、サンプリング定理から、周期的な縞を読むためには、少なくとも、2×S≦Pが必要である。よって、
 P/S≧2         式[12]
である。
Assuming that S> P with respect to the relationship between P and S, a plurality of light and shade stripes are included in one read pixel including a part of the stripes, so S <P must be satisfied.
Therefore,
P / S ≧ 1 Formula [11]
It is.
On the other hand, from the sampling theorem, in order to read periodic fringes, at least 2 × S ≦ P is required. Therefore,
P / S ≧ 2 Formula [12]
It is.
 式[11]と式[12]を合わせると、結果的に、
 P/S≧2          式[13]
である。
Combining equation [11] and equation [12] results in:
P / S ≧ 2 Formula [13]
It is.
 光学読取装置による読み取りは、式[13]を満たす必要が有るが、コストを考えると、実用上、式[13]式の等号の条件を大幅に越えて、P/S≫1となるほど、Sを小さくできない。 Reading by the optical reader needs to satisfy the equation [13]. However, considering the cost, in practice, the condition of the equation [13] is greatly exceeded, and P / S >> 1. S cannot be reduced.
 一方、Pは解像力を測りたい空間周波数から規定されるため自由に大きくすることはできない。 On the other hand, since P is defined from the spatial frequency for which the resolution is to be measured, it cannot be increased freely.
 よって、結果的に、式[13]を満たし、光学読取装置として必要な解像度を得られるなるべく大きなSを選択することになる。 Therefore, as a result, S which satisfies Equation [13] and can obtain the resolution necessary for the optical reader is selected as much as possible.
 〈特定画素数としての「d」の望ましい値について〉
 仮に、濃淡縞を十分に高い解像度(Sが非常に小さい。S≪P、つまり、P/S≫1)で読み取った理想的な状態を想定し、読取画像の各画素を縞の並び方向(間隔方向)に比較した場合、最も濃い読取値となる濃い縞の中央の画素位置と、最も薄い読取値となる薄い縞の中央の画素位置の間隔はP/2(mm)であり、読取画素数で表すと、
 P/(2×S)(画素)      式[14]
となる。
<About desirable value of “d” as specific pixel number>
Assuming an ideal state where gray stripes are read at a sufficiently high resolution (S is very small. S << P, that is, P / S >> 1), each pixel of the read image is arranged in the stripe arrangement direction ( (Interval direction), the interval between the central pixel position of the dark stripe that is the darkest read value and the central pixel position of the thin stripe that is the thinnest read value is P / 2 (mm). Expressed as a number
P / (2 × S) (pixel) Equation [14]
It becomes.
 CTFの計算の定義(式[1])から、これらの読取画素数の画素範囲のうち、最も濃い読取値と最も薄い読取値を計算に用いることで、CTFを求めることができる。 From the definition of CTF calculation (formula [1]), the CTF can be obtained by using the darkest read value and the thinnest read value in the pixel range of the number of read pixels.
 本開示のCTF計算方法では、読み取った画像データの各画素について、「1つの画素」(以下「画素α」という。)に注目して、これとは「別の画素」(以下「画素β」という。)との間でコントラストを計算し、濃淡縞のコントラストを求めようとするものである。「別の画素」とは、縞の並び方向の隣の画素から、所定画素数(dとする)離れた画素までをいう。 In the CTF calculation method of the present disclosure, for each pixel of the read image data, attention is paid to “one pixel” (hereinafter referred to as “pixel α”), and this is referred to as “another pixel” (hereinafter referred to as “pixel β”). The contrast is calculated with the above to obtain the contrast of light and shade stripes. “Another pixel” refers to a pixel that is a predetermined number of pixels away (d) from the adjacent pixel in the stripe arrangement direction.
 よって、この計算において、次の条件1が必要である。 Therefore, the following condition 1 is necessary in this calculation.
 条件1:画素αと画素βの間に、上記の濃い縞の中央の位置を含む画素と、薄い縞の中央の位置を含む画素が含まれていることが必要である。なお、濃い縞の中央の位置を含む画素と、薄い縞の中央の位置を含む画素の間隔は式[14]である。 Condition 1: It is necessary that a pixel including the center position of the dark stripe and a pixel including the center position of the thin stripe are included between the pixel α and the pixel β. Note that the interval between the pixel including the center position of the dark stripe and the pixel including the center position of the thin stripe is expressed by Equation [14].
 また、本開示のCTF計算方法では、計算量を減らすために、dをできるだけ小さくすることを考える。計算量を減らす観点から次の条件2を加える。 Also, in the CTF calculation method of the present disclosure, it is considered that d is made as small as possible in order to reduce the calculation amount. The following condition 2 is added from the viewpoint of reducing the amount of calculation.
 条件2:画素αが、上記の濃い縞の中央の位置を含む画素である場合、この濃い縞に隣接する薄い縞の中央の位置を含む画素が所定画素数d内に含まれるようにする。 Condition 2: When the pixel α is a pixel including the center position of the dark stripe, a pixel including the center position of the thin stripe adjacent to the dark stripe is included in the predetermined pixel number d.
 ここで、濃い縞の中央の位置を含む画素と薄い縞の中央の位置を含む画素の間隔は、式[14]からP/(2×S)なので、d=P/(2×S)であればよいが、dは正の整数であるから、「d≧ P/(2×S)を満たす最小の整数d」が適切な値となる(方法1)。図1~図3の例では、P=4、S=1であるから、d=2となる。 Here, since the distance between the pixel including the center position of the dark stripe and the pixel including the center position of the thin stripe is P / (2 × S) from the equation [14], d = P / (2 × S) However, since d is a positive integer, “the smallest integer d that satisfies d ≧ P / (2 × S)” is an appropriate value (method 1). In the example of FIGS. 1 to 3, since P = 4 and S = 1, d = 2.
 この計算では、画素αが、上記の「濃い縞の中央の位置を含む画素である場合」、としたが、そうでない場合の画素を用いた計算では、本開示のCTF計算方法の計算結果は大きな値とならないので、図14で説明した画素グループの設定による処理によって除外される。 In this calculation, the pixel α is described as “when the pixel includes the center position of the dark stripe”, but in the calculation using the pixel when the pixel α is not, the calculation result of the CTF calculation method of the present disclosure is Since it does not become a large value, it is excluded by the processing by the pixel group setting described in FIG.
 ただし、画素αが、上記の薄い縞の中央の位置を含む画素である場合は、濃い縞の中央の位置を含む画素である場合と途中の計算結果の符号が異なるだけで、同じ計算結果となり、図14で説明した画素グループの設定による処理に影響を与えない。 However, when the pixel α is a pixel including the center position of the thin stripe, the calculation result is the same as the pixel including the center position of the dark stripe except that the sign of the calculation result is different. The processing by the pixel group setting described in FIG. 14 is not affected.
 以上は、読み取りが理想的な場合(レンズ設計値から求める場合)について述べたが、実際の光学読取装置では、結像レンズの設計上の収差、及び製造誤差、若しくは調整の誤差、さらには、装置の設置環境の温度変化などにより、像高誤差(歪曲収差及び/又はディストーションによって発生する)が生じ、読み取りの範囲内の各場所において、読取画素の間隔Sが異なる。これを考慮して、像高誤差により、Sが最も小さくなる値を用いてdを求める。この場合、Sが最も小さいので、dは最も大きくなる(画素数が多くなる)。 The above describes the case where reading is ideal (when obtaining from the lens design value), but in an actual optical reader, the design aberration of the imaging lens, manufacturing error, or adjustment error, An image height error (generated due to distortion and / or distortion) occurs due to a temperature change in the installation environment of the apparatus, and the interval S between the read pixels is different in each place within the reading range. Considering this, d is obtained using a value where S becomes the smallest due to an image height error. In this case, since S is the smallest, d is the largest (the number of pixels is increased).
 そこで、実際の誤差も含めて、最も小さなSをどう求めるかであるが、個々の光学読取装置に対して、特性測定として実測して、「方法1」の式から求めても良い(方法2)。 Thus, how to obtain the smallest S including the actual error may be actually obtained as a characteristic measurement for each optical reading device and obtained from the formula of “Method 1” (Method 2). ).
 また、設計上の収差の大きさや製造誤差、若しくは調整の誤差の仕様値から考え得る最も小さなSと「方法1」の式から求めても良い(方法3)。 Further, it may be obtained from the smallest S that can be considered from the design aberration magnitude, the manufacturing error, or the specification value of the adjustment error (Method 3).
 さらに、通常、本実施形態で説明したような、検査のために用いられる光学読取装置の像高誤差は比較的小さいので、dをやや大きめに設定してしまう簡便な方法も用いられる。実測に寄らない方法では測定コストを削減できる。 Furthermore, since the image height error of an optical reading apparatus used for inspection as described in the present embodiment is usually relatively small, a simple method for setting d slightly larger is also used. Measurement costs can be reduced with methods that do not rely on actual measurements.
 簡便な方法として、次の方法が考えられる。 The following method can be considered as a simple method.
 濃淡縞に対する読取画素の位置、つまり、縞と画素の位相の関係は任意なので、「条件1」を満たすには、d画素の長さ(d×S(mm))について、
 d×S≧P         式[15]
であれば、画素αからd(画素)離れた画素βまでの間に、濃淡縞1周期以上を含むことができる。ここで、式[15]において、d×S=Pの場合でも、画素αからd(画素)離れた画素βまでの間にはd+1(画素)が存在するので濃淡縞1周期を確実に含むことができる。
Since the position of the read pixel with respect to the gray stripe, that is, the relationship between the stripe and the phase of the pixel is arbitrary, in order to satisfy “condition 1”, the length of the d pixel (d × S (mm))
d × S ≧ P Formula [15]
If so, one or more periods of gray stripes can be included between the pixel α and the pixel β that is d (pixels) away. Here, in the equation [15], even when d × S = P, there is d + 1 (pixel) between the pixel α and the pixel β that is d (pixel) away from the pixel α. be able to.
 一方、dをさらに大きくしていくと、濃淡縞2周期目、3周期目・・・というように、画素αから離れた縞が含まれてしまうので、濃淡縞の隣り合った濃い部分と薄い部分の読取値からCTFを求めるには、dは大きすぎては不適切である。式[15]は、d≧P/Sと書けるので、dは、式[15]から、「d≧P/Sとなるdの内、最小の整数を選択する。」としてもよい(方法4)。 On the other hand, if d is further increased, stripes away from the pixel α are included, such as the second and third periods of the light and shade stripes, so that the adjacent dark portions and the light and dark stripes are thin. In order to obtain the CTF from the reading value of the portion, it is inappropriate that d is too large. Since Equation [15] can be written as d ≧ P / S, d may be “select the smallest integer among d satisfying d ≧ P / S” from Method [15] (Method 4). ).
 図1~図3の例では、P=4、S=1であるから、d=4となる。 In the example of FIGS. 1 to 3, since P = 4 and S = 1, d = 4.
 この「方法4」を「方法1」と比較すると、局所的な像高誤差は、大きくとも2倍を超えない、として設定していることになる。また、それは、画素αに対して、レンズ設計値として、離れた位置の濃淡縞を計算対象としないように設定したものである。 When this “Method 4” is compared with “Method 1”, the local image height error is set not to exceed twice at most. Further, it is set so that the gray stripes at the distant positions are not subject to calculation as lens design values for the pixel α.
 以上から、簡便には、「方法1」以上「方法4」以下にdを設定することが望ましい。すなわち、d≧P/(2×S)を満たす最小の整数以上、かつ、d≧P/Sを満たす最小の整数以下の整数dとする。また、計算量を考えると、この範囲で、より小さい「方法1」に近い方が好ましい。 From the above, for simplicity, it is desirable to set d between “Method 1” and “Method 4”. That is, the integer d is equal to or larger than the minimum integer satisfying d ≧ P / (2 × S) and equal to or smaller than the minimum integer satisfying d ≧ P / S. Further, in view of the calculation amount, it is preferable to be closer to the smaller “method 1” in this range.
 この「方法4」のdを用いた場合、かつ、インクジェット印刷装置での不吐出でチャート線欠けがあった場合、線欠けの部分は濃淡縞の淡部分がより薄く読み取られる。この結果、この欠け部分の画素を使って求めた値はCTFが高く計算され異常値である。 When d of this “Method 4” is used and when there is a chart line defect due to non-ejection in the ink jet printing apparatus, the thin part of the light and dark stripes is read more thinly in the line defect part. As a result, the value obtained using the missing pixel is an abnormal value calculated with a high CTF.
 一方、光学読取装置のCTFは局所的に急激に変化することは無いので、求めたCTFに対し、異常値の除外処理を組み合わせることが望ましい。 On the other hand, since the CTF of the optical reader does not change rapidly locally, it is desirable to combine an abnormal value exclusion process with the obtained CTF.
 《実施形態に係るインクジェット印刷装置におけるCTF測定処理フローの例》
 図16は、実施形態に係るインクジェット印刷装置におけるCTF測定処理に関する全体的な処理の流れを示すフローチャートである。実施形態に係るインクジェット印刷装置は、インラインスキャナが搭載されており、印刷処理と、印刷後の読み取り処理とが一連の動作として実行される。
<< Example of CTF Measurement Processing Flow in Inkjet Printing Apparatus According to Embodiment >>
FIG. 16 is a flowchart illustrating an overall process flow related to the CTF measurement process in the inkjet printing apparatus according to the embodiment. The ink jet printing apparatus according to the embodiment includes an inline scanner, and a printing process and a reading process after printing are executed as a series of operations.
 本例のインクジェット印刷装置におけるCTF測定方法は、印刷画像データ生成工程(ステップS1)と、印刷処理工程(ステップS2)と、ステップS2と並列処理で実行する読み取り処理工程(ステップS3)と、CTF算出処理工程(ステップS4)と、を含む。 The CTF measurement method in the inkjet printing apparatus of this example includes a print image data generation step (step S1), a print processing step (step S2), a reading processing step (step S3) executed in parallel with step S2, and a CTF. Calculation processing step (step S4).
 〈S1:印刷画像データ生成工程〉
 インクジェット印刷装置は、ステップS1において、CTF測定用チャートを印刷するための印刷画像データを生成する。
<S1: Print image data generation process>
In step S1, the inkjet printing apparatus generates print image data for printing the CTF measurement chart.
 図17は、印刷画像データ生成処理の内容を示すフローチャートである。図17に示す印刷画像データの生成処理は、インクジェット印刷装置の制御装置によって実行される。 FIG. 17 is a flowchart showing the contents of print image data generation processing. The print image data generation process shown in FIG. 17 is executed by the control device of the inkjet printing apparatus.
 ステップS11において、制御装置は、チャートサイズ情報を取得する。チャートサイズ情報は、チャート画像の主走査方向サイズ及び副走査方向サイズの情報を含む。チャートサイズ情報は、プログラムによって予め指定されていてもよし、ユーザインターフェースを介して入力されてもよい。チャートサイズ情報は、ミリメートルの単位で表わされてもよいし、記録解像度に基づく画素の単位で表わされてもよい。 In step S11, the control device acquires chart size information. The chart size information includes information on the main scanning direction size and the sub scanning direction size of the chart image. The chart size information may be specified in advance by a program or may be input via a user interface. The chart size information may be expressed in units of millimeters or may be expressed in units of pixels based on the recording resolution.
 ステップS12において、制御装置は、チャート配置座標情報を取得する。チャート配置座標情報は、チャート画像を構成する濃淡縞の各縞の位置を特定する座標情報を含む。 In step S12, the control device acquires chart arrangement coordinate information. The chart arrangement coordinate information includes coordinate information for specifying the position of each of the light and dark stripes that make up the chart image.
 チャート配置座標情報は、各縞の位置、長さ及び太さを規定する情報を含む。チャート配置座標情報は、プログラムによって予め指定されていてもよいし、ユーザインターフェースを介して入力されてもよい。チャート配置座標情報の座標軸は、ミリメートルの単位で表わされてもよいし、記録解像度に基づく画素の単位で表わされてもよい。 The chart arrangement coordinate information includes information defining the position, length, and thickness of each stripe. The chart arrangement coordinate information may be designated in advance by a program, or may be input via a user interface. The coordinate axes of the chart arrangement coordinate information may be expressed in units of millimeters or may be expressed in units of pixels based on the recording resolution.
 ステップS13において、制御装置は、チャート濃淡縞間隔情報を取得する。チャート濃淡縞間隔情報は、プログラムによって予め指定されていてもよいし、ユーザインターフェースを介して入力されてもよい。また、チャート濃淡縞間隔は、ステップS12にて取得したチャート配置座標の情報から算出されてもよい。 In step S13, the control device acquires chart shading stripe interval information. The chart shading stripe interval information may be specified in advance by a program, or may be input via a user interface. Further, the chart shading stripe interval may be calculated from the information of the chart arrangement coordinates acquired in step S12.
 ステップS14において、制御装置は、チャート印刷用の印刷画像データを生成する。制御装置は、ステップS11からステップS13の各工程にて取得した情報を基に、これら情報に規定されたCTF測定用チャートの印刷を行うためのチャート印刷用の印刷画像データを生成する。 In step S14, the control device generates print image data for chart printing. Based on the information acquired in steps S11 to S13, the control device generates print image data for chart printing for printing the CTF measurement chart defined in the information.
 ステップS15において、制御装置は、印刷画像データを保存する。制御装置は、ステップS14にて生成したチャート印刷用の印刷画像データをメモリ等のデータ記憶部に保存する処理を行う。 In step S15, the control device stores the print image data. The control device performs processing for storing the print image data for chart printing generated in step S14 in a data storage unit such as a memory.
 ステップS15にて印刷画像データを保存したら、図17のフローチャートを終了して、図16のメインフローに復帰する。 When the print image data is saved in step S15, the flowchart of FIG. 17 is terminated and the process returns to the main flow of FIG.
 〈S2:印刷処理工程〉
 インクジェット印刷装置は、ステップS1の印刷画像データ生成工程にて生成された印刷画像データに基づき、印刷を実行する。
<S2: Printing process>
The ink jet printing apparatus performs printing based on the print image data generated in the print image data generation process in step S1.
 図18は、印刷処理工程(S2)の処理内容を示すフローチャートである。 FIG. 18 is a flowchart showing the processing contents of the printing processing step (S2).
 ステップS21において、制御装置は、印刷条件の設定を行う。印刷条件には、用紙種、印刷枚数、印刷モードなど、が含まれる。 In step S21, the control device sets printing conditions. The printing conditions include paper type, number of printed sheets, printing mode, and the like.
 ステップS22において、制御装置は、印刷画像データの読み込みを行う。制御装置は、図17のステップS15にて保存した印刷画像データをデータ記憶部から読み込む。 In step S22, the control device reads the print image data. The control device reads the print image data saved in step S15 in FIG. 17 from the data storage unit.
 ステップS23において、制御装置は、ページシンクの入力を待つ。ページシンクは、記録媒体に対する1ページ分の印刷の開始タイミングを制御する同期信号である。例えば、ページシンクは、記録媒体を搬送するドラムの回転角度を検出するロータリエンコーダから出力されるエンコーダ信号を基に生成される。或いはまた、ページシンクは、記録媒体の先端位置を検出するセンサから出力される用紙先端検出信号を基に生成されてもよい。 In step S23, the control device waits for a page sync input. The page sync is a synchronization signal that controls the start timing of printing for one page on the recording medium. For example, the page sync is generated based on an encoder signal output from a rotary encoder that detects a rotation angle of a drum that conveys a recording medium. Alternatively, the page sync may be generated based on a paper leading edge detection signal output from a sensor that detects the leading edge position of the recording medium.
 制御装置は、ページシンクを受信後、ステップS24において、印刷を実行する。制御装置は、ステップS22にて読み込んだ印刷画像データに従い、印刷を実行する。 After receiving the page sync, the control device executes printing in step S24. The control device executes printing according to the print image data read in step S22.
 ステップS25において、制御装置は、印刷を完了させるか否かを判定する。印刷を継続する場合には、ステップS21に戻り、ステップS21~ステップS24の処理を繰り返す。ステップS25にて制御装置が、印刷を完了させると判定した場合、図18のフローチャートを終了して図16のメインフローに復帰する。印刷処理工程(S2)はチャート印刷工程の一例である。 In step S25, the control device determines whether or not to complete printing. If printing is to be continued, the process returns to step S21, and the processes in steps S21 to S24 are repeated. If the control device determines in step S25 that printing is to be completed, the flowchart of FIG. 18 is terminated and the process returns to the main flow of FIG. The printing process (S2) is an example of a chart printing process.
 〈ステップS3:読み取り処理工程〉
 インクジェット印刷装置は、印刷処理工程(ステップS2)によって印刷されたチャートをインラインスキャナによって読み取る。
<Step S3: Read Processing Step>
The ink jet printing apparatus reads the chart printed in the printing process (step S2) with an inline scanner.
 図19は、読み取り処理工程(ステップS3)の処理内容を示すフローチャートである。ステップS31において、制御装置は、記録媒体の記録領域のうち、インラインスキャナを用いて読み取りを行う読み取り範囲座標を算出する。制御装置は、チャート配置位置座標の情報を基に、読み取り範囲座標を算出する。 FIG. 19 is a flowchart showing the processing contents of the reading processing step (step S3). In step S31, the control device calculates reading range coordinates to be read using an inline scanner in the recording area of the recording medium. The control device calculates reading range coordinates based on the information of the chart arrangement position coordinates.
 ステップS32において、制御装置は、ページシンクの入力を待つ。制御装置は、ページシンクを受信後、ステップS33において、印刷後のチャート画像の読み取りを行う。制御装置は、インラインスキャナから読取画像のデータを受信すると、ステップS34において、読み取ったデータに対してシェーディング補正の処理を行う。 In step S32, the control device waits for a page sync input. After receiving the page sync, the control device reads the chart image after printing in step S33. When receiving the read image data from the inline scanner, the control device performs shading correction processing on the read data in step S34.
 ステップS35において、制御装置は、シェーディング補正後の読取画像のデータを保存する。読取画像のデータは、制御装置の内部メモリ及び/外部記憶装置などのデータ記憶部に保存される。 In step S35, the control device stores the read image data after the shading correction. The read image data is stored in a data storage unit such as an internal memory and / or an external storage device of the control device.
 ステップS2とステップS3は並列処理であり、並行して処理が行われている。よって、ステップS36において、制御装置は、印刷が完了したか否かの判定を行う。印刷が継続されている場合には、ステップS31に戻り、ステップS31~ステップS36の処理を繰り返す。 Step S2 and step S3 are parallel processes, and the processes are performed in parallel. Therefore, in step S36, the control device determines whether printing has been completed. If printing continues, the process returns to step S31, and the processes of steps S31 to S36 are repeated.
 ステップS36にて制御装置が、印刷が完了したと判定した場合、図19のフローチャートを終了して図16のメインフローに復帰する。 If the control device determines in step S36 that printing has been completed, the flowchart of FIG. 19 is terminated and the process returns to the main flow of FIG.
 なお、読み取り処理工程における処理の一部又は全部は、光学読取装置の内部で実行されてもよい。読み取り処理工程(ステップS3)はチャート読取工程の一例である。 Note that a part or all of the processing in the reading processing step may be executed inside the optical reading device. The reading process (step S3) is an example of a chart reading process.
 〈ステップS4:CTF算出処理工程〉
 制御装置は、読み取り処理工程(ステップS3)の後、CTF算出処理を行う。
<Step S4: CTF calculation processing step>
The control device performs a CTF calculation process after the reading process step (step S3).
 図20は、CTF算出処理の内容を示すフローチャートである。 FIG. 20 is a flowchart showing the contents of the CTF calculation process.
 ステップS41において、制御装置は、読取画像の読み込みを行う。制御装置は、図19のステップS35にて保存した読取画像のデータをデータ記憶部から読み込む。ステップS41は読取画像データ取得工程の一例である。 In step S41, the control device reads the read image. The control device reads the read image data saved in step S35 of FIG. 19 from the data storage unit. Step S41 is an example of a read image data acquisition process.
 図20のステップS42において、制御装置は、読み込んだ読取画像のデータを用いてコントラスト算出処理を行う。コントラスト算出処理の内容は後述する。 In step S42 of FIG. 20, the control device performs contrast calculation processing using the read image data that has been read. The content of the contrast calculation process will be described later.
 ステップS43において、制御装置は、コントラスト算出処理工程(ステップS42)にて算出されたCTF算出結果のデータを保存する。CTF算出結果のデータは、制御装置の内部メモリ及び/外部記憶装置などのデータ記憶部に保存される。 In step S43, the control device stores the data of the CTF calculation result calculated in the contrast calculation processing step (step S42). The data of the CTF calculation result is stored in a data storage unit such as an internal memory and / or an external storage device of the control device.
 ステップS44において、制御装置は、全画像の処理を完了したか否かを判定する。制御装置は、未処理の画像が残っている場合は、ステップS41に戻り、ステップS41~ステップS44の処理を繰り返す。 In step S44, the control device determines whether or not processing of all images has been completed. If an unprocessed image remains, the control device returns to step S41 and repeats the processing of steps S41 to S44.
 ステップS44にて制御装置が、全画像の処理を完了したと判定した場合、図20のフローチャートを終了して図16のメインフローに復帰する。 When the control device determines in step S44 that the processing of all images has been completed, the flowchart of FIG. 20 is terminated and the process returns to the main flow of FIG.
 〈ステップS42:コントラスト算出処理工程〉
 図21及び図22は、コントラスト算出処理の内容を示すフローチャートである。
<Step S42: Contrast Calculation Processing Step>
21 and 22 are flowcharts showing the contents of the contrast calculation process.
 ステップS51において、制御装置は、画素間隔dを決定する。画素間隔dは、縞の並び方向に離れた2つの画素間でコントラストを計算する際に最も離れた画素の組み合わせとなる画素の間隔である。画素間隔dを比較画素最大間隔という。 In step S51, the control device determines the pixel interval d. The pixel interval d is a pixel interval that is a combination of the most distant pixels when calculating contrast between two pixels distant in the stripe arrangement direction. The pixel interval d is referred to as a comparison pixel maximum interval.
 ステップS52において、制御装置は、行のインデックスLIを、初期値のLI=1に設定する。 In step S52, the control device sets the row index LI to the initial value LI = 1.
 ステップS53において、制御装置は、列のインデックスCIを、初期値のCI=1+dに設定する。 In step S53, the control device sets the column index CI to the initial value CI = 1 + d.
 ステップS54において、制御装置は、計算対象画素値APを、AP=IM(LI,CI)とする。ここで、IM(LI,CI)は、行のインデックスLI、列のインデックスCIで表わされる画素位置の読み取りデータを表わす。 In step S54, the control device sets the calculation target pixel value AP to AP = IM (LI, CI). Here, IM (LI, CI) represents the read data of the pixel position represented by the row index LI and the column index CI.
 図23は、チャート画像としての濃淡縞の画像の一例である。図23に示す縦縞の濃淡縞を読み取ったデータ配列をIM(L,C)とする。Lは行方向の位置を表わすインデックスであり、Cは列方向の位置を表わすインデックスである。(L,C)によって読取画像の画素の位置が特定される。 FIG. 23 is an example of an image of light and shade stripes as a chart image. A data array obtained by reading the vertical stripes shown in FIG. 23 is assumed to be IM (L, C). L is an index representing a position in the row direction, and C is an index representing a position in the column direction. The position of the pixel of the read image is specified by (L, C).
 図24は、読取画像のデータ配列IM(L,C)の一例を示す図表である。図24には、列方向に1~C列の画素、行方向に1~L行の画素を含むデータ配列の例が示されている。 FIG. 24 is a chart showing an example of the data array IM (L, C) of the read image. FIG. 24 shows an example of a data array including pixels of 1 to C columns in the column direction and 1 to L rows of pixels in the row direction.
 図21のステップS55において、制御装置は、計算相手画素値OPに、OP=IM(LI,CL-d)~IM(LI,CL-1)、及びOP=IM(LI、CI+1)~IM(LI,CL+d)のこれら2×d個の画素の値を、それぞれ代入して、次式、
 (OP-AP)/(OP+AP)
を計算し、各画素(LI,CI)の計算結果の内、最大の値をCTFT(LI,CI)に保存する。ステップS55は、画素間コントラスト算出工程の一例である。
In step S55 of FIG. 21, the control device adds OP = IM (LI, CL-d) to IM (LI, CL-1) and OP = IM (LI, CI + 1) to IM ( LI, CL + d), substituting the values of these 2 × d pixels, respectively,
(OP-AP) / (OP + AP)
And the maximum value among the calculation results of each pixel (LI, CI) is stored in CTFT (LI, CI). Step S55 is an example of a contrast calculation process between pixels.
 図25は、ステップS55に示したCTF途中計算結果を格納するCTF途中計算配列CTFT(L,C)の例である。 FIG. 25 is an example of a CTF midway calculation array CTFT (L, C) that stores the CTF midway calculation result shown in step S55.
 図21のステップS56において、制御装置は、列のインデックスCIがCI=C-dを満たしているか否かを判定する。 In step S56 of FIG. 21, the control device determines whether or not the column index CI satisfies CI = Cd.
 ステップS56の判定において、CI<C-dである場合は、ステップS57に移行し、列のインデックスCIを「+1」インクリメントして、ステップS54に戻り、ステップS54~ステップS56の処理を繰り返す。 If it is determined in step S56 that CI <C−d, the process proceeds to step S57, the column index CI is incremented by “+1”, the process returns to step S54, and the processes of steps S54 to S56 are repeated.
 ステップS56の判定において、CI=C-dを満たしていると、ステップS58に移行し、行のインデックスがLI=Lを満たしているか否かを判定する。 If it is determined in step S56 that CI = C−d is satisfied, the process proceeds to step S58 to determine whether or not the row index satisfies LI = L.
 ステップS58の判定において、LI<Lである場合は、ステップS59に移行し、行のインデックスLIを「+1」インクリメントして、ステップS53に戻り、ステップS53~ステップS58の処理を繰り返す。 If it is determined in step S58 that LI <L, the process proceeds to step S59, the row index LI is incremented by "+1", the process returns to step S53, and the processes in steps S53 to S58 are repeated.
 ステップS58の判定において、LI=Lを満たしていると、図22のステップS61に移行する。 If it is determined in step S58 that LI = L is satisfied, the process proceeds to step S61 in FIG.
 ステップS61において、制御装置は、CTF計算配列の列のインデックスBCIを、初期値のBCI=1に設定する。 In step S61, the control device sets the index BCI of the column of the CTF calculation array to the initial value BCI = 1.
 図26は、CTF計算配列CTF(BC)の例を示す図表である。 FIG. 26 is a chart showing an example of the CTF calculation array CTF (BC).
 CTF計算配列CTF(BC)は、列方向に1~BC列の画素を含むデータ配列である。BCは(L-2×d)/dの小数部を切り捨てた値を示す。BCIは、1~BCの範囲の画素位置を示すインデックスである。 The CTF calculation array CTF (BC) is a data array including pixels of 1 to BC columns in the column direction. BC represents a value obtained by discarding the decimal part of (L-2 × d) / d. BCI is an index indicating a pixel position in the range of 1 to BC.
 図22のステップS62において、制御装置は、CTFT(1,BCI×d+1)~CTFT(L,BCI×d+d)の矩形範囲のCTFTの値に対し、異常値を除外し、かつ、0付近の値(例えば、0.05以下)を除外した上で、値の大きい方から3個の値の平均値を求め、CTF(BC)に保持する。ステップS62は、解像力算出工程の一例である。 In step S62 in FIG. 22, the control device excludes an abnormal value from the CTFT value in the rectangular range of CTFT (1, BCI × d + 1) to CTFT (L, BCI × d + d) and has a value near 0. After excluding (for example, 0.05 or less), an average value of three values from the larger value is obtained and held in CTF (BC). Step S62 is an example of a resolving power calculation step.
 図27には、CTF途中計算配列における「矩形範囲」の例が示されている。図27のグレーパターンで塗りつぶし範囲(1,3)~(L,4)は、d=2、BCI=1の場合の「矩形範囲」の例である。ここでは2列の矩形範囲を示しているが、矩形範囲は、図12で説明した短冊状行列の範囲とすることができる。 FIG. 27 shows an example of a “rectangular range” in the CTF midway calculation array. The gray areas shown in FIG. 27 and the filled areas (1, 3) to (L, 4) are examples of “rectangular areas” when d = 2 and BCI = 1. Here, a rectangular range of two columns is shown, but the rectangular range can be the range of the strip matrix described with reference to FIG.
 図22のステップS63において、制御装置は、BCI=BCを満たしているか否かを判定する。ステップS63の判定処理にて、BCI<BCである場合、制御装置は、ステップS64に移行する。ステップS64において、制御装置は、列のインデックスBCIを「+1」インクリメントして、ステップS62に戻り、ステップS62~ステップS63の処理を繰り返す。 In step S63 in FIG. 22, the control device determines whether or not BCI = BC is satisfied. When it is determined in step S63 that BCI <BC, the control device proceeds to step S64. In step S64, the control device increments the column index BCI by "+1", returns to step S62, and repeats the processing of steps S62 to S63.
 ステップS63の判定処理にて、BCI=BCを満たす場合、CTF算出結果が得られたことになり、図22のフローチャートを終了し、図20のフローに復帰する。 If it is determined in step S63 that BCI = BC is satisfied, the CTF calculation result is obtained, and the flowchart of FIG. 22 is terminated and the process returns to the flow of FIG.
 図22のフローチャートによって得られたCTF計算結果は、図20のステップS43にて保存される。 The CTF calculation result obtained by the flowchart of FIG. 22 is stored in step S43 of FIG.
 〈データ処理装置の構成〉
 図28は、実施形態に係る解像力測定方法に従ってCTFの計算を実行するデータ処理装置の機能を示すブロック図である。図28に示すデータ処理装置110の機能は、インクジェット印刷装置の制御装置に組み込むことができる。データ処理装置110の各機能は、コンピュータのハードウェアとソフトウェアによって実現できる。本実施形態に係る解像度評価方法は、光学読取装置のCTFを測定する計算方法と理解することができる。実施形態に係る解像度評価方法では、CTFを測定するためにチャート102を用い、かつ、チャート102を読み取る光学読取装置100と、光学読取装置100が読み取った読取画像データを演算処理するデータ処理装置110とを用いる。
<Data processor configuration>
FIG. 28 is a block diagram illustrating functions of a data processing apparatus that performs CTF calculation according to the resolution measurement method according to the embodiment. The function of the data processing apparatus 110 shown in FIG. 28 can be incorporated in the control device of the ink jet printing apparatus. Each function of the data processing device 110 can be realized by computer hardware and software. The resolution evaluation method according to the present embodiment can be understood as a calculation method for measuring the CTF of the optical reader. In the resolution evaluation method according to the embodiment, the chart 102 is used to measure CTF, the optical reading device 100 that reads the chart 102, and the data processing device 110 that performs arithmetic processing on the read image data read by the optical reading device 100. And are used.
 光学読取装置100は、白黒の濃淡縞のチャート102を光学的に読み取り、読取画像の画像データを生成する。すなわち、光学読取装置100は、チャート102の少なくとも濃淡縞の表示された部分を読み取り、読み取った濃淡縞の画像情報を生成する。光学読取装置100によって読み取った濃淡縞の画像情報は数値化されてデータ処理装置110に入力される。画像情報が「数値化される」とは、デジタル画像データに変換されることを意味する。データ処理装置110は、光学読取装置100によって読み取られたチャート102の読取画像の画像データを取得し、データ処理を行う。 The optical reader 100 optically reads the black and white shading chart 102 and generates image data of the read image. In other words, the optical reading device 100 reads at least a portion of the chart 102 where the gray stripes are displayed, and generates the read gray stripe image information. The gray stripe image information read by the optical reading device 100 is digitized and input to the data processing device 110. “To be digitized” means that the image information is converted into digital image data. The data processing device 110 acquires image data of a read image of the chart 102 read by the optical reading device 100 and performs data processing.
 データ処理装置110は、データ取得部112と、データ記憶部114と、コントラスト算出処理部116と、データ出力部118とを含む。また、データ処理装置110には、入力装置120と表示装置122とが接続されている。 The data processing device 110 includes a data acquisition unit 112, a data storage unit 114, a contrast calculation processing unit 116, and a data output unit 118. Further, an input device 120 and a display device 122 are connected to the data processing device 110.
 データ取得部112は、光学読取装置100を介して読み取られたチャート102の読取画像の画像データを取得するインターフェースである。データ取得部112は、データ入力端子、通信インターフェース、及びメディアインターフェースのうちいずれか1つ又は複数の組み合わせによって構成され得る。データ取得部112は、読取画像データ取得部の一例である。 The data acquisition unit 112 is an interface that acquires image data of a read image of the chart 102 read via the optical reading device 100. The data acquisition unit 112 may be configured by any one or a combination of a data input terminal, a communication interface, and a media interface. The data acquisition unit 112 is an example of a read image data acquisition unit.
 データ記憶部114は、メモリ及び/又はハードディスクなどの記憶装置によって構成される。データ記憶部114は、読取画像記憶部132と、画素間CTF記憶部134と、CTF算出結果記憶部136と、を含んでいる。読取画像記憶部132には、図24で説明した読取画像のデータ配列IM(L,C)が記憶される。画素間CTF記憶部134には、図25で説明したCTF途中計算配列CTFT(L,C)が記憶される。CTF算出結果記憶部136には、図26で説明したCTF計算配列CTF(BC)が記憶される。読取画像記憶部132と、画素間CTF記憶部134と、CTF算出結果記憶部136とのそれぞれは、1つの記憶装置の中の記憶領域であってもよいし、異なる記憶装置であってもよい。 The data storage unit 114 includes a storage device such as a memory and / or a hard disk. The data storage unit 114 includes a read image storage unit 132, an inter-pixel CTF storage unit 134, and a CTF calculation result storage unit 136. The read image storage unit 132 stores the data array IM (L, C) of the read image described with reference to FIG. The inter-pixel CTF storage unit 134 stores the CTF intermediate calculation array CTFT (L, C) described in FIG. The CTF calculation result storage unit 136 stores the CTF calculation array CTF (BC) described in FIG. Each of the read image storage unit 132, the inter-pixel CTF storage unit 134, and the CTF calculation result storage unit 136 may be a storage area in one storage device, or may be a different storage device. .
 コントラスト算出処理部116は、図21で説明したコントラスト算出処理を実行する。コントラスト算出処理部116は、画素間隔決定部142と、画素間CTF算出部144と、CTF算出部146と、を含む。 The contrast calculation processing unit 116 executes the contrast calculation processing described with reference to FIG. The contrast calculation processing unit 116 includes a pixel interval determination unit 142, an inter-pixel CTF calculation unit 144, and a CTF calculation unit 146.
 画素間隔決定部142は、画素間CTFを求める際に比較する画素のうち最も離れた位置の画素との画素間隔dを決定する。画素間隔決定部142は、チャートの縞間隔を基に適切なdを決定する。dは予めプログラムによって規定されていてもよいし、入力装置120を通じてユーザが適宜指定した情報に基づいて決定されてもよい。 The pixel interval determination unit 142 determines the pixel interval d with the pixel farthest from the pixels to be compared when obtaining the inter-pixel CTF. The pixel interval determination unit 142 determines an appropriate d based on the stripe interval of the chart. d may be defined in advance by a program, or may be determined based on information appropriately designated by the user through the input device 120.
 画素間CTF算出部144は、図21のステップS55の処理を実行する。画素間CTF算出部144は、画素間コントラスト算出部の一例である。画素間CTF算出部144の計算結果は、画素間CTF記憶部134に保存される。 The inter-pixel CTF calculation unit 144 executes the process of step S55 in FIG. The inter-pixel CTF calculation unit 144 is an example of an inter-pixel contrast calculation unit. The calculation result of the inter-pixel CTF calculation unit 144 is stored in the inter-pixel CTF storage unit 134.
 CTF算出部146は、図22のステップS62の処理を実行する。CTF算出部146は、解像力算出部の一例である。CTF算出部146の計算結果は、CTF算出結果記憶部136に記憶される。 The CTF calculation unit 146 executes the process of step S62 in FIG. The CTF calculator 146 is an example of a resolving power calculator. The calculation result of the CTF calculation unit 146 is stored in the CTF calculation result storage unit 136.
 データ出力部118は、データ記憶部114に記憶された各データをデータ処理装置110の内部の処理部又は装置外部に出力するインターフェースである。 The data output unit 118 is an interface that outputs each data stored in the data storage unit 114 to a processing unit inside the data processing device 110 or to the outside of the device.
 入力装置120には、キーボード、マウス、タッチパネル、トラックボールなど、各種の入力装置を採用することができ、これらの適宜の組み合わせであってもよい。表示装置122には、液晶ディスプレイなどの各種の表示装置を採用することができる。入力装置120と表示装置122は、ユーザインターフェースとして機能する。ユーザは、表示装置122の画面に表示される内容を確認しながら、入力装置120を使って各種パラメータの設定及び各種情報の入力並びに編集が可能である。 The input device 120 can employ various input devices such as a keyboard, a mouse, a touch panel, and a trackball, and may be an appropriate combination thereof. As the display device 122, various display devices such as a liquid crystal display can be employed. The input device 120 and the display device 122 function as a user interface. The user can set various parameters and input and edit various information using the input device 120 while confirming the content displayed on the screen of the display device 122.
 また、表示装置122は、CTF測定結果をユーザに提供する測定結果情報提供手段として機能する。例えば、表示装置122には、CTFの測定結果の情報及び/又は評価結果の情報が表示される。データ処理装置110は、解像力測定装置の一例である。 In addition, the display device 122 functions as a measurement result information providing unit that provides the CTF measurement result to the user. For example, the display device 122 displays CTF measurement result information and / or evaluation result information. The data processing device 110 is an example of a resolution measuring device.
 データ処理装置110は、濃淡縞の縞間隔の情報を外部から入力する機能、または、読取画像から所定間隔を検出する機能を持つ。データ処理装置110は、取得した縞間隔の値を、濃淡縞の読取画像での画素数に変換する。縞間隔を読取画像での画素数によって表したものを縞間隔画素数という。 The data processing device 110 has a function of inputting information on the stripe interval of light and shade stripes from the outside, or a function of detecting a predetermined interval from the read image. The data processing device 110 converts the acquired value of the stripe interval into the number of pixels in the read image of light and shade stripes. The fringe interval expressed by the number of pixels in the read image is called the fringe interval pixel number.
 データ処理装置110は、読取画像のデータから各画素に対して縞の並び方向に離れた画素との間で濃淡縞のコントラストを計算する際に、縞の並び方向に最も離れた画素となる画素間距離(比較画素最大間隔)を規定する。比較画素最大間隔は、画素数で表され、1以上、かつ、縞間隔画素数以下の値に定められる。比較画素最大間隔は、特定画素数のことであり、これをd[画素]とする。 When the data processing device 110 calculates the contrast of light and shade stripes with respect to each pixel from the read image data in the stripe arrangement direction, the pixel that is the furthest away pixel in the stripe arrangement direction Specifies the inter-distance (maximum comparison pixel interval). The comparison pixel maximum interval is represented by the number of pixels, and is set to a value that is 1 or more and less than or equal to the stripe interval pixel number. The comparison pixel maximum interval is a specific number of pixels, and this is d [pixel].
 データ処理装置110は、既に説明した計算式(式[2])に従い、読取画像の少なくとも一部の各画素Xに対して、1以上d以下の画素数mだけ縞の間隔方向に離れた画素との間で画素間CTFを算出して、それらのうちの最大値から各画素Xのコントラスト値(CTF(X))を求め、各画素Xについて算出したCTF(X)の最大値から各縞位置でのCTFを算出する。データ処理装置110は、解像力測定装置の一例である。なお、「1以上d以下」は、1以上特定画素数以下のことである。 In accordance with the calculation formula (formula [2]) described above, the data processing apparatus 110 is separated in the stripe interval direction by the number m of pixels not less than 1 and not more than d with respect to at least some pixels Xn of the read image. to calculate the inter-pixel CTF between the pixel, the contrast value of each pixel X n from the maximum value of those (CTF (X n)) and was determined and calculated for each pixel X n CTF (X n) The CTF at each fringe position is calculated from the maximum value. The data processing device 110 is an example of a resolution measuring device. Note that “1 or more and d or less” means one or more and a specific number of pixels or less.
 《CTF測定結果の活用例》
 光学読取装置100の読取範囲全体の画素について上記の方法によってCTFを算出し、その算出結果を基にCTFが光学読取装置で規定された所定範囲内にあるかどうかを判断し、光学読取装置100のピント状態が正常であるかどうかを判断することができる。データ処理装置110は、CTFの算出結果から光学読取装置100のピント状態を判断する処理を実施し、その判断結果を表示装置122に表示させる。
《Examples of using CTF measurement results》
The CTF is calculated for the pixels in the entire reading range of the optical reading device 100 by the above-described method, and based on the calculation result, it is determined whether the CTF is within a predetermined range defined by the optical reading device. It is possible to determine whether or not the focus state is normal. The data processing apparatus 110 performs a process of determining the focus state of the optical reading apparatus 100 from the CTF calculation result, and causes the display apparatus 122 to display the determination result.
 《インクジェット印刷装置の装置構成例》
 図29は、実施形態に係るインクジェット印刷装置201の構成を示す側面図である。インクジェット印刷装置201は、印刷装置の一例である。インクジェット印刷装置201は、給紙部210と、処理液塗布部220と、処理液乾燥部230と、描画部240と、インク乾燥部250と、集積部260と、を備える。
<< Device configuration example of inkjet printing apparatus >>
FIG. 29 is a side view illustrating the configuration of the inkjet printing apparatus 201 according to the embodiment. The ink jet printing apparatus 201 is an example of a printing apparatus. The ink jet printing apparatus 201 includes a paper feed unit 210, a treatment liquid application unit 220, a treatment liquid drying unit 230, a drawing unit 240, an ink drying unit 250, and an accumulation unit 260.
 給紙部210は、用紙Pを1枚ずつ自動で給紙する。給紙部210は、給紙装置212と、フィーダボード214と、給紙ドラム216と、を備える。用紙Pの種類は、特に限定されないが、例えば、上質紙、コート紙、アート紙などのセルロースを主体とする印刷用紙を用いることができる。用紙Pは、画像が記録される媒体の一形態に相当する。用紙Pは、多数枚が積層された束の状態で給紙台212Aに載置される。 The paper feeding unit 210 automatically feeds the paper P one by one. The paper feeding unit 210 includes a paper feeding device 212, a feeder board 214, and a paper feeding drum 216. The type of the paper P is not particularly limited. For example, printing paper mainly composed of cellulose, such as high-quality paper, coated paper, and art paper, can be used. The paper P corresponds to one form of a medium on which an image is recorded. The paper P is placed on the paper feed table 212A in a bundled state in which a large number of sheets are stacked.
 給紙装置212は、給紙台212Aにセットされた束の状態の用紙Pを上から順に1枚ずつ取り出して、フィーダボード214に給紙する。フィーダボード214は、給紙装置212から受け取った用紙Pを給紙ドラム216へと搬送する。 The sheet feeding device 212 takes out the bundled sheets P set on the sheet feeding table 212A one by one from the top and feeds them to the feeder board 214. The feeder board 214 conveys the paper P received from the paper feeding device 212 to the paper feeding drum 216.
 給紙ドラム216は、フィーダボード214から給紙される用紙Pを受け取り、受け取った用紙Pを処理液塗布部220へと搬送する。 The paper supply drum 216 receives the paper P fed from the feeder board 214 and conveys the received paper P to the processing liquid application unit 220.
 処理液塗布部220は、用紙Pに処理液を塗布する。処理液は、インク中の色材成分を凝集、不溶化ないし増粘させる機能を備えた液体である。処理液塗布部220は、処理液塗布ドラム222と、処理液塗布装置224と、を備える。 The processing liquid application unit 220 applies the processing liquid to the paper P. The treatment liquid is a liquid having a function of aggregating, insolubilizing or increasing the viscosity of the color material component in the ink. The treatment liquid application unit 220 includes a treatment liquid application drum 222 and a treatment liquid application device 224.
 処理液塗布ドラム222は、給紙ドラム216から用紙Pを受け取り、受け取った用紙Pを処理液乾燥部230へと移送する。処理液塗布ドラム222は、周面にグリッパ223を備え、そのグリッパ223で用紙Pの先端部を把持して回転することにより、用紙Pを周面に巻き付けて搬送する。 The processing liquid application drum 222 receives the paper P from the paper supply drum 216 and transfers the received paper P to the processing liquid drying unit 230. The treatment liquid coating drum 222 includes a gripper 223 on the peripheral surface, and the gripper 223 grips and rotates the leading end portion of the paper P, so that the paper P is wound around the peripheral surface and conveyed.
 処理液塗布装置224は、処理液塗布ドラム222によって搬送される用紙Pに処理液を塗布する。処理液はローラで塗布される。 The processing liquid coating device 224 applies the processing liquid to the paper P conveyed by the processing liquid coating drum 222. The treatment liquid is applied with a roller.
 処理液乾燥部230は、処理液が塗布された用紙Pを乾燥処理する。処理液乾燥部230は、処理液乾燥ドラム232と、温風送風機234と、を備える。処理液乾燥ドラム232は、処理液塗布ドラム222から用紙Pを受け取り、受け取った用紙Pを描画部240へと移送する。処理液乾燥ドラム232は、周面にグリッパ233を備える。処理液乾燥ドラム232は、グリッパ233で用紙Pの先端部を把持して回転することにより、用紙Pを搬送する。 The processing liquid drying unit 230 performs a drying process on the paper P coated with the processing liquid. The processing liquid drying unit 230 includes a processing liquid drying drum 232 and a hot air blower 234. The processing liquid drying drum 232 receives the paper P from the processing liquid coating drum 222 and transfers the received paper P to the drawing unit 240. The treatment liquid drying drum 232 includes a gripper 233 on the peripheral surface. The treatment liquid drying drum 232 conveys the paper P by gripping and rotating the leading end of the paper P with the gripper 233.
 温風送風機234は、処理液乾燥ドラム232の内部に設置される。温風送風機234は、処理液乾燥ドラム232によって搬送される用紙Pに温風を吹き当てて、処理液を乾燥させる。 The hot air blower 234 is installed inside the processing liquid drying drum 232. The hot air blower 234 blows hot air onto the paper P conveyed by the processing liquid drying drum 232 to dry the processing liquid.
 描画部240は、描画ドラム242と、ヘッドユニット244と、インラインスキャナ248と、を備える。描画ドラム242は、処理液乾燥ドラム232から用紙Pを受け取り、受け取った用紙Pをインク乾燥部250へと移送する。描画ドラム242は、周面にグリッパ243を備え、グリッパ243で用紙Pの先端を把持して回転することにより、用紙Pを周面に巻き付けて搬送する。描画ドラム242は、図示しない吸着機構を備え、周面に巻き付けられた用紙Pを周面に吸着させて搬送する。吸着には、負圧が利用される。描画ドラム242は、周面に多数の吸着穴を備え、この吸着穴を介して内部から吸引することにより、用紙Pを周面に吸着させる。 The drawing unit 240 includes a drawing drum 242, a head unit 244, and an inline scanner 248. The drawing drum 242 receives the paper P from the treatment liquid drying drum 232 and transfers the received paper P to the ink drying unit 250. The drawing drum 242 includes a gripper 243 on the circumferential surface, and grips and rotates the leading edge of the paper P with the gripper 243, whereby the paper P is wound around the circumferential surface and conveyed. The drawing drum 242 includes a suction mechanism (not shown), and transports the paper P wound around the peripheral surface while attracting the peripheral surface to the peripheral surface. A negative pressure is used for the adsorption. The drawing drum 242 has a large number of suction holes on the peripheral surface, and sucks the paper P onto the peripheral surface by suction from the inside through the suction holes.
 ヘッドユニット244は、インクジェットヘッド246C、246M、246Y、246Kを備える。インクジェットヘッド246C、シアン(C)のインクの液滴を吐出する記録ヘッドである。インクジェットヘッド246Mは、マゼンタ(M)のインクの液滴を吐出する記録ヘッドである。インクジェットヘッド246Yは、イエロー(Y)のインクの液滴を吐出する記録ヘッドである。インクジェットヘッド246Kは、ブラック(K)のインクの液滴を吐出する記録ヘッドである。インクジェットヘッド246C、246M、246Y、246Kのそれぞれには、対応する色のインク供給源である不図示のインクタンクから不図示の配管経路を介して、インクが供給される。 The head unit 244 includes inkjet heads 246C, 246M, 246Y, and 246K. The inkjet head 246C is a recording head that discharges cyan (C) ink droplets. The ink-jet head 246M is a recording head that ejects magenta (M) ink droplets. The inkjet head 246Y is a recording head that discharges yellow (Y) ink droplets. The ink jet head 246K is a recording head that ejects black (K) ink droplets. Ink is supplied to each of the inkjet heads 246C, 246M, 246Y, and 246K from an ink tank (not shown) that is an ink supply source of a corresponding color via a pipe path (not shown).
 インクジェットヘッド246C、246M、246Y、246Kの各々は、用紙幅に対応したラインヘッドで構成され、各々のノズル面が描画ドラム242の周面に対向して配置される。ここでいう用紙幅は、用紙Pの搬送方向と直交する方向の用紙幅を指す。インクジェットヘッド246C、246M、246Y、246Kは、描画ドラム242による用紙Pの搬送経路に沿って一定の間隔をもって配置される。 Each of the inkjet heads 246 </ b> C, 246 </ b> M, 246 </ b> Y, and 246 </ b> K is configured by a line head corresponding to the paper width, and each nozzle surface is disposed to face the peripheral surface of the drawing drum 242. The paper width here refers to the paper width in a direction orthogonal to the conveyance direction of the paper P. The inkjet heads 246C, 246M, 246Y, and 246K are arranged at a constant interval along the conveyance path of the paper P by the drawing drum 242.
 図には示さないが、インクジェットヘッド246C、246M、246Y、246Kの各々のノズル面には、インクの吐出口である複数個のノズルが二次元配列されている。「ノズル面」とは、ノズルが形成されている吐出面をいい、「インク吐出面」或いは「ノズル形成面」などの用語と同義である。二次元配列された複数個のノズルのノズル配列を「二次元ノズル配列」という。 Although not shown in the drawing, a plurality of nozzles serving as ink ejection openings are two-dimensionally arranged on the nozzle surfaces of the inkjet heads 246C, 246M, 246Y, and 246K. “Nozzle surface” refers to an ejection surface on which nozzles are formed, and is synonymous with terms such as “ink ejection surface” or “nozzle formation surface”. A nozzle arrangement of a plurality of nozzles arranged two-dimensionally is called a “two-dimensional nozzle arrangement”.
 インクジェットヘッド246C、246M、246Y、246Kの各々は、複数個のヘッドモジュールを用紙幅方向に繋ぎ合わせて構成することができる。インクジェットヘッド246C、246M、246Y、246Kの各々は、用紙Pの搬送方向と直交する用紙幅方向に関して用紙Pの全記録領域を1回の走査で規定の記録解像度による画像記録が可能なノズル列を有するフルライン型の記録ヘッドである。フルライン型の記録ヘッドはページワイドヘッドとも呼ばれる。規定の記録解像度とは、インクジェット印刷装置201によって予め定められた記録解像度であってもよいし、ユーザの選択により、若しくは、印刷モードに応じたプログラムによる自動選択により設定される記録解像度であってもよい。記録解像度として、例えば、1200dpiとすることができる。用紙Pの搬送方向と直交する用紙幅方向をラインヘッドのノズル列方向と呼び、用紙Pの搬送方向をノズル列垂直方向と呼ぶ場合がある。 Each of the inkjet heads 246C, 246M, 246Y, and 246K can be configured by connecting a plurality of head modules in the paper width direction. Each of the inkjet heads 246C, 246M, 246Y, and 246K has a nozzle row that can record an image with a specified recording resolution in one scan of the entire recording area of the paper P in the paper width direction orthogonal to the transport direction of the paper P. A full line type recording head. A full-line type recording head is also called a page wide head. The specified recording resolution may be a recording resolution determined in advance by the ink jet printing apparatus 201, or may be a recording resolution set by user selection or by automatic selection by a program corresponding to the printing mode. Also good. The recording resolution can be set to 1200 dpi, for example. The paper width direction perpendicular to the paper P transport direction may be referred to as the nozzle row direction of the line head, and the paper P transport direction may be referred to as the nozzle row vertical direction.
 二次元ノズル配列を有するインクジェットヘッドの場合、二次元ノズル配列における各ノズルをノズル列方向に沿って並ぶように投影(正射影)した投影ノズル列は、ノズル列方向について、最大の記録解像度を達成するノズル密度で各ノズルが概ね等間隔で並ぶ一列のノズル列と等価なものと考えることができる。「概ね等間隔」とは、インクジェット印刷装置で記録可能な打滴点として実質的に等間隔であることを意味している。例えば、製造上の誤差や着弾干渉による媒体上での液滴の移動を考慮して僅かに間隔を異ならせたものなどが含まれている場合も「等間隔」の概念に含まれる。投影ノズル列(「実質的なノズル列」ともいう。)を考慮すると、ノズル列方向に沿って並ぶ投影ノズルの並び順に、各ノズルにノズル位置を表すノズル番号を対応付けることができる。 In the case of an inkjet head having a two-dimensional nozzle array, the projection nozzle array in which the nozzles in the two-dimensional nozzle array are projected (orthographically projected) along the nozzle array direction achieves the maximum recording resolution in the nozzle array direction. It can be considered that the nozzle density is equivalent to a single nozzle row in which each nozzle is arranged at approximately equal intervals. The “substantially equidistant” means that the droplet ejection points that can be recorded by the ink jet printing apparatus are substantially equidistant. For example, the concept of “equally spaced” also includes cases where the intervals are slightly different in consideration of manufacturing errors and movement of droplets on the medium due to landing interference. In consideration of the projection nozzle row (also referred to as “substantial nozzle row”), a nozzle number representing a nozzle position can be associated with each nozzle in the arrangement order of the projection nozzles arranged along the nozzle row direction.
 インクジェットヘッド246C、246M、246Y、246Kの各々におけるノズルの配列形態は限定されず、様々なノズル配列の形態を採用することができる。例えば、マトリクス状の二次元配列の形態に代えて、一列の直線配列、V字状のノズル配列、V字状配列を繰り返し単位とするW字状などのような折れ線状のノズル配列なども可能である。 The nozzle arrangement form in each of the inkjet heads 246C, 246M, 246Y, and 246K is not limited, and various nozzle arrangement forms can be adopted. For example, instead of a matrix-like two-dimensional array, a linear array of lines, a V-shaped nozzle array, a polygonal nozzle array such as a W-shape with a V-shaped array as a repeating unit, and the like are also possible. It is.
 描画ドラム242によって搬送される用紙Pに向けて、インクジェットヘッド246C、246M、246Y、246Kからインクの液滴が吐出され、吐出された液滴が用紙Pに付着することにより、用紙Pに画像が記録される。 Ink droplets are ejected from the inkjet heads 246C, 246M, 246Y, and 246K toward the paper P conveyed by the drawing drum 242, and the ejected liquid droplets adhere to the paper P, whereby an image is formed on the paper P. To be recorded.
 描画ドラム242は、インクジェットヘッド246C、246M、246Y、246Kと用紙Pとを相対移動させる手段として機能している。描画ドラム242は、インクジェットヘッド246C、246M、246Y、246Kに対して用紙Pを相対的に移動させ、相対移動手段の一形態に相当する。インクジェットヘッド246C、246M、246Y、246Kのそれぞれの吐出タイミングは、描画ドラム242に設置されたロータリエンコーダから得られるロータリエンコーダ信号に同期させる。図29においてロータリエンコーダの図示は省略されており、図30においてロータリエンコーダ382として記載されている。吐出タイミングとは、インクの液滴を吐出するタイミングであり、打滴タイミングと同義である。 The drawing drum 242 functions as a means for relatively moving the inkjet heads 246C, 246M, 246Y, 246K and the paper P. The drawing drum 242 moves the paper P relative to the inkjet heads 246C, 246M, 246Y, and 246K, and corresponds to one form of relative moving means. The ejection timings of the ink jet heads 246C, 246M, 246Y, and 246K are synchronized with a rotary encoder signal obtained from a rotary encoder installed on the drawing drum 242. 29, the rotary encoder is not shown, and is illustrated as a rotary encoder 382 in FIG. The ejection timing is the timing at which ink droplets are ejected, and is synonymous with the droplet ejection timing.
 なお、本例では、CMYKの標準色(4色)の構成を例示したが、インク色や色数の組み合わせについては本実施形態に限定されず、必要に応じて淡インク、濃インク、特色インクなどを追加してもよい。例えば、ライトシアン、ライトマゼンタなどのライト系インクを吐出するインクジェットヘッドを追加する構成や、緑色やオレンジ色などの特色のインクを吐出するインクジェットヘッドを追加する構成も可能であり、また、各色のインクジェットヘッドの配置順序も特に限定はない。 In this example, the configuration of CMYK standard colors (four colors) is illustrated. However, the combination of ink colors and the number of colors is not limited to this embodiment, and light ink, dark ink, and special color ink are used as necessary. Etc. may be added. For example, it is possible to add an inkjet head that ejects light-colored inks such as light cyan and light magenta, and an inkjet head that ejects special color inks such as green and orange. The arrangement order of the heads is not particularly limited.
 インクジェットヘッド246C、246M、246Y、246Kは、画像形成部の一例である。 The inkjet heads 246C, 246M, 246Y, and 246K are examples of image forming units.
 インラインスキャナ248は、インクジェットヘッド246C、246M、246Y、246Kによって用紙Pに記録された画像を光学的に読み取り、その読取画像を示す電子画像データを生成する光学読取装置である。インラインスキャナ248は、用紙P上に記録された画像を撮像して画像情報を示す電気信号に変換する撮像デバイスを含む。インラインスキャナ248は、撮像デバイスの他、読み取り対象を照明する照明光学系及び撮像デバイスから得られる信号を処理してデジタル画像データを生成する信号処理回路を含んでよい。 The in-line scanner 248 is an optical reading device that optically reads an image recorded on the paper P by the ink jet heads 246C, 246M, 246Y, and 246K and generates electronic image data indicating the read image. The inline scanner 248 includes an imaging device that captures an image recorded on the paper P and converts it into an electrical signal indicating image information. The inline scanner 248 may include an imaging optical device, an illumination optical system that illuminates a reading target, and a signal processing circuit that processes a signal obtained from the imaging device and generates digital image data.
 インラインスキャナ248は、例えば、CCDラインセンサを用いたラインスキャナで構成される。インラインスキャナ248は、図28に示した光学読取装置100に相当する。インラインスキャナ248は、カラー画像の読み取りが可能な構成であることが好ましい。本例のインラインスキャナ248は、例えば、撮像デバイスとしてカラーCCDリニアイメージセンサが用いられる。カラーCCDリニアイメージセンサはR(赤),G(緑),B(青)各色のカラーフィルタを備えた受光素子が直線状に配列したイメージセンサである。なお、カラーCCDリニアイメージセンサに代えて、カラーCMOSリニアイメージセンサを用いることもできる。なお、インラインスキャナ248は、描画ドラム242による用紙Pの搬送中に用紙P上の画像の読み取りを行う。描画ドラム242は、インラインスキャナ248とチャートを相対的に移動させる走査装置の役割を果たす。 The inline scanner 248 is composed of, for example, a line scanner using a CCD line sensor. The inline scanner 248 corresponds to the optical reading device 100 shown in FIG. The inline scanner 248 is preferably configured to be able to read a color image. In the inline scanner 248 of this example, for example, a color CCD linear image sensor is used as an imaging device. The color CCD linear image sensor is an image sensor in which light receiving elements having color filters of R (red), G (green), and B (blue) colors are arranged linearly. Instead of the color CCD linear image sensor, a color CMOS linear image sensor can be used. The inline scanner 248 reads an image on the paper P while the paper P is being conveyed by the drawing drum 242. The drawing drum 242 serves as a scanning device that relatively moves the inline scanner 248 and the chart.
 インラインスキャナ248によって読み取られた読取画像のデータを基に、CTFの測定が行われる。また、インラインスキャナ248によって読み取られた読取画像のデータを基に、画像の濃度やインクジェットヘッド246C、246M、246Y、246Kの吐出不良などの情報が得られる。 CTF measurement is performed based on the data of the read image read by the inline scanner 248. Further, based on the data of the read image read by the in-line scanner 248, information such as image density and ejection defects of the inkjet heads 246C, 246M, 246Y, and 246K can be obtained.
 インク乾燥部250は、描画部240で画像が記録された用紙Pを乾燥処理する。インク乾燥部250は、チェーンデリバリ310と、用紙ガイド320と、温風送風ユニット330と、を備える。 The ink drying unit 250 performs a drying process on the paper P on which the image is recorded by the drawing unit 240. The ink drying unit 250 includes a chain delivery 310, a paper guide 320, and a hot air blowing unit 330.
 チェーンデリバリ310は、描画ドラム242から用紙Pを受け取り、受け取った用紙Pを集積部260へと移送する。チェーンデリバリ310は、規定の走行経路を走行する一対の無端状のチェーン312を備え、その一対のチェーン312に備えられたグリッパ314で用紙Pの先端部を把持して、用紙Pを規定の搬送経路に沿って搬送する。グリッパ314は、チェーン312に一定の間隔で複数備えられる。 The chain delivery 310 receives the paper P from the drawing drum 242 and transfers the received paper P to the stacking unit 260. The chain delivery 310 includes a pair of endless chains 312 that travel along a prescribed travel route, and grips the leading end of the paper P with a gripper 314 provided on the pair of chains 312 to convey the paper P in a prescribed manner. Transport along the route. A plurality of grippers 314 are provided in the chain 312 at regular intervals.
 用紙ガイド320は、チェーンデリバリ310による用紙Pの搬送をガイドする部材である。用紙ガイド320は、第1用紙ガイド322と第2用紙ガイド324で構成される。第1用紙ガイド322はチェーンデリバリ310の第1搬送区間を搬送される用紙Pをガイドする。第2用紙ガイド324は、第1搬送区間の後段の第2搬送区間を搬送される用紙をガイドする。温風送風ユニット330は、チェーンデリバリ310によって搬送される用紙Pに温風を吹き当てる。 The paper guide 320 is a member that guides the conveyance of the paper P by the chain delivery 310. The paper guide 320 includes a first paper guide 322 and a second paper guide 324. The first paper guide 322 guides the paper P that is transported in the first transport section of the chain delivery 310. The second sheet guide 324 guides the sheet conveyed in the second conveyance section subsequent to the first conveyance section. The hot air blowing unit 330 blows hot air on the paper P conveyed by the chain delivery 310.
 集積部260は、チェーンデリバリ310によってインク乾燥部250から搬送されてくる用紙Pを受け取り、集積する集積装置262を備える。 The stacking unit 260 includes a stacking device 262 that receives and stacks the paper P conveyed from the ink drying unit 250 by the chain delivery 310.
 チェーンデリバリ310は、所定の集積位置で用紙Pをリリースする。集積装置262は、集積トレイ262Aを備え、チェーンデリバリ310からリリースされた用紙Pを受け取り、集積トレイ262Aの上に束状に集積する。集積部260は排紙部に相当する。 The chain delivery 310 releases the paper P at a predetermined stacking position. The stacking device 262 includes a stacking tray 262A, receives the paper P released from the chain delivery 310, and stacks the sheets P on the stacking tray 262A. The stacking unit 260 corresponds to a paper discharge unit.
 〈システム構成〉
 図30は、インクジェット印刷装置201の制御系の要部構成を示すブロック図である。インクジェット印刷装置201は、制御装置202によって制御される。制御装置202は、システムコントローラ350と、通信部352と、表示装置122と、入力装置120と、画像処理部358と、CTF測定装置360と、搬送制御部362と、画像記録制御部364と、を備える。これらの各部の要素は、1台又は複数台のコンピュータによって実現することが可能である。つまり、制御装置202は、コンピュータのハードウェアとソフトウェアとの組み合わせによって構成することができる。
<System configuration>
FIG. 30 is a block diagram illustrating a main configuration of a control system of the inkjet printing apparatus 201. The ink jet printing apparatus 201 is controlled by the control apparatus 202. The control device 202 includes a system controller 350, a communication unit 352, a display device 122, an input device 120, an image processing unit 358, a CTF measurement device 360, a conveyance control unit 362, an image recording control unit 364, Is provided. These elements of each part can be realized by one or a plurality of computers. That is, the control device 202 can be configured by a combination of computer hardware and software.
 システムコントローラ350は、インクジェット印刷装置201の各部を統括制御する制御手段として機能し、かつ、各種演算処理を行う演算手段として機能する。システムコントローラ350は、CPU(Central Processing Unit)370と、ROM(read-only memory)372と、RAM(random access memory)374と、を備えており、所定のプログラムに従って動作する。ROM372には、システムコントローラ350が実行するプログラム、及び、制御に必要な各種データが格納される。 The system controller 350 functions as a control unit that performs overall control of each unit of the ink jet printing apparatus 201 and also functions as a calculation unit that performs various calculation processes. The system controller 350 includes a CPU (Central Processing Unit) 370, a ROM (read-only memory) 372, and a RAM (random access memory) 374, and operates according to a predetermined program. The ROM 372 stores programs executed by the system controller 350 and various data necessary for control.
 通信部352は、所要の通信インターフェースを備える。インクジェット印刷装置201は、通信部352を介して図示せぬホストコンピュータと接続され、ホストコンピュータとの間でデータの送受信を行うことができる。ここでいう「接続」には、有線接続、無線接続、又はこれらの組み合わせが含まれる。通信部352には、通信を高速化するためのバッファメモリを搭載してもよい。 The communication unit 352 includes a required communication interface. The inkjet printing apparatus 201 is connected to a host computer (not shown) via the communication unit 352, and can send and receive data to and from the host computer. The “connection” here includes a wired connection, a wireless connection, or a combination thereof. The communication unit 352 may be equipped with a buffer memory for speeding up communication.
 通信部352は、印刷対象の画像を表す画像データを取得するための画像入力インターフェース部としての役割を果たす。 The communication unit 352 serves as an image input interface unit for acquiring image data representing an image to be printed.
 画像処理部358は、印刷対象の画像データに対する各種の変換処理や補正処理、並びにハーフトーン処理を行う。変換処理には、画素数変換、階調変換、色変換などが含まれる。補正処理には、濃度補正や、不吐出ノズルによる画像欠陥の視認性を抑制するための不吐出補正などが含まれる。画像処理部358は、インラインスキャナ248から得られる読取画像を基に補正処理を行う。ハーフトーン処理は、ディザ法や誤差拡散法に代表されるデジタルハーフトーニングの処理である。また、画像処理部358は、CTF測定に用いるチャートを印刷するための印刷画像データを生成する。 The image processing unit 358 performs various conversion processes, correction processes, and halftone processes on image data to be printed. The conversion process includes pixel number conversion, gradation conversion, color conversion, and the like. The correction processing includes density correction, non-ejection correction for suppressing the visibility of image defects due to non-ejection nozzles, and the like. The image processing unit 358 performs correction processing based on the read image obtained from the inline scanner 248. The halftone process is a digital halftoning process represented by a dither method or an error diffusion method. Further, the image processing unit 358 generates print image data for printing a chart used for CTF measurement.
 CTF測定装置360は、図28で説明したデータ処理装置110の装置構成と同等のものである。なお、CTF測定装置360の機能は、システムコントローラ350を含んだ制御装置とは別のコンピュータで構成してもよいし、システムコントローラ350を含んだ制御装置の中の機能ブロックとして内包する構成としてもよい。 The CTF measuring device 360 is equivalent to the device configuration of the data processing device 110 described in FIG. The function of the CTF measurement device 360 may be configured by a computer different from the control device including the system controller 350, or may be included as a functional block in the control device including the system controller 350. Good.
 搬送制御部362は、媒体搬送機構380を制御する。媒体搬送機構380は、図29で説明した給紙部210から集積部260までの用紙Pの搬送に関わる用紙搬送部の機構の全体を含んでいる。媒体搬送機構380には、図29で説明した給紙ドラム216、処理液塗布ドラム222、処理液乾燥ドラム232、描画ドラム242、チェーンデリバリ310などが含まれる。また、媒体搬送機構380には、図示せぬ動力源としてのモータ及びモータ駆動回路などの駆動部が含まれる。 The transport control unit 362 controls the medium transport mechanism 380. The medium transport mechanism 380 includes the entire mechanism of the paper transport unit related to transport of the paper P from the paper feed unit 210 to the stacking unit 260 described in FIG. The medium transport mechanism 380 includes the paper feed drum 216, the processing liquid coating drum 222, the processing liquid drying drum 232, the drawing drum 242, the chain delivery 310, and the like described with reference to FIG. The medium transport mechanism 380 includes a drive unit such as a motor and a motor drive circuit (not shown) as a power source.
 搬送制御部362は、システムコントローラ350からの指令に応じて、媒体搬送機構380を制御し、給紙部210から集積部260まで用紙Pが搬送されるように制御する。 The conveyance control unit 362 controls the medium conveyance mechanism 380 in accordance with a command from the system controller 350 so as to convey the paper P from the paper feeding unit 210 to the stacking unit 260.
 インクジェット印刷装置201は、媒体搬送機構380における描画ドラム242(図29参照)の回転角度を検出する手段としてのロータリエンコーダ382を備えている。インクジェットヘッド246C、246M、246Y、246Kのそれぞれは、ロータリエンコーダ382が出力するロータリエンコーダ信号から生成される吐出タイミング信号にしたがって吐出タイミングが制御される。 The inkjet printing apparatus 201 includes a rotary encoder 382 as means for detecting the rotation angle of the drawing drum 242 (see FIG. 29) in the medium transport mechanism 380. The ink jet heads 246C, 246M, 246Y, and 246K each have a discharge timing controlled according to a discharge timing signal generated from a rotary encoder signal output from the rotary encoder 382.
 画像記録制御部364は、システムコントローラ350からの指令に応じてインクジェットヘッド246C、246M、246Y、246Kのそれぞれの駆動を制御する。画像記録制御部364は、画像処理部358のハーフトーン処理を経て生成された各インク色のドットデータに基づき、描画ドラム242により搬送される用紙Pに所定の画像を記録するように、インクジェットヘッド246C、246M、246Y、246Kのそれぞれの吐出動作を制御する。また、画像記録制御部364は、CTF測定に用いるチャートを印刷する制御を行う。 The image recording control unit 364 controls each drive of the ink jet heads 246C, 246M, 246Y, and 246K in accordance with a command from the system controller 350. The image recording control unit 364 records the predetermined image on the paper P conveyed by the drawing drum 242 based on the dot data of each ink color generated through the halftone process of the image processing unit 358. Each discharge operation of 246C, 246M, 246Y, and 246K is controlled. The image recording control unit 364 performs control for printing a chart used for CTF measurement.
 制御装置202は、図示せぬハードディスクドライブなどの記憶装置を備えている。記憶装置にはCPU370が実行するプログラムや演算に必要な各種のデータを記憶しておくことができる。記憶装置は制御装置202に内蔵されていてもよいし、通信回線を介して制御装置202に接続された構成であってもよい。 The control device 202 includes a storage device such as a hard disk drive (not shown). The storage device can store a program executed by the CPU 370 and various types of data necessary for calculation. The storage device may be built in the control device 202 or may be configured to be connected to the control device 202 via a communication line.
 〈各処理部及び制御部のハードウェア構成について〉
 図28で説明したデータ処理装置110のコントラスト算出処理部116、画素間隔決定部142、画素間CTF算出部144、及びCTF算出部146、並びに、図30に示した制御装置202の搬送制御部362、画像記録制御部364、画像処理部358、CTF測定装置360などの各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、例えば、次に示すような各種のプロセッサ(processor)である。
<Hardware configuration of each processing unit and control unit>
The contrast calculation processing unit 116, the pixel interval determination unit 142, the inter-pixel CTF calculation unit 144, and the CTF calculation unit 146 of the data processing device 110 described in FIG. 28, and the transport control unit 362 of the control device 202 illustrated in FIG. The hardware structure of a processing unit (processing unit) that executes various processes such as the image recording control unit 364, the image processing unit 358, and the CTF measuring apparatus 360 includes, for example, various processors (processors) as shown below. ).
 各種のプロセッサには、プログラムを実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。 Various processors are processors that can change their circuit configuration after manufacturing, such as a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array) that is a general-purpose processor that functions as various processing units by executing programs. Examples include a dedicated electric circuit that is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (PLD) and an ASIC (Application Specific Integrated Circuit).
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサで構成されてもよい。例えば、1つの処理部は、複数のFPGA、或いは、CPUとFPGAの組み合わせによって構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第一に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第二に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types. For example, one processing unit may be configured by a plurality of FPGAs or a combination of a CPU and an FPGA. Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or a server, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units. Second, as represented by a system-on-chip (SoC), a form of using a processor that implements the functions of the entire system including a plurality of processing units with a single IC (integrated circuit) chip. is there. As described above, various processing units are configured using one or more of the various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。 Further, the hardware structure of these various processors is more specifically an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
 《インクジェットヘッドの吐出方式について》
 インクジェットヘッドのイジェクタは、液体を吐出するノズルと、ノズルに通じる圧力室と、圧力室内の液体に吐出エネルギーを与える吐出エネルギー発生素子と、を含んで構成される。イジェクタのノズルから液滴を吐出させる吐出方式に関して、吐出エネルギーを発生させる手段は、圧電素子に限らず、発熱素子や静電アクチュエータなど、様々な吐出エネルギー発生素子を適用し得る。例えば、発熱素子による液体の加熱による膜沸騰の圧力を利用して液滴を吐出させる方式を採用することができる。インクジェットヘッドの吐出方式に応じて、相応の吐出エネルギー発生素子が流路構造体に設けられる。
<Discharge method of inkjet head>
An ejector of an inkjet head includes a nozzle that discharges liquid, a pressure chamber that communicates with the nozzle, and a discharge energy generating element that applies discharge energy to the liquid in the pressure chamber. With respect to the ejection method for ejecting liquid droplets from the nozzle of the ejector, the means for generating the ejection energy is not limited to the piezoelectric element, and various ejection energy generating elements such as a heating element and an electrostatic actuator can be applied. For example, it is possible to employ a method in which droplets are ejected using the pressure of film boiling caused by heating of a liquid by a heating element. Corresponding ejection energy generating elements are provided in the flow path structure according to the ejection method of the inkjet head.
 《本実施形態によるCTF測定方法の利点》
 (1)本実施形態によれば、各画素のコントラスト計算と最大値探索を組み合わせた簡単なアルゴリズムによって、正確なCTFを求めることができる。
<< Advantages of the CTF measurement method according to this embodiment >>
(1) According to the present embodiment, an accurate CTF can be obtained by a simple algorithm that combines contrast calculation of each pixel and maximum value search.
 (2)従来の方法は、ノズルの不吐などによりチャートの線が欠けていると、線の探索アルゴリズムが複雑になる。この点、本実施形態によれば、不吐出などによって線が欠けると、読取画像の画像データは白なのでCTF=0となり、特別に区別することなく、計算できる。すなわち、本実施形態によれば、簡単なアルゴリズムによって線欠けに対処した処理を行うことができる。また、本実施形態によれば、線の最大濃度や線間の最小濃度位置などを探索する処理が不要である。 (2) In the conventional method, if the chart line is missing due to nozzle discharge or the like, the line search algorithm becomes complicated. In this respect, according to the present embodiment, if a line is missing due to non-ejection or the like, the image data of the read image is white, so CTF = 0, which can be calculated without special distinction. That is, according to the present embodiment, it is possible to perform processing that copes with line defects by a simple algorithm. Further, according to the present embodiment, it is not necessary to search for the maximum density of lines, the minimum density position between lines, and the like.
 (3)また、本実施形態によれば、チャートの線幅若しくは描画解像度と、読取画素の解像度が近く、読取位置の位相によって読取データが周期的に変化するような場合にも、CTFを求めることができる。 (3) Further, according to the present embodiment, the CTF is obtained even when the line width or drawing resolution of the chart is close to the resolution of the read pixel and the read data changes periodically depending on the phase of the read position. be able to.
 〈その他の効果〉
 実際のインクジェット印刷装置を用いて印刷したCTF測定用チャートでは、各線を記録したインクジェットヘッドのインク吐出量ばらつきにより、CTF測定用チャートの線の濃さ、及び/又は幅が微妙に変化する。インク吐出量が少なければ、濃さが薄くなり、幅が狭くなる。
<Other effects>
In a CTF measurement chart printed using an actual inkjet printing apparatus, the density and / or width of the CTF measurement chart line slightly changes due to variations in the ink discharge amount of the inkjet head that records each line. If the ink discharge amount is small, the darkness becomes light and the width becomes narrow.
 この実際のインクジェット印刷装置を用いて印刷したCTF測定チャートを読み取り、本開示のCTF測定方法を用いて、CTFの値を算出すると、上記のインク吐出量のばらつき影響がCTF計算結果に影響する。つまり、インク吐出量が少なければ、CTF計算結果が小さくなる。 When the CTF measurement chart printed using this actual inkjet printing apparatus is read and the CTF value is calculated using the CTF measurement method of the present disclosure, the above-described dispersion effect of the ink discharge amount affects the CTF calculation result. That is, if the ink discharge amount is small, the CTF calculation result is small.
 図31は、インクジェット印刷装置201を用いて印刷したチャートの読取画像のデータから算出したCTFの例を示すグラフである。横軸は、光学読取装置の読取センサ(撮像センサ)の画素番号を表し、縦軸はCTF値を表す。図31に示したグラフにおいて画素番号4000付近にCTF値が不連続に見える部分がある。不連続に見える部分は、複数のヘッドモジュールを繋ぎ合わせて構成されたライン型のインクジェットヘッドにおける2つのヘッドモジュールの境界部分である。各ヘッドモジュールでインク吐出量に差があり、2つのヘッドモジュールの境界部分で、CTF計算結果にその差が表れている。 FIG. 31 is a graph showing an example of the CTF calculated from the read image data of the chart printed using the ink jet printing apparatus 201. The horizontal axis represents the pixel number of the reading sensor (imaging sensor) of the optical reader, and the vertical axis represents the CTF value. In the graph shown in FIG. 31, there is a portion where CTF values appear discontinuous in the vicinity of pixel number 4000. The discontinuous portion is a boundary portion between two head modules in a line-type inkjet head configured by connecting a plurality of head modules. There is a difference in the ink discharge amount between the head modules, and the difference appears in the CTF calculation result at the boundary between the two head modules.
 光学読取装置のCTFは、読み取り範囲内において高低があるが、レンズの脈理(ガラス成分の不均一性による欠陥)などがなければ、局所的に急激に変化することはない。したがって、図31に示すような、CTFの計算結果から、各ヘッドモジュールのインク吐出量の局所的不均一を捉えることができる。なお、図31のグラフ中のところどころに見られるピーク状の高い数値については、異常値として除外する処理、及び/又は移動平均などの平滑化の処理を行い、適宜利用目的に沿ったデータに加工してもよい。 The CTF of the optical reading device is high or low within the reading range, but it does not change rapidly locally unless there is a lens striae (defect due to nonuniformity of glass components). Therefore, the local non-uniformity of the ink discharge amount of each head module can be captured from the CTF calculation result as shown in FIG. In addition, about the high peak-like numerical value seen in the place of the graph of FIG. 31, the process which excludes as an abnormal value and / or smoothing processes, such as a moving average, is processed into the data according to the purpose of use suitably May be.
 データ処理装置110として機能する制御装置202は、CTFの計算結果を用いて、ライン型のインクジェットヘッドにおけるヘッドモジュールのインク吐出量の局所的不均一を検出する処理を行う検出処理部を含んでいてもよい。インク吐出量の局所的不均一を検出する処理には、インク吐出量のばらつきの検出と不吐検出の少なくとも一方の検出処理が含まれる。 The control device 202 functioning as the data processing device 110 includes a detection processing unit that performs processing for detecting local non-uniformity in the ink ejection amount of the head module in the line-type inkjet head using the CTF calculation result. Also good. The process for detecting the local non-uniformity of the ink discharge amount includes at least one of the detection process of the variation in the ink discharge amount and the non-discharge detection.
 《変形例1》
 チャートは、読取対象画像領域の少なくとも一部に濃淡縞が含まれていればよく、白黒縞に限らない。濃淡縞は、用途によっては、白赤縞、白青縞、白緑縞、白シアン縞、白マゼンタ縞、又は白イエロー縞などでも適用可能である。印刷装置で用いるインクの色ごとにチャートを印刷してもよい。
<< Modification 1 >>
The chart is not limited to black and white stripes, as long as at least a part of the image area to be read includes light and shade stripes. Depending on the application, the gray stripes can be applied as white red stripes, white blue stripes, white green stripes, white cyan stripes, white magenta stripes, or white yellow stripes. A chart may be printed for each ink color used in the printing apparatus.
 また、予め用意された専用のCTF測定用チャートを用いても、本開示のCTF測定方法を適用してCTFを算出することができる。 In addition, even if a dedicated CTF measurement chart prepared in advance is used, the CTF can be calculated by applying the CTF measurement method of the present disclosure.
 《変形例2》
 1つのチャートには、複数の異なる縞間隔の濃淡縞が含まれていてもよい。つまり、縞間隔がP1である第1の濃淡縞と、縞間隔がP2である第2の濃淡縞とが1つのチャートに含まれていてもよい。また、チャートに表示された濃淡縞の方向は、縦縞に限らず、横縞であってもよく、また、縦縞と横縞の両方であってもよい。例えば、第1の濃淡縞は縦縞、第2の濃淡縞は横縞であってよい。第1の濃淡縞と第2の濃淡縞のそれぞれの濃淡縞について、本開示のCTF測定方法によってCTFを算出することができる。縦縞の線方向が第1方向の一例であり、横縞の線方向が第2方向の一例である。
<< Modification 2 >>
One chart may include a plurality of gray stripes having different stripe intervals. That is, the first gray stripe with the stripe interval P1 and the second gray stripe with the stripe interval P2 may be included in one chart. Moreover, the direction of the light and shade stripes displayed on the chart is not limited to the vertical stripes, and may be horizontal stripes, or both vertical stripes and horizontal stripes. For example, the first shading stripe may be a vertical stripe, and the second shading stripe may be a horizontal stripe. The CTF can be calculated by the CTF measurement method of the present disclosure for each of the first and the second light and shade stripes. The line direction of the vertical stripe is an example of the first direction, and the line direction of the horizontal stripe is an example of the second direction.
 《変形例3》
 上述の実施形態では、印刷装置の一例として、シングルパス方式のインクジェット印刷装置を説明したが、本発明は、様々な形態の印刷装置に適用し得る。例えば、短尺のインクジェットヘッドを往復走査させて画像を形成するマルチスキャン方式のインクジェット印刷装置についても本発明を適用することができる。また、本発明の実施に際して記録媒体に画像を形成する手段は、インクジェット印刷装置に限らず、電子写真装置でもよく、また、オフセット印刷装置などの有版型の印刷装置であってもよい。
<< Modification 3 >>
In the above-described embodiment, the single-pass inkjet printing apparatus has been described as an example of the printing apparatus. However, the present invention can be applied to various forms of printing apparatuses. For example, the present invention can be applied to a multi-scan ink jet printing apparatus that forms an image by reciprocating a short ink jet head. The means for forming an image on a recording medium in the practice of the present invention is not limited to an ink jet printing apparatus, but may be an electrophotographic apparatus or a plate type printing apparatus such as an offset printing apparatus.
 《変形例4》
 図28に示したデータ処理装置110の構成は、印刷装置から切り離して、CTF測定の演算処理を行う解像力測定装置として把握することができる。また、図30に示した制御装置202の構成は、解像力測定装置の一形態と理解することができる。
<< Modification 4 >>
The configuration of the data processing apparatus 110 illustrated in FIG. 28 can be grasped as a resolution measuring apparatus that performs a calculation process of CTF measurement separately from the printing apparatus. In addition, the configuration of the control device 202 illustrated in FIG. 30 can be understood as one form of the resolution measuring device.
 《コンピュータを解像力測定装置として機能させるプログラムについて》
 上述の実施形態で説明したCTF計算方法を実施する解像力測定装置として、コンピュータを機能させるためのプログラムを光ディスクや磁気ディスクその他のコンピュータ可読媒体(有体物たる非一時的な情報記憶媒体)に記録し、この情報記憶媒体を通じてプログラムを提供することが可能である。
<About a program that allows a computer to function as a resolution measuring device>
As a resolution measuring apparatus that implements the CTF calculation method described in the above embodiment, a program for causing a computer to function is recorded on an optical disk, a magnetic disk, or other computer-readable medium (a non-transitory information storage medium that is a tangible object), It is possible to provide a program through this information storage medium.
 また、情報記憶媒体にプログラムを記憶させてプログラムを提供する態様に代えて、インターネットなどの通信ネットワークを利用してプログラムのデータをダウンロードサービスとして提供することも可能である。 Further, instead of a mode in which a program is stored in an information storage medium and provided, the program data can be provided as a download service using a communication network such as the Internet.
 このプログラムをコンピュータに組み込むことにより、コンピュータに解像力測定装置の機能を実現させることができる。また、本実施形態で説明したCTF計算処理の機能を含む印刷装置の制御を実現するためのプログラムの一部又は全部を、ホストコンピュータなどの上位制御装置に組み込む態様や、印刷装置のCPUの動作プログラムとして適用することも可能である。 By incorporating this program into a computer, the function of the resolution measuring device can be realized by the computer. Also, a mode in which a part or all of a program for realizing control of the printing apparatus including the CTF calculation processing function described in the present embodiment is incorporated in a host control apparatus such as a host computer, or operation of the CPU of the printing apparatus It is also possible to apply as a program.
 《記録媒体について》
 「用紙」は、画像の記録に用いられる媒体であり、記録媒体の概念に含まれる。記録媒体という用語は、記録用紙、印用紙、印刷媒体、印字媒体、被印刷媒体、画像形成媒体、被画像形成媒体、受像媒体、被吐出媒体など様々な用語で呼ばれるものの総称である。記録媒体の材質や形状等は、特に限定されず、シール用紙、樹脂シート、フィルム、布、不織布、その他材質や形状を問わず、様々なシート体を用いることができる。記録媒体は枚葉の媒体に限らず、連続紙などの連続媒体であってもよい。また、枚葉の記録媒体は、予め規定のサイズに整えられたカット紙に限らず、連続媒体から随時、規定のサイズに裁断して得られるものであってもよい。
<About recording media>
“Paper” is a medium used for image recording, and is included in the concept of a recording medium. The term “recording medium” is a collective term for a variety of terms such as recording paper, printing paper, printing medium, printing medium, printing medium, image forming medium, image forming medium, image receiving medium, and ejection medium. The material, shape, and the like of the recording medium are not particularly limited, and various sheet bodies can be used regardless of the sealing paper, resin sheet, film, cloth, nonwoven fabric, and other materials and shapes. The recording medium is not limited to a single sheet medium, and may be a continuous medium such as continuous paper. Further, the sheet recording medium is not limited to a cut sheet that is preliminarily adjusted to a predetermined size, and may be obtained by cutting a continuous medium to a predetermined size at any time.
 《用語について》
 「印刷装置」という用語は、印刷機、プリンタ、印字装置、印刷装置、画像形成装置、画像記録装置、画像出力装置、或いは、描画装置などの用語と同義である。
《Terminology》
The term “printing apparatus” is synonymous with terms such as a printing press, a printer, a printing apparatus, a printing apparatus, an image forming apparatus, an image recording apparatus, an image output apparatus, or a drawing apparatus.
 「画像」は広義に解釈するものとし、カラー画像、白黒画像、単一色画像、グラデーション画像、均一濃度(ベタ)画像なども含まれる。「画像」は、写真画像に限らず、図柄、文字、記号、線画、モザイクパターン、色の塗り分け模様、その他の各種パターン、若しくはこれらの適宜の組み合わせを含む包括的な用語として用いる。 “Image” is to be interpreted in a broad sense and includes color images, black and white images, single color images, gradation images, uniform density (solid) images, and the like. The “image” is not limited to a photographic image, but is used as a comprehensive term including a pattern, a character, a symbol, a line drawing, a mosaic pattern, a color painting pattern, other various patterns, or an appropriate combination thereof.
 画像の「記録」とは、画像の形成、印刷、印字、描画、及びプリントなどの用語の概念を含む。「印字」には、デジタルデータに基づくデジタル印刷の概念が含まれる。 “Image recording” includes the concept of terms such as image formation, printing, printing, drawing, and printing. “Printing” includes the concept of digital printing based on digital data.
 本明細書における「直交」又は「垂直」という用語には、90°未満の角度、又は90°を超える角度をなして交差する態様のうち、実質的に90°の角度をなして交差する場合と同様の作用効果を発生させる態様が含まれる。また、「平行」という用語は、実質的に平行とみなして扱うことができる程度の許容範囲を含む。 In the present specification, the term “orthogonal” or “perpendicular” refers to a case of intersecting at an angle of substantially 90 ° in an aspect of intersecting at an angle of less than 90 ° or greater than 90 °. The mode which produces the same operation effect as is included. In addition, the term “parallel” includes a permissible range that can be treated as substantially parallel.
 《像高(Image height)について》
 像高は、光学系の評価面上(通常、結像面上でピントが合っている位置)で像位置を光軸からの距離で表した値である。像高には理想像高と実像高がある。理想像高は近軸倍率で求められる理想的な像高である。一方、通常の光学系の像高はレンズの収差のため、理想像高からずれる。実像高は評価面で実際に結像している位置であり、収差も含めた像高である。近軸倍率は次のように定義される。
《About image height》
The image height is a value representing the image position in terms of the distance from the optical axis on the evaluation surface of the optical system (usually, the in-focus position on the imaging surface). The image height includes an ideal image height and a real image height. The imaginary height is an ideal image height that can be obtained by paraxial magnification. On the other hand, the image height of a normal optical system deviates from the ideal image height due to lens aberration. The real image height is a position where an image is actually formed on the evaluation surface, and is an image height including aberration. The paraxial magnification is defined as follows.
 近軸倍率γ:近軸光線追跡で求めたレンズ倍率である。 Paraxial magnification γ: Lens magnification obtained by paraxial ray tracing.
 γ=y’/y
   y':像高
   y:物体高 
 《歪曲収差とディストーションについて》
 歪曲収差とディストーションは、光学収差の一つであり、像の幾何学的な歪み(位置誤差)である。歪曲収差とディストーションは、像の倍率が場所によって変化することで生じ、像高誤差となる。単純には、糸巻型(正の歪曲収差)と、樽型(負の歪曲収差)とがある。
γ = y ′ / y
y ': image height y: object height
<Distortion and distortion>
Distortion and distortion are optical aberrations, and are geometric distortion (position error) of an image. Distortion and distortion are caused by the fact that the magnification of an image changes depending on the location, resulting in an image height error. Simply, there are a pincushion type (positive distortion aberration) and a barrel type (negative distortion aberration).
 《実施形態及び変形例等の組み合わせについて》
 上述の実施形態で説明した構成や変形例で説明した事項は、適宜組み合わせて用いることができ、また、一部の事項を置き換えることもできる。
<< Combination of Embodiments and Modifications >>
The matters described in the above-described embodiments and the modifications can be used in appropriate combinations, and some of the matters can be replaced.
 以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、又は削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で同等関連分野の通常の知識を有する者により、多くの変形が可能である。 In the embodiment of the present invention described above, the configuration requirements can be changed, added, or deleted as appropriate without departing from the spirit of the present invention. The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the related fields within the technical idea of the present invention.
10 チャート
12 線
14 白部
20 読取画像
22 正方形
24 黒線部位置中央
26 黒線部位置周辺
30 チャート画像
31 白黒縞
32 白黒縞
33 白黒縞
100 光学読取装置
102 チャート
110 データ処理装置
112 データ取得部
114 データ記憶部
116 コントラスト算出処理部
118 データ出力部
120 入力装置
122 表示装置
132 読取画像記憶部
134 画素間CTF記憶部
136 CTF算出結果記憶部
142 画素間隔決定部
144 画素間CTF算出部
146 CTF算出部
201 インクジェット印刷装置
202 制御装置
210 給紙部
212 給紙装置
212A 給紙台
214 フィーダボード
216 給紙ドラム
220 処理液塗布部
222 処理液塗布ドラム
223、233、243 グリッパ
224 処理液塗布装置
230 処理液乾燥部
232 処理液乾燥ドラム
234 温風送風機
240 描画部
242 描画ドラム
244 ヘッドユニット
246C、246M、246Y、246K インクジェットヘッド
248 インラインスキャナ
250 インク乾燥部
260 集積部
262 集積装置
262A 集積トレイ
310 チェーンデリバリ
312 チェーン
314 グリッパ
320 用紙ガイド
322 第1用紙ガイド
324 第2用紙ガイド
330 温風送風ユニット
350 システムコントローラ
352 通信部
358 画像処理部
360 CTF測定装置
362 搬送制御部
364 画像記録制御部
380 媒体搬送機構
382 ロータリエンコーダ
P 用紙
Ww 白幅、
Wb 黒幅
Pb 間隔
Pw 間隔
r 規定距離
S1~S4 CTF測定処理のステップ
S11~S15 印刷画像データ生成処理のステップ
S21~S25 印刷処理のステップ
S31~S36 読み取り処理のステップ
S41~S44 CTF算出処理のステップ
S51~S64 コントラスト算出処理のステップ
DESCRIPTION OF SYMBOLS 10 Chart 12 Line 14 White part 20 Read image 22 Square 24 Black line part position center 26 Black line part position periphery 30 Chart image 31 Black-and-white stripe 32 Black-and-white stripe 33 Black-and-white stripe 100 Optical reader 102 Chart 110 Data processor 112 Data acquisition part 114 Data storage unit 116 Contrast calculation processing unit 118 Data output unit 120 Input device 122 Display device 132 Read image storage unit 134 Inter-pixel CTF storage unit 136 CTF calculation result storage unit 142 Pixel interval determination unit 144 Inter-pixel CTF calculation unit 146 CTF calculation Unit 201 Inkjet printing device 202 Control device 210 Paper feed unit 212 Paper feed device 212A Paper feed stand 214 Feeder board 216 Paper feed drum 220 Treatment liquid application unit 222 Treatment liquid application drums 223, 233, 243 Gripper 224 Treatment liquid application device 230 Liquid drying unit 232 Treatment liquid drying drum 234 Hot air blower 240 Drawing unit 242 Drawing drum 244 Head unit 246C, 246M, 246Y, 246K Inkjet head 248 Inline scanner 250 Ink drying unit 260 Stacking unit 262 Stacking device 262A Stacking tray 310 Chain delivery 312 Chain 314 Gripper 320 Paper guide 322 First paper guide 324 Second paper guide 330 Hot air blowing unit 350 System controller 352 Communication unit 358 Image processing unit 360 CTF measuring device 362 Transport control unit 364 Image recording control unit 380 Medium transport mechanism 382 Rotary Encoder P Paper Ww White width,
Wb Black width Pb Interval Pw Interval r Specified distance S1 to S4 Steps S11 to S15 of CTF measurement processing Steps S21 to S25 of print image data generation processing Steps S31 to S36 of printing processing Steps S41 to S44 of reading processing Steps of CTF calculation processing S51 to S64 Contrast calculation processing steps

Claims (27)

  1.  少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データを取得する読取画像データ取得工程と、
     前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、前記濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出工程と、
     前記画素間コントラスト算出工程によって画素ごとに算出されたコントラストの値の最大値から、前記濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出工程と、を含み、
     前記特定画素数は、前記読取画像の画像データにおいて前記濃淡縞の前記特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、前記特定画素数をd、前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の前記濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから前記濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、
     前記画素間コントラスト算出工程は、次式、
     CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
     に従って、前記画素間のコントラストを算出する処理と、
     画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、
     を含む解像力測定方法。
    At least in part, a read image data acquisition step of acquiring image data of a read image obtained by reading a chart including a light and dark stripe whose density cross section changes into a rectangular shape at a specific interval;
    For each pixel belonging to at least a part of the calculation target range of the image data of the read image, between pixels between the pixels separated by a number of pixels not less than 1 and not more than a specific number of pixels in the interval direction of the light and shade stripes A pixel-to-pixel contrast calculating step for calculating contrast;
    A resolution calculation step of calculating a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel by the inter-pixel contrast calculation step,
    The specific pixel number is defined as a pixel number that is equal to or less than a stripe interval pixel number that is the number of pixels corresponding to the specific interval of the light and shade stripes in the image data of the read image, and the specific pixel number is d, the pixel number indicating the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range of the image data of the read image is n, and the value of the pixel Xn represented by the pixel number n is X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m ≦ d, or a -d ≦ m ≦ -1 When taking an integer value that satisfies
    The inter-pixel contrast calculation step has the following formula:
    CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
    According to the process of calculating the contrast between the pixels,
    Processing for obtaining a maximum value among CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n ;
    Resolving power measuring method.
  2.  前記画素間コントラスト算出工程において、画素Xに対して、1≦m≦d、又は、-d≦m≦-1を満たす全てのmについて、CTF(X,Xn+m)を算出し、
     かつ、
     前記全てのmのうち、CTF(X,Xn+m)の最大値を、画素Xにおける画素のコントラスト値とする処理を行う請求項1に記載の解像力測定方法。
    In the inter-pixel contrast calculating step, CTF (X n , X n + m ) is calculated for all m satisfying 1 ≦ m ≦ d or −d ≦ m ≦ −1 for the pixel X n ,
    And,
    The resolving power measurement method according to claim 1, wherein a process of setting a maximum value of CTF (X n , X n + m ) among all the m values as a pixel contrast value in the pixel X n is performed.
  3.  前記解像力算出工程は、
     前記濃淡縞の間隔方向に並ぶ画素に対して、前記縞間隔画素数以上の画素のグループを設定し、かつ、
     前記グループごとの各画素について算出された前記画素のコントラスト値のうち、最大の値を、前記グループに属する各画素位置でのコントラスト値とする処理を含む請求項2に記載の解像力測定方法。
    The resolving power calculation step includes:
    For pixels arranged in the interval direction of the light and shade stripes, set a group of pixels equal to or greater than the number of stripe interval pixels, and
    The resolving power measurement method according to claim 2, further comprising a process of setting a maximum value among the contrast values of the pixels calculated for each pixel in each group as a contrast value at each pixel position belonging to the group.
  4.  前記解像力算出工程は、画素Xに対して、前記濃淡縞に平行な線方向に一列に並んだ複数の画素についてそれぞれ算出された前記画素のコントラスト値のうち、最大の値を、前記画素Xが属する画素列の位置でのコントラスト値とする処理を含む請求項2又は3に記載の解像力測定方法。 The resolving power calculation step calculates, for the pixel Xn , the maximum value among the pixel contrast values calculated for each of a plurality of pixels arranged in a line in a line direction parallel to the light and shade stripes. The resolving power measurement method according to claim 2, further comprising a process of setting a contrast value at a position of a pixel column to which n belongs.
  5.  前記チャートは、前記濃淡縞に平行な線方向に、前記濃淡縞が2つ以上並んでいる複数の前記濃淡縞を含み、前記複数の濃淡縞は、縞の間隔が等しく、かつ、互いに前記濃淡縞の間隔方向に特定距離だけ縞の位置がずれており、
     前記解像力算出工程は、
     前記複数の濃淡縞を含む前記チャートの前記読取画像の画像データから、画素Xに対して、前記線方向に平行な方向に一列に並んだ複数の画素についてそれぞれ算出された前記画素のコントラスト値のうち、最大の値を、画素Xが属する画素列の位置でのコントラスト値とする処理を含む請求項2から4のいずれか一項に記載の解像力測定方法。
    The chart includes a plurality of the shade stripes in which two or more shade stripes are arranged in a line direction parallel to the shade stripe, and the plurality of shade stripes have the same stripe interval, and the shade The position of the stripe is shifted by a specific distance in the direction of the stripe interval,
    The resolving power calculation step includes:
    The contrast value of the pixel calculated for each of a plurality of pixels arranged in a line in a direction parallel to the line direction with respect to the pixel Xn from the image data of the read image of the chart including the plurality of gray stripes 5. The resolution measurement method according to claim 2, further comprising: processing for setting a maximum value of the contrast value at the position of the pixel column to which the pixel Xn belongs.
  6.  前記濃淡縞の間隔方向の前記特定距離は、前記縞間隔画素数の正の整数分の1であり、
     前記線方向に並ぶ前記濃淡縞の数は、(縞間隔画素数/特定距離)の正の整数倍である請求項5に記載の解像力測定方法。
    The specific distance in the interval direction of the light and shade stripes is a positive integer of the stripe interval pixel number,
    The resolution measuring method according to claim 5, wherein the number of the gray stripes arranged in the line direction is a positive integer multiple of (number of stripe interval pixels / specific distance).
  7.  前記解像力算出工程は、画素Xに対して、前記濃淡縞に平行な線方向に一列に並んだ複数の画素についてそれぞれ算出された前記画素のコントラスト値のうち、前記線方向の画素のコントラスト平均値に比べて、規定割合以上大きい値を異常値として除外する処理を含む請求項3から6のいずれか一項に記載の解像力測定方法。 The resolving power calculation step includes, for the pixel Xn , out of the contrast values of the pixels calculated for a plurality of pixels arranged in a line in a line direction parallel to the shading stripes, a contrast average of the pixels in the line direction The resolving power measurement method according to claim 3, further comprising a process of excluding a value larger than a specified ratio by a specified ratio or more as an abnormal value.
  8.  前記解像力算出工程は、画素Xに対して、前記濃淡縞に平行な線方向に一列に並んだ複数の画素についてそれぞれ算出された前記画素のコントラスト値のうち、前記線方向の画素のコントラスト平均値に比べて、規定割合以上大きい値を異常値とし、前記異常値を示す画素のコントラスト値を、周囲の規定画素数の範囲のうち前記異常値に該当しない画素のコントラスト値の平均値に置き換える処理を含む請求項3から6のいずれか一項に記載の解像力測定方法。 The resolving power calculation step includes, for the pixel Xn , out of the contrast values of the pixels calculated for a plurality of pixels arranged in a line in a line direction parallel to the shading stripes, a contrast average of the pixels in the line direction A value larger than a specified ratio by more than a specified ratio is set as an abnormal value, and the contrast value of a pixel indicating the abnormal value is replaced with an average value of contrast values of pixels that do not correspond to the abnormal value in a range of the surrounding specified number of pixels. The resolving power measuring method according to any one of claims 3 to 6 including processing.
  9.  前記濃淡縞の間隔をPミリメートル、前記チャート上における前記光学読取装置の読取画素の間隔をSミリメートルとする場合に、P≧2×Sであって、
     前記特定画素数は、d≧P/(2×S)を満たす最小の整数dである請求項1から8のいずれか一項に記載の解像力測定方法。
    In the case where the interval between the light and shade stripes is P millimeters and the interval between the reading pixels of the optical reading device on the chart is S millimeters, P ≧ 2 × S,
    The resolution measuring method according to claim 1, wherein the specific number of pixels is a minimum integer d that satisfies d ≧ P / (2 × S).
  10.  前記濃淡縞の間隔をPミリメートル、前記チャート上における前記光学読取装置の読取画素の間隔をSミリメートルとする場合に、P≧Sであって、
     前記特定画素数は、d≧P/Sを満たす最小の整数dである請求項1から8のいずれか一項に記載の解像力測定方法。
    When the interval between the light and shade stripes is P millimeters and the interval between the reading pixels of the optical reading device on the chart is S millimeters, P ≧ S,
    The resolution measuring method according to claim 1, wherein the specific pixel number is a minimum integer d that satisfies d ≧ P / S.
  11.  前記濃淡縞の間隔をPミリメートル、前記チャート上における前記光学読取装置の読取画素の間隔をSミリメートルとする場合に、P≧2×Sであって、
     前記特定画素数は、d≧P/(2×S)を満たす最小の整数以上、かつ、d≧P/Sを満たす最小の整数以下の整数dである請求項1から8のいずれか一項に記載の解像力測定方法。
    In the case where the interval between the light and shade stripes is P millimeters and the interval between the reading pixels of the optical reading device on the chart is S millimeters, P ≧ 2 × S,
    9. The specific pixel number is an integer d that is equal to or larger than a minimum integer satisfying d ≧ P / (2 × S) and equal to or smaller than a minimum integer satisfying d ≧ P / S. The resolving power measuring method described in 1.
  12.  前記チャートには、複数の異なる前記特定間隔の濃淡縞のパターンが含まれている請求項1から11のいずれか一項に記載の解像力測定方法。 The resolution measurement method according to any one of claims 1 to 11, wherein the chart includes a plurality of different patterns of gray stripes at the specific intervals.
  13.  前記チャートに含まれる前記濃淡縞の方向は、第1方向、又は前記第1方向に交差する第2方向、若しくは、前記第1方向と前記第2方向の両方である請求項1から12のいずれか一項に記載の解像力測定方法。 The direction of the light and shade stripes included in the chart is the first direction, the second direction intersecting the first direction, or both the first direction and the second direction. The resolving power measuring method according to claim 1.
  14.  前記光学読取装置の読取範囲全体の画素について算出したコントラスト伝達関数の算出結果から前記光学読取装置のピント状態を判断する工程を含む請求項1から13のいずれか一項に記載の解像力測定方法。 The resolution measuring method according to any one of claims 1 to 13, including a step of determining a focus state of the optical reading device from a calculation result of a contrast transfer function calculated for pixels in the entire reading range of the optical reading device.
  15.  前記チャートは、印刷装置を用いて記録媒体に前記濃淡縞が印刷されたチャートである請求項1から14のいずれか一項に記載の解像力測定方法。 The resolution measurement method according to any one of claims 1 to 14, wherein the chart is a chart in which the shading stripes are printed on a recording medium using a printing apparatus.
  16.  前記光学読取装置を用いて前記チャートを読み取るチャート読取工程を含む請求項1から15のいずれか一項に記載の解像力測定方法。 The resolving power measuring method according to any one of claims 1 to 15, further comprising a chart reading step of reading the chart using the optical reading device.
  17.  前記光学読取装置の光学系は、単一の光軸を持つ結像レンズ、又は複数の光軸を持つレンズアレイを含む請求項16に記載の解像力測定方法。 The resolution measuring method according to claim 16, wherein the optical system of the optical reading device includes an imaging lens having a single optical axis or a lens array having a plurality of optical axes.
  18.  印刷装置を用いて前記濃淡縞を含む前記チャートを印刷するチャート印刷工程を含む請求項1から17のいずれか一項に記載の解像力測定方法。 The resolution measuring method according to any one of claims 1 to 17, further comprising a chart printing step of printing the chart including the shading stripes using a printing apparatus.
  19.  前記印刷装置は前記光学読取装置を備えており、
     前記印刷装置によって前記チャートを印刷し、かつ、前記印刷装置内において前記光学読取装置によって前記チャートの読み取りを行う請求項18に記載の解像力測定方法。
    The printing apparatus includes the optical reader;
    The resolution measuring method according to claim 18, wherein the chart is printed by the printing device, and the chart is read by the optical reading device in the printing device.
  20.  前記印刷装置は、インクジェット印刷装置である請求項18又は19に記載の解像力測定方法。 The resolution measuring method according to claim 18 or 19, wherein the printing device is an inkjet printing device.
  21.  前記濃淡縞の各線はそれぞれ、インクジェットヘッドにおける単一のノズルからの打滴によって記録される請求項20に記載の解像力測定方法。 The resolution measuring method according to claim 20, wherein each line of the light and shade stripes is recorded by droplet ejection from a single nozzle in an ink jet head.
  22.  前記光学読取装置は、前記インクジェット印刷装置に搭載されたインラインスキャナである請求項20又は21に記載の解像力測定方法。 The resolution measuring method according to claim 20 or 21, wherein the optical reading device is an in-line scanner mounted on the inkjet printing apparatus.
  23.  少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データを取得する読取画像データ取得部と、
     前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、前記濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出部と、
     前記画素間コントラスト算出部によって画素ごとに算出されたコントラストの値の最大値から、前記濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出部と、を備え、
     前記特定画素数は、前記読取画像の画像データにおいて前記濃淡縞の前記特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、前記特定画素数をd、前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の前記濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから前記濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、
     前記画素間コントラスト算出部は、次式、
     CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
     に従って、前記画素間のコントラストを算出する処理と、
     画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、
     を行う解像力測定装置。
    At least in part, a read image data acquisition unit that acquires image data of a read image obtained by reading a chart including a light and dark stripe whose density cross section changes to a rectangular shape at a specific interval;
    For each pixel belonging to at least a part of the calculation target range of the image data of the read image, between pixels between the pixels separated by a number of pixels not less than 1 and not more than a specific number of pixels in the interval direction of the light and shade stripes An inter-pixel contrast calculation unit for calculating contrast;
    A resolving power calculation unit that calculates a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel by the inter-pixel contrast calculation unit,
    The specific pixel number is defined as a pixel number that is equal to or less than a stripe interval pixel number that is the number of pixels corresponding to the specific interval of the light and shade stripes in the image data of the read image, and the specific pixel number is d, the pixel number indicating the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range of the image data of the read image is n, and the value of the pixel Xn represented by the pixel number n is X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m ≦ d, or a -d ≦ m ≦ -1 When taking an integer value that satisfies
    The inter-pixel contrast calculation unit has the following formula:
    CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
    According to the process of calculating the contrast between the pixels,
    Processing for obtaining a maximum value among CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n ;
    Resolving power measuring device.
  24.  少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを光学読取装置によって読み取ることにより得られる読取画像の画像データから前記光学読取装置の解像力を測定するデータ処理をコンピュータに実行させるプログラムであって、
     コンピュータに、
     前記チャートの読取画像のデータを取得する読取画像データ取得工程と、
     前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、前記濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出工程と、
     前記画素間コントラスト算出工程によって画素ごとに算出されたコントラストの値の最大値から、前記濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出工程と、を実行させるプログラムであり、
     前記特定画素数は、前記読取画像の画像データにおいて前記濃淡縞の前記特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、前記特定画素数をd、前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の前記濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから前記濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、
     前記画素間コントラスト算出工程は、次式、
     CTF(Xn,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
     に従って、前記画素間のコントラストを算出する処理と、
     画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、
     を含むプログラム。
    Data processing for measuring the resolving power of the optical reading device from image data of a read image obtained by reading a chart including at least part of a density stripe whose density cross section changes into a rectangular shape at a specific interval by an optical reading device. A program to be executed,
    On the computer,
    A read image data acquisition step of acquiring read image data of the chart;
    For each pixel belonging to at least a part of the calculation target range of the image data of the read image, between pixels between the pixels separated by a number of pixels not less than 1 and not more than a specific number of pixels in the interval direction of the light and shade stripes A pixel-to-pixel contrast calculating step for calculating contrast;
    A resolving power calculation step of calculating a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel by the inter-pixel contrast calculation step,
    The specific pixel number is defined as a pixel number that is equal to or less than a stripe interval pixel number that is the number of pixels corresponding to the specific interval of the light and shade stripes in the image data of the read image, and the specific pixel number is d, the pixel number indicating the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range of the image data of the read image is n, and the value of the pixel Xn represented by the pixel number n is X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m ≦ d, or a -d ≦ m ≦ -1 When taking an integer value that satisfies
    The inter-pixel contrast calculation step has the following formula:
    CTF (Xn, Xn + m ) = {X (n + m) -X (n)} / {X (n + m) + X (n)}
    According to the process of calculating the contrast between the pixels,
    Processing for obtaining a maximum value among CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n ;
    Including programs.
  25.  請求項24に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 24 is recorded.
  26.  記録媒体に画像を形成する画像形成部と、
     前記画像形成部を用いて前記記録媒体に形成された画像を光学的に読み取る光学読取装置と、
     前記光学読取装置によって用いて読み取られた読取画像の画像データを演算処理するデータ処理装置と、を備え、
     前記画像形成部は、少なくとも一部に、濃度断面が特定間隔で矩形状に変化する濃淡縞を含むチャートを印刷し、
     前記光学読取装置は、前記チャートを読み取り、
     前記データ処理装置は、前記光学読取装置によって読み取られた前記チャートの読取画像の画像データを取得する読取画像データ取得部と、
     前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素に対して、前記濃淡縞の間隔方向に1以上特定画素数以下の画素数だけ離れた画素との間で画素間のコントラストを算出する画素間コントラスト算出部と、
     前記画素間コントラスト算出部によって画素ごとに算出されたコントラストの値の最大値から、前記濃淡縞の各縞位置でのコントラスト伝達関数を算出する解像力算出部と、を備え、
     前記特定画素数は、前記読取画像の画像データにおいて前記濃淡縞の前記特定間隔に相当する画素数である縞間隔画素数以下かつ1以上の条件を満たす画素数として規定され、前記特定画素数をd、前記読取画像の画像データのうち少なくとも一部の計算対象範囲に属する各画素の前記濃淡縞の間隔方向の位置を表す画素番号をn、画素番号nで表される画素Xの値をX(n)、画素Xから前記濃淡縞の間隔方向にm画素離れた画素Xn+mの値をX(n+m)とし、mが1≦m≦d、又は、-d≦m≦-1を満たす整数の値をとる場合に、
     前記画素間コントラスト算出部は、次式、
     CTF(X,Xn+m)={X(n+m)-X(n)}/{X(n+m)+X(n)}
     に従って、前記画素間のコントラストを算出する処理と、
     画素Xに対して異なるmについて求めたCTF(X,Xn+m)のうちの最大値を求める処理と、
     を行う印刷装置。
    An image forming unit for forming an image on a recording medium;
    An optical reader that optically reads an image formed on the recording medium using the image forming unit;
    A data processing device that performs arithmetic processing on image data of a read image read by the optical reading device,
    The image forming unit prints a chart including light and shade stripes in which a density cross section changes to a rectangular shape at a specific interval, at least in part.
    The optical reader reads the chart;
    The data processing device includes a read image data acquisition unit that acquires image data of a read image of the chart read by the optical reading device;
    For each pixel belonging to at least a part of the calculation target range of the image data of the read image, between pixels between the pixels separated by a number of pixels not less than 1 and not more than a specific number of pixels in the interval direction of the light and shade stripes An inter-pixel contrast calculation unit for calculating contrast;
    A resolving power calculation unit that calculates a contrast transfer function at each stripe position of the light and shade stripes from the maximum value of the contrast value calculated for each pixel by the inter-pixel contrast calculation unit,
    The specific pixel number is defined as a pixel number that is equal to or less than a stripe interval pixel number that is the number of pixels corresponding to the specific interval of the light and shade stripes in the image data of the read image, and the specific pixel number is d, the pixel number indicating the position in the interval direction of the gray stripes of each pixel belonging to at least a part of the calculation target range of the image data of the read image is n, and the value of the pixel Xn represented by the pixel number n is X (n), the value of a pixel X n + m apart m pixels in the spacing direction of the streaks from the pixel X n and X (n + m), m is 1 ≦ m ≦ d, or a -d ≦ m ≦ -1 When taking an integer value that satisfies
    The inter-pixel contrast calculation unit has the following formula:
    CTF (X n , X n + m ) = {X (n + m) −X (n)} / {X (n + m) + X (n)}
    According to the process of calculating the contrast between the pixels,
    Processing for obtaining a maximum value among CTFs (X n , X n + m ) obtained for different m with respect to the pixel X n ;
    Printing device to do.
  27.  前記画像形成部は、複数個のヘッドモジュールを繋ぎ合わせて構成されたライン型のインクジェトヘッドを含み、
     前記データ処理装置は、前記解像力算出部で算出されたコントラスト伝達関数を用いて、前記ヘッドモジュールのインク吐出量の局所的不均一を検出する処理を行う請求項26に記載の印刷装置。
    The image forming unit includes a line-type inkjet head configured by connecting a plurality of head modules,
    27. The printing apparatus according to claim 26, wherein the data processing apparatus performs a process of detecting a local non-uniformity in the ink ejection amount of the head module using the contrast transfer function calculated by the resolving power calculation unit.
PCT/JP2018/015043 2017-05-12 2018-04-10 Resolving power measurement method and device, program, and printing device WO2018207535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517515A JP6761543B2 (en) 2017-05-12 2018-04-10 Resolving power measurement method and equipment, program and printing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095756 2017-05-12
JP2017095756 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207535A1 true WO2018207535A1 (en) 2018-11-15

Family

ID=64104474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015043 WO2018207535A1 (en) 2017-05-12 2018-04-10 Resolving power measurement method and device, program, and printing device

Country Status (2)

Country Link
JP (1) JP6761543B2 (en)
WO (1) WO2018207535A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067595A1 (en) * 2001-10-04 2003-04-10 Timothy Alderson Automatic measurement of the modulation transfer function of an optical system
JP2007147438A (en) * 2005-11-28 2007-06-14 Fuji Xerox Co Ltd Evaluation method for lens array, evaluator, lens array, and image forming device
JP2008311953A (en) * 2007-06-14 2008-12-25 Mitsubishi Electric Corp Image reader
JP2011166568A (en) * 2010-02-12 2011-08-25 Canon Inc Adjustment reference chart for image reader and optical evaluation method employing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067595A1 (en) * 2001-10-04 2003-04-10 Timothy Alderson Automatic measurement of the modulation transfer function of an optical system
JP2007147438A (en) * 2005-11-28 2007-06-14 Fuji Xerox Co Ltd Evaluation method for lens array, evaluator, lens array, and image forming device
JP2008311953A (en) * 2007-06-14 2008-12-25 Mitsubishi Electric Corp Image reader
JP2011166568A (en) * 2010-02-12 2011-08-25 Canon Inc Adjustment reference chart for image reader and optical evaluation method employing the same

Also Published As

Publication number Publication date
JPWO2018207535A1 (en) 2020-05-28
JP6761543B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
US10105948B2 (en) Image inspection device, image inspection method, program, and ink jet printing system
US10311561B2 (en) Image inspection method, image inspection device, program, and image recording system
US9944104B2 (en) Method and apparatus for detecting streak, and printing apparatus
US9056463B2 (en) Image recording apparatus, image processing apparatus, image recording method and image processing method, and recording medium
US11192386B2 (en) Image processing apparatus, image processing method and storage medium
JP6344862B2 (en) Inspection apparatus, inspection method and program, and image recording apparatus
JP2021084298A (en) Image processing device, image forming system, image processing method, control method of image forming system and program
JP7520553B2 (en) Image processing device, control method thereof, and program
JP6598558B2 (en) Image processing apparatus, image processing method, and program
JP5881576B2 (en) Image evaluation apparatus, image evaluation method, image evaluation system, and program
JP6265502B2 (en) Transparent liquid discharge amount determining apparatus and method, and image forming apparatus and method
JP2017013513A (en) Inkjet printing system and correction method for non-ejection in the same, and program
WO2019107028A1 (en) Image inspection method, image inspection device, program, and image recording system
JP2014100854A (en) Apparatus and method for image formation and method of calculating correction value
WO2015029788A1 (en) Inkjet printing system and non-discharge correction method and program therefor
JP6562754B2 (en) Image processing apparatus, image processing method, and program
JP2008018632A (en) Printer, printer controlling program, storage medium storing the program and printer controlling method, image processing apparatus, image processing program, storage medium storing the program and image processing method, and compensation region information forming apparatus, compensation region information forming program, storage medium storing the program, and compensation region information forming method
JP5308735B2 (en) Print image inspection apparatus and printing method
JP6814883B2 (en) Image forming device and image forming method
WO2018207535A1 (en) Resolving power measurement method and device, program, and printing device
US11057528B2 (en) Information processing apparatus, method and storage medium
JP2016155342A (en) Color unevenness detection method, head adjustment method using and color unevenness inspection device
US12090767B2 (en) Defective nozzle locating mechanism
JP7277175B2 (en) Image processing device, image processing method, and program
US20240106966A1 (en) Image forming apparatus, control method of image forming apparatus, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798802

Country of ref document: EP

Kind code of ref document: A1