WO2018207484A1 - Display device and electronic apparatus - Google Patents

Display device and electronic apparatus Download PDF

Info

Publication number
WO2018207484A1
WO2018207484A1 PCT/JP2018/012415 JP2018012415W WO2018207484A1 WO 2018207484 A1 WO2018207484 A1 WO 2018207484A1 JP 2018012415 W JP2018012415 W JP 2018012415W WO 2018207484 A1 WO2018207484 A1 WO 2018207484A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic electroluminescent
display device
electroluminescent layer
potential
Prior art date
Application number
PCT/JP2018/012415
Other languages
French (fr)
Japanese (ja)
Inventor
辻川 真平
直也 笠原
糸長 総一郎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880028873.XA priority Critical patent/CN110574498A/en
Priority to JP2019517488A priority patent/JP7312697B2/en
Priority to DE112018002421.0T priority patent/DE112018002421T5/en
Publication of WO2018207484A1 publication Critical patent/WO2018207484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • This disclosure relates to a display device and an electronic device.
  • a display device using an organic electro-luminescence element (OLED) disclosed in Patent Document 1 described below is self-luminous and has low power consumption, so that it can be applied to mobile applications. Expected.
  • OLED organic electro-luminescence element
  • Patent Document 1 discloses a technique in which a relief pattern for blocking an electrode and a charge transport layer is disposed between light emitting elements.
  • Patent Document 2 a portion of the hole transport layer other than the light emitting region of each pixel is surface-treated with ultraviolet rays to increase a resistance value of a portion irradiated with the ultraviolet rays, thereby suppressing leakage current between the pixels.
  • Patent Document 3 discloses a technique for applying a periodic drive voltage to a light emitting element to suppress leakage current.
  • organic electroluminescence (organic EL) display display is generally performed by driving an organic electroluminescent element with a thin film transistor formed on a glass substrate.
  • organic electroluminescent element organic electroluminescent element
  • amorphous silicon and polycrystalline silicon for example, are used as channel materials for transistors.
  • an organic electroluminescent element is driven by a MOS (Metal-Oxide-Semiconductor) transistor formed on Si.
  • MOS Metal-Oxide-Semiconductor
  • Patent Documents 1 and 2 are difficult to apply to a display device having such a high pixel pitch. Further, the technique disclosed in Patent Document 3 is very complicated in controlling the drive voltage.
  • the present disclosure proposes a new and improved display device and electronic apparatus that can suppress the leakage current between pixels.
  • the organic electroluminescent layer the first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels, and the other main surface side of the organic electroluminescent layer And a plurality of second electrodes arranged individually for each pixel, and a plurality of second electrodes arranged on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
  • a third electrode is provided.
  • the organic electroluminescent layer, the first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels, and the other main electroluminescent layer of the organic electroluminescent layer are disposed.
  • a plurality of second electrodes arranged on the surface side and corresponding to each pixel individually, on the other main surface side of the organic electroluminescent layer, and between the plurality of second electrodes There is provided an electronic device including a display unit having a plurality of third electrodes disposed on the surface.
  • the present disclosure it is possible to provide a display device and an electronic apparatus in which leakage current between pixels is suppressed. Therefore, it is possible to prevent unintentional light emission of the pixel due to the leak current and a decrease in the color gamut of the display image accompanying this.
  • FIG. 2 is a schematic circuit diagram of an organic electroluminescence element included in the display device shown in FIG. 1. It is a graph which shows the relationship between the leakage current and light emission current in a display apparatus. It is a graph which shows the relationship between the brightness
  • FIG. 10 is a cross-sectional view schematically illustrating a display device according to a modification example of the present disclosure. It is a typical sectional view for explaining composition of an individual electrode in one modification of this indication.
  • FIG. 16 is a plan view illustrating an arrangement of pixels included in the display device illustrated in FIG. 15. It is a schematic diagram for demonstrating the leakage current between separate electrodes. It is a schematic diagram for demonstrating the leakage current between separate electrodes. It is a graph which shows typically the relation between the voltage and current of an organic electroluminescent layer.
  • FIG. 16 is a schematic arrangement view of individual electrodes provided in the display device shown in FIG. 15.
  • FIG. 15 is a cross-sectional view schematically showing an example of a display device that does not have a third electrode to be described later
  • FIG. 16 is a plan view showing the arrangement of pixels that the display device shown in FIG. 18 is a schematic diagram for explaining a leakage current between individual electrodes
  • FIG. 19 is a graph schematically showing a relationship between the voltage and current of the organic electroluminescent layer
  • FIG. 20 is a display device shown in FIG.
  • FIG. 3 is a schematic arrangement view of individual electrodes.
  • a display device 200 shown in FIG. 15 is a display device using an active matrix organic electroluminescent element.
  • the organic electroluminescent layer 210 is disposed on the interlayer insulating film 280.
  • the organic electroluminescent layer 210 has an individual electrode 220 as an anode on the interlayer insulating film 280 side and a cathode on the opposite side.
  • Transparent common electrode 230 is disposed.
  • a protective insulating film 240, a color filter layer 250, a sealing resin 260, and a cover glass 270 are laminated in this order.
  • a contact 281 and a wiring 283 that connect the individual electrode 220 to a pixel drive circuit (not shown) are arranged.
  • the organic electroluminescent layer 210 can emit white light when a voltage is applied between the transparent common electrode 230 and the individual electrode 220, for example.
  • White light emitted from the organic electroluminescent layer 210 passes through the transparent common electrode 230 and the protective insulating film 240 and enters the color filter layer 250.
  • the color filter layer 250 includes a red color filter 250R, a green color filter 250G, and a blue color filter 250B that are divided corresponding to each individual electrode 220.
  • the red color filter 250R, the green color filter 250G, and the blue color filter 250B convert incident light into red, green, and blue, respectively, and emit the light toward the sealing resin side.
  • the emitted light further passes through the sealing resin 260 and the cover glass 270 and is emitted to the outside.
  • FIG. 16 An example of the pixel array in the active matrix display device 200 is that shown in FIG. 16 in plan view.
  • the individual pixel 220 and the corresponding red color filter 250R, green color filter 250G, and blue color filter 250B form red pixels SP R , green pixels SP G, and blue pixels SP B as sub-pixels.
  • red pixels SP R , green pixels SP G and blue pixels SP B are capable of emitting light of the three primary colors of red, green and blue and constitute one pixel.
  • FIG. 17 and 18 are schematic diagrams for explaining the leakage current between the individual electrodes 220
  • FIG. 19 is a schematic diagram showing the relationship between the voltage and current of the individual electrode (anode) 220 when a voltage is applied to the organic electroluminescent layer 210.
  • FIG. 19 As a result of the present inventors having prototyped and examined various display elements, a case where a leak current flowing between the individual electrodes 220 greatly increases the potential of the non-light-emitting individual electrode 220 is recognized, and the main path of the leak current is It was found that this was the lower layer portion of the organic electroluminescent layer 210 shown in FIG. Details will be described below.
  • the organic electroluminescent layer 210 is not separated for each color, and the individual electrodes 220 corresponding to the subpixels are connected below the organic electroluminescent layer 210.
  • the organic electroluminescent layer 210 is not a good insulator in nature, and it is difficult to completely suppress the leakage current between the adjacent individual electrodes 220. That is, an organic material layer that easily injects charges such as holes is arranged on the individual electrode 220 side of the organic electroluminescent layer 210. Therefore, current flows through such an organic material layer as a leakage path. Can leak.
  • the sheet resistance of the organic electroluminescent layer 210 is considered to be about 10 12 ⁇ / ⁇ or less.
  • the resistance R IE-IE of the portion where the leakage current between the adjacent individual electrodes 220 flows is (sheet resistance ⁇ / ⁇ of the organic electroluminescent layer 210) ⁇ ( The distance between the individual electrodes 220) / (the length of one side of the individual electrodes 220) is approximately expressed.
  • the amount of leakage current is affected by the relationship between the resistance R SP in the thickness direction of the organic electroluminescent layer 210 and the resistance R IE-IE between the individual electrodes 220 when a voltage is applied.
  • the organic electroluminescent layer 210 has an extremely small light emission current when the voltage applied by the individual electrode 220 is relatively small. That is, the current-voltage characteristics are not ohmic but rise rapidly from around 3.5 V, and when the applied voltage is low, the resistance R SP in the thickness direction of the organic electroluminescent layer 210 is large. Therefore, when display is to be performed with low luminance light emission, the resistance R SP with respect to the resistance R IE-IE increases, and the influence of the leakage current increases.
  • the leakage current flowing between the individual electrodes 220 described above can cause a decrease in the color gamut of the display device 200.
  • a voltage may be applied between the central individual electrode 220B and the transparent common electrode 230 in FIG. it can.
  • a leak current flows to the surrounding individual electrodes 220R and 220G corresponding to the red and green pixels SP R and SP G adjacent thereto.
  • the pixels SP R and SP G around the pixel SP B shine red or green, so that the blue color purity displayed in the pixel SP B falls. Since the same phenomenon occurs when other colors such as red and green are developed, the color gamut that can be displayed is narrowed.
  • the resistance of the organic electroluminescent layer 210 is inversely proportional to the area of the individual electrode 220. For example, if you set the pixel pitch P P 1/2, the resistance R SP portion of the organic electroluminescent layer 210 corresponding to the individual electrode 220 is increased to four times. On the other hand, the resistance R IE-IE between the individual electrode 220, since no change is the ratio of the length of one side of the individual electrode 220 between the distance and the individual electrode 220 Changing the pixel pitch P P, light of the above formula It seems that there is no change.
  • the resistance R SP portion of the organic electroluminescent layer 210 is increased in inverse proportion to the square of the pixel pitch P P to the resistance R IE-IE between the individual electrode 220, individual electrode 220 The influence of the leakage current between them increases. As a result, the color reproducibility of the display device 200 at a low luminance is likely to deteriorate.
  • leakage current suppression As described above, the present inventors have specified that the occurrence of leakage current between the individual electrodes 220 passes through the organic electroluminescent layer 210. Furthermore, the present inventors have found that the leakage current affects the color reproducibility of the display device 200, particularly the color reproducibility at low luminance, and the influence of the leakage current increases as the pixel pitch PP is reduced. It was.
  • the present disclosure provides additional electrodes (a later-described first electrode) between the individual electrodes 20 (20 B, 20 G, and 20 R). 3) 90) was considered. Then, the present inventors set the potential of the third electrode 90 closer to the potential of the transparent common electrode 30 than the potential of the individual electrode 20, thereby reducing the leakage current generated in the individual electrode 20. It was found that it can be absorbed.
  • the present disclosure will be described in more detail.
  • FIG. 1 is a cross-sectional view schematically showing an example of a display device according to the present embodiment
  • FIG. 2 is a schematic plan view for explaining the arrangement of individual electrodes and third electrodes of the display device shown in FIG. 3 is a schematic cross-sectional view for explaining the configuration of individual electrodes of the display device shown in FIG. 1
  • FIG. 4 is a schematic circuit diagram of an organic electroluminescent element provided in the display device shown in FIG. .
  • the display device 100 shown in FIGS. 1 to 4 is a top emission type display device provided with an active matrix organic electroluminescent element.
  • the organic electroluminescent layer 10 is disposed on the interlayer insulating film 80, and an individual electrode (second electrode) as an anode is formed on the main surface of the organic electroluminescent layer 10 on the interlayer insulating film 80 side.
  • a transparent common electrode (first electrode) 30 as a cathode is disposed on the opposite main surface.
  • a third electrode 90 is disposed between the individual electrodes 20 on the main surface of the organic electroluminescent layer 10 on the interlayer insulating film 80 side.
  • the protective insulating film 40, the color filter layer 50, the sealing resin 60, and the cover glass 70 are laminated in this order.
  • a contact 81 and a wiring 83 that connect the individual electrode 20 to the pixel drive circuit, and a contact 85 and a wiring 87 that connect to the third electrode 90 are disposed.
  • a circuit for driving the organic electroluminescent element OLED as shown in FIG. 4 is appropriately arranged in the interlayer insulating film 80 and a semiconductor substrate (not shown) below the interlayer insulating film 80.
  • the display device 100 includes a red pixel SP R , a green pixel SP G , and a blue pixel SP B as shown in FIG.
  • the red pixel SP R , the green pixel SP G , and the blue pixel SP B are combined to form one pixel.
  • the pixels can be arranged in a matrix to display an image.
  • the organic electroluminescent layer 10 includes an organic luminescent material, and is provided on the individual electrode 20 and the interlayer insulating film 80 as a continuous film common to all the organic electroluminescent elements OLED.
  • the organic electroluminescent layer 10 emits light when an electric field is applied between the individual electrode 20 and the transparent common electrode 30.
  • the organic electroluminescent layer 10 may be formed in a multilayer structure in which a plurality of functional layers are stacked.
  • the organic electroluminescent layer 10 may be formed in a structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sequentially stacked from the individual electrode 20 side.
  • the organic electroluminescent layer 10 may be formed in a so-called tandem structure in which a plurality of light emitting layers are connected via a charge generation layer or an intermediate electrode.
  • the organic electroluminescent layer 10 is composed of a hole transport material, an electron transport material, an electric charge transport material, an organic light emitting material, or the like according to the layer configuration. Each of such materials is not limited and can be appropriately combined with known materials. Moreover, the wavelength of the light emitted from the organic electroluminescent layer 10 can be appropriately set according to the application, and in the display device 100 according to the present embodiment, the emission wavelength is set so that the emission color is white.
  • the organic electroluminescent layer 10 is a continuous film common to the organic electroluminescent element OLED, and is continuously formed over a plurality of pixels in a plan view.
  • an organic electroluminescent layer that emits each color of red, green, and blue is divided for each color by mask evaporation or the like. Sometimes it forms.
  • Si-MOS having a pixel pitch of 10 ⁇ m or less, it is difficult to divide and form the organic electroluminescent layer for each color.
  • the organic electroluminescent layer 10 that emits white light is formed so as to cover the entire effective pixel region, and the red / green is formed by the color filter layer 50 disposed thereon. ⁇ A system that splits each blue color is suitable.
  • the organic electroluminescent layer 10 is considered to have a tendency that leakage current tends to flow between pixels because there is no layer breakage.
  • the leakage current flows to the third electrode 90 described later, the movement of the leakage current between the pixels is suppressed.
  • the transparent common electrode 30 functions as a cathode of the organic electroluminescent element OLED. Therefore, when a voltage is applied to the organic electroluminescent layer 10, the potential of the transparent common electrode 30 is smaller than the potential of the individual electrode 20 described later.
  • the transparent common electrode 30 is provided on the organic electroluminescent layer 10 as a continuous film common to all the light emitting elements.
  • the transparent common electrode 30 may be formed as a light transmissive electrode with a material having a high light transmittance and a small work function.
  • the transparent common electrode 30 may be formed of a transparent conductive material such as indium tin oxide, indium zinc oxide, zinc oxide, aluminum-doped zinc oxide, or gallium-doped zinc oxide, and may include aluminum (Al), magnesium (Mg ), Silver (Ag), calcium (Ca), or sodium (Na) or other metal alloy may be formed as a thin film (eg, 30 nm or less) that is thin enough to have optical transparency. Further, the transparent common electrode 30 may be formed by laminating a plurality of films made of the metal or alloy described above.
  • the individual electrode 20 is provided on the interlayer insulating film 80 for each pixel and functions as an anode of the organic electroluminescent element OLED. As shown in FIG. 2, in plan view, the individual electrodes 20 are disposed at equal intervals on the basis of a predetermined pixel pitch P P corresponding to the arrangement and shape of the pixel. Specifically, an individual electrode 20R corresponding to a red pixel, an individual electrode 20G corresponding to a green pixel, and an individual electrode 20B corresponding to a blue pixel are repeatedly arranged with a boundary region having a predetermined interval therebetween. Further, in the present embodiment, the individual electrodes 20 each have a hexagonal shape in plan view.
  • the individual electrode 20 may be formed of a material having a high light reflectance and a large work function as a light reflecting electrode.
  • the individual electrode 20 may be formed of a simple substance or an alloy of a metal such as Cr, Au, Pt, Ni, Cu, Mo, W, Ti, Ta, Al, Fe, or Ag. May be formed by laminating a plurality of layers.
  • Al has a high reflectance of visible light of 90% or more, and can have both power supply and a function as a reflector at the same time.
  • a trace amount of Cu may be added.
  • the individual electrode 20 may be formed by laminating an electrode 201 and a light reflecting layer 202 having conductivity.
  • the electrode 201 can be made of a material suitable for injecting holes into the organic electroluminescent layer 10.
  • the electrode 201 may be formed as a transparent electrode using a transparent conductive material such as indium zinc oxide or indium tin oxide.
  • the light reflecting layer 202 can be made of a single metal or an alloy of metal such as Cr, Au, Pt, Ni, Cu, Mo, W, Ti, Ta, Al, Fe, or Ag.
  • a plurality of third electrodes 90 are arranged in a boundary region between the plurality of individual electrodes 20 so as to be in contact with the main surface of the organic electroluminescent layer 10. Further, as shown in FIG. 2, in the present embodiment, the plurality of third electrodes 90 are regularly arranged so as to be equidistant from the adjacent individual electrodes 20R, 20G, and 20B in plan view. Has been. From another point of view, the plurality of third electrodes 90 are arranged so as to be separated from the individual electrodes 20R, 20G, and 20B by a predetermined distance in a plan view and to surround them.
  • the plurality of third electrodes 90 are connected to the internal circuit of the display device 100 through contacts 85 and wirings 87, and are set to a constant potential in common. Specifically, when a voltage is applied to the organic electroluminescent layer 10, the potential of the third electrode 90 is a value obtained by adding the threshold voltage of the organic electroluminescent layer 10 to the potential of the transparent common electrode 30. Is set to be smaller.
  • the third A leakage current can flow preferentially through the electrode 90. For this reason, leakage current is prevented from flowing from the applied individual electrode 20 to the adjacent individual electrode 20. As a result, it is possible to prevent the organic electroluminescent layer 10 from emitting light due to a voltage caused by a leakage current between the unintended individual electrode 20 and the transparent common electrode 30.
  • the potential of the third electrode 90 as described above is preferably equal to or lower than the potential of the transparent common electrode 30. Thereby, the leak current generated in the individual electrode 20 can preferentially flow to the surrounding third electrode 90 more reliably.
  • the individual electrode 20 is an anode, and can have a positive potential when a voltage is applied. Therefore, in this case, the potential of the third electrode 90 can be set to 0 V or less, for example.
  • the potential of the third electrode 90 is preferably the same as the potential of the transparent common electrode 30.
  • the setting of the potential of the third electrode 90 described above can be achieved more easily, and the configuration of the display device 100 becomes simple. That is, the third electrode 90 and the transparent common electrode 30 can be connected by wiring or the like, and the potential can be managed in the same wiring.
  • the potential of the transparent common electrode 30 as the cathode is set to 0V
  • the potential of the third electrode 90 can also be set to 0V.
  • the potential of the third electrode 90 can also be a negative potential.
  • the lower limit value of the potential of the third electrode 90 is not particularly limited as long as the reverse current does not substantially flow through the organic electroluminescent layer 10.
  • the potential of the third electrode 90 may be about 10 V smaller than the potential of the transparent common electrode 30.
  • the potential of the third electrode 90 is set to a potential that is significantly lower than the potential of the transparent common electrode 30, for example, a potential that is 5 V or more lower, the above-described effect of suppressing the leakage current is not significantly improved.
  • the effect of suppressing the leakage current described above can be sufficiently obtained by making the potential of the third electrode 90 2 V lower than the potential of the transparent common electrode 30.
  • the plurality of third electrodes 90 is an island-shaped electrode group having a smaller area than the individual electrodes 20.
  • the area required for installation of the third electrode 90 can be reduced, and the area of the individual electrode 20 can be made relatively large.
  • the area used for light emission of the organic electroluminescent layer 10 can be increased, and even when the organic electroluminescent layer 10 emits light with the same luminance and the same current, the organic electroluminescent layer 10
  • the current density inside can be made relatively small. In this case, deterioration of the organic electroluminescent layer 10 can be suppressed, and the lifetime of the display device 100 can be extended.
  • each third electrode 90 is not particularly limited as long as the connection with the contact 85 is ensured, and can be reduced according to the accuracy of the manufacturing process of the display device 100.
  • the area of each third electrode 90 can be 5% or less, preferably 3% or less of the area of each individual electrode 20.
  • each third electrode 90 and the adjacent individual electrode 20 is not particularly limited, and the third electrodes 90 are arranged so as to be separated from each other so as not to cause a short circuit between the third electrode 90 and the individual electrode 20. .
  • the third electrode 90 is disposed in the same layer as the individual electrode 20. That is, the third electrode 90 is simultaneously formed by the same process at the time of manufacture. Accordingly, the third electrode 90 can be easily and reliably disposed between the individual electrodes 20, and the third electrode 90 can be reliably disposed in contact with the organic electroluminescent layer 10.
  • the material and the layer configuration of the third electrode 90 can be the same as the material and the layer configuration of the individual electrode 20.
  • the protective insulating film 40 is provided on the transparent common electrode 30 and protects the organic electroluminescent element OLED from the external environment, and in particular prevents moisture and oxygen from entering the organic electroluminescent layer 10.
  • the protective insulating film 40 is made of, for example, a material having high light transmittance and low water permeability such as silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or titanium oxide (TiO x ). May be provided.
  • the color filter layer 50 is provided on the protective insulating film 40, and color-divides the light generated by the organic electroluminescent element OLED for each pixel.
  • the color filter layer 50 includes a red color filter 50R, a green color filter 50G, and a blue color filter 50B that are divided corresponding to each individual electrode 20.
  • the red color filter 50R, the green color filter 50G, and the blue color filter 50B convert incident light from the organic electroluminescent layer 10 side into red, green, and blue, respectively, and emit them toward the sealing resin 60 side.
  • the color filter layer 50 may be a resin layer that selectively transmits light in the visible light wavelength band corresponding to red light, green light, or blue light.
  • Sealing resin 60 is disposed on the color filter layer 50 and seals each member below the color filter layer 50.
  • the cover glass 70 is disposed on the sealing resin 60 and protects the display unit of the display device 100.
  • the interlayer insulating film 80 is disposed under the organic electroluminescent layer 10 and carries the individual electrode 20 and the third electrode 90. At the same time, the interlayer insulating film 80 accommodates a contact 81 and a wiring 83 that connect the individual electrode 20 to a pixel drive circuit (not shown), and a contact 85 and a wiring 87 that connect the third electrode 90 to an external circuit.
  • the interlayer insulating film 80 can also accommodate other wirings, elements, and the like as necessary.
  • the interlayer insulating film 80 is formed of, for example, insulating silicon oxynitride.
  • the wirings 83 and 87 are made of a conductor such as copper (Cu) or aluminum (Al), and connect the individual electrode 20 and the third electrode 90 to an external circuit.
  • the display device 100 has a drive circuit for driving the organic electroluminescence element of the display device 100 on a semiconductor substrate (not shown) or the like.
  • the drive circuit is usually formed by being divided into pixels by a MOS process.
  • FIG. 4 is a circuit diagram illustrating an example of a circuit that constitutes one pixel of the display device 100.
  • the circuit constituting one pixel of the display device 100 includes an organic electroluminescent element OLED, a driving transistor DTr, a capacitive element C, and a selection transistor STr.
  • the organic electroluminescent element OLED is a self-luminous light emitting element in which the individual electrode 20, the organic electroluminescent layer 10, and the transparent common electrode 30 are laminated as described above.
  • the individual electrode 20 of the organic electroluminescent element OLED is connected to the power supply line PL via the drive transistor DTr, and the transparent common electrode 30 of the organic electroluminescent element OLED is connected to the ground line that is at the ground potential. Yes.
  • the organic electroluminescent element OLED functions as one pixel of the display device 100.
  • the drive transistor DTr is, for example, a field effect transistor.
  • One of the source and the drain of the driving transistor DTr is connected to the power supply line PL, and the other of the source and the drain is connected to the individual electrode 20 of the organic electroluminescent element OLED.
  • the gate of the drive transistor DTr is connected to one of the source and drain of the selection transistor STr.
  • the driving transistor DTr is connected in series with the organic electroluminescence device OLED, and controls the current flowing through the organic electroluminescence device OLED according to the magnitude of the gate voltage applied from the selection transistor STr, thereby organic electroluminescence.
  • the element OLED is driven.
  • the selection transistor STr is, for example, a field effect transistor.
  • One of the source and the drain of the selection transistor STr is connected to the gate of the drive transistor DTr, and the other of the source and the drain is connected to the signal line DL.
  • the gate of the selection transistor STr is connected to the scanning line SL.
  • the selection transistor STr controls the signal voltage applied to the gate of the drive transistor DTr by sampling the voltage of the signal line DL and applying it to the gate of the drive transistor DTr.
  • Capacitance element C is, for example, a capacitor. One end of the capacitive element C is connected to the gate of the drive transistor DTr, and the other end of the capacitive element C is connected to the power supply line PL. The capacitive element C maintains the voltage between the gate and the source of the driving transistor DTr at a predetermined voltage.
  • the third electrode 90 is disposed between the individual electrodes 20, and the potential of the third electrode 90 is equal to the potential of the transparent common electrode 30. It is smaller than a value obtained by adding a threshold voltage for the layer 10. Thus, even when a voltage is applied to the organic electroluminescent layer 10 by the transparent common electrode 30 and the individual electrode 20 and a leakage current is generated from the applied individual electrode 20 due to this, the third A leakage current can flow preferentially through the electrode 90. For this reason, leakage current is prevented from flowing from the applied individual electrode 20 to the adjacent individual electrode 20.
  • the organic electroluminescent layer 10 it is possible to prevent the organic electroluminescent layer 10 from emitting light due to a voltage caused by a leakage current between the unintended individual electrode 20 and the transparent common electrode 30.
  • unintentional light emission of pixels corresponding to other surrounding colors is prevented, and the display device 100 can display an image in a wide color gamut.
  • the influence of the leakage current is larger as the pixel pitch is smaller.
  • it is suitable to arrange a continuous white organic electroluminescent layer and perform color conversion by the color filter layer. Even in the organic electroluminescent layer, the influence of the leakage current is large.
  • the display device 100 according to the present embodiment described above can sufficiently suppress the influence of leakage current between pixels even when such a fine pixel pitch is employed.
  • the display device 100 and the display device 200 are compared, and the influence of the leakage current due to the presence or absence of the third electrode 90 is verified.
  • the power supply line related to light emission of the display device 100 and the display device 200 is set to a positive voltage, for example, 8V, and the potential of the anode (individual electrodes 20, 220) can be used up to about 6V by turning on the drive transistor DTr.
  • the potential of the cathode transparent common electrodes 30, 230
  • FIG. 5 shows the results of estimating the emission current and the leakage current that flows to the adjacent individual electrode 220 in the absence of the third electrode 90.
  • FIG. 5 shows the result of measuring the emission current in the display device 100 and the leakage current that flows to the adjacent individual electrode 20 together.
  • the numerical values in the graph of FIG. 5 indicate the voltage values of the individual electrodes 20 and 220 when light is emitted.
  • the leak current When the light emission current shown on the horizontal axis, that is, the current flowing through the organic electroluminescent layer 210 is 10 ⁇ 12 A or less, the leak current no longer reaches 1/10 or more of the light emission current, and when it is 10 ⁇ 13 A or less, light emission occurs. It becomes almost equal to the current.
  • the leakage current is suppressed to about 1/10 of that of the display device 200, and in particular, the leakage current suppressing effect on the low voltage side of 3 V or less. was remarkable. Further, in the display device 100 in which the third electrode 90 is set to ⁇ 2V, the leakage current can be suppressed to 1/100 or less of the display device 200.
  • FIG. 6 shows a value obtained by subtracting from 1 a value obtained by dividing the leakage current flowing in the adjacent individual electrodes 20 and 220 by the light emission current when various voltages are applied to one individual electrode 20 and 220. Since the value on the vertical axis in this graph indicates the relationship between the light emission current and the leakage current, it is a measure of the width of the color gamut of the display devices 100 and 200.
  • the horizontal axis of FIG. 6 represents luminance. Specifically, the individual electrodes 20 and 220 of all the sub-pixels of the organic electroluminescent element OLED, that is, all the red, green, and blue sub-pixels belonging to all the pixels are illuminated with a predetermined voltage. Brightness in the case of
  • the leakage current that causes color mixing is 1/10 or less of the light emission current even at a luminance as low as 0.001 nit that is not visible.
  • the drop in the area could only be around 10%.
  • the effect of setting the potential of the third electrode 90 to a voltage ( ⁇ 2V) that is lower than the potential 0V of the transparent common electrode 30 is not dramatic. It was.
  • the third electrode 90 is set lower than the potential of the transparent common electrode 30, the power consumption of the entire display device 100 may increase. Therefore, it is considered that the potential of the third electrode 90 is made lower than the potential of the transparent common electrode 30 when it is necessary to suppress the leakage current between the individual electrodes 20 to the limit.
  • the third electrode 90 is arranged as a dot having a small area.
  • the leakage current can be sufficiently suppressed.
  • the area of the individual electrode 20 in such a display device 100 is only about 12% smaller than the area of the individual electrode 220 in the display device 200 shown in FIG. It was also possible to suppress the influence of.
  • the transparent common electrode 30 is a cathode and the individual electrode 20 is an anode.
  • the transparent common electrode 30 may be an anode, and the individual electrode 20 may be a cathode.
  • the potential of the transparent common electrode 30 is larger than the potential of the individual electrode 20.
  • the potential of the third electrode 90 is larger than the value obtained by subtracting the threshold voltage for the organic electroluminescent layer 10 from the potential of the transparent common electrode 30. Thereby, the effect of suppressing the leakage current between the individual electrodes 20 can be obtained.
  • the potential of the third electrode 90 is preferably equal to or higher than the potential of the transparent common electrode 30, and more preferably the same as the potential of the transparent common electrode 30.
  • the upper limit of the potential of the third electrode 90 is not particularly limited, and may be in a range where a reverse current does not substantially flow through the organic electroluminescent layer 10.
  • the effect of suppressing the leakage current described above can be sufficiently obtained by making the potential of the third electrode 90 2 V larger than the potential of the transparent common electrode 30.
  • the shapes of the pixels and the individual electrodes 20 are hexagons, but the present disclosure is not limited to this. Further, the arrangement of the third electrodes around the individual electrodes may be appropriately changed according to the shape of the individual electrodes and the use thereof.
  • the individual electrodes 21R, 21G, and 21B corresponding to red, green, and blue have a rectangular shape according to the shape of the pixel, and are arranged in stripes.
  • the third electrode 90A is arranged on the extension line of the corners of the individual electrodes 21R, 21G, and 21B so as not to be short-circuited with the individual electrodes 21R, 21G, and 21B.
  • the individual electrodes 22R, 22G, and 22B corresponding to red, green, and blue form a square according to the shape of the pixel.
  • the third electrode 90B is arranged on the extension line of the corners of the individual electrodes 22R, 22G, and 22B so as not to be short-circuited with the individual electrodes 22R, 22G, and 22B.
  • the third electrode 90B is not arranged on the extension line of one corner of each individual electrode 22R, 22G, 22B.
  • the third electrodes 90B are regularly arranged, and some of the third electrodes 90B may not be arranged as necessary.
  • the third electrode may be disposed around the individual electrode that is easily affected by the leak current, while the third electrode may not be disposed around the other individual electrode.
  • FIG. 9 shows the arrangement of the individual electrodes 23R, 23G, 23B, and 23W when the color filter layer has white pixels that do not use a color conversion member.
  • the individual electrodes 23R, 23G, 23B, and 23W corresponding to red, green, blue, and white form a square according to the shape of the pixel.
  • the third electrode 90C is arranged on the extension line of the corners of the individual electrodes 23R, 23G, 23B, and 23W so as not to be short-circuited with the individual electrodes 23R, 23G, 23B, and 23W.
  • it is advantageous for improving the maximum luminance.
  • the third electrode is described as a point-like one, but the present disclosure is not limited to this.
  • the third electrode can take various shapes, for example, a linear electrode extending between the individual electrodes. Further, the third electrode may have a mesh shape extending between the individual electrodes.
  • the interlayer insulating film 80 ⁇ / b> A has a convex portion 803, and the individual electrode 24 and the third electrode 90 ⁇ / b> D are disposed on the convex portion 803.
  • the interlayer insulating film 80A, the individual electrode 24, and the third electrode 90D form an anode and a new common electrode on the interlayer insulating film used in a general LSI (large-scale integrated circuit) wiring. Then, it can be obtained by processing using known photolithography and dry etching.
  • an interlayer insulating film 80B is further embedded in the gap region between the individual electrode 25 and the third electrode 90E.
  • a thin portion is locally formed when the organic electroluminescent layer is formed. Can be prevented. As a result, uniform light emission is possible regardless of the portion.
  • Such a structure can also be realized by using a known general LSI manufacturing process or TFT (thin-film-transistor) manufacturing process.
  • the interlayer insulating film 80C has a convex portion 803A, and the individual electrode 26 and the third electrode 90F are arranged on the convex portion 803A.
  • An insulating film 805 is formed on the individual electrode 26 and the third electrode 90F.
  • the organic electroluminescent layer in the opening region of the insulating film 805 emits light
  • the effective area of the individual electrode 26 is the area of the opening surrounded by the insulating film 805.
  • Such a structure can be formed by further forming an insulating film on the electrode and then removing a part of the insulating film so as to form an opening with respect to the structure in FIG.
  • a light shielding layer 88 made of metal may be used instead.
  • the light shielding layer 88 is disposed in the interlayer insulating film 80, blocks light emitted from the organic electroluminescent layer 10, and protects pixel driving MOS transistors and TFTs in lower layers.
  • the light shielding layer 88 is continuously formed in the entire display portion of the display device 100, and can be formed of a metal layer having low reflectance and transmittance, such as titanium nitride or tungsten.
  • the individual electrode 20 has a function as a reflector, but the present disclosure is not limited to this.
  • the individual electrode 27 is formed as a transparent electrode using a transparent conductive material such as indium zinc oxide or indium tin oxide.
  • a reflector 89 such as a metal film is disposed below the individual electrode 26 in the interlayer insulating film 80D.
  • the display device according to the present disclosure may be a bottom emission type.
  • the individual electrode is a transparent electrode, and the reflector in the interlayer insulating film is omitted.
  • the organic electroluminescent layer is continuously formed over a plurality of pixels, but is not limited thereto, and the organic electroluminescent layer emits red, green, and blue colors.
  • the electroluminescent layer may be formed separately for each color by mask vapor deposition or the like.
  • a method of dividing the organic electroluminescent layer for each color is suitable.
  • Such a configuration is also possible when the display device is driven by a thin film transistor made of amorphous silicon, polycrystalline silicon, oxide semiconductor, or the like.
  • the organic electroluminescent layer is divided for each color, and the display device according to the present disclosure having the third electrode can preferably suppress the leakage current between the pixels.
  • the circuit configuration used for driving the light emission of the display device is not limited to that shown in FIG. 4, and various known circuits can be employed.
  • various pixel driving methods having a correction operation for improving the uniformity of image quality within the panel have been devised, but the technology of the present disclosure can be widely applied regardless of these detailed pixel driving methods.
  • the voltage applied to the third electrode is not always maintained at a constant value, and a transistor installed between the constant potential line and the third electrode during a period when the contribution to light emission is small, such as a correction operation. Control such as turning off the switch may be adopted.
  • the display device described above can also be used as a display unit of various electronic devices that display an input image signal or an internally generated image signal as a still image or a moving image.
  • Examples of such an electronic device include a music player having a storage medium such as a semiconductor memory, an imaging device such as a digital camera and a video camera, a notebook personal computer, a game device, and a portable information terminal such as a mobile phone and a smartphone. Can be illustrated.
  • An organic electroluminescent layer A first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels; A plurality of second electrodes arranged on the other main surface side of the organic electroluminescent layer and individually for each pixel; A display device comprising: a plurality of third electrodes disposed on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
  • the display device according to (1) which is smaller than a value obtained by adding a threshold voltage of the organic electroluminescent layer to the potential of the organic electroluminescent layer.
  • the potential of the first electrode is greater than the potential of the second electrode, and the potential of the third electrode is the first electrode.
  • the display device according to (1) which is larger than a value obtained by subtracting a threshold voltage of the organic electroluminescent layer from the potential of the organic electroluminescent layer.
  • the display device according to any one of (1) to (5), wherein the third electrode is arranged in an island shape in plan view. (7) The third electrode according to any one of (1) to (6), wherein the third electrode is arranged so as to be equidistant from the plurality of second electrodes adjacent to each other in plan view. Display device. (8) The display device according to any one of (1) to (7), wherein the second electrode and the third electrode are arranged in the same layer. (9) The display device according to any one of (1) to (8), wherein the organic electroluminescent layer is formed continuously over the plurality of pixels in a plan view.
  • An organic electroluminescent layer A first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels; A plurality of second electrodes disposed on the other main surface side of the organic electroluminescent layer and corresponding to each pixel individually;
  • An electronic apparatus comprising: a display unit having a plurality of third electrodes arranged on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
  • Electrode 202 Light reflection layer 30, 230 Transparent common electrode 40, 240 Protective insulating film 50, 250 Color filter layer 50R, 250R Red color filter 50G, 250G Green color filter 50B, 250B Blue color filter 60, 260 Sealing resin 70, 270 Cover glass 80, 80A, 80B, 80C, 80D, 280 Interlayer insulating film 81, 85, 87A, 281 Contact 83, 87, 283 Wiring 88 Light shielding layer 89 Reflector 90, 90A, 90B, 90C, 90D, 90E, 90F Third electrode 100, 200 Display device

Abstract

[Problem] To provide a display device and an electronic apparatus in which a leakage current between pixels is suppressed. [Solution] This display device comprises: an organic electroluminescent layer; a first electrode disposed on one primary surface side of the organic electroluminescent layer and shared by a plurality of pixels; a plurality of second electrodes disposed on the other primary surface side of the organic electroluminescent layer and disposed individually to each pixel; and a plurality of third electrodes disposed on the other primary surface side of the organic electroluminescent layer and disposed between each of the plurality of second electrodes.

Description

表示装置および電子機器Display device and electronic device
 本開示は、表示装置および電子機器に関する。 This disclosure relates to a display device and an electronic device.
 近年、モバイル用途の表示装置では、高精細化および低消費電力化への要求が高まっている。 In recent years, there has been an increasing demand for high definition and low power consumption for display devices for mobile use.
 例えば、下記の特許文献1に開示される有機電界発光素子(Organic Electro-Luminescence Diode:OLED)を用いた表示装置は、自発光型であり、かつ消費電力が低いため、モバイル用途への適用が期待されている。 For example, a display device using an organic electro-luminescence element (OLED) disclosed in Patent Document 1 described below is self-luminous and has low power consumption, so that it can be applied to mobile applications. Expected.
 ただし、このような有機電界発光素子では、有機電界発光層をすべての発光素子で共通に設けているため、隣接する発光素子の間で駆動電流のリークが発生しやすかった。 However, in such an organic electroluminescent device, since the organic electroluminescent layer is provided in common for all the light emitting devices, a leakage of drive current is likely to occur between adjacent light emitting devices.
 このため、特許文献1においては、発光素子同士の間に、電極および電荷輸送層を遮断するレリーフパターンを配置する技術が開示されている。また、特許文献2においては、正孔輸送層の各画素の発光領域以外の部分を紫外線により表面処理し、紫外線が照射された部位の抵抗値を増大させ、画素間のリーク電流を抑制する技術が開示されている。さらに、特許文献3においては、発光素子に対し周期的な駆動電圧の印加を行い、リーク電流を抑制する技術が開示されている。 For this reason, Patent Document 1 discloses a technique in which a relief pattern for blocking an electrode and a charge transport layer is disposed between light emitting elements. In Patent Document 2, a portion of the hole transport layer other than the light emitting region of each pixel is surface-treated with ultraviolet rays to increase a resistance value of a portion irradiated with the ultraviolet rays, thereby suppressing leakage current between the pixels. Is disclosed. Further, Patent Document 3 discloses a technique for applying a periodic drive voltage to a light emitting element to suppress leakage current.
特表2003-530660号公報Special table 2003-530660 gazette 特開2004-158436号公報JP 2004-158436 A 特開2014-52617号公報JP 2014-52617 A
 ところで、有機エレクトロルミネッセンス(有機EL)ディスプレイにおいては、一般に、有機電界発光素子をガラス基板上に形成した薄膜トランジスタで駆動することにより表示が行われている。テレビやスマートフォンのディスプレイ等の用途においては、トランジスタのチャネル材料として、例えばアモルファスシリコンや多結晶シリコンが用いられている。 By the way, in an organic electroluminescence (organic EL) display, display is generally performed by driving an organic electroluminescent element with a thin film transistor formed on a glass substrate. In applications such as displays for televisions and smartphones, amorphous silicon and polycrystalline silicon, for example, are used as channel materials for transistors.
 一方で画素ピッチが10μm以下、解像度が2500ppiを超えるような高精細でなおかつ小型の表示装置に対しては、Si上に形成したMOS(Metal-Oxide-Semiconductor)トランジスタにより有機電界発光素子を駆動する場合がある。 On the other hand, for a high-definition and small-sized display device having a pixel pitch of 10 μm or less and a resolution exceeding 2500 ppi, an organic electroluminescent element is driven by a MOS (Metal-Oxide-Semiconductor) transistor formed on Si. There is a case.
 特許文献1および2において開示される技術は、このような画素ピッチが高精細な表示装置に対して適用するのが困難である。また、特許文献3において開示される技術は、駆動電圧の制御が極めて煩雑である。 The technologies disclosed in Patent Documents 1 and 2 are difficult to apply to a display device having such a high pixel pitch. Further, the technique disclosed in Patent Document 3 is very complicated in controlling the drive voltage.
 そこで、本開示では、画素間のリーク電流を抑制することが可能な、新規かつ改良された表示装置および電子機器を提案する。 Therefore, the present disclosure proposes a new and improved display device and electronic apparatus that can suppress the leakage current between pixels.
 本開示によれば、有機電界発光層と、前記有機電界発光層の一方の主面側に配置され、複数の画素に共通する第1の電極と、前記有機電界発光層の他方の主面側に、かつ前記画素毎に個別に配置される複数の第2の電極と、前記有機電界発光層の他方の主面側に、かつ、前記複数の第2の電極同士の間に配置される複数の第3の電極と、を有する表示装置が提供される。 According to the present disclosure, the organic electroluminescent layer, the first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels, and the other main surface side of the organic electroluminescent layer And a plurality of second electrodes arranged individually for each pixel, and a plurality of second electrodes arranged on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes. A third electrode is provided.
 また、本開示によれば、有機電界発光層と、前記有機電界発光層の一方の主面側に配置され、複数の画素に共通する第1の電極と、前記有機電界発光層の他方の主面側に、かつ前記画素毎に個別に対応して配置される複数の第2の電極と、前記有機電界発光層の他方の主面側に、かつ、前記複数の第2の電極同士の間に配置される複数の第3の電極と、を有する表示部を備える、電子機器が提供される。 Further, according to the present disclosure, the organic electroluminescent layer, the first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels, and the other main electroluminescent layer of the organic electroluminescent layer are disposed. A plurality of second electrodes arranged on the surface side and corresponding to each pixel individually, on the other main surface side of the organic electroluminescent layer, and between the plurality of second electrodes There is provided an electronic device including a display unit having a plurality of third electrodes disposed on the surface.
 本開示によれば、画素間のリーク電流を抑制した表示装置および電子機器を提供することができる。したがって、リーク電流による意図しない画素の発光およびこれに伴う表示画像の色域の低下を防止することができる。 According to the present disclosure, it is possible to provide a display device and an electronic apparatus in which leakage current between pixels is suppressed. Therefore, it is possible to prevent unintentional light emission of the pixel due to the leak current and a decrease in the color gamut of the display image accompanying this.
 以上説明したように本開示によれば、画素間のリーク電流を抑制した表示装置および電子機器を提供することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
As described above, according to the present disclosure, it is possible to provide a display device and an electronic apparatus in which leakage current between pixels is suppressed.
Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る表示装置を模式的に示す断面図である。It is sectional drawing which shows typically the display apparatus which concerns on one Embodiment of this indication. 図1に示す表示装置の個別電極および第3の電極の配置を説明するための模式的な平面図である。It is a typical top view for demonstrating arrangement | positioning of the separate electrode of a display apparatus shown in FIG. 1, and a 3rd electrode. 図1に示す表示装置の個別電極の構成を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the structure of the separate electrode of the display apparatus shown in FIG. 図1に示す表示装置が備える有機電界発光素子の模式的な回路図である。FIG. 2 is a schematic circuit diagram of an organic electroluminescence element included in the display device shown in FIG. 1. 表示装置におけるリーク電流と発光電流との関係を示すグラフである。It is a graph which shows the relationship between the leakage current and light emission current in a display apparatus. 表示装置における輝度とリーク電流および発光電流との関係を示すグラフである。It is a graph which shows the relationship between the brightness | luminance in a display apparatus, leakage current, and light emission current. 本開示の一変形例における個別電極および第3の電極の形状および配置を示す平面図である。It is a top view showing the shape and arrangement of an individual electrode and a 3rd electrode in one modification of this indication. 本開示の一変形例における個別電極および第3の電極の形状および配置を示す平面図である。It is a top view showing the shape and arrangement of an individual electrode and a 3rd electrode in one modification of this indication. 本開示の一変形例における個別電極および第3の電極の形状および配置を示す平面図である。It is a top view showing the shape and arrangement of an individual electrode and a 3rd electrode in one modification of this indication. 本開示の一変形例における個別電極および第3の電極を説明する模式的な断面図である。It is a typical sectional view explaining an individual electrode and a 3rd electrode in one modification of this indication. 本開示の一変形例における個別電極および第3の電極を説明する模式的な断面図である。It is a typical sectional view explaining an individual electrode and a 3rd electrode in one modification of this indication. 本開示の一変形例における個別電極および第3の電極を説明する模式的な断面図である。It is a typical sectional view explaining an individual electrode and a 3rd electrode in one modification of this indication. 本開示の一変形例に係る表示装置を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically illustrating a display device according to a modification example of the present disclosure. 本開示の一変形例における個別電極の構成を説明するための模式的な断面図である。It is a typical sectional view for explaining composition of an individual electrode in one modification of this indication. 第3の電極を有さない表示装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the display apparatus which does not have a 3rd electrode. 図15に示す表示装置が構成する画素の配置を示す平面図である。FIG. 16 is a plan view illustrating an arrangement of pixels included in the display device illustrated in FIG. 15. 個別電極間のリーク電流を説明するための模式図である。It is a schematic diagram for demonstrating the leakage current between separate electrodes. 個別電極間のリーク電流を説明するための模式図である。It is a schematic diagram for demonstrating the leakage current between separate electrodes. 有機電界発光層の電圧と電流との関係を模式的に示すグラフである。It is a graph which shows typically the relation between the voltage and current of an organic electroluminescent layer. 図15に示す表示装置が備える、個別電極の模式的な配置図である。FIG. 16 is a schematic arrangement view of individual electrodes provided in the display device shown in FIG. 15.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、図中の各部材の大きさは、説明を容易とするため適宜強調されており、実際の寸法、部材間の比率を示すものではない。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol. In addition, the size of each member in the drawing is emphasized as appropriate for ease of explanation, and does not indicate actual dimensions and ratios between members.
 なお、説明は以下の順序で行うものとする。
 1.本開示の背景および概要
  1.1.表示装置におけるリーク電流の問題
  1.2.本開示によるリーク電流の抑制の概要
 2.表示装置の構成
 3.リーク電流の影響の検証
 4.変形例
 5.まとめ
The description will be made in the following order.
1. Background and overview of the present disclosure 1.1. Problems of leakage current in display device 1.2. 1. Overview of suppression of leakage current according to the present disclosure 2. Configuration of display device 3. Verification of influence of leakage current Modification 5 Summary
 <1.本開示の背景および概要> <1. Background and Summary of the Disclosure>
 [1.1.表示装置におけるリーク電流の問題]
 まず、本開示の詳細な説明に先立ち、有機電界発光素子を用いた表示装置におけるリーク電流の問題について説明する。図15は、後述する第3の電極を有さない表示装置の一例を模式的に示す断面図、図16は、図15に示す表示装置が構成する画素の配置を示す平面図、図17および図18は、個別電極間のリーク電流を説明するための模式図、図19は、有機電界発光層の電圧と電流との関係を模式的に示すグラフ、図20は、図15に示す表示装置が備える、個別電極の模式的な配置図である。
[1.1. Problems of leakage current in display devices]
First, prior to detailed description of the present disclosure, a problem of leakage current in a display device using an organic electroluminescent element will be described. 15 is a cross-sectional view schematically showing an example of a display device that does not have a third electrode to be described later, FIG. 16 is a plan view showing the arrangement of pixels that the display device shown in FIG. 18 is a schematic diagram for explaining a leakage current between individual electrodes, FIG. 19 is a graph schematically showing a relationship between the voltage and current of the organic electroluminescent layer, and FIG. 20 is a display device shown in FIG. FIG. 3 is a schematic arrangement view of individual electrodes.
 図15に示す表示装置200は、アクティブマトリクス型の有機電界発光素子を用いた表示装置である。表示装置200においては、層間絶縁膜280上に有機電界発光層210が配置されており、有機電界発光層210の層間絶縁膜280側にはアノードとしての個別電極220が、反対側にはカソードとしての透明共通電極230が配置されている。そして、透明共通電極230上には、保護絶縁膜240、カラーフィルタ層250、封止樹脂260およびカバーガラス270がこの順で積層されている。一方で、層間絶縁膜280中には、個別電極220を図示せぬ画素駆動回路に接続するコンタクト281および配線283が配置されている。 A display device 200 shown in FIG. 15 is a display device using an active matrix organic electroluminescent element. In the display device 200, the organic electroluminescent layer 210 is disposed on the interlayer insulating film 280. The organic electroluminescent layer 210 has an individual electrode 220 as an anode on the interlayer insulating film 280 side and a cathode on the opposite side. Transparent common electrode 230 is disposed. On the transparent common electrode 230, a protective insulating film 240, a color filter layer 250, a sealing resin 260, and a cover glass 270 are laminated in this order. On the other hand, in the interlayer insulating film 280, a contact 281 and a wiring 283 that connect the individual electrode 220 to a pixel drive circuit (not shown) are arranged.
 有機電界発光層210は、例えば透明共通電極230と個別電極220との間で電圧が印加された際に、白色光を発することができる。有機電界発光層210から放出された白色光は、透明共通電極230および保護絶縁膜240を通過して、カラーフィルタ層250に入射する。カラーフィルタ層250は、個別電極220毎に対応して区分された、赤色カラーフィルタ250Rと、緑色カラーフィルタ250Gと、青色カラーフィルタ250Bとを有している。赤色カラーフィルタ250R、緑色カラーフィルタ250Gおよび青色カラーフィルタ250Bは、入射光をそれぞれ赤色、緑色および青色に変換し、封止樹脂側へ向けて出射する。出射した光は、さらに、封止樹脂260およびカバーガラス270を通過して、外部へ放出される。 The organic electroluminescent layer 210 can emit white light when a voltage is applied between the transparent common electrode 230 and the individual electrode 220, for example. White light emitted from the organic electroluminescent layer 210 passes through the transparent common electrode 230 and the protective insulating film 240 and enters the color filter layer 250. The color filter layer 250 includes a red color filter 250R, a green color filter 250G, and a blue color filter 250B that are divided corresponding to each individual electrode 220. The red color filter 250R, the green color filter 250G, and the blue color filter 250B convert incident light into red, green, and blue, respectively, and emit the light toward the sealing resin side. The emitted light further passes through the sealing resin 260 and the cover glass 270 and is emitted to the outside.
 そして、アクティブマトリクス型の表示装置200における画素配列は、一例として平面視にて図16に記載されるものが挙げられる。図16に示すように個別電極220および対応する赤色カラーフィルタ250R、緑色カラーフィルタ250Gおよび青色カラーフィルタ250Bにより、サブピクセルとしての赤色画素SP、緑色画素SPおよび青色画素SPが形成される。このような多数の赤色画素SP、緑色画素SPおよび青色画素SPは、赤、緑、青の三原色の発光を可能とし、1つのピクセルを構成する。このようなピクセルをマトリクス状に配置することにより、入力された信号に対応する画像を、カラー表示する表示パネルが構成される。 An example of the pixel array in the active matrix display device 200 is that shown in FIG. 16 in plan view. As shown in FIG. 16, the individual pixel 220 and the corresponding red color filter 250R, green color filter 250G, and blue color filter 250B form red pixels SP R , green pixels SP G, and blue pixels SP B as sub-pixels. . Such a large number of red pixels SP R , green pixels SP G and blue pixels SP B are capable of emitting light of the three primary colors of red, green and blue and constitute one pixel. By arranging such pixels in a matrix, a display panel that displays an image corresponding to the input signal in color is configured.
 ここで、画素間におけるリーク電流について検討する。図17および図18は、個別電極220間のリーク電流を説明する模式図、図19は、有機電界発光層210への電圧印加時における個別電極(アノード)220の電圧と電流との関係を模式的に示すグラフである。本開示者らが種々の表示素子を試作して検討した結果、個別電極220間を流れるリーク電流が非発光の個別電極220の電位を大きく引き上げるケースが認められ、そのリーク電流の主たる経路は、図16に示す有機電界発光層210の下層部分であることがわかった。以下、詳細に説明する。 Here, the leakage current between pixels is examined. 17 and 18 are schematic diagrams for explaining the leakage current between the individual electrodes 220, and FIG. 19 is a schematic diagram showing the relationship between the voltage and current of the individual electrode (anode) 220 when a voltage is applied to the organic electroluminescent layer 210. FIG. As a result of the present inventors having prototyped and examined various display elements, a case where a leak current flowing between the individual electrodes 220 greatly increases the potential of the non-light-emitting individual electrode 220 is recognized, and the main path of the leak current is It was found that this was the lower layer portion of the organic electroluminescent layer 210 shown in FIG. Details will be described below.
 上述した表示装置200においては、有機電界発光層210が色毎には分離されておらず、サブピクセルに対応する個別電極220が有機電界発光層210の下層において接続されている。有機電界発光層210は、その性質上良好な絶縁体ではなく、隣接する個別電極220間のリーク電流を完全に抑制するのは困難である。すなわち、有機電界発光層210の個別電極220側には、正孔等の電荷を注入しやすい有機材料層が配置されており、したがって、このような有機材料層をリーク経路として経由して電流がリークし得る。典型的には、有機電界発光層210のシート抵抗は、1012Ω/□程度またはこれ以下であると考えられる。 In the display device 200 described above, the organic electroluminescent layer 210 is not separated for each color, and the individual electrodes 220 corresponding to the subpixels are connected below the organic electroluminescent layer 210. The organic electroluminescent layer 210 is not a good insulator in nature, and it is difficult to completely suppress the leakage current between the adjacent individual electrodes 220. That is, an organic material layer that easily injects charges such as holes is arranged on the individual electrode 220 side of the organic electroluminescent layer 210. Therefore, current flows through such an organic material layer as a leakage path. Can leak. Typically, the sheet resistance of the organic electroluminescent layer 210 is considered to be about 10 12 Ω / □ or less.
 このような有機電界発光層210のリーク経路を考慮すると、隣接する個別電極220間のリーク電流が流れる部分の抵抗RIE-IEは、(有機電界発光層210のシート抵抗Ω/□)×(個別電極220間距離)/(個別電極220の一辺の長さ)で近似的に表わされる。そして、リーク電流の量は、電圧印加時における有機電界発光層210の厚さ方向の抵抗RSPと上記個別電極220間の抵抗RIE-IEとの関係に影響を受ける。 Considering such a leakage path of the organic electroluminescent layer 210, the resistance R IE-IE of the portion where the leakage current between the adjacent individual electrodes 220 flows is (sheet resistance Ω / □ of the organic electroluminescent layer 210) × ( The distance between the individual electrodes 220) / (the length of one side of the individual electrodes 220) is approximately expressed. The amount of leakage current is affected by the relationship between the resistance R SP in the thickness direction of the organic electroluminescent layer 210 and the resistance R IE-IE between the individual electrodes 220 when a voltage is applied.
 一方で、図19に示された発光電流特性を鑑みると、有機電界発光層210は、個別電極220による印加電圧が比較的小さい場合において、その発光電流が極端に小さい。すなわち、つまり、電流-電圧特性がオーミックではなく3.5V付近から急激に立ち上がる形になっており、印加電圧が低い場合には、有機電界発光層210の厚さ方向の抵抗RSPは大きい。したがって、低輝度の発光により表示を行いたい場合、抵抗RIE-IEに対する抵抗RSPが大きくなり、リーク電流の影響は大きくなる。 On the other hand, considering the light emission current characteristics shown in FIG. 19, the organic electroluminescent layer 210 has an extremely small light emission current when the voltage applied by the individual electrode 220 is relatively small. That is, the current-voltage characteristics are not ohmic but rise rapidly from around 3.5 V, and when the applied voltage is low, the resistance R SP in the thickness direction of the organic electroluminescent layer 210 is large. Therefore, when display is to be performed with low luminance light emission, the resistance R SP with respect to the resistance R IE-IE increases, and the influence of the leakage current increases.
 したがって、図15に示されるような表示装置200においては、有機電界発光層210に給電する個別電極220同士の間で意図せず流れるリーク電流を抑制することが困難である。また、リーク電流は、低輝度の表示を行うために有機電界発光層210に対し低電圧を印加した際により影響が顕著に表れると考えられた。 Therefore, in the display device 200 as shown in FIG. 15, it is difficult to suppress a leakage current that flows unintentionally between the individual electrodes 220 that feed the organic electroluminescent layer 210. Further, it was considered that the influence of the leakage current appears more remarkably when a low voltage is applied to the organic electroluminescent layer 210 in order to perform low luminance display.
 以上説明した個別電極220間を流れるリーク電流は、表示装置200の色域の低下を引き起こし得る。青色の画素SPのみを発光させて純粋な青色を表示させようとした場合には、例えば図20において図中の中央の個別電極220Bと透明共通電極230との間で電圧を印加することができる。しかしながら、図20中矢印で示すように、これに隣接する赤や緑の画素SP、SPに対応する周囲の個別電極220R、220Gへリーク電流が流れてしまう。この結果、画素SPの周囲の画素SP、SPが赤色や緑色に光ってしまうので、画素SPにおいて表示される青色の色純度が落ちてしまう。赤・緑といった他の色を発色させる際にも同様の現象が起こるので、表示できる色域が狭くなってしまう。 The leakage current flowing between the individual electrodes 220 described above can cause a decrease in the color gamut of the display device 200. When pure blue is displayed by causing only the blue pixel SP B to emit light, for example, a voltage may be applied between the central individual electrode 220B and the transparent common electrode 230 in FIG. it can. However, as indicated by an arrow in FIG. 20, a leak current flows to the surrounding individual electrodes 220R and 220G corresponding to the red and green pixels SP R and SP G adjacent thereto. As a result, the pixels SP R and SP G around the pixel SP B shine red or green, so that the blue color purity displayed in the pixel SP B falls. Since the same phenomenon occurs when other colors such as red and green are developed, the color gamut that can be displayed is narrowed.
 さらに、微細な画素ピッチPを有する表示装置においては、特に、リーク電流によってひき起こされる低輝度における色再現性の低下が顕著となる。以下、具体的に説明する。画素間ピッチPを微細化する場合には、個別電極220の配置を相似形を保つように微細化するのが大まかには妥当と言え、例えば個別電極220の大きさを半分にする場合にはお互いに隣接する個別電極220間の距離も約半分にするのが現実的である。これは、製造時におけるフォトリソグラフィーの精度に基づき、個別電極220の寸法および個別電極220間距離を設定するためである。 Further, in a display device having a fine pixel pitch P P, in particular, reduction in color reproducibility in a low luminance which is caused by the leak current is remarkable. This will be specifically described below. When refining the pitch P P between pixels, although reasonable for roughly that miniaturized to keep similar figure the arrangement of the individual electrodes 220, for example, in the case of halving the size of the individual electrode 220 It is practical to halve the distance between the individual electrodes 220 adjacent to each other. This is because the dimensions of the individual electrodes 220 and the distance between the individual electrodes 220 are set based on the accuracy of photolithography at the time of manufacture.
 ここで、有機電界発光層210の電流電圧特性を単純な抵抗で近似させると、有機電界発光層210の抵抗は個別電極220の面積に反比例する。例えば、画素ピッチPを1/2に設定した場合、個別電極220に対応する有機電界発光層210の部分の抵抗RSPは、4倍に上昇する。
 一方で、個別電極220間の抵抗RIE-IEは、画素ピッチPを変更しても個別電極220間距離と個別電極220の一辺の長さとの比が変わらないため、上記の式を鑑みると、変化がないと考えられる。したがって、画素ピッチPを小さくするほど、個別電極220間の抵抗RIE-IEに対する有機電界発光層210の部分の抵抗RSPが画素ピッチPの二乗に反比例して増加し、個別電極220間のリーク電流の影響が大きくなる。この結果、表示装置200の低輝度における色再現性の低下が生じやすくなる。
Here, when the current-voltage characteristic of the organic electroluminescent layer 210 is approximated by a simple resistance, the resistance of the organic electroluminescent layer 210 is inversely proportional to the area of the individual electrode 220. For example, if you set the pixel pitch P P 1/2, the resistance R SP portion of the organic electroluminescent layer 210 corresponding to the individual electrode 220 is increased to four times.
On the other hand, the resistance R IE-IE between the individual electrode 220, since no change is the ratio of the length of one side of the individual electrode 220 between the distance and the individual electrode 220 Changing the pixel pitch P P, light of the above formula It seems that there is no change. Therefore, the smaller the pixel pitch P P, the resistance R SP portion of the organic electroluminescent layer 210 is increased in inverse proportion to the square of the pixel pitch P P to the resistance R IE-IE between the individual electrode 220, individual electrode 220 The influence of the leakage current between them increases. As a result, the color reproducibility of the display device 200 at a low luminance is likely to deteriorate.
 [1.2.本開示によるリーク電流の抑制の概要]
 以上説明したように、本開示者らは、個別電極220間のリーク電流の発生が有機電界発光層210を経由していることを特定した。さらに、本開示者らは、リーク電流が表示装置200の色再現性、特に低輝度での色再現性に影響を与え、画素ピッチPを小さくするほどリーク電流の影響が大きくなることを見出した。
[1.2. Overview of leakage current suppression according to the present disclosure]
As described above, the present inventors have specified that the occurrence of leakage current between the individual electrodes 220 passes through the organic electroluminescent layer 210. Furthermore, the present inventors have found that the leakage current affects the color reproducibility of the display device 200, particularly the color reproducibility at low luminance, and the influence of the leakage current increases as the pixel pitch PP is reduced. It was.
 このようなリーク電流の影響を抑制することを目的として、本開示者らは、図1、図2に示すように、個別電極20(20B、20G、20R)間に、さらなる電極(後述する第3の電極)90を配置することを検討した。そして、本開示者らは、第3の電極90の電位を個別電極20の電位よりも透明共通電極30の電位に近く設定することにより、個別電極20において生じたリーク電流を第3の電極90により吸収できることを見出した。以下、本開示についてより詳細に説明する。 For the purpose of suppressing the influence of such a leakage current, the present disclosure, as shown in FIG. 1 and FIG. 2, provides additional electrodes (a later-described first electrode) between the individual electrodes 20 (20 B, 20 G, and 20 R). 3) 90) was considered. Then, the present inventors set the potential of the third electrode 90 closer to the potential of the transparent common electrode 30 than the potential of the individual electrode 20, thereby reducing the leakage current generated in the individual electrode 20. It was found that it can be absorbed. Hereinafter, the present disclosure will be described in more detail.
 <2.表示装置の構成>
 次に、本実施形態に係る表示装置について、詳細に説明する。図1は、本実施形態に係る表示装置の一例を模式的に示す断面図、図2は、図1に示す表示装置の個別電極および第3の電極の配置を説明するための模式的な平面図、図3は図1に示す表示装置の個別電極の構成を説明するための模式的な断面図、図4は図1に示す表示装置が備える有機電界発光素子の模式的な回路図である。
<2. Configuration of display device>
Next, the display device according to the present embodiment will be described in detail. FIG. 1 is a cross-sectional view schematically showing an example of a display device according to the present embodiment, and FIG. 2 is a schematic plan view for explaining the arrangement of individual electrodes and third electrodes of the display device shown in FIG. 3 is a schematic cross-sectional view for explaining the configuration of individual electrodes of the display device shown in FIG. 1, and FIG. 4 is a schematic circuit diagram of an organic electroluminescent element provided in the display device shown in FIG. .
 図1~図4に示す表示装置100は、アクティブマトリクス型の有機電界発光素子を備えたトップ・エミッション型の表示装置である。表示装置100においては、層間絶縁膜80上に有機電界発光層10が配置されており、有機電界発光層10の層間絶縁膜80側の主面にはアノードとしての個別電極(第2の電極)20が、反対側の主面にはカソードとしての透明共通電極(第1の電極)30が配置されている。さらに、有機電界発光層10の層間絶縁膜80側の主面の個別電極20間には、第3の電極90が配置されている。そして、透明共通電極30上には、保護絶縁膜40、カラーフィルタ層50、封止樹脂60およびカバーガラス70がこの順で積層されている。また、層間絶縁膜80中には、個別電極20を画素駆動回路に接続するコンタクト81および配線83ならびに第3の電極90と接続されるコンタクト85および配線87が配置されている。なお、層間絶縁膜80中およびその下層の半導体基板(図示せず)には、図4に示すような有機電界発光素子OLEDを駆動するための回路が適宜配置されている。 The display device 100 shown in FIGS. 1 to 4 is a top emission type display device provided with an active matrix organic electroluminescent element. In the display device 100, the organic electroluminescent layer 10 is disposed on the interlayer insulating film 80, and an individual electrode (second electrode) as an anode is formed on the main surface of the organic electroluminescent layer 10 on the interlayer insulating film 80 side. 20, a transparent common electrode (first electrode) 30 as a cathode is disposed on the opposite main surface. Further, a third electrode 90 is disposed between the individual electrodes 20 on the main surface of the organic electroluminescent layer 10 on the interlayer insulating film 80 side. On the transparent common electrode 30, the protective insulating film 40, the color filter layer 50, the sealing resin 60, and the cover glass 70 are laminated in this order. In the interlayer insulating film 80, a contact 81 and a wiring 83 that connect the individual electrode 20 to the pixel drive circuit, and a contact 85 and a wiring 87 that connect to the third electrode 90 are disposed. A circuit for driving the organic electroluminescent element OLED as shown in FIG. 4 is appropriately arranged in the interlayer insulating film 80 and a semiconductor substrate (not shown) below the interlayer insulating film 80.
 本実施形態においては、表示装置100は、表示装置200と同様に、図16に示されるような赤色の画素SP、緑色の画素SP、青色の画素SPが、六角形のサブピクセルを構成し、赤色の画素SP、緑色の画素SP、青色の画素SPが組み合わされて一つのピクセルを構成する。そして、これらのピクセルがマトリクス状に配置されることにより、画像の表示が可能となる。 In the present embodiment, as in the display device 200, the display device 100 includes a red pixel SP R , a green pixel SP G , and a blue pixel SP B as shown in FIG. The red pixel SP R , the green pixel SP G , and the blue pixel SP B are combined to form one pixel. The pixels can be arranged in a matrix to display an image.
 有機電界発光層10は、有機発光材料を含み、全ての有機電界発光素子OLEDに共通の連続膜として、個別電極20および層間絶縁膜80の上に設けられる。また、有機電界発光層10は、個別電極20と、透明共通電極30との間で電界が印加されることによって発光する。 The organic electroluminescent layer 10 includes an organic luminescent material, and is provided on the individual electrode 20 and the interlayer insulating film 80 as a continuous film common to all the organic electroluminescent elements OLED. The organic electroluminescent layer 10 emits light when an electric field is applied between the individual electrode 20 and the transparent common electrode 30.
 具体的には、電界が印加された場合、有機電界発光層10には、個別電極20から正孔が注入され、透明共通電極30から電子が注入される。注入された正孔および電子は、有機電界発光層10中で再結合することで励起子を形成し、励起子のエネルギーが有機発光材料を励起させることで、有機発光材料から蛍光またはりん光を発生させる。 Specifically, when an electric field is applied, holes are injected from the individual electrode 20 and electrons are injected from the transparent common electrode 30 into the organic electroluminescent layer 10. The injected holes and electrons recombine in the organic electroluminescent layer 10 to form excitons, and the exciton energy excites the organic light emitting material, so that fluorescence or phosphorescence is emitted from the organic light emitting material. generate.
 ここで、有機電界発光層10は、複数の機能層を積層した多層構造で形成されてもよい。例えば、有機電界発光層10は、個別電極20側から正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層を順に積層した構造で形成されてもよい。また、有機電界発光層10は、複数の発光層を電荷発生層または中間電極を介して接続した、いわゆるタンデム型構造で形成されてもよい。 Here, the organic electroluminescent layer 10 may be formed in a multilayer structure in which a plurality of functional layers are stacked. For example, the organic electroluminescent layer 10 may be formed in a structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sequentially stacked from the individual electrode 20 side. The organic electroluminescent layer 10 may be formed in a so-called tandem structure in which a plurality of light emitting layers are connected via a charge generation layer or an intermediate electrode.
 有機電界発光層10は、その層構成に応じて、正孔輸送材料、電子輸送材料、電電荷輸送材料、および有機発光材料等により構成される。このような各材料は、限定されるものではなく、適宜公知の材料を組み合わせて採用することが可能である。
 また、有機電界発光層10が発する光の波長は、適宜用途に応じて設定でき、本実施形態に係る表示装置100においては、発光色が白色となるように発光波長が設定される。
The organic electroluminescent layer 10 is composed of a hole transport material, an electron transport material, an electric charge transport material, an organic light emitting material, or the like according to the layer configuration. Each of such materials is not limited and can be appropriately combined with known materials.
Moreover, the wavelength of the light emitted from the organic electroluminescent layer 10 can be appropriately set according to the application, and in the display device 100 according to the present embodiment, the emission wavelength is set so that the emission color is white.
 また、上記したように有機電界発光層10は、有機電界発光素子OLEDに共通の連続膜であり、平面視にて複数の画素に渡り連続して形成されている。ここで、画素ピッチが数十ミクロン以上などの有機エレクトロルミネッセンスディスプレイの場合には、赤、緑、青のそれぞれの色を発光するような有機電界発光層をマスク蒸着などで色毎に分割して形成する場合もある。しかしながら、画素ピッチが10um以下などのSi-MOSを用いた高精細小型ディスプレイの場合には色毎に有機電界発光層を分割して形成するのが難しい。したがって、画素ピッチが小さい表示装置100を製造する場合、白色に発光する有機電界発光層10を有効画素領域全体をカバーするように形成して、その上に配置したカラーフィルタ層50によって赤・緑・青の各色に分光する方式が適している。 Further, as described above, the organic electroluminescent layer 10 is a continuous film common to the organic electroluminescent element OLED, and is continuously formed over a plurality of pixels in a plan view. Here, in the case of an organic electroluminescence display having a pixel pitch of several tens of microns or more, an organic electroluminescent layer that emits each color of red, green, and blue is divided for each color by mask evaporation or the like. Sometimes it forms. However, in the case of a high-definition small display using Si-MOS having a pixel pitch of 10 μm or less, it is difficult to divide and form the organic electroluminescent layer for each color. Therefore, when manufacturing the display device 100 having a small pixel pitch, the organic electroluminescent layer 10 that emits white light is formed so as to cover the entire effective pixel region, and the red / green is formed by the color filter layer 50 disposed thereon.・ A system that splits each blue color is suitable.
 一方で有機電界発光層10は、層の断絶がないことから、リーク電流が画素間で流れやすい傾向にあると考えられる。しかしながら、本実施形態に係る表示装置100においては、リーク電流が後述する第3の電極90に流れるため、リーク電流の画素間での移動が抑制されている。 On the other hand, the organic electroluminescent layer 10 is considered to have a tendency that leakage current tends to flow between pixels because there is no layer breakage. However, in the display device 100 according to the present embodiment, since the leakage current flows to the third electrode 90 described later, the movement of the leakage current between the pixels is suppressed.
 透明共通電極30は、有機電界発光素子OLEDのカソードとして機能する。したがって、有機電界発光層10に対して電圧が印加される場合、透明共通電極30の電位は、後述する個別電極20の電位よりも小さくなる。また、透明共通電極30は、全ての発光素子に共通した連続膜として、有機電界発光層10の上に設けられる。透明共通電極30は、光透過性が高く、かつ仕事関数が小さい材料にて、光透過電極として形成されてもよい。例えば、透明共通電極30は、酸化インジウムスズ、酸化インジウム亜鉛、酸化亜鉛、アルミニウムドープ酸化亜鉛、またはガリウムドープ酸化亜鉛などの透明導電性材料で形成されてもよく、アルミニウム(Al)、マグネシウム(Mg)、銀(Ag)、カルシウム(Ca)、またはナトリウム(Na)などの金属の合金によって光透過性を有する程度に薄い(例えば、30nm以下など)薄膜として形成されてもよい。また、透明共通電極30は、上述した金属または合金からなる膜を複数積層させたもので形成されてもよい。 The transparent common electrode 30 functions as a cathode of the organic electroluminescent element OLED. Therefore, when a voltage is applied to the organic electroluminescent layer 10, the potential of the transparent common electrode 30 is smaller than the potential of the individual electrode 20 described later. The transparent common electrode 30 is provided on the organic electroluminescent layer 10 as a continuous film common to all the light emitting elements. The transparent common electrode 30 may be formed as a light transmissive electrode with a material having a high light transmittance and a small work function. For example, the transparent common electrode 30 may be formed of a transparent conductive material such as indium tin oxide, indium zinc oxide, zinc oxide, aluminum-doped zinc oxide, or gallium-doped zinc oxide, and may include aluminum (Al), magnesium (Mg ), Silver (Ag), calcium (Ca), or sodium (Na) or other metal alloy may be formed as a thin film (eg, 30 nm or less) that is thin enough to have optical transparency. Further, the transparent common electrode 30 may be formed by laminating a plurality of films made of the metal or alloy described above.
 個別電極20は、画素毎に層間絶縁膜80の上に設けられ、有機電界発光素子OLEDのアノードとして機能する。図2に示すように、平面視にて、個別電極20は、画素の配置および形状に対応して所定の画素ピッチPに基づき等間隔に配置される。具体的には赤色の画素に対応する個別電極20R、緑色の画素に対応する個別電極20G、青色の画素に対応する個別電極20Bが、所定間隔の境界領域を挟んで、繰り返し配置される。また、個別電極20は、本実施形態において、平面視にて、それぞれ六角形をなしている。 The individual electrode 20 is provided on the interlayer insulating film 80 for each pixel and functions as an anode of the organic electroluminescent element OLED. As shown in FIG. 2, in plan view, the individual electrodes 20 are disposed at equal intervals on the basis of a predetermined pixel pitch P P corresponding to the arrangement and shape of the pixel. Specifically, an individual electrode 20R corresponding to a red pixel, an individual electrode 20G corresponding to a green pixel, and an individual electrode 20B corresponding to a blue pixel are repeatedly arranged with a boundary region having a predetermined interval therebetween. Further, in the present embodiment, the individual electrodes 20 each have a hexagonal shape in plan view.
 個別電極20は、光反射率が高く、かつ仕事関数が大きい材料にて、光反射電極として形成されてもよい。例えば、個別電極20は、Cr、Au、Pt、Ni、Cu、Mo、W、Ti、Ta、Al、Fe、もしくはAgなどの金属の単体または合金などで形成されてもよく、これらの金属膜を複数積層させたもので形成されてもよい。中でもAlは、可視光の反射率が90%以上と高く、給電と反射板としての機能を同時に有することができる。Alを個別電極20として使用した場合、微量のCuが添加されていてもよい。 The individual electrode 20 may be formed of a material having a high light reflectance and a large work function as a light reflecting electrode. For example, the individual electrode 20 may be formed of a simple substance or an alloy of a metal such as Cr, Au, Pt, Ni, Cu, Mo, W, Ti, Ta, Al, Fe, or Ag. May be formed by laminating a plurality of layers. Among them, Al has a high reflectance of visible light of 90% or more, and can have both power supply and a function as a reflector at the same time. When Al is used as the individual electrode 20, a trace amount of Cu may be added.
 また、個別電極20は、図3に示すように、電極201と、導電性を有する光反射層202とが積層されていてもよい。この場合、電極201は、有機電界発光層10への正孔の注入に適した材料を用いることもできる。また、電極201を、酸化インジウム亜鉛、または酸化インジウムスズなどの透明導電性材料にて透明電極として形成してもよい。光反射層202は、Cr、Au、Pt、Ni、Cu、Mo、W、Ti、Ta、Al、Fe、もしくはAgなどの金属の単体または合金で構成され得る。 Further, as shown in FIG. 3, the individual electrode 20 may be formed by laminating an electrode 201 and a light reflecting layer 202 having conductivity. In this case, the electrode 201 can be made of a material suitable for injecting holes into the organic electroluminescent layer 10. Alternatively, the electrode 201 may be formed as a transparent electrode using a transparent conductive material such as indium zinc oxide or indium tin oxide. The light reflecting layer 202 can be made of a single metal or an alloy of metal such as Cr, Au, Pt, Ni, Cu, Mo, W, Ti, Ta, Al, Fe, or Ag.
 また、図1に示すように、複数の個別電極20同士の境界領域には、有機電界発光層10の主面に接するように、第3の電極90が複数配置されている。また、図2に示すように、本実施形態において、複数の第3の電極90は、平面視にて、互いに隣接する個別電極20R、20G、20Bから等間隔となるように、規則的に配置されている。別の観点からは、複数の第3の電極90は、平面視にて、各個別電極20R、20G、20Bから所定の距離離れるとともに、これを囲むようにして配置されている。 Further, as shown in FIG. 1, a plurality of third electrodes 90 are arranged in a boundary region between the plurality of individual electrodes 20 so as to be in contact with the main surface of the organic electroluminescent layer 10. Further, as shown in FIG. 2, in the present embodiment, the plurality of third electrodes 90 are regularly arranged so as to be equidistant from the adjacent individual electrodes 20R, 20G, and 20B in plan view. Has been. From another point of view, the plurality of third electrodes 90 are arranged so as to be separated from the individual electrodes 20R, 20G, and 20B by a predetermined distance in a plan view and to surround them.
 そして、複数の第3の電極90は、コンタクト85および配線87を介して表示装置100の内部回路と接続されており、共通して一定の電位に設定されている。具体的には、有機電界発光層10に対し電圧が印加される際に、第3の電極90の電位は、透明共通電極30の電位に有機電界発光層10についての閾値電圧を加えた値よりも小さくなるように、設定されている。 The plurality of third electrodes 90 are connected to the internal circuit of the display device 100 through contacts 85 and wirings 87, and are set to a constant potential in common. Specifically, when a voltage is applied to the organic electroluminescent layer 10, the potential of the third electrode 90 is a value obtained by adding the threshold voltage of the organic electroluminescent layer 10 to the potential of the transparent common electrode 30. Is set to be smaller.
 これにより、透明共通電極30と個別電極20とにより有機電界発光層10に対し電圧を印加し、これに起因して印加された個別電極20からリーク電流が発生した場合であっても、第3の電極90にリーク電流が優先的に流れることができる。このため、印加された個別電極20から隣接する個別電極20へリーク電流が流れることが防止される。この結果、意図しない個別電極20と透明共通電極30との間でリーク電流による電圧が生じ有機電界発光層10が発光することが防止される。 Thus, even when a voltage is applied to the organic electroluminescent layer 10 by the transparent common electrode 30 and the individual electrode 20 and a leakage current is generated from the applied individual electrode 20 due to this, the third A leakage current can flow preferentially through the electrode 90. For this reason, leakage current is prevented from flowing from the applied individual electrode 20 to the adjacent individual electrode 20. As a result, it is possible to prevent the organic electroluminescent layer 10 from emitting light due to a voltage caused by a leakage current between the unintended individual electrode 20 and the transparent common electrode 30.
 具体的には、例えば図2に示すように図中中央の個別電極20Bと透明共通電極30との間で有機電界発光層10に対し電圧を印加した際に、個別電極20Bにおいて生じたリーク電流は、周囲の第3の電極90に優先的に流れる(図中矢印)。この結果、周囲の個別電極20B、20Gにリーク電流が流れることが防止され、周囲の緑色、赤色画素が発光することが防止される。この結果、個別電極20Bに対応する青色画素の色純度の低下が防止され、表示装置100において広い色域での画像の表示が可能となる。 Specifically, for example, as shown in FIG. 2, when a voltage is applied to the organic electroluminescent layer 10 between the central individual electrode 20B and the transparent common electrode 30, a leakage current generated in the individual electrode 20B. Flows preferentially to the surrounding third electrode 90 (arrow in the figure). As a result, the leakage current is prevented from flowing through the surrounding individual electrodes 20B and 20G, and the surrounding green and red pixels are prevented from emitting light. As a result, a decrease in color purity of the blue pixel corresponding to the individual electrode 20B is prevented, and an image can be displayed in a wide color gamut on the display device 100.
 上述したような第3の電極90の電位は、好ましくは透明共通電極30の電位以下である。これにより、より確実に個別電極20において生じたリーク電流が、周囲の第3の電極90に優先的に流れることができる。また、本実施形態においては、個別電極20は、アノードであり、電圧印加時には正の電位を有することができる。したがって、第3の電極90の電位は、このような場合例えば0V以下とすることができる。 The potential of the third electrode 90 as described above is preferably equal to or lower than the potential of the transparent common electrode 30. Thereby, the leak current generated in the individual electrode 20 can preferentially flow to the surrounding third electrode 90 more reliably. In the present embodiment, the individual electrode 20 is an anode, and can have a positive potential when a voltage is applied. Therefore, in this case, the potential of the third electrode 90 can be set to 0 V or less, for example.
 さらに、第3の電極90の電位は、透明共通電極30の電位と同一であることが好ましい。これにより、より容易に上述した第3の電極90の電位の設定を達成できるとともに、表示装置100の構成が単純なものとなる。すなわち、第3の電極90と透明共通電極30とを配線等で接続することができ、電位の管理を同一の配線において行うことが可能となる。例えば、カソードとしての透明共通電極30の電位が0Vに設定されている場合、第3の電極90の電位も0Vに設定することができる。また例えば、透明共通電極30を負電位に設定し、アノードとの間の電位差を高めて有機電界発光素子OLEDの輝度を高める場合、第3の電極90の電位も負電位とすることができる。 Furthermore, the potential of the third electrode 90 is preferably the same as the potential of the transparent common electrode 30. Thereby, the setting of the potential of the third electrode 90 described above can be achieved more easily, and the configuration of the display device 100 becomes simple. That is, the third electrode 90 and the transparent common electrode 30 can be connected by wiring or the like, and the potential can be managed in the same wiring. For example, when the potential of the transparent common electrode 30 as the cathode is set to 0V, the potential of the third electrode 90 can also be set to 0V. Further, for example, when the transparent common electrode 30 is set to a negative potential and the potential difference with the anode is increased to increase the luminance of the organic electroluminescent element OLED, the potential of the third electrode 90 can also be a negative potential.
 第3の電極90の電位の下限値は特に限定されるものではなく、有機電界発光層10に逆方向の電流が実質的に流れない範囲内にあればよい。例えば、第3の電極90の電位は、透明共通電極30の電位よりも10V程度小さくてもよい。しかしながら、第3の電極90の電位を、透明共通電極30の電位よりも大幅に低い電位、例えば5V以上低い電位としても上述したリーク電流の抑制効果は大幅には向上しない。上述したリーク電流の抑制効果は、第3の電極90の電位を、透明共通電極30の電位より2V低くすれば十分に得られる。 The lower limit value of the potential of the third electrode 90 is not particularly limited as long as the reverse current does not substantially flow through the organic electroluminescent layer 10. For example, the potential of the third electrode 90 may be about 10 V smaller than the potential of the transparent common electrode 30. However, even if the potential of the third electrode 90 is set to a potential that is significantly lower than the potential of the transparent common electrode 30, for example, a potential that is 5 V or more lower, the above-described effect of suppressing the leakage current is not significantly improved. The effect of suppressing the leakage current described above can be sufficiently obtained by making the potential of the third electrode 90 2 V lower than the potential of the transparent common electrode 30.
 また、本実施形態において、複数の第3の電極90は、個別電極20と比較して小さな面積を有する、島状の電極群である。このように、第3の電極90を点状として複数配置することにより、第3の電極90の設置に要する面積を小さくすることができ、個別電極20の面積を比較的大きくすることができる。これにより、有機電界発光層10の発光に使用される面積を大きくすることができ、同一の輝度、同一の電流で有機電界発光層10を発光させた場合であっても、有機電界発光層10中における電流密度を比較的小さくすることが可能となる。この場合、有機電界発光層10の劣化を抑制することができ、表示装置100の長寿命化が可能となる。 In the present embodiment, the plurality of third electrodes 90 is an island-shaped electrode group having a smaller area than the individual electrodes 20. Thus, by arranging a plurality of third electrodes 90 in the form of dots, the area required for installation of the third electrode 90 can be reduced, and the area of the individual electrode 20 can be made relatively large. Thereby, the area used for light emission of the organic electroluminescent layer 10 can be increased, and even when the organic electroluminescent layer 10 emits light with the same luminance and the same current, the organic electroluminescent layer 10 The current density inside can be made relatively small. In this case, deterioration of the organic electroluminescent layer 10 can be suppressed, and the lifetime of the display device 100 can be extended.
 各第3の電極90の面積は、コンタクト85との接続が確保されるのであれば、特に限定されるものではなく、表示装置100の製造プロセスの精度に応じて小さくすることができる。例えば、各第3の電極90の面積は、各個別電極20の面積の5%以下、好ましくは3%以下とすることができる。 The area of each third electrode 90 is not particularly limited as long as the connection with the contact 85 is ensured, and can be reduced according to the accuracy of the manufacturing process of the display device 100. For example, the area of each third electrode 90 can be 5% or less, preferably 3% or less of the area of each individual electrode 20.
 また、各第3の電極90と隣接する個別電極20との距離は、特に限定されず、第3の電極90と個別電極20との間で短絡が生じない程度に離されて配置されている。 Further, the distance between each third electrode 90 and the adjacent individual electrode 20 is not particularly limited, and the third electrodes 90 are arranged so as to be separated from each other so as not to cause a short circuit between the third electrode 90 and the individual electrode 20. .
 また、第3の電極90は、個別電極20と同一の層内に配置されている。すなわち、第3の電極90は、製造時において同一のプロセスで、同時に形成される。これにより、容易かつ確実に第3の電極90を個別電極20同士の間に配置することができるとともに、第3の電極90を確実に有機電界発光層10と接するように配置することができる。 Further, the third electrode 90 is disposed in the same layer as the individual electrode 20. That is, the third electrode 90 is simultaneously formed by the same process at the time of manufacture. Accordingly, the third electrode 90 can be easily and reliably disposed between the individual electrodes 20, and the third electrode 90 can be reliably disposed in contact with the organic electroluminescent layer 10.
 また、第3の電極90の材料や層構成は、個別電極20の材料や層構成と同様とすることができる。 Further, the material and the layer configuration of the third electrode 90 can be the same as the material and the layer configuration of the individual electrode 20.
 保護絶縁膜40は、透明共通電極30の上に設けられ、有機電界発光素子OLEDを外部環境から保護し、特に有機電界発光層10への水分および酸素の侵入を防止する。保護絶縁膜40は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(AlO)、または酸化チタン(TiO)などの光透過性が高く、透水性が低い材料にて設けられてもよい。 The protective insulating film 40 is provided on the transparent common electrode 30 and protects the organic electroluminescent element OLED from the external environment, and in particular prevents moisture and oxygen from entering the organic electroluminescent layer 10. The protective insulating film 40 is made of, for example, a material having high light transmittance and low water permeability such as silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or titanium oxide (TiO x ). May be provided.
 カラーフィルタ層50は、保護絶縁膜40の上に設けられ、有機電界発光素子OLEDで発生した光を画素ごとに色分割する。具体的には、カラーフィルタ層50は、個別電極20毎に対応して区分された、赤色カラーフィルタ50Rと、緑色カラーフィルタ50Gと、青色カラーフィルタ50Bとを有している。赤色カラーフィルタ50R、緑色カラーフィルタ50Gおよび青色カラーフィルタ50Bは、有機電界発光層10側からの入射光をそれぞれ赤色、緑色および青色に変換し、封止樹脂60側へ向けて出射する。また、カラーフィルタ層50は、赤色光、緑色光、または青色光に相当する可視光波長帯域の光を選択的に透過させる樹脂層であってもよい。 The color filter layer 50 is provided on the protective insulating film 40, and color-divides the light generated by the organic electroluminescent element OLED for each pixel. Specifically, the color filter layer 50 includes a red color filter 50R, a green color filter 50G, and a blue color filter 50B that are divided corresponding to each individual electrode 20. The red color filter 50R, the green color filter 50G, and the blue color filter 50B convert incident light from the organic electroluminescent layer 10 side into red, green, and blue, respectively, and emit them toward the sealing resin 60 side. The color filter layer 50 may be a resin layer that selectively transmits light in the visible light wavelength band corresponding to red light, green light, or blue light.
 封止樹脂60は、カラーフィルタ層50上に配置され、カラーフィルタ層50以下の各部材を封止する。また、カバーガラス70は、封止樹脂60上に配置されて表示装置100の表示部を保護する。 Sealing resin 60 is disposed on the color filter layer 50 and seals each member below the color filter layer 50. The cover glass 70 is disposed on the sealing resin 60 and protects the display unit of the display device 100.
 層間絶縁膜80は、有機電界発光層10の下に配置され、個別電極20および第3の電極90を担持する。同時に、層間絶縁膜80は、個別電極20を図示せぬ画素駆動回路に接続するコンタクト81および配線83、ならびに第3の電極90を外部回路に接続するコンタクト85および配線87を収納する。なお、層間絶縁膜80は、必要に応じて他の配線や素子等も収納することができる。層間絶縁膜80は、例えば、絶縁性の酸窒化シリコン等にて形成される。配線83および87は、銅(Cu)、アルミニウム(Al)等の導電体で構成されており、外部回路に個別電極20および第3の電極90を接続する。 The interlayer insulating film 80 is disposed under the organic electroluminescent layer 10 and carries the individual electrode 20 and the third electrode 90. At the same time, the interlayer insulating film 80 accommodates a contact 81 and a wiring 83 that connect the individual electrode 20 to a pixel drive circuit (not shown), and a contact 85 and a wiring 87 that connect the third electrode 90 to an external circuit. The interlayer insulating film 80 can also accommodate other wirings, elements, and the like as necessary. The interlayer insulating film 80 is formed of, for example, insulating silicon oxynitride. The wirings 83 and 87 are made of a conductor such as copper (Cu) or aluminum (Al), and connect the individual electrode 20 and the third electrode 90 to an external circuit.
 なお、上述したように表示装置100は、図示せぬ半導体基板等において表示装置100の有機電界発光素子を駆動するための駆動回路を有している。駆動回路は、通常、MOSプロセスによって画素単位に分割して形成されている。ここで、表示装置100の一画素を構成する回路の一例について説明する。図4は、表示装置100の一画素を構成する回路の一例を説明する回路図である。 As described above, the display device 100 has a drive circuit for driving the organic electroluminescence element of the display device 100 on a semiconductor substrate (not shown) or the like. The drive circuit is usually formed by being divided into pixels by a MOS process. Here, an example of a circuit constituting one pixel of the display device 100 will be described. FIG. 4 is a circuit diagram illustrating an example of a circuit that constitutes one pixel of the display device 100.
 図4に示すように、表示装置100の一画素を構成する回路は、有機電界発光素子OLEDと、駆動トランジスタDTrと、容量素子Cと、選択トランジスタSTrとを含む。 As shown in FIG. 4, the circuit constituting one pixel of the display device 100 includes an organic electroluminescent element OLED, a driving transistor DTr, a capacitive element C, and a selection transistor STr.
 有機電界発光素子OLEDは、上述したように、個別電極20、有機電界発光層10、および透明共通電極30が積層された自発光型の発光素子である。有機電界発光素子OLEDの個別電極20は、駆動トランジスタDTrを介して電源線PLに接続されており、有機電界発光素子OLEDの透明共通電極30は、接地電位となっているグラウンド線と接続されている。有機電界発光素子OLEDは、表示装置100の一画素として機能する。 The organic electroluminescent element OLED is a self-luminous light emitting element in which the individual electrode 20, the organic electroluminescent layer 10, and the transparent common electrode 30 are laminated as described above. The individual electrode 20 of the organic electroluminescent element OLED is connected to the power supply line PL via the drive transistor DTr, and the transparent common electrode 30 of the organic electroluminescent element OLED is connected to the ground line that is at the ground potential. Yes. The organic electroluminescent element OLED functions as one pixel of the display device 100.
 駆動トランジスタDTrは、例えば、電界効果トランジスタである。駆動トランジスタDTrのソースまたはドレインの一方は、電源線PLに接続されており、ソースまたはドレインの他方は、有機電界発光素子OLEDの個別電極20に接続されている。また、駆動トランジスタDTrのゲートは、選択トランジスタSTrのソースまたはドレインの一方と接続されている。駆動トランジスタDTrは、有機電界発光素子OLEDと直列に接続されており、選択トランジスタSTrから印加されたゲート電圧の大きさに応じて有機電界発光素子OLEDに流れる電流を制御することで、有機電界発光素子OLEDを駆動させる。 The drive transistor DTr is, for example, a field effect transistor. One of the source and the drain of the driving transistor DTr is connected to the power supply line PL, and the other of the source and the drain is connected to the individual electrode 20 of the organic electroluminescent element OLED. The gate of the drive transistor DTr is connected to one of the source and drain of the selection transistor STr. The driving transistor DTr is connected in series with the organic electroluminescence device OLED, and controls the current flowing through the organic electroluminescence device OLED according to the magnitude of the gate voltage applied from the selection transistor STr, thereby organic electroluminescence. The element OLED is driven.
 選択トランジスタSTrは、例えば、電界効果トランジスタである。選択トランジスタSTrのソースまたはドレインの一方は、駆動トランジスタDTrのゲートに接続されており、ソースまたはドレインの他方は、信号線DLに接続されている。また、選択トランジスタSTrのゲートは、走査線SLに接続されている。選択トランジスタSTrは、信号線DLの電圧をサンプリングした後、駆動トランジスタDTrのゲートへ印加することで、駆動トランジスタDTrのゲートに印加される信号電圧を制御する。 The selection transistor STr is, for example, a field effect transistor. One of the source and the drain of the selection transistor STr is connected to the gate of the drive transistor DTr, and the other of the source and the drain is connected to the signal line DL. The gate of the selection transistor STr is connected to the scanning line SL. The selection transistor STr controls the signal voltage applied to the gate of the drive transistor DTr by sampling the voltage of the signal line DL and applying it to the gate of the drive transistor DTr.
 容量素子Cは、例えば、キャパシタである。容量素子Cの一端は、駆動トランジスタDTrのゲートに接続され、容量素子Cの他端は、電源線PLに接続されている。容量素子Cは、駆動トランジスタDTrのゲート-ソース間の電圧を所定の電圧に維持する。 Capacitance element C is, for example, a capacitor. One end of the capacitive element C is connected to the gate of the drive transistor DTr, and the other end of the capacitive element C is connected to the power supply line PL. The capacitive element C maintains the voltage between the gate and the source of the driving transistor DTr at a predetermined voltage.
 以上説明した本実施形態に係る表示装置100においては、個別電極20間に第3の電極90が配置されており、かつ第3の電極90の電位は、透明共通電極30の電位に有機電界発光層10についての閾値電圧を加えた値よりも小さい。これにより、透明共通電極30と個別電極20とにより有機電界発光層10に対し電圧を印加し、これに起因して印加された個別電極20からリーク電流が発生した場合であっても、第3の電極90にリーク電流が優先的に流れることができる。このため、印加された個別電極20から隣接する個別電極20へリーク電流が流れることが防止される。この結果、意図しない個別電極20と透明共通電極30との間でリーク電流による電圧が生じ有機電界発光層10が発光することが防止される。そして、周囲の他色に対応する画素が意図せずに発光することが防止され、表示装置100において広い色域での画像の表示が可能となる。 In the display device 100 according to the present embodiment described above, the third electrode 90 is disposed between the individual electrodes 20, and the potential of the third electrode 90 is equal to the potential of the transparent common electrode 30. It is smaller than a value obtained by adding a threshold voltage for the layer 10. Thus, even when a voltage is applied to the organic electroluminescent layer 10 by the transparent common electrode 30 and the individual electrode 20 and a leakage current is generated from the applied individual electrode 20 due to this, the third A leakage current can flow preferentially through the electrode 90. For this reason, leakage current is prevented from flowing from the applied individual electrode 20 to the adjacent individual electrode 20. As a result, it is possible to prevent the organic electroluminescent layer 10 from emitting light due to a voltage caused by a leakage current between the unintended individual electrode 20 and the transparent common electrode 30. In addition, unintentional light emission of pixels corresponding to other surrounding colors is prevented, and the display device 100 can display an image in a wide color gamut.
 また、上述したように、リーク電流の影響は、画素ピッチが小さいほど大きい。また、10um以下のような微細な画素ピッチを実現する場合には、連続した白色の有機電界発光層を配置し、カラーフィルタ層により色変換を行うことが適しているが、一方で、連続した有機電界発光層においても、リーク電流の影響が大きい。上述した本実施形態に係る表示装置100は、このような微細な画素ピッチを採用した場合であっても画素間におけるリーク電流の影響を十分に抑制可能である。 In addition, as described above, the influence of the leakage current is larger as the pixel pitch is smaller. In order to realize a fine pixel pitch of 10 μm or less, it is suitable to arrange a continuous white organic electroluminescent layer and perform color conversion by the color filter layer. Even in the organic electroluminescent layer, the influence of the leakage current is large. The display device 100 according to the present embodiment described above can sufficiently suppress the influence of leakage current between pixels even when such a fine pixel pitch is employed.
 <3.リーク電流の影響の検証>
 次に、表示装置100と表示装置200とを比較して、第3の電極90の有無によるリーク電流の影響について検証を行う。ここで、表示装置100および表示装置200の発光に関する電源線は、正電圧、例えば8Vとし、駆動トランジスタDTrをオンにすることによりアノード(個別電極20、220)の電位を最大6V程度まで使用できるように設定した。これは、駆動トランジスタDTrのソース・ドレイン間で最大2V程度の電位降下が発生するような設計である。一方で、カソード(透明共通電極30、230)の電位は接地電位(0V)に設定した。
<3. Verification of influence of leakage current>
Next, the display device 100 and the display device 200 are compared, and the influence of the leakage current due to the presence or absence of the third electrode 90 is verified. Here, the power supply line related to light emission of the display device 100 and the display device 200 is set to a positive voltage, for example, 8V, and the potential of the anode (individual electrodes 20, 220) can be used up to about 6V by turning on the drive transistor DTr. Was set as follows. This is a design in which a potential drop of about 2 V at the maximum occurs between the source and drain of the drive transistor DTr. On the other hand, the potential of the cathode (transparent common electrodes 30, 230) was set to the ground potential (0V).
 まず、図19に示す有機電界発光層210の電流-電圧特性をもとに、第3の電極90が存在しない場合に発光電流および隣接する個別電極220へ流れてしまうリーク電流を推定した結果を図5を示す。また、合わせて、表示装置100における発光電流および隣接する個別電極20へ流れてしまうリーク電流を測定した結果を図5に示す。図5のグラフ中の数値は、発光させる場合の個別電極20、220の電圧値を示す。 First, based on the current-voltage characteristics of the organic electroluminescent layer 210 shown in FIG. 19, the results of estimating the emission current and the leakage current that flows to the adjacent individual electrode 220 in the absence of the third electrode 90 are shown. FIG. 5 is shown. In addition, FIG. 5 shows the result of measuring the emission current in the display device 100 and the leakage current that flows to the adjacent individual electrode 20 together. The numerical values in the graph of FIG. 5 indicate the voltage values of the individual electrodes 20 and 220 when light is emitted.
 横軸に示した発光電流すなわち有機電界発光層210を貫通して流れる電流が10-12A以下の場合にはリーク電流はもはや発光電流の1/10以上に達し、10-13A以下では発光電流とほぼ同等になってしまう。一方で、第3の電極90を0Vに設定した表示装置100においては、リーク電流は、表示装置200の1/10程度まで抑制されており、特に3V以下の低電圧側においてリーク電流の抑制効果が顕著であった。さらに、第3の電極90を-2Vに設定した表示装置100においては、リーク電流は、表示装置200の1/100以下にまで抑制可能であった。 When the light emission current shown on the horizontal axis, that is, the current flowing through the organic electroluminescent layer 210 is 10 −12 A or less, the leak current no longer reaches 1/10 or more of the light emission current, and when it is 10 −13 A or less, light emission occurs. It becomes almost equal to the current. On the other hand, in the display device 100 in which the third electrode 90 is set to 0 V, the leakage current is suppressed to about 1/10 of that of the display device 200, and in particular, the leakage current suppressing effect on the low voltage side of 3 V or less. Was remarkable. Further, in the display device 100 in which the third electrode 90 is set to −2V, the leakage current can be suppressed to 1/100 or less of the display device 200.
 さらに、ある1つの個別電極20、220に種々の電圧を加えた場合に隣接する個別電極20、220に流れるリーク電流を発光電流で割った値を1から減じた値を図6に示す。このグラフ中の縦軸の値は、発光電流とリーク電流との関係を示すため、表示装置100、200の色域の広さの目安となる。図6の横軸は輝度を示しており、具体的にはその有機電界発光素子OLEDの全副画素すなわち全画素に属する赤・緑・青の全副画素の個別電極20、220を所定の電圧で光らせた場合の輝度である。 Further, FIG. 6 shows a value obtained by subtracting from 1 a value obtained by dividing the leakage current flowing in the adjacent individual electrodes 20 and 220 by the light emission current when various voltages are applied to one individual electrode 20 and 220. Since the value on the vertical axis in this graph indicates the relationship between the light emission current and the leakage current, it is a measure of the width of the color gamut of the display devices 100 and 200. The horizontal axis of FIG. 6 represents luminance. Specifically, the individual electrodes 20 and 220 of all the sub-pixels of the organic electroluminescent element OLED, that is, all the red, green, and blue sub-pixels belonging to all the pixels are illuminated with a predetermined voltage. Brightness in the case of
 図6に示すように、第3の電極90を有しない表示装置200においては、十分に視認可能な輝度である1nitにおいて、個別電極220間のリーク電流による色域低下が無視できなくなっており、実際に試作したパネルにおいても色域低下が認められ、改善が必要であった。 As shown in FIG. 6, in the display device 200 that does not have the third electrode 90, the color gamut reduction due to the leakage current between the individual electrodes 220 cannot be ignored at 1 nit, which is a sufficiently visible luminance. In the actual prototype panel, color gamut reduction was observed and improvement was necessary.
 これに対し、第3の電極90を有する表示装置100では、0.001nitという視認不可能なほどの低輝度においても混色の原因となるリーク電流は、発光電流の1/10以下であり、色域の低下は10%程度に留まることができた。しかしながら、図6に示すように、色域の広さを鑑みると、第3の電極90の電位を透明共通電極30の電位0Vよりもさらに低い電圧(-2V)にする効果は劇的ではなかった。一方で、第3の電極90を透明共通電極30の電位よりも低くする場合には、表示装置100全体としての消費電力が大きくなる場合がある。したがって、個別電極20間のリーク電流を極限まで抑制する必要がある場合には第3の電極90の電位を透明共通電極30の電位よりもさらに低くすることが考えられた。 On the other hand, in the display device 100 having the third electrode 90, the leakage current that causes color mixing is 1/10 or less of the light emission current even at a luminance as low as 0.001 nit that is not visible. The drop in the area could only be around 10%. However, as shown in FIG. 6, in view of the wide color gamut, the effect of setting the potential of the third electrode 90 to a voltage (−2V) that is lower than the potential 0V of the transparent common electrode 30 is not dramatic. It was. On the other hand, when the third electrode 90 is set lower than the potential of the transparent common electrode 30, the power consumption of the entire display device 100 may increase. Therefore, it is considered that the potential of the third electrode 90 is made lower than the potential of the transparent common electrode 30 when it is necessary to suppress the leakage current between the individual electrodes 20 to the limit.
 なお、表示装置100において第3の電極90は、面積の小さな点状として配置されたが、上述したようにリーク電流の抑制が十分に可能であった。このような表示装置100における個別電極20の面積は、図16に示す表示装置200における個別電極220の面積と比較して、12%程度のみ小さいものであり、有機電界発光層10の劣化寿命への影響も最小限に抑制することが可能であった。 In the display device 100, the third electrode 90 is arranged as a dot having a small area. However, as described above, the leakage current can be sufficiently suppressed. The area of the individual electrode 20 in such a display device 100 is only about 12% smaller than the area of the individual electrode 220 in the display device 200 shown in FIG. It was also possible to suppress the influence of.
 <4.変形例>
 以上、本開示の一実施形態について説明した。以下では、本開示の上記実施形態の幾つかの変形例を説明する。なお、以下に説明する各変形例は、単独で本開示の上記実施形態に適用されてもよいし、組み合わせで本開示の上記実施形態に適用されてもよい。また、各変形例は本開示の上記実施形態で説明した構成に代えて適用されてもよいし、本開示の上記実施形態で説明した構成に対して追加的に適用されてもよい。
<4. Modification>
The embodiment of the present disclosure has been described above. Hereinafter, some modified examples of the embodiment of the present disclosure will be described. Each modified example described below may be applied to the above-described embodiment of the present disclosure alone, or may be applied to the above-described embodiment of the present disclosure in combination. Each modification may be applied instead of the configuration described in the embodiment of the present disclosure, or may be additionally applied to the configuration described in the embodiment of the present disclosure.
 まず、上述した実施形態においては、透明共通電極30がカソードであり、個別電極20がアノードであるとして説明したが、本開示はこれに限定されない。透明共通電極30はアノードであってもよく、個別電極20はカソードであってもよい。この場合において、有機電界発光層10に対し電圧が印加される際に、透明共通電極30の電位は、個別電極20の電位よりも大きい。そして、第3の電極90の電位は、透明共通電極30の電位から有機電界発光層10についての閾値電圧を減じた値よりも大きい。これにより、個別電極20間のリーク電流の抑制効果を得ることができる。 First, in the above-described embodiment, the transparent common electrode 30 is a cathode and the individual electrode 20 is an anode. However, the present disclosure is not limited thereto. The transparent common electrode 30 may be an anode, and the individual electrode 20 may be a cathode. In this case, when a voltage is applied to the organic electroluminescent layer 10, the potential of the transparent common electrode 30 is larger than the potential of the individual electrode 20. The potential of the third electrode 90 is larger than the value obtained by subtracting the threshold voltage for the organic electroluminescent layer 10 from the potential of the transparent common electrode 30. Thereby, the effect of suppressing the leakage current between the individual electrodes 20 can be obtained.
 上記の場合、第3の電極90の電位は、好ましくは透明共通電極30の電位以上であり、より好ましくは透明共通電極30の電位と同一である。さらに、第3の電極90の電位の上限は、特に限定されず、有機電界発光層10に逆方向の電流が実質的に流れない範囲内にあればよい。しかしながら、上述したリーク電流の抑制効果は、第3の電極90の電位を、透明共通電極30の電位より2V大きくすれば十分に得られる。 In the above case, the potential of the third electrode 90 is preferably equal to or higher than the potential of the transparent common electrode 30, and more preferably the same as the potential of the transparent common electrode 30. Furthermore, the upper limit of the potential of the third electrode 90 is not particularly limited, and may be in a range where a reverse current does not substantially flow through the organic electroluminescent layer 10. However, the effect of suppressing the leakage current described above can be sufficiently obtained by making the potential of the third electrode 90 2 V larger than the potential of the transparent common electrode 30.
 また、上述した実施形態においては、画素および個別電極20の形状は六角形をなしていたが、本開示はこれに限定されない。また、個別電極の周囲の第3の電極の配置も、個別電極の形状や、その用途に応じて適宜変更してもよい。 In the above-described embodiment, the shapes of the pixels and the individual electrodes 20 are hexagons, but the present disclosure is not limited to this. Further, the arrangement of the third electrodes around the individual electrodes may be appropriately changed according to the shape of the individual electrodes and the use thereof.
 このような個別電極の形状や第3の電極の配置を変更した例を、図7~9に示す。図7においては、赤色、緑色および青色に対応する個別電極21R、21G、21Bは、その画素の形状に応じて長方形をなしており、ストライプ状に配置されている。また、第3の電極90Aは、個別電極21R、21G、21Bの角部の延長線上に、個別電極21R、21G、21Bと短絡しない程度に離間されて配置されている。 Examples of changing the shape of the individual electrodes and the arrangement of the third electrodes are shown in FIGS. In FIG. 7, the individual electrodes 21R, 21G, and 21B corresponding to red, green, and blue have a rectangular shape according to the shape of the pixel, and are arranged in stripes. The third electrode 90A is arranged on the extension line of the corners of the individual electrodes 21R, 21G, and 21B so as not to be short-circuited with the individual electrodes 21R, 21G, and 21B.
 図8においては、赤色、緑色および青色に対応する個別電極22R、22G、22Bは、その画素の形状に応じて正方形をなしている。また、第3の電極90Bは、個別電極22R、22G、22Bの角部の延長線上に、個別電極22R、22G、22Bと短絡しない程度に離間されて配置されている。しかしながら、各個別電極22R、22G、22Bの1部の角部の延長線上においては、第3の電極90Bが配置されていない。このように第3の電極90Bは、規則的に配列されるとともに、一部分については、必要に応じて配置されなくてもよい。また、リーク電流の影響を与えやすい個別電極に対して、その周囲に第3の電極を配置し、一方で、他の個別電極の周囲においては第3の電極を配置しなくてもよい。 In FIG. 8, the individual electrodes 22R, 22G, and 22B corresponding to red, green, and blue form a square according to the shape of the pixel. Further, the third electrode 90B is arranged on the extension line of the corners of the individual electrodes 22R, 22G, and 22B so as not to be short-circuited with the individual electrodes 22R, 22G, and 22B. However, the third electrode 90B is not arranged on the extension line of one corner of each individual electrode 22R, 22G, 22B. As described above, the third electrodes 90B are regularly arranged, and some of the third electrodes 90B may not be arranged as necessary. In addition, the third electrode may be disposed around the individual electrode that is easily affected by the leak current, while the third electrode may not be disposed around the other individual electrode.
 また、図9においては、カラーフィルタ層に色変換部材を用いない白色画素を有する場合の個別電極23R、23G、23B、23Wの配置が示されている。赤色、緑色、青色および白色に対応する個別電極23R、23G、23B、23Wは、その画素の形状に応じて正方形をなしている。また、また、第3の電極90Cは、個別電極23R、23G、23B、23Wの角部の延長線上に、個別電極23R、23G、23B、23Wと短絡しない程度に離間されて配置されている。このような白色画素を採用する場合、最大輝度の向上に有利である。 FIG. 9 shows the arrangement of the individual electrodes 23R, 23G, 23B, and 23W when the color filter layer has white pixels that do not use a color conversion member. The individual electrodes 23R, 23G, 23B, and 23W corresponding to red, green, blue, and white form a square according to the shape of the pixel. Further, the third electrode 90C is arranged on the extension line of the corners of the individual electrodes 23R, 23G, 23B, and 23W so as not to be short-circuited with the individual electrodes 23R, 23G, 23B, and 23W. When such a white pixel is employed, it is advantageous for improving the maximum luminance.
 なお、以上説明した実施形態および変形例では、第3の電極を点状のものとして説明したが本開示はこれに限定されない。例えば第3の電極は、種々の形状を取り得ることができ、例えば、個別電極間に延びる線状の電極であることができる。また、第3の電極は、個別電極間を延びる網目状をなしていてもよい。 In the embodiment and the modification described above, the third electrode is described as a point-like one, but the present disclosure is not limited to this. For example, the third electrode can take various shapes, for example, a linear electrode extending between the individual electrodes. Further, the third electrode may have a mesh shape extending between the individual electrodes.
 また、個別電極および第3の電極の層間絶縁膜上における配置も適宜、これらの形成方法に応じて変更することができる。図10においては、層間絶縁膜80Aは、凸部803を有し、凸部803上に個別電極24および第3の電極90Dが配置されている。このような層間絶縁膜80A、個別電極24および第3の電極90Dは、一般的なLSI(large-scale integrated circuit)の配線で使用されるような層間絶縁膜上にアノードと新規共通電極を形成して、公知のフォトリソグラフィーとドライエッチングを用いて加工して得ることができる。 Also, the arrangement of the individual electrode and the third electrode on the interlayer insulating film can be appropriately changed according to these forming methods. In FIG. 10, the interlayer insulating film 80 </ b> A has a convex portion 803, and the individual electrode 24 and the third electrode 90 </ b> D are disposed on the convex portion 803. The interlayer insulating film 80A, the individual electrode 24, and the third electrode 90D form an anode and a new common electrode on the interlayer insulating film used in a general LSI (large-scale integrated circuit) wiring. Then, it can be obtained by processing using known photolithography and dry etching.
 図11においては、個別電極25および第3の電極90Eの隙間領域に層間絶縁膜80Bがさらに埋め込まれている。このような場合、個別電極25、第3の電極90Eおよび層間絶縁膜80Bによって形成される平面が比較的平滑であるため、有機電界発光層を形成した場合に局所的に薄い部分を形成することを防止することができる。この結果、部分によらず均一な発光が可能となる。このような構造も、公知の一般的なLSI製造プロセスやTFT(thin-film-transistor)製造プロセスを用いて実現することができる。 In FIG. 11, an interlayer insulating film 80B is further embedded in the gap region between the individual electrode 25 and the third electrode 90E. In such a case, since the plane formed by the individual electrode 25, the third electrode 90E, and the interlayer insulating film 80B is relatively smooth, a thin portion is locally formed when the organic electroluminescent layer is formed. Can be prevented. As a result, uniform light emission is possible regardless of the portion. Such a structure can also be realized by using a known general LSI manufacturing process or TFT (thin-film-transistor) manufacturing process.
 また、図12においては、層間絶縁膜80Cは、凸部803Aを有し、凸部803A上に個別電極26および第3の電極90Fが配置されている。そして、個別電極26および第3の電極90Fには、絶縁膜805が形成されている。この場合、絶縁膜805の開口領域の有機電界発光層が発光することとなり、実効的な個別電極26の面積は、絶縁膜805によって囲まれた開口部の面積となる。このような構造は、図10における構造に対し、さらに電極上に絶縁膜を形成し、その後開口部を形成するように絶縁膜の一部を除去することにより形成することができる。 In FIG. 12, the interlayer insulating film 80C has a convex portion 803A, and the individual electrode 26 and the third electrode 90F are arranged on the convex portion 803A. An insulating film 805 is formed on the individual electrode 26 and the third electrode 90F. In this case, the organic electroluminescent layer in the opening region of the insulating film 805 emits light, and the effective area of the individual electrode 26 is the area of the opening surrounded by the insulating film 805. Such a structure can be formed by further forming an insulating film on the electrode and then removing a part of the insulating film so as to form an opening with respect to the structure in FIG.
 また、第3の電極へ給電を行う配線としては、例えば図13に示すように、金属からなる遮光層88を代替的に用いてもよい。遮光層88は、層間絶縁膜80中に配置され、有機電界発光層10から発せられる光を遮断し、より下層にある画素駆動用のMOSトランジスタやTFTを保護する。遮光層88は、表示装置100の表示部全体において連続して形成されており、例えば窒化チタンやタングステンなどの反射率と透過率の低い金属層で形成することができる。このような遮光層88と第3の電極90とをコンタクト87Aで接続するとともに、遮光層88を外部回路と接続することにより、第3の電極90の電位の設定が可能となる。 Further, as a wiring for supplying power to the third electrode, for example, as shown in FIG. 13, a light shielding layer 88 made of metal may be used instead. The light shielding layer 88 is disposed in the interlayer insulating film 80, blocks light emitted from the organic electroluminescent layer 10, and protects pixel driving MOS transistors and TFTs in lower layers. The light shielding layer 88 is continuously formed in the entire display portion of the display device 100, and can be formed of a metal layer having low reflectance and transmittance, such as titanium nitride or tungsten. By connecting the light shielding layer 88 and the third electrode 90 with the contact 87A and connecting the light shielding layer 88 to an external circuit, the potential of the third electrode 90 can be set.
 また、上述した実施形態では、個別電極20は、反射板としての機能を有するものとしてしたが、本開示はこれに限定されない。例えば、図14に示すように個別電極27は、酸化インジウム亜鉛、または酸化インジウムスズなどの透明導電性材料にて透明電極として形成されている。一方で、層間絶縁膜80D中の個別電極26の下方には、金属膜等の反射板89が配置される。 In the above-described embodiment, the individual electrode 20 has a function as a reflector, but the present disclosure is not limited to this. For example, as shown in FIG. 14, the individual electrode 27 is formed as a transparent electrode using a transparent conductive material such as indium zinc oxide or indium tin oxide. On the other hand, a reflector 89 such as a metal film is disposed below the individual electrode 26 in the interlayer insulating film 80D.
 また、本開示に係る表示装置は、ボトム・エミッション型であってもよい。この場合、個別電極は透明電極であり、層間絶縁膜における反射板は省略される。 In addition, the display device according to the present disclosure may be a bottom emission type. In this case, the individual electrode is a transparent electrode, and the reflector in the interlayer insulating film is omitted.
 さらに、上述した実施形態においては、有機電界発光層は、複数の画素に渡り連続して形成されていたが、これに限定されず、赤、緑、青のそれぞれの色を発光するような有機電界発光層をマスク蒸着などで色毎に分割して形成してもよい。このような画素ピッチが数十ミクロン以上など比較的大きい場合には、このように有機電界発光層を色毎に分割する方式が適している。また、表示装置をアモルファスシリコン、多結晶シリコン、酸化物半導体などからなる薄膜トランジスタで駆動する場合においても、このような構成が可能である。このように有機電界発光層を色毎に分割した場合であって、第3の電極を有する本開示に係る表示装置は、好適に画素間のリーク電流を抑制することができる。 Further, in the above-described embodiment, the organic electroluminescent layer is continuously formed over a plurality of pixels, but is not limited thereto, and the organic electroluminescent layer emits red, green, and blue colors. The electroluminescent layer may be formed separately for each color by mask vapor deposition or the like. When such a pixel pitch is relatively large such as several tens of microns or more, a method of dividing the organic electroluminescent layer for each color is suitable. Such a configuration is also possible when the display device is driven by a thin film transistor made of amorphous silicon, polycrystalline silicon, oxide semiconductor, or the like. As described above, the organic electroluminescent layer is divided for each color, and the display device according to the present disclosure having the third electrode can preferably suppress the leakage current between the pixels.
 表示装置の発光の駆動に用いる回路構成としては、図4に示されるものに限定されるものではなく、公知の種々の回路を採用することができる。また画質のパネル内均一性向上のための補正動作などを備えた種々の画素駆動方式が考案されているが、これらの詳細な画素駆動方式によらず本開示の技術を幅広く適用可能である。ただし、場合によっては第3の電極に加える電圧を常に一定値に保つのではなく、補正動作など発光に対する寄与が小さい期間には定電位線と第3の電極との間に設置されたトランジスタなどのスイッチをオフにする、などの制御を採用してもよい。 The circuit configuration used for driving the light emission of the display device is not limited to that shown in FIG. 4, and various known circuits can be employed. In addition, various pixel driving methods having a correction operation for improving the uniformity of image quality within the panel have been devised, but the technology of the present disclosure can be widely applied regardless of these detailed pixel driving methods. However, in some cases, the voltage applied to the third electrode is not always maintained at a constant value, and a transistor installed between the constant potential line and the third electrode during a period when the contribution to light emission is small, such as a correction operation. Control such as turning off the switch may be adopted.
 <5.まとめ>
 以上説明したように、本開示によれば、有機電界発光素子を有する表示装置において、個別電極間のリーク電流の影響を抑制することが可能である。したがって、周囲の他色に対応する画素が意図せずに発光することが防止され、表示装置において広い色域での画像の表示が可能となる。
<5. Summary>
As described above, according to the present disclosure, it is possible to suppress the influence of leakage current between individual electrodes in a display device having an organic electroluminescent element. Accordingly, unintentional light emission of pixels corresponding to other surrounding colors is prevented, and an image can be displayed in a wide color gamut in the display device.
 なお、上述した表示装置は、入力された画像信号または内部で生成した画像信号を静止画像または動画像として表示する様々な電子機器の表示部として用いることも可能である。このような電子機器としては、例えば、半導体メモリ等の記憶媒体を備える音楽プレイヤー、デジタルカメラおよびビデオカメラなどの撮像装置、ノート型パーソナルコンピュータ、ゲーム機器、ならびに携帯電話およびスマートフォンなどの携帯情報端末などを例示することができる。 Note that the display device described above can also be used as a display unit of various electronic devices that display an input image signal or an internally generated image signal as a still image or a moving image. Examples of such an electronic device include a music player having a storage medium such as a semiconductor memory, an imaging device such as a digital camera and a video camera, a notebook personal computer, a game device, and a portable information terminal such as a mobile phone and a smartphone. Can be illustrated.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 有機電界発光層と、
 前記有機電界発光層の一方の主面側に配置され、複数の画素に共通する第1の電極と、
 前記有機電界発光層の他方の主面側に、かつ前記画素毎に個別に配置される複数の第2の電極と、
 前記有機電界発光層の他方の主面側に、かつ、前記複数の第2の電極同士の間に配置される複数の第3の電極と、を有する、表示装置。
(2)
 前記有機電界発光層に対し電圧が印加される際に、前記第1の電極の電位は前記第2の電極の電位よりも小さく、かつ、前記第3の電極の電位は、前記第1の電極の電位に前記有機電界発光層についての閾値電圧を加えた値よりも小さい、前記(1)に記載の表示装置。
(3)
 前記第3の電極の電位は、前記第1の電極の電位以下である、前記(2)に記載の表示装置。
(4)
 前記有機電界発光層に対し電圧が印加される際に、前記第1の電極の電位は前記第2の電極の電位よりも大きく、かつ、前記第3の電極の電位は、前記第1の電極の電位から前記有機電界発光層についての閾値電圧を減じた値よりも大きい、前記(1)に記載の表示装置。
(5)
 前記第3の電極の電位と前記第1の電極の電位とが同一である、前記(2)~(4)のいずれか一項に記載の表示装置。
(6)
 前記第3の電極は、平面視にて島状に配置されている、前記(1)~(5)のいずれか一項に記載の表示装置。
(7)
 前記第3の電極は、平面視にて、互いに隣接する複数の前記第2の電極から等間隔となるように配置されている、前記(1)~(6)のいずれか一項に記載の表示装置。
(8)
 前記第2の電極と、前記第3の電極とは、同一層内に配置されている、前記(1)~(7)のいずれか一項に記載の表示装置。
(9)
 前記有機電界発光層は、平面視にて、前記複数の画素に渡り連続して形成されている、前記(1)~(8)のいずれか一項に記載の表示装置。
(10)
 有機電界発光層と、
 前記有機電界発光層の一方の主面側に配置され、複数の画素に共通する第1の電極と、
 前記有機電界発光層の他方の主面側に、かつ前記画素毎に個別に対応して配置される複数の第2の電極と、
 前記有機電界発光層の他方の主面側に、かつ、前記複数の第2の電極同士の間に配置される複数の第3の電極と、を有する表示部を備える、電子機器。
The following configurations also belong to the technical scope of the present disclosure.
(1)
An organic electroluminescent layer;
A first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels;
A plurality of second electrodes arranged on the other main surface side of the organic electroluminescent layer and individually for each pixel;
A display device comprising: a plurality of third electrodes disposed on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
(2)
When a voltage is applied to the organic electroluminescent layer, the potential of the first electrode is smaller than the potential of the second electrode, and the potential of the third electrode is the first electrode. The display device according to (1), which is smaller than a value obtained by adding a threshold voltage of the organic electroluminescent layer to the potential of the organic electroluminescent layer.
(3)
The display device according to (2), wherein the potential of the third electrode is equal to or lower than the potential of the first electrode.
(4)
When a voltage is applied to the organic electroluminescent layer, the potential of the first electrode is greater than the potential of the second electrode, and the potential of the third electrode is the first electrode. The display device according to (1), which is larger than a value obtained by subtracting a threshold voltage of the organic electroluminescent layer from the potential of the organic electroluminescent layer.
(5)
The display device according to any one of (2) to (4), wherein the potential of the third electrode and the potential of the first electrode are the same.
(6)
The display device according to any one of (1) to (5), wherein the third electrode is arranged in an island shape in plan view.
(7)
The third electrode according to any one of (1) to (6), wherein the third electrode is arranged so as to be equidistant from the plurality of second electrodes adjacent to each other in plan view. Display device.
(8)
The display device according to any one of (1) to (7), wherein the second electrode and the third electrode are arranged in the same layer.
(9)
The display device according to any one of (1) to (8), wherein the organic electroluminescent layer is formed continuously over the plurality of pixels in a plan view.
(10)
An organic electroluminescent layer;
A first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels;
A plurality of second electrodes disposed on the other main surface side of the organic electroluminescent layer and corresponding to each pixel individually;
An electronic apparatus comprising: a display unit having a plurality of third electrodes arranged on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
 10、210        有機電界発光層
 20、20B、20G、20R、21B、21G、21R、22B、22G、22R、23B、23G、23R、23W、24、25、26、27、220、220B、220G、220R         個別電極
 201           電極
 202           光反射層
 30、230        透明共通電極
 40、240        保護絶縁膜
 50、250        カラーフィルタ層
 50R、250R      赤色カラーフィルタ
 50G、250G      緑色カラーフィルタ
 50B、250B      青色カラーフィルタ
 60、260        封止樹脂
 70、270        カバーガラス
 80、80A、80B、80C、80D、280   層間絶縁膜
 81、85、87A、281     コンタクト
 83、87、283     配線
 88            遮光層
 89            反射板
 90、90A、90B、90C、90D、90E、90F   第3の電極
 100、200       表示装置
10, 210 Organic electroluminescent layer 20, 20B, 20G, 20R, 21B, 21G, 21R, 22B, 22G, 22R, 23B, 23G, 23R, 23W, 24, 25, 26, 27, 220, 220B, 220G, 220R Individual electrode 201 Electrode 202 Light reflection layer 30, 230 Transparent common electrode 40, 240 Protective insulating film 50, 250 Color filter layer 50R, 250R Red color filter 50G, 250G Green color filter 50B, 250B Blue color filter 60, 260 Sealing resin 70, 270 Cover glass 80, 80A, 80B, 80C, 80D, 280 Interlayer insulating film 81, 85, 87A, 281 Contact 83, 87, 283 Wiring 88 Light shielding layer 89 Reflector 90, 90A, 90B, 90C, 90D, 90E, 90F Third electrode 100, 200 Display device

Claims (10)

  1.  有機電界発光層と、
     前記有機電界発光層の一方の主面側に配置され、複数の画素に共通する第1の電極と、
     前記有機電界発光層の他方の主面側に、かつ前記画素毎に個別に配置される複数の第2の電極と、
     前記有機電界発光層の他方の主面側に、かつ、前記複数の第2の電極同士の間に配置される複数の第3の電極と、を有する、表示装置。
    An organic electroluminescent layer;
    A first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels;
    A plurality of second electrodes arranged on the other main surface side of the organic electroluminescent layer and individually for each pixel;
    A display device comprising: a plurality of third electrodes disposed on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
  2.  前記有機電界発光層に対し電圧が印加される際に、前記第1の電極の電位が前記第2の電極の電位よりも小さく、かつ、前記第3の電極の電位が前記第1の電極の電位に前記有機電界発光層についての閾値電圧を加えた値よりも小さい、請求項1に記載の表示装置。 When a voltage is applied to the organic electroluminescent layer, the potential of the first electrode is smaller than the potential of the second electrode, and the potential of the third electrode is equal to that of the first electrode. The display device according to claim 1, wherein the display device is smaller than a value obtained by adding a threshold voltage of the organic electroluminescent layer to a potential.
  3.  前記第3の電極の電位は、前記第1の電極の電位以下である、請求項2に記載の表示装置。 The display device according to claim 2, wherein the potential of the third electrode is equal to or lower than the potential of the first electrode.
  4.  前記第3の電極の電位と前記第1の電極の電位とが同一である、請求項2に記載の表示装置。 3. The display device according to claim 2, wherein the potential of the third electrode and the potential of the first electrode are the same.
  5.  前記第3の電極は、平面視にて島状に配置されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the third electrode is arranged in an island shape in plan view.
  6.  前記第3の電極は、平面視にて、互いに隣接する複数の前記第2の電極から等間隔となるように配置されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the third electrode is disposed so as to be equidistant from the plurality of second electrodes adjacent to each other in a plan view.
  7.  前記第2の電極と、前記第3の電極とは、同一層内に配置されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the second electrode and the third electrode are disposed in the same layer.
  8.  前記有機電界発光層は、平面視にて、前記複数の画素に渡り連続して形成されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the organic electroluminescent layer is formed continuously over the plurality of pixels in a plan view.
  9.  前記有機電界発光層に対し電圧が印加される際に、前記第1の電極の電位が前記第2の電極の電位よりも大きく、かつ、前記第3の電極の電位が前記第1の電極の電位から前記有機電界発光層についての閾値電圧を減じた値よりも大きい、請求項1に記載の表示装置。 When a voltage is applied to the organic electroluminescent layer, the potential of the first electrode is larger than the potential of the second electrode, and the potential of the third electrode is equal to that of the first electrode. The display device according to claim 1, wherein the display device is larger than a value obtained by subtracting a threshold voltage of the organic electroluminescent layer from a potential.
  10.  有機電界発光層と、
     前記有機電界発光層の一方の主面側に配置され、複数の画素に共通する第1の電極と、
     前記有機電界発光層の他方の主面側に、かつ前記画素毎に個別に対応して配置される複数の第2の電極と、
     前記有機電界発光層の他方の主面側に、かつ、前記複数の第2の電極同士の間に配置される複数の第3の電極と、を有する表示部を備える、電子機器。
    An organic electroluminescent layer;
    A first electrode disposed on one main surface side of the organic electroluminescent layer and common to a plurality of pixels;
    A plurality of second electrodes disposed on the other main surface side of the organic electroluminescent layer and corresponding to each pixel individually;
    An electronic apparatus comprising: a display unit having a plurality of third electrodes arranged on the other main surface side of the organic electroluminescent layer and between the plurality of second electrodes.
PCT/JP2018/012415 2017-05-11 2018-03-27 Display device and electronic apparatus WO2018207484A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880028873.XA CN110574498A (en) 2017-05-11 2018-03-27 Display device and electronic apparatus
JP2019517488A JP7312697B2 (en) 2017-05-11 2018-03-27 Displays and electronics
DE112018002421.0T DE112018002421T5 (en) 2017-05-11 2018-03-27 DISPLAY DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-094558 2017-05-11
JP2017094558 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207484A1 true WO2018207484A1 (en) 2018-11-15

Family

ID=64104541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012415 WO2018207484A1 (en) 2017-05-11 2018-03-27 Display device and electronic apparatus

Country Status (4)

Country Link
JP (1) JP7312697B2 (en)
CN (1) CN110574498A (en)
DE (1) DE112018002421T5 (en)
WO (1) WO2018207484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003504A1 (en) * 2020-07-03 2022-01-06 株式会社半導体エネルギー研究所 Display device, display module, and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276796A (en) * 2009-08-27 2009-11-26 Sony Corp Pixel circuit, display device and method of driving them
JP2012043583A (en) * 2010-08-17 2012-03-01 Sony Corp Display device and method of manufacturing the same
JP2015056375A (en) * 2013-09-13 2015-03-23 セイコーエプソン株式会社 Light-emitting device and electronic apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762552B1 (en) 1999-11-29 2004-07-13 Koninklijke Philips Electronics N.V. Organic electroluminescent device and a method of manufacturing thereof
DE10037391A1 (en) * 2000-08-01 2002-02-14 Covion Organic Semiconductors Structurable materials, processes for their production and their use
KR100491146B1 (en) 2002-11-04 2005-05-24 삼성에스디아이 주식회사 AMOLED and method for fabricating the same
JP2006317740A (en) * 2005-05-13 2006-11-24 Seiko Epson Corp Light emitting device, driving method thereof, manufacturing method thereof, and electronic device
JP2010085866A (en) * 2008-10-01 2010-04-15 Sony Corp Active matrix type display device
JP2012155953A (en) * 2011-01-25 2012-08-16 Sony Corp Organic el display device and electronic apparatus
KR101647160B1 (en) * 2011-12-01 2016-08-10 삼성디스플레이 주식회사 Organic light emitting device having improved light emitting quality by reducing leakage current between pixels
JP2014052617A (en) 2012-08-08 2014-03-20 Canon Inc Light emission device, and driving method therefor
JP2014078399A (en) * 2012-10-10 2014-05-01 Rohm Co Ltd Organic el device
JP2015050051A (en) * 2013-09-02 2015-03-16 大日本印刷株式会社 Top-emission type organic electroluminescent display device
JP2016091949A (en) * 2014-11-10 2016-05-23 パイオニア株式会社 Light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276796A (en) * 2009-08-27 2009-11-26 Sony Corp Pixel circuit, display device and method of driving them
JP2012043583A (en) * 2010-08-17 2012-03-01 Sony Corp Display device and method of manufacturing the same
JP2015056375A (en) * 2013-09-13 2015-03-23 セイコーエプソン株式会社 Light-emitting device and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003504A1 (en) * 2020-07-03 2022-01-06 株式会社半導体エネルギー研究所 Display device, display module, and electronic apparatus

Also Published As

Publication number Publication date
DE112018002421T5 (en) 2020-01-23
JP7312697B2 (en) 2023-07-21
JPWO2018207484A1 (en) 2020-03-12
CN110574498A (en) 2019-12-13

Similar Documents

Publication Publication Date Title
CN109994522B (en) Display device
US11005064B2 (en) Transparent display substrate and driving method thereof and transparent display device
JP6640336B2 (en) Display device and electronic equipment
US11075253B2 (en) Organic light-emitting display device
KR101556987B1 (en) Method of manufacturing organic light-emitting device
US11889722B2 (en) Display device and electronic apparatus with contact electrode
CN111326673B (en) Display device
JP2023174626A (en) display device
US10790344B2 (en) Display device and method for manufacturing the same
JP6223070B2 (en) Organic EL display device and method of manufacturing organic EL display device
US8497496B2 (en) Display device and method of manufacturing the same
TWI414203B (en) A manufacturing method and a display device of a display device
KR20110015757A (en) Organic light emitting display device and method for fabricating the same
KR101622563B1 (en) Top emission type organic Electroluminescent Device
US11424427B2 (en) Display device and manufacturing method of display device, and electronic device
WO2018207484A1 (en) Display device and electronic apparatus
US10749134B2 (en) Organic EL display panel
CN109728034B (en) Display device
KR100782322B1 (en) an active matrix organic electroluminescence display and a manufacturing method of the same
US20230217760A1 (en) Display apparatus
JP5311323B2 (en) Organic EL display device
KR102511047B1 (en) Organic light emitting display device
KR20100065687A (en) Dual plate type organic electro-luminescent device and the method for fabricating thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517488

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18799106

Country of ref document: EP

Kind code of ref document: A1