WO2018207327A1 - Cyclone separation apparatus and vacuum cleaner - Google Patents

Cyclone separation apparatus and vacuum cleaner Download PDF

Info

Publication number
WO2018207327A1
WO2018207327A1 PCT/JP2017/017924 JP2017017924W WO2018207327A1 WO 2018207327 A1 WO2018207327 A1 WO 2018207327A1 JP 2017017924 W JP2017017924 W JP 2017017924W WO 2018207327 A1 WO2018207327 A1 WO 2018207327A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
dust collection
state
chamber
collection chamber
Prior art date
Application number
PCT/JP2017/017924
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 朝日
志賀 彰
浩志郎 ▲高▼野
茉莉花 服巻
公義 相馬
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to JP2019516832A priority Critical patent/JP6822559B2/en
Priority to EP17909587.2A priority patent/EP3622873B1/en
Priority to CN201780090478.XA priority patent/CN110612052B/en
Priority to PCT/JP2017/017924 priority patent/WO2018207327A1/en
Publication of WO2018207327A1 publication Critical patent/WO2018207327A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1683Dust collecting chambers; Dust collecting receptacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action

Definitions

  • This invention relates to a cyclone separator and a vacuum cleaner.
  • Patent Document 1 describes a vacuum cleaner equipped with a cyclone separator.
  • the cyclone separation device includes a swirl chamber that swirls air containing dust to separate the air and dust, and a dust collection chamber that stores dust separated in the swirl chamber.
  • An object of the present invention is to provide a cyclone separator that achieves both the ability to collect dust and the ability to discard dust, and a vacuum cleaner that includes the cyclone separator.
  • the cyclone separation device is configured to swirl dust-containing air along the side wall in the interior to separate the dust from the dust-containing air, and to connect the dust separated in the swirl chamber through the swirl chamber.
  • a dust collection chamber that can be in a collection state for collecting inside and a disposal state for discarding the collected dust.
  • the surface of the inner wall of the dust collecting chamber is in the first state when the dust collecting chamber is in the collecting state, and is in the second state when the dust collecting chamber is in the discarding state.
  • the surface of the inner wall of the dust collection chamber has different properties with respect to dust in the first state and the second state.
  • a vacuum cleaner according to the present invention includes the above-described cyclone separation device and a blower that generates an airflow in a swirl chamber included in the cyclone separation device.
  • the cyclone separator according to the present invention and the electric vacuum cleaner provided with the cyclone separator can achieve both the performance of collecting dust and the performance of discarding dust.
  • FIG. 4 is a view showing an AA cross section of FIG. 3.
  • 2 is a perspective view showing a dust collection unit according to Embodiment 1.
  • FIG. 3 is a front view showing the dust collection unit of the first embodiment. 2 is an exploded view of the dust collection unit according to Embodiment 1.
  • FIG. 7 is a view showing a BB cross section of FIG. 6. It is a figure which shows CC cross section of FIG.
  • FIG. 4 is a view of the electric vacuum cleaner according to Embodiment 1 cut along the same cross section as the AA cross section of FIG. 3.
  • 3 is an image diagram showing a composite material forming the dust collection unit of Embodiment 1.
  • FIG. 3 is an image diagram illustrating an example of a structure of a fiber material according to Embodiment 1.
  • FIG. 3 is a diagram illustrating how dust accumulates in the first embodiment. It is a figure which shows the relationship between the surface of the inner wall of the dust collection chamber in the collection state of Embodiment 1, and dust.
  • FIG. 6 is a cross-sectional view showing a dust collection unit according to Embodiment 2.
  • FIG. 6 is a cross-sectional view showing a dust collection unit according to Embodiment 2.
  • FIG. 6 is a cross-sectional view showing a dust collection unit according to Embodiment 2.
  • FIG. 1 is a perspective view showing a vacuum cleaner 1 according to the first embodiment.
  • FIG. 1 shows a cordless vertical electric vacuum cleaner 1 as an example.
  • the cordless type vacuum cleaner 1 includes a rechargeable battery.
  • the rechargeable battery is charged via a charging stand (not shown).
  • the charging stand is connected to an external power source by a power cable.
  • the vacuum cleaner 1 is placed on the charging stand, the rechargeable battery of the vacuum cleaner 1 is electrically connected to the charging stand. Thereby, a rechargeable battery is charged.
  • the vacuum cleaner 1 is not limited to the cordless type.
  • the vacuum cleaner 1 may include a power cord for connecting to an external power source.
  • the vacuum cleaner 1 includes, for example, a suction port body 2, a suction pipe 3, and a cleaner body 6.
  • An opening communicating with the outside is formed on the lower surface of the suction port body 2.
  • the suction port body 2 is provided with a cylindrical connection portion.
  • the connecting portion is provided at the central portion of the suction port body 2 in the longitudinal direction.
  • the opening formed on the bottom surface of the suction port body 2 communicates with the connecting portion through the inside of the suction port body 2.
  • the suction pipe 3 is, for example, a cylindrical member that extends linearly. One end portion of the suction pipe 3 is connected to a connection portion provided in the suction port body 2.
  • the suction port body 2 can be attached to and detached from the suction pipe 3.
  • the other end of the suction pipe 3 is connected to the cleaner body 6.
  • the suction pipe 3 can be attached to and detached from the cleaner body 6.
  • the suction port body 2 and the suction pipe 3 form an air passage for allowing air containing dust to flow into the cleaner body 6 from the outside.
  • items to be cleaned by the electric vacuum cleaner 1 such as dust, dust, dust, hair, and fibers are collectively referred to as “dust”.
  • air containing dust is referred to as “dusty air”.
  • the vacuum cleaner body 6 has a function of separating dust from dust-containing air. Moreover, the cleaner body 6 has a function of collecting separated cases.
  • the cleaner body 6 includes, for example, a body unit 12 and a dust collection unit 13.
  • the dust collection unit 13 is detachable from the main unit 12.
  • the dust collection unit 13 is a device that separates dust from dust-containing air and collects the dust.
  • FIG. 2 is a perspective view showing a state in which the dust collection unit 13 is removed from the electric vacuum cleaner 1 according to the first embodiment.
  • FIG. 3 is a rear view illustrating a state in which the dust collection unit 13 is removed from the electric vacuum cleaner 1 according to the first embodiment.
  • FIG. 4 is a view showing a cross section taken along line AA of FIG.
  • the main body unit 12 includes, for example, an intake air passage forming unit 16, a gripping unit 7, and a container 14.
  • the main unit 12 includes, for example, a rechargeable battery, an electric blower 10 and an exhaust air passage forming unit 17.
  • the rechargeable battery, the electric blower 10 and the exhaust air passage forming unit 17 are housed inside the housing body 14.
  • the intake air passage 19 is an air passage for guiding dust-containing air from the suction pipe 3 to the dust collection unit 13.
  • the intake air path forming unit 16 is, for example, a cylindrical member that extends linearly. As described above, one end portion of the suction pipe 3 is connected to the connection portion provided in the suction port body 2. The other end of the suction pipe 3 is connected to one end of the intake air passage forming unit 16. The suction pipe 3 appropriately connected to the cleaner body 6 is arranged in a straight line with respect to the intake air passage forming portion 16. Further, a connection port 20 facing sideways is formed at the other end of the intake air passage forming portion 16. The connection port 20 is an opening that connects the intake air passage 19 and the dust collection unit 13.
  • the dust collecting unit 13 separates dust from the dust-containing air that flows in through the intake air passage 19.
  • the dust collection unit 13 swirls the dust-containing air and separates the dust by centrifugal force. That is, the dust collection unit 13 has a cyclone separation function.
  • the dust collection unit 13 of the present embodiment is an example of a cyclone separation device.
  • the dust collection unit 13 collects the separated dust.
  • the dust collection unit 13 temporarily collects the collected dust. A more specific configuration and function of the dust collection unit 13 will be described later.
  • the grip part 7 is a part that the user of the vacuum cleaner 1 has. As described above, the suction pipe 3 is connected to one end of the intake air passage forming portion 16. As an example, the gripping portion 7 is disposed on the other end side of the intake air passage forming portion 16.
  • the grip 7 is provided with an operation switch 8.
  • the operation switch 8 includes, for example, a plurality of buttons for controlling the operation of the electric vacuum cleaner 1.
  • the container 14 forms the outline of the main part of the main unit 12.
  • the container 14 is, for example, a resin molded product.
  • the container 14 is disposed immediately above the dust collection unit 13.
  • the exhaust air passage forming unit 17 forms an exhaust air passage 21 in the main unit 12.
  • the exhaust air passage 21 is an air passage for guiding the air from which dust has been removed by the dust collection unit 13 to the exhaust port. Clean air flows from the dust collection unit 13 into the exhaust air passage 21.
  • illustration of an exhaust port is abbreviate
  • the exhaust air passage forming portion 17 forms a connection port 22 on the lower surface of the container 14. The exhaust air passage 21 and the connection port 22 communicate with each other.
  • the electric blower 10 is a device that generates an air current in an air passage formed in the vacuum cleaner 1.
  • the air passage formed in the vacuum cleaner 1 includes, for example, an air passage for allowing dust-containing air to flow into the cleaner body 6 from the outside, an intake air passage 19, an air passage formed in the dust collection unit 13, and an exhaust.
  • An air path 21 and the like are included.
  • the electric blower 10 is disposed in the exhaust air passage 21.
  • the electric blower 10 performs a preset operation in response to an operation on the operation switch 8.
  • an air flow is generated in the air passage formed in the electric vacuum cleaner 1.
  • the dust on the floor surface is sucked together with the air from the opening formed in the lower surface of the suction port body 2. That is, dust-containing air is sucked into the suction port body 2.
  • the dust-containing air sucked into the suction port body 2 passes through the suction pipe 3 and is taken into the cleaner body 6.
  • the dust-containing air taken into the cleaner body 6 passes through the intake air passage 19 and is sent to the dust collecting unit 13 from the connection port 20. A more detailed description of the airflow generated inside the dust collection unit 13 will be described later.
  • the air discharged from the dust collection unit 13 is sent to the exhaust air passage 21 through the connection port 22.
  • the air discharged from the dust collection unit 13 passes through the electric blower 10 in the exhaust air passage 21.
  • the air that has passed through the electric blower 10 further travels through the exhaust air passage 21 and is discharged from the exhaust port to the outside of the cleaner body 6.
  • the air that has passed through the electric blower 10 is returned from the exhaust port to the room being cleaned, for example.
  • FIG. 5 is a perspective view showing the dust collection unit 13 of the first embodiment.
  • FIG. 6 is a front view showing the dust collection unit 13 of the first embodiment.
  • FIG. 7 is an exploded view of the dust collection unit 13 of the first embodiment.
  • the upper and lower sides are specified with reference to the orientation on the paper surface in FIG.
  • the general shape of the entire dust collection unit 13 is a cylindrical shape.
  • the dust collection unit 13 includes, for example, a filter part case 61, an outflow part case 24, an inflow part case 25, and a dust collection part case 26.
  • the filter part case 61, the outflow part case 24, the inflow part case 25, and the dust collecting part case 26 are, for example, resin molded products.
  • the filter part case 61, the outflow part case 24, the inflow part case 25, and the dust collecting part case 26 can be disassembled into the state shown in FIG. 7 by a preset operation. Moreover, the filter part case 61, the outflow part case 24, the inflow part case 25, and the dust collection part case 26 can be assembled in the state shown in FIG. 5 by preset operation.
  • a filter 62 is housed in the filter unit case 61.
  • the filter case 61 and the filter 62 may not be provided in the dust collection unit 13.
  • the filter 62 may be provided in a place other than the dust collection unit 13.
  • FIG. 8 is a view showing a BB cross section of FIG.
  • FIG. 9 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 10 is a view showing a DD section of FIG.
  • the inflow portion case 25 includes, for example, a cylindrical portion 33, a conical portion 34, a partition wall portion 35, an inflow pipe 36, and an outer wall portion 38.
  • the cylindrical portion 33 has a hollow cylindrical shape.
  • the cylindrical portion 33 is arranged so that the central axis is directed in the vertical direction.
  • the conical portion 34 has a hollow conical shape with a tip portion cut off.
  • the conical portion 34 is arranged so that the central axis faces the up-down direction. For example, the central axis of the conical part 34 and the central axis of the cylindrical part 33 are aligned in a straight line.
  • the upper end portion of the conical portion 34 is connected to the lower end portion of the cylindrical portion 33.
  • the diameter of the conical portion 34 decreases as it goes downward from the upper end portion.
  • An opening facing downward is formed at the lower end of the conical portion 34. In the present embodiment, this opening formed at the lower end of the conical portion 34 is referred to as a primary opening 39.
  • the space inside the cylindrical portion 33 and the space inside the conical portion 34 form a continuous space.
  • the continuous space and the portion forming the space are referred to as a swirl chamber 29.
  • the dust collection unit 13 includes the swirl chamber 29.
  • the swirl chamber 29 swirls dust-containing air inside.
  • the central axis of the swirl chamber 29 faces in the vertical direction.
  • the side wall of the swirl chamber 29 has a circular cross section perpendicular to the central axis of the swirl chamber 29.
  • the swirl chamber 29 swirls the dust-containing air along this side wall.
  • the swirl chamber 29 separates dust from the dust-containing air by swirling the dust-containing air.
  • a zero-order opening 48 is formed in the side wall of the swirl chamber 29.
  • the zero-order opening 48 is formed from the lower end portion of the cylindrical portion 33 to the upper end portion of the conical portion 34.
  • the zero-order opening 48 is formed at a position higher than the primary opening 39. That is, the zero-order opening 48 is formed on the upstream side of the primary opening 39. Further, the zero-order opening 48 is formed at a position lower than the outer wall portion 38.
  • the partition wall 35 has, for example, a cylindrical shape.
  • the diameter of the partition wall portion 35 is smaller than the diameter of the cylindrical portion 33.
  • the conical part 34 and the partition part 35 are arranged so that the conical part 34 is inserted into the space inside the partition part 35 from above.
  • the upper end portion of the partition wall portion 35 is connected to the outer peripheral surface of the conical portion 34.
  • the central axis of the partition wall 35 coincides with the central axis of the conical part 34.
  • the outer wall portion 38 has, for example, a cylindrical shape.
  • the diameter of the outer wall portion 38 is larger than the diameter of the cylindrical portion 33.
  • the outer wall portion 38 is provided so as to surround the periphery of the upper end portion of the cylindrical portion 33.
  • the outer wall portion 38 is provided so as to extend upward from the upper end of the cylindrical portion 33.
  • the central axis of the outer wall portion 38 and the central axis of the cylindrical portion 33 are arranged in parallel with a certain interval. That is, the central axis of the outer wall portion 38 does not coincide with the central axis of the cylindrical portion 33.
  • a member that connects the outer wall portion 38 and the cylindrical portion 33 is provided between the outer wall portion 38 and the cylindrical portion 33. The space between the outer wall portion 38 and the cylindrical portion 33 is completely closed by this member.
  • the inflow pipe 36 forms an inflow air path 27.
  • the inflow air passage 27 is an air passage formed in the dust collection unit 13.
  • the inflow air passage 27 is an air passage for guiding the dust-containing air from the intake air passage formation unit 16 to the swirl chamber 29. Dust-containing air from the intake air passage 19 flows into the swirl chamber 29 through the inflow air passage 27.
  • the inflow pipe 36 has, for example, a rectangular tube shape.
  • An inflow air passage 27 is formed inside the inflow pipe 36.
  • One end portion of the inflow pipe 36 is connected to the outer wall portion 38.
  • One end of the inflow pipe 36 opens at the outer surface of the outer wall portion 38.
  • This one end of the inlet pipe 36 forms a unit inlet 40.
  • the unit inlet 40 is an opening for taking dust-containing air into the dust collection unit 13.
  • the other end portion of the inflow pipe 36 is connected to the cylindrical portion 33.
  • the other end of the inflow pipe 36 opens at the inner surface of the cylindrical portion 33.
  • This other end of the inflow pipe 36 forms an inflow port 41.
  • the inflow port 41 is an opening for taking the dust-containing material that has passed through the inflow air passage 27 into the swirl chamber 29.
  • the inflow pipe 36 is connected to the upper part of the cylindrical portion 33.
  • the inflow port 41 is formed in the upper part of the cylindrical portion 33.
  • the inflow port 41 is formed at the uppermost part of the side wall of the swirl chamber 29, for example.
  • the zero-order opening 48 is formed at a position lower than the inflow port 41. That is, the zero-order opening 48 is formed on the downstream side of the inflow port 41.
  • the inflow pipe 36 is, for example, a straight member.
  • the inflow pipe 36 is connected to the cylindrical portion 33 so that the dust-containing air from the inflow air passage 27 flows into the swirl chamber 29 from the tangential direction of the swirl chamber 29.
  • the axis of the inflow pipe 36 is perpendicular to the central axis of the cylindrical portion 33.
  • the dust collecting unit case 26 includes, for example, a bottom 46 and an outer wall 47.
  • the overall shape of the bottom 46 is circular.
  • the outer wall portion 47 has, for example, a cylindrical shape.
  • the diameter of the outer wall portion 47 is larger than the diameter of the cylindrical portion 33.
  • the outer wall portion 47 is provided so as to stand upright from the edge of the bottom portion 46, for example.
  • the bottom 46 and the outer wall 47 form a cylindrical member that is open at the top and closed at the bottom.
  • the partition wall part 35 is disposed inside the outer wall part 47.
  • the lower end portion of the partition wall portion 35 is in contact with the bottom portion 46.
  • the central axis of the partition wall portion 35 and the central axis of the outer wall portion 47 are arranged in parallel with a predetermined interval.
  • the central axis of the partition wall 35 does not coincide with the central axis of the outer wall 47.
  • the upper end portion of the outer wall portion 47 is in contact with the lower end portion of the outer wall portion 38.
  • the central axis of the outer wall portion 47 and the central axis of the outer wall portion 38 are arranged in a straight line.
  • the dust collection unit 13 of the present embodiment includes a dust collection chamber.
  • the dust collection chamber is a space for storing dust and a member that forms the space.
  • the dust collection chamber has a function of collecting the dust separated in the swirl chamber 29.
  • the dust collection chamber of the present embodiment includes a zero-order dust collection chamber 30 and a primary dust collection chamber 31.
  • Garbage ⁇ is stored in the zero-order dust collection chamber 30.
  • garbage ⁇ is stored in the primary dust collection chamber 31.
  • the waste ⁇ is relatively bulky dust such as fiber waste and hair.
  • the garbage [beta] is relatively small dust such as sand and fine fiber.
  • the space excluding the space formed inside the conical portion 34 is the primary dust collection chamber 31.
  • the primary dust collection chamber 31 communicates with the swirl chamber 29 through the primary opening 39.
  • the primary dust collection chamber 31 is formed so as to cover the lower portion of the conical portion 34.
  • the primary dust collection chamber 31 is formed so as to surround the lower end portion of the conical portion 34.
  • the zero-order dust collection chamber 30 is a continuous space formed between the outer wall portion 47 and the partition wall portion 35, between the outer wall portion 47 and the cylindrical portion 33, and between the outer wall portion 47 and the conical portion 34. It is.
  • the partition wall portion 35, the cylindrical portion 33, and the conical portion 34 form an inner wall of the zero-order dust collection chamber 30.
  • the outer wall 47 forms the outer wall of the zero-order dust collection chamber 30.
  • the overall shape of the zero-order dust collection chamber 30 is a cylindrical shape.
  • the upper part of the zero-order dust collection chamber 30 is closed by a member that connects the cylindrical portion 33 and the outer wall portion 38.
  • the lower part of the zero-order dust collection chamber 30 is closed by the bottom 46.
  • the zero-order dust collection chamber 30 surrounds most of the swirl chamber 29.
  • the zero-order dust collection chamber 30 surrounds the primary dust collection chamber 31.
  • the zero-order dust collection chamber 30 communicates with the swirl chamber 29 through the zero-order opening 48.
  • the zero-order opening 48 is formed at the top of the zero-order dust collection chamber 30.
  • the zero-order dust collection chamber 30 is provided so as to extend downward from the zero-order opening 48.
  • the zero-order opening 48 is preferably formed so that the width along the central axis direction of the cylindrical portion 33 is smaller than the width along the circumferential direction of the cylindrical portion 33. That is, the shape of the zero-order opening 48 is preferably a horizontally long shape.
  • the cylindrical portion 33 is arranged so as to be shifted with respect to the outer wall portion 47 in a range where it does not contact the outer wall portion 47.
  • the central axis of the cylindrical portion 33 and the central axis of the outer wall portion 47 are not arranged on the same straight line.
  • the central axis of the cylindrical portion 33 is arranged in parallel to the central axis of the outer wall portion 47 with a certain interval.
  • a portion having a small interval between the cylindrical portion 33 and the outer wall portion 47 is defined as a narrow portion 59.
  • the distance between the cylindrical portion 33 and the outer wall portion 47 is equal to the distance between the outer surface of the cylindrical portion 33 and the inner surface of the outer wall portion 47.
  • the distance between the cylindrical portion 33 and the outer wall portion 47 gradually increases as the distance from the narrow portion 59 increases.
  • the distance between the cylindrical portion 33 and the outer wall portion 47 is the largest at the position farthest from the narrow portion 59.
  • the inflow pipe 36 is disposed above a portion where the distance between the cylindrical portion 33 and the outer wall portion 47 is the largest.
  • a point P shown in FIG. 9 indicates a point where the traveling direction of the air flowing into the swirl chamber 29 from the inflow air passage 27 coincides with the tangential direction of the swirl chamber 29.
  • an angle rotated about the central axis of the cylindrical portion 33 from the point P in the direction in which air swirls in the swirl chamber 29 is defined as ⁇ 1.
  • the narrowed portion 59 is preferably arranged in a range where the angle ⁇ 1 is 0 ° to 180 °.
  • the air rotates in the swirl chamber 29 around the central axis of the cylindrical portion 33 from the location where the distance between the cylindrical portion 33 and the outer wall portion 47 is the narrowest.
  • This angle is defined as ⁇ 2.
  • the zero-order opening 48 is preferably arranged in a range where the angle ⁇ 2 is 90 ° to 270 °. More preferably, the zero-order opening 48 is formed at a position where the angle ⁇ 2 is 180 °.
  • FIG. 10 shows an example in which a zero-order opening 48 is formed at a position where the angle ⁇ 2 is 180 °. In the example shown in FIG. 10, the zero-order opening 48 is disposed at a place where the distance between the cylindrical portion 33 and the outer wall portion 47 is the largest.
  • the outflow part case 24 includes a lid part 49 and an outflow part 51, for example.
  • the lid portion 49 has a plate shape, for example.
  • the lid portion 49 closes the upper portion of the cylindrical portion 33.
  • the upper wall of the swirl chamber 29 is formed by the lid portion 49.
  • the lid portion 49 and the outer wall portion 38 of the inflow portion case 25 form a space for housing the filter portion case 61.
  • the filter part case 61 is provided in the space inside the outer wall part 38 so as to cover the outflow part case 24 from above.
  • the filter part case 61 is placed in close contact with the outflow part case 24 from above.
  • a unit outlet 58 is formed on the upper surface of the filter case 61.
  • the unit outlet 58 is an opening through which air flows out from the dust collection unit 13.
  • the outflow part 51 is a member for allowing the air in the swirl chamber 29 to flow out of the swirl chamber 29.
  • the outflow part 51 is provided in the central part of the lid part 49.
  • the outflow portion 51 protrudes downward from the lid portion 49.
  • the portion above the preset position of the outflow portion 51 is cylindrical.
  • the upper part of the outflow part 51 opens at the upper surface of the lid part 49.
  • the lower part of the outflow part 51 has a hollow conical shape whose diameter decreases as it goes downward.
  • the lower end of the outflow portion 51 is disposed below the lower end of the zero-order opening 48.
  • the central axis of the outflow portion 51 coincides with the central axis of the cylindrical portion 33.
  • the space formed inside the outflow portion 51 forms a part of the outflow air passage 32.
  • the outflow air path 32 is an air path for allowing the air in the swirl chamber 29 to flow out of the dust collection unit 13.
  • the part of the outflow air passage 32, the swirl chamber 29, and the primary dust collection chamber 31 are arranged substantially concentrically.
  • An outflow port 54 is formed in the outflow portion 51.
  • the outlet 54 is an opening for allowing the air in the swirl chamber 29 to flow out of the swirl chamber 29. Air in the swirl chamber 29 is taken into the outflow air passage 32 via the outlet 54.
  • the outlet 54 is formed by a large number of fine holes. For example, some of these fine holes are formed above the lower end of the inflow port 41. A part of the fine hole is formed at a position below the lower end of the zero-order opening 48. Further, in the cylindrical portion of the outflow portion 51, the fine hole is not formed in the portion where the inflow port 41 faces.
  • FIG. 11 is a view of the electric vacuum cleaner 1 according to Embodiment 1 cut along the same cross section as the AA cross section of FIG.
  • the dust collection unit 13 is attached to the main unit 12.
  • the upper surface of the filter case 61 is brought into close contact with the lower surface of the container 14.
  • the unit inlet 40 is connected to the connection port 20 of the main unit 12.
  • the unit outlet 58 is connected to the connection port 22 of the main unit 12.
  • the dust collection unit 13 is formed of the composite material 80.
  • the composite material 80 is a material including a plurality of types of materials.
  • at least a part of the inner wall forming the zero-order dust collection chamber 30 and the inner wall forming the primary dust collection chamber 31 is formed by the composite material 80.
  • at least a part of the partition wall portion 35, the cylindrical portion 33, and the conical portion 34 is formed by the composite material 80.
  • FIG. 12 is an image diagram showing the composite material 80 that forms the dust collection unit 13 of the first embodiment.
  • the composite material 80 includes a plurality of types of materials.
  • the composite material 80 includes a fiber material 81, a soft material 82, and a resin material 83, as shown in FIG.
  • the fiber material 81 for example, a sheet-like woven fabric is used.
  • the fiber material 81 may be a carbon fiber, a glass fiber, or the like used for FRP or the like.
  • the soft material 82 is, for example, silicon rubber.
  • the resin material is, for example, ABS.
  • the fiber material 81 is placed on the surface of the base material of the soft material 82.
  • the liquid soft material 82 before curing is impregnated into the base material on which the fiber material 81 is placed and cured.
  • the fiber material 81 is embedded in the vicinity of the surface of the soft material 82.
  • the soft material 82 in which the fiber material 81 is embedded is fixed on the resin material 83.
  • the fiber material 81, the soft material 82, and the resin material 83 will be in the laminated
  • the fiber material 81 is located on the opposite side of the resin material 83 with the soft material 82 interposed therebetween.
  • a fiber material 81 is provided on one side of both surfaces of the composite material 80.
  • the configuration of the composite material 80 is not limited to the above example.
  • both surfaces of the composite material 80 may be formed by the fiber material 81.
  • the composite material 80 may not include the resin material 83.
  • the composite material 80 may be formed of the fiber material 81 and the soft material 82.
  • the composite material 80 may not include the soft material 82.
  • the composite material 80 may be formed of the resin material 83 and the fiber material 81 disposed on the surface of the resin material 83.
  • the composite material 80 may be formed of a resin material 83 located at the center of the composite material 80 and a soft material 82 and a fiber material 81 that sandwich both sides of the resin material 83.
  • FIG. 13 is an image diagram showing an example of the structure of the fiber material 81 of the first embodiment.
  • a sheet-like woven fabric is used for the fiber material 81.
  • FIG. 13 shows a structure of a plain woven fabric that is a fabric woven in a state where weft yarns 85 and warp yarns 86 pass alternately as an example of the structure of the fiber material 81.
  • the distance between the weft yarns 85 and the distance between the warp yarns 86 constituting the fiber material 81 are set to be smaller than the dust.
  • the interval between the weft yarns 85 and the interval between the warp yarns 86 are, for example, several hundreds [nm] to several hundreds [ ⁇ m].
  • the composite material 80 configured as described above is a material whose surface shape changes when subjected to an external force. Therefore, in the present embodiment, the shape of the inner wall surface forming the zero-order dust collection chamber 30 and the shape of the inner wall surface forming the primary dust collection chamber 31 change when the dust collection unit 13 receives an external force.
  • the surface shape of the composite material 80 changes when it is compressed.
  • the weft yarn 85 is compressed, the warp yarn 86 is extended along with the compression of the weft yarn 85. Thereby, wrinkles occur in the fiber material 81. That is, unevenness is generated on the surface of the composite material 80.
  • the composite material 80 changes its surface shape when it receives an external force. Further, when the external force applied to the composite material 80 disappears, the surface shape of the composite material 80 returns to the original.
  • the composite material 80 of the present embodiment is a material whose surface shape changes reversibly.
  • the dust collection unit 13 is formed of the composite material 80 so that the fiber material 81 is located on the surface to which the dust adheres.
  • the dust collection unit 13 is configured such that the surface of the inner wall of the dust collection chamber is formed by the fiber material 81.
  • the fiber material 81 is provided on the inner surface of the outer wall portion 47, and the outer surface side of the outer wall portion 47 is formed of the resin material 83.
  • the cylindrical portion 33 and the conical portion 34 may be provided with the fiber material 81 on both sides of the outer surface side and the inner surface side. As described above, it is preferable that the portion of the dust collection unit 13 to which dust may adhere is formed by the composite material 80.
  • the dust-containing air that has flowed into the swirl chamber 29 swirls along the side wall that forms the swirl chamber 29.
  • the dust-containing air forms a swirling airflow in the swirling chamber 29.
  • the whirling airflow in the whirling chamber 29 flows downward while forming a forced vortex region near the central axis and an outer free vortex region.
  • FIG. 14 is a diagram illustrating how dust accumulates in the first embodiment.
  • FIG. 14 corresponds to the BB cross section of FIG.
  • FIG. 14 shows the internal state of the dust collection unit 13 during cleaning by the electric vacuum cleaner 1.
  • Centrifugal force acts on the dust contained in the swirling airflow in the swirling chamber 29.
  • the relatively bulky garbage ⁇ falls while being pressed against the cylindrical portion 33 by centrifugal force.
  • the dust ⁇ reaches the height of the zeroth-order opening 48, it passes through the zeroth-order opening 48.
  • air also passes through the zero-order opening 48 along with the waste ⁇ .
  • Garbage ⁇ that has passed through the zero-order opening 48 is sent to the zero-order dust collection chamber 30.
  • the air that has passed through the zero-order opening 48 advances in the zero-order dust collection chamber 30 while swirling in the same direction as the air swirling in the swirl chamber 29. That is, when the electric blower 10 starts operating, air current is also generated in the zero-order dust collection chamber 30.
  • the dust ⁇ that has entered the zero-order dust collection chamber 30 from the zero-order opening 48 falls while moving in the same direction as the air swirling direction in the swirl chamber 29.
  • Dust that has not entered the zero-order dust collection chamber 30 from the zero-order opening 48 moves downward while swirling on the airflow in the swirl chamber 29.
  • relatively bulky garbage ⁇ passes through the primary opening 39.
  • Garbage ⁇ that has passed through the primary opening 39 falls into the primary dust collection chamber 31 and is collected.
  • the dust collection chamber of the present embodiment collects dust including garbage ⁇ and garbage ⁇ .
  • the dust ⁇ accumulates in the zero-order dust collection chamber 30.
  • garbage ⁇ accumulates in the primary dust collection chamber 31.
  • the user removes the dust collected in the zero-order dust collection chamber 30 and the primary dust collection chamber 31 by removing the dust collection unit 13 from the main unit 12 and removing the dust collection unit case 26 from the inflow unit case 25. Can do.
  • the dust collection chamber can collect the dust separated by the swirl chamber 29.
  • a state in which the dust collection chamber collects dust is defined as a collection state.
  • the state of the dust collection chamber when the dust collection unit 13 is attached to the main unit 12 corresponds to the collection state.
  • the dust collecting chamber can collect dust when it is in the collecting state.
  • the dust collection chamber can discard the collected dust to the outside as described above.
  • a state in which the dust collection chamber discards dust is referred to as a discard state.
  • the state of the dust collection chamber when the dust collection unit 13 is detached from the main body unit 12 corresponds to the disposal state.
  • the state of the dust collection chamber when the dust collection unit case 26 is removed from the inflow unit case 25 also corresponds to the disposal state.
  • dust can be discarded.
  • the dust collection chamber can be in a collected state or a discarded state.
  • the dust collection unit 13 is configured such that the dust collection chamber can be in a collection state and a disposal state.
  • the surface shape of the composite material 80 changes. That is, the state of the surface of the inner wall of the dust collection chamber changes.
  • the surface state of the inner wall of the dust collection chamber is different from the surface state of the inner wall of the dust collection chamber in the collection state.
  • FIG. 15 is a diagram showing the relationship between the surface of the inner wall of the dust collection chamber and dust in the collection state of the first embodiment.
  • FIG. 15 shows an example of the first state.
  • FIG. 16 is a diagram showing a relationship between the surface of the inner wall of the dust collection chamber and dust when the dust collection chamber of Embodiment 1 is in a discarded state.
  • FIG. 16 shows an example of a second state different from the first state.
  • the surface of the inner wall of the dust collection chamber changes from the state shown in FIG. 15 to the state shown in FIG.
  • centrifugal force acts on the dust contained in the swirling airflow in the swirling chamber 29. Further, when the electric blower 10 starts operating, an air flow is also generated in the zero-order dust collection chamber 30. For this reason, centrifugal force also acts on the garbage ⁇ sent from the swirl chamber 29 to the zero-order dust collection chamber 30.
  • the waste ⁇ sent to the zero-order dust collection chamber 30 turns along the surface of the inner wall that forms the zero-order dust collection chamber 30.
  • the waste ⁇ sent to the zero-order dust collection chamber 30 rotates while contacting the inner surface of the outer wall portion 47, for example.
  • a frictional force and an electrostatic force act between the dust ⁇ rotating inside the zero-order dust collection chamber 30 and the surface of the inner wall forming the zero-order dust collection chamber 30.
  • air resistance acts on the dust ⁇ rotating inside the zero-order dust collection chamber 30.
  • the dusts ⁇ swirling in the zero-order dust collection chamber 30 can collide with each other.
  • the speed of the dust ⁇ rotating in the zero-order dust collection chamber 30 is reduced due to frictional force, electrostatic force, air resistance, and collision of dust.
  • a part of the garbage ⁇ sent to the zero-order dust collection chamber 30 remains attached to the surface of the inner wall forming the zero-order dust collection chamber 30.
  • Part of the garbage ⁇ sent to the zero-order dust collection chamber 30 stays attached to the inner surface of the outer wall portion 47, for example.
  • a part of the waste ⁇ sent to the primary dust collection chamber 31 also remains attached to the surface of the inner wall forming the primary dust collection chamber 31.
  • a part of the garbage ⁇ sent to the primary dust collecting chamber 31 stays attached to the inner surface of the partition wall 35, for example. That is, in the present embodiment, part of the dust sent to the dust collection chamber including the zero-order dust collection chamber 30 and the primary dust collection chamber 31 remains attached to the surface of the inner wall of the dust collection chamber.
  • a part of the dust sent to the dust collection chamber remains attached to the surface of the inner wall of the dust collection chamber. That is, dust can adhere to the surface of the inner wall of the dust collection chamber in the collected state and the surface of the inner wall of the dust collection chamber in the discarded state.
  • the fiber material 81 forming the surface of the inner wall of the dust collection chamber is in a smooth state.
  • the fiber material 81 that forms the surface of the inner wall of the dust collection chamber is uneven.
  • the state of the inner wall surface of the dust chamber with respect to dust is different between the collected state and the discarded state.
  • the contact area between the surface of the inner wall of the dust collection chamber and the dust is relatively large.
  • the dust collection chamber is changed to a discarded state, as shown in FIG. 16, the contact area between the surface of the inner wall of the dust collection chamber and the dust becomes relatively small.
  • the frictional force and electrostatic force acting between the surface of the inner wall of the dust collection chamber and the dust change.
  • the frictional force and electrostatic force acting between the surface of the inner wall of the dust collecting chamber and the dust are smaller as the contact area between the surface of the inner wall of the dust collecting chamber and the dust is smaller. That is, the force with which the surface of the inner wall of the dust collection chamber adsorbs dust decreases as the contact area between the surface of the inner wall of the dust collection chamber and the dust decreases. In other words, the force with which the surface of the inner wall of the dust collection chamber adsorbs dust increases as the contact area between the surface of the inner wall of the dust collection chamber and the dust increases.
  • the contact area between the surface of the inner wall of the dust collection chamber in the collected state and the dust is the contact between the surface of the inner wall of the dust collection chamber in the discarded state and the dust. Greater than area. That is, the frictional force and electrostatic force acting between the surface of the inner wall of the dust collection chamber in the collected state and the dust are more than the frictional force and electrostatic force acting between the surface of the inner wall of the dust collection chamber in the collected state and the dust. Is also big. According to this embodiment, the dust attached to the surface of the inner wall of the dust collection chamber in the collected state is more difficult to separate. Thereby, for example, when the electric blower 10 is operating, the dust attached to the surface of the inner wall of the dust collecting chamber is prevented from turning again. According to the present embodiment, it is possible to prevent the dust collected in the dust collection chamber from returning to the swirl chamber.
  • the dust is prevented from returning to the swirl chamber again, the dust is also prevented from returning to the main unit 12. Thereby, for example, it is prevented that the air passage in the main unit 12 is narrowed by dust and the electric blower 10 is clogged with dust. If it is this Embodiment, the vacuum cleaner 1 which can maintain the performance which isolate
  • the air volume of the air flowing through the dust collection unit 13 is reduced. That is, when dust accumulates on the filter 62, the suction force of the vacuum cleaner 1 is reduced.
  • a large amount of dust adheres to the surface of the inner wall of the dust collecting chamber, so that the amount of dust accumulated in the filter 62 can be further reduced. Thereby, the performance of the dust collection unit 13 and the vacuum cleaner 1 is maintained.
  • the frequency of maintenance of the filter 62 by the user is further reduced.
  • the dust collecting chamber when the dust collecting chamber is disposed of, a force is applied to at least a part of the dust collecting unit 13 by a user or the like. As a result, the state of the surface of the inner wall of the dust collection chamber changes from the state shown in FIG. 15 to the state shown in FIG.
  • the contact area between the surface of the inner wall of the dust collection chamber and the dust is reduced. Thereby, the frictional force and electrostatic force acting between the surface of the inner wall of the dust collecting chamber and the dust are reduced.
  • the dust collection chamber when the dust collection chamber is in a discarded state, the dust attached to the surface of the dust collection chamber is separated from the surface of the dust collection chamber.
  • the user can easily discard the dust collected in the dust collection chamber by changing the dust collection chamber from the collected state to the discarded state.
  • the user when the user discards the dust collected in the dust collecting chamber, for example, the user does not have to perform cleaning with a brush and wiping with a cloth.
  • the surface of the inner wall of the dust collecting chamber is in the state shown in FIG. 15 when the dust collecting chamber is in the collecting state.
  • the surface of the inner wall of the dust collecting chamber is in the state shown in FIG. 16 when the dust collecting chamber is discarded.
  • the surface of the inner wall of the dust collecting chamber is different from that shown in FIG. 15 in the property against dust in the state shown in FIG.
  • the dust collection chamber returns from the discarded state to the collected state again. After returning to the collection state, no force from the user is applied to the dust collection unit 13. That is, when the dust collection chamber returns to the collection state again, the surface state of the inner wall of the dust collection chamber returns to the state shown in FIG. Thus, the state of the surface of the inner wall of the dust chamber changes reversibly when the inner wall of the dust chamber is formed by the composite material 80.
  • the user may tap the dust collecting unit case 26 when the dust in the dust collecting unit case 26 is discarded after removing the dust collecting unit case 26 from the inflow unit case 25, for example. That is, the user may apply a force to the dust collection unit 13 not only when the dust collection chamber is disposed of but also when the dust is disposed. Further, for example, when the user discards the dust in the dust collecting unit case 26, the user may grasp the dust collecting unit case 26 to deform it. For example, the user may continue to deform the dust collecting unit case 26 when discarding the dust in the dust collecting unit case 26. In each of the above examples, the user can dispose of dust more easily.
  • the dust collection unit 13 may be configured such that the inner wall of the dust collection chamber does not deform more than a certain amount when the dust collection chamber is in a collecting state.
  • the dust collection unit 13 may have a member that regulates deformation of the inner wall of the dust collection chamber that is in the collection state.
  • the deformation of the dust collecting unit case 26 may be regulated by the inflow unit case 25.
  • each member is mentioned, but these do not mean the complete shape literally.
  • the circular member may not be a complete circular member.
  • the cylindrical member may not be a complete cylindrical member.
  • the surface of the cylindrical member may include irregularities for connection with other members.
  • a part of the surface of each member may be formed flat for connection with other members.
  • the dust collection unit 13 which is an example of the cyclone separator and the vacuum cleaner 1 including the dust collection unit 13 are not limited to the above-described embodiments, and various modifications are possible without departing from the spirit of the present invention. is there. Below, some modified examples are shown.
  • the vacuum cleaner 1 is not limited to a vertical type.
  • the vacuum cleaner 1 may have a wheel on the main body portion.
  • the vacuum cleaner 1 may be a canister type.
  • the canister-type vacuum cleaner 1 may have a mechanism for vibrating the dust collector case 26 by winding a power cord. This mechanism may change the surface shape of the inner wall of the dust collector case 26 by vibrating the dust collector case 26.
  • the canister-type vacuum cleaner 1 may have a mechanism for separating dust from the dust collector case 26 using winding of the power cord.
  • the material forming the inner wall of the dust collection chamber is not limited to the composite material 80 shown in the above embodiment.
  • the material forming the inner wall of the dust collection chamber may be a material whose electrical characteristics change due to an external force, such as a piezoelectric element and a conductive polymer.
  • the material forming the inner wall of the dust collection chamber may be a material that is neutralized when the dust collection chamber is discarded.
  • the electrostatic force acting between the surface of the dust collection chamber and the dust when the dust collection chamber is in a discarded state is reduced, so that the same effect as in the above embodiment can be obtained.
  • the electrostatic force acting between the surface of the dust collection chamber and the dust is increased, so that the same effect as the above embodiment can be obtained.
  • the material forming the inner wall of the dust collection chamber may be, for example, a resin material impregnated with a hydrophilic drug.
  • the inner wall of the dust collection chamber may be configured such that a hydrophilic drug oozes out by receiving an external force.
  • the surface of the inner wall of the dust collection chamber is covered with a hydrophilic chemical.
  • the user can wash
  • the user can return the surface of the inner wall of a dust collection chamber to the original state by blowing the surface of the inner wall of the dust collection chamber after washing with a cloth or the like.
  • the composite material 80 that forms the inner wall of the dust collection chamber may have a light-transmitting property. That is, the fiber material 81, the soft material 82, and the resin material 83 may have translucency. In this case, the user can easily confirm the amount of dust accumulated in the zero-order dust collection chamber 30 and the primary dust collection chamber 31 without removing and disassembling the dust collection unit 13. Since the composite material 80 that forms the inner wall of the dust collection chamber has translucency, the dust collection unit 13 that is more convenient for the user and the vacuum cleaner 1 including the dust collection unit 13 can be obtained.
  • the number and arrangement of the swirl chamber 29, the zero-order dust collection chamber 30, the primary dust collection chamber 31, the inflow pipe 36, and the zero-order opening 48 are not limited to those described in the above embodiment.
  • the specifications of each member constituting the dust collection unit 13 are appropriately set depending on, for example, the speed of the airflow in the swirl chamber 29, the size, mass, dust collection performance, maintainability, and output of the electric blower 10 in the dust collection unit 13. Is done.
  • the dust collection chamber included in the dust collection unit 13 may include only one of the zero-order dust collection chamber 30 and the primary dust collection chamber 31.
  • the dust collection chamber may store the waste ⁇ and the waste ⁇ in the same space.
  • FIG. 17 shows one of the modifications of the first embodiment.
  • FIG. 17 corresponds to FIG.
  • the dust collection unit 13 may include a release button 91.
  • the release button 91 is provided on the outer surface of the outer wall 47 of the dust collecting unit case 26.
  • the user can remove the dust collecting part case 26 by performing a release operation on the lock mechanism that fixes the inflow part case 25 and the dust collecting part case 26.
  • This locking mechanism is formed, for example, on the upper part of the outer wall 47 of the dust collecting unit case 26.
  • the release button 91 is for releasing the lock mechanism of the outer wall portion 47 while deforming the outer wall portion 47. The user can release the lock mechanism of the outer wall portion 47 while deforming the outer wall portion 47 by pressing the release button 91 toward the center side of the dust collecting portion case 26.
  • the user can greatly deform the dust collecting unit case 26 by operating the release button 91 when putting the dust collecting chamber into a discarded state.
  • dust such as dust ⁇ attached to the inner surface of the dust collecting unit case 26 is easily separated from the inner surface of the dust collecting unit case 26.
  • the release button 91 in this modification is an example of a deformation means that reversibly deforms the inner wall of the dust collection chamber.
  • the dust collection unit 13 may include a latch-type or trigger-type mechanism as another example of deformation means for reversibly deforming the inner wall of the dust collection chamber. Further, the dust collection unit 13 may further include, for example, a mechanism that holds the release button 91 in a pressed state. That is, the dust collection unit 13 may include a mechanism that holds the inner wall of the dust collection chamber while being deformed.
  • the dust collection unit 13 may include a mechanism for generating vibration as another example of the deformation means for reversibly deforming the inner wall of the dust collection chamber.
  • This mechanism for generating vibration is provided in the filter case 61, for example.
  • the mechanism that generates vibrations vibrates the entire dust collection unit 13 or the dust collection unit case 26, for example. Thereby, the inner wall of the dust collecting chamber vibrates, that is, deforms.
  • the dust collection unit 13 may be configured such that the state of the surface of the inner wall of the dust collection chamber changes due to vibration.
  • the cyclone separation device according to the present invention is not limited to the dust collection unit 13 and can be used other than the vacuum cleaner 1.
  • the cyclone separation apparatus according to the present invention can be applied to an apparatus for separating powder and an apparatus for separating refrigerant.
  • FIG. 19 are cross-sectional views showing the dust collection unit 13 of the second embodiment. 18 and 19 correspond to FIG. 8 in the first embodiment. With reference to FIGS. 18 and 19, the second embodiment will be described with a focus on differences from the first embodiment. Parts that are the same as or equivalent to those in the first embodiment are given the same reference numerals, and descriptions thereof are simplified or omitted.
  • the dust collection unit 13 of the present embodiment includes a dust collection unit case 26 as in the first embodiment.
  • the dust collector case 26 includes a bottom 46 and an outer wall 47.
  • the overall shape of the bottom 46 is circular.
  • the outer wall portion 47 has a cylindrical shape.
  • the outer wall 47 may not be cylindrical.
  • the outer wall portion 47 may be, for example, a rectangular cylinder.
  • the overall shape of the bottom 46 may be, for example, a polygonal shape.
  • the bottom 46 and the outer wall 47 are formed as separate bodies.
  • the bottom 46 and the outer wall 47 are connected via a hinge 104 as shown in FIGS.
  • the bottom part 46 is rotatable with respect to the outer wall part 47 about the hinge 104 as an axis.
  • the bottom 46 opens and closes by rotating.
  • FIG. 18 shows a state where the bottom 46 is closed.
  • FIG. 19 shows a state where the bottom 46 is open.
  • the bottom portion 46 is provided with an engaging portion 102.
  • An engaging portion 103 is provided at the lower portion of the outer wall portion 47.
  • the engaging portion 102 and the engaging portion 103 are formed so as to mesh with each other.
  • a release button 101 is provided on the outer surface of the outer wall portion 47.
  • the release button 101 is a member similar to the release button 91 in the first embodiment, and is an example of a deformation unit.
  • the user can deform the outer wall portion 47 by pressing the release button 101.
  • the engaging portion 103 provided on the outer wall portion 47 is detached from the engaging portion 102.
  • the bottom 46 rotates about the hinge 104 as an axis. That is, the bottom 46 opens as shown in FIG.
  • the user can greatly deform the outer wall 47 while opening the zero-order dust collection chamber 30 and the primary dust collection chamber 31. For this reason, the user can discard dust more easily.
  • the dust collection unit 13 of the present embodiment may be configured such that a place other than the bottom 46 opens and closes. For example, a part of the outer wall portion 47 may be opened and closed.
  • the mechanism for opening the zero-order dust collection chamber 30 and the primary dust collection chamber 31 is not limited to the release button 101.
  • the mechanism for opening the zero-order dust collection chamber 30 and the primary dust collection chamber 31 may be, for example, a mechanism that is pushed from the upper portion of the dust collection portion case 26 toward the lower portion of the dust collection portion case 26.
  • the cyclone separator according to the present invention and the electric vacuum cleaner provided with the cyclone separator can be used, for example, for indoor cleaning.

Abstract

This cyclone separation apparatus includes: a whirl chamber (29) in which dust-containing air is caused to whirl along a side wall therein to separate dust from the dust-containing air; and a dust collecting chamber which is in communication with the inside of the whirl chamber (29) and can be placed in a collecting state for collecting the dust separated in the whirl chamber and a disposal state for disposal of the collected dust. An inner wall surface of the dust collecting chamber is in a first state when the dust collecting chamber is in the collecting state and is in a second state when the dust collecting chamber is in the disposal state. The inner wall surface of the dust collecting chamber has different properties with respect to the dust in the first state and in the second state.

Description

サイクロン分離装置および電気掃除機Cyclone separation device and vacuum cleaner
 この発明は、サイクロン分離装置および電気掃除機に関する。 This invention relates to a cyclone separator and a vacuum cleaner.
 特許文献1に、サイクロン分離装置を備えた電気掃除機が記載されている。サイクロン分離装置は、塵埃を含む空気を旋回させて空気と塵埃とを分離する旋回室と、旋回室で分離された塵埃を溜める集塵室と、を備えている。 Patent Document 1 describes a vacuum cleaner equipped with a cyclone separator. The cyclone separation device includes a swirl chamber that swirls air containing dust to separate the air and dust, and a dust collection chamber that stores dust separated in the swirl chamber.
日本特開2015-150145号公報Japanese Unexamined Patent Publication No. 2015-150145
 サイクロン分離装置において、集塵室の内部には、塵埃と共に少なからず空気が流れ込む。このため、集塵室の内部には気流が発生する。この気流により、集塵室から旋回室に塵埃が戻ることがある。旋回室へ塵埃が戻ることを防止するためには、集塵室から塵埃がより離れにくい方がよい。 In the cyclone separator, not only air but also air flows into the dust collection chamber. For this reason, an air current is generated inside the dust collecting chamber. This air flow may cause dust to return from the dust collection chamber to the swirl chamber. In order to prevent the dust from returning to the swirl chamber, it is better that the dust is less likely to be separated from the dust collection chamber.
 一方で、集塵室が捕集した塵埃を外部に廃棄する際には、集塵室から塵埃がより離れやすい方がよい。このように、塵埃を捕集する際と塵埃を廃棄する際とでは、集塵室に求められる特性が異なる。従来のサイクロン分離装置では、塵埃を捕集する性能と捕集した塵埃を廃棄する性能とを両立することができなかった。 On the other hand, when the dust collected by the dust collection chamber is discarded to the outside, it is better that the dust is more easily separated from the dust collection chamber. Thus, the characteristics required for the dust collection chamber are different between when dust is collected and when dust is discarded. Conventional cyclone separators cannot achieve both the performance of collecting dust and the performance of discarding collected dust.
 本発明は、上記のような課題を解決するためになされたものである。本発明の目的は、塵埃を捕集する性能と塵埃を廃棄する性能とを両立したサイクロン分離装置およびこのサイクロン分離装置を備えた電気掃除機を提供することである。 The present invention has been made to solve the above-described problems. An object of the present invention is to provide a cyclone separator that achieves both the ability to collect dust and the ability to discard dust, and a vacuum cleaner that includes the cyclone separator.
 本発明に係るサイクロン分離装置は、内部において含塵空気を側壁に沿って旋回させて、含塵空気から塵埃を分離する旋回室と、旋回室の内部に通じ、旋回室で分離された塵埃を内部に捕集するための捕集状態と捕集した塵埃を廃棄するための廃棄状態とになりえる集塵室と、を備える。集塵室の内壁の表面は、集塵室が捕集状態である場合には第1状態であり、集塵室が廃棄状態になると第2状態になる。集塵室の内壁の表面は、上記の第1状態と第2状態とで塵埃に対する性質が異なる。 The cyclone separation device according to the present invention is configured to swirl dust-containing air along the side wall in the interior to separate the dust from the dust-containing air, and to connect the dust separated in the swirl chamber through the swirl chamber. A dust collection chamber that can be in a collection state for collecting inside and a disposal state for discarding the collected dust. The surface of the inner wall of the dust collecting chamber is in the first state when the dust collecting chamber is in the collecting state, and is in the second state when the dust collecting chamber is in the discarding state. The surface of the inner wall of the dust collection chamber has different properties with respect to dust in the first state and the second state.
 本発明に係る電気掃除機は、上記のサイクロン分離装置と、上記のサイクロン分離装置が備える旋回室の内部に気流を発生させる送風機と、を備える。 A vacuum cleaner according to the present invention includes the above-described cyclone separation device and a blower that generates an airflow in a swirl chamber included in the cyclone separation device.
 本発明に係るサイクロン分離装置およびこのサイクロン分離装置を備えた電気掃除機であれば、塵埃を捕集する性能と塵埃を廃棄する性能とを両立することができる。 The cyclone separator according to the present invention and the electric vacuum cleaner provided with the cyclone separator can achieve both the performance of collecting dust and the performance of discarding dust.
実施の形態1の電気掃除機を示す斜視図である。It is a perspective view which shows the electric vacuum cleaner of Embodiment 1. FIG. 実施の形態1の電気掃除機から集塵ユニットを取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the dust collection unit from the electric vacuum cleaner of Embodiment 1. FIG. 実施の形態1の電気掃除機から集塵ユニットを取り外した状態を示す背面図である。It is a rear view which shows the state which removed the dust collection unit from the electric vacuum cleaner of Embodiment 1. 図3のA-A断面を示す図である。FIG. 4 is a view showing an AA cross section of FIG. 3. 実施の形態1の集塵ユニットを示す斜視図である。2 is a perspective view showing a dust collection unit according to Embodiment 1. FIG. 実施の形態1の集塵ユニットを示す正面図である。FIG. 3 is a front view showing the dust collection unit of the first embodiment. 実施の形態1の集塵ユニットの分解図である。2 is an exploded view of the dust collection unit according to Embodiment 1. FIG. 図6のB-B断面を示す図である。FIG. 7 is a view showing a BB cross section of FIG. 6. 図8のC-C断面を示す図である。It is a figure which shows CC cross section of FIG. 図8のD-D断面を示す図である。It is a figure which shows the DD cross section of FIG. 実施の形態1の電気掃除機を図3のA-A断面と同じ断面で切断した図である。FIG. 4 is a view of the electric vacuum cleaner according to Embodiment 1 cut along the same cross section as the AA cross section of FIG. 3. 実施の形態1の集塵ユニットを形成する複合材を示すイメージ図である。3 is an image diagram showing a composite material forming the dust collection unit of Embodiment 1. FIG. 実施の形態1の繊維材の構造の一例を示すイメージ図である。3 is an image diagram illustrating an example of a structure of a fiber material according to Embodiment 1. FIG. 実施の形態1の塵埃の溜まり方を示す図である。FIG. 3 is a diagram illustrating how dust accumulates in the first embodiment. 実施の形態1の捕集状態における集塵室の内壁の表面と塵埃との関係を示す図である。It is a figure which shows the relationship between the surface of the inner wall of the dust collection chamber in the collection state of Embodiment 1, and dust. 実施の形態1の集塵室が廃棄状態になるときの当該集塵室の内壁の表面と塵埃との関係を示す図である。It is a figure which shows the relationship between the surface of the inner wall of the said dust collection chamber when the dust collection chamber of Embodiment 1 becomes a disposal state, and dust. 実施の形態1の変形例の1つを示すものである。One of the modifications of Embodiment 1 is shown. 実施の形態2の集塵ユニットを示す断面図である。6 is a cross-sectional view showing a dust collection unit according to Embodiment 2. FIG. 実施の形態2の集塵ユニットを示す断面図である。6 is a cross-sectional view showing a dust collection unit according to Embodiment 2. FIG.
 以下、添付の図面を参照して、実施の形態について説明する。各図における同一の符号は、同一の部分または相当する部分を示す。また、本開示では、重複する説明については適宜に簡略化または省略する。なお、本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得るものである。 Hereinafter, embodiments will be described with reference to the accompanying drawings. The same reference numerals in the drawings indicate the same or corresponding parts. Also, in the present disclosure, overlapping descriptions will be simplified or omitted as appropriate. Note that the present disclosure may include all combinations of configurations that can be combined among the configurations described in the following embodiments.
実施の形態1.
 図1は、実施の形態1の電気掃除機1を示す斜視図である。図1は、コードレスタイプの縦型の電気掃除機1を一例として示す。コードレスタイプの電気掃除機1は、充電池を備える。充電池は、図示しない充電台を介して充電される。充電台は、電源ケーブルによって外部の電源に接続される。充電台に電気掃除機1が載せられると、電気掃除機1の充電池が充電台に電気的に接続される。これにより、充電池が充電される。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a vacuum cleaner 1 according to the first embodiment. FIG. 1 shows a cordless vertical electric vacuum cleaner 1 as an example. The cordless type vacuum cleaner 1 includes a rechargeable battery. The rechargeable battery is charged via a charging stand (not shown). The charging stand is connected to an external power source by a power cable. When the vacuum cleaner 1 is placed on the charging stand, the rechargeable battery of the vacuum cleaner 1 is electrically connected to the charging stand. Thereby, a rechargeable battery is charged.
 なお、電気掃除機1はコードレスタイプのものに限られない。電気掃除機1は、外部の電源に接続するための電源コードを備えても良い。 The vacuum cleaner 1 is not limited to the cordless type. The vacuum cleaner 1 may include a power cord for connecting to an external power source.
 電気掃除機1は、例えば、吸込口体2、吸引パイプ3および掃除機本体6を備える。吸込口体2の下面には、外部と通じる開口が形成される。また、吸込口体2には、円筒形状の接続部が設けられる。接続部は、吸込口体2の長手方向の中央部に設けられる。吸込口体2の底面に形成された開口と上記の接続部とは、吸込口体2の内部を介して通じている。 The vacuum cleaner 1 includes, for example, a suction port body 2, a suction pipe 3, and a cleaner body 6. An opening communicating with the outside is formed on the lower surface of the suction port body 2. Further, the suction port body 2 is provided with a cylindrical connection portion. The connecting portion is provided at the central portion of the suction port body 2 in the longitudinal direction. The opening formed on the bottom surface of the suction port body 2 communicates with the connecting portion through the inside of the suction port body 2.
 吸引パイプ3は、例えば、直線状に伸びる円筒形状の部材である。吸引パイプ3の一方の端部は、吸込口体2に設けられた接続部に接続される。吸込口体2は、吸引パイプ3に対し、着脱可能である。吸引パイプ3の他方の端部は、掃除機本体6に接続される。吸引パイプ3は、掃除機本体6に対し、着脱可能である。 The suction pipe 3 is, for example, a cylindrical member that extends linearly. One end portion of the suction pipe 3 is connected to a connection portion provided in the suction port body 2. The suction port body 2 can be attached to and detached from the suction pipe 3. The other end of the suction pipe 3 is connected to the cleaner body 6. The suction pipe 3 can be attached to and detached from the cleaner body 6.
 吸込口体2および吸引パイプ3は、外部から掃除機本体6に塵埃を含む空気を流入させるための風路を形成する。なお、本開示では、ごみ、塵、埃、毛髪、繊維等のように、電気掃除機1の清掃対象となるものを総称して、「塵埃」と称する。また、本開示では、塵埃を含む空気を、「含塵空気」と称する。 The suction port body 2 and the suction pipe 3 form an air passage for allowing air containing dust to flow into the cleaner body 6 from the outside. In the present disclosure, items to be cleaned by the electric vacuum cleaner 1 such as dust, dust, dust, hair, and fibers are collectively referred to as “dust”. In the present disclosure, air containing dust is referred to as “dusty air”.
 掃除機本体6は、含塵空気から塵埃を分離する機能を有する。また、掃除機本体6は、分離した事案を捕集する機能を有する。掃除機本体6は、例えば、本体ユニット12と集塵ユニット13とを備える。集塵ユニット13は、本体ユニット12に着脱可能である。集塵ユニット13は、含塵空気から塵埃を分離して、当該塵埃を捕集する装置である。 The vacuum cleaner body 6 has a function of separating dust from dust-containing air. Moreover, the cleaner body 6 has a function of collecting separated cases. The cleaner body 6 includes, for example, a body unit 12 and a dust collection unit 13. The dust collection unit 13 is detachable from the main unit 12. The dust collection unit 13 is a device that separates dust from dust-containing air and collects the dust.
 図2は、実施の形態1の電気掃除機1から集塵ユニット13を取り外した状態を示す斜視図である。図3は、実施の形態1の電気掃除機1から集塵ユニット13を取り外した状態を示す背面図である。図4は、図3のA-A断面を示す図である。 FIG. 2 is a perspective view showing a state in which the dust collection unit 13 is removed from the electric vacuum cleaner 1 according to the first embodiment. FIG. 3 is a rear view illustrating a state in which the dust collection unit 13 is removed from the electric vacuum cleaner 1 according to the first embodiment. FIG. 4 is a view showing a cross section taken along line AA of FIG.
 本体ユニット12は、例えば、吸気風路形成部16、把持部7および収容体14を備える。また、本体ユニット12は、例えば、充電池、電動送風機10および排気風路形成部17を備える。充電池、電動送風機10および排気風路形成部17は、収容体14の内部に収容される。 The main body unit 12 includes, for example, an intake air passage forming unit 16, a gripping unit 7, and a container 14. The main unit 12 includes, for example, a rechargeable battery, an electric blower 10 and an exhaust air passage forming unit 17. The rechargeable battery, the electric blower 10 and the exhaust air passage forming unit 17 are housed inside the housing body 14.
 吸気風路形成部16の内部には、吸気風路19が形成される。吸気風路19は、含塵空気を吸引パイプ3から集塵ユニット13に導くための風路である。吸気風路形成部16は、例えば、直線状に伸びる円筒形状の部材である。上述したように、吸引パイプ3の一方の端部は、吸込口体2に設けられた接続部に接続される。吸引パイプ3の他方の端部は、吸気風路形成部16の一方の端部に接続される。掃除機本体6に適切に接続された吸引パイプ3は、吸気風路形成部16に対して一直線状に配置される。また、吸気風路形成部16の他方の端部には、側方を向く接続口20が形成される。接続口20は、吸気風路19と集塵ユニット13とを繋ぐ開口である。 An intake air passage 19 is formed inside the intake air passage formation portion 16. The intake air passage 19 is an air passage for guiding dust-containing air from the suction pipe 3 to the dust collection unit 13. The intake air path forming unit 16 is, for example, a cylindrical member that extends linearly. As described above, one end portion of the suction pipe 3 is connected to the connection portion provided in the suction port body 2. The other end of the suction pipe 3 is connected to one end of the intake air passage forming unit 16. The suction pipe 3 appropriately connected to the cleaner body 6 is arranged in a straight line with respect to the intake air passage forming portion 16. Further, a connection port 20 facing sideways is formed at the other end of the intake air passage forming portion 16. The connection port 20 is an opening that connects the intake air passage 19 and the dust collection unit 13.
 集塵ユニット13は、吸気風路19を介して流入した含塵空気から塵埃を分離する。集塵ユニット13は、含塵空気を旋回させ、遠心力によって塵埃を分離する。すなわち、集塵ユニット13は、サイクロン分離機能を有する。本実施の形態の集塵ユニット13は、サイクロン分離装置の一例である。集塵ユニット13は、分離した塵埃を捕集する。集塵ユニット13は、捕集した塵埃を一時的に溜めておく。集塵ユニット13のより具体的な構成および機能については後述する。 The dust collecting unit 13 separates dust from the dust-containing air that flows in through the intake air passage 19. The dust collection unit 13 swirls the dust-containing air and separates the dust by centrifugal force. That is, the dust collection unit 13 has a cyclone separation function. The dust collection unit 13 of the present embodiment is an example of a cyclone separation device. The dust collection unit 13 collects the separated dust. The dust collection unit 13 temporarily collects the collected dust. A more specific configuration and function of the dust collection unit 13 will be described later.
 把持部7は、電気掃除機1の使用者が持つ部分である。上述したように、吸気風路形成部16の一方の端部には、吸引パイプ3が接続される。一例として、把持部7は、吸気風路形成部16の他方の端部側に配置される。また、把持部7には、操作スイッチ8が設けられる。操作スイッチ8には、例えば、電気掃除機1の運転を制御するための複数のボタンが含まれる。 The grip part 7 is a part that the user of the vacuum cleaner 1 has. As described above, the suction pipe 3 is connected to one end of the intake air passage forming portion 16. As an example, the gripping portion 7 is disposed on the other end side of the intake air passage forming portion 16. The grip 7 is provided with an operation switch 8. The operation switch 8 includes, for example, a plurality of buttons for controlling the operation of the electric vacuum cleaner 1.
 収容体14は、本体ユニット12の要部の外郭を形成する。収容体14は、例えば、樹脂成型品である。一例として、収容体14は、集塵ユニット13の直上に配置される。 The container 14 forms the outline of the main part of the main unit 12. The container 14 is, for example, a resin molded product. As an example, the container 14 is disposed immediately above the dust collection unit 13.
 排気風路形成部17は、本体ユニット12内に、排気風路21を形成する。排気風路21は、集塵ユニット13によって塵埃が取り除かれた空気を排気口に導くための風路である。排気風路21には、集塵ユニット13から清浄な空気が流入する。なお、排気口の図示は省略する。また、排気風路形成部17は、収容体14の下面に接続口22を形成する。排気風路21と接続口22とは通じている。 The exhaust air passage forming unit 17 forms an exhaust air passage 21 in the main unit 12. The exhaust air passage 21 is an air passage for guiding the air from which dust has been removed by the dust collection unit 13 to the exhaust port. Clean air flows from the dust collection unit 13 into the exhaust air passage 21. In addition, illustration of an exhaust port is abbreviate | omitted. Further, the exhaust air passage forming portion 17 forms a connection port 22 on the lower surface of the container 14. The exhaust air passage 21 and the connection port 22 communicate with each other.
 電動送風機10は、電気掃除機1に形成された風路に気流を発生させる装置である。電気掃除機1に形成された風路には、例えば、外部から掃除機本体6に含塵空気を流入させるための風路、吸気風路19、集塵ユニット13に形成された風路および排気風路21等が含まれる。一例として、電動送風機10は、排気風路21内に配置される。 The electric blower 10 is a device that generates an air current in an air passage formed in the vacuum cleaner 1. The air passage formed in the vacuum cleaner 1 includes, for example, an air passage for allowing dust-containing air to flow into the cleaner body 6 from the outside, an intake air passage 19, an air passage formed in the dust collection unit 13, and an exhaust. An air path 21 and the like are included. As an example, the electric blower 10 is disposed in the exhaust air passage 21.
 電動送風機10は、操作スイッチ8に対する操作に応じて、予め設定された動作を行う。電動送風機10が動作することにより、電気掃除機1に形成された風路に気流が発生する。これにより、吸込口体2の下面に形成された開口から、床面上の塵埃が空気と一緒に吸い込まれる。すなわち、吸込口体2に含塵空気が吸い込まれる。吸込口体2に吸い込まれた含塵空気は、吸引パイプ3を通り、掃除機本体6の内部に取り込まれる。 The electric blower 10 performs a preset operation in response to an operation on the operation switch 8. When the electric blower 10 operates, an air flow is generated in the air passage formed in the electric vacuum cleaner 1. Thereby, the dust on the floor surface is sucked together with the air from the opening formed in the lower surface of the suction port body 2. That is, dust-containing air is sucked into the suction port body 2. The dust-containing air sucked into the suction port body 2 passes through the suction pipe 3 and is taken into the cleaner body 6.
 掃除機本体6の内部に取り込まれた含塵空気は、吸気風路19を通り、接続口20から集塵ユニット13に送られる。集塵ユニット13の内部で発生する気流についてのより詳細な説明は後述する。集塵ユニット13から排出された空気は、接続口22を通って排気風路21に送られる。集塵ユニット13から排出された空気は、排気風路21内で電動送風機10を通過する。電動送風機10を通過した空気は、排気風路21を更に進み、排気口から掃除機本体6の外部に放出される。電動送風機10を通過した空気は、例えば、排気口から掃除中の部屋に戻される。 The dust-containing air taken into the cleaner body 6 passes through the intake air passage 19 and is sent to the dust collecting unit 13 from the connection port 20. A more detailed description of the airflow generated inside the dust collection unit 13 will be described later. The air discharged from the dust collection unit 13 is sent to the exhaust air passage 21 through the connection port 22. The air discharged from the dust collection unit 13 passes through the electric blower 10 in the exhaust air passage 21. The air that has passed through the electric blower 10 further travels through the exhaust air passage 21 and is discharged from the exhaust port to the outside of the cleaner body 6. The air that has passed through the electric blower 10 is returned from the exhaust port to the room being cleaned, for example.
 次に、集塵ユニット13についてより詳細に説明する。図5は、実施の形態1の集塵ユニット13を示す斜視図である。図6は、実施の形態1の集塵ユニット13を示す正面図である。図7は、実施の形態1の集塵ユニット13の分解図である。集塵ユニット13に関する以下の説明においては、図6における紙面上の向きを基準にして、上下を特定する。 Next, the dust collection unit 13 will be described in more detail. FIG. 5 is a perspective view showing the dust collection unit 13 of the first embodiment. FIG. 6 is a front view showing the dust collection unit 13 of the first embodiment. FIG. 7 is an exploded view of the dust collection unit 13 of the first embodiment. In the following description regarding the dust collection unit 13, the upper and lower sides are specified with reference to the orientation on the paper surface in FIG.
 集塵ユニット13全体の概形は、円柱形状である。集塵ユニット13は、例えば、フィルタ部ケース61、流出部ケース24、流入部ケース25および集塵部ケース26を備える。フィルタ部ケース61、流出部ケース24、流入部ケース25および集塵部ケース26は、例えば、樹脂成型品である。 The general shape of the entire dust collection unit 13 is a cylindrical shape. The dust collection unit 13 includes, for example, a filter part case 61, an outflow part case 24, an inflow part case 25, and a dust collection part case 26. The filter part case 61, the outflow part case 24, the inflow part case 25, and the dust collecting part case 26 are, for example, resin molded products.
 フィルタ部ケース61、流出部ケース24、流入部ケース25および集塵部ケース26は、予め設定された操作により、図7に示す状態に分解することができる。また、フィルタ部ケース61、流出部ケース24、流入部ケース25および集塵部ケース26は、予め設定された操作により、図5に示す状態に組み立てることができる。 The filter part case 61, the outflow part case 24, the inflow part case 25, and the dust collecting part case 26 can be disassembled into the state shown in FIG. 7 by a preset operation. Moreover, the filter part case 61, the outflow part case 24, the inflow part case 25, and the dust collection part case 26 can be assembled in the state shown in FIG. 5 by preset operation.
 例えば、フィルタ部ケース61、流出部ケース24、流入部ケース25および集塵部ケース26を固定するロック機構に対して解除操作を行うことにより、図7に示す状態に分解できる。また、図5に示す状態から集塵部ケース26のみを取り外すこともできる。また、フィルタ部ケース61には、フィルタ62が収納される。なお、フィルタ部ケース61およびフィルタ62は、集塵ユニット13に備えられていなくても良い。また、フィルタ62は、集塵ユニット13以外の場所に設けられていても良い。 For example, by performing a release operation on the lock mechanism that fixes the filter case 61, the outflow portion case 24, the inflow portion case 25, and the dust collecting portion case 26, the state can be disassembled into the state shown in FIG. Further, only the dust collecting case 26 can be removed from the state shown in FIG. A filter 62 is housed in the filter unit case 61. The filter case 61 and the filter 62 may not be provided in the dust collection unit 13. The filter 62 may be provided in a place other than the dust collection unit 13.
 また、図8は図6のB-B断面を示す図である。図9は図8のC-C断面を示す図である。図10は図8のD-D断面を示す図である。 FIG. 8 is a view showing a BB cross section of FIG. FIG. 9 is a cross-sectional view taken along the line CC of FIG. FIG. 10 is a view showing a DD section of FIG.
 流入部ケース25は、例えば、円筒部33、円錐部34、隔壁部35、流入管36および外壁部38を備える。円筒部33は、中空の円筒形状である。円筒部33は、中心軸が上下方向を向くように配置される。円錐部34は、先端部が切り取られた中空の円錐形状である。円錐部34は、中心軸が上下方向を向くように配置される。例えば、円錐部34の中心軸と円筒部33の中心軸とは、一直線状に並ぶ。 The inflow portion case 25 includes, for example, a cylindrical portion 33, a conical portion 34, a partition wall portion 35, an inflow pipe 36, and an outer wall portion 38. The cylindrical portion 33 has a hollow cylindrical shape. The cylindrical portion 33 is arranged so that the central axis is directed in the vertical direction. The conical portion 34 has a hollow conical shape with a tip portion cut off. The conical portion 34 is arranged so that the central axis faces the up-down direction. For example, the central axis of the conical part 34 and the central axis of the cylindrical part 33 are aligned in a straight line.
 円錐部34の上端部は、円筒部33の下端部に接続される。円錐部34は、上端部から下方に向かうにしたがって径が小さくなる。円錐部34の下端部には、下方を向く開口が形成される。円錐部34の下端部に形成されたこの開口を、本実施の形態では、一次開口39とする。 The upper end portion of the conical portion 34 is connected to the lower end portion of the cylindrical portion 33. The diameter of the conical portion 34 decreases as it goes downward from the upper end portion. An opening facing downward is formed at the lower end of the conical portion 34. In the present embodiment, this opening formed at the lower end of the conical portion 34 is referred to as a primary opening 39.
 円筒部33の内側の空間と円錐部34の内側の空間とは、一続きの空間を形成する。本実施の形態では、この一続きの空間および当該空間を形成している部分を、旋回室29とする。すなわち、本実施の形態において、集塵ユニット13は、旋回室29を備えている。旋回室29は、内部において含塵空気を旋回させる。旋回室29の中心軸は、上下方向を向く。旋回室29の側壁は、旋回室29の中心軸に直交する断面形状が円形状である。旋回室29は、この側壁に沿って含塵空気を旋回させる。旋回室29は、含塵空気を旋回させることで、当該含塵空気から塵埃を分離する。 The space inside the cylindrical portion 33 and the space inside the conical portion 34 form a continuous space. In the present embodiment, the continuous space and the portion forming the space are referred to as a swirl chamber 29. That is, in the present embodiment, the dust collection unit 13 includes the swirl chamber 29. The swirl chamber 29 swirls dust-containing air inside. The central axis of the swirl chamber 29 faces in the vertical direction. The side wall of the swirl chamber 29 has a circular cross section perpendicular to the central axis of the swirl chamber 29. The swirl chamber 29 swirls the dust-containing air along this side wall. The swirl chamber 29 separates dust from the dust-containing air by swirling the dust-containing air.
 旋回室29の側壁には、0次開口48が形成される。0次開口48は、例えば、円筒部33の下端部から円錐部34の上端部にかけて形成される。0次開口48は、一次開口39より高い位置に形成される。すなわち、0次開口48は、一次開口39の上流側に形成される。また、0次開口48は、外壁部38より低い位置に形成される。 A zero-order opening 48 is formed in the side wall of the swirl chamber 29. For example, the zero-order opening 48 is formed from the lower end portion of the cylindrical portion 33 to the upper end portion of the conical portion 34. The zero-order opening 48 is formed at a position higher than the primary opening 39. That is, the zero-order opening 48 is formed on the upstream side of the primary opening 39. Further, the zero-order opening 48 is formed at a position lower than the outer wall portion 38.
 隔壁部35は、例えば、円筒形状である。隔壁部35の径は、円筒部33の径より小さい。円錐部34と隔壁部35とは、円錐部34が隔壁部35の内側の空間に上方から挿入されるように配置される。隔壁部35の上端部は、円錐部34の外周面に接続される。一例として、隔壁部35の中心軸は、円錐部34の中心軸と一致する。 The partition wall 35 has, for example, a cylindrical shape. The diameter of the partition wall portion 35 is smaller than the diameter of the cylindrical portion 33. The conical part 34 and the partition part 35 are arranged so that the conical part 34 is inserted into the space inside the partition part 35 from above. The upper end portion of the partition wall portion 35 is connected to the outer peripheral surface of the conical portion 34. As an example, the central axis of the partition wall 35 coincides with the central axis of the conical part 34.
 外壁部38は、例えば、円筒形状である。外壁部38の径は、円筒部33の径より大きい。外壁部38は、円筒部33の上端部の周囲を囲むように設けられる。また、外壁部38は、円筒部33の上端よりも上方に延びるように設けられる。外壁部38の中心軸と円筒部33の中心軸とは、一定の間隔を空けて平行に配置される。すなわち、外壁部38の中心軸は円筒部33の中心軸に一致しない。外壁部38と円筒部33との間には、外壁部38と円筒部33とを接続する部材が設けられる。外壁部38と円筒部33との間は、この部材によって完全に塞がれる。 The outer wall portion 38 has, for example, a cylindrical shape. The diameter of the outer wall portion 38 is larger than the diameter of the cylindrical portion 33. The outer wall portion 38 is provided so as to surround the periphery of the upper end portion of the cylindrical portion 33. The outer wall portion 38 is provided so as to extend upward from the upper end of the cylindrical portion 33. The central axis of the outer wall portion 38 and the central axis of the cylindrical portion 33 are arranged in parallel with a certain interval. That is, the central axis of the outer wall portion 38 does not coincide with the central axis of the cylindrical portion 33. A member that connects the outer wall portion 38 and the cylindrical portion 33 is provided between the outer wall portion 38 and the cylindrical portion 33. The space between the outer wall portion 38 and the cylindrical portion 33 is completely closed by this member.
 流入管36は、流入風路27を形成する。流入風路27は、集塵ユニット13に形成された風路である。流入風路27は、吸気風路形成部16からの含塵空気を旋回室29に導くための風路である。吸気風路19からの含塵空気は、流入風路27を通って旋回室29に流入する。 The inflow pipe 36 forms an inflow air path 27. The inflow air passage 27 is an air passage formed in the dust collection unit 13. The inflow air passage 27 is an air passage for guiding the dust-containing air from the intake air passage formation unit 16 to the swirl chamber 29. Dust-containing air from the intake air passage 19 flows into the swirl chamber 29 through the inflow air passage 27.
 流入管36は、例えば、四角筒形状である。流入管36の内側には、流入風路27が形成される。流入管36の一端部は、外壁部38に接続される。流入管36の一端は、外壁部38の外面で開口する。流入管36のこの一端は、ユニット流入口40を形成する。ユニット流入口40は、集塵ユニット13に含塵空気を取り込むための開口である。流入管36の他端部は、円筒部33に接続される。流入管36の他端は、円筒部33の内面で開口する。流入管36のこの他端は、流入口41を形成する。流入口41は、流入風路27を通過した含塵を旋回室29に取り込むための開口である。 The inflow pipe 36 has, for example, a rectangular tube shape. An inflow air passage 27 is formed inside the inflow pipe 36. One end portion of the inflow pipe 36 is connected to the outer wall portion 38. One end of the inflow pipe 36 opens at the outer surface of the outer wall portion 38. This one end of the inlet pipe 36 forms a unit inlet 40. The unit inlet 40 is an opening for taking dust-containing air into the dust collection unit 13. The other end portion of the inflow pipe 36 is connected to the cylindrical portion 33. The other end of the inflow pipe 36 opens at the inner surface of the cylindrical portion 33. This other end of the inflow pipe 36 forms an inflow port 41. The inflow port 41 is an opening for taking the dust-containing material that has passed through the inflow air passage 27 into the swirl chamber 29.
 流入管36は、円筒部33の上部に接続される。流入口41は、円筒部33の上部に形成される。流入口41は、例えば、旋回室29の側壁の最上部に形成される。0次開口48は、流入口41より低い位置に形成される。すなわち、0次開口48は、流入口41の下流側に形成される。流入管36は、例えば、一直線状の部材である。流入管36は、流入風路27から含塵空気が旋回室29に当該旋回室29の接線方向から流入するように、円筒部33に接続される。流入管36の軸は、例えば、円筒部33の中心軸に対して直角をなす。 The inflow pipe 36 is connected to the upper part of the cylindrical portion 33. The inflow port 41 is formed in the upper part of the cylindrical portion 33. The inflow port 41 is formed at the uppermost part of the side wall of the swirl chamber 29, for example. The zero-order opening 48 is formed at a position lower than the inflow port 41. That is, the zero-order opening 48 is formed on the downstream side of the inflow port 41. The inflow pipe 36 is, for example, a straight member. The inflow pipe 36 is connected to the cylindrical portion 33 so that the dust-containing air from the inflow air passage 27 flows into the swirl chamber 29 from the tangential direction of the swirl chamber 29. For example, the axis of the inflow pipe 36 is perpendicular to the central axis of the cylindrical portion 33.
 また、集塵部ケース26は、例えば、底部46および外壁部47を備える。底部46の全体形状は、円形状である。外壁部47は、例えば、円筒形状である。外壁部47の径は、円筒部33の径より大きい。外壁部47は、例えば、底部46の縁から直立するように設けられる。底部46および外壁部47により、上方が開口し且つ下方が閉じた筒状の部材が形成される。 Further, the dust collecting unit case 26 includes, for example, a bottom 46 and an outer wall 47. The overall shape of the bottom 46 is circular. The outer wall portion 47 has, for example, a cylindrical shape. The diameter of the outer wall portion 47 is larger than the diameter of the cylindrical portion 33. The outer wall portion 47 is provided so as to stand upright from the edge of the bottom portion 46, for example. The bottom 46 and the outer wall 47 form a cylindrical member that is open at the top and closed at the bottom.
 集塵部ケース26が流入部ケース25に対して適切に配置されると、外壁部47の内側に隔壁部35が配置される。隔壁部35の下端部は、底部46に接触する。隔壁部35の中心軸と外壁部47の中心軸とは、一定の間隔を空けて平行に配置される。隔壁部35の中心軸は外壁部47の中心軸に一致しない。外壁部47の上端部は、外壁部38の下端部に接触する。外壁部47の中心軸と外壁部38の中心軸とは、一直線状に配置される。集塵部ケース26が流入部ケース25に対して適切に配置されると、集塵部ケース26の内部に、隔壁部35によって区切られた2つの空間が旋回室29以外に形成される。 When the dust collecting part case 26 is appropriately disposed with respect to the inflow part case 25, the partition wall part 35 is disposed inside the outer wall part 47. The lower end portion of the partition wall portion 35 is in contact with the bottom portion 46. The central axis of the partition wall portion 35 and the central axis of the outer wall portion 47 are arranged in parallel with a predetermined interval. The central axis of the partition wall 35 does not coincide with the central axis of the outer wall 47. The upper end portion of the outer wall portion 47 is in contact with the lower end portion of the outer wall portion 38. The central axis of the outer wall portion 47 and the central axis of the outer wall portion 38 are arranged in a straight line. When the dust collection unit case 26 is appropriately disposed with respect to the inflow unit case 25, two spaces separated by the partition wall 35 are formed inside the dust collection unit case 26 except for the swirl chamber 29.
 また、本実施の形態の集塵ユニット13は、集塵室を備えている。集塵室とは、塵埃が溜められる空間および当該空間を形成する部材である。集塵室は、旋回室29で分離された塵埃を捕集する機能を有する。本実施の形態の集塵室には、0次集塵室30と一次集塵室31とが含まれる。0次集塵室30には、ごみαが溜められる。一次集塵室31には、ごみβが溜められる。ごみαは、例えば、繊維ごみおよび毛髪といった比較的嵩の大きな塵埃である。ごみβは、例えば、砂ごみおよび細かい繊維ごみといった比較的嵩の小さな塵埃である。 Further, the dust collection unit 13 of the present embodiment includes a dust collection chamber. The dust collection chamber is a space for storing dust and a member that forms the space. The dust collection chamber has a function of collecting the dust separated in the swirl chamber 29. The dust collection chamber of the present embodiment includes a zero-order dust collection chamber 30 and a primary dust collection chamber 31. Garbage α is stored in the zero-order dust collection chamber 30. In the primary dust collection chamber 31, garbage β is stored. The waste α is relatively bulky dust such as fiber waste and hair. The garbage [beta] is relatively small dust such as sand and fine fiber.
 隔壁部35の内側に形成された空間のうち、円錐部34の内側に形成された空間を除く空間が一次集塵室31である。一次集塵室31は、一次開口39を介して旋回室29に通じる。一次集塵室31は、円錐部34の下方を覆うように形成される。一次集塵室31は、円錐部34の下端部の周囲を取り囲むように形成される。 Among the spaces formed inside the partition wall 35, the space excluding the space formed inside the conical portion 34 is the primary dust collection chamber 31. The primary dust collection chamber 31 communicates with the swirl chamber 29 through the primary opening 39. The primary dust collection chamber 31 is formed so as to cover the lower portion of the conical portion 34. The primary dust collection chamber 31 is formed so as to surround the lower end portion of the conical portion 34.
 外壁部47の内側に形成された空間のうち、旋回室29および一次集塵室31を除く空間が0次集塵室30である。0次集塵室30は、外壁部47と隔壁部35との間、外壁部47と円筒部33との間、ならびに外壁部47と円錐部34との間に形成された、一続きの空間である。隔壁部35、円筒部33および円錐部34は、0次集塵室30の内壁を形成する。外壁部47は、0次集塵室30の外壁を形成する。 Of the spaces formed inside the outer wall 47, the space excluding the swirl chamber 29 and the primary dust collection chamber 31 is the zero-order dust collection chamber 30. The zero-order dust collection chamber 30 is a continuous space formed between the outer wall portion 47 and the partition wall portion 35, between the outer wall portion 47 and the cylindrical portion 33, and between the outer wall portion 47 and the conical portion 34. It is. The partition wall portion 35, the cylindrical portion 33, and the conical portion 34 form an inner wall of the zero-order dust collection chamber 30. The outer wall 47 forms the outer wall of the zero-order dust collection chamber 30.
 0次集塵室30の全体形状は、円筒形状である。0次集塵室30の上方部分は、円筒部33と外壁部38とを接続する部材によって塞がれる。0次集塵室30の下方部分は、底部46によって塞がれる。0次集塵室30は、旋回室29の大部分の周囲を取り囲む。また、0次集塵室30は、一次集塵室31の周囲を取り囲む。0次集塵室30は、0次開口48を介して旋回室29に通じる。0次開口48は、0次集塵室30の最上部に形成される。0次集塵室30は、0次開口48から下方に延びるように設けられる。なお、0次開口48は、円筒部33の周方向に沿った幅より円筒部33の中心軸方向に沿った幅の方が小さくなるように形成されることが好ましい。すなわち、0次開口48の形状は、横長形状であることが好ましい。 The overall shape of the zero-order dust collection chamber 30 is a cylindrical shape. The upper part of the zero-order dust collection chamber 30 is closed by a member that connects the cylindrical portion 33 and the outer wall portion 38. The lower part of the zero-order dust collection chamber 30 is closed by the bottom 46. The zero-order dust collection chamber 30 surrounds most of the swirl chamber 29. The zero-order dust collection chamber 30 surrounds the primary dust collection chamber 31. The zero-order dust collection chamber 30 communicates with the swirl chamber 29 through the zero-order opening 48. The zero-order opening 48 is formed at the top of the zero-order dust collection chamber 30. The zero-order dust collection chamber 30 is provided so as to extend downward from the zero-order opening 48. The zero-order opening 48 is preferably formed so that the width along the central axis direction of the cylindrical portion 33 is smaller than the width along the circumferential direction of the cylindrical portion 33. That is, the shape of the zero-order opening 48 is preferably a horizontally long shape.
 図10に示すように、円筒部33は、外壁部47に接触しない範囲で、外壁部47に対してずらして配置される。円筒部33の中心軸と外壁部47の中心軸とは同一直線上に配置されない。円筒部33の中心軸は、外壁部47の中心軸に対して一定の間隔を空けて平行に配置される。円筒部33と外壁部47との間隔が小さい部分を、狭隘部59とする。円筒部33と外壁部47との間隔は、円筒部33の外面と外壁部47の内面との距離に等しい。 As shown in FIG. 10, the cylindrical portion 33 is arranged so as to be shifted with respect to the outer wall portion 47 in a range where it does not contact the outer wall portion 47. The central axis of the cylindrical portion 33 and the central axis of the outer wall portion 47 are not arranged on the same straight line. The central axis of the cylindrical portion 33 is arranged in parallel to the central axis of the outer wall portion 47 with a certain interval. A portion having a small interval between the cylindrical portion 33 and the outer wall portion 47 is defined as a narrow portion 59. The distance between the cylindrical portion 33 and the outer wall portion 47 is equal to the distance between the outer surface of the cylindrical portion 33 and the inner surface of the outer wall portion 47.
 図10において、円筒部33と外壁部47との間隔は、狭隘部59から離れるにつれて徐々に大きくなる。円筒部33と外壁部47との間隔は、狭隘部59から最も離れた箇所において、最も大きい。流入管36は、例えば、円筒部33と外壁部47との間隔が最も大きい箇所の上方に配置される。 10, the distance between the cylindrical portion 33 and the outer wall portion 47 gradually increases as the distance from the narrow portion 59 increases. The distance between the cylindrical portion 33 and the outer wall portion 47 is the largest at the position farthest from the narrow portion 59. For example, the inflow pipe 36 is disposed above a portion where the distance between the cylindrical portion 33 and the outer wall portion 47 is the largest.
 図9に示す点Pは、流入風路27から旋回室29に流入した空気の進行方向が旋回室29の接線方向に一致する点を示す。円筒部33の軸方向に直交する断面において、円筒部33の中心軸を中心に、点Pから旋回室29で空気が旋回する方向に回転した角度をθ1とする。狭隘部59は、角度θ1が0°から180°である範囲に配置されることが好ましい。 A point P shown in FIG. 9 indicates a point where the traveling direction of the air flowing into the swirl chamber 29 from the inflow air passage 27 coincides with the tangential direction of the swirl chamber 29. In the cross section orthogonal to the axial direction of the cylindrical portion 33, an angle rotated about the central axis of the cylindrical portion 33 from the point P in the direction in which air swirls in the swirl chamber 29 is defined as θ1. The narrowed portion 59 is preferably arranged in a range where the angle θ1 is 0 ° to 180 °.
 また、円筒部33の軸方向に直交する断面において、円筒部33の中心軸を中心に、円筒部33と外壁部47との間隔が最も狭い箇所から旋回室29で空気が旋回する方向に回転した角度をθ2とする。0次開口48は、角度θ2が90°~270°である範囲に配置されることが好ましい。より好ましくは、0次開口48は、角度θ2が180°である位置に形成される。図10は、角度θ2が180°である位置に0次開口48が形成されている例を示す。図10に示す例では、0次開口48は、円筒部33と外壁部47との間隔が最も大きい箇所に配置される。 Further, in the cross section orthogonal to the axial direction of the cylindrical portion 33, the air rotates in the swirl chamber 29 around the central axis of the cylindrical portion 33 from the location where the distance between the cylindrical portion 33 and the outer wall portion 47 is the narrowest. This angle is defined as θ2. The zero-order opening 48 is preferably arranged in a range where the angle θ2 is 90 ° to 270 °. More preferably, the zero-order opening 48 is formed at a position where the angle θ2 is 180 °. FIG. 10 shows an example in which a zero-order opening 48 is formed at a position where the angle θ2 is 180 °. In the example shown in FIG. 10, the zero-order opening 48 is disposed at a place where the distance between the cylindrical portion 33 and the outer wall portion 47 is the largest.
 流出部ケース24は、例えば、蓋部49および流出部51を備える。蓋部49は、例えば、板状である。流出部ケース24が流入部ケース25に対して適切に配置されると、蓋部49は、円筒部33の上方を塞ぐ。本実施の形態において、旋回室29の上壁は、蓋部49によって形成される。 The outflow part case 24 includes a lid part 49 and an outflow part 51, for example. The lid portion 49 has a plate shape, for example. When the outflow portion case 24 is appropriately disposed with respect to the inflow portion case 25, the lid portion 49 closes the upper portion of the cylindrical portion 33. In the present embodiment, the upper wall of the swirl chamber 29 is formed by the lid portion 49.
 蓋部49と流入部ケース25の外壁部38とは、フィルタ部ケース61を収納するための空間を形成する。フィルタ部ケース61は、流出部ケース24を上方から覆うように、外壁部38の内側の空間に設けられる。フィルタ部ケース61は、流出部ケース24に上方から密着するように載せられる。フィルタ部ケース61の上面には、ユニット流出口58が形成される。ユニット流出口58は、集塵ユニット13から空気を流出させるための開口である。 The lid portion 49 and the outer wall portion 38 of the inflow portion case 25 form a space for housing the filter portion case 61. The filter part case 61 is provided in the space inside the outer wall part 38 so as to cover the outflow part case 24 from above. The filter part case 61 is placed in close contact with the outflow part case 24 from above. A unit outlet 58 is formed on the upper surface of the filter case 61. The unit outlet 58 is an opening through which air flows out from the dust collection unit 13.
 流出部51は、旋回室29内の空気を旋回室29の外に流出させるための部材である。流出部51は、蓋部49の中央部に設けられる。流出部51は、蓋部49から下方に突出する。流出部ケース24が流入部ケース25に対して適切に配置されると、流出部51は、旋回室29の上壁から旋回室29の内部に突出する。 The outflow part 51 is a member for allowing the air in the swirl chamber 29 to flow out of the swirl chamber 29. The outflow part 51 is provided in the central part of the lid part 49. The outflow portion 51 protrudes downward from the lid portion 49. When the outflow portion case 24 is appropriately disposed with respect to the inflow portion case 25, the outflow portion 51 protrudes from the upper wall of the swirl chamber 29 into the swirl chamber 29.
 流出部51の予め設定された位置より上方の部分は、円筒状である。流出部51の上部は、蓋部49の上面で開口する。流出部51の下方の部分は、下方に向かうにしたがって径が小さくなる中空の円錐状である。流出部51の下端は、例えば、0次開口48の下端より下方に配置される。流出部51の中心軸は、円筒部33の中心軸と一致する。 The portion above the preset position of the outflow portion 51 is cylindrical. The upper part of the outflow part 51 opens at the upper surface of the lid part 49. The lower part of the outflow part 51 has a hollow conical shape whose diameter decreases as it goes downward. For example, the lower end of the outflow portion 51 is disposed below the lower end of the zero-order opening 48. The central axis of the outflow portion 51 coincides with the central axis of the cylindrical portion 33.
 流出部51の内側に形成された空間は、流出風路32の一部を形成する。流出風路32は、旋回室29内の空気を集塵ユニット13の外に流出させるための風路である。流出風路32の上記の一部、旋回室29および一次集塵室31は、ほぼ同心状に配置される。 The space formed inside the outflow portion 51 forms a part of the outflow air passage 32. The outflow air path 32 is an air path for allowing the air in the swirl chamber 29 to flow out of the dust collection unit 13. The part of the outflow air passage 32, the swirl chamber 29, and the primary dust collection chamber 31 are arranged substantially concentrically.
 流出部51には、流出口54が形成される。流出口54は、旋回室29内の空気を旋回室29の外に流出させるための開口である。旋回室29内の空気は、流出口54を介して流出風路32に取り込まれる。本実施の形態において、流出口54は、多数の微細な孔によって形成される。例えば、これらの微細な孔の一部は、流入口41の下端より上方に形成される。微細な孔の一部は、0次開口48の下端より下方の位置に形成される。また、流出部51の円筒形状の部分のうち、流入口41が対向する部分には、上記の微細な孔は形成されない。 An outflow port 54 is formed in the outflow portion 51. The outlet 54 is an opening for allowing the air in the swirl chamber 29 to flow out of the swirl chamber 29. Air in the swirl chamber 29 is taken into the outflow air passage 32 via the outlet 54. In the present embodiment, the outlet 54 is formed by a large number of fine holes. For example, some of these fine holes are formed above the lower end of the inflow port 41. A part of the fine hole is formed at a position below the lower end of the zero-order opening 48. Further, in the cylindrical portion of the outflow portion 51, the fine hole is not formed in the portion where the inflow port 41 faces.
 また、図11は、実施の形態1の電気掃除機1を図3のA-A断面と同じ断面で切断した図である。図11において、集塵ユニット13は、本体ユニット12に取り付けられている。集塵ユニット13が本体ユニット12に適切に取り付けられると、フィルタ部ケース61の上面が収容体14の下面に密着する。ユニット流入口40は、本体ユニット12の接続口20に接続される。ユニット流出口58は、本体ユニット12の接続口22に接続される。 FIG. 11 is a view of the electric vacuum cleaner 1 according to Embodiment 1 cut along the same cross section as the AA cross section of FIG. In FIG. 11, the dust collection unit 13 is attached to the main unit 12. When the dust collection unit 13 is appropriately attached to the main unit 12, the upper surface of the filter case 61 is brought into close contact with the lower surface of the container 14. The unit inlet 40 is connected to the connection port 20 of the main unit 12. The unit outlet 58 is connected to the connection port 22 of the main unit 12.
 また、集塵ユニット13の少なくとも一部は、複合材80によって形成されている。複合材80は、複数種類の素材を含む材料である。本実施の形態では、0次集塵室30を形成する内壁及び一次集塵室31を形成する内壁の少なくとも一部が、この複合材80によって形成される。例えば、隔壁部35、円筒部33および円錐部34の少なくとも一部が、複合材80によって形成される。 Further, at least a part of the dust collection unit 13 is formed of the composite material 80. The composite material 80 is a material including a plurality of types of materials. In the present embodiment, at least a part of the inner wall forming the zero-order dust collection chamber 30 and the inner wall forming the primary dust collection chamber 31 is formed by the composite material 80. For example, at least a part of the partition wall portion 35, the cylindrical portion 33, and the conical portion 34 is formed by the composite material 80.
 図12は、実施の形態1の集塵ユニット13を形成する複合材80を示すイメージ図である。上述したように、複合材80は、複数種類の素材を含む。一例として、複合材80は、図12に示すように、繊維材81、軟質材82及び樹脂材83を含む。繊維材81には、例えば、シート状の織布が用いられる。なお、繊維材81は、FRP等に用いられるカーボンファイバーおよびガラスファイバー等であってもよい。軟質材82は、例えば、シリコンゴム等である。樹脂材は、例えば、ABS等である。 FIG. 12 is an image diagram showing the composite material 80 that forms the dust collection unit 13 of the first embodiment. As described above, the composite material 80 includes a plurality of types of materials. As an example, the composite material 80 includes a fiber material 81, a soft material 82, and a resin material 83, as shown in FIG. As the fiber material 81, for example, a sheet-like woven fabric is used. The fiber material 81 may be a carbon fiber, a glass fiber, or the like used for FRP or the like. The soft material 82 is, for example, silicon rubber. The resin material is, for example, ABS.
 複合材80の製法の一例について、簡単に説明する。まず、軟質材82の基材の表面に、繊維材81が載置される。次に、硬化前の液状の軟質材82を、繊維材81が載置された基材に含浸させ、硬化させる。これにより、軟質材82の表面の近傍に、繊維材81が埋め込まれる。また、繊維材81が埋め込まれた状態の軟質材82は、樹脂材83の上に固定される。これにより、図12に示すように、繊維材81、軟質材82及び樹脂材83が積層された状態となる。図12に示す例において、繊維材81は、軟質材82を挟んで樹脂材83の反対側に位置している。 An example of a method for manufacturing the composite material 80 will be briefly described. First, the fiber material 81 is placed on the surface of the base material of the soft material 82. Next, the liquid soft material 82 before curing is impregnated into the base material on which the fiber material 81 is placed and cured. Thereby, the fiber material 81 is embedded in the vicinity of the surface of the soft material 82. The soft material 82 in which the fiber material 81 is embedded is fixed on the resin material 83. Thereby, as shown in FIG. 12, the fiber material 81, the soft material 82, and the resin material 83 will be in the laminated | stacked state. In the example shown in FIG. 12, the fiber material 81 is located on the opposite side of the resin material 83 with the soft material 82 interposed therebetween.
 図12に示す例においては、複合材80の両面のうちの一方側に繊維材81が設けられている。複合材80の構成は、上記の例に限られない。例えば、複合材80の両面が繊維材81によって形成されてもよい。また、複合材80には、樹脂材83が含まれていなくてもよい。言い換えると、複合材80は、繊維材81と軟質材82とから形成されていてもよい。また、複合材80には、軟質材82が含まれていなくてもよい。言い換えると、複合材80は、樹脂材83と、当該樹脂材83の表面に配置された繊維材81とから形成されていてもよい。また、複合材80は、当該複合材80の中心部に位置する樹脂材83と、当該樹脂材83の両側を挟む軟質材82および繊維材81と、から形成されてもよい。 In the example shown in FIG. 12, a fiber material 81 is provided on one side of both surfaces of the composite material 80. The configuration of the composite material 80 is not limited to the above example. For example, both surfaces of the composite material 80 may be formed by the fiber material 81. Further, the composite material 80 may not include the resin material 83. In other words, the composite material 80 may be formed of the fiber material 81 and the soft material 82. Further, the composite material 80 may not include the soft material 82. In other words, the composite material 80 may be formed of the resin material 83 and the fiber material 81 disposed on the surface of the resin material 83. Further, the composite material 80 may be formed of a resin material 83 located at the center of the composite material 80 and a soft material 82 and a fiber material 81 that sandwich both sides of the resin material 83.
 図13は、実施の形態1の繊維材81の構造の一例を示すイメージ図である。上述したように、繊維材81には、例えば、シート状の織布が用いられる。図13は、繊維材81の構造の一例として、横糸85と縦糸86とが交互にくぐった状態で織られた布である平織布の構造を示している。繊維材81を構成する横糸85同士の間隔および縦糸86の間隔は、塵埃よりも小さくなるように設定される。横糸85同士の間隔および縦糸86の間隔は、例えば、数100[nm]から数100[μm]である。 FIG. 13 is an image diagram showing an example of the structure of the fiber material 81 of the first embodiment. As described above, for example, a sheet-like woven fabric is used for the fiber material 81. FIG. 13 shows a structure of a plain woven fabric that is a fabric woven in a state where weft yarns 85 and warp yarns 86 pass alternately as an example of the structure of the fiber material 81. The distance between the weft yarns 85 and the distance between the warp yarns 86 constituting the fiber material 81 are set to be smaller than the dust. The interval between the weft yarns 85 and the interval between the warp yarns 86 are, for example, several hundreds [nm] to several hundreds [μm].
 上述したように構成された複合材80は、外力を受けると表面形状が変わる材料である。このため、本実施の形態では、0次集塵室30を形成する内壁の表面の形状及び一次集塵室31を形成する内壁の表面の形状は、集塵ユニット13が外力を受けると変わる。 The composite material 80 configured as described above is a material whose surface shape changes when subjected to an external force. Therefore, in the present embodiment, the shape of the inner wall surface forming the zero-order dust collection chamber 30 and the shape of the inner wall surface forming the primary dust collection chamber 31 change when the dust collection unit 13 receives an external force.
 より具体的に述べると、複合材80は、圧縮することによりその表面形状が変化する。例えば、横糸85が圧縮すると、この横糸85の圧縮に伴って縦糸86が伸びる。これにより、繊維材81にしわが生じる。すなわち、複合材80の表面に凹凸が生じる。このようにして、複合材80は、外力を受けるとその表面形状が変わる。また、複合材80に加わっていた外力がなくなると、複合材80の表面形状はもとに戻る。本実施の形態の複合材80は、その表面形状が可逆的に変化する材料である。 More specifically, the surface shape of the composite material 80 changes when it is compressed. For example, when the weft yarn 85 is compressed, the warp yarn 86 is extended along with the compression of the weft yarn 85. Thereby, wrinkles occur in the fiber material 81. That is, unevenness is generated on the surface of the composite material 80. In this manner, the composite material 80 changes its surface shape when it receives an external force. Further, when the external force applied to the composite material 80 disappears, the surface shape of the composite material 80 returns to the original. The composite material 80 of the present embodiment is a material whose surface shape changes reversibly.
 本実施の形態において集塵ユニット13は、塵埃が付着する面に繊維材81が位置するように、複合材80によって形成される。言い換えると、集塵ユニット13は、集塵室の内壁の表面が繊維材81によって形成されるように構成されている。例えば、外壁部47の内面には繊維材81が設けられ、外壁部47の外面側は樹脂材83で形成される。また、例えば、円筒部33および円錐部34は、外面側と内面側との両側に繊維材81が設けられてもよい。このように、集塵ユニット13のうち塵埃が付着する可能性がある部分は、複合材80によって形成されることが好ましい。 In the present embodiment, the dust collection unit 13 is formed of the composite material 80 so that the fiber material 81 is located on the surface to which the dust adheres. In other words, the dust collection unit 13 is configured such that the surface of the inner wall of the dust collection chamber is formed by the fiber material 81. For example, the fiber material 81 is provided on the inner surface of the outer wall portion 47, and the outer surface side of the outer wall portion 47 is formed of the resin material 83. Further, for example, the cylindrical portion 33 and the conical portion 34 may be provided with the fiber material 81 on both sides of the outer surface side and the inner surface side. As described above, it is preferable that the portion of the dust collection unit 13 to which dust may adhere is formed by the composite material 80.
 次に、集塵ユニット13の機能について、より具体的に説明する。電動送風機10が動作を開始すると、上述したように、吸込口体2に含塵空気が吸い込まれる。吸込口体2に吸い込まれた含塵空気は、吸気風路19を通過して接続口20に達する。接続口20に達した含塵空気は、流入風路27に流入する。流入風路27に流入した含塵空気は、流入風路27を通過し、流入口41から旋回室29に流入する。流入風路27を通過した含塵空気は、円筒部33の内面、すなわち旋回室29の側壁に沿うように旋回室29に流入する。含塵空気の上記の経路は、図9および図11において、経路fとして実線の矢印で示される。 Next, the function of the dust collection unit 13 will be described more specifically. When the electric blower 10 starts operation, dust-containing air is sucked into the suction port body 2 as described above. The dust-containing air sucked into the suction port body 2 passes through the intake air passage 19 and reaches the connection port 20. The dust-containing air that has reached the connection port 20 flows into the inflow air passage 27. The dust-containing air that has flowed into the inflow air passage 27 passes through the inflow air passage 27 and flows into the swirl chamber 29 from the inflow port 41. The dust-containing air that has passed through the inflow air passage 27 flows into the swirl chamber 29 along the inner surface of the cylindrical portion 33, that is, along the side wall of the swirl chamber 29. The above-described path of the dust-containing air is indicated by a solid arrow as the path f in FIGS. 9 and 11.
 旋回室29に流入した含塵空気は、旋回室29を形成する側壁に沿って旋回する。本実施の形態において含塵空気は、旋回室29内で旋回気流を形成する。旋回室29内の旋回気流は、中心軸近傍の強制渦領域と外側の自由渦領域とを形成しながら、下向きに流れていく。 The dust-containing air that has flowed into the swirl chamber 29 swirls along the side wall that forms the swirl chamber 29. In the present embodiment, the dust-containing air forms a swirling airflow in the swirling chamber 29. The whirling airflow in the whirling chamber 29 flows downward while forming a forced vortex region near the central axis and an outer free vortex region.
 図14は、実施の形態1の塵埃の溜まり方を示す図である。図14は、図6のB-B断面に対応する。図14は、電気掃除機1による清掃時の、集塵ユニット13の内部の状態を示す。旋回室29内の旋回気流に含まれる塵埃には、遠心力が作用する。例えば、比較的嵩の大きなごみαは、遠心力によって円筒部33に押し付けられながら落下する。ごみαは、0次開口48の高さに達すると、当該0次開口48を通過する。また、ごみαと共に空気も0次開口48を通過する。 FIG. 14 is a diagram illustrating how dust accumulates in the first embodiment. FIG. 14 corresponds to the BB cross section of FIG. FIG. 14 shows the internal state of the dust collection unit 13 during cleaning by the electric vacuum cleaner 1. Centrifugal force acts on the dust contained in the swirling airflow in the swirling chamber 29. For example, the relatively bulky garbage α falls while being pressed against the cylindrical portion 33 by centrifugal force. When the dust α reaches the height of the zeroth-order opening 48, it passes through the zeroth-order opening 48. In addition, air also passes through the zero-order opening 48 along with the waste α.
 0次開口48を通過したごみαは、0次集塵室30に送られる。また、0次開口48を通過した空気は、旋回室29で空気が旋回する方向と同じ方向に旋回しながら0次集塵室30内を進む。すなわち、電動送風機10が動作を開始すると、0次集塵室30にも気流が発生する。0次開口48から0次集塵室30に進入したごみαは、旋回室29での空気の旋回方向と同じ方向に移動しながら落下する。 Garbage α that has passed through the zero-order opening 48 is sent to the zero-order dust collection chamber 30. The air that has passed through the zero-order opening 48 advances in the zero-order dust collection chamber 30 while swirling in the same direction as the air swirling in the swirl chamber 29. That is, when the electric blower 10 starts operating, air current is also generated in the zero-order dust collection chamber 30. The dust α that has entered the zero-order dust collection chamber 30 from the zero-order opening 48 falls while moving in the same direction as the air swirling direction in the swirl chamber 29.
 0次開口48から0次集塵室30に進入しなかった塵埃は、旋回室29内の気流に乗って旋回しながら下方に移動する。例えば、比較的嵩の小さなごみβは、一次開口39を通過する。一次開口39を通過したごみβは、一次集塵室31内に落下して捕集される。 Dust that has not entered the zero-order dust collection chamber 30 from the zero-order opening 48 moves downward while swirling on the airflow in the swirl chamber 29. For example, relatively bulky garbage β passes through the primary opening 39. Garbage β that has passed through the primary opening 39 falls into the primary dust collection chamber 31 and is collected.
 旋回室29内の旋回気流は、旋回室29の最下部に達すると進行方向を上向きに変える。進行方向を上向きに変えた旋回気流は、旋回室29の中心軸に沿って上昇する。この上昇気流を形成する空気からは、ごみαとごみβとを含む塵埃が除去されている。塵埃が除去された清浄な空気は、流出口54を通過して旋回室29から流出する。流出口54を通過した清浄な空気は、流出風路32を通過してユニット流出口58に達する。そして、清浄な空気は、ユニット流出口58および接続口22を通過して排気風路21に送られる。 When the swirl airflow in the swirl chamber 29 reaches the bottom of the swirl chamber 29, the traveling direction is changed upward. The swirling airflow whose traveling direction is changed upward is raised along the central axis of the swirling chamber 29. Dust containing dust α and dust β is removed from the air that forms this updraft. The clean air from which the dust has been removed flows out of the swirl chamber 29 through the outlet 54. The clean air that has passed through the outlet 54 passes through the outlet air passage 32 and reaches the unit outlet 58. Then, the clean air passes through the unit outlet 58 and the connection port 22 and is sent to the exhaust air passage 21.
 上記のようにして、本実施の形態の集塵室は、ごみαおよびごみβを含む塵埃を捕集する。電動送風機10が動作することにより、ごみαが0次集塵室30に溜まる。また、ごみβが一次集塵室31に溜まる。使用者は、集塵ユニット13を本体ユニット12から取り外し、集塵部ケース26を流入部ケース25から取り外すことによって、0次集塵室30および一次集塵室31に溜まった塵埃を廃棄することができる。 As described above, the dust collection chamber of the present embodiment collects dust including garbage α and garbage β. As the electric blower 10 operates, the dust α accumulates in the zero-order dust collection chamber 30. In addition, garbage β accumulates in the primary dust collection chamber 31. The user removes the dust collected in the zero-order dust collection chamber 30 and the primary dust collection chamber 31 by removing the dust collection unit 13 from the main unit 12 and removing the dust collection unit case 26 from the inflow unit case 25. Can do.
 上述したように、集塵室は、旋回室29によって分離された塵埃を捕集することができる。本開示では、集塵室が塵埃を捕集するための状態を、捕集状態とする。具体的には、集塵ユニット13が本体ユニット12に取り付けられているときの集塵室の状態が、捕集状態に該当する。集塵室は、捕集状態であるときに、塵埃を捕集することが可能である。 As described above, the dust collection chamber can collect the dust separated by the swirl chamber 29. In the present disclosure, a state in which the dust collection chamber collects dust is defined as a collection state. Specifically, the state of the dust collection chamber when the dust collection unit 13 is attached to the main unit 12 corresponds to the collection state. The dust collecting chamber can collect dust when it is in the collecting state.
 また、集塵室は、上述したように、捕集した塵埃を外部に廃棄することができる。本開示では、集塵室が塵埃を廃棄するための状態を、廃棄状態とする。具体的には、集塵ユニット13が本体ユニット12から取り外されているときの集塵室の状態が、廃棄状態に該当する。また、集塵部ケース26が流入部ケース25から取り外されているときの集塵室の状態も、廃棄状態に該当する。集塵室は、廃棄状態であるとき、塵埃を廃棄することが可能である。 Also, the dust collection chamber can discard the collected dust to the outside as described above. In the present disclosure, a state in which the dust collection chamber discards dust is referred to as a discard state. Specifically, the state of the dust collection chamber when the dust collection unit 13 is detached from the main body unit 12 corresponds to the disposal state. The state of the dust collection chamber when the dust collection unit case 26 is removed from the inflow unit case 25 also corresponds to the disposal state. When the dust collection chamber is in a discarding state, dust can be discarded.
 上記のように構成された集塵ユニット13において、集塵室は、捕集状態と廃棄状態とになりえる。言い換えると、集塵ユニット13は、集塵室が捕集状態と廃棄状態とになりえるように構成される。 In the dust collection unit 13 configured as described above, the dust collection chamber can be in a collected state or a discarded state. In other words, the dust collection unit 13 is configured such that the dust collection chamber can be in a collection state and a disposal state.
 集塵室が捕集状態から廃棄状態になる際には、集塵ユニット13の少なくとも一部に、使用者等によって力が加えられる。これにより、複合材80の表面形状が変化する。すなわち、集塵室の内壁の表面の状態が変わる。集塵室が廃棄状態になるときに、当該集塵室の内壁の表面状態は、捕集状態の集塵室の内壁の表面状態と異なる状態になる。 When the dust collecting chamber is changed from the collected state to the discarded state, force is applied to at least a part of the dust collecting unit 13 by a user or the like. Thereby, the surface shape of the composite material 80 changes. That is, the state of the surface of the inner wall of the dust collection chamber changes. When the dust collection chamber is discarded, the surface state of the inner wall of the dust collection chamber is different from the surface state of the inner wall of the dust collection chamber in the collection state.
 図15は、実施の形態1の捕集状態における集塵室の内壁の表面と塵埃との関係を示す図である。図15は、第1状態の一例を示している。また、図16は、実施の形態1の集塵室が廃棄状態になるときの当該集塵室の内壁の表面と塵埃との関係を示す図である。図16は、上記の第1状態と異なる第2状態の一例を示している。本実施の形態において集塵室が廃棄状態になるとき、集塵室の内壁の表面は、図15に示す状態から図16に示す状態に変化する。 FIG. 15 is a diagram showing the relationship between the surface of the inner wall of the dust collection chamber and dust in the collection state of the first embodiment. FIG. 15 shows an example of the first state. FIG. 16 is a diagram showing a relationship between the surface of the inner wall of the dust collection chamber and dust when the dust collection chamber of Embodiment 1 is in a discarded state. FIG. 16 shows an example of a second state different from the first state. In the present embodiment, when the dust collection chamber is discarded, the surface of the inner wall of the dust collection chamber changes from the state shown in FIG. 15 to the state shown in FIG.
 上述したように、旋回室29内の旋回気流に含まれる塵埃には、遠心力が作用する。また、電動送風機10が動作を開始すると、0次集塵室30にも気流が発生する。このため、旋回室29から0次集塵室30に送られたごみαにも、遠心力が作用する。0次集塵室30に送られたごみαは、0次集塵室30を形成する内壁の表面に沿って旋回する。0次集塵室30に送られたごみαは、例えば、外壁部47の内面に接触しながら旋回する。 As described above, centrifugal force acts on the dust contained in the swirling airflow in the swirling chamber 29. Further, when the electric blower 10 starts operating, an air flow is also generated in the zero-order dust collection chamber 30. For this reason, centrifugal force also acts on the garbage α sent from the swirl chamber 29 to the zero-order dust collection chamber 30. The waste α sent to the zero-order dust collection chamber 30 turns along the surface of the inner wall that forms the zero-order dust collection chamber 30. The waste α sent to the zero-order dust collection chamber 30 rotates while contacting the inner surface of the outer wall portion 47, for example.
 0次集塵室30内を旋回するごみαと0次集塵室30を形成する内壁の表面との間には、摩擦力および静電気力が働く。また、0次集塵室30内を旋回するごみαには、空気抵抗が働く。また、0次集塵室30内を旋回するごみα同士は、互いに衝突しうる。0次集塵室30内を旋回するごみαの速度は、摩擦力、静電気力、空気抵抗および塵埃同士の衝突を要因として低下する。これにより、0次集塵室30に送られたごみαの一部は、0次集塵室30を形成する内壁の表面に付着して留まる。0次集塵室30に送られたごみαの一部は、例えば、外壁部47の内面に付着して留まる。 A frictional force and an electrostatic force act between the dust α rotating inside the zero-order dust collection chamber 30 and the surface of the inner wall forming the zero-order dust collection chamber 30. In addition, air resistance acts on the dust α rotating inside the zero-order dust collection chamber 30. Further, the dusts α swirling in the zero-order dust collection chamber 30 can collide with each other. The speed of the dust α rotating in the zero-order dust collection chamber 30 is reduced due to frictional force, electrostatic force, air resistance, and collision of dust. Thereby, a part of the garbage α sent to the zero-order dust collection chamber 30 remains attached to the surface of the inner wall forming the zero-order dust collection chamber 30. Part of the garbage α sent to the zero-order dust collection chamber 30 stays attached to the inner surface of the outer wall portion 47, for example.
 0次集塵室30に送られたごみαと同様に、一次集塵室31に送られたごみβの一部も、一次集塵室31を形成する内壁の表面に付着して留まる。一次集塵室31に送られたごみβの一部は、例えば、隔壁部35の内面に付着して留まる。すなわち、本実施の形態において、0次集塵室30および一次集塵室31を含む集塵室に送られた塵埃の一部は、当該集塵室の内壁の表面に付着して留まる。また、電動送風機10の動作が停止した後も、集塵室に送られた塵埃の一部は、当該集塵室の内壁の表面に付着したままとなる。すなわち塵埃は、捕集状態の集塵室の内壁の表面にも廃棄状態の集塵室の内壁の表面にも付着しうる。 As with the waste α sent to the zero-order dust collection chamber 30, a part of the waste β sent to the primary dust collection chamber 31 also remains attached to the surface of the inner wall forming the primary dust collection chamber 31. A part of the garbage β sent to the primary dust collecting chamber 31 stays attached to the inner surface of the partition wall 35, for example. That is, in the present embodiment, part of the dust sent to the dust collection chamber including the zero-order dust collection chamber 30 and the primary dust collection chamber 31 remains attached to the surface of the inner wall of the dust collection chamber. In addition, even after the operation of the electric blower 10 is stopped, a part of the dust sent to the dust collection chamber remains attached to the surface of the inner wall of the dust collection chamber. That is, dust can adhere to the surface of the inner wall of the dust collection chamber in the collected state and the surface of the inner wall of the dust collection chamber in the discarded state.
 図15に示すように、捕集状態において、集塵室の内壁の表面を形成する繊維材81は、滑らかな状態である。一方で、集塵室が廃棄状態になるとき、図16に示すように、集塵室の内壁の表面を形成する繊維材81には凹凸が生じる。塵室の内壁の表面の塵埃に対する状態は、捕集状態と廃棄状態とで異なる。例えば、捕集状態においては、図15に示すように、集塵室の内壁の表面と塵埃との接触面積は比較的大きい。一方、集塵室が廃棄状態に変化すると、図16に示すように、集塵室の内壁の表面と塵埃との接触面積は比較的小さくなる。 As shown in FIG. 15, in the collection state, the fiber material 81 forming the surface of the inner wall of the dust collection chamber is in a smooth state. On the other hand, when the dust collection chamber is in a discarded state, as shown in FIG. 16, the fiber material 81 that forms the surface of the inner wall of the dust collection chamber is uneven. The state of the inner wall surface of the dust chamber with respect to dust is different between the collected state and the discarded state. For example, in the collection state, as shown in FIG. 15, the contact area between the surface of the inner wall of the dust collection chamber and the dust is relatively large. On the other hand, when the dust collection chamber is changed to a discarded state, as shown in FIG. 16, the contact area between the surface of the inner wall of the dust collection chamber and the dust becomes relatively small.
 集塵室の内壁の表面と塵埃との接触面積とが変化すると、集塵室の内壁の表面と塵埃との間に働く摩擦力および静電気力が変化する。集塵室の内壁の表面と塵埃との間に働く摩擦力および静電気力は、集塵室の内壁の表面と塵埃との接触面積が小さいほど、小さくなる。すなわち、集塵室の内壁の表面が塵埃を吸着する力は、集塵室の内壁の表面と塵埃との接触面積が小さいほど、小さくなる。言い換えると、集塵室の内壁の表面が塵埃を吸着する力は、集塵室の内壁の表面と塵埃との接触面積が大きいほど、大きくなる。 When the surface area of the inner wall of the dust collection chamber and the contact area of the dust change, the frictional force and electrostatic force acting between the surface of the inner wall of the dust collection chamber and the dust change. The frictional force and electrostatic force acting between the surface of the inner wall of the dust collecting chamber and the dust are smaller as the contact area between the surface of the inner wall of the dust collecting chamber and the dust is smaller. That is, the force with which the surface of the inner wall of the dust collection chamber adsorbs dust decreases as the contact area between the surface of the inner wall of the dust collection chamber and the dust decreases. In other words, the force with which the surface of the inner wall of the dust collection chamber adsorbs dust increases as the contact area between the surface of the inner wall of the dust collection chamber and the dust increases.
 本実施の形態では、図15および図16に示すように、捕集状態の集塵室の内壁の表面と塵埃との接触面積は、廃棄状態の集塵室の内壁の表面と塵埃との接触面積よりも大きい。すなわち、捕集状態の集塵室の内壁の表面と塵埃との間に働く摩擦力および静電気力は、廃棄状態の集塵室の内壁の表面と塵埃との間に働く摩擦力および静電気力よりも大きい。本実施の形態であれば、捕集状態の集塵室の内壁の表面に付着した塵埃は、より離れにくくなる。これにより、例えば、電動送風機10が動作している際、集塵室の内壁の表面に付着した塵埃が再び旋回することが防止される。本実施の形態であれば、集塵室内に捕集された塵埃が再び旋回室へ戻ってしまうことを防止できる。 In this embodiment, as shown in FIGS. 15 and 16, the contact area between the surface of the inner wall of the dust collection chamber in the collected state and the dust is the contact between the surface of the inner wall of the dust collection chamber in the discarded state and the dust. Greater than area. That is, the frictional force and electrostatic force acting between the surface of the inner wall of the dust collection chamber in the collected state and the dust are more than the frictional force and electrostatic force acting between the surface of the inner wall of the dust collection chamber in the collected state and the dust. Is also big. According to this embodiment, the dust attached to the surface of the inner wall of the dust collection chamber in the collected state is more difficult to separate. Thereby, for example, when the electric blower 10 is operating, the dust attached to the surface of the inner wall of the dust collecting chamber is prevented from turning again. According to the present embodiment, it is possible to prevent the dust collected in the dust collection chamber from returning to the swirl chamber.
 また、塵埃が再び旋回室へ戻ることが防止されることで、本体ユニット12へ塵埃が戻ることも同様に防止される。これにより、例えば、本体ユニット12内の風路が塵埃によって狭くなってしまうこと及び電動送風機10に塵埃が詰まること等が防止される。本実施の形態であれば、塵埃を分離する性能を維持可能な電気掃除機1が得られる。 Further, since the dust is prevented from returning to the swirl chamber again, the dust is also prevented from returning to the main unit 12. Thereby, for example, it is prevented that the air passage in the main unit 12 is narrowed by dust and the electric blower 10 is clogged with dust. If it is this Embodiment, the vacuum cleaner 1 which can maintain the performance which isolate | separates dust will be obtained.
 また、例えば、フィルタ62に塵埃が蓄積した場合、集塵ユニット13内を流れる空気の風量の低下が起きる。すなわち、フィルタ62に塵埃が蓄積した場合、電気掃除機1の吸引力の低下が起きる。本実施の形態であれば、集塵室の内壁の表面により多くの塵埃が付着するため、フィルタ62に蓄積する塵埃の量をより少なくすることができる。これにより、集塵ユニット13および電気掃除機1の性能が維持される。また、本実施の形態であれば、使用者によるフィルタ62のメンテナンスの頻度がより少なくなる。 For example, when dust accumulates in the filter 62, the air volume of the air flowing through the dust collection unit 13 is reduced. That is, when dust accumulates on the filter 62, the suction force of the vacuum cleaner 1 is reduced. In the present embodiment, a large amount of dust adheres to the surface of the inner wall of the dust collecting chamber, so that the amount of dust accumulated in the filter 62 can be further reduced. Thereby, the performance of the dust collection unit 13 and the vacuum cleaner 1 is maintained. In the present embodiment, the frequency of maintenance of the filter 62 by the user is further reduced.
 上述したように、集塵室が廃棄状態になる際には、集塵ユニット13の少なくとも一部に、使用者等によって力が加えられる。これにより、集塵室の内壁の表面の状態は、図15に示す状態から図16に示す状態に変化する。集塵室が廃棄状態になる際、集塵室の内壁の表面と塵埃との接触面積は小さくなる。これにより、集塵室の内壁の表面と塵埃との間に働く摩擦力および静電気力が小さくなる。本実施の形態であれば、集塵室が廃棄状態になる際に、集塵室の表面に付着した塵埃が当該集塵室の表面から離れる。使用者は、集塵室を捕集状態から廃棄状態に変化させることで、集塵室に捕集された塵埃を容易に廃棄することができる。本実施の形態であれば、使用者は、集塵室に捕集された塵埃を廃棄する際に、例えば、ブラシによる掃き掃除および布による拭き掃除をしなくてもよい。 As described above, when the dust collecting chamber is disposed of, a force is applied to at least a part of the dust collecting unit 13 by a user or the like. As a result, the state of the surface of the inner wall of the dust collection chamber changes from the state shown in FIG. 15 to the state shown in FIG. When the dust collection chamber is disposed of, the contact area between the surface of the inner wall of the dust collection chamber and the dust is reduced. Thereby, the frictional force and electrostatic force acting between the surface of the inner wall of the dust collecting chamber and the dust are reduced. In the present embodiment, when the dust collection chamber is in a discarded state, the dust attached to the surface of the dust collection chamber is separated from the surface of the dust collection chamber. The user can easily discard the dust collected in the dust collection chamber by changing the dust collection chamber from the collected state to the discarded state. In the present embodiment, when the user discards the dust collected in the dust collecting chamber, for example, the user does not have to perform cleaning with a brush and wiping with a cloth.
 上記の実施の形態において、集塵室の内壁の表面は、集塵室が捕集状態であるときに図15に示す状態になる。集塵室の内壁の表面は、集塵室が廃棄状態になるときに図16に示す状態になる。集塵室の内壁の表面は、塵埃に対する性質が、図15に示す状態と図16に示す状態とで異なる。このように構成された集塵室を有する集塵ユニット13であれば、塵埃を捕集する性能と捕集した塵埃を廃棄する性能とを両立することができる。 In the above embodiment, the surface of the inner wall of the dust collecting chamber is in the state shown in FIG. 15 when the dust collecting chamber is in the collecting state. The surface of the inner wall of the dust collecting chamber is in the state shown in FIG. 16 when the dust collecting chamber is discarded. The surface of the inner wall of the dust collecting chamber is different from that shown in FIG. 15 in the property against dust in the state shown in FIG. With the dust collection unit 13 having the dust collection chamber configured as described above, both the performance of collecting dust and the performance of discarding collected dust can be achieved.
 また、本体ユニット12から取り外された集塵ユニット13が再び取り付けられることで、集塵室は廃棄状態から再び捕集状態に戻る。捕集状態に戻った後、集塵ユニット13には使用者からの力が付与されない。すなわち、集塵室が再び捕集状態に戻ると、当該集塵室の内壁の表面状態は、図15に示す状態に戻る。このように、集塵室の内壁の表面の状態は、集塵室の内壁が複合材80によって形成されることで、可逆的に変化する。 Also, when the dust collection unit 13 removed from the main unit 12 is attached again, the dust collection chamber returns from the discarded state to the collected state again. After returning to the collection state, no force from the user is applied to the dust collection unit 13. That is, when the dust collection chamber returns to the collection state again, the surface state of the inner wall of the dust collection chamber returns to the state shown in FIG. Thus, the state of the surface of the inner wall of the dust chamber changes reversibly when the inner wall of the dust chamber is formed by the composite material 80.
 また、使用者は、例えば、集塵部ケース26を流入部ケース25から取り外した後、集塵部ケース26内の塵埃を廃棄する際に当該集塵部ケース26を軽く叩いてもよい。すなわち、使用者は、集塵室を廃棄状態にする際だけでなく、塵埃を廃棄する際にも集塵ユニット13に力を加えても良い。また、使用者は、例えば、集塵部ケース26内の塵埃を廃棄する際、当該集塵部ケース26を握って変形させてもよい。使用者は、例えば、集塵部ケース26内の塵埃を廃棄する際、当該集塵部ケース26を変形させ続けてもよい。上記の各例において使用者は、塵埃をより容易に廃棄することができる。 Further, the user may tap the dust collecting unit case 26 when the dust in the dust collecting unit case 26 is discarded after removing the dust collecting unit case 26 from the inflow unit case 25, for example. That is, the user may apply a force to the dust collection unit 13 not only when the dust collection chamber is disposed of but also when the dust is disposed. Further, for example, when the user discards the dust in the dust collecting unit case 26, the user may grasp the dust collecting unit case 26 to deform it. For example, the user may continue to deform the dust collecting unit case 26 when discarding the dust in the dust collecting unit case 26. In each of the above examples, the user can dispose of dust more easily.
 また、集塵ユニット13は、集塵室が捕集状態であるときには当該集塵室の内壁が一定以上変形しないように構成されてもよい。集塵ユニット13は、捕集状態である集塵室の内壁の変形を規制する部材を有していてもよい。例えば、集塵部ケース26の変形は、流入部ケース25によって規制されてもよい。これにより、例えば、集塵室が捕集状態である際に集塵ユニット13が外力を受けても、集塵室の内壁の表面の状態は塵埃を捕集することに適した状態に維持される。 Further, the dust collection unit 13 may be configured such that the inner wall of the dust collection chamber does not deform more than a certain amount when the dust collection chamber is in a collecting state. The dust collection unit 13 may have a member that regulates deformation of the inner wall of the dust collection chamber that is in the collection state. For example, the deformation of the dust collecting unit case 26 may be regulated by the inflow unit case 25. Thereby, for example, even when the dust collection unit 13 receives an external force when the dust collection chamber is in the collection state, the surface state of the inner wall of the dust collection chamber is maintained in a state suitable for collecting dust. The
 本実施の形態では各部材の形状について言及したが、これらは文字通りの完全な形状を意味するものではない。例えば、円形状の部材は、完全な円形の部材でなくても良い。円筒形状の部材は、完全な円筒形の部材でなくても良い。例えば、円筒形状の部材の表面には、他の部材との接続等のための凹凸が含まれていても良い。また、各部材の表面の一部は、他の部材との接続等のために平坦に形成されていても良い。 In the present embodiment, the shape of each member is mentioned, but these do not mean the complete shape literally. For example, the circular member may not be a complete circular member. The cylindrical member may not be a complete cylindrical member. For example, the surface of the cylindrical member may include irregularities for connection with other members. Also, a part of the surface of each member may be formed flat for connection with other members.
 サイクロン分離装置の一例である集塵ユニット13およびこれを備えた電気掃除機1は、上述した実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。以下に、いくつかの変形例を示す。 The dust collection unit 13 which is an example of the cyclone separator and the vacuum cleaner 1 including the dust collection unit 13 are not limited to the above-described embodiments, and various modifications are possible without departing from the spirit of the present invention. is there. Below, some modified examples are shown.
 例えば、電気掃除機1は縦型のものに限定されない。電気掃除機1は、本体部分に車輪を備えたものでも良い。電気掃除機1は、キャニスタ型のものでもよい。例えば、キャニスタ型の電気掃除機1は、電源コードの巻取りによって集塵部ケース26を振動させる機構を有していてもよい。この機構が集塵部ケース26を振動させることで、当該集塵部ケース26の内壁の表面形状を変化させてもよい。このように、例えば、キャニスタ型の電気掃除機1は、電源コードの巻取りを利用して塵埃を集塵部ケース26から離す機構を有していてもよい。 For example, the vacuum cleaner 1 is not limited to a vertical type. The vacuum cleaner 1 may have a wheel on the main body portion. The vacuum cleaner 1 may be a canister type. For example, the canister-type vacuum cleaner 1 may have a mechanism for vibrating the dust collector case 26 by winding a power cord. This mechanism may change the surface shape of the inner wall of the dust collector case 26 by vibrating the dust collector case 26. Thus, for example, the canister-type vacuum cleaner 1 may have a mechanism for separating dust from the dust collector case 26 using winding of the power cord.
 また、集塵室の内壁を形成する材料は、上記の実施の形態で示した複合材80に限定されない。集塵室の内壁を形成する材料は、例えば、圧電素子および導電性ポリマー等、外力によって電気的な特性が変化する材料であってもよい。集塵室の内壁を形成する材料は、集塵室が廃棄状態になる際に除電される材料であってもよい。本例であれば、集塵室が廃棄状態になる際に当該集塵室の表面と塵埃との間に働く静電気力が小さくなることで、上記の実施の形態と同様の効果が得られる。また、集塵室が捕集状態に戻る際に当該集塵室の表面と塵埃との間に働く静電気力が大きくなることで、上記の実施の形態と同様の効果が得られる。 Further, the material forming the inner wall of the dust collection chamber is not limited to the composite material 80 shown in the above embodiment. The material forming the inner wall of the dust collection chamber may be a material whose electrical characteristics change due to an external force, such as a piezoelectric element and a conductive polymer. The material forming the inner wall of the dust collection chamber may be a material that is neutralized when the dust collection chamber is discarded. In this example, the electrostatic force acting between the surface of the dust collection chamber and the dust when the dust collection chamber is in a discarded state is reduced, so that the same effect as in the above embodiment can be obtained. Further, when the dust collection chamber returns to the collection state, the electrostatic force acting between the surface of the dust collection chamber and the dust is increased, so that the same effect as the above embodiment can be obtained.
 集塵室の内壁を形成する材料は、例えば、親水性の薬剤を含浸させた樹脂材料であってもよい。集塵室の内壁は、外力を受けることで親水性の薬剤が染み出すように構成されてもよい。本例であれば、集塵室が廃棄状態になる際、当該集塵室の内壁の表面が親水性の薬剤によって覆われる。これにより、使用者は、集塵室の内壁の表面を水洗いによって効果的に洗浄することができる。また、使用者は、水洗いした後の集塵室の内壁の表面を布等で吹くことで、集塵室の内壁の表面を元の状態に戻すことができる。 The material forming the inner wall of the dust collection chamber may be, for example, a resin material impregnated with a hydrophilic drug. The inner wall of the dust collection chamber may be configured such that a hydrophilic drug oozes out by receiving an external force. In this example, when the dust collection chamber is discarded, the surface of the inner wall of the dust collection chamber is covered with a hydrophilic chemical. Thereby, the user can wash | clean the surface of the inner wall of a dust collection chamber effectively with water washing. Moreover, the user can return the surface of the inner wall of a dust collection chamber to the original state by blowing the surface of the inner wall of the dust collection chamber after washing with a cloth or the like.
 また、上記の実施の形態において集塵室の内壁を形成する複合材80は、透光性を有していてもよい。すなわち、繊維材81、軟質材82および樹脂材83は透光性を有していてもよい。この場合、使用者は、集塵ユニット13の取り外しおよび分解をせずに、0次集塵室30および一次集塵室31に蓄積したごみの量を容易に確認できる。集塵室の内壁を形成する複合材80が透光性を有していることで、使用者にとってより使い勝手がよい集塵ユニット13およびこれを備えた電気掃除機1が得られる。 In the above embodiment, the composite material 80 that forms the inner wall of the dust collection chamber may have a light-transmitting property. That is, the fiber material 81, the soft material 82, and the resin material 83 may have translucency. In this case, the user can easily confirm the amount of dust accumulated in the zero-order dust collection chamber 30 and the primary dust collection chamber 31 without removing and disassembling the dust collection unit 13. Since the composite material 80 that forms the inner wall of the dust collection chamber has translucency, the dust collection unit 13 that is more convenient for the user and the vacuum cleaner 1 including the dust collection unit 13 can be obtained.
 旋回室29、0次集塵室30、一次集塵室31、流入管36、および0次開口48の個数および配置は、上記の実施の形態において説明したものに限定されない。集塵ユニット13を構成する各部材の仕様は、例えば、旋回室29内の気流の速度、集塵ユニット13の大きさ、質量、集塵性能、メンテナンス性および電動送風機10の出力等によって適宜設定される。集塵ユニット13を構成する各部材の仕様は、電気掃除機1に要求される性能等に合わせて最適なものが選択されることが好ましい。 The number and arrangement of the swirl chamber 29, the zero-order dust collection chamber 30, the primary dust collection chamber 31, the inflow pipe 36, and the zero-order opening 48 are not limited to those described in the above embodiment. The specifications of each member constituting the dust collection unit 13 are appropriately set depending on, for example, the speed of the airflow in the swirl chamber 29, the size, mass, dust collection performance, maintainability, and output of the electric blower 10 in the dust collection unit 13. Is done. As the specifications of each member constituting the dust collection unit 13, it is preferable that an optimum specification is selected in accordance with the performance required for the vacuum cleaner 1.
 例えば、集塵ユニット13が備える集塵室は、0次集塵室30および一次集塵室31の一方のみを含むものであってもよい。集塵室は、ごみαおよびごみβを同一の空間に溜めるものであってもよい。 For example, the dust collection chamber included in the dust collection unit 13 may include only one of the zero-order dust collection chamber 30 and the primary dust collection chamber 31. The dust collection chamber may store the waste α and the waste β in the same space.
 また、図17は、実施の形態1の変形例の1つを示すものである。図17は、図14に対応する図である。図17に示すように、集塵ユニット13は、解除ボタン91を備えていてもよい。解除ボタン91は、集塵部ケース26の外壁部47の外面に設けられる。 FIG. 17 shows one of the modifications of the first embodiment. FIG. 17 corresponds to FIG. As shown in FIG. 17, the dust collection unit 13 may include a release button 91. The release button 91 is provided on the outer surface of the outer wall 47 of the dust collecting unit case 26.
 上述したように、使用者は、流入部ケース25および集塵部ケース26を固定するロック機構に対して解除操作を行うことにより、集塵部ケース26を取り外すことができる。このロック機構は、例えば、集塵部ケース26の外壁部47の上部に形成される。解除ボタン91は、外壁部47を変形させながら外壁部47のロック機構を解除するためのものである。使用者は、解除ボタン91を集塵部ケース26の中心側に向かって押すことにより、外壁部47を変形させながら外壁部47のロック機構を解除することができる。 As described above, the user can remove the dust collecting part case 26 by performing a release operation on the lock mechanism that fixes the inflow part case 25 and the dust collecting part case 26. This locking mechanism is formed, for example, on the upper part of the outer wall 47 of the dust collecting unit case 26. The release button 91 is for releasing the lock mechanism of the outer wall portion 47 while deforming the outer wall portion 47. The user can release the lock mechanism of the outer wall portion 47 while deforming the outer wall portion 47 by pressing the release button 91 toward the center side of the dust collecting portion case 26.
 図17に示す変形例であれば、使用者は解除ボタン91を操作することで、集塵室を廃棄状態にする際に集塵部ケース26を大きく変形させることができる。これにより、集塵室が廃棄状態になる際、集塵部ケース26の内面に付着したごみα等の塵埃が、集塵部ケース26の内面から容易に離れる。 In the modified example shown in FIG. 17, the user can greatly deform the dust collecting unit case 26 by operating the release button 91 when putting the dust collecting chamber into a discarded state. Thereby, when the dust collecting chamber is disposed of, dust such as dust α attached to the inner surface of the dust collecting unit case 26 is easily separated from the inner surface of the dust collecting unit case 26.
 使用者が解除ボタン91から手を離すと、外壁部47は変形した状態から変形前の状態に戻る。本変形例における解除ボタン91は、集塵室の内壁を可逆的に変形させる変形手段の一例である。集塵ユニット13は、集塵室の内壁を可逆的に変形させる変形手段のその他の例として、ラッチ式またはトリガー式等の機構を備えていてもよい。また、集塵ユニット13は、例えば、解除ボタン91を押された状態のまま保持する機構をさらに備えていてもよい。すなわち、集塵ユニット13は、集塵室の内壁を変形したまま保持する機構を備えていてもよい。 When the user releases the release button 91, the outer wall 47 returns from the deformed state to the state before the deformation. The release button 91 in this modification is an example of a deformation means that reversibly deforms the inner wall of the dust collection chamber. The dust collection unit 13 may include a latch-type or trigger-type mechanism as another example of deformation means for reversibly deforming the inner wall of the dust collection chamber. Further, the dust collection unit 13 may further include, for example, a mechanism that holds the release button 91 in a pressed state. That is, the dust collection unit 13 may include a mechanism that holds the inner wall of the dust collection chamber while being deformed.
 また、集塵ユニット13は、集塵室の内壁を可逆的に変形させる変形手段のその他の例として、振動を発生させる機構を備えていてもよい。振動を発生させるこの機構は、例えば、フィルタ部ケース61に設けられる。振動を発生させる機構は、例えば、集塵ユニット13全体または集塵部ケース26を振動させる。これにより、集塵室の内壁が振動、すなわち変形する。集塵ユニット13は、集塵室の内壁の表面の状態が振動によって変化するように構成されてもよい。 Further, the dust collection unit 13 may include a mechanism for generating vibration as another example of the deformation means for reversibly deforming the inner wall of the dust collection chamber. This mechanism for generating vibration is provided in the filter case 61, for example. The mechanism that generates vibrations vibrates the entire dust collection unit 13 or the dust collection unit case 26, for example. Thereby, the inner wall of the dust collecting chamber vibrates, that is, deforms. The dust collection unit 13 may be configured such that the state of the surface of the inner wall of the dust collection chamber changes due to vibration.
 また、本発明に係るサイクロン分離装置は、集塵ユニット13に限定されるものではなく、電気掃除機1以外にも利用可能である。例えば、本発明に係るサイクロン分離装置は、粉体を分離する装置および冷媒を分離する装置等にも応用可能である。 Further, the cyclone separation device according to the present invention is not limited to the dust collection unit 13 and can be used other than the vacuum cleaner 1. For example, the cyclone separation apparatus according to the present invention can be applied to an apparatus for separating powder and an apparatus for separating refrigerant.
実施の形態2.
 次に、実施の形態2について説明する。図18および図19は、実施の形態2の集塵ユニット13を示す断面図である。図18および図19は、実施の形態1における図8に対応する。図18および図19を参照し、実施の形態1との相違点を中心に、実施の形態2について説明する。実施の形態1と同一または相当する部分については、同じ符号を付し、説明を簡略化または省略する。
Embodiment 2. FIG.
Next, a second embodiment will be described. 18 and 19 are cross-sectional views showing the dust collection unit 13 of the second embodiment. 18 and 19 correspond to FIG. 8 in the first embodiment. With reference to FIGS. 18 and 19, the second embodiment will be described with a focus on differences from the first embodiment. Parts that are the same as or equivalent to those in the first embodiment are given the same reference numerals, and descriptions thereof are simplified or omitted.
 本実施の形態の集塵ユニット13は、実施の形態1と同様、集塵部ケース26を備える。集塵部ケース26は、底部46および外壁部47を備える。底部46の全体形状は、円形状である。外壁部47は、円筒形状である。なお、外壁部47は円筒形状でなくてもよい。外壁部47は、例えば、角型の筒状でも良い。また、底部46の全体形状は、例えば、多角形状でもよい。 The dust collection unit 13 of the present embodiment includes a dust collection unit case 26 as in the first embodiment. The dust collector case 26 includes a bottom 46 and an outer wall 47. The overall shape of the bottom 46 is circular. The outer wall portion 47 has a cylindrical shape. The outer wall 47 may not be cylindrical. The outer wall portion 47 may be, for example, a rectangular cylinder. Further, the overall shape of the bottom 46 may be, for example, a polygonal shape.
 本実施の形態において、底部46と外壁部47とは、それぞれ別体として形成される。本実施の形態において底部46と外壁部47とは、図18および図19に示すように、ヒンジ104を介して接続される。底部46は、ヒンジ104を軸にして、外壁部47に対して回動可能である。底部46は、回動することによって開閉する。図18は、底部46が閉じている状態を示している。図19は、底部46が開いている状態を示している。底部46が開くことで、図19に示すように、0次集塵室30および一次集塵室31が開放される。使用者は、底部46を開くことで、0次集塵室30および一次集塵室31内の塵埃を外部に廃棄することができる。 In the present embodiment, the bottom 46 and the outer wall 47 are formed as separate bodies. In the present embodiment, the bottom 46 and the outer wall 47 are connected via a hinge 104 as shown in FIGS. The bottom part 46 is rotatable with respect to the outer wall part 47 about the hinge 104 as an axis. The bottom 46 opens and closes by rotating. FIG. 18 shows a state where the bottom 46 is closed. FIG. 19 shows a state where the bottom 46 is open. By opening the bottom 46, the zero-order dust collection chamber 30 and the primary dust collection chamber 31 are opened as shown in FIG. The user can dispose of the dust in the zero-order dust collection chamber 30 and the primary dust collection chamber 31 to the outside by opening the bottom 46.
 本実施の形態において、底部46には、係合部102が設けられる。また、外壁部47の下部には、係合部103が設けられる。係合部102と係合部103とは、互いに噛み合うように形成される。また、外壁部47の外面には、解除ボタン101が設けられる。解除ボタン101は、実施の形態1における解除ボタン91と同様の部材であり、変形手段の一例である。 In the present embodiment, the bottom portion 46 is provided with an engaging portion 102. An engaging portion 103 is provided at the lower portion of the outer wall portion 47. The engaging portion 102 and the engaging portion 103 are formed so as to mesh with each other. A release button 101 is provided on the outer surface of the outer wall portion 47. The release button 101 is a member similar to the release button 91 in the first embodiment, and is an example of a deformation unit.
 使用者は、解除ボタン101を押すことで、外壁部47を変形させることができる。外壁部47が変形することにより、当該外壁部47に設けられた係合部103が係合部102から外れる。これにより、底部46がヒンジ104を軸にして回動する。すなわち、底部46が、図19に示すように開く。本実施の形態であれば、使用者は、0次集塵室30および一次集塵室31を開放すると同時に外壁部47を大きく変形させることができる。このため、使用者は、より容易に塵埃を廃棄することができる。 The user can deform the outer wall portion 47 by pressing the release button 101. When the outer wall portion 47 is deformed, the engaging portion 103 provided on the outer wall portion 47 is detached from the engaging portion 102. As a result, the bottom 46 rotates about the hinge 104 as an axis. That is, the bottom 46 opens as shown in FIG. In the present embodiment, the user can greatly deform the outer wall 47 while opening the zero-order dust collection chamber 30 and the primary dust collection chamber 31. For this reason, the user can discard dust more easily.
 本実施の形態の集塵ユニット13は、底部46以外の場所が開閉するように構成されてもよい。例えば、外壁部47の一部が開閉してもよい。また、0次集塵室30および一次集塵室31を開放するための機構は、解除ボタン101に限定されない。0次集塵室30および一次集塵室31を開放するための機構は、例えば、集塵部ケース26の上部から集塵部ケース26の下部に向かって押しこまれる機構であってもよい。 The dust collection unit 13 of the present embodiment may be configured such that a place other than the bottom 46 opens and closes. For example, a part of the outer wall portion 47 may be opened and closed. Further, the mechanism for opening the zero-order dust collection chamber 30 and the primary dust collection chamber 31 is not limited to the release button 101. The mechanism for opening the zero-order dust collection chamber 30 and the primary dust collection chamber 31 may be, for example, a mechanism that is pushed from the upper portion of the dust collection portion case 26 toward the lower portion of the dust collection portion case 26.
 本発明に係るサイクロン分離装置およびこのサイクロン分離装置を備えた電気掃除機は、例えば、室内の清掃等に利用することができる。 The cyclone separator according to the present invention and the electric vacuum cleaner provided with the cyclone separator can be used, for example, for indoor cleaning.
 1 電気掃除機、 2 吸込口体、 3 吸引パイプ、 6 掃除機本体、 7 把持部、8 操作スイッチ、 10 電動送風機、 12 本体ユニット、 13 集塵ユニット、 14 収容体、 16 吸気風路形成部、 17 排気風路形成部、 19 吸気風路、 20 接続口、 21 排気風路、 22 接続口、 24 流出部ケース、 25 流入部ケース、 26 集塵部ケース、 27 流入風路、 29 旋回室、 30 0次集塵室、 31 一次集塵室、 32 流出風路、 33 円筒部、 34 円錐部、 35 隔壁部、 36 流入管、 38 外壁部、39 一次開口、 40 ユニット流入口、 41 流入口、 46 底部、 47 外壁部、 48 0次開口、49 蓋部、 51 流出部、 54 流出口、 58 ユニット流出口、 59 狭隘部、 61 フィルタ部ケース、 62 フィルタ、 80 複合材、 81 繊維材、 82 軟質材、 83 樹脂材、 85 横糸、 86 縦糸、 91 解除ボタン、 101 解除ボタン、 102 係合部、 103 係合部、 104 ヒンジ 1 vacuum cleaner, 2 suction port, 3 suction pipe, 6 vacuum cleaner body, 7 gripping part, 8 operation switch, 10 electric blower, 12 body unit, 13 dust collecting unit, 14 housing, 16 intake air passage forming part , 17 Exhaust air passage formation section, 19 Intake air path, 20 connection port, 21 Exhaust air path, 22 Connection port, 24 Outflow part case, 25 Inflow part case, 26 Dust collector case, 27 Inlet air path, 29 Swirling chamber 30 primary dust collection chamber, 31 primary dust collection chamber, 32 outflow air duct, 33 cylindrical section, 34 conical section, 35 bulkhead section, 36 inflow pipe, 38 outer wall section, 39 primary opening, 40 unit inlet, 41 flow Entrance, 46 bottom, 47 outer wall, 48 0th order opening, 49 lid, 51 outflow 54 outlet, 58 unit outlet, 59 narrow part, 61 filter part case, 62 filter, 80 composite material, 81 fiber material, 82 soft material, 83 resin material, 83 weft, 86 warp, 91 release button, 101 release button , 102 engaging part, 103 engaging part, 104 hinge

Claims (11)

  1.  内部において含塵空気を側壁に沿って旋回させて、含塵空気から塵埃を分離する旋回室と、
     前記旋回室の内部に通じ、前記旋回室で分離された塵埃を内部に捕集するための捕集状態と捕集した塵埃を廃棄するための廃棄状態とになりえる集塵室と、
     を備え、
     前記集塵室の内壁の表面は、前記集塵室が前記捕集状態である場合には第1状態であり、前記集塵室が前記廃棄状態になると第2状態になり、前記第1状態と前記第2状態とで塵埃に対する性質が異なるサイクロン分離装置。
    A swirl chamber that swirls the dust-containing air along the side wall to separate the dust from the dust-containing air;
    A dust collection chamber that communicates with the inside of the swirl chamber and can be in a collection state for collecting the dust separated in the swirl chamber and in a discard state for discarding the collected dust;
    With
    The surface of the inner wall of the dust collecting chamber is in the first state when the dust collecting chamber is in the collecting state, and is in the second state when the dust collecting chamber is in the discarding state. And a cyclone separation device having different properties with respect to dust in the second state.
  2.  前記第1状態の前記表面が塵埃を吸着する力は、前記第2状態の前記表面が塵埃を吸着する力よりも大きい請求項1に記載のサイクロン分離装置。 The cyclone separation device according to claim 1, wherein the force of the surface in the first state adsorbing dust is larger than the force of the surface in the second state adsorbing dust.
  3.  前記表面が前記第1状態から前記第2状態になると、前記表面と当該表面に付着した塵埃との間に働く摩擦力が小さくなる請求項2に記載のサイクロン分離装置。 3. The cyclone separator according to claim 2, wherein when the surface changes from the first state to the second state, a frictional force acting between the surface and dust attached to the surface is reduced.
  4.  前記表面が前記第1状態から前記第2状態になると、前記表面と当該表面に付着した塵埃との間に働く静電気力が小さくなる請求項2に記載のサイクロン分離装置。 3. The cyclone separator according to claim 2, wherein when the surface changes from the first state to the second state, an electrostatic force acting between the surface and dust attached to the surface is reduced.
  5.  前記表面が前記第1状態から前記第2状態になると、前記表面と当該表面に付着した塵埃との接触面積が小さくなる請求項2に記載のサイクロン分離装置。 3. The cyclone separator according to claim 2, wherein when the surface changes from the first state to the second state, a contact area between the surface and dust attached to the surface is reduced.
  6.  前記集塵室の前記内壁は、外力を受けると表面形状が変わる材料によって形成されている請求項2から請求項5の何れか1項に記載のサイクロン分離装置。 The cyclone separator according to any one of claims 2 to 5, wherein the inner wall of the dust collection chamber is formed of a material that changes its surface shape when subjected to an external force.
  7.  前記材料は、軟質材と当該軟質材に埋め込まれた繊維材とを有する請求項6に記載のサイクロン分離装置。 The cyclone separator according to claim 6, wherein the material includes a soft material and a fiber material embedded in the soft material.
  8.  前記材料は透光性を有する請求項6または請求項7に記載のサイクロン分離装置。 The cyclone separator according to claim 6 or 7, wherein the material has translucency.
  9.  前記集塵室の前記内壁を可逆的に変形させる変形手段を備える請求項1から8のいずれか一項に記載のサイクロン分離装置。 The cyclone separator according to any one of claims 1 to 8, further comprising a deforming unit that reversibly deforms the inner wall of the dust collection chamber.
  10.  前記変形手段は、前記集塵室を開放して前記集塵室に捕集された塵埃を外部に廃棄する請求項9に記載のサイクロン分離装置。 The cyclone separator according to claim 9, wherein the deformation means opens the dust collection chamber and discards the dust collected in the dust collection chamber to the outside.
  11.  請求項1から請求項10の何れか1項に記載のサイクロン分離装置と、
     前記サイクロン分離装置が備える前記旋回室の内部に気流を発生させる送風機と、
     を備える電気掃除機。
    The cyclone separator according to any one of claims 1 to 10,
    A blower that generates an air flow in the swirl chamber of the cyclone separator;
    Electric vacuum cleaner.
PCT/JP2017/017924 2017-05-11 2017-05-11 Cyclone separation apparatus and vacuum cleaner WO2018207327A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019516832A JP6822559B2 (en) 2017-05-11 2017-05-11 Cyclone separator and vacuum cleaner
EP17909587.2A EP3622873B1 (en) 2017-05-11 2017-05-11 Cyclone separation apparatus and vacuum cleaner
CN201780090478.XA CN110612052B (en) 2017-05-11 2017-05-11 Cyclone separation device and electric dust collector
PCT/JP2017/017924 WO2018207327A1 (en) 2017-05-11 2017-05-11 Cyclone separation apparatus and vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017924 WO2018207327A1 (en) 2017-05-11 2017-05-11 Cyclone separation apparatus and vacuum cleaner

Publications (1)

Publication Number Publication Date
WO2018207327A1 true WO2018207327A1 (en) 2018-11-15

Family

ID=64105317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017924 WO2018207327A1 (en) 2017-05-11 2017-05-11 Cyclone separation apparatus and vacuum cleaner

Country Status (4)

Country Link
EP (1) EP3622873B1 (en)
JP (1) JP6822559B2 (en)
CN (1) CN110612052B (en)
WO (1) WO2018207327A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159813A (en) * 2002-11-12 2004-06-10 Sanyo Electric Co Ltd Dust collecting device and electric vacuum cleaner using it
JP2004267452A (en) * 2003-03-07 2004-09-30 Sharp Corp Dust collecting container and vacuum cleaner provided therewith
JP2009089764A (en) * 2007-10-04 2009-04-30 Sharp Corp Vacuum cleaner
JP2009112441A (en) * 2007-11-05 2009-05-28 Sharp Corp Dust collecting apparatus, and electric vacuum cleaner equipped with the same
JP2009279503A (en) * 2008-05-21 2009-12-03 Sharp Corp Cyclone separator
JP2013017665A (en) * 2011-07-12 2013-01-31 Panasonic Corp Vacuum cleaner
JP2014171669A (en) * 2013-03-08 2014-09-22 Toshiba Corp Dust collector and vacuum cleaner
JP2015150145A (en) 2014-02-13 2015-08-24 三菱電機株式会社 Cyclone separator and vacuum cleaner
JP2017018159A (en) * 2015-07-07 2017-01-26 東芝ライフスタイル株式会社 Dust collector and vacuum cleaner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206063066U (en) * 2016-06-30 2017-04-05 江苏美的清洁电器股份有限公司 Dirt cup component and the hand-held cleaners with which
US7018438B2 (en) * 2002-03-29 2006-03-28 Hmi Industries, Inc. Filtering system
DE102011006584A1 (en) * 2011-03-31 2012-10-04 Hilti Aktiengesellschaft vacuum cleaner
CN101953661A (en) * 2009-07-20 2011-01-26 乐金电子(天津)电器有限公司 Dust collection box of vacuum cleaner
WO2012137303A1 (en) * 2011-04-05 2012-10-11 日本スピンドル製造株式会社 Dust collection filter, dust collection apparatus provided with same, and manufacturing method for dust collection filter
JP5824640B2 (en) * 2011-10-14 2015-11-25 パナソニックIpマネジメント株式会社 Electric vacuum cleaner
AU2013303648B2 (en) * 2012-08-15 2016-09-01 Mitsubishi Electric Corporation Cyclone separation device and electric vacuum cleaner with same
JP2015006623A (en) * 2014-10-17 2015-01-15 シャープ株式会社 Cyclone separation device, vacuum cleaner
JP6052273B2 (en) * 2014-12-25 2016-12-27 三菱電機株式会社 Cyclone separation device and vacuum cleaner
JP6488137B2 (en) * 2015-01-28 2019-03-20 日立アプライアンス株式会社 Electric vacuum cleaner
CN204950805U (en) * 2015-09-21 2016-01-13 深圳市横河新高机电有限公司 High sealed dust catcher dirt filtrating screen destatics
CN106308681B (en) * 2016-11-15 2022-04-01 苏州海歌电器科技有限公司 Gas-dust separation device and dust collector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159813A (en) * 2002-11-12 2004-06-10 Sanyo Electric Co Ltd Dust collecting device and electric vacuum cleaner using it
JP2004267452A (en) * 2003-03-07 2004-09-30 Sharp Corp Dust collecting container and vacuum cleaner provided therewith
JP2009089764A (en) * 2007-10-04 2009-04-30 Sharp Corp Vacuum cleaner
JP2009112441A (en) * 2007-11-05 2009-05-28 Sharp Corp Dust collecting apparatus, and electric vacuum cleaner equipped with the same
JP2009279503A (en) * 2008-05-21 2009-12-03 Sharp Corp Cyclone separator
JP2013017665A (en) * 2011-07-12 2013-01-31 Panasonic Corp Vacuum cleaner
JP2014171669A (en) * 2013-03-08 2014-09-22 Toshiba Corp Dust collector and vacuum cleaner
JP2015150145A (en) 2014-02-13 2015-08-24 三菱電機株式会社 Cyclone separator and vacuum cleaner
JP2017018159A (en) * 2015-07-07 2017-01-26 東芝ライフスタイル株式会社 Dust collector and vacuum cleaner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3622873A4

Also Published As

Publication number Publication date
EP3622873A4 (en) 2020-06-03
JP6822559B2 (en) 2021-01-27
EP3622873A1 (en) 2020-03-18
EP3622873B1 (en) 2023-07-19
CN110612052A (en) 2019-12-24
JPWO2018207327A1 (en) 2019-11-07
CN110612052B (en) 2021-06-15

Similar Documents

Publication Publication Date Title
JP4947110B2 (en) Electric vacuum cleaner
EP2043494B1 (en) Handheld cleaning appliance
JP7362935B2 (en) vacuum cleaner
KR102327196B1 (en) Cleaner
JP4521159B2 (en) Vacuum cleaner
WO2018207327A1 (en) Cyclone separation apparatus and vacuum cleaner
JP4485537B2 (en) Vacuum cleaner
EP4260784A1 (en) Cleaner
JP7244370B2 (en) vacuum cleaner
JP2008043792A (en) Vacuum cleaner
WO2018168142A1 (en) Suctioning device and electric vacuum using same
JP2021069498A (en) Vacuum cleaner
JP2011055975A (en) Vacuum cleaner
JP4663552B2 (en) Electric vacuum cleaner
WO2018146944A1 (en) Electric vacuum cleaner
JP7135404B2 (en) dust collectors and vacuum cleaners
JP2019118667A (en) Vacuum cleaner
EP2277426B1 (en) Vacuum cleaner
JP7466497B2 (en) Dust collecting device and vacuum cleaner equipped with the same
JP5666849B2 (en) Dust separator and vacuum cleaner
JP3762365B2 (en) Vacuum cleaner
JP7240366B2 (en) vacuum cleaner
JP7153708B2 (en) Vacuum cleaner and its dust collector
JP6818808B2 (en) Vacuum cleaner and its dust collector
JP5405352B2 (en) Dust separator and vacuum cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017909587

Country of ref document: EP

Effective date: 20191211