WO2018207499A1 - Wireless communication device and wireless communication method - Google Patents

Wireless communication device and wireless communication method Download PDF

Info

Publication number
WO2018207499A1
WO2018207499A1 PCT/JP2018/014085 JP2018014085W WO2018207499A1 WO 2018207499 A1 WO2018207499 A1 WO 2018207499A1 JP 2018014085 W JP2018014085 W JP 2018014085W WO 2018207499 A1 WO2018207499 A1 WO 2018207499A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
wireless communication
unit
reference signal
Prior art date
Application number
PCT/JP2018/014085
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 浩章
佐生 登
史隆 近藤
山本 憲
田村 昌久
喜久 高池
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2019517495A priority Critical patent/JP7179720B2/en
Publication of WO2018207499A1 publication Critical patent/WO2018207499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present technology relates to a wireless communication apparatus and a wireless communication method used for narrow area communication.
  • Patent Document 1 describes an in-vehicle wireless communication device using a narrow range communication (DSRC: Dedicated Short Range Communication) system.
  • DSRC Dedicated Short Range Communication
  • a high frequency signal transmitted from a base station installed on the roadside is received.
  • the received high-frequency signal is converted to an intermediate frequency based on a mixing frequency oscillated by a local oscillator (LO: Local Oscillator), and digital data or the like is read out.
  • LO Local Oscillator
  • an object of the present technology is to provide a wireless communication device and a wireless communication method for narrow area communication that can realize downsizing of the device.
  • a wireless communication apparatus includes a communication unit, a conversion unit, a generation unit, and a supply unit.
  • the communication unit can transmit and receive radio waves for narrow area communication.
  • the conversion unit converts a reception signal generated in response to reception of the radio wave for narrow-area communication into an intermediate frequency based on a first reference signal.
  • the generation unit generates a transmission signal used for transmission of the radio wave for the narrow area communication based on a second reference signal having a frequency different from that of the first reference signal.
  • the supply unit can switch between supply of the first reference signal to the conversion unit and supply of the second reference signal to the generation unit.
  • the first and second reference signals having different frequencies are appropriately switched and supplied to the conversion unit and the generation unit.
  • the intermediate frequency can be controlled, and data can be received without using an external filter or the like.
  • the conversion unit may convert the received signal into the intermediate frequency by mixing the first reference signal and the received signal.
  • the supply unit may control the frequency of the first reference signal so that the intermediate frequency is smaller than a frequency difference between the reception signal and the transmission signal. Filtering is facilitated by reducing the value of the intermediate frequency. As a result, an external filter or the like is not necessary, and the apparatus can be miniaturized.
  • the conversion unit may include a first internal filter that allows a frequency component of a first band including the intermediate frequency to pass therethrough and restricts a frequency component not included in the first band.
  • a first internal filter that allows a frequency component of a first band including the intermediate frequency to pass therethrough and restricts a frequency component not included in the first band.
  • the intermediate frequency may have an absolute value of 2.2 MHz or more and 2.8 MHz or less.
  • the intermediate frequency may have an absolute value of approximately 2.5 MHz. This makes it possible to sufficiently cut off extra signals such as jamming waves and sufficiently improve communication accuracy.
  • the supply unit may control the frequency of the first reference signal so that the intermediate frequency becomes substantially zero.
  • data included in the first high-frequency signal can be directly demodulated.
  • the apparatus configuration becomes simple and the apparatus can be miniaturized.
  • the conversion unit may include a second internal filter that passes a frequency component of a second band including the intermediate frequency and restricts a frequency component higher than an upper limit frequency of the second band.
  • a second internal filter that passes a frequency component of a second band including the intermediate frequency and restricts a frequency component higher than an upper limit frequency of the second band.
  • the supply unit may include a phase synchronization circuit that can oscillate by switching the first and second reference signals.
  • the first and second reference signals can be generated with high accuracy, and the operation accuracy can be improved.
  • the supply unit may include a frequency division unit that divides the frequency of the second reference signal at a predetermined ratio to generate a frequency division signal.
  • the generation unit may generate the transmission signal by executing mixing of the divided signal and mixing of the second reference signal with respect to the baseband signal.
  • the frequency of the 2nd high frequency signal transmitted differs from the frequency of the 2nd reference signal. As a result, it is possible to suppress problems due to frequency coupling.
  • the predetermined ratio may be any one of 1/2, 1/4, and 1/6.
  • the frequency can be easily divided using a frequency divider or the like. This makes it possible to provide a device that has a simple configuration and is resistant to coupling and the like.
  • the wireless communication apparatus may further include a signal generation unit that generates a data signal based on the intermediate frequency signal.
  • a signal generation unit that generates a data signal based on the intermediate frequency signal.
  • the data signal may include at least one of a QPSK signal, an ASK signal, and a carrier strength signal.
  • the signal generation unit may include a digital filter unit that digitizes and filters the signal of the intermediate frequency, and a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
  • a digital filter unit that digitizes and filters the signal of the intermediate frequency
  • a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
  • the digital filter unit and the mixer unit may operate based on a reference clock signal.
  • a reference clock signal for example, a dedicated clock circuit or the like becomes unnecessary, and the apparatus can be miniaturized.
  • the reception signal may be a signal having a frequency lower than that of the transmission signal. This makes it possible to provide a wireless communication device that functions as a mobile station that performs communication while moving.
  • the wireless communication device may be configured as a vehicle-mounted device. Thereby, it is possible to provide a small vehicle-mounted device capable of narrow-area communication.
  • a wireless communication method includes transmitting and receiving radio waves for narrow area communication. Based on the first reference signal, a reception signal generated in response to reception of the radio wave for narrow area communication is converted into an intermediate frequency. Based on a second reference signal having a frequency different from that of the first reference signal, a transmission signal used to transmit the radio wave for narrow area communication is generated. The supply of the first reference signal and the supply of the second reference signal are switched.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a wireless communication device according to the first embodiment of the present technology.
  • the wireless communication device 100 is configured as an in-vehicle device capable of communication in a narrow area communication method (DSRC method), and is used for communication with a base station or the like installed on a roadside or the like.
  • DSRC method narrow area communication method
  • the wireless communication device 100 By mounting the wireless communication device 100 on a vehicle such as an automobile, it is possible to pay tolls using the ETC (Electronic Toll Collection System) (registered trademark) service and to acquire traffic information using the ETC 2.0 service. It becomes.
  • ETC Electronic Toll Collection System
  • the wireless communication device 100 includes a communication unit 10, a reception unit 20, a transmission unit 30, and a local oscillator (LO: Local Oscillator) 40. Further, the wireless communication device 100 has a controller (not shown).
  • LO Local Oscillator
  • the communication unit 10 includes an antenna 11, a band pass filter (BPF) 12, and a switch element 13.
  • BPF band pass filter
  • the antenna 11 can transmit and receive radio waves in the frequency band (5.8 GHz band) used in the DSRC method.
  • the antenna 11 outputs an electric signal having the same frequency as the received radio wave, and radiates a radio wave having the same frequency as the input electric signal.
  • a pattern antenna formed on a substrate, a chip antenna that can be mounted on the substrate, or the like is used as the antenna 11.
  • the specific configuration of the other antenna 11 is not limited, and any antenna may be used.
  • the band pass filter 12 passes the frequency components of the frequency band used in the DSRC method among the frequency components of the electric signal input to the band pass filter 12.
  • the band pass filter 12 regulates frequency components in other bands different from the frequency band used in the DSRC method.
  • the specific configuration of the bandpass filter 12 is not limited, and an arbitrary filter may be used.
  • the switch element 13 switches the output destination of the input electrical signal based on the control signal output from the controller.
  • the specific configuration of the switch element 13 is not limited, and for example, any element that can be connected by switching circuits may be used.
  • the antenna 11 When communication (downlink communication) from the base station or the like to the vehicle-mounted device is performed, the antenna 11 receives a radio wave having a first frequency corresponding to the DSRC method transmitted from the base station or the like. An electrical signal corresponding to the received radio wave is output to the band pass filter 12 and filtered. As a result, the first high-frequency signal 51 having the first frequency is output to the switch element 13. The first high frequency signal 51 is output to the receiving unit 20 via the switch element 13.
  • a second high-frequency signal 52 having a second frequency corresponding to the DSRC method is generated by the transmission unit 30 as described later.
  • the second high frequency signal 52 is output to the band pass filter 12 via the switch element 13.
  • a radio wave having a second frequency is transmitted from the antenna 11 based on the second high-frequency signal 52 filtered by the bandpass filter 12.
  • switch element 13 By using the switch element 13, transmission and reception can be switched and executed using one antenna 11. As a result, the number of parts can be reduced, and the cost of the apparatus can be reduced.
  • the specific configuration of the switch element 13 is not limited, and for example, any element that can be connected by switching circuits may be used.
  • radio waves having different frequencies are used for downlink communication and uplink communication.
  • the radio wave used for downlink communication is a radio wave having a lower frequency than the radio wave used for uplink communication.
  • a frequency difference of 40 MHz is defined for each radio wave used in downlink communication and uplink communication.
  • the first and second frequencies corresponding to the DSRC method are different from each other.
  • the first high frequency signal 51 is a signal having a frequency lower than that of the second high frequency signal 52, and the frequency difference between the first high frequency signal 51 and the second high frequency signal 52 is 40 MHz.
  • the first high-frequency signal 51 corresponds to a reception signal generated in response to reception of a radio wave for narrow area communication
  • the second high-frequency signal 52 is used for transmission of a radio wave for narrow area communication. It corresponds to the transmission signal used.
  • the receiving unit 20 includes a receiving amplifier 21, a quadrature mixer 22, and a band pass filter (BPF) 23.
  • BPF band pass filter
  • the receiving amplifier 21 amplifies the first high-frequency signal 51 output via the switch element 13.
  • an electric signal converted from communication radio waves by the antenna 11 has a small intensity and is weak.
  • the receiving amplifier 21 functions as a low noise amplifier (LNA: Low ⁇ ⁇ Noise ⁇ ⁇ ⁇ ⁇ Amplifier) that amplifies such a weak electric signal to an intensity used for signal processing or the like.
  • LNA Low ⁇ ⁇ Noise ⁇ ⁇ ⁇ ⁇ Amplifier
  • the amplified electrical signal (first high frequency signal 51) is output to the orthogonal mixer 22.
  • the receiving amplifier 21 an amplifier using, for example, a CMOS (Complementary Metal Oxide Semiconductor) circuit or the like is used.
  • CMOS Complementary Metal Oxide Semiconductor
  • a low noise amplifier using, for example, gallium arsenide (GaAs) or silicon germanium (SiGe) may be used.
  • the gain, noise figure, etc. of the receiving amplifier 21 may be appropriately set according to the receiving sensitivity of the antenna 11 and the like.
  • the orthogonal mixer 22 converts the first high-frequency signal 51 amplified by the receiving amplifier 21 into an intermediate frequency.
  • a first reference signal 41 oscillated by a local oscillator 40 described later is used.
  • the orthogonal mixer 22 converts the first high-frequency signal 51 into an intermediate frequency by mixing the first reference signal 41 and the first high-frequency signal 51.
  • a signal obtained by integrating the signals is output.
  • This integrated signal includes a frequency component having a frequency similar to the difference between the frequencies of the two signals (f1-f2).
  • the integrated signal includes a frequency component having a frequency similar to the sum of the frequencies of the two signals (f1 + f2).
  • the first reference signal 41 and the first high-frequency signal 51 are mixed, so that the frequency component corresponding to the frequency difference and sum between the first reference signal 41 and the first high-frequency signal 51 is obtained. Is generated.
  • the frequency difference between the first reference signal 41 and the first high-frequency signal 51 is an intermediate frequency. Therefore, for example, the intermediate frequency can be controlled to an arbitrary value by appropriately setting the frequency of the first reference signal 41.
  • the quadrature mixer 22 outputs an I signal 53 and a Q signal 54 as intermediate frequency signals.
  • the I signal 53 and the Q signal 54 are signals including data modulated by a quadrature phase shift keying (QPSK) method.
  • QPSK quadrature phase shift keying
  • the quadrature mixer 22 generates a reference I signal having the same phase (Inter-Phase) as the first reference signal 41 and a quadrature-phase reference Q signal having a phase shifted by 90 ° from the reference I signal.
  • the reference I signal is generated by using the first reference signal output from the local oscillator 40 as it is.
  • the reference Q signal is generated by shifting the phase of the first reference signal 41 using a ⁇ / 2 phase shifter or the like that shifts the phase by 90 °.
  • the first high frequency signal 51 and the reference I signal are mixed to generate an I signal 53. Further, the first high-frequency signal 51 and the reference Q signal are mixed to generate a Q signal 54. For mixing each signal, a mixer or the like that integrates and outputs two signals is used. As a result, the first high-frequency signal 51 is converted into an I signal 53 and a Q signal 54 including a frequency component of an intermediate frequency. The I signal 53 and the Q signal 54 are output to the band pass filter 23.
  • the quadrature mixer 22 is configured by a circuit including two mixers that respectively output an I signal 53 and a Q signal 54, for example.
  • the specific configuration of the orthogonal mixer 22 is not limited, and for example, a circuit that can output the I signal 53 and the Q signal 54 may be used as appropriate.
  • the I signal 53 and the Q signal 54 may be referred to as a first I / Q signal 55.
  • the band pass filter 23 passes the frequency component of the first band including the intermediate frequency and regulates the frequency component not included in the first band. That is, the band pass filter 23 extracts the frequency component of the intermediate frequency included in the first I / Q signal 55 output from the quadrature mixer 22.
  • the bandpass filter 23 corresponds to a first internal filter.
  • the first band is set based on, for example, the occupied bandwidth (4.4 MHz) of each channel used in the DSRC method.
  • a band with a bandwidth of 4.4 MHz centered on the intermediate frequency is set as the first band.
  • the frequency component corresponding to the sum of the frequencies of the first reference signal 41 and the first high frequency signal 51, other noise components, and the like can be sufficiently reduced.
  • the present invention is not limited to this.
  • an arbitrary band in which the frequency component of the intermediate frequency can be extracted may be set as the first band.
  • the band pass filter 23 is an internal filter configured in an integrated circuit, and is configured by, for example, a resistor, a capacitor, a transistor, or the like on a chip.
  • the specific configuration of the bandpass filter 23 is not limited.
  • a filter that can extract a frequency component of an intermediate frequency may be used as appropriate.
  • the first I / Q signal 55 filtered by the band-pass filter 23 is output to a subsequent circuit and demodulated by the QPSK method.
  • an amplitude shift keying (ASK) method is used in addition to the QPSK method. For example, by detecting the signal strength of the I signal 53 and the Q signal 54 (first I / Q signal 55), it is possible to perform demodulation using the ASK method.
  • the reception unit 20 corresponds to a conversion unit that converts a reception signal generated in response to reception of radio waves for narrow area communication to an intermediate frequency based on the first reference signal.
  • the transmission unit 30 includes a modulation unit 31 and a transmission amplifier 32.
  • the modulation unit 31 modulates the baseband signal generated by the controller based on the second reference signal 42 supplied from the local oscillator 40 to generate a second high-frequency signal.
  • the second reference signal 42 is a signal having a frequency different from that of the first reference signal 41.
  • the frequency of the second reference signal 42 is set to the second frequency used in uplink communication.
  • the modulation unit 31 generates the second high-frequency signal 52 having the second frequency by mixing the second reference signal 42 with the baseband signal.
  • a baseband signal corresponding to the QPSK system or the ASK system is input to the modulation unit 31.
  • the baseband signals are illustrated as an I signal 56 and a Q signal 57 (second I / Q signal 58).
  • the modulation unit 31 generates a reference I signal having the same phase as the second reference signal 42 and a reference Q signal having a quadrature phase that is 90 ° out of phase with the reference I signal.
  • the modulation unit 31 mixes the reference I signal and the I signal 56, and mixes the reference Q signal and the Q signal 57.
  • the mixed I signal 56 and the mixed Q signal 57 are added using an adding circuit or the like and output. As a result, the second high frequency signal 52 having the second frequency including the information of the I signal 56 and the Q signal 57 is generated.
  • the transmission amplifier 32 amplifies the second high-frequency signal 52 generated by the modulation unit 31.
  • the intensity of a radio wave transmitted from the antenna 11 is a value corresponding to the intensity of an electric signal input to the antenna 11.
  • the transmission amplifier 32 functions as a power amplifier (PA) that amplifies the second high-frequency signal so that the radio wave is transmitted from the antenna 11 with an appropriate intensity.
  • the amplified second high frequency signal is output to the communication unit 10.
  • the transmission amplifier 32 for example, an amplifier using a CMOS circuit or the like is used. Further, the gain, noise figure, and the like of the transmission amplifier 32 may be appropriately set according to the reception sensitivity of the antenna 11 and the like.
  • the transmission unit 30 corresponds to a generation unit that generates a transmission signal used for transmission of radio waves for narrow area communication based on a second reference signal having a frequency different from that of the first reference signal. .
  • the local oscillator 40 switches between the supply of the first reference signal 41 to the reception unit 20 and the supply of the second reference signal 42 to the transmission unit 30 according to transmission / reception of the DSRC radio wave. That is, when a radio wave having the first frequency is received, the first reference signal 41 is supplied to the receiving unit 20, and when a radio wave having the second frequency is transmitted, the second reference signal 42 is supplied. Is supplied to the transmitter.
  • the local oscillator 40 corresponds to a supply unit.
  • a control signal indicating the reception state / transmission state is output from the controller.
  • the local oscillator 40 oscillates the first reference signal 41 in the reception state and oscillates the second reference signal 42 in the transmission state.
  • the method for switching the supply of the first and second reference signals 41 and 42 is not limited, and an arbitrary method may be used.
  • phase lock PLL: Phase lock loop
  • the LO reference clock signal 43 is input to the PLL circuit.
  • the LO reference clock signal 43 is a clock signal with high frequency stability generated using a crystal resonator or the like.
  • the first and second reference signals 41 and 42 having different frequencies can be switched and generated.
  • the specific configuration of the local oscillator 40 is not limited, and an arbitrary oscillation circuit or the like that can switch and supply the first and second reference signals 41 and 42 may be used.
  • the controller has hardware necessary for the configuration of the computer, such as a CPU, ROM, RAM, and HDD.
  • the wireless communication method according to the present technology is executed when the CPU loads a program recorded in advance in the ROM or the like to the RAM and executes the program.
  • the specific configuration of the controller is not limited, and a device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used.
  • the program is installed in the wireless communication apparatus 100 via various recording media, for example. Alternatively, program installation may be executed via the Internet or the like.
  • the controller controls the overall operation of the wireless communication device 100. For example, the controller generates a control signal indicating the reception state and the transmission state in accordance with the communication state. Based on the generated control signal, the operations of the switch element 13 and the local oscillator 40 are controlled.
  • the controller processes communication data transmitted / received by the DSRC method. For example, data for transmission is generated based on the received data.
  • the data for transmission is output to the transmission unit 30 as a baseband signal (second I / Q signal 58).
  • FIG. 2 is a diagram schematically showing the relationship of channels used for DSRC communication.
  • a channel is set for each communication frequency, and downlink communication and uplink communication are executed using a channel pair having a frequency difference of 40 MHz.
  • the occupied bandwidth of each frequency channel is defined to be 4.4 MHz.
  • DSRC Downlink Control Channel
  • 5815 MHz, 5820 MHz,..., 5845 MHz every 5 MHz channels are defined for uplink communication.
  • a downlink communication channel and an uplink communication channel having a frequency difference of 40 MHz are paired.
  • the DSRC system in the DSRC system, seven pairs A to G of channels for downlink communication and uplink communication are prepared. Communication between the base station or the like and the wireless communication apparatus 100 is performed using one of these pairs. For example, in the pair A, a 5775 MHz downlink communication channel and a 5815 MHz uplink communication channel are used. Note that the base station performs communication with a fixed channel, and the radio communication apparatus 100 performs communication according to the channel used by the base station.
  • radio communication apparatus 100 sets the selected channel as a reception channel, and sets a channel paired with the reception channel as a transmission channel.
  • the local oscillator 40 oscillates a signal having a frequency of 5830 MHz as the second reference signal and supplies the signal to the transmission unit 30.
  • the modulation unit 31 mixes the 5830 MHz second reference signal and the baseband signal to generate a 5830 MHz second high-frequency signal 52.
  • the generated second high frequency signal is output to the communication unit 10.
  • the communication unit 10 transmits a radio wave of 5830 MHz based on the second high-frequency signal 52.
  • the wireless communication device 100 shifts to a reception state in which a response from the base station is received.
  • the switch element 13 switches the connection destination of the communication unit 10 from the transmission unit 30 to the reception unit 20.
  • the local oscillator 40 switches the oscillation frequency from the second reference signal 42 to the first reference signal 41.
  • a 5790 MHz radio wave is transmitted from the base station as a response to the wireless communication apparatus 100.
  • the communication unit 10 receives a 5775 MHz radio wave and generates a first high frequency signal 51 of 5790 MHz.
  • the generated first high frequency signal 51 is input to the receiving unit 20.
  • the first reference signal 41 and the first high frequency signal 51 are mixed by the orthogonal mixer 22, and the first high frequency signal 51 is converted into a first I / Q signal 55 having an intermediate frequency. Is done.
  • the first I / Q signal 55 is demodulated by a subsequent circuit, and the response content from the base station is output to the controller.
  • communication with the base station is performed using a channel pair of downlink communication and uplink communication.
  • the channel of pair D is taken as an example, but other channel pairs may of course be used.
  • FIG. 3 is a schematic diagram showing channel frequency relationships.
  • a reception channel 60 downlink communication channel
  • the next adjacent channels 61 a and 61 b are schematically illustrated.
  • the horizontal axis in the figure is the frequency, and the scale is set so that the center frequency of the reception channel 60 is 0 Hz.
  • the next adjacent channels 61a and 61b are the second closest channels on the low frequency side and the high frequency side of the reception channel 60.
  • the next adjacent channels 61 a and 61 b are 5780 MHz and 5800 MHz channels. That is, the next adjacent channels 61a and 61b are channels separated from the reception channel 60 by 10 MHz on the low frequency side and the high frequency side.
  • the communication unit 10 outputs a signal including the frequency component of the reception channel 60 and the frequency components of the next adjacent channels 61a and 61b. Therefore, the communication unit 10 outputs a signal including the first high-frequency signal 51 (frequency component of the reception channel 60) and the interference signal 62 (frequency component of the next adjacent channels 61a and 61b).
  • the first high frequency signal 51 is mixed with the first reference signal 41 by the orthogonal mixer 22, and the frequency components of the reception channel 60 and the next adjacent channels 61a and 61b are frequency-converted, respectively.
  • the center of the reception channel 60 is shifted to the intermediate frequency
  • the centers of the next adjacent channels 61a and 61b are shifted to a frequency 10 MHz away from the intermediate frequency on the low frequency side and the high frequency side, respectively. That is, the frequency component of each channel is uniformly shifted to the lower frequency side by the frequency of the first reference signal 41.
  • the frequency component of each channel shifted to the low frequency side is input to the band pass filter 23 of the receiving unit 20.
  • the first band of the bandpass filter 23 is set so as to extract the frequency component of the reception channel 60 and regulate the frequency components of the next adjacent channels 61a and 61b. That is, the band pass filter 23 is configured to remove the interference signal 62 (frequency components of the next adjacent channels 61a and 61b) that is 10 MHz away from the intermediate frequency.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the filter can be easily configured as the frequency at which the pass band is set is lower.
  • the intermediate frequency can be controlled. Accordingly, by setting the frequency of the intermediate frequency in the low frequency region, the pass band (first band) of the bandpass filter 23 can be set in the low frequency region. As a result, the configuration of the bandpass filter 23 can be simplified. As a result, for example, an external filter or the like becomes unnecessary, and the apparatus can be downsized.
  • the frequency of the first reference signal is controlled by the local oscillator 40 so that the intermediate frequency is smaller than the frequency difference between the first high-frequency signal 51 and the second high-frequency signal.
  • the first reference signal 41 is set so that the intermediate frequency becomes a value smaller than 40 MHz.
  • the first band which is the pass band of the band pass filter 23 is also set in the low frequency region. That is, the center frequency of the first band is set to a frequency smaller than 40 MHz.
  • the band-pass filter 23 can be configured as an internal filter, and the apparatus can be sufficiently downsized.
  • the frequency difference between the frequency component of the reception channel 60 output from the orthogonal mixer 22 and each frequency component of the next adjacent channels 61a and 61b remains at 10 MHz regardless of the value of the intermediate frequency. For this reason, even when the value of the intermediate frequency is reduced, the width of the pass band (first band) of the band pass filter 23 is hardly changed. Therefore, the smaller the value of the intermediate frequency, the lower the frequency at which the pass band is set, and the frequency component of the reception channel 60 can be easily extracted.
  • FIG. 4 is a schematic diagram showing an example of conversion to an intermediate frequency by the orthogonal mixer 22.
  • 4A to 4C schematically show the reception channel 60 and the next adjacent channels 61a and 61b whose frequencies are shifted by the orthogonal mixer 22.
  • FIG. 4A to 4C schematically show the reception channel 60 and the next adjacent channels 61a and 61b whose frequencies are shifted by the orthogonal mixer 22.
  • the negative frequency is, for example, a frequency generated by frequency subtraction in the mixer (orthogonal mixer 22).
  • the frequency difference (f1-f2) between the two signals is apparently negative.
  • of the frequency difference between the two signals is output from the mixer.
  • This frequency component can be regarded as a component folded with 0 Hz as a reference, which causes image interference and the like.
  • the interference signal 62 corresponding to the next adjacent channel 61a is a signal having a frequency component from 0 Hz to 2.2 MHz.
  • the interference signal 62 and the like of the next adjacent channel 61a are turned back at 0 Hz.
  • the folded interference signal 62 may overlap the reception channel 60. In this case, it is difficult to remove the interference signal 62 by using the subsequent bandpass filter 23 and the like, and a communication error may occur.
  • the absolute value of the intermediate frequency is set to be approximately 2.2 MHz or more and 2.8 MHz or less. That is, if the intermediate frequency is Fi, the intermediate frequency Fi is set so that ⁇ 2.8 MHz ⁇ Fi ⁇ ⁇ 2.2 MHz or 2.2 MHz ⁇ Fi ⁇ 2.8 MHz.
  • the band of the reception channel 60 is 0 Hz to 4.4 MHz. Further, the next adjacent channel 61 a on the low frequency side is folded back at 0 Hz, and the band does not overlap with the reception channel 60. As a result, the intermediate frequency can be lowered to the minimum frequency at which no aliasing occurs in the reception channel 60.
  • the intermediate frequency when the intermediate frequency is set to 2.8 MHz, the upper limit frequency of the band of the reception channel 60 is 5 MHz. Further, the next adjacent channel 61a on the low frequency side is folded at 0 Hz, and the lower limit frequency of the band is 5 MHz. Therefore, the reception channel 60 and the next adjacent channel 61a come into contact with each other at 5 MHz. Even in this case, the bandwidth of each channel does not overlap.
  • the next adjacent channel 61 a on the low frequency side does not overlap the reception channel 60. This makes it possible to sufficiently reduce the value of the intermediate frequency while avoiding the influence of image interference or the like. As a result, the configuration of the bandpass filter 23 can be greatly simplified, and the apparatus can be sufficiently downsized.
  • the reception channel 60 is folded back with respect to 0 Hz.
  • the intermediate frequency is ⁇ 2.8 MHz or more and ⁇ 2.2 MHz or less
  • the reception channel 60 can be turned back so as not to overlap with the next adjacent channel 61b on the high frequency side.
  • the configuration of the bandpass filter 23 can be greatly simplified.
  • the absolute value of the intermediate frequency is set to approximately 2.5 MHz. That is, the first reference signal is set in accordance with the frequency of the reception channel 60 so that the value of the intermediate frequency is +2.5 MHz or ⁇ 2.5 MHz. 4B and 4C show the frequency relationship of each channel when the intermediate frequency is +2.5 MHz and ⁇ 2.5 MHz.
  • the reception channel 60 is 5790 MHz.
  • the intermediate frequency becomes 2.5 MHz.
  • the intermediate frequency becomes ⁇ 2.5 MHz.
  • the first reference signal 41 is appropriately set according to the frequency of the selected reception channel 60 so that the absolute value of the intermediate frequency is approximately 2.5 MHz. .
  • the orthogonal mixer 22 outputs a signal in which the frequency components of the reception channel 60, the low frequency side next adjacent channel 61a, and the high frequency side next adjacent channel 61b are arranged in this order at intervals of 5 MHz.
  • the reception channel 60 when the reception channel 60 is converted to ⁇ 2.5 MHz, the reception channel 60 is folded back into a channel having a center frequency of 2.5 MHz. Further, the next adjacent channel 61a on the low frequency side is folded from -12.5 MHz to +12.5 MHz. Therefore, the orthogonal mixer 22 outputs a signal in which the frequency components of the reception channel 60, the high frequency side next adjacent channel 61b, and the low frequency side next adjacent channel 61a are arranged in this order at intervals of 5 MHz.
  • the first reference signal 41 for setting the absolute value of the intermediate frequency to approximately 2.5 MHz can be easily generated using, for example, a circuit for searching for a reception channel.
  • the downlink communication channel interval is 5 MHz
  • the circuit for searching for the reception channel changes the frequency in 5 MHz steps.
  • the frequency step can be easily changed to 2.5 MHz by using a division period that divides the frequency by 1/2, and the first reference signal 41 can be easily generated. It is.
  • the absolute value of the intermediate frequency is set to approximately 2.5 MHz
  • the first reference signal can be easily supplied.
  • the intermediate frequency (IF: Intermediate Frequency) is set to a value smaller than the frequency difference between the first high-frequency signal 51 and the second high-frequency signal (frequency difference between the reception channel and the transmission channel).
  • IF Intermediate Frequency
  • the intermediate frequency is set to a low value, for example, the number of frequency conversions until demodulation can be reduced, and the number of parts can be reduced.
  • This technology can be applied not only to the Low-IF method but also to the Zero-IF method.
  • the intermediate frequency is set to be substantially zero, and direct conversion for directly demodulating the baseband signal from the first high-frequency signal 51 is executed.
  • LPF Low Pass Filter
  • the local oscillator 40 controls the frequency of the first reference signal 41 so that the intermediate frequency becomes substantially zero. For example, by setting the first reference signal 41 to a frequency substantially the same as that of the reception channel 60, the intermediate frequency can be made substantially zero.
  • the first reference signal 41 having the same frequency as that of the reception channel 60 is oscillated by the local oscillator 40.
  • the oscillated first reference signal 41 is supplied to the quadrature mixer 22.
  • the orthogonal mixer 22 mixes the first high-frequency signal 51 and the first reference signal 41 having the same frequency as the reception channel 60. As a result, the orthogonal mixer 22 generates a signal including frequency components corresponding to the difference and sum of the same frequencies (frequency of the reception channel 60).
  • the frequency difference between the first high-frequency signal 51 and the first reference signal 41 is approximately 0 Hz, and the frequency component corresponds to the component of the baseband signal.
  • the sum of the frequencies is approximately twice the frequency of the reception channel 60, and the frequency component becomes a high frequency noise component.
  • a signal including a baseband signal component and a high-frequency noise component is output to the low-pass filter 24.
  • the baseband signal is demodulated by dividing it into an I signal 53 and a Q signal 54.
  • the I signal 53 and the Q signal 54 are demodulated based on the reference I signal and the reference Q signal whose phases are orthogonal to each other. For this reason, it is possible to realize the demodulation of the baseband signal while avoiding the influence of the image interference or the like accompanying the frequency folding.
  • the orthogonal mixer 22 functions as an I / Q demodulator that demodulates the I / Q signal.
  • the low-pass filter 24 is configured in the integrated circuit as an internal filter.
  • the low-pass filter 24 passes the frequency component of the second band including the intermediate frequency, and regulates a frequency component higher than the upper limit frequency of the second band.
  • the second band is, for example, a band from 0 Hz to the upper limit frequency.
  • the low-pass filter 24 corresponds to a second internal filter.
  • the upper limit frequency of the second band is set based on the frequency of the channel used in the DSRC method, for example.
  • the pair A downlink communication channel (5775 MHz) is the lowest frequency channel.
  • the upper limit frequency for example, a frequency lower than the frequency of the downlink communication channel of pair A is set.
  • the upper limit frequency By setting the upper limit frequency lower than the lowest frequency channel of the DSRC system, it becomes possible to sufficiently attenuate the frequency components of each channel, noise signals having twice the frequency of each channel, and the like. As a result, the baseband signal output from the orthogonal mixer 22 can be extracted with high accuracy.
  • the method for setting the upper limit frequency is not limited.
  • the upper limit frequency may be appropriately set according to the circuit configuration at the subsequent stage.
  • the extracted baseband signal is directly converted into a digital signal, for example, and output to the controller.
  • the baseband signal is directly demodulated, so that the number of components used for frequency conversion and the like can be greatly reduced. As a result, the apparatus can be sufficiently downsized.
  • the first and second reference signals 41 and 42 having different frequencies are appropriately switched and supplied to the reception unit 20 and the transmission unit 30.
  • the intermediate frequency can be controlled, and data can be received without using an external filter or the like.
  • the wireless communication device 100 can be reduced in size.
  • FIG. 6 is a schematic diagram showing a configuration example of a wireless communication apparatus 300 given as a comparative example.
  • a communication method in the DSRC system a method of operating each circuit on the transmission side and the reception side based on an LO oscillation signal having the same frequency is conceivable.
  • the reception channel signal is converted to an intermediate frequency using the frequency used to generate the transmission channel signal.
  • the frequency difference between the transmission channel and the reception channel is defined as 40 MHz, and the intermediate frequency is 40 MHz.
  • the local oscillator 340 outputs the LO oscillation signal 341 having the same frequency to the reception-side circuit (reception unit 320) and the transmission-side circuit (transmission unit 330).
  • the mixer 322 mixes the reception channel signal output from the reception amplifier 321 and the LO oscillation signal 341, and generates an IF signal 355 having an intermediate frequency of 40 MHz. Is output.
  • an external SAW (Surface Acoustic Wave) filter 323 as shown in FIG. 6 is indispensable. Since the SAW filter 323 is provided outside, for example, it is difficult to fit the receiving side circuit on the chip. In addition, there is a problem that the entire circuit becomes large due to the external wiring and securing the installation position.
  • the local oscillator 40 oscillates the first and second reference signals 41 and 42 having different frequencies from each other in accordance with the communication state of the wireless communication apparatus 100.
  • the first reference signal 41 is supplied to the reception unit 20
  • the second reference signal 42 is supplied to the transmission unit 30.
  • the intermediate frequency can be set to a desired value.
  • the frequency of the first reference signal 41 is controlled so that the intermediate frequency is smaller than 40 MHz which is the frequency difference between the first and second high-frequency signals 51 and 52.
  • an external filter such as a SAW filter becomes unnecessary. For this reason, wiring and installation surfaces for providing a SAW filter or the like are not necessary, and the size of the apparatus can be reduced while suppressing costs.
  • the band pass filter 23 for filtering the intermediate frequency signal as an internal filter in the integrated circuit.
  • the receiving unit 20 can be accommodated in the chip, and the apparatus can be sufficiently downsized.
  • the intermediate frequency is set to approximately 2.5 MHz.
  • FIG. 7 is a schematic diagram illustrating a configuration example of the wireless communication apparatus 400 according to the second embodiment.
  • the wireless communication device 400 includes a communication unit 410, a reception unit 420, a transmission unit 430, a local oscillator 440, and a frequency divider 460.
  • the communication unit 410 has the same configuration as the communication unit 410 shown in FIG.
  • the receiving unit 420 includes a receiving amplifier 421, a first mixer 422, an orthogonal mixer 423, and a filter unit 424.
  • the receiving amplifier 421 has the same configuration as the receiving amplifier 21 of the receiving unit 20 shown in FIG.
  • the reception amplifier 421 functions as an LNA that amplifies the first high-frequency signal 451 including the frequency component of the reception channel.
  • the first mixer 422 mixes the first high-frequency signal 451 amplified by the receiving amplifier 421 and the first reference signal 441 supplied from the local oscillator 440.
  • the quadrature mixer 423 mixes the signal output from the first mixer 422 and the first divided signal 461 supplied from the divider 460.
  • the first high-frequency signal 451 is frequency-converted in two stages by the first mixer 422 and the orthogonal mixer 423.
  • the frequency of the first high-frequency signal 451 is converted into four different frequencies by the frequency conversion twice. For example, assuming that the frequencies of the first high-frequency signal 451 (reception channel), the first reference signal, and the first frequency-divided signal are fr, fs1, and fd1, respectively, the orthogonal mixer 423 sends fr + fs1 + fd1, fr + fs1- Frequency components corresponding to the four frequencies fd1, fr-fs1 + fd1, and fr-fs1-fd1 are output.
  • the lowest frequency (fr-fs1-fd1) is the intermediate frequency.
  • the first high-frequency signal 451 is converted into an intermediate frequency by the first mixer 422 and the orthogonal mixer 423.
  • the filter unit 424 extracts the frequency component of the intermediate frequency from the signal output from the orthogonal mixer 423.
  • the filter unit 424 is configured as a band-pass filter (BPF) in the Low-IF scheme, and is configured as a low-pass filter (LPF) in the Zero-IF scheme.
  • BPF band-pass filter
  • LPF low-pass filter
  • the configuration or the like of the filter unit 424 is not limited, and may be appropriately configured using, for example, the bandpass filter 23 illustrated in FIG. 1 or the lowpass filter 24 illustrated in FIG.
  • the transmission unit 430 includes a modulation unit 431, a second mixer 432, a band stop filter 433, and a transmission amplifier 434.
  • the modulation unit 431 mixes the baseband signal 458 and the second divided signal 462 supplied from the frequency divider 460. As a result, the baseband signal 458 is modulated into a signal having the same frequency as that of the second divided signal 462.
  • the second mixer 432 mixes the signal output from the modulation unit 431 and the second reference signal 442 supplied from the local oscillator 440. Thus, the baseband signal 458 is frequency-converted in two stages by the modulation unit 431 and the second mixer 432.
  • the second mixer 432 outputs a signal including a frequency component corresponding to the difference and sum of the frequency fd2 of the second divided signal 462 and the frequency fs2 of the second reference signal 442.
  • the sum (fd2 + fs2) of the frequencies of the second frequency-divided signal 462 and the second reference signal 442 becomes the frequency ft of the second high-frequency signal 452 (transmission channel).
  • the modulation unit 431 and the second mixer 432 perform the mixing of the second divided signal 462 and the second reference signal 442 with respect to the baseband signal, and the second reference signal 442 is mixed.
  • a high frequency signal 452 is generated.
  • the band stop filter 433 regulates the frequency component of the third band and passes the frequency component not included in the third band.
  • the third band regulates the frequency component corresponding to the frequency difference between the second divided signal 462 and the second reference signal 442 among the signals output from the second mixer 432, for example, The frequency component corresponding to the sum is set to pass. Therefore, the frequency component of the second high frequency signal 452 (transmission channel) passes through the band stop filter 433.
  • the transmission amplifier 434 amplifies the second high frequency signal 452 that has passed through the band stop filter 433.
  • the transmission amplifier 434 has the same configuration as the transmission amplifier 32 of the transmission unit 30 shown in FIG.
  • the transmission amplifier 434 functions as a PA that amplifies the second high-frequency signal 452 including the frequency component of the transmission channel.
  • the local oscillator 440 oscillates by switching between the first reference signal 441 and the second reference signal 442 having a frequency different from that of the first reference signal 441 in accordance with transmission / reception of a DSRC radio wave.
  • First and second reference signals 441 and 442 are supplied to first and second mixers 422 and 432, respectively.
  • the first and second reference signals 441 and 442 are branched at a branch point 445 and input to the frequency divider 460.
  • a PLL circuit or the like that can oscillate by switching the first and second reference signals 441 and 442 is appropriately used.
  • the frequency divider 460 divides the frequency of the signals (first and second reference signals 441 and 442) oscillated by the local oscillator 440 at a predetermined ratio. For example, the frequency divider 460 divides the frequency of the first reference signal 441 by a predetermined ratio to generate the first frequency divided signal 461. The frequency divider 460 divides the frequency of the second reference signal 442 by a predetermined ratio to generate a second frequency divided signal 462. In the present embodiment, the frequency divider 460 corresponds to a frequency division unit, and the second frequency division signal 462 corresponds to a frequency division signal. In the present embodiment, the local oscillator 440 and the frequency divider 460 constitute a supply unit.
  • the predetermined ratio (frequency division ratio) for dividing the frequency is set to be 1/2, 1/4, or 1/6.
  • radio communication apparatus 400 in uplink communication (transmission state) and downlink communication (reception state) will be described.
  • the second reference signal 442 is oscillated by the local oscillator 440.
  • the frequency fs2 of the second reference signal 442 is set to be 4/5 of the frequency ft of the transmission channel.
  • the frequency divider 460 divides the frequency fs2 of the second reference signal 442 input via the branch point 445 by 1 ⁇ 4 to generate a second divided signal 462.
  • the baseband signal and the second divided signal 462 are mixed by the modulation unit 431.
  • a baseband signal modulated to a frequency of ft / 5 is output from the modulation unit 431 and input to the second mixer 432.
  • the second mixer 432 mixes the signal output from the modulation unit 431 and the second reference signal 442 input via the branch point 445.
  • ft ⁇ 3/5).
  • the second mixer 432 outputs a second high-frequency signal 452 having the same frequency ft as that of the transmission channel and a signal having a frequency of ft ⁇ 3/5.
  • the band stop filter 433 extracts the second high-frequency signal 452 from the output of the second mixer 432. Then, the second high-frequency signal 452 is amplified by the transmission amplifier 434 and transmitted to the communication unit 410.
  • the wireless communication apparatus 400 illustrated in FIG. 7 sets the frequency of the second reference signal 442 to 4/5 of the frequency of the transmission channel, so that the baseband signal is modulated to the frequency of the transmission channel. It is configured. That is, in the wireless communication device 400, the ratio between the oscillation frequency (LO frequency) of the local oscillator 440 and the frequency of the transmission channel (transmission frequency) is 4: 5.
  • the transmission frequency and the LO oscillation frequency are deviated, for example, it is possible to sufficiently reduce the influence of local pulling or the like on the local oscillator 440 from the transmission amplifier 434 that is a power amplifier. As a result, the local oscillator 440 can be stably operated, and communication errors, device malfunctions, and the like can be sufficiently suppressed.
  • the circuit configuration for generating the second reference signal 442 can be simplified. As a result, the number of parts can be reduced, and the cost of parts can be reduced, and a highly reliable small device can be realized.
  • the first reference signal 441 is oscillated by the local oscillator 440.
  • the frequency fs1 of the first reference signal 441 is set according to the frequency fr of the reception channel (first high frequency signal 451) so that the intermediate frequency fi becomes a predetermined value.
  • the first divided signal 461 generated by dividing the first reference signal 441 and the first reference signal 441 is supplied to the receiving unit 420, and the first high-frequency signal 451 is converted into the intermediate frequency fi. .
  • the frequency fd1 of the first frequency-divided signal 461 is 1 ⁇ 4 of the frequency fs1 of the first reference signal 441.
  • the frequency fs1 of the first reference signal 441 is set so that the intermediate frequency fi ⁇ 0 Hz.
  • the intermediate frequency fi can be made substantially zero by setting the frequency fs1 of the first reference signal 441 to 4/5 of the frequency fr of the reception channel.
  • the first reference signal may be changed in steps of 4 MHz.
  • the first reference signal 441 can be set so that the intermediate frequency is fi ⁇ 2.5 MHz.
  • the intermediate frequency fi can be set to approximately 2.5 MHz. That is, by creating a frequency shifted by 2 MHz from the frequency of the zero-IF method, it is possible to easily realize the Low-IF method with an intermediate frequency of 2.5 MHz.
  • the signals oscillated by the local oscillator 440 (first and second reference signals 441 and 442) and the signals obtained by dividing the signals (first and second divided signals 461 and 462) are used.
  • the frequency conversion can be performed in two stages.
  • the frequency division ratio set in the frequency divider 460 is set to 1/2 or 1/6, the respective frequencies of the first and second reference signals 441 and 442 are appropriately set.
  • the wireless communication device 400 can be configured.
  • the frequency division ratio set in the frequency divider 460 is not present, and any frequency division ratio other than 1/2, 1/4, and 1/6 may be used.
  • the present technology is not limited to the case of performing two-stage frequency conversion, and the present technology can also be applied to the case of performing three-stage or four-stage frequency conversion. In this case, by performing frequency conversion a plurality of times, it is possible to sufficiently suppress the influence of frequency coupling (local pulling) or the like on the local oscillator 440.
  • FIG. 8 is a schematic diagram illustrating a configuration example of a wireless communication apparatus 500 according to the third embodiment.
  • the wireless communication apparatus 500 includes a communication unit 510, a signal generation unit 570, and a system clock generation unit 580.
  • the communication unit 510 has substantially the same configuration as each wireless communication device described in the above embodiment. 8 shows the configuration shown in FIG. 1, the configuration shown in FIGS. 5 and 7 may be used.
  • the signal generation unit 570 is a circuit provided in the subsequent stage of the reception unit 520 of the communication unit 510, and generates the data signal 550 based on the intermediate frequency signal. As illustrated in FIG. 8, the signal generation unit 570 includes a digital conversion unit 571, a digital signal processing unit 572, an analog conversion unit 573, and an orthogonal mixer 574.
  • the digital conversion unit 571 converts the I / Q signal 555 that is an intermediate frequency signal output from the reception unit 520 into a digital signal.
  • the I / Q signal 555 is a signal including an I signal 553 and a Q signal 554.
  • the digital conversion unit 571 converts the I signal 553 and the Q signal 554 into digital signals, respectively.
  • the processing performed for each of the I signal 553 and the Q signal 554 may be described as processing for the I / Q signal 555.
  • the digital conversion unit 571 for example, an ADC (Analog-to-Digital Converter) or the like is used.
  • the specific configuration of the digital conversion unit 571 is not limited.
  • an arbitrary digital conversion circuit capable of digitally sampling a baseband signal may be used as appropriate.
  • the digital signal processing unit 572 processes the I / Q signal 555 in the digital domain. As illustrated in FIG. 8, the digital signal processing unit 572 includes a channel selection filter 575, a level detection unit 576, and a frequency conversion unit 577.
  • the channel selection filter 575 filters the I / Q signal 555 converted into a digital signal.
  • the channel selection filter 575 removes, for example, noise components that could not be removed by the analog filter (BPF or LPF) of the receiving unit 520. As a result, it is possible to extract the frequency component included in the reception channel converted to the intermediate frequency with high accuracy, and it is possible to remove the components of other channels with high accuracy.
  • the level detection unit 576 detects the amplitude intensity of the I / Q signal 555 output from the channel selection filter 575. For example, it is possible to detect a signal modulated by the ASK method by detecting a temporal change in the amplitude of the I / Q signal 555. For example, the level detection unit 576 converts the amplitude intensity of the I / Q signal 555 into bits and outputs it as an ASK detection output 556. In the present embodiment, the ASK detection output 556 corresponds to an ASK signal.
  • the carrier detection output 557 corresponds to a carrier strength signal.
  • the frequency converter 577 converts the frequency of the I / Q signal 555 output from the channel selection filter 575 to approximately 0 Hz by frequency conversion in the digital domain. This can also be said to be converting an I / Q signal into a baseband signal in the digital domain. As a result, for example, it is possible to correct a shift in the LO reference clock signal between the base station and the wireless communication apparatus 500.
  • the I / Q signal 555 frequency-converted to approximately 0 Hz is output to the analog conversion unit 573.
  • the digital signal processing unit 572 performs various digital processes on the I / Q signal 555.
  • the digital signal processing unit for example, a DSP (Digital Signal Processor) programmed with digital signal filtering processing or the like is used.
  • the specific configuration of the digital signal processing unit 572 is not limited.
  • the channel selection filter 575, the level detection unit 576, and the frequency conversion unit 577 may be configured by individual elements.
  • Analog conversion unit 573 converts I / Q signal 555 output from frequency conversion unit 577 into an analog signal.
  • the analog conversion unit 573 for example, a DAC (Digital-to-Analog Converter) or the like is used.
  • the specific configuration of the analog conversion unit 573 is not limited.
  • the digital conversion unit 571, the digital signal processing unit 572, and the analog conversion unit 573 constitute a digital filter unit that digitizes and filters an intermediate frequency signal.
  • the orthogonal mixer 574 mixes the I / Q signal 555 converted into the analog signal and the reference signal 581 having the demodulation frequency output from the system clock generation unit 580.
  • the demodulation frequency a frequency (8.192 MHz) based on the system reference clock signal 582 used in a subsequent signal processing circuit (controller or the like) is set.
  • the quadrature mixer 574 converts the I signal 553 and the Q signal 554 (I / Q signal 555) into demodulation frequencies.
  • the converted I signal 553 and Q signal 554 are added using an adder circuit or the like and output as a QPSK output 558.
  • the orthogonal mixer 574 corresponds to a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
  • the QPSK output 558 corresponds to a QPSK signal.
  • a system clock signal 583 and a reference signal 581 for demodulation input to a signal processing circuit or the like are generated.
  • the frequencies of the system clock signal 583 and the reference signal 581 may be the same as each other or different from each other.
  • the system clock generator 580 for example, a PLL circuit prepared for signal processing is used.
  • the system clock signal 583 is output to a signal processing circuit such as a digital conversion unit 571, a digital signal processing unit 572, an analog conversion unit 573, and a subsequent controller.
  • the demodulation reference signal 581 is output to the orthogonal mixer 574.
  • each unit included in the signal generation unit 570 operates based on the system reference clock signal 582.
  • the system reference clock signal 582 corresponds to a reference clock signal.
  • the receiving unit 520 sequentially outputs, for example, I / Q signals 555 corresponding to seven downlink communication channels (see FIG. 2).
  • the signal generation unit 570 performs digital domain filtering on each I / Q signal 555 and outputs a carrier detection output 557 based on the amplitude intensity of the I / Q signal 555. Thereby, it is possible to select a channel (reception channel) that the base station uses for transmission from the seven channels.
  • the reception unit 520 when the wireless communication device 500 is in a reception state, the reception unit 520 outputs an I / Q signal 555 corresponding to the reception channel.
  • the signal generation unit 570 performs digital domain filtering on the I / Q signal 555 of the reception channel, and outputs an ASK detection output 556 based on the amplitude intensity of the I / Q signal 555.
  • the signal generation unit 570 performs frequency conversion in the digital domain and the analog domain on the filtered I / Q signal 555 and outputs the result as a QPSK output 558.
  • the signal generation unit 570 generates the data signal 550 including the QPSK output 558, the ASK detection output 556, and the carrier detection output 557 based on the intermediate frequency signal.
  • a data signal can be generated in accordance with a subsequent circuit (controller) that performs data processing or the like, and high versatility is exhibited.
  • a QPSK output 358, an ASK detection output 356, and a carrier detection output 357 are generated based on a signal converted to an intermediate frequency of 40 MHz.
  • a dedicated reference signal 381 for performing frequency conversion from 40 MHz to 8.192 MHz is necessary to generate the QPSK output 358. Therefore, in FIG. 6, a dedicated oscillation circuit 384 including a crystal resonator 382 and a PLL circuit 383 is required.
  • the reference signal 581 for conversion to a demodulation frequency (8.192 MHz) is generated by a system clock generation unit 580 that oscillates a system clock used in a controller or the like. . Therefore, a dedicated oscillation circuit or the like for converting the I / Q signal 555 into a demodulation frequency is unnecessary, and the number of parts can be suppressed. As a result, the apparatus can be sufficiently downsized.
  • the wireless communication device 500 can output the same data signal 550 as the wireless communication device 300 shown in FIG. From another point of view, a signal processing circuit (controller or the like) used in the subsequent stage of the wireless communication apparatus 300 shown in FIG. 6 can be used as the subsequent stage of the wireless communication apparatus 500 according to the present embodiment. It can also be said. As described above, by applying the present technology, it is possible to provide the wireless communication device 500 having a small device size and high versatility.
  • the signal generation unit 570 filters the I / Q signal 555 in the digital domain. Therefore, in the wireless communication apparatus 500, the I / Q signal 555 is filtered in two stages by the analog filter (LPF or BPF) of the reception unit 20 and the digital filter of the signal generation unit. As a result, the data signal 550 such as the QPSK output 558 and the ASK detection output 556 can be generated with high accuracy, and the communication accuracy can be greatly improved.
  • LPF analog filter
  • an I / Q signal having an intermediate frequency is converted into a demodulation frequency in order to execute demodulation of the QPSK method.
  • an I / Q signal having a demodulation frequency may be directly generated by an orthogonal mixer of the receiving unit. That is, the intermediate frequency may be set to 8.192 MHz. In this case, the frequency conversion necessary until the demodulation process is performed once, and the number of parts can be reduced.
  • the present invention is not limited to this, and the value of the intermediate frequency may be set as appropriate according to the processing in the subsequent stage.
  • the wireless communication devices 100, 200, 400, and 500 are configured as on-vehicle devices that are mobile stations.
  • the present technology is not limited to this, and the present technology can be applied even when the wireless communication device is configured as a base station.
  • the value of the intermediate frequency can be controlled by appropriately switching the oscillation frequency of the local oscillator according to the transmission state and reception state of the base station.
  • the apparatus can be configured without using an external filter or the like, and the apparatus can be downsized.
  • the wireless communication device according to the present technology can be configured as a device such as a mobile device or a wearable device without being limited to the vehicle-mounted device mounted on the vehicle or the like.
  • this technique can also take the following structures.
  • a communication unit capable of transmitting and receiving radio waves for narrow area communication;
  • a conversion unit that converts a reception signal generated in response to reception of the radio wave for narrow area communication into an intermediate frequency based on a first reference signal;
  • a generating unit that generates a transmission signal used for transmitting the radio wave for the narrow area communication;
  • a wireless communication apparatus comprising: a supply unit capable of switching supply of the first reference signal to the conversion unit and supply of the second reference signal to the generation unit.
  • the wireless communication device converts the received signal to the intermediate frequency by mixing the first reference signal and the received signal, The wireless communication apparatus, wherein the supply unit controls the frequency of the first reference signal so that the intermediate frequency is smaller than a frequency difference between the reception signal and the transmission signal.
  • the wireless communication device has a 1st internal filter which passes the frequency component of the 1st zone
  • the wireless communication device has an absolute value of 2.2 MHz to 2.8 MHz.
  • the wireless communication device is a wireless communication device having an absolute value of approximately 2.5 MHz.
  • the wireless communication device is a wireless communication device having an absolute value of approximately 2.5 MHz.
  • the wireless communication device is a wireless communication apparatus having an absolute value of approximately 2.5 MHz.
  • the wireless communication device is a wireless communication apparatus which has a 2nd internal filter which passes the frequency component of the 2nd zone
  • the wireless communication device includes a phase synchronization circuit capable of oscillating by switching between the first and second reference signals.
  • the wireless communication device includes a frequency division unit that divides the frequency of the second reference signal by a predetermined ratio to generate a frequency division signal;
  • generation part is a radio
  • the wireless communication device according to (9), The predetermined ratio is any one of 1/2, 1/4, and 1/6.
  • a wireless communication apparatus comprising: a signal generation unit that generates a data signal based on the intermediate frequency signal.
  • the wireless communication device according to (11), The wireless communication apparatus, wherein the data signal includes at least one of a QPSK signal, an ASK signal, and a carrier strength signal.
  • the wireless communication device (11) or (12), The radio communication apparatus, wherein the signal generation unit includes a digital filter unit that digitizes and filters the intermediate frequency signal, and a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
  • the wireless communication device according to (13), The digital filter unit and the mixer unit are wireless communication devices that operate based on a reference clock signal.
  • the wireless communication device according to any one of (1) to (14), The wireless communication apparatus, wherein the reception signal is a signal having a frequency lower than that of the transmission signal.
  • the wireless communication device (16) The wireless communication device according to (15), A wireless communication device configured as a vehicle-mounted device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

The wireless communication device relating to one embodiment of the present technology is provided with a communication unit, conversion unit, generation unit, and supply unit. The communication unit is capable of transmitting/receiving electromagnetic waves for narrow band communication. On the basis of a first reference signal, the conversion unit converts the frequency of a reception signal into an intermediate frequency, said reception signal having been generated corresponding to reception of the electromagnetic waves for the narrow band communication. On the basis of a second reference signal having a frequency different from that of the first reference signal, the generation unit generates a transmission signal to be used for transmission of the electromagnetic waves for the narrow band communication. The supply unit is capable of performing switching between operation of supplying the first reference signal to the conversion unit, and operation of supplying the second reference signal to the generation unit.

Description

無線通信装置及び無線通信方法Wireless communication apparatus and wireless communication method
 本技術は、狭域通信に用いられる無線通信装置及び無線通信方法に関する。 The present technology relates to a wireless communication apparatus and a wireless communication method used for narrow area communication.
 特許文献1には、狭域通信(DSRC:Dedicated Short Range Communications)システムを用いた車載用無線通信装置が記載されている。車載用無線通信装置では、路側に設置された基地局から送信された高周波信号が受信される。受信された高周波信号は、局部発振器(LO:Local Oscillator)により発振されるミクシング周波数に基づいて中間周波数に変換され、デジタルデータ等が読み出される。(特許文献1の明細書段落[0002][0003][0017][0019]図1等)。 Patent Document 1 describes an in-vehicle wireless communication device using a narrow range communication (DSRC: Dedicated Short Range Communication) system. In the in-vehicle wireless communication device, a high frequency signal transmitted from a base station installed on the roadside is received. The received high-frequency signal is converted to an intermediate frequency based on a mixing frequency oscillated by a local oscillator (LO: Local Oscillator), and digital data or the like is read out. (Patent Document 1, specification paragraphs [0002] [0003] [0017] [0019] FIG. 1 etc.).
特開2009-5279号公報JP 2009-5279 A
 このような狭域通信を利用した種々のシステムが開発されており、無線通信装置の小型化を実現するための技術が求められている。 Various systems using such narrow area communication have been developed, and a technology for realizing miniaturization of a wireless communication apparatus is required.
 以上のような事情に鑑み、本技術の目的は、装置の小型化を実現可能な狭域通信用の無線通信装置、及び無線通信方法を提供することにある。 In view of the circumstances as described above, an object of the present technology is to provide a wireless communication device and a wireless communication method for narrow area communication that can realize downsizing of the device.
 上記目的を達成するため、本技術の一形態に係る無線通信装置は、通信部と、変換部と、生成部と、供給部とを具備する。
 前記通信部は、狭域通信用の電波を送受信可能である。
 前記変換部は、第1の基準信号に基づいて、前記狭域通信用の電波の受信に応じて生成された受信信号を中間周波数に変換する。
 前記生成部は、前記第1の基準信号とは異なる周波数の第2の基準信号に基づいて、前記狭域通信用の電波の送信に用いられる送信信号を生成する。
 前記供給部は、前記変換部への前記第1の基準信号の供給、及び前記生成部への前記第2の基準信号の供給を切替可能である。
In order to achieve the above object, a wireless communication apparatus according to an embodiment of the present technology includes a communication unit, a conversion unit, a generation unit, and a supply unit.
The communication unit can transmit and receive radio waves for narrow area communication.
The conversion unit converts a reception signal generated in response to reception of the radio wave for narrow-area communication into an intermediate frequency based on a first reference signal.
The generation unit generates a transmission signal used for transmission of the radio wave for the narrow area communication based on a second reference signal having a frequency different from that of the first reference signal.
The supply unit can switch between supply of the first reference signal to the conversion unit and supply of the second reference signal to the generation unit.
 この無線通信装置では、互いに異なる周波数を有する第1及び第2の基準信号が、適宜切替えられて変換部及び生成部に供給される。これにより、例えば中間周波数を制御することが可能となり、外部フィルタ等を用いることなくデータの受信が可能となる。この結果、無線通信装置の小型化を実現することが可能となる。 In this wireless communication device, the first and second reference signals having different frequencies are appropriately switched and supplied to the conversion unit and the generation unit. As a result, for example, the intermediate frequency can be controlled, and data can be received without using an external filter or the like. As a result, it is possible to reduce the size of the wireless communication device.
 前記変換部は、前記第1の基準信号と前記受信信号とを混合することで、前記受信信号を前記中間周波数に変換してもよい。この場合、前記供給部は、前記中間周波数が、前記受信信号及び前記送信信号の周波数差よりも小さくなるように、前記第1の基準信号の周波数を制御してもよい。
 中間周波数の値を小さくすることでフィルタリングが容易になる。これにより、外部フィルタ等が不要となり、装置を小型化することが可能となる。
The conversion unit may convert the received signal into the intermediate frequency by mixing the first reference signal and the received signal. In this case, the supply unit may control the frequency of the first reference signal so that the intermediate frequency is smaller than a frequency difference between the reception signal and the transmission signal.
Filtering is facilitated by reducing the value of the intermediate frequency. As a result, an external filter or the like is not necessary, and the apparatus can be miniaturized.
 前記変換部は、前記中間周波数を含む第1の帯域の周波数成分を通過させ、前記第1の帯域に含まれない周波数成分を規制する第1の内部フィルタを有してもよい。
 これにより、例えば集積回路内に構成されたバンドパスフィルタによるフィルタリングが可能となる。この結果、装置を十分に小型化することが可能となる。
The conversion unit may include a first internal filter that allows a frequency component of a first band including the intermediate frequency to pass therethrough and restricts a frequency component not included in the first band.
Thereby, for example, filtering by a band-pass filter configured in the integrated circuit becomes possible. As a result, the apparatus can be sufficiently downsized.
 前記中間周波数は、絶対値が2.2MHz以上2.8MHz以下であってもよい。
 これにより、対象チャネル以外の狭域通信のチャネルの信号が妨害波となることを抑制することが可能となり、通信精度を向上することが可能となる。
The intermediate frequency may have an absolute value of 2.2 MHz or more and 2.8 MHz or less.
As a result, it is possible to suppress a signal of a narrow-band communication channel other than the target channel from becoming an interference wave, and it is possible to improve communication accuracy.
 前記中間周波数は、絶対値が略2.5MHzであってもよい。
 これにより、妨害波等の余分な信号を十分にカットすることが可能となり、通信精度を十分に向上することが可能となる。
The intermediate frequency may have an absolute value of approximately 2.5 MHz.
This makes it possible to sufficiently cut off extra signals such as jamming waves and sufficiently improve communication accuracy.
 前記供給部は、前記中間周波数が略ゼロとなるように、前記第1の基準信号の周波数を制御してもよい。
 これにより、例えば第1の高周波信号に含まれるデータ等を直接復調することが可能となる。この結果、装置構成がシンプルになり装置を小型化することが可能となる。
The supply unit may control the frequency of the first reference signal so that the intermediate frequency becomes substantially zero.
Thereby, for example, data included in the first high-frequency signal can be directly demodulated. As a result, the apparatus configuration becomes simple and the apparatus can be miniaturized.
 前記変換部は、前記中間周波数を含む第2の帯域の周波数成分を通過させ、前記第2の帯域の上限周波数よりも高い周波数成分を規制する第2の内部フィルタを有してもよい。
 これにより、例えば集積回路内に構成されたローパスフィルタによるフィルタリングが可能となる。この結果、装置を十分に小型化することが可能となる。
The conversion unit may include a second internal filter that passes a frequency component of a second band including the intermediate frequency and restricts a frequency component higher than an upper limit frequency of the second band.
Thereby, for example, filtering by a low-pass filter configured in the integrated circuit becomes possible. As a result, the apparatus can be sufficiently downsized.
 前記供給部は、前記第1及び前記第2の基準信号を切替えて発振可能な位相同期回路を含んでもよい。
 これにより、第1及び第2の基準信号を高精度に生成することが可能となり、動作精度を向上させることが可能である
The supply unit may include a phase synchronization circuit that can oscillate by switching the first and second reference signals.
As a result, the first and second reference signals can be generated with high accuracy, and the operation accuracy can be improved.
 前記供給部は、前記第2の基準信号の周波数を所定の割合で分周して分周信号を生成する分周部を有してもよい。この場合、前記生成部は、ベースバンド信号に対する前記分周信号の混合、及び第2の基準信号の混合を実行することで、前記送信信号を生成してもよい。
 これにより、送信される第2の高周波信号の周波数と、第2の基準信号との周波数とが異なる値となる。この結果、周波数のカップリングによる不具合等を抑制可能となる。
The supply unit may include a frequency division unit that divides the frequency of the second reference signal at a predetermined ratio to generate a frequency division signal. In this case, the generation unit may generate the transmission signal by executing mixing of the divided signal and mixing of the second reference signal with respect to the baseband signal.
Thereby, the frequency of the 2nd high frequency signal transmitted differs from the frequency of the 2nd reference signal. As a result, it is possible to suppress problems due to frequency coupling.
 前記所定の割合は、1/2、1/4、及び1/6のいずれかであってもよい。
 例えば分周器等を用いて容易に周波数を分割することが可能となる。これにより構成がシンプルでカップリング等に耐性のある装置を提供することが可能となる。
The predetermined ratio may be any one of 1/2, 1/4, and 1/6.
For example, the frequency can be easily divided using a frequency divider or the like. This makes it possible to provide a device that has a simple configuration and is resistant to coupling and the like.
 前記無線通信装置は、さらに、前記中間周波数の信号に基づいてデータ信号を生成する信号生成部を具備してもよい。
 これにより、例えばデータ処理等を行なう後段の回路等に合わせてデータ信号を生成することが可能となり、高い汎用性が発揮される。
The wireless communication apparatus may further include a signal generation unit that generates a data signal based on the intermediate frequency signal.
As a result, for example, a data signal can be generated in accordance with a subsequent circuit for performing data processing or the like, and high versatility is exhibited.
 前記データ信号は、QPSK信号、ASK信号、搬送波強度信号の少なくとも1つを含んでもよい。
 これにより、狭域通信で用いられる各種の通信方式等に対応することが可能となる。
The data signal may include at least one of a QPSK signal, an ASK signal, and a carrier strength signal.
Thereby, it becomes possible to cope with various communication methods used in narrow area communication.
 前記信号生成部は、前記中間周波数の信号をデジタル化してフィルタリングするデジタルフィルタ部と、前記デジタルフィルタ部の出力を復調するための周波数に変換するミクサ部を有してもよい。
 これにより、デジタル領域でフィルタリングされた信号に基づいてデータ信号を復調することが可能となり、通信精度を大幅に向上することが可能となる。
The signal generation unit may include a digital filter unit that digitizes and filters the signal of the intermediate frequency, and a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
As a result, the data signal can be demodulated based on the signal filtered in the digital domain, and the communication accuracy can be greatly improved.
 前記デジタルフィルタ部及び前記ミクサ部は、基準クロック信号に基づいて動作してもよい。
 基準クロック信号を用いることで、例えば専用のクロック回路等が不要となり、装置を小型化することが可能となる。
The digital filter unit and the mixer unit may operate based on a reference clock signal.
By using the reference clock signal, for example, a dedicated clock circuit or the like becomes unnecessary, and the apparatus can be miniaturized.
 前記受信信号は、前記送信信号よりも周波数が低い信号であってもよい。
 これにより、移動しながら通信を行なう移動局として機能する無線通信装置を提供することが可能となる。
The reception signal may be a signal having a frequency lower than that of the transmission signal.
This makes it possible to provide a wireless communication device that functions as a mobile station that performs communication while moving.
 前記無線通信装置は、車載器として構成されてもよい。
 これにより、狭域通信が可能な小型の車載器を提供することが可能となる。
The wireless communication device may be configured as a vehicle-mounted device.
Thereby, it is possible to provide a small vehicle-mounted device capable of narrow-area communication.
 本技術の一形態に係る無線通信方法は、狭域通信用の電波を送受信することを含む。
 第1の基準信号に基づいて、前記狭域通信用の電波の受信に応じて生成された受信信号が中間周波数に変換される。
 前記第1の基準信号とは異なる周波数の第2の基準信号に基づいて、前記狭域通信用の電波の送信に用いられる送信信号が生成される。
 前記第1の基準信号の供給、及び前記第2の基準信号の供給が切替えられる。
A wireless communication method according to an aspect of the present technology includes transmitting and receiving radio waves for narrow area communication.
Based on the first reference signal, a reception signal generated in response to reception of the radio wave for narrow area communication is converted into an intermediate frequency.
Based on a second reference signal having a frequency different from that of the first reference signal, a transmission signal used to transmit the radio wave for narrow area communication is generated.
The supply of the first reference signal and the supply of the second reference signal are switched.
 以上のように、本技術によれば、狭域通信用の無線通信装置の小型化を実現することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 As described above, according to the present technology, it is possible to reduce the size of a wireless communication device for narrow area communication. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施形態に係る無線通信装置の構成例を示す模式図である。It is a mimetic diagram showing an example of composition of a radio communications apparatus concerning a 1st embodiment of this art. DSRC方式の通信に用いられるチャネルの関係を模式的に示す図である。It is a figure which shows typically the relationship of the channel used for DSRC system communication. チャネルの周波数関係を示す模式図である。It is a schematic diagram which shows the frequency relationship of a channel. 直交ミクサによる中間周波数への変換の一例を示す模式図である。It is a schematic diagram which shows an example of the conversion to the intermediate frequency by an orthogonal mixer. 第1の実施形態に係る無線通信装置の他の構成例を示す模式図である。It is a schematic diagram which shows the other structural example of the radio | wireless communication apparatus which concerns on 1st Embodiment. 比較例としてあげる無線通信装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the radio | wireless communication apparatus mention | raise | lifted as a comparative example. 第2の実施形態に係る無線通信装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the radio | wireless communication apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る無線通信装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the radio | wireless communication apparatus which concerns on 3rd Embodiment.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present technology will be described with reference to the drawings.
 <第1の実施形態>
 [無線通信装置の構成]
 図1は、本技術の第1の実施形態に係る無線通信装置の構成例を示す模式図である。無線通信装置100は、狭域通信方式(DSRC方式)での通信が可能な車載器として構成され、路側等に設置された基地局等との通信に用いられる。
<First Embodiment>
[Configuration of wireless communication device]
FIG. 1 is a schematic diagram illustrating a configuration example of a wireless communication device according to the first embodiment of the present technology. The wireless communication device 100 is configured as an in-vehicle device capable of communication in a narrow area communication method (DSRC method), and is used for communication with a base station or the like installed on a roadside or the like.
 無線通信装置100を自動車等の車両に搭載することで、ETC(Electronic Toll Collection System)(登録商標)サービスを用いた通行料金の支払いや、ETC2.0サービスを用いた渋滞情報の取得等が可能となる。 By mounting the wireless communication device 100 on a vehicle such as an automobile, it is possible to pay tolls using the ETC (Electronic Toll Collection System) (registered trademark) service and to acquire traffic information using the ETC 2.0 service. It becomes.
 図1に示すように、無線通信装置100は、通信部10、受信部20、送信部30、及び局部発振器(LO:Local Oscillator)40を有する。また無線通信装置100は、図示しないコントローラを有する。 As shown in FIG. 1, the wireless communication device 100 includes a communication unit 10, a reception unit 20, a transmission unit 30, and a local oscillator (LO: Local Oscillator) 40. Further, the wireless communication device 100 has a controller (not shown).
 通信部10は、アンテナ11、バンドパスフィルタ(BPF:Band Pass Filter)12、及びスイッチ素子13を有する。 The communication unit 10 includes an antenna 11, a band pass filter (BPF) 12, and a switch element 13.
 アンテナ11は、DSRC方式で用いられる周波数帯域(5.8GHz帯)の電波を送受信可能である。アンテナ11は、受信された電波と同様の周波数の電気信号を出力し、入力された電気信号と同様の周波数の電波を放射する。例えばアンテナ11として、基板上に形成されたパターンアンテナや、基板上に実装可能なチップアンテナ等が用いられる。この他アンテナ11の具体的な構成は限定されず、任意のアンテナが用いられてよい。 The antenna 11 can transmit and receive radio waves in the frequency band (5.8 GHz band) used in the DSRC method. The antenna 11 outputs an electric signal having the same frequency as the received radio wave, and radiates a radio wave having the same frequency as the input electric signal. For example, as the antenna 11, a pattern antenna formed on a substrate, a chip antenna that can be mounted on the substrate, or the like is used. The specific configuration of the other antenna 11 is not limited, and any antenna may be used.
 バンドパスフィルタ12は、当該バンドパスフィルタ12に入力する電気信号の周波数成分のうち、DSRC方式で用いられる周波数帯域の周波数成分を通過させる。またバンドパスフィルタ12は、DSRC方式で用いられる周波数帯域とは異なる他の帯域の周波数成分を規制する。バンドパスフィルタ12の具体的な構成は限定されず、任意のフィルタが用いられてよい。 The band pass filter 12 passes the frequency components of the frequency band used in the DSRC method among the frequency components of the electric signal input to the band pass filter 12. The band pass filter 12 regulates frequency components in other bands different from the frequency band used in the DSRC method. The specific configuration of the bandpass filter 12 is not limited, and an arbitrary filter may be used.
 スイッチ素子13は、コントローラから出力された制御信号に基づいて、入力する電気信号の出力先を切替える。スイッチ素子13の具体的な構成は限定されず、例えば回路を切替えて接続可能な任意の素子が用いられてよい。 The switch element 13 switches the output destination of the input electrical signal based on the control signal output from the controller. The specific configuration of the switch element 13 is not limited, and for example, any element that can be connected by switching circuits may be used.
 基地局等から車載器への通信(下り通信)が行われる場合は、アンテナ11により、基地局等から送信されたDSRC方式に対応した第1の周波数を有する電波が受信される。受信された電波に応じた電気信号がバンドパスフィルタ12に出力されフィルタリングされる。これにより第1の周波数を有する第1の高周波信号51がスイッチ素子13に出力される。第1の高周波信号51は、スイッチ素子13を介して受信部20に出力される。 When communication (downlink communication) from the base station or the like to the vehicle-mounted device is performed, the antenna 11 receives a radio wave having a first frequency corresponding to the DSRC method transmitted from the base station or the like. An electrical signal corresponding to the received radio wave is output to the band pass filter 12 and filtered. As a result, the first high-frequency signal 51 having the first frequency is output to the switch element 13. The first high frequency signal 51 is output to the receiving unit 20 via the switch element 13.
 車載器から基地局等への通信(上り通信)が行われる場合は、後述するように、送信部30によりDSRC方式に対応した第2の周波数を有する第2の高周波信号52が生成される。第2の高周波信号52は、スイッチ素子13を介してバンドパスフィルタ12に出力される。バンドパスフィルタ12によりフィルタリングされた第2の高周波信号52に基づいて、アンテナ11から第2の周波数を有する電波が送信される。 When communication (uplink communication) from the vehicle-mounted device to the base station or the like is performed, a second high-frequency signal 52 having a second frequency corresponding to the DSRC method is generated by the transmission unit 30 as described later. The second high frequency signal 52 is output to the band pass filter 12 via the switch element 13. A radio wave having a second frequency is transmitted from the antenna 11 based on the second high-frequency signal 52 filtered by the bandpass filter 12.
 スイッチ素子13を用いることで、1つのアンテナ11を使って送信及び受信を切替えて実行することが可能となる。これにより部品点数を抑えることが可能となり装置コストを下げることが可能となる。スイッチ素子13の具体的な構成は限定されず、例えば回路を切替えて接続可能な任意の素子が用いられてよい。 By using the switch element 13, transmission and reception can be switched and executed using one antenna 11. As a result, the number of parts can be reduced, and the cost of the apparatus can be reduced. The specific configuration of the switch element 13 is not limited, and for example, any element that can be connected by switching circuits may be used.
 なおDSRC方式では、下り通信と上り通信とで、互いに異なる周波数を有する電波が用いられる。下り通信に用いられる電波は、上り通信に用いられる電波よりも周波数が低い電波である。またDSRC方式では、下り通信及び上り通信で用いられる各電波には40MHzの周波数差が規定されている。 In the DSRC method, radio waves having different frequencies are used for downlink communication and uplink communication. The radio wave used for downlink communication is a radio wave having a lower frequency than the radio wave used for uplink communication. In the DSRC method, a frequency difference of 40 MHz is defined for each radio wave used in downlink communication and uplink communication.
 従ってDSRC方式に対応した第1及び第2の周波数は、互いに異なる周波数となる。また第1の高周波信号51は、第2の高周波信号52よりも周波数が低い信号となり、第1の高周波信号51及び第2の高周波信号52の周波数差は40MHzとなる。本実施形態において、第1の高周波信号51は、狭域通信用の電波の受信に応じて生成された受信信号に相当し、第2の高周波信号52は、狭域通信用の電波の送信に用いられる送信信号に相当する。 Therefore, the first and second frequencies corresponding to the DSRC method are different from each other. The first high frequency signal 51 is a signal having a frequency lower than that of the second high frequency signal 52, and the frequency difference between the first high frequency signal 51 and the second high frequency signal 52 is 40 MHz. In the present embodiment, the first high-frequency signal 51 corresponds to a reception signal generated in response to reception of a radio wave for narrow area communication, and the second high-frequency signal 52 is used for transmission of a radio wave for narrow area communication. It corresponds to the transmission signal used.
 受信部20は、受信用増幅器21、直交ミクサ22、及びバンドパスフィルタ(BPF)23を有する。 The receiving unit 20 includes a receiving amplifier 21, a quadrature mixer 22, and a band pass filter (BPF) 23.
 受信用増幅器21は、スイッチ素子13を介して出力される第1の高周波信号51を増幅する。一般にアンテナ11により通信用の電波から変換された電気信号は、強度が小さく微弱である。受信用増幅器21は、こうした微弱な電気信号を信号処理等に用いられる強度まで増幅する低ノイズアンプ(LNA:Low Noise Amplifier)として機能する。増幅された電気信号(第1の高周波信号51)は、直交ミクサ22に出力される。 The receiving amplifier 21 amplifies the first high-frequency signal 51 output via the switch element 13. In general, an electric signal converted from communication radio waves by the antenna 11 has a small intensity and is weak. The receiving amplifier 21 functions as a low noise amplifier (LNA: Low 増 幅 Noise こ う し た Amplifier) that amplifies such a weak electric signal to an intensity used for signal processing or the like. The amplified electrical signal (first high frequency signal 51) is output to the orthogonal mixer 22.
 受信用増幅器21としては、例えばCMOS(Complementary Metal Oxide Semiconductor)回路等を用いた増幅器が用いられる。この他、例えばガリウム砒素(GaAs)またはシリコンゲルマニウム(SiGe)等を用いた低雑音の増幅器が用いられてもよい。またアンテナ11の受信感度等に応じて、受信用増幅器21のゲインや雑音指数等が適宜設定されてよい。 As the receiving amplifier 21, an amplifier using, for example, a CMOS (Complementary Metal Oxide Semiconductor) circuit or the like is used. In addition, a low noise amplifier using, for example, gallium arsenide (GaAs) or silicon germanium (SiGe) may be used. Further, the gain, noise figure, etc. of the receiving amplifier 21 may be appropriately set according to the receiving sensitivity of the antenna 11 and the like.
 直交ミクサ22は、受信用増幅器21により増幅された第1の高周波信号51を、中間周波数に変換する。中間周波数への変換には、後述する局部発振器40により発振された第1の基準信号41が用いられる。直交ミクサ22は、第1の基準信号41と第1の高周波信号51とを混合することで、第1の高周波信号51を中間周波数に変換する。 The orthogonal mixer 22 converts the first high-frequency signal 51 amplified by the receiving amplifier 21 into an intermediate frequency. For the conversion to the intermediate frequency, a first reference signal 41 oscillated by a local oscillator 40 described later is used. The orthogonal mixer 22 converts the first high-frequency signal 51 into an intermediate frequency by mixing the first reference signal 41 and the first high-frequency signal 51.
 一般に、周波数がf1及びf2である2つの信号を混合した場合、各信号が積算された信号が出力される。この積算された信号には、2つの信号の周波数の差(f1-f2)と同様の周波数を有する周波数成分が含まれる。また積算された信号には、2つの信号の周波数の和(f1+f2)と同様の周波数を有する周波数成分が含まれる。 Generally, when two signals having frequencies f1 and f2 are mixed, a signal obtained by integrating the signals is output. This integrated signal includes a frequency component having a frequency similar to the difference between the frequencies of the two signals (f1-f2). The integrated signal includes a frequency component having a frequency similar to the sum of the frequencies of the two signals (f1 + f2).
 直交ミクサ22では、第1の基準信号41と第1の高周波信号51とを混合することで、第1の基準信号41と第1の高周波信号51との周波数の差及び和に対応する周波数成分を含む信号が生成される。本実施形態では、第1の基準信号41と第1の高周波信号51との周波数の差が中間周波数となる。従って例えば、第1の基準信号41の周波数を適宜設定することで、中間周波数を任意の値に制御することが可能である。 In the quadrature mixer 22, the first reference signal 41 and the first high-frequency signal 51 are mixed, so that the frequency component corresponding to the frequency difference and sum between the first reference signal 41 and the first high-frequency signal 51 is obtained. Is generated. In the present embodiment, the frequency difference between the first reference signal 41 and the first high-frequency signal 51 is an intermediate frequency. Therefore, for example, the intermediate frequency can be controlled to an arbitrary value by appropriately setting the frequency of the first reference signal 41.
 図1に示すように、直交ミクサ22からは、中間周波数の信号としてI信号53及びQ信号54が出力される。I信号53及びQ信号54は、四位相偏移変調(QPSK:Quadrature Phase Shift Keying)方式で変調されたデータを含む信号である。 As shown in FIG. 1, the quadrature mixer 22 outputs an I signal 53 and a Q signal 54 as intermediate frequency signals. The I signal 53 and the Q signal 54 are signals including data modulated by a quadrature phase shift keying (QPSK) method.
 例えば直交ミクサ22は、第1の基準信号41と同位相(Inter-Phase)の基準I信号と、基準I信号とは位相が90°ずれた直交位相(Quadrature-Phase)の基準Q信号とを生成する。基準I信号は、局部発振器40から出力された第1の基準信号をそのまま用いることで生成される。また基準Q信号、位相を90°シフトさせるπ/2位相器等を用いて、第1の基準信号41の位相をシフトすることで生成される。 For example, the quadrature mixer 22 generates a reference I signal having the same phase (Inter-Phase) as the first reference signal 41 and a quadrature-phase reference Q signal having a phase shifted by 90 ° from the reference I signal. Generate. The reference I signal is generated by using the first reference signal output from the local oscillator 40 as it is. Further, the reference Q signal is generated by shifting the phase of the first reference signal 41 using a π / 2 phase shifter or the like that shifts the phase by 90 °.
 第1の高周波信号51と基準I信号とが混合され、I信号53が生成される。また、第1の高周波信号51と基準Q信号とが混合され、Q信号54が生成される。各信号の混合には、2つの信号を積算して出力する混合器等が用いられる。これにより、第1の高周波信号51は、中間周波数の周波数成分を含むI信号53及びQ信号54に変換される。I信号53及びQ信号54は、バンドパスフィルタ23に出力される。 The first high frequency signal 51 and the reference I signal are mixed to generate an I signal 53. Further, the first high-frequency signal 51 and the reference Q signal are mixed to generate a Q signal 54. For mixing each signal, a mixer or the like that integrates and outputs two signals is used. As a result, the first high-frequency signal 51 is converted into an I signal 53 and a Q signal 54 including a frequency component of an intermediate frequency. The I signal 53 and the Q signal 54 are output to the band pass filter 23.
 直交ミクサ22は、例えばI信号53及びQ信号54をそれぞれ出力する2つの混合器等を備えた回路で構成される。直交ミクサ22の具体的な構成は限定されず、例えばI信号53及びQ信号54を出力可能な回路等が適宜用いられてよい。以下では、I信号53及びQ信号54を第1のI/Q信号55と記載する場合がある。 The quadrature mixer 22 is configured by a circuit including two mixers that respectively output an I signal 53 and a Q signal 54, for example. The specific configuration of the orthogonal mixer 22 is not limited, and for example, a circuit that can output the I signal 53 and the Q signal 54 may be used as appropriate. Hereinafter, the I signal 53 and the Q signal 54 may be referred to as a first I / Q signal 55.
 バンドパスフィルタ23は、中間周波数を含む第1の帯域の周波数成分を通過させ、第1の帯域に含まれない周波数成分を規制する。すなわち、バンドパスフィルタ23は、直交ミクサ22から出力された第1のI/Q信号55に含まれる中間周波数の周波数成分を抽出する。本実施形態では、バンドパスフィルタ23は、第1の内部フィルタに相当する。 The band pass filter 23 passes the frequency component of the first band including the intermediate frequency and regulates the frequency component not included in the first band. That is, the band pass filter 23 extracts the frequency component of the intermediate frequency included in the first I / Q signal 55 output from the quadrature mixer 22. In the present embodiment, the bandpass filter 23 corresponds to a first internal filter.
 第1の帯域は、例えばDSRC方式で用いられる各チャネルの占有帯域幅(4.4MHz)に基づいて設定される。例えば第1の帯域として、中間周波数を中心とする帯域幅が4.4MHzの帯域が設定される。これにより、例えば第1の基準信号41と第1の高周波信号51との周波数の和に対応する周波数成分や、他のノイズ成分等を十分に低減することが可能となる。これに限定されず、例えば中間周波数の周波数成分を抽出可能な任意の帯域が第1の帯域として設定されてよい。 The first band is set based on, for example, the occupied bandwidth (4.4 MHz) of each channel used in the DSRC method. For example, a band with a bandwidth of 4.4 MHz centered on the intermediate frequency is set as the first band. Thereby, for example, the frequency component corresponding to the sum of the frequencies of the first reference signal 41 and the first high frequency signal 51, other noise components, and the like can be sufficiently reduced. However, the present invention is not limited to this. For example, an arbitrary band in which the frequency component of the intermediate frequency can be extracted may be set as the first band.
 バンドパスフィルタ23は、集積回路内に構成される内部フィルタであり、例えばチップ上の抵抗、キャパシタ、トランジスタ等により構成される。この他、バンドパスフィルタ23の具体的な構成は限定されず、例えば中間周波数の周波数成分を抽出可能なフィルタが適宜用いられてよい。 The band pass filter 23 is an internal filter configured in an integrated circuit, and is configured by, for example, a resistor, a capacitor, a transistor, or the like on a chip. In addition, the specific configuration of the bandpass filter 23 is not limited. For example, a filter that can extract a frequency component of an intermediate frequency may be used as appropriate.
 バンドパスフィルタ23によりフィルタリングされた第1のI/Q信号55は、後段の回路に出力されQPSK方式で復調される。なお、DSRC方式では、QPSK方式の他に、振幅偏移変調(ASK:Amplitude Shift Keying)方式が用いられる。例えばI信号53及びQ信号54(第1のI/Q信号55)の信号強度を検出することで、ASK方式での復調を行なうことが可能である。 The first I / Q signal 55 filtered by the band-pass filter 23 is output to a subsequent circuit and demodulated by the QPSK method. In the DSRC method, an amplitude shift keying (ASK) method is used in addition to the QPSK method. For example, by detecting the signal strength of the I signal 53 and the Q signal 54 (first I / Q signal 55), it is possible to perform demodulation using the ASK method.
 本実施形態において、受信部20は、第1の基準信号に基づいて、狭域通信用の電波の受信に応じて生成された受信信号を中間周波数に変換する変換部に相当する。 In the present embodiment, the reception unit 20 corresponds to a conversion unit that converts a reception signal generated in response to reception of radio waves for narrow area communication to an intermediate frequency based on the first reference signal.
 送信部30は、変調部31、及び送信用増幅器32を有する。 The transmission unit 30 includes a modulation unit 31 and a transmission amplifier 32.
 変調部31は、局部発振器40から供給される第2の基準信号42に基づいて、コントローラにより生成されたベースバンド信号を変調して第2の高周波信号を生成する。第2の基準信号42は、第1の基準信号41とは周波数が異なる信号である。本実施系形態では、第2の基準信号42の周波数は、上り通信で使用される第2の周波数に設定される。変調部31は、第2の基準信号42をベースバンド信号と混合することで、第2の周波数を有する第2の高周波信号52を生成する。 The modulation unit 31 modulates the baseband signal generated by the controller based on the second reference signal 42 supplied from the local oscillator 40 to generate a second high-frequency signal. The second reference signal 42 is a signal having a frequency different from that of the first reference signal 41. In the present embodiment, the frequency of the second reference signal 42 is set to the second frequency used in uplink communication. The modulation unit 31 generates the second high-frequency signal 52 having the second frequency by mixing the second reference signal 42 with the baseband signal.
 図1に示すように、変調部31には、QPSK方式又はASK方式に対応したベースバンド信号が入力される。図1では、ベースバンド信号がI信号56及びQ信号57(第2のI/Q信号58)として図示されている。 As shown in FIG. 1, a baseband signal corresponding to the QPSK system or the ASK system is input to the modulation unit 31. In FIG. 1, the baseband signals are illustrated as an I signal 56 and a Q signal 57 (second I / Q signal 58).
 変調部31では、第2の基準信号42と同位相の基準I信号と、基準I信号とは位相が90°ずれた直交位相の基準Q信号とが生成される。変調部31は、基準I信号とI信号56とを混合し、基準Q信号とQ信号57とを混合する。混合されたI信号56及び混合されたQ信号57は、加算回路等を用いて加算されて出力される。これによりI信号56及びQ信号57の情報を含む第2の周波数を有する第2の高周波信号52が生成される。 The modulation unit 31 generates a reference I signal having the same phase as the second reference signal 42 and a reference Q signal having a quadrature phase that is 90 ° out of phase with the reference I signal. The modulation unit 31 mixes the reference I signal and the I signal 56, and mixes the reference Q signal and the Q signal 57. The mixed I signal 56 and the mixed Q signal 57 are added using an adding circuit or the like and output. As a result, the second high frequency signal 52 having the second frequency including the information of the I signal 56 and the Q signal 57 is generated.
 送信用増幅器32は、変調部31により生成された第2の高周波信号52を増幅する。一般にアンテナ11から送信される電波の強度は、アンテナ11に入力される電気信号の強度に応じた値となる。送信用増幅器32は、電波が適正な強度でアンテナ11から送信されるように、第2の高周波信号を増幅するパワーアンプ(PA:Power Amplifier)として機能する。増幅された第2の高周波信号は、通信部10に出力される。 The transmission amplifier 32 amplifies the second high-frequency signal 52 generated by the modulation unit 31. In general, the intensity of a radio wave transmitted from the antenna 11 is a value corresponding to the intensity of an electric signal input to the antenna 11. The transmission amplifier 32 functions as a power amplifier (PA) that amplifies the second high-frequency signal so that the radio wave is transmitted from the antenna 11 with an appropriate intensity. The amplified second high frequency signal is output to the communication unit 10.
 送信用増幅器32としては、例えばCMOS回路等を用いた増幅器が用いられる。またアンテナ11の受信感度等に応じて、送信用増幅器32のゲインや雑音指数等が適宜設定されてよい。 As the transmission amplifier 32, for example, an amplifier using a CMOS circuit or the like is used. Further, the gain, noise figure, and the like of the transmission amplifier 32 may be appropriately set according to the reception sensitivity of the antenna 11 and the like.
 本実施形態において、送信部30は、第1の基準信号とは異なる周波数の第2の基準信号に基づいて、狭域通信用の電波の送信に用いられる送信信号を生成する生成部に相当する。 In the present embodiment, the transmission unit 30 corresponds to a generation unit that generates a transmission signal used for transmission of radio waves for narrow area communication based on a second reference signal having a frequency different from that of the first reference signal. .
 局部発振器40は、DSRC方式の電波の送受信に応じて、受信部20への第1の基準信号41の供給、及び送信部30への第2の基準信号42の供給を切替えて実行する。すなわち、第1の周波数の電波が受信される場合には、第1の基準信号41を受信部20に供給し、第2の周波数の電波が送信される場合には、第2の基準信号42を送信部に供給する。本実施形態では、局部発振器40は、供給部に相当する。 The local oscillator 40 switches between the supply of the first reference signal 41 to the reception unit 20 and the supply of the second reference signal 42 to the transmission unit 30 according to transmission / reception of the DSRC radio wave. That is, when a radio wave having the first frequency is received, the first reference signal 41 is supplied to the receiving unit 20, and when a radio wave having the second frequency is transmitted, the second reference signal 42 is supplied. Is supplied to the transmitter. In the present embodiment, the local oscillator 40 corresponds to a supply unit.
 例えば、無線通信装置100が受信/送信を行なう状態にある場合、コントローラからは受信状態/送信状態を表す制御信号が出力される。局部発振器40は、通信状態信号に基づいて、受信状態では第1の基準信号41を発振し、送信状態では第2の基準信号42を発振する。これにより、第1及び第2の基準信号41及び42の供給を切替えることが可能となる。なお、第1及び第2の基準信号41及び42の供給を切替える方法等は限定されず、任意の方法が用いられてよい。 For example, when the wireless communication apparatus 100 is in a state of performing reception / transmission, a control signal indicating the reception state / transmission state is output from the controller. Based on the communication state signal, the local oscillator 40 oscillates the first reference signal 41 in the reception state and oscillates the second reference signal 42 in the transmission state. Thereby, the supply of the first and second reference signals 41 and 42 can be switched. The method for switching the supply of the first and second reference signals 41 and 42 is not limited, and an arbitrary method may be used.
 局部発振器40としては、第1及び第2の基準信号41及び42を切替えて発振可能な位相同期(PLL:Phase lock loop)回路が用いられる。図1に示すようにPLL回路には、LO基準クロック信号43が入力される。LO基準クロック信号43は、水晶振動子等を用いて生成された周波数安定度の高いクロック信号である。 As the local oscillator 40, a phase lock (PLL: Phase lock loop) circuit capable of oscillating by switching the first and second reference signals 41 and 42 is used. As shown in FIG. 1, the LO reference clock signal 43 is input to the PLL circuit. The LO reference clock signal 43 is a clock signal with high frequency stability generated using a crystal resonator or the like.
 PLL回路では、フィードバック制御が実行され、LO基準クロック信号43を基準とする周期的な信号が生成される。このフィードバック制御に用いられる信号等を適宜操作することで、生成される信号の周波数を変更することが可能である。 In the PLL circuit, feedback control is executed, and a periodic signal based on the LO reference clock signal 43 is generated. It is possible to change the frequency of the generated signal by appropriately manipulating the signal used for this feedback control.
 例えば、無線通信装置100の通信状態に応じて、フィードバック制御に用いられる信号を変更することで、互いに周波数の異なる第1及び第2の基準信号41及び42を切替えて生成することが可能となる。なお、局部発振器40の具体的な構成は限定されず、第1及び第2の基準信号41及び42を切替えて供給可能な任意の発振回路等が用いられてよい。 For example, by changing the signal used for feedback control according to the communication state of the wireless communication device 100, the first and second reference signals 41 and 42 having different frequencies can be switched and generated. . The specific configuration of the local oscillator 40 is not limited, and an arbitrary oscillation circuit or the like that can switch and supply the first and second reference signals 41 and 42 may be used.
 コントローラは、例えばCPU、ROM、RAM、及びHDD等のコンピュータの構成に必要なハードウェアを有する。CPUがROM等に予め記録されているプログラムをRAMにロードして実行することにより、本技術に係る無線通信方法が実行される。コントローラの具体的な構成は限定されず、例えばFPGA(Field Programmable Gate Array)、やASIC(Application Specific Integrated Circuit)等のデバイスが用いられてもよい。 The controller has hardware necessary for the configuration of the computer, such as a CPU, ROM, RAM, and HDD. The wireless communication method according to the present technology is executed when the CPU loads a program recorded in advance in the ROM or the like to the RAM and executes the program. The specific configuration of the controller is not limited, and a device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used.
 プログラムは、例えば種々の記録媒体を介して無線通信装置100にインストールされる。あるいは、インターネット等を介してプログラムのインストールが実行されてもよい。 The program is installed in the wireless communication apparatus 100 via various recording media, for example. Alternatively, program installation may be executed via the Internet or the like.
 コントローラは、無線通信装置100全体の動作を制御する。コントローラにより例えば通信状態に応じて、受信状態及び送信状態を表す制御信号が生成される。生成された制御信号に基づいて、スイッチ素子13及び局部発振器40等の動作が制御される。 The controller controls the overall operation of the wireless communication device 100. For example, the controller generates a control signal indicating the reception state and the transmission state in accordance with the communication state. Based on the generated control signal, the operations of the switch element 13 and the local oscillator 40 are controlled.
 またコントローラは、DSRC方式で送受信される通信データを処理する。例えば、受信されたデータに基づいて送信用のデータが生成される。送信用のデータは、ベースバンド信号(第2のI/Q信号58)として、送信部30に出力される。 Also, the controller processes communication data transmitted / received by the DSRC method. For example, data for transmission is generated based on the received data. The data for transmission is output to the transmission unit 30 as a baseband signal (second I / Q signal 58).
 図2は、DSRC方式の通信に用いられるチャネルの関係を模式的に示す図である。DSRC方式では、通信周波数ごとにチャネルが設定されており、周波数差が40MHzとなるチャネルのペアを用いて下り通信及び上り通信が実行される。また、各周波数のチャネルの占有帯域幅は4.4MHzとなるように規定される。 FIG. 2 is a diagram schematically showing the relationship of channels used for DSRC communication. In the DSRC method, a channel is set for each communication frequency, and downlink communication and uplink communication are executed using a channel pair having a frequency difference of 40 MHz. In addition, the occupied bandwidth of each frequency channel is defined to be 4.4 MHz.
 DSRC方式では、下り通信用に5775MHz、5780MHz、…、5805MHzの5MHzおきの7つのチャネルが規定されている。また上り通信用に5815MHz、5820MHz、…、5845MHzの5MHzおきのチャネルが規定されている。これらのチャネルのうち、周波数差が40MHzとなる下り通信及び上り通信のチャネルがペアとなる。 In the DSRC system, seven channels every 5 MHz of 5775 MHz, 5780 MHz,..., 5805 MHz are defined for downlink communication. In addition, 5815 MHz, 5820 MHz,..., 5845 MHz every 5 MHz channels are defined for uplink communication. Among these channels, a downlink communication channel and an uplink communication channel having a frequency difference of 40 MHz are paired.
 従って図2に示すように、DSRC方式では、下り通信及び上り通信のチャネルの7つのペアA~ペアGが用意される。そのうちの1つのペアを使って基地局等と無線通信装置100との通信が行なわれる。例えばペアAでは、5775MHzの下り通信のチャネルと、5815MHzの上り通信のチャネルとが用いられることになる。なお、基地局はチャネルを固定して通信を行い、無線通信装置100は基地局が使用するチャネルに合わせて通信を行なう。 Therefore, as shown in FIG. 2, in the DSRC system, seven pairs A to G of channels for downlink communication and uplink communication are prepared. Communication between the base station or the like and the wireless communication apparatus 100 is performed using one of these pairs. For example, in the pair A, a 5775 MHz downlink communication channel and a 5815 MHz uplink communication channel are used. Note that the base station performs communication with a fixed channel, and the radio communication apparatus 100 performs communication according to the channel used by the base station.
 例えば、基地局が設置された路側の近傍を、無線通信装置100を搭載した車両が通過するとする。はじめ基地局が使用するチャネル(下り通信用チャネル)は不明であり、無線通信装置100はチャネルの探索を実行する。下り通信用チャネルが選定されると、無線通信装置100は選定されたチャネルを受信チャネルとして設定し、受信チャネルとペアとなるチャネルを送信チャネルとして設定する。 For example, it is assumed that a vehicle equipped with the wireless communication device 100 passes through the vicinity of the roadside where the base station is installed. Initially, the channel (downlink communication channel) used by the base station is unknown, and the wireless communication device 100 searches for a channel. When a downlink communication channel is selected, radio communication apparatus 100 sets the selected channel as a reception channel, and sets a channel paired with the reception channel as a transmission channel.
 受信及び送信チャネルとして、例えば5790MHz及び5830MHz(ペアD)が設定されたとする。無線通信装置100が送信状態にある場合、局部発振器40は第2の基準信号として5830MHzの周波数の信号を発振し、送信部30に供給する。送信部30では、変調部31により、5830MHzの第2の基準信号とベースバンド信号とが混合され、5830MHzの第2の高周波信号52が生成される。生成された第2の高周波信号は、通信部10に出力される。 Suppose that, for example, 5790 MHz and 5830 MHz (pair D) are set as reception and transmission channels. When the wireless communication device 100 is in a transmission state, the local oscillator 40 oscillates a signal having a frequency of 5830 MHz as the second reference signal and supplies the signal to the transmission unit 30. In the transmission unit 30, the modulation unit 31 mixes the 5830 MHz second reference signal and the baseband signal to generate a 5830 MHz second high-frequency signal 52. The generated second high frequency signal is output to the communication unit 10.
 通信部10により、第2の高周波信号52に基づいて、5830MHzの電波が送信される。電波が送信されると、無線通信装置100は、基地局からの応答を受信する受信状態に移行される。例えばスイッチ素子13は、通信部10の接続先を送信部30から受信部20に切替える。また局部発振器40は、第2の基準信号42から第1の基準信号41に発振周波数を切替える。 The communication unit 10 transmits a radio wave of 5830 MHz based on the second high-frequency signal 52. When the radio wave is transmitted, the wireless communication device 100 shifts to a reception state in which a response from the base station is received. For example, the switch element 13 switches the connection destination of the communication unit 10 from the transmission unit 30 to the reception unit 20. The local oscillator 40 switches the oscillation frequency from the second reference signal 42 to the first reference signal 41.
 基地局から、無線通信装置100に対する応答として5790MHzの電波が送信される。通信部10により、5775MHzの電波が受信され、5790MHzの第1の高周波信号51が生成される。生成された第1の高周波信号51は、受信部20に入力される。 A 5790 MHz radio wave is transmitted from the base station as a response to the wireless communication apparatus 100. The communication unit 10 receives a 5775 MHz radio wave and generates a first high frequency signal 51 of 5790 MHz. The generated first high frequency signal 51 is input to the receiving unit 20.
 受信部20では、直交ミクサ22により、第1の基準信号41と第1の高周波信号51とが混合され、第1の高周波信号51は、中間周波数を有する第1のI/Q信号55に変換される。第1のI/Q信号55は、後段の回路により復調され、基地局からの応答内容がコントローラに出力される。このように、無線通信装置100では、下り通信及び上り通信のチャネルのペアを用いて基地局との通信が行なわれる。なお、上記ではペアDのチャネルを例に挙げたが、もちろん他のチャネルのペアが用いられてもよい。 In the receiving unit 20, the first reference signal 41 and the first high frequency signal 51 are mixed by the orthogonal mixer 22, and the first high frequency signal 51 is converted into a first I / Q signal 55 having an intermediate frequency. Is done. The first I / Q signal 55 is demodulated by a subsequent circuit, and the response content from the base station is output to the controller. As described above, in the wireless communication apparatus 100, communication with the base station is performed using a channel pair of downlink communication and uplink communication. In the above description, the channel of pair D is taken as an example, but other channel pairs may of course be used.
 図3は、チャネルの周波数関係を示す模式図である。図3では、無線通信装置100が受信用に用いる受信チャネル60(下り通信のチャネル)と、その次隣接チャネル61a及び61bとが模式的に図示されている。なお図中の横軸は周波数であり、受信チャネル60の中心周波数が0Hzとなるように目盛が設定されている。 FIG. 3 is a schematic diagram showing channel frequency relationships. In FIG. 3, a reception channel 60 (downlink communication channel) used by the wireless communication apparatus 100 for reception and the next adjacent channels 61 a and 61 b are schematically illustrated. Note that the horizontal axis in the figure is the frequency, and the scale is set so that the center frequency of the reception channel 60 is 0 Hz.
 次隣接チャネル61a及び61bは、受信チャネル60の低周波側及び高周波側の2番目に近いチャネルである。例えば受信チャネル60が図2に示すペアDの5790MHzのチャネルであった場合、次隣接チャネル61a及び61bは、5780MHz及び5800MHzのチャネルとなる。すなわち、次隣接チャネル61a及び61bは、受信チャネル60から低周波側及び高周波側に10MHz離れたチャネルとなる。 The next adjacent channels 61a and 61b are the second closest channels on the low frequency side and the high frequency side of the reception channel 60. For example, when the reception channel 60 is the 5790 MHz channel of the pair D shown in FIG. 2, the next adjacent channels 61 a and 61 b are 5780 MHz and 5800 MHz channels. That is, the next adjacent channels 61a and 61b are channels separated from the reception channel 60 by 10 MHz on the low frequency side and the high frequency side.
 DSRC方式では、最も近くに隣接するチャネル間での干渉や漏洩電力による通信エラー等を回避・低減するため、最隣接する2つのチャネルの使用には制限が設けられている。このため、最隣接する2つのチャネルが同時に受信されることは少ない。従って、受信チャネル60にとっては、2番目に近い次隣接チャネル61a及び61bで行なわれる通信等が主要な妨害波となる可能性が高い。 In the DSRC method, in order to avoid or reduce communication errors due to interference between adjacent channels or leakage power, there are restrictions on the use of the two adjacent channels. For this reason, the two adjacent channels are rarely received at the same time. Therefore, for the reception channel 60, there is a high possibility that communication performed in the next closest adjacent channels 61a and 61b becomes a main interference wave.
 例えば、受信チャネル60の電波に加え、次隣接チャネル61a及び61b等の妨害波が受信されることが考えられる。この場合、通信部10からは、受信チャネル60の周波数成分と次隣接チャネル61a及び61bの周波数成分とを含む信号が出力される。従って通信部10からは、第1の高周波信号51(受信チャネル60の周波数成分)と、妨害信号62(次隣接チャネル61a及び61bの周波数成分)とを含む信号が出力されることになる。 For example, in addition to the radio wave of the reception channel 60, it is conceivable that interference waves of the next adjacent channels 61a and 61b are received. In this case, the communication unit 10 outputs a signal including the frequency component of the reception channel 60 and the frequency components of the next adjacent channels 61a and 61b. Therefore, the communication unit 10 outputs a signal including the first high-frequency signal 51 (frequency component of the reception channel 60) and the interference signal 62 (frequency component of the next adjacent channels 61a and 61b).
 第1の高周波信号51は、直交ミクサ22により第1の基準信号41と混合され、受信チャネル60と次隣接チャネル61a及び61bとの周波数成分がそれぞれ周波数変換される。この結果、受信チャネル60の中心は中間周波数にシフトし、次隣接チャネル61a及び61bの各中心は低周波側及び高周波側に中間周波数から10MHz離れた周波数にそれぞれシフトする。すなわち、各チャネルの周波数成分は、第1の基準信号41の周波数だけ低周波側に一律にシフトされる。 The first high frequency signal 51 is mixed with the first reference signal 41 by the orthogonal mixer 22, and the frequency components of the reception channel 60 and the next adjacent channels 61a and 61b are frequency-converted, respectively. As a result, the center of the reception channel 60 is shifted to the intermediate frequency, and the centers of the next adjacent channels 61a and 61b are shifted to a frequency 10 MHz away from the intermediate frequency on the low frequency side and the high frequency side, respectively. That is, the frequency component of each channel is uniformly shifted to the lower frequency side by the frequency of the first reference signal 41.
 低周波側にシフトされた各チャネルの周波数成分は、受信部20のバンドパスフィルタ23に入力される。バンドパスフィルタ23の第1の帯域は、受信チャネル60の周波数成分を抽出して、次隣接チャネル61a及び61bの周波数成分を規制するように設定される。すなわち、バンドパスフィルタ23は、中間周波数から10MHz離れた妨害信号62(次隣接チャネル61a及び61bの周波数成分)を除去するように構成される。 The frequency component of each channel shifted to the low frequency side is input to the band pass filter 23 of the receiving unit 20. The first band of the bandpass filter 23 is set so as to extract the frequency component of the reception channel 60 and regulate the frequency components of the next adjacent channels 61a and 61b. That is, the band pass filter 23 is configured to remove the interference signal 62 (frequency components of the next adjacent channels 61a and 61b) that is 10 MHz away from the intermediate frequency.
 一般に、フィルタの通過帯域の幅が一定である場合には、通過帯域が設定される周波数が低いほどフィルタを容易に構成することが可能である。例えば数十MHzの周波数領域で10MHzの通過帯域を抽出する場合、急峻なバンドパス特性を持った外部フィルタ等を設ける必要が生じる場合がある。一方で、数MHzの周波数領域で10MHzの通過帯域を抽出する場合、集積回路内に構成された内部フィルタ等を用いて妨害信号を除去することが可能となる。 Generally, when the width of the pass band of the filter is constant, the filter can be easily configured as the frequency at which the pass band is set is lower. For example, when a 10 MHz pass band is extracted in a frequency range of several tens of MHz, it may be necessary to provide an external filter or the like having a steep band pass characteristic. On the other hand, when a 10 MHz pass band is extracted in a frequency region of several MHz, it is possible to remove an interference signal using an internal filter or the like configured in the integrated circuit.
 上記したように、本実施形態では、中間周波数を制御することが可能である。従って中間周波数の周波数を低い周波数領域に設定することで、バンドパスフィルタ23の通過帯域(第1の帯域)も低い周波数領域に設定することが可能となる。これにより、バンドパスフィルタ23の構成を簡素化することが可能となる。この結果、例えば、外部フィルタ等が不要となり、装置を小型化することが可能となる。 As described above, in this embodiment, the intermediate frequency can be controlled. Accordingly, by setting the frequency of the intermediate frequency in the low frequency region, the pass band (first band) of the bandpass filter 23 can be set in the low frequency region. As a result, the configuration of the bandpass filter 23 can be simplified. As a result, for example, an external filter or the like becomes unnecessary, and the apparatus can be downsized.
 本実施形態では、局部発振器40により、中間周波数が、第1の高周波信号51及び第2の高周波信号の周波数差よりも小さくなるように、第1の基準信号の周波数が制御される。具体的には、第1の基準信号41は、中間周波数が40MHzよりも小さい値となるように設定される。 In this embodiment, the frequency of the first reference signal is controlled by the local oscillator 40 so that the intermediate frequency is smaller than the frequency difference between the first high-frequency signal 51 and the second high-frequency signal. Specifically, the first reference signal 41 is set so that the intermediate frequency becomes a value smaller than 40 MHz.
 中間周波数の値が小さく設定されるため、バンドパスフィルタ23の通過帯域である第1の帯域も、低い周波数領域に設定される。すなわち第1の帯域の中心周波数は、40MHzよりも小さい周波数に設定される。これにより、例えばバンドパスフィルタ23を内部フィルタとして構成することが可能となり、装置を十分に小型化することが可能となる。 Since the value of the intermediate frequency is set small, the first band which is the pass band of the band pass filter 23 is also set in the low frequency region. That is, the center frequency of the first band is set to a frequency smaller than 40 MHz. Thereby, for example, the band-pass filter 23 can be configured as an internal filter, and the apparatus can be sufficiently downsized.
 直交ミクサ22から出力される受信チャネル60の周波数成分と次隣接チャネル61a及び61bの各周波数成分との周波数差は、中間周波数の値に係らず10MHzのままである。このため、中間周波数の値を小さくした場合でも、バンドパスフィルタ23の通過帯域(第1の帯域)の幅はほとんど変更されない。従って、中間周波数の値が小さいほど、通過帯域が設定される周波数も低くなり、受信チャネル60の周波数成分を容易に抽出することが可能となる。 The frequency difference between the frequency component of the reception channel 60 output from the orthogonal mixer 22 and each frequency component of the next adjacent channels 61a and 61b remains at 10 MHz regardless of the value of the intermediate frequency. For this reason, even when the value of the intermediate frequency is reduced, the width of the pass band (first band) of the band pass filter 23 is hardly changed. Therefore, the smaller the value of the intermediate frequency, the lower the frequency at which the pass band is set, and the frequency component of the reception channel 60 can be easily extracted.
 図4は、直交ミクサ22による中間周波数への変換の一例を示す模式図である。図4A~4Cには、直交ミクサ22により周波数がシフトされた受信チャネル60と次隣接チャネル61a及び61bとが模式的に示されている。 FIG. 4 is a schematic diagram showing an example of conversion to an intermediate frequency by the orthogonal mixer 22. 4A to 4C schematically show the reception channel 60 and the next adjacent channels 61a and 61b whose frequencies are shifted by the orthogonal mixer 22. FIG.
 中間周波数の値を下げていくと、周波数がマイナスとなる周波数成分が生じる。マイナスの周波数は、例えば混合器(直交ミクサ22)での周波数の減算によって生じる周波数である。例えば周波数f1の信号と、f1よりも大きい周波数f2の信号とを混合すると、2つの信号の周波数差(f1-f2)は見かけ上マイナスとなる。この場合、混合器からは、2つの信号の周波数差の絶対値|f1-f2|の周波数成分が出力される。この周波数成分は、0Hzを基準に折り返された成分と見做すことが可能であり、イメージ妨害等の原因となる。 周波 数 When the value of the intermediate frequency is lowered, a frequency component with a negative frequency is generated. The negative frequency is, for example, a frequency generated by frequency subtraction in the mixer (orthogonal mixer 22). For example, when a signal having a frequency f1 and a signal having a frequency f2 higher than f1 are mixed, the frequency difference (f1-f2) between the two signals is apparently negative. In this case, the frequency component of the absolute value | f1-f2 | of the frequency difference between the two signals is output from the mixer. This frequency component can be regarded as a component folded with 0 Hz as a reference, which causes image interference and the like.
 図4Aに示すように、例えば中間周波数を10MHzに設定した場合、低周波側の次隣接チャネル61aの中心周波数は0Hzとなる。この場合、次隣接チャネル61aのマイナスの周波数成分は、0Hzを基準に折り返されてプラスの周波数として検出される。従って次隣接チャネル61aに対応する妨害信号62は、0Hzから2.2MHzまでの周波数成分を有する信号となる。 As shown in FIG. 4A, for example, when the intermediate frequency is set to 10 MHz, the center frequency of the next adjacent channel 61a on the low frequency side is 0 Hz. In this case, the negative frequency component of the next adjacent channel 61a is folded back on the basis of 0 Hz and detected as a positive frequency. Accordingly, the interference signal 62 corresponding to the next adjacent channel 61a is a signal having a frequency component from 0 Hz to 2.2 MHz.
 このように、中間周波数の値を下げていくと、次隣接チャネル61aの妨害信号62等が0Hzで折り返されることになる。中間周波数の値によっては、折り返された妨害信号62が受信チャネル60と重なることもあり得る。この場合、後段のバンドパスフィルタ23等を用いて妨害信号62を除去することは難しく、通信エラーが生じる可能性がある。 As described above, when the value of the intermediate frequency is lowered, the interference signal 62 and the like of the next adjacent channel 61a are turned back at 0 Hz. Depending on the value of the intermediate frequency, the folded interference signal 62 may overlap the reception channel 60. In this case, it is difficult to remove the interference signal 62 by using the subsequent bandpass filter 23 and the like, and a communication error may occur.
 本実施形態では、中間周波数の絶対値が略2.2MHz以上2.8MHz以下となるように設定される。すなわち、中間周波数をFiとすると、-2.8MHz≦Fi≦-2.2MHzまたは2.2MHz≦Fi≦2.8MHzとなるように、中間周波数Fiが設定される。 In the present embodiment, the absolute value of the intermediate frequency is set to be approximately 2.2 MHz or more and 2.8 MHz or less. That is, if the intermediate frequency is Fi, the intermediate frequency Fi is set so that −2.8 MHz ≦ Fi ≦ −2.2 MHz or 2.2 MHz ≦ Fi ≦ 2.8 MHz.
 例えば、中間周波数が2.2MHzに設定された場合、受信チャネル60の帯域は0Hz~4.4MHzとなる。また低周波側の次隣接チャネル61aは0Hzで折り返され、その帯域は、受信チャネル60とは重ならない。これにより、受信チャネル60に折り返しが生じない最小の周波数まで、中間周波数を下げることが可能となる。 For example, when the intermediate frequency is set to 2.2 MHz, the band of the reception channel 60 is 0 Hz to 4.4 MHz. Further, the next adjacent channel 61 a on the low frequency side is folded back at 0 Hz, and the band does not overlap with the reception channel 60. As a result, the intermediate frequency can be lowered to the minimum frequency at which no aliasing occurs in the reception channel 60.
 また例えば、中間周波数が2.8MHzに設定された場合、受信チャネル60の帯域の上限周波数は5MHzとなる。また低周波側の次隣接チャネル61aは0Hzで折り返され、その帯域の下限周波数は5MHzとなる。従って受信チャネル60と次隣接チャネル61aとは5MHzで各帯域が接触することになる。この場合でも各チャネルの帯域は重ならない。 For example, when the intermediate frequency is set to 2.8 MHz, the upper limit frequency of the band of the reception channel 60 is 5 MHz. Further, the next adjacent channel 61a on the low frequency side is folded at 0 Hz, and the lower limit frequency of the band is 5 MHz. Therefore, the reception channel 60 and the next adjacent channel 61a come into contact with each other at 5 MHz. Even in this case, the bandwidth of each channel does not overlap.
 中間周波数が2.2MHz以上2.8MHz以下の範囲にある場合には、低周波側の次隣接チャネル61aが受信チャネル60に重なることはない。これによりイメージ妨害等の影響を回避しつつ、中間周波数の値を十分に下げることが可能となる。この結果、バンドパスフィルタ23の構成を大幅に簡素化することが可能となり、装置を十分に小型化することが可能となる。 When the intermediate frequency is in the range of 2.2 MHz to 2.8 MHz, the next adjacent channel 61 a on the low frequency side does not overlap the reception channel 60. This makes it possible to sufficiently reduce the value of the intermediate frequency while avoiding the influence of image interference or the like. As a result, the configuration of the bandpass filter 23 can be greatly simplified, and the apparatus can be sufficiently downsized.
 なお、中間周波数がマイナスである場合には、受信チャネル60が0Hzを基準に折り返されることになる。この場合、中間周波数を-2.8MHz以上-2.2MHz以下に設定することで、高周波側の次隣接チャネル61bと重ならないように、受信チャネル60を折り返すことが可能である。これにより、バンドパスフィルタ23の構成を大幅に簡素化することが可能となる。 Note that when the intermediate frequency is negative, the reception channel 60 is folded back with respect to 0 Hz. In this case, by setting the intermediate frequency to be −2.8 MHz or more and −2.2 MHz or less, the reception channel 60 can be turned back so as not to overlap with the next adjacent channel 61b on the high frequency side. Thereby, the configuration of the bandpass filter 23 can be greatly simplified.
 また本実施形態では、中間周波数の絶対値が略2.5MHzに設定される。すなわち中間周波数の値が+2.5MHzまたは-2.5MHzとなるように、受信チャネル60の周波数に合わせて第1の基準信号が設定される。図4B及び図4Cには、中間周波数が+2.5MHz及び-2.5MHzである場合の各チャネルの周波数関係が示されている。 In this embodiment, the absolute value of the intermediate frequency is set to approximately 2.5 MHz. That is, the first reference signal is set in accordance with the frequency of the reception channel 60 so that the value of the intermediate frequency is +2.5 MHz or −2.5 MHz. 4B and 4C show the frequency relationship of each channel when the intermediate frequency is +2.5 MHz and −2.5 MHz.
 例えば受信チャネル60が5790MHzであったとする。この場合、第1の基準信号41の周波数を5787.5MHzに設定することで、中間周波数は2.5MHzとなる。また第1の基準信号41の周波数を5792.5MHzに設定することで、中間周波数は-2.5MHzとなる。他の受信チャネル60が選定された場合には、中間周波数の絶対値が略2.5MHzとなるように、選定された受信チャネル60の周波数に合わせて第1の基準信号41が適宜設定される。 For example, assume that the reception channel 60 is 5790 MHz. In this case, by setting the frequency of the first reference signal 41 to 5787.5 MHz, the intermediate frequency becomes 2.5 MHz. Further, by setting the frequency of the first reference signal 41 to 5792.5 MHz, the intermediate frequency becomes −2.5 MHz. When another reception channel 60 is selected, the first reference signal 41 is appropriately set according to the frequency of the selected reception channel 60 so that the absolute value of the intermediate frequency is approximately 2.5 MHz. .
 図4Bに示すように、受信チャネル60が+2.5MHzに変換されると、低周波側の次隣接チャネル61aは、-7.5MHzに変換される。従って、低周波側の次隣接チャネル61aは+7.5MHzを中心周波数としたチャネルに折り返される。従って直交ミクサ22からは、受信チャネル60、低周波側の次隣接チャネル61a、及び高周波側の次隣接チャネル61bの各周波数成分が5MHz間隔でこの順番に並んだ信号が出力される。 As shown in FIG. 4B, when the reception channel 60 is converted to +2.5 MHz, the next adjacent channel 61a on the low frequency side is converted to -7.5 MHz. Therefore, the next adjacent channel 61a on the low frequency side is folded back into a channel having a center frequency of +7.5 MHz. Therefore, the orthogonal mixer 22 outputs a signal in which the frequency components of the reception channel 60, the low frequency side next adjacent channel 61a, and the high frequency side next adjacent channel 61b are arranged in this order at intervals of 5 MHz.
 図4Cに示すように、受信チャネル60が-2.5MHzに変換されると、受信チャネル60は2.5MHzを中心周波数としたチャネルに折り返される。また低周波側の次隣接チャネル61aは、-12.5MHzから+12.5MHzに折り返される。従って直交ミクサ22からは、受信チャネル60、高周波側の次隣接チャネル61b、及び低周波側の次隣接チャネル61aの各周波数成分が5MHz間隔でこの順番に並んだ信号が出力される。 As shown in FIG. 4C, when the reception channel 60 is converted to −2.5 MHz, the reception channel 60 is folded back into a channel having a center frequency of 2.5 MHz. Further, the next adjacent channel 61a on the low frequency side is folded from -12.5 MHz to +12.5 MHz. Therefore, the orthogonal mixer 22 outputs a signal in which the frequency components of the reception channel 60, the high frequency side next adjacent channel 61b, and the low frequency side next adjacent channel 61a are arranged in this order at intervals of 5 MHz.
 中間周波数の絶対値を略2.5MHzに設定するための第1の基準信号41は、例えば受信チャネルを探索する回路等を用いて容易に生成することが可能である。上記したように、下り通信のチャネルの間隔は5MHzであり、受信チャネルを探索する回路は5MHzステップで周波数を変更する。例えば周波数を1/2に分周する分周期等を用いることで、周波数のステップを2.5MHzに容易に変更することが可能であり、第1の基準信号41を容易に生成することが可能である。 The first reference signal 41 for setting the absolute value of the intermediate frequency to approximately 2.5 MHz can be easily generated using, for example, a circuit for searching for a reception channel. As described above, the downlink communication channel interval is 5 MHz, and the circuit for searching for the reception channel changes the frequency in 5 MHz steps. For example, the frequency step can be easily changed to 2.5 MHz by using a division period that divides the frequency by 1/2, and the first reference signal 41 can be easily generated. It is.
 このように、中間周波数の絶対値が略2.5MHzに設定されている場合、第1の基準信号を容易に供給することが可能である。これにより、イメージ妨害等の影響を回避しつつ、十分に小さい中間周波数を容易に実現することが可能となる。この結果、部品点数の少ない小型の装置を提供することが可能となる。 Thus, when the absolute value of the intermediate frequency is set to approximately 2.5 MHz, the first reference signal can be easily supplied. Thereby, it is possible to easily realize a sufficiently small intermediate frequency while avoiding the influence of image interference or the like. As a result, it is possible to provide a small apparatus with a small number of parts.
 上記では、中間周波数(IF:Intermediate Frequency)が、第1の高周波信号51及び第2の高周波信号の周波数差(受信チャネル及び送信チャネルの周波数差)よりも小さい値に設定された。このような中間周波数を低い値に設定するLow-IF方式では、例えば復調までの周波数変換の回数を減らすことが可能であり、部品点数を抑えることが可能である。 In the above, the intermediate frequency (IF: Intermediate Frequency) is set to a value smaller than the frequency difference between the first high-frequency signal 51 and the second high-frequency signal (frequency difference between the reception channel and the transmission channel). In such a Low-IF method in which the intermediate frequency is set to a low value, for example, the number of frequency conversions until demodulation can be reduced, and the number of parts can be reduced.
 本技術は、Low-IF方式のみならず、ゼロ-IF方式に適用することも可能である。ゼロ-IF方式では、中間周波数が略ゼロとなるように設定され、第1の高周波信号51からベースバンド信号を直接復調するダイレクトコンバージョンが実行される。図5に示すように、直交ミクサ22の後段にローパスフィルタ(LPF:Low Pass Filter)24を備えることで、ゼロ-IF方式での通信を実行することが可能である。 This technology can be applied not only to the Low-IF method but also to the Zero-IF method. In the zero-IF scheme, the intermediate frequency is set to be substantially zero, and direct conversion for directly demodulating the baseband signal from the first high-frequency signal 51 is executed. As shown in FIG. 5, by providing a low-pass filter (LPF: Low Pass Filter) 24 at the subsequent stage of the orthogonal mixer 22, it is possible to execute communication in the zero-IF system.
 ゼロ-IF方式では、局部発振器40は、中間周波数が略ゼロとなるように、第1の基準信号41の周波数を制御する。例えば第1の基準信号41を受信チャネル60と略同様の周波数に設定することで、中間周波数を略ゼロにすることが可能である。無線通信装置200が受信状態にある場合、局部発振器40により、受信チャネル60と同様の周波数を有する第1の基準信号41が発振される。発振された第1の基準信号41は直交ミクサ22に供給される。 In the zero-IF method, the local oscillator 40 controls the frequency of the first reference signal 41 so that the intermediate frequency becomes substantially zero. For example, by setting the first reference signal 41 to a frequency substantially the same as that of the reception channel 60, the intermediate frequency can be made substantially zero. When the wireless communication device 200 is in a reception state, the first reference signal 41 having the same frequency as that of the reception channel 60 is oscillated by the local oscillator 40. The oscillated first reference signal 41 is supplied to the quadrature mixer 22.
 直交ミクサ22により、第1の高周波信号51と受信チャネル60と同様の周波数を有する第1の基準信号41とが混合される。これにより、直交ミクサ22からは、互いに同様の周波数(受信チャネル60の周波数)の差及び和に対応する周波数成分を含む信号が生成される。 The orthogonal mixer 22 mixes the first high-frequency signal 51 and the first reference signal 41 having the same frequency as the reception channel 60. As a result, the orthogonal mixer 22 generates a signal including frequency components corresponding to the difference and sum of the same frequencies (frequency of the reception channel 60).
 第1の高周波信号51と第1の基準信号41との周波数の差は略0Hzであり、その周波数成分はベースバンド信号の成分に相当する。また周波数の和は受信チャネル60の略2倍の周波数となり、その周波数成分は高周波のノイズ成分となる。直交ミクサ22からは、ベースバンド信号の成分及び高周波のノイズ成分を含む信号が、ローパスフィルタ24に出力される。 The frequency difference between the first high-frequency signal 51 and the first reference signal 41 is approximately 0 Hz, and the frequency component corresponds to the component of the baseband signal. The sum of the frequencies is approximately twice the frequency of the reception channel 60, and the frequency component becomes a high frequency noise component. From the orthogonal mixer 22, a signal including a baseband signal component and a high-frequency noise component is output to the low-pass filter 24.
 なお直交ミクサ22では、ベースバンド信号がI信号53及びQ信号54に分けて復調される。上記したように、I信号53及びQ信号54は、互いに位相が直交する基準I信号及び基準Q信号に基づいて復調される。このため、周波数の折り返しに伴うイメージ妨害等の影響を回避して、ベースバンド信号の復調を実現することが可能である。このように、直交ミクサ22は、I/Q信号を復調するI/Q復調器として機能するとも言える。 In the quadrature mixer 22, the baseband signal is demodulated by dividing it into an I signal 53 and a Q signal 54. As described above, the I signal 53 and the Q signal 54 are demodulated based on the reference I signal and the reference Q signal whose phases are orthogonal to each other. For this reason, it is possible to realize the demodulation of the baseband signal while avoiding the influence of the image interference or the like accompanying the frequency folding. Thus, it can be said that the orthogonal mixer 22 functions as an I / Q demodulator that demodulates the I / Q signal.
 ローパスフィルタ24は、内部フィルタとして集積回路内に構成される。ローパスフィルタ24は、中間周波数を含む第2の帯域の周波数成分を通過させ、第2の帯域の上限周波数よりも高い周波数成分を規制する。第2の帯域は、例えば0Hzから上限周波数までの帯域である。本実施形態では、ローパスフィルタ24は、第2の内部フィルタに相当する。 The low-pass filter 24 is configured in the integrated circuit as an internal filter. The low-pass filter 24 passes the frequency component of the second band including the intermediate frequency, and regulates a frequency component higher than the upper limit frequency of the second band. The second band is, for example, a band from 0 Hz to the upper limit frequency. In the present embodiment, the low-pass filter 24 corresponds to a second internal filter.
 第2の帯域の上限周波数は、例えばDSRC方式で用いられるチャネルの周波数に基づいて設定される。例えば図2で説明したように、DSRC方式では、ペアAの下り通信チャネル(5775MHz)が最も低周波のチャネルである。上限周波数として、例えばペアAの下り通信チャネルの周波数よりも低い周波数が設定される。 The upper limit frequency of the second band is set based on the frequency of the channel used in the DSRC method, for example. For example, as described with reference to FIG. 2, in the DSRC system, the pair A downlink communication channel (5775 MHz) is the lowest frequency channel. As the upper limit frequency, for example, a frequency lower than the frequency of the downlink communication channel of pair A is set.
 上限周波数をDSRC方式の最も低周波のチャネルよりも低く設定することで、各チャネルの周波数成分や各チャネルの2倍の周波数を有するノイズ信号等を十分に減衰することが可能となる。これにより、直交ミクサ22から出力されたベースバンド信号を高精度に抽出することが可能となる。なお、上限周波数を設定する方法等は限定されず、例えば後段の回路構成等に応じて上限周波数が適宜設定されてよい。 By setting the upper limit frequency lower than the lowest frequency channel of the DSRC system, it becomes possible to sufficiently attenuate the frequency components of each channel, noise signals having twice the frequency of each channel, and the like. As a result, the baseband signal output from the orthogonal mixer 22 can be extracted with high accuracy. The method for setting the upper limit frequency is not limited. For example, the upper limit frequency may be appropriately set according to the circuit configuration at the subsequent stage.
 抽出されたベースバンド信号は、例えば直接デジタル信号に変換され、コントローラに出力される。このように、ゼロ-IF方式では、ベースバンド信号を直接復調することで、周波数の変換等に用いられる部品等の点数を大幅に減らすことが可能となる。これにより装置を十分に小型化することが可能となる。 The extracted baseband signal is directly converted into a digital signal, for example, and output to the controller. As described above, in the zero-IF method, the baseband signal is directly demodulated, so that the number of components used for frequency conversion and the like can be greatly reduced. As a result, the apparatus can be sufficiently downsized.
 以上、本実施形態に係る無線通信装置100では、互いに異なる周波数を有する第1及び第2の基準信号41及び42が、適宜切替えられて受信部20及び送信部30に供給される。これにより、例えば中間周波数を制御することが可能となり、外部フィルタ等を用いることなくデータの受信が可能となる。この結果、無線通信装置100の小型化を実現することが可能となる。 As described above, in the wireless communication apparatus 100 according to the present embodiment, the first and second reference signals 41 and 42 having different frequencies are appropriately switched and supplied to the reception unit 20 and the transmission unit 30. As a result, for example, the intermediate frequency can be controlled, and data can be received without using an external filter or the like. As a result, the wireless communication device 100 can be reduced in size.
 図6は、比較例としてあげる無線通信装置300の構成例を示す模式図である。DSRC方式での通信方法として、送信側及び受信側の各回路を同一の周波数を有するLO発振信号に基づいて動作させる方法が考えられる。この方法では、送信チャネルの信号を生成するために用いた周波数を使って、受信チャネルの信号が中間周波数に変換される。DSRC方式では、送信チャネルと受信チャネルとの周波数差は40MHzに規定されており、中間周波数は40MHzとなる。 FIG. 6 is a schematic diagram showing a configuration example of a wireless communication apparatus 300 given as a comparative example. As a communication method in the DSRC system, a method of operating each circuit on the transmission side and the reception side based on an LO oscillation signal having the same frequency is conceivable. In this method, the reception channel signal is converted to an intermediate frequency using the frequency used to generate the transmission channel signal. In the DSRC system, the frequency difference between the transmission channel and the reception channel is defined as 40 MHz, and the intermediate frequency is 40 MHz.
 無線通信装置300では、局部発振器340により、受信側の回路(受信部320)と送信側の回路(送信部330)とに同じ周波数のLO発振信号341が出力される。図6に示すように受信部320では、混合器(ミクサ)322により、受信用増幅器321から出力された受信チャネルの信号とLO発振信号341が混合され、40MHzの中間周波数を有するIF信号355が出力される。 In the wireless communication apparatus 300, the local oscillator 340 outputs the LO oscillation signal 341 having the same frequency to the reception-side circuit (reception unit 320) and the transmission-side circuit (transmission unit 330). As shown in FIG. 6, in the receiving unit 320, the mixer 322 mixes the reception channel signal output from the reception amplifier 321 and the LO oscillation signal 341, and generates an IF signal 355 having an intermediate frequency of 40 MHz. Is output.
 中間周波数が40MHzである場合、10MHz離れている次隣接チャネルに対して十分な選択度を確保するためには、急峻なバンドパス特性を持つフィルタが必要となる。このため、図6に示すような外付けのSAW(Surface Acoustic Wave)フィルタ323が必要不可欠となってくる。SAWフィルタ323を外部に設けるため、例えば受信側の回路をチップに収めることは難しくなる。また外付け用の配線や、設置位置の確保等に伴い、回路全体が大きくなってしまうといった問題が生じる。 When the intermediate frequency is 40 MHz, a filter having a steep bandpass characteristic is required to ensure sufficient selectivity for the next adjacent channel separated by 10 MHz. For this reason, an external SAW (Surface Acoustic Wave) filter 323 as shown in FIG. 6 is indispensable. Since the SAW filter 323 is provided outside, for example, it is difficult to fit the receiving side circuit on the chip. In addition, there is a problem that the entire circuit becomes large due to the external wiring and securing the installation position.
 本実施形態に係る無線通信装置100では、局部発振器40により、互いに周波数の異なる第1及び第2の基準信号41及び42が、無線通信装置100の通信状態に合わせて発振される。受信状態では第1の基準信号41が受信部20に供給され、送信状態では第2の基準信号42が送信部30に供給される。このように、通信状態に応じて第1及び第2の基準信号41及び42を切替可能であるため、中間周波数を所望の値に設定することが可能である。 In the wireless communication apparatus 100 according to the present embodiment, the local oscillator 40 oscillates the first and second reference signals 41 and 42 having different frequencies from each other in accordance with the communication state of the wireless communication apparatus 100. In the reception state, the first reference signal 41 is supplied to the reception unit 20, and in the transmission state, the second reference signal 42 is supplied to the transmission unit 30. Thus, since the first and second reference signals 41 and 42 can be switched according to the communication state, the intermediate frequency can be set to a desired value.
 第1の基準信号41の周波数は、中間周波数が第1及び第2の高周波信号51及び52の周波数差である40MHzよりも小さくなるように制御される。中間周波数を低く設定することで、SAWフィルタ等の外部フィルタが不要となる。このため、SAWフィルタ等を設けるための配線や設置面等も不要となり、コストを抑えつつ装置サイズを小さくすることが可能となる。 The frequency of the first reference signal 41 is controlled so that the intermediate frequency is smaller than 40 MHz which is the frequency difference between the first and second high- frequency signals 51 and 52. By setting the intermediate frequency low, an external filter such as a SAW filter becomes unnecessary. For this reason, wiring and installation surfaces for providing a SAW filter or the like are not necessary, and the size of the apparatus can be reduced while suppressing costs.
 また中間周波数の信号をフィルタリングするバンドパスフィルタ23を内部フィルタとして集積回路内に構成することが可能となる。これにより、受信部20をチップ内に収めることが可能となり、装置を十分に小型化することが可能となる。 Further, it becomes possible to configure the band pass filter 23 for filtering the intermediate frequency signal as an internal filter in the integrated circuit. As a result, the receiving unit 20 can be accommodated in the chip, and the apparatus can be sufficiently downsized.
 本実施形態では、中間周波数が略2.5MHzに設定される。これにより、DSRC方式における次隣接チャネル等の周波数成分によって生じるイメージ妨害等を十分に回避することが可能となる。この結果、例えば無線通信装置100のイメージリジェクション比が小さい場合であっても、高精度に通信を行なうことが可能となる。 In this embodiment, the intermediate frequency is set to approximately 2.5 MHz. As a result, it is possible to sufficiently avoid image interference caused by frequency components such as the next adjacent channel in the DSRC system. As a result, for example, even when the image rejection ratio of the wireless communication apparatus 100 is small, communication can be performed with high accuracy.
 <第2の実施形態>
 本技術に係る第2の実施形態の無線通信装置について説明する。これ以降の説明では、上記の実施形態で説明した無線通信装置400における構成及び作用と同様な部分については、その説明を省略又は簡略化する。
<Second Embodiment>
A wireless communication device according to a second embodiment of the present technology will be described. In the following description, the description of the same part as the configuration and operation of the wireless communication apparatus 400 described in the above embodiment will be omitted or simplified.
 図7は、第2の実施形態に係る無線通信装置400の構成例を示す模式図である。無線通信装置400は、通信部410、受信部420、送信部430、局部発振器440、及び分周器460を有する。通信部410は、例えば図1に示す通信部410と同様の構成を有する。 FIG. 7 is a schematic diagram illustrating a configuration example of the wireless communication apparatus 400 according to the second embodiment. The wireless communication device 400 includes a communication unit 410, a reception unit 420, a transmission unit 430, a local oscillator 440, and a frequency divider 460. The communication unit 410 has the same configuration as the communication unit 410 shown in FIG.
 受信部420は、受信用増幅器421、第1の混合器422、直交ミクサ423、及びフィルタ部424を有する。受信用増幅器421は、例えば図1に示す受信部20の受信用増幅器21と同様の構成を有する。受信用増幅器421は、受信チャネルの周波数成分を含む第1の高周波信号451を増幅するLNAとして機能する。 The receiving unit 420 includes a receiving amplifier 421, a first mixer 422, an orthogonal mixer 423, and a filter unit 424. The receiving amplifier 421 has the same configuration as the receiving amplifier 21 of the receiving unit 20 shown in FIG. The reception amplifier 421 functions as an LNA that amplifies the first high-frequency signal 451 including the frequency component of the reception channel.
 第1の混合器422は、受信用増幅器421により増幅された第1の高周波信号451と局部発振器440から供給される第1の基準信号441とを混合する。直交ミクサ423は、第1の混合器422から出力された信号と分周器460から供給される第1の分周信号461とを混合する。このように第1の高周波信号451は、第1の混合器422及び直交ミクサ423により2段階に分けて周波数変換される。 The first mixer 422 mixes the first high-frequency signal 451 amplified by the receiving amplifier 421 and the first reference signal 441 supplied from the local oscillator 440. The quadrature mixer 423 mixes the signal output from the first mixer 422 and the first divided signal 461 supplied from the divider 460. Thus, the first high-frequency signal 451 is frequency-converted in two stages by the first mixer 422 and the orthogonal mixer 423.
 2回の周波数変換により、第1の高周波信号451の周波数は、互いに異なる4つの周波数にそれぞれ変換される。例えば、第1の高周波信号451(受信チャネル)、第1の基準信号、及び第1の分周信号の各周波数をそれぞれfr、fs1、及びfd1とすると、直交ミクサ423からは、fr+fs1+fd1、fr+fs1-fd1、fr-fs1+fd1、及びfr-fs1-fd1の4つの周波数にそれぞれ対応する周波数成分が出力される。 The frequency of the first high-frequency signal 451 is converted into four different frequencies by the frequency conversion twice. For example, assuming that the frequencies of the first high-frequency signal 451 (reception channel), the first reference signal, and the first frequency-divided signal are fr, fs1, and fd1, respectively, the orthogonal mixer 423 sends fr + fs1 + fd1, fr + fs1- Frequency components corresponding to the four frequencies fd1, fr-fs1 + fd1, and fr-fs1-fd1 are output.
 これらの4つの周波数のうち、最も低い周波数(fr-fs1-fd1)が中間周波数となる。このように本実施形態では、第1の混合器422及び直交ミクサ423により、第1の高周波信号451が中間周波数に変換される。 Of these four frequencies, the lowest frequency (fr-fs1-fd1) is the intermediate frequency. As described above, in the present embodiment, the first high-frequency signal 451 is converted into an intermediate frequency by the first mixer 422 and the orthogonal mixer 423.
 フィルタ部424は、直交ミクサ423から出力された信号から、中間周波数の周波数成分を抽出する。フィルタ部424は、例えば、Low-IF方式ではバンドパスフィルタ(BPF)として構成され、ゼロ-IF方式ではローパスフィルタ(LPF)として構成される。フィルタ部424の構成等は限定されず、例えば図1に示すバンドパスフィルタ23や図5に示すローパスフィルタ24等を用いて適宜構成されてよい。 The filter unit 424 extracts the frequency component of the intermediate frequency from the signal output from the orthogonal mixer 423. For example, the filter unit 424 is configured as a band-pass filter (BPF) in the Low-IF scheme, and is configured as a low-pass filter (LPF) in the Zero-IF scheme. The configuration or the like of the filter unit 424 is not limited, and may be appropriately configured using, for example, the bandpass filter 23 illustrated in FIG. 1 or the lowpass filter 24 illustrated in FIG.
 送信部430は、変調部431、第2の混合器432、バンドストップフィルタ433、及び送信用増幅器434を有する。 The transmission unit 430 includes a modulation unit 431, a second mixer 432, a band stop filter 433, and a transmission amplifier 434.
 変調部431は、ベースバンド信号458と分周器460から供給される第2の分周信号462とを混合する。これによりベースバンド信号458は、第2の分周信号462と同様の周波数を有する信号に変調される。第2の混合器432は、変調部431から出力された信号と局部発振器440から供給される第2の基準信号442とを混合する。このようにベースバンド信号458は、変調部431及び第2の混合器432により2段階に分けて周波数変換される。 The modulation unit 431 mixes the baseband signal 458 and the second divided signal 462 supplied from the frequency divider 460. As a result, the baseband signal 458 is modulated into a signal having the same frequency as that of the second divided signal 462. The second mixer 432 mixes the signal output from the modulation unit 431 and the second reference signal 442 supplied from the local oscillator 440. Thus, the baseband signal 458 is frequency-converted in two stages by the modulation unit 431 and the second mixer 432.
 第2の混合器432からは、第2の分周信号462の周波数fd2と第2の基準信号442の周波数fs2の差及び和に対応する周波数成分を含む信号が出力される。本実施形態では、第2の分周信号462と第2の基準信号442との周波数の和(fd2+fs2)が第2の高周波信号452(送信チャネル)の周波数ftとなる。このように本実施形態では、変調部431及び第2の混合器432により、ベースバンド信号に対する第2の分周信号462の混合、及び第2の基準信号442の混合が実行され、第2の高周波信号452が生成される。 The second mixer 432 outputs a signal including a frequency component corresponding to the difference and sum of the frequency fd2 of the second divided signal 462 and the frequency fs2 of the second reference signal 442. In the present embodiment, the sum (fd2 + fs2) of the frequencies of the second frequency-divided signal 462 and the second reference signal 442 becomes the frequency ft of the second high-frequency signal 452 (transmission channel). As described above, in the present embodiment, the modulation unit 431 and the second mixer 432 perform the mixing of the second divided signal 462 and the second reference signal 442 with respect to the baseband signal, and the second reference signal 442 is mixed. A high frequency signal 452 is generated.
 バンドストップフィルタ433は、第3の帯域の周波数成分を規制し、第3の帯域に含まれない周波数成分を通過させる。第3の帯域は、例えば第2の混合器432から出力される信号のうち、第2の分周信号462及び第2の基準信号442の周波数の差に対応する周波数成分を規制し、周波数の和に対応する周波数成分を通過させるように設定される。従って第2の高周波信号452(送信チャネル)の周波数成分は、バンドストップフィルタ433を通過することになる。 The band stop filter 433 regulates the frequency component of the third band and passes the frequency component not included in the third band. The third band regulates the frequency component corresponding to the frequency difference between the second divided signal 462 and the second reference signal 442 among the signals output from the second mixer 432, for example, The frequency component corresponding to the sum is set to pass. Therefore, the frequency component of the second high frequency signal 452 (transmission channel) passes through the band stop filter 433.
 送信用増幅器434は、バンドストップフィルタ433を通過した第2の高周波信号452を増幅する。送信用増幅器434は、例えば図1に示す送信部30の送信用増幅器32と同様の構成を有する。送信用増幅器434は、送信チャネルの周波数成分を含む第2の高周波信号452を増幅するPAとして機能する。 The transmission amplifier 434 amplifies the second high frequency signal 452 that has passed through the band stop filter 433. The transmission amplifier 434 has the same configuration as the transmission amplifier 32 of the transmission unit 30 shown in FIG. The transmission amplifier 434 functions as a PA that amplifies the second high-frequency signal 452 including the frequency component of the transmission channel.
 局部発振器440は、DSRC方式の電波の送受信に応じて、第1の基準信号441と、第1の基準信号441とは異なる周波数の第2の基準信号442を切替えて発振する。第1及び第2の基準信号441及び442は、第1及び第2の混合器422及び432にそれぞれ供給される。また第1及び第2の基準信号441及び442は、分岐点445で分岐されて分周器460に入力される。局部発振器440としては、第1及び第2の基準信号441及び442を切替えて発振可能なPLL回路等が適宜用いられる。 The local oscillator 440 oscillates by switching between the first reference signal 441 and the second reference signal 442 having a frequency different from that of the first reference signal 441 in accordance with transmission / reception of a DSRC radio wave. First and second reference signals 441 and 442 are supplied to first and second mixers 422 and 432, respectively. The first and second reference signals 441 and 442 are branched at a branch point 445 and input to the frequency divider 460. As the local oscillator 440, a PLL circuit or the like that can oscillate by switching the first and second reference signals 441 and 442 is appropriately used.
 分周器460は、局部発振器440により発振された信号(第1及び第2の基準信号441及び442)の周波数を所定の割合で分周する。例えば分周器460は、第1の基準信号441の周波数を所定の割合で分周して第1の分周信号461を生成する。また分周器460は、第2の基準信号442の周波数を所定の割合で分周して第2の分周信号462を生成する。本実施形態では、分周器460は、分周部に相当し、第2の分周信号462は、分周信号に相当する。また本実施形態では、局部発振器440及び分周器460により、供給部が構成される。 The frequency divider 460 divides the frequency of the signals (first and second reference signals 441 and 442) oscillated by the local oscillator 440 at a predetermined ratio. For example, the frequency divider 460 divides the frequency of the first reference signal 441 by a predetermined ratio to generate the first frequency divided signal 461. The frequency divider 460 divides the frequency of the second reference signal 442 by a predetermined ratio to generate a second frequency divided signal 462. In the present embodiment, the frequency divider 460 corresponds to a frequency division unit, and the second frequency division signal 462 corresponds to a frequency division signal. In the present embodiment, the local oscillator 440 and the frequency divider 460 constitute a supply unit.
 周波数を分周する所定の割合(分周比)は、1/2、1/4、及び1/6のいずれかとなるように設定される。このように単純な分周比を用いることで分周器460を容易に構成することが可能となる。図7に示す例では、分周比が1/4の分周器460が用いられる。例えば分周器460に5800MHzの信号が入力された場合、分周器460からは5800/4=1450MHzの周波数を有する信号が出力される。 The predetermined ratio (frequency division ratio) for dividing the frequency is set to be 1/2, 1/4, or 1/6. As described above, the frequency divider 460 can be easily configured by using a simple frequency division ratio. In the example shown in FIG. 7, a frequency divider 460 having a frequency division ratio of 1/4 is used. For example, when a 5800 MHz signal is input to the frequency divider 460, a signal having a frequency of 5800/4 = 1450 MHz is output from the frequency divider 460.
 受信チャネル及び送信チャネルが設定され、無線通信装置400と基地局との通信が行なわれるとする。以下、上り通信(送信状態)及び下り通信(受信状態)での無線通信装置400の動作について説明する。 Suppose that a reception channel and a transmission channel are set, and communication between the wireless communication apparatus 400 and the base station is performed. Hereinafter, the operation of radio communication apparatus 400 in uplink communication (transmission state) and downlink communication (reception state) will be described.
 送信状態では、局部発振器440により、第2の基準信号442が発振される。図7では、第2の基準信号442の周波数fs2は、送信チャネルの周波数ftの4/5となるように設定される。分周器460により、分岐点445を介して入力された第2の基準信号442の周波数fs2が1/4に分周され、第2の分周信号462が生成される。第2の分周信号462の周波数fd2は、fd2=(fs2)/4=(ft×4/5)/4=ft/5となる。 In the transmission state, the second reference signal 442 is oscillated by the local oscillator 440. In FIG. 7, the frequency fs2 of the second reference signal 442 is set to be 4/5 of the frequency ft of the transmission channel. The frequency divider 460 divides the frequency fs2 of the second reference signal 442 input via the branch point 445 by ¼ to generate a second divided signal 462. The frequency fd2 of the second divided signal 462 is fd2 = (fs2) / 4 = (ft × 4/5) / 4 = ft / 5.
 変調部431により、ベースバンド信号と第2の分周信号462とが混合される。変調部431からは、ft/5の周波数に変調されたベースバンド信号が出力され、第2の混合器432に入力される。第2の混合器432により、変調部431から出力された信号と分岐点445を介して入力された第2の基準信号442とが混合される。第2の混合器432では、各信号の周波数が加算(ft/5+ft×4/5=ft)及び減算(|ft/5-ft×4/5|=ft×3/5)される。 The baseband signal and the second divided signal 462 are mixed by the modulation unit 431. A baseband signal modulated to a frequency of ft / 5 is output from the modulation unit 431 and input to the second mixer 432. The second mixer 432 mixes the signal output from the modulation unit 431 and the second reference signal 442 input via the branch point 445. In the second mixer 432, the frequency of each signal is added (ft / 5 + ft × 4/5 = ft) and subtracted (| ft / 5−ft × 4/5 | = ft × 3/5).
 従って第2の混合器432からは、送信チャネルと同様の周波数ftを有する第2の高周波信号452と、周波数がft×3/5の信号とが出力される。バンドストップフィルタ433により、第2の混合器432の出力のうち、第2の高周波信号452が抽出される。そして送信用増幅器434により、第2の高周波信号452が増幅され、通信部410に送信される。 Therefore, the second mixer 432 outputs a second high-frequency signal 452 having the same frequency ft as that of the transmission channel and a signal having a frequency of ft × 3/5. The band stop filter 433 extracts the second high-frequency signal 452 from the output of the second mixer 432. Then, the second high-frequency signal 452 is amplified by the transmission amplifier 434 and transmitted to the communication unit 410.
 このように、図7に示す無線通信装置400は、第2の基準信号442の周波数を送信チャネルの周波数の4/5に設定することで、ベースバンド信号が送信チャネルの周波数に変調されるように構成されている。すなわち、無線通信装置400では、局部発振器440の発振周波数(LO周波数)と送信チャネルの周波数(送信周波数)との比率は4:5となる。 As described above, the wireless communication apparatus 400 illustrated in FIG. 7 sets the frequency of the second reference signal 442 to 4/5 of the frequency of the transmission channel, so that the baseband signal is modulated to the frequency of the transmission channel. It is configured. That is, in the wireless communication device 400, the ratio between the oscillation frequency (LO frequency) of the local oscillator 440 and the frequency of the transmission channel (transmission frequency) is 4: 5.
 送信周波数とLO発振周波数とがずれているため、例えばパワーアンプである送信用増幅器434から、局部発振器440へのローカルプリング等の影響を十分に軽減することが可能である。これにより局部発振器440を安定して動作させることが可能となり、通信エラーや装置の不具合等を十部に抑制することが可能となる。 Since the transmission frequency and the LO oscillation frequency are deviated, for example, it is possible to sufficiently reduce the influence of local pulling or the like on the local oscillator 440 from the transmission amplifier 434 that is a power amplifier. As a result, the local oscillator 440 can be stably operated, and communication errors, device malfunctions, and the like can be sufficiently suppressed.
 なお、送信チャネルは5MHz間隔であるため、チャネルを変更する場合は、5MHz×4/5=4MHzのステップで第2の基準信号442の周波数を変更すればよい。これにより第2の基準信号442を生成するための回路構成等を簡素化することが可能となる。この結果部品点数を抑えることが可能となり、部品コストを低減するとともに、信頼性の高い小型の装置を実現することが可能である。 In addition, since the transmission channel is 5 MHz intervals, when changing the channel, the frequency of the second reference signal 442 may be changed in steps of 5 MHz × 4/5 = 4 MHz. As a result, the circuit configuration for generating the second reference signal 442 can be simplified. As a result, the number of parts can be reduced, and the cost of parts can be reduced, and a highly reliable small device can be realized.
 受信状態では、局部発振器440により第1の基準信号441が発振される。第1の基準信号441の周波数fs1は、中間周波数fiが所定の値となるように、受信チャネル(第1の高周波信号451)の周波数frに合わせて設定される。第1の基準信号441及び第1の基準信号441を分周して生成された第1の分周信号461は受信部420に供給され、第1の高周波信号451が中間周波数fiに変換される。 In the reception state, the first reference signal 441 is oscillated by the local oscillator 440. The frequency fs1 of the first reference signal 441 is set according to the frequency fr of the reception channel (first high frequency signal 451) so that the intermediate frequency fi becomes a predetermined value. The first divided signal 461 generated by dividing the first reference signal 441 and the first reference signal 441 is supplied to the receiving unit 420, and the first high-frequency signal 451 is converted into the intermediate frequency fi. .
 図7では、第1の分周信号461の周波数fd1は、第1の基準信号441の周波数fs1の1/4である。上記したように中間周波数fiは、fr-fs1-fd1と表される。従って中間周波数fiは、fi=fr-fs1-fs1/4=fr-fs1×5/4となる。 In FIG. 7, the frequency fd1 of the first frequency-divided signal 461 is ¼ of the frequency fs1 of the first reference signal 441. As described above, the intermediate frequency fi is expressed as fr-fs1-fd1. Therefore, the intermediate frequency fi is fi = fr−fs1−fs1 / 4 = fr−fs1 × 5/4.
 例えば、ゼロ-IF方式では、中間周波数fi≒0Hzとなるように第1の基準信号441の周波数fs1が設定される。この場合、第1の基準信号441の周波数fs1を受信チャネルの周波数frの4/5に設定することで、中間周波数fiを略ゼロにすることが可能である。なおチャネルを変更するには、第1の基準信号を4MHzのステップで変化させればよい。 For example, in the zero-IF method, the frequency fs1 of the first reference signal 441 is set so that the intermediate frequency fi≈0 Hz. In this case, the intermediate frequency fi can be made substantially zero by setting the frequency fs1 of the first reference signal 441 to 4/5 of the frequency fr of the reception channel. In order to change the channel, the first reference signal may be changed in steps of 4 MHz.
 また例えば、Low-IF方式において、中間周波数がfi≒2.5MHzとなるように第1の基準信号441を設定することも可能である。この場合、fs1=fr×4/5-2MHzとすることで、中間周波数fiを略2.5MHzにすることが可能である。すなわち、ゼロ-IF方式での周波数から2MHzずれた周波数を作ることで、容易に中間周波数が2.5MHzのLow-IF方式を実現することが可能である。 Also, for example, in the Low-IF method, the first reference signal 441 can be set so that the intermediate frequency is fi≈2.5 MHz. In this case, by setting fs1 = fr × 4 / 5-2 MHz, the intermediate frequency fi can be set to approximately 2.5 MHz. That is, by creating a frequency shifted by 2 MHz from the frequency of the zero-IF method, it is possible to easily realize the Low-IF method with an intermediate frequency of 2.5 MHz.
 このように、局部発振器440により発振された信号(第1及び第2の基準信号441及び442)と、それを分周した信号(第1及び第2の分周信号461及び462)とを用いて、2段階に分けて周波数変換を行なうことが可能である。このような複数の周波数変換を行なうスライディングIF方式を用いることで、例えばローカルプリング等の影響が十分に低減された回路構成を容易に実現することが可能である。 As described above, the signals oscillated by the local oscillator 440 (first and second reference signals 441 and 442) and the signals obtained by dividing the signals (first and second divided signals 461 and 462) are used. Thus, the frequency conversion can be performed in two stages. By using such a sliding IF method for performing a plurality of frequency conversions, it is possible to easily realize a circuit configuration in which the influence of, for example, local pulling is sufficiently reduced.
 なお、分周器460に設定される分周比が、1/2や1/6に設定された場合でも、第1及び第2の基準信号441及び442の各周波数等を適宜設定することで、無線通信装置400を構成することが可能である。もちろん分周器460に設定される分周比は現手されず、例えば1/2、1/4、及び1/6以外の、任意の分周比が用いられてもよい。また、2段階の周波数変換を行なう場合に限定されず、3段階や4段階の周波数変換を実行する場合にも本技術は適用可能である。この場合、複数回の周波数変換を実行することで、局部発振器440に対する周波数のカップリング(ローカルプリング)等による影響を十分に抑制することが可能となる。 Even when the frequency division ratio set in the frequency divider 460 is set to 1/2 or 1/6, the respective frequencies of the first and second reference signals 441 and 442 are appropriately set. The wireless communication device 400 can be configured. Of course, the frequency division ratio set in the frequency divider 460 is not present, and any frequency division ratio other than 1/2, 1/4, and 1/6 may be used. Further, the present technology is not limited to the case of performing two-stage frequency conversion, and the present technology can also be applied to the case of performing three-stage or four-stage frequency conversion. In this case, by performing frequency conversion a plurality of times, it is possible to sufficiently suppress the influence of frequency coupling (local pulling) or the like on the local oscillator 440.
 <第3の実施形態>
 図8は、第3の実施形態に係る無線通信装置500の構成例を示す模式図である。無線通信装置500は、通信ユニット510、信号生成部570、及びシステムクロック生成部580を有する。通信ユニット510は、上記の実施形態で説明した各無線通信装置と略同様の構成を有する。図8には、図1に示す構成が図示されているが、図5及び図7に示す構成が用いられてもよい。
<Third Embodiment>
FIG. 8 is a schematic diagram illustrating a configuration example of a wireless communication apparatus 500 according to the third embodiment. The wireless communication apparatus 500 includes a communication unit 510, a signal generation unit 570, and a system clock generation unit 580. The communication unit 510 has substantially the same configuration as each wireless communication device described in the above embodiment. 8 shows the configuration shown in FIG. 1, the configuration shown in FIGS. 5 and 7 may be used.
 信号生成部570は、通信ユニット510の受信部520の後段に設けられる回路であり、中間周波数の信号に基づいてデータ信号550を生成する。図8に示すように、信号生成部570は、デジタル変換部571、デジタル信号処理部572、アナログ変換部573、及び直交ミクサ574を有する。 The signal generation unit 570 is a circuit provided in the subsequent stage of the reception unit 520 of the communication unit 510, and generates the data signal 550 based on the intermediate frequency signal. As illustrated in FIG. 8, the signal generation unit 570 includes a digital conversion unit 571, a digital signal processing unit 572, an analog conversion unit 573, and an orthogonal mixer 574.
 デジタル変換部571は、受信部520から出力された中間周波数の信号であるI/Q信号555をデジタル信号に変換する。図8に示すようにI/Q信号555は、I信号553とQ信号554とを含む信号である。デジタル変換部571は、I信号553及びQ信号554をそれぞれデジタル信号に変換する。以下では、I信号553及びQ信号554のそれぞれに対して行なわれる処理を、I/Q信号555に対する処理として説明する場合がある。 The digital conversion unit 571 converts the I / Q signal 555 that is an intermediate frequency signal output from the reception unit 520 into a digital signal. As shown in FIG. 8, the I / Q signal 555 is a signal including an I signal 553 and a Q signal 554. The digital conversion unit 571 converts the I signal 553 and the Q signal 554 into digital signals, respectively. Hereinafter, the processing performed for each of the I signal 553 and the Q signal 554 may be described as processing for the I / Q signal 555.
 デジタル変換部571としては、例えばADC(Analog-to-Digital Converter)等が用いられる。デジタル変換部571の具体的な構成は限定されず、例えばベースバンド信号をデジタルサンプリング可能な任意のデジタル変換回路等が適宜用いられてよい。 As the digital conversion unit 571, for example, an ADC (Analog-to-Digital Converter) or the like is used. The specific configuration of the digital conversion unit 571 is not limited. For example, an arbitrary digital conversion circuit capable of digitally sampling a baseband signal may be used as appropriate.
 デジタル信号処理部572は、デジタル領域でI/Q信号555の処理を行う。図8に示すように、デジタル信号処理部572は、チャネル選択フィルタ575、レベル検出部576、及び周波数変換部577を有する。 The digital signal processing unit 572 processes the I / Q signal 555 in the digital domain. As illustrated in FIG. 8, the digital signal processing unit 572 includes a channel selection filter 575, a level detection unit 576, and a frequency conversion unit 577.
 チャネル選択フィルタ575は、デジタル信号に変換されたI/Q信号555をフィルタリングする。チャネル選択フィルタ575により、例えば受信部520のアナログフィルタ(BPFやLPF)で落としきれなかったノイズ成分等が除去される。これにより、中間周波数に変換された受信チャネルに含まれる周波数成分を高精度に取り出すことが可能であり、また他のチャネルの成分を高精度に取り除くことが可能である The channel selection filter 575 filters the I / Q signal 555 converted into a digital signal. The channel selection filter 575 removes, for example, noise components that could not be removed by the analog filter (BPF or LPF) of the receiving unit 520. As a result, it is possible to extract the frequency component included in the reception channel converted to the intermediate frequency with high accuracy, and it is possible to remove the components of other channels with high accuracy.
 レベル検出部576は、チャネル選択フィルタ575から出力されたI/Q信号555の振幅強度を検出する。例えばI/Q信号555の振幅の時間変化を検出することで、ASK方式で変調された信号を検波することが可能である。例えばレベル検出部576は、I/Q信号555の振幅強度をビットに変換しASK検波出力556として出力する。本実施形態では、ASK検波出力556は、ASK信号に相当する。 The level detection unit 576 detects the amplitude intensity of the I / Q signal 555 output from the channel selection filter 575. For example, it is possible to detect a signal modulated by the ASK method by detecting a temporal change in the amplitude of the I / Q signal 555. For example, the level detection unit 576 converts the amplitude intensity of the I / Q signal 555 into bits and outputs it as an ASK detection output 556. In the present embodiment, the ASK detection output 556 corresponds to an ASK signal.
 また例えばI/Q信号555の振幅強度に基づいて、対象としている周波数(チャネル)に搬送波(キャリア)が存在しているか否かを判定することが可能である。例えば振幅強度が所定の閾値よりも小さい場合、キャリアは存在しないと判定され、所定の閾値よりも大きい場合、キャリアが存在していると判定される。判定結果はキャリア検出出力557として出力され、受信チャネルの選定等に用いられる。本実施形態では、キャリア検出出力557は、搬送波強度信号に相当する。 Also, for example, based on the amplitude intensity of the I / Q signal 555, it is possible to determine whether or not a carrier wave (carrier) exists in the target frequency (channel). For example, when the amplitude intensity is smaller than a predetermined threshold, it is determined that there is no carrier, and when larger than the predetermined threshold, it is determined that a carrier exists. The determination result is output as a carrier detection output 557 and used for selection of a reception channel. In the present embodiment, the carrier detection output 557 corresponds to a carrier strength signal.
 周波数変換部577は、デジタル領域での周波数変換により、チャネル選択フィルタ575から出力されたI/Q信号555の周波数を略0Hzに変換する。これは、デジタル領域においてI/Q信号をベースバンド信号に変換しているとも言える。これにより、例えば基地局と無線通信装置500とのLO基準クロック信号のずれ等を補正することが可能である。略0Hzに周波数変換されたI/Q信号555は、アナログ変換部573に出力される。 The frequency converter 577 converts the frequency of the I / Q signal 555 output from the channel selection filter 575 to approximately 0 Hz by frequency conversion in the digital domain. This can also be said to be converting an I / Q signal into a baseband signal in the digital domain. As a result, for example, it is possible to correct a shift in the LO reference clock signal between the base station and the wireless communication apparatus 500. The I / Q signal 555 frequency-converted to approximately 0 Hz is output to the analog conversion unit 573.
 このようにデジタル信号処理部572は、I/Q信号555に対して種々のデジタル処理を実行する。デジタル信号処理部としては、例えばデジタル信号のフィルタリング処理等がプログラミングされたDSP(Digital Signal Processor)が用いられる。この他、デジタル信号処理部572の具体的な構成は限定されない。またチャネル選択フィルタ575、レベル検出部576、及び周波数変換部577がそれぞれ個別の素子により構成されてもよい。 Thus, the digital signal processing unit 572 performs various digital processes on the I / Q signal 555. As the digital signal processing unit, for example, a DSP (Digital Signal Processor) programmed with digital signal filtering processing or the like is used. In addition, the specific configuration of the digital signal processing unit 572 is not limited. In addition, the channel selection filter 575, the level detection unit 576, and the frequency conversion unit 577 may be configured by individual elements.
 アナログ変換部573は、周波数変換部577から出力されたI/Q信号555をアナログ信号に変換する。アナログ変換部573としては、例えばDAC(Digital-to-Analog Converter)等が用いられる。アナログ変換部573の具体的な構成は限定されない。 Analog conversion unit 573 converts I / Q signal 555 output from frequency conversion unit 577 into an analog signal. As the analog conversion unit 573, for example, a DAC (Digital-to-Analog Converter) or the like is used. The specific configuration of the analog conversion unit 573 is not limited.
 本実施形態では、デジタル変換部571、デジタル信号処理部572、及びアナログ変換部573により、中間周波数の信号をデジタル化してフィルタリングするデジタルフィルタ部が構成される。 In this embodiment, the digital conversion unit 571, the digital signal processing unit 572, and the analog conversion unit 573 constitute a digital filter unit that digitizes and filters an intermediate frequency signal.
 直交ミクサ574は、アナログ信号に変換されたI/Q信号555と、システムクロック生成部580から出力された復調用の周波数を有する基準信号581とを混合する。復調用の周波数としては、後段の信号処理用の回路(コントローラ等)で用いられるシステム基準クロック信号582を基準とした周波数(8.192MHz)が設定される。 The orthogonal mixer 574 mixes the I / Q signal 555 converted into the analog signal and the reference signal 581 having the demodulation frequency output from the system clock generation unit 580. As the demodulation frequency, a frequency (8.192 MHz) based on the system reference clock signal 582 used in a subsequent signal processing circuit (controller or the like) is set.
 直交ミクサ574は、I信号553及びQ信号554(I/Q信号555)をそれぞれ復調用の周波数に変換する。変換されたI信号553及ぶQ信号554は、加算回路等を用いて加算されて、QPSK用出力558として出力される。本実施形態では、直交ミクサ574は、デジタルフィルタ部の出力を復調するための周波数に変換するミクサ部に相当する。また本実施形態では、QPSK用出力558は、QPSK信号に相当する。 The quadrature mixer 574 converts the I signal 553 and the Q signal 554 (I / Q signal 555) into demodulation frequencies. The converted I signal 553 and Q signal 554 are added using an adder circuit or the like and output as a QPSK output 558. In the present embodiment, the orthogonal mixer 574 corresponds to a mixer unit that converts the output of the digital filter unit into a frequency for demodulation. In the present embodiment, the QPSK output 558 corresponds to a QPSK signal.
 システムクロック生成部580、システム基準クロック信号582に基づいて、信号処理用の回路等に入力されるシステムクロック信号583と、復調用の基準信号581とを生成する。なお、システムクロック信号583及び基準信号581の周波数は、互いに同様であってもよいし、互いに異なっていてもよい。システムクロック生成部580としては、例えば信号処理用に用意されたPLL回路等が用いられる。 Based on the system clock generation unit 580 and the system reference clock signal 582, a system clock signal 583 and a reference signal 581 for demodulation input to a signal processing circuit or the like are generated. The frequencies of the system clock signal 583 and the reference signal 581 may be the same as each other or different from each other. As the system clock generator 580, for example, a PLL circuit prepared for signal processing is used.
 図8に示すように、システムクロック信号583は、デジタル変換部571、デジタル信号処理部572、アナログ変換部573、及び後段のコントローラ等の信号処理用の回路に出力される。また、復調用の基準信号581は、直交ミクサ574に出力される。このように、信号生成部570に含まれる各部は、システム基準クロック信号582に基づいて動作する。本実施形態では、システム基準クロック信号582は、基準クロック信号に相当する。 As shown in FIG. 8, the system clock signal 583 is output to a signal processing circuit such as a digital conversion unit 571, a digital signal processing unit 572, an analog conversion unit 573, and a subsequent controller. The demodulation reference signal 581 is output to the orthogonal mixer 574. As described above, each unit included in the signal generation unit 570 operates based on the system reference clock signal 582. In the present embodiment, the system reference clock signal 582 corresponds to a reference clock signal.
 例えば、無線通信装置500が受信チャネルの探索を実行しているとする。この場合、受信部520からは、例えば7つの下り通信のチャネル(図2参照)に対応するI/Q信号555が順番に出力される。信号生成部570は、各I/Q信号555に対してデジタル領域のフィルタリングを実行し、I/Q信号555の振幅強度に基づいてキャリア検出出力557を出力する。これにより、7つのチャネルから、基地局が送信に使用しているチャネル(受信チャネル)を選定することが可能である。 For example, assume that the wireless communication device 500 is searching for a reception channel. In this case, the receiving unit 520 sequentially outputs, for example, I / Q signals 555 corresponding to seven downlink communication channels (see FIG. 2). The signal generation unit 570 performs digital domain filtering on each I / Q signal 555 and outputs a carrier detection output 557 based on the amplitude intensity of the I / Q signal 555. Thereby, it is possible to select a channel (reception channel) that the base station uses for transmission from the seven channels.
 また例えば、無線通信装置500が受信状態である場合、受信部520からは、受信チャネルに対応するI/Q信号555が出力される。信号生成部570は、受信チャネルのI/Q信号555に対してデジタル領域のフィルタリングを実行し、I/Q信号555の振幅強度に基づいてASK検波出力556を出力する。また信号生成部570は、フィルタリングされたI/Q信号555に対してデジタル領域及びアナログ領域での周波数変換実行し、QPSK用出力558として出力する。 For example, when the wireless communication device 500 is in a reception state, the reception unit 520 outputs an I / Q signal 555 corresponding to the reception channel. The signal generation unit 570 performs digital domain filtering on the I / Q signal 555 of the reception channel, and outputs an ASK detection output 556 based on the amplitude intensity of the I / Q signal 555. In addition, the signal generation unit 570 performs frequency conversion in the digital domain and the analog domain on the filtered I / Q signal 555 and outputs the result as a QPSK output 558.
 このように信号生成部570は、中間周波数の信号に基づいて、QPSK用出力558、ASK検波出力556、及びキャリア検出出力557を含むデータ信号550を生成する。これにより、例えばデータ処理等を行なう後段の回路(コントローラ)等に合わせてデータ信号を生成することが可能となり、高い汎用性が発揮される。 Thus, the signal generation unit 570 generates the data signal 550 including the QPSK output 558, the ASK detection output 556, and the carrier detection output 557 based on the intermediate frequency signal. As a result, for example, a data signal can be generated in accordance with a subsequent circuit (controller) that performs data processing or the like, and high versatility is exhibited.
 例えば図6に比較例として挙げた無線通信装置300では、40MHzの中間周波数に変換された信号に基づいて、QPSK用出力358、ASK検波出力356、及びキャリア検出出力357が生成される。図6に示す無線通信装置300では、QPSK用出力358を生成するために、40MHzから8.192MHzへの周波数変換を行なうための専用の基準信号381が必要となる。このため図6では、水晶振動子382及びPLL回路383等を含む専用の発振回路384が必要となる。 For example, in the wireless communication apparatus 300 shown as a comparative example in FIG. 6, a QPSK output 358, an ASK detection output 356, and a carrier detection output 357 are generated based on a signal converted to an intermediate frequency of 40 MHz. In the wireless communication apparatus 300 shown in FIG. 6, a dedicated reference signal 381 for performing frequency conversion from 40 MHz to 8.192 MHz is necessary to generate the QPSK output 358. Therefore, in FIG. 6, a dedicated oscillation circuit 384 including a crystal resonator 382 and a PLL circuit 383 is required.
 本実施形態に係る無線通信装置500では、復調用の周波数(8.192MHz)に変換するための基準信号581は、コントローラ等で使用されるシステムクロックを発振するシステムクロック生成部580により生成される。従って、I/Q信号555を復調用の周波数に変換するための専用の発振回路等は不要であり、部品点数を抑えることが可能となる。これにより、装置を十分に小型化することが可能となる。 In the wireless communication apparatus 500 according to the present embodiment, the reference signal 581 for conversion to a demodulation frequency (8.192 MHz) is generated by a system clock generation unit 580 that oscillates a system clock used in a controller or the like. . Therefore, a dedicated oscillation circuit or the like for converting the I / Q signal 555 into a demodulation frequency is unnecessary, and the number of parts can be suppressed. As a result, the apparatus can be sufficiently downsized.
 また無線通信装置500は、図6に示す無線通信装置300と同様のデータ信号550を出力することが可能である。別の観点では、図6に示す無線通信装置300の後段で使用される信号処理用の回路(コントローラ等)を、本実施系形態に係る無線通信装置500の後段として使用することが可能であるとも言える。このように、本技術を適用することで、装置サイズが小さく汎用性の高い無線通信装置500を提供することが可能となる。 Further, the wireless communication device 500 can output the same data signal 550 as the wireless communication device 300 shown in FIG. From another point of view, a signal processing circuit (controller or the like) used in the subsequent stage of the wireless communication apparatus 300 shown in FIG. 6 can be used as the subsequent stage of the wireless communication apparatus 500 according to the present embodiment. It can also be said. As described above, by applying the present technology, it is possible to provide the wireless communication device 500 having a small device size and high versatility.
 本実施形態では、信号生成部570によりI/Q信号555がデジタル領域でフィルタリングされる。従って無線通信装置500では、受信部20のアナログフィルタ(LPF又はBPF)及び信号生成部のデジタルフィルタにより、I/Q信号555が2段階でフィルタリングされる。これにより高精度にQPSK用出力558やASK検波出力556等のデータ信号550を生成することが可能となり、通信精度を大幅に向上することが可能となる。 In this embodiment, the signal generation unit 570 filters the I / Q signal 555 in the digital domain. Therefore, in the wireless communication apparatus 500, the I / Q signal 555 is filtered in two stages by the analog filter (LPF or BPF) of the reception unit 20 and the digital filter of the signal generation unit. As a result, the data signal 550 such as the QPSK output 558 and the ASK detection output 556 can be generated with high accuracy, and the communication accuracy can be greatly improved.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
<Other embodiments>
The present technology is not limited to the embodiments described above, and other various embodiments can be realized.
 図8に示す無線通信装置500では、QPSK方式の復調を実行するために、中間周波数を有するI/Q信号が、復調用の周波数に変換された。例えば受信部の直交ミクサにより、復調用の周波数を有するI/Q信号が直接生成されてもよい。すなわち中間周波数が8.192MHzに設定されてもよい。この場合、復調処理までに必要な周波数変換が1回となり、部品点数等を少なくすることが可能である。これに限定されず、中間周波数の値は、後段での処理に応じて適宜設定されたよい。 In the wireless communication apparatus 500 shown in FIG. 8, an I / Q signal having an intermediate frequency is converted into a demodulation frequency in order to execute demodulation of the QPSK method. For example, an I / Q signal having a demodulation frequency may be directly generated by an orthogonal mixer of the receiving unit. That is, the intermediate frequency may be set to 8.192 MHz. In this case, the frequency conversion necessary until the demodulation process is performed once, and the number of parts can be reduced. However, the present invention is not limited to this, and the value of the intermediate frequency may be set as appropriate according to the processing in the subsequent stage.
 上記の実施形態では、無線通信装置100、200、400、及び500は移動局である車載器として構成された。これに限定されず、無線通信装置が基地局として構成された場合でも、本技術は適用可能である。 In the above embodiment, the wireless communication devices 100, 200, 400, and 500 are configured as on-vehicle devices that are mobile stations. The present technology is not limited to this, and the present technology can be applied even when the wireless communication device is configured as a base station.
 例えば基地局の送信状態及び受信状態に応じて、局部発振器の発振周波数を適宜切替えることで、中間周波数の値を制御することが可能となる。これにより外部フィルタ等を使用することなく装置を構成することが可能となり、装置の小型化を計ることが可能となる。この他、車両等に搭載される車載器に限定されず、モバイル機器やウェアラブル機器等の装置として、本技術に係る無線通信装置を構成することも可能である。 For example, the value of the intermediate frequency can be controlled by appropriately switching the oscillation frequency of the local oscillator according to the transmission state and reception state of the base station. As a result, the apparatus can be configured without using an external filter or the like, and the apparatus can be downsized. In addition, the wireless communication device according to the present technology can be configured as a device such as a mobile device or a wearable device without being limited to the vehicle-mounted device mounted on the vehicle or the like.
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。 Of the characteristic parts according to the present technology described above, it is possible to combine at least two characteristic parts. That is, the various characteristic parts described in each embodiment may be arbitrarily combined without distinction between the embodiments. The various effects described above are merely examples and are not limited, and other effects may be exhibited.
 なお、本技術は以下のような構成も採ることができる。
(1)狭域通信用の電波を送受信可能な通信部と、
 第1の基準信号に基づいて、前記狭域通信用の電波の受信に応じて生成された受信信号を中間周波数に変換する変換部と、
 前記第1の基準信号とは異なる周波数の第2の基準信号に基づいて、前記狭域通信用の電波の送信に用いられる送信信号を生成する生成部と、
 前記変換部への前記第1の基準信号の供給、及び前記生成部への前記第2の基準信号の供給を切替可能な供給部と
 を具備する無線通信装置。
(2)(1)に記載の無線通信装置であって、
 前記変換部は、前記第1の基準信号と前記受信信号とを混合することで、前記受信信号を前記中間周波数に変換し、
 前記供給部は、前記中間周波数が、前記受信信号及び前記送信信号の周波数差よりも小さくなるように、前記第1の基準信号の周波数を制御する
 無線通信装置。
(3)(1)又は(2)に記載の無線通信装置であって、
 前記変換部は、前記中間周波数を含む第1の帯域の周波数成分を通過させ、前記第1の帯域に含まれない周波数成分を規制する第1の内部フィルタを有する
 無線通信装置。
(4)(1)から(3)のうちいずれか1つに記載の無線通信装置であって、
 前記中間周波数は、絶対値が2.2MHz以上2.8MHz以下である
 無線通信装置。
(5)(1)から(4)のうちいずれか1つに記載の無線通信装置であって、
 前記中間周波数は、絶対値が略2.5MHzである
 無線通信装置。
(6)(1)又は(2)に記載の無線通信装置であって、
 前記供給部は、前記中間周波数が略ゼロとなるように、前記第1の基準信号の周波数を制御する
 無線通信装置。
(7)(6)に記載の無線通信装置であって、
 前記変換部は、前記中間周波数を含む第2の帯域の周波数成分を通過させ、前記第2の帯域の上限周波数よりも高い周波数成分を規制する第2の内部フィルタを有する
 無線通信装置。
(8)(1)から(7)のうちいずれか1つに記載の無線通信装置であって、
 前記供給部は、前記第1及び前記第2の基準信号を切替えて発振可能な位相同期回路を含む
 無線通信装置。
(9)(1)から(8)のうちいずれか1つに記載の無線通信装置であって、
 前記供給部は、前記第2の基準信号の周波数を所定の割合で分周して分周信号を生成する分周部を有し、
 前記生成部は、ベースバンド信号に対する前記分周信号の混合、及び第2の基準信号の混合を実行することで、前記送信信号を生成する
 無線通信装置。
(10)(9)に記載の無線通信装置であって、
 前記所定の割合は、1/2、1/4、及び1/6のいずれかである
 無線通信装置。
(11)(1)から(10)のうちいずれか1つに記載の無線通信装置であって、さらに、
 前記中間周波数の信号に基づいてデータ信号を生成する信号生成部を具備する
 無線通信装置。
(12)(11)に記載の無線通信装置であって、
 前記データ信号は、QPSK信号、ASK信号、搬送波強度信号の少なくとも1つを含む
 無線通信装置。
(13)(11)又は(12)に記載の無線通信装置であって、
 前記信号生成部は、前記中間周波数の信号をデジタル化してフィルタリングするデジタルフィルタ部と、前記デジタルフィルタ部の出力を復調するための周波数に変換するミクサ部を有する
 無線通信装置。
(14)(13)に記載の無線通信装置であって、
 前記デジタルフィルタ部及び前記ミクサ部は、基準クロック信号に基づいて動作する
 無線通信装置。
(15)(1)から(14)のうちいずれか1つに記載の無線通信装置であって、
 前記受信信号は、前記送信信号よりも周波数が低い信号である
 無線通信装置。
(16)(15)に記載の無線通信装置であって、
 車載器として構成される
 無線通信装置。
In addition, this technique can also take the following structures.
(1) a communication unit capable of transmitting and receiving radio waves for narrow area communication;
A conversion unit that converts a reception signal generated in response to reception of the radio wave for narrow area communication into an intermediate frequency based on a first reference signal;
Based on a second reference signal having a frequency different from that of the first reference signal, a generating unit that generates a transmission signal used for transmitting the radio wave for the narrow area communication;
A wireless communication apparatus comprising: a supply unit capable of switching supply of the first reference signal to the conversion unit and supply of the second reference signal to the generation unit.
(2) The wireless communication device according to (1),
The converter converts the received signal to the intermediate frequency by mixing the first reference signal and the received signal,
The wireless communication apparatus, wherein the supply unit controls the frequency of the first reference signal so that the intermediate frequency is smaller than a frequency difference between the reception signal and the transmission signal.
(3) The wireless communication device according to (1) or (2),
The said communication part has a 1st internal filter which passes the frequency component of the 1st zone | band containing the said intermediate frequency, and regulates the frequency component which is not contained in the said 1st zone | band.
(4) The wireless communication device according to any one of (1) to (3),
The wireless communication apparatus, wherein the intermediate frequency has an absolute value of 2.2 MHz to 2.8 MHz.
(5) The wireless communication device according to any one of (1) to (4),
The intermediate frequency is a wireless communication device having an absolute value of approximately 2.5 MHz.
(6) The wireless communication device according to (1) or (2),
The wireless communication apparatus, wherein the supply unit controls the frequency of the first reference signal so that the intermediate frequency becomes substantially zero.
(7) The wireless communication device according to (6),
The said communication part is a radio | wireless communication apparatus which has a 2nd internal filter which passes the frequency component of the 2nd zone | band containing the said intermediate frequency, and regulates a frequency component higher than the upper limit frequency of the said 2nd zone | band.
(8) The wireless communication device according to any one of (1) to (7),
The supply unit includes a phase synchronization circuit capable of oscillating by switching between the first and second reference signals.
(9) The wireless communication device according to any one of (1) to (8),
The supply unit includes a frequency division unit that divides the frequency of the second reference signal by a predetermined ratio to generate a frequency division signal;
The said production | generation part is a radio | wireless communication apparatus which produces | generates the said transmission signal by performing the mixing of the said frequency division signal with respect to a baseband signal, and the mixing of a 2nd reference signal.
(10) The wireless communication device according to (9),
The predetermined ratio is any one of 1/2, 1/4, and 1/6.
(11) The wireless communication device according to any one of (1) to (10),
A wireless communication apparatus comprising: a signal generation unit that generates a data signal based on the intermediate frequency signal.
(12) The wireless communication device according to (11),
The wireless communication apparatus, wherein the data signal includes at least one of a QPSK signal, an ASK signal, and a carrier strength signal.
(13) The wireless communication device according to (11) or (12),
The radio communication apparatus, wherein the signal generation unit includes a digital filter unit that digitizes and filters the intermediate frequency signal, and a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
(14) The wireless communication device according to (13),
The digital filter unit and the mixer unit are wireless communication devices that operate based on a reference clock signal.
(15) The wireless communication device according to any one of (1) to (14),
The wireless communication apparatus, wherein the reception signal is a signal having a frequency lower than that of the transmission signal.
(16) The wireless communication device according to (15),
A wireless communication device configured as a vehicle-mounted device.
 fi…中間周波数
 10…通信部
 100、200、400、500…無線通信装置
 20、420、520…受信部
 22、423…直交ミクサ
 23…バンドパスフィルタ
 24…ローパスフィルタ
 30、430…送信部
 31、431…変調部
 40、440…局部発振器
 41、441…第1の基準信号
 42、442…第2の基準信号
 51、451…第1の高周波信号
 52、452…第2の高周波信号
 458…ベースバンド信号
 462…第2の分周信号
 550…データ信号
 556…ASK検波出力
 557…キャリア検出出力
 558…QPSK用出力
 570…信号生成部
 574…直交ミクサ
 582…システム基準クロック信号
fi ... Intermediate frequency 10 ... Communication unit 100, 200, 400, 500 ... Wireless communication device 20, 420, 520 ... Reception unit 22, 423 ... Orthogonal mixer 23 ... Band pass filter 24 ... Low pass filter 30, 430 ... Transmission unit 31, 431 ... Modulator 40, 440 ... Local oscillator 41, 441 ... First reference signal 42, 442 ... Second reference signal 51, 451 ... First high frequency signal 52, 452 ... Second high frequency signal 458 ... Baseband Signal 462 ... Second divided signal 550 ... Data signal 556 ... ASK detection output 557 ... Carrier detection output 558 ... Output for QPSK 570 ... Signal generator 574 ... Quadrature mixer 582 ... System reference clock signal

Claims (17)

  1.  狭域通信用の電波を送受信可能な通信部と、
     第1の基準信号に基づいて、前記狭域通信用の電波の受信に応じて生成された受信信号を中間周波数に変換する変換部と、
     前記第1の基準信号とは異なる周波数の第2の基準信号に基づいて、前記狭域通信用の電波の送信に用いられる送信信号を生成する生成部と、
     前記変換部への前記第1の基準信号の供給、及び前記生成部への前記第2の基準信号の供給を切替可能な供給部と
     を具備する無線通信装置。
    A communication unit capable of transmitting and receiving radio waves for narrow area communication;
    A conversion unit that converts a reception signal generated in response to reception of the radio wave for narrow area communication into an intermediate frequency based on a first reference signal;
    Based on a second reference signal having a frequency different from that of the first reference signal, a generating unit that generates a transmission signal used for transmitting the radio wave for the narrow area communication;
    A wireless communication apparatus comprising: a supply unit capable of switching supply of the first reference signal to the conversion unit and supply of the second reference signal to the generation unit.
  2.  請求項1に記載の無線通信装置であって、
     前記変換部は、前記第1の基準信号と前記受信信号とを混合することで、前記受信信号を前記中間周波数に変換し、
     前記供給部は、前記中間周波数が、前記受信信号及び前記送信信号の周波数差よりも小さくなるように、前記第1の基準信号の周波数を制御する
     無線通信装置。
    The wireless communication device according to claim 1,
    The converter converts the received signal to the intermediate frequency by mixing the first reference signal and the received signal,
    The wireless communication apparatus, wherein the supply unit controls the frequency of the first reference signal so that the intermediate frequency is smaller than a frequency difference between the reception signal and the transmission signal.
  3.  請求項1に記載の無線通信装置であって、
     前記変換部は、前記中間周波数を含む第1の帯域の周波数成分を通過させ、前記第1の帯域に含まれない周波数成分を規制する第1の内部フィルタを有する
     無線通信装置。
    The wireless communication device according to claim 1,
    The said communication part has a 1st internal filter which passes the frequency component of the 1st zone | band containing the said intermediate frequency, and regulates the frequency component which is not contained in the said 1st zone | band.
  4.  請求項1に記載の無線通信装置であって、
     前記中間周波数は、絶対値が2.2MHz以上2.8MHz以下である
     無線通信装置。
    The wireless communication device according to claim 1,
    The wireless communication apparatus, wherein the intermediate frequency has an absolute value of 2.2 MHz to 2.8 MHz.
  5.  請求項1に記載の無線通信装置であって、
     前記中間周波数は、絶対値が略2.5MHzである
     無線通信装置。
    The wireless communication device according to claim 1,
    The intermediate frequency is a wireless communication device having an absolute value of approximately 2.5 MHz.
  6.  請求項1に記載の無線通信装置であって、
     前記供給部は、前記中間周波数が略ゼロとなるように、前記第1の基準信号の周波数を制御する
     無線通信装置。
    The wireless communication device according to claim 1,
    The wireless communication apparatus, wherein the supply unit controls the frequency of the first reference signal so that the intermediate frequency becomes substantially zero.
  7.  請求項6に記載の無線通信装置であって、
     前記変換部は、前記中間周波数を含む第2の帯域の周波数成分を通過させ、前記第2の帯域の上限周波数よりも高い周波数成分を規制する第2の内部フィルタを有する
     無線通信装置。
    The wireless communication device according to claim 6,
    The said communication part is a radio | wireless communication apparatus which has a 2nd internal filter which passes the frequency component of the 2nd zone | band containing the said intermediate frequency, and regulates a frequency component higher than the upper limit frequency of the said 2nd zone | band.
  8.  請求項1に記載の無線通信装置であって、
     前記供給部は、前記第1及び前記第2の基準信号を切替えて発振可能な位相同期回路を含む
     無線通信装置。
    The wireless communication device according to claim 1,
    The supply unit includes a phase synchronization circuit capable of oscillating by switching between the first and second reference signals.
  9.  請求項1に記載の無線通信装置であって、
     前記供給部は、前記第2の基準信号の周波数を所定の割合で分周して分周信号を生成する分周部を有し、
     前記生成部は、ベースバンド信号に対する前記分周信号の混合、及び第2の基準信号の混合を実行することで、前記送信信号を生成する
     無線通信装置。
    The wireless communication device according to claim 1,
    The supply unit includes a frequency division unit that divides the frequency of the second reference signal by a predetermined ratio to generate a frequency division signal;
    The said production | generation part is a radio | wireless communication apparatus which produces | generates the said transmission signal by performing the mixing of the said frequency-divided signal with respect to a baseband signal, and the mixing of a 2nd reference signal.
  10.  請求項9に記載の無線通信装置であって、
     前記所定の割合は、1/2、1/4、及び1/6のいずれかである
     無線通信装置。
    The wireless communication device according to claim 9,
    The predetermined ratio is any one of 1/2, 1/4, and 1/6.
  11.  請求項1に記載の無線通信装置であって、さらに、
     前記中間周波数の信号に基づいてデータ信号を生成する信号生成部を具備する
     無線通信装置。
    The wireless communication device according to claim 1, further comprising:
    A wireless communication apparatus comprising: a signal generation unit that generates a data signal based on the intermediate frequency signal.
  12.  請求項11に記載の無線通信装置であって、
     前記データ信号は、QPSK信号、ASK信号、搬送波強度信号の少なくとも1つを含む
     無線通信装置。
    The wireless communication device according to claim 11,
    The wireless communication apparatus, wherein the data signal includes at least one of a QPSK signal, an ASK signal, and a carrier strength signal.
  13.  請求項11に記載の無線通信装置であって、
     前記信号生成部は、前記中間周波数の信号をデジタル化してフィルタリングするデジタルフィルタ部と、前記デジタルフィルタ部の出力を復調するための周波数に変換するミクサ部を有する
     無線通信装置。
    The wireless communication device according to claim 11,
    The radio communication apparatus, wherein the signal generation unit includes a digital filter unit that digitizes and filters the intermediate frequency signal, and a mixer unit that converts the output of the digital filter unit into a frequency for demodulation.
  14.  請求項13に記載の無線通信装置であって、
     前記デジタルフィルタ部及び前記ミクサ部は、基準クロック信号に基づいて動作する
     無線通信装置。
    The wireless communication device according to claim 13,
    The digital filter unit and the mixer unit are wireless communication devices that operate based on a reference clock signal.
  15.  請求項1に記載の無線通信装置であって、
     前記受信信号は、前記送信信号よりも周波数が低い信号である
     無線通信装置。
    The wireless communication device according to claim 1,
    The wireless communication apparatus, wherein the reception signal is a signal having a frequency lower than that of the transmission signal.
  16.  請求項15に記載の無線通信装置であって、
     車載器として構成される
     無線通信装置。
    The wireless communication device according to claim 15, wherein
    A wireless communication device configured as a vehicle-mounted device.
  17.  狭域通信用の電波を送受信し、
     第1の基準信号に基づいて、前記狭域通信用の電波の受信に応じて生成された受信信号を中間周波数に変換し、
     前記第1の基準信号とは異なる周波数の第2の基準信号に基づいて、前記狭域通信用の電波の送信に用いられる送信信号を生成し、
     前記第1の基準信号の供給、及び前記第2の基準信号の供給を切替る
     無線通信方法。
    Send and receive radio waves for narrow area communication,
    Based on the first reference signal, the received signal generated in response to the reception of the radio wave for narrow area communication is converted to an intermediate frequency,
    Based on a second reference signal having a frequency different from that of the first reference signal, a transmission signal used to transmit the radio wave for the narrow area communication is generated,
    A wireless communication method for switching between supply of the first reference signal and supply of the second reference signal.
PCT/JP2018/014085 2017-05-08 2018-04-02 Wireless communication device and wireless communication method WO2018207499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517495A JP7179720B2 (en) 2017-05-08 2018-04-02 Wireless communication device and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092576 2017-05-08
JP2017092576 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018207499A1 true WO2018207499A1 (en) 2018-11-15

Family

ID=64104470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014085 WO2018207499A1 (en) 2017-05-08 2018-04-02 Wireless communication device and wireless communication method

Country Status (2)

Country Link
JP (1) JP7179720B2 (en)
WO (1) WO2018207499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196506B2 (en) * 2017-09-22 2021-12-07 Nec Corporation Interference signal generation device, interference signal generation system, and interference signal generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124867A (en) * 2001-10-11 2003-04-25 Alps Electric Co Ltd On-vehicle unit for communication between vehicle and road
JP2008141708A (en) * 2005-12-08 2008-06-19 Mitsubishi Electric Corp Dsrc wireless apparatus and dsrc system
JP2009044227A (en) * 2007-08-06 2009-02-26 Alps Electric Co Ltd Wireless communication apparatus
JP2010004519A (en) * 2008-06-20 2010-01-07 Phychips Inc Apparatus for controlling sensitivity by using digital gating in receiver, and receiver with the same
JP2010193263A (en) * 2009-02-19 2010-09-02 Denso Corp In-vehicle communication unit and method for selecting antenna of the in-vehicle communication unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516052B2 (en) 2006-06-12 2010-08-04 日立オートモティブシステムズ株式会社 Narrow-area communication system radio station and its transmission method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124867A (en) * 2001-10-11 2003-04-25 Alps Electric Co Ltd On-vehicle unit for communication between vehicle and road
JP2008141708A (en) * 2005-12-08 2008-06-19 Mitsubishi Electric Corp Dsrc wireless apparatus and dsrc system
JP2009044227A (en) * 2007-08-06 2009-02-26 Alps Electric Co Ltd Wireless communication apparatus
JP2010004519A (en) * 2008-06-20 2010-01-07 Phychips Inc Apparatus for controlling sensitivity by using digital gating in receiver, and receiver with the same
JP2010193263A (en) * 2009-02-19 2010-09-02 Denso Corp In-vehicle communication unit and method for selecting antenna of the in-vehicle communication unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196506B2 (en) * 2017-09-22 2021-12-07 Nec Corporation Interference signal generation device, interference signal generation system, and interference signal generation method

Also Published As

Publication number Publication date
JPWO2018207499A1 (en) 2020-03-12
JP7179720B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
US7477886B1 (en) Cascading-synchronous mixer and method of operation
JP2005136830A (en) Frequency converting circuit, radio frequency receiver, and radio frequency transceiver
EP0999645A1 (en) Data converter
JP2009536795A (en) Device for receiving and / or transmitting radio frequency signals with noise reduction
JP3503964B2 (en) transceiver
JP2010246123A (en) Fsk modulation signal receiver with high sensitivity in low rate mode
WO2003007493A1 (en) Radio signal receiving apparatus and demodulating circuit
WO2018207499A1 (en) Wireless communication device and wireless communication method
US8781422B2 (en) Wireless communication device and control method for wireless communication device
JPH11289273A (en) Radio transceiver
JP2003318759A (en) Frequency converter
US8781524B2 (en) Wireless communication device
JP3828077B2 (en) Frequency conversion circuit and communication device
AU756727B2 (en) Radiotelephone transmitter/receiver
KR100715205B1 (en) System and method for digital multi-band transceiver of the wireless communication system
JP4126043B2 (en) Phase demodulator and mobile phone device
US20140286458A1 (en) Receiving apparatus and receiving method
JP3464147B2 (en) Transceiver
JP2003298356A (en) Broadband attenuating image rejection mixer
JP2008205564A (en) Radio relay method, radio equipment and radio relay system
US20150326419A1 (en) Radio system for simultaneous multi-channel reception
JP2007221212A (en) Receiver and electronic equipment employing the same
KR100553434B1 (en) Apparatus for receiving rf signal
JP2011109518A (en) Transmitting and receiving apparatus, and receiver
JP2004349789A (en) Frequency converter and frequency converting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798971

Country of ref document: EP

Kind code of ref document: A1