WO2018207268A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2018207268A1
WO2018207268A1 PCT/JP2017/017600 JP2017017600W WO2018207268A1 WO 2018207268 A1 WO2018207268 A1 WO 2018207268A1 JP 2017017600 W JP2017017600 W JP 2017017600W WO 2018207268 A1 WO2018207268 A1 WO 2018207268A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
control signal
hydraulic
mode
valve
Prior art date
Application number
PCT/JP2017/017600
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 天野
井村 進也
真司 西川
真史 日田
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2019516780A priority Critical patent/JP6788733B2/en
Priority to PCT/JP2017/017600 priority patent/WO2018207268A1/en
Publication of WO2018207268A1 publication Critical patent/WO2018207268A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Definitions

  • the present invention relates to a work machine.
  • a hydraulic pump In a working machine such as a hydraulic excavator, a hydraulic pump is generally driven by a prime mover, and a hydraulic actuator such as a hydraulic cylinder is driven by pressure oil discharged from the hydraulic pump.
  • the speed and direction of operation of the hydraulic actuator are performed by controlling the direction and flow rate of the pressure oil supplied from the hydraulic pump to the hydraulic actuator by a direction control valve that operates in conjunction with an operation lever device provided in the cab. .
  • the response of increase / decrease in the discharge flow rate in the variable displacement hydraulic pump tends to be slower than the response of the directional control valve or electronically controlled bleed-off valve. Therefore, since it takes time until the discharge flow rate of the hydraulic pump reaches an appropriate discharge flow rate with respect to the opening of the directional control valve and the bleed-off valve, the discharge pressure of the hydraulic pump does not increase until it overcomes the load pressure of the hydraulic actuator. There is a problem that the operation of the hydraulic actuator is delayed. In other words, when the operation lever is operated intermittently and quickly, the operation lever is returned before the pump flow rate finishes increasing, so the pump flow rate is less than in the steady operation, and the operation of the hydraulic actuator becomes extremely worse. There is concern.
  • the present invention has been made in view of the above, and is an operation capable of achieving both reduction in pressure loss and flow loss by controlling the discharge flow rate of the hydraulic pump and responsiveness of the hydraulic actuator in intermittent sudden lever operation.
  • the purpose is to provide a machine.
  • the present application includes a plurality of means for solving the above-described problems.
  • a variable displacement hydraulic pump driven by a prime mover and a plurality of driven members are rotatably connected.
  • a multi-joint type front working machine a plurality of hydraulic actuators driven by pressure oil discharged from the hydraulic pump and respectively driving the plurality of driven members, and from the hydraulic pump to the plurality of hydraulic actuators, respectively.
  • a plurality of directional control valves for controlling the direction and flow rate of the supplied pressure oil, a plurality of operating devices for controlling the plurality of directional switching valves, and an operation amount of at least one operating device among the plurality of operating devices.
  • the regulator that controls the pump volume of the hydraulic pump, the signal adjustment valve that can adjust the pump control signal input to the regulator, and the operation that detects the operation amount of the operating device related to the generation of the pump control signal
  • a controller that controls the signal adjustment valve based on a detection result of an operation amount from at least one operation amount detection device of the amount detection devices, and the controller adjusts the pump control signal by the signal adjustment valve. It is possible to switch between the normal mode in which the control is performed and the response priority mode in which the pump control signal is not adjusted by the signal adjustment valve.
  • FIG. 1 is a side view schematically showing the appearance of a hydraulic excavator that is an example of a working machine according to the present embodiment.
  • a hydraulic excavator 100 is a multi-joint type front device (front) that is configured by connecting a plurality of driven members (boom 31, arm 33, bucket (work implement) 35) that rotate in the vertical direction.
  • Working machine) 30 and an upper swing body 20 and a lower traveling body 10 constituting the vehicle body, and the upper swing body 20 is provided so as to be rotatable with respect to the lower traveling body 10.
  • the upper swing body 20 is configured by disposing each member on a swing frame 21 serving as a base, and the swing frame 21 constituting the upper swing body 20 can swing with respect to the lower traveling body 10.
  • the base end of the boom 31 of the front device 30 is supported by the front portion of the upper swing body 20 so as to be rotatable in the vertical direction, and one end of the arm 33 is an end (tip) different from the base end of the boom 31.
  • the bucket 35 is supported at the other end of the arm 33 so as to be rotatable in the vertical direction.
  • the lower traveling body 10 includes a pair of crawlers 11a (11b) wound around a pair of left and right crawler frames 12a (12b), and traveling hydraulic motors 13a (13b) that respectively drive the crawlers 11a (11b). ing.
  • symbol is attached
  • the boom 31, the arm 33, the bucket 35, and the lower traveling body 10 are driven by a boom cylinder 32, an arm cylinder 34, a bucket cylinder 36, and left and right traveling hydraulic motors 13a (13b), which are hydraulic actuators.
  • the upper swing body 20 is also driven by a swing hydraulic motor 27 that is a hydraulic actuator via a speed reduction mechanism 26 and performs a swing operation on the lower traveling body 10.
  • the engine 22 as a prime mover, the boom cylinder 32, the arm cylinder 34, the bucket cylinder 36, the revolving hydraulic motor 27, the left and right traveling hydraulic motors 13a (13b), etc.
  • a hydraulic circuit system 40 for driving the hydraulic actuator is mounted.
  • FIG. 2 is a diagram schematically showing an essential part of the hydraulic circuit system according to the present embodiment.
  • FIG. 2 only the bucket cylinder 36 and its related configuration are shown as representatives among the plurality of hydraulic actuators, and the other hydraulic actuators and their related configurations are not shown for simplicity of explanation.
  • a hydraulic circuit system 40 includes a variable displacement hydraulic pump 41 and a fixed displacement pilot pump (pilot hydraulic source) 49 driven by the engine 22, and a hydraulic oil tank that is a hydraulic oil supply source of the hydraulic pump. 48 and an operation pilot pressure (operation signal) guided from the operation lever device 52 for operating the bucket through the pilot lines L1 and L2, is supplied from the hydraulic pump 41 to the hydraulic actuator (bucket cylinder) 36 through the discharge line L4.
  • a control valve (direction switching valve) 44 for controlling the direction and flow rate of the hydraulic oil and an operation pilot pressure sensor (operation) for detecting the operation amount of the operation lever device 52 by detecting the operation pilot pressure of the pilot lines L1 and L2.
  • the regulator 42 that controls the pump volume (tilt angle) of the hydraulic pump 41 based on the pilot pressure (pump control signal) generated according to the pressure, and the pump control signal that is input from the operation lever device 52 to the regulator 42 is reduced.
  • the proportional electromagnetic valve 45 (signal adjusting valve) that can be adjusted by the operation, and the controller 60 that controls the proportional electromagnetic valve 45 based on the detection result of the operation amount from the operation pilot pressure sensors SE1 and SE2. .
  • a relief valve 41a that defines the upper limit of the discharge pressure of the hydraulic pump 41 is installed.
  • a driver's cab 23 (cabinet: see FIG. 1) in which an operator is boarded is provided with a plurality of operation lever devices (operation devices) that output operation signals for operating the hydraulic actuators 27, 32, 34, and 36. .
  • the operation lever device 52 for operating the bucket generates an operation signal output to the pilot lines L1 and L2 based on the operation lever 52a tilted by the operator and the lever operation amount and operation direction of the operation lever 52a.
  • an operation signal generation unit 52b When the operation lever 52a is operated, the operation signal generation unit 52b operates one of a pair of pressure reducing valves (not shown) according to the operation direction and the operation amount, and sets the pilot primary pressure of the pilot pump 49 to the operation amount.
  • the pressure is reduced to the corresponding pilot pressure and output as an operation signal (operation pilot pressure) to one of the pilot lines L1 and L2.
  • the pilot lines L1 and L2 include an operation pilot pressure sensor (operation amount detection device) SE1, which detects an operation amount of the operation lever 52a (hereinafter also referred to as an operation amount of the operation lever device 52) by detecting an operation pilot pressure.
  • SE2 is arranged, the operation signal of the bucket cloud by the operation lever 52a is detected by the operation pilot pressure sensor SE1, and the operation signal of the bucket dump by the operation lever 52a is detected by the operation pilot pressure sensor SE2, and each is sent to the controller 60. Sent.
  • the operation lever device may be an electric signal system, and the lever tilt amount corresponding to the operation signal from the operation lever device 52 operated by the operator (that is, the lever operation amount) is electrically output to the controller 60.
  • the pilot pressure for driving the hydraulic actuators 27, 32, 34, 36 may be controlled by controlling the electromagnetic proportional valve or the like with the controller 60 based on the detected lever operation amount.
  • An operation of the bucket 35 is assigned to the operation lever device 52, and when the bucket cloud is operated by the operation lever device 52, the control valve 44 is moved to the right side in FIG. 2 (that is, as shown in FIG. 2) according to the operation amount. ) And the pressure oil discharged from the hydraulic pump 41 is supplied to the bottom chamber (bucket cylinder bottom chamber) 36a of the bucket cylinder 36 via the control valve 44 and the rod chamber (bucket cylinder) of the bucket cylinder 36. The pressure oil in the rod chamber 36 b flows into the hydraulic oil tank 48 through the control valve 44, whereby the bucket cylinder 36 is extended and the bucket cloud operation is performed. Similarly, when the bucket dump is operated by the operation lever device 52, the control valve 44 is driven to the left in FIG.
  • a check valve 44 a is provided on the upstream side of the supply flow path of the control valve 44 (that is, on the hydraulic pump 41 side).
  • the check valve 44a permits the supply of hydraulic oil to the hydraulic actuator 36 side only when the discharge pressure (pump pressure) of the hydraulic pump 41 is higher than the pressure (actuator pressure) on the hydraulic actuator 36 side. When the pressure is lower than the actuator pressure, the flow of the pressure oil from the hydraulic actuator 36 side to the hydraulic pump 41 side is blocked.
  • the pilot pilot pressures in the pilot lines L1 and L2 are respectively guided to the shuttle valve 43, and the larger pilot pilot pressure is selectively output to the pilot line L3 (hereinafter referred to as the pump control signal primary pressure).
  • the primary pressure of the pump control signal output to the pilot line L3 is reduced by the proportional solenoid valve 45 and output to the regulator 42 (hereinafter referred to as the pump control signal secondary pressure).
  • the regulator 42 is a positive control system that increases the pump volume (discharge flow rate) of the hydraulic pump 41 as the input operation pilot pressure (pump control signal secondary pressure) increases.
  • the controller 60 calculates the pump target volume of the hydraulic pump 41 based on the detection results of the operation pilot pressure sensors SE1, SE2, and controls the proportional solenoid valve 45 based on the pump target volume. That is, the proportional solenoid valve 45 changes the opening area based on the control signal from the controller 60, so that the pump control signal (operation pilot pressure) input to the regulator 42 via the shuttle valve 43 is supplied as the pump control signal. This is a signal adjustment valve that can be adjusted by reducing the primary pressure to the pump control signal secondary pressure.
  • the proportional electromagnetic valve 45 is held at the position shown in FIG. 2 (maximum opening area) when there is no pump control signal from the controller 60, and moves upward in FIG. Decrease.
  • the proportional solenoid valve 45 reduces the pump control signal input to the regulator 42 and restricts it in a fine operation region of the lever operation amount that does not require a large flow rate for the hydraulic actuator, so that the discharge flow rate of the hydraulic pump This reduces the loss of the bleed-off flow that throws away unnecessary pump discharge flow into the tank.
  • FIG. 3 is a functional block diagram showing the calculation content of the pump target volume in the controller.
  • the controller 60 includes a pump target volume calculation unit C1, a pump control signal pressure target value calculation unit C2, a response priority mode switching unit C3, a pump flow rate control proportional solenoid valve valid / invalid switching unit C4, and proportional electromagnetics.
  • a valve current calculation unit C5 is provided.
  • the pump target volume calculation unit C1 calculates the pump target volume based on the lever operation amount (operation pilot pressure) of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2 and a predetermined table.
  • the pump control signal pressure target value calculation unit C2 calculates a pump control signal secondary pressure target value based on the pump target volume calculated by the pump target volume calculation unit C1 and a predetermined table.
  • the table used to calculate the pump control signal secondary pressure target value from the pump target volume is the change in the pump volume of the hydraulic pump 41 by the pump control signal (pilot pressure) that is set in hardware by the positive control regulator 42. Set from characteristics.
  • the responsiveness priority mode switching unit C3 determines whether or not the operation that requires the responsiveness of the bucket operation is performed based on the lever operation amount of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2. If it is determined that an operation requiring responsiveness is being performed, the operation mode is switched to the responsiveness priority mode, and if not, the operation mode is switched to the normal mode.
  • the responsiveness priority mode refers to, for example, a case where the operation lever device 52 is repeatedly tilted in the bucket dump direction and returned to the bucket dump in a short time, such as gravel operation using a bucket for excavation, or on the bottom surface.
  • the operation lever device 52 is repeatedly moved and returned in the bucket dump direction and bucket cloud direction in a short time to vibrate the bucket.
  • this is an operation mode that is switched in an operation that requires responsiveness, such as when the operation amount of the operation lever device 52 changes intermittently and frequently in a short time.
  • the opening area of the proportional solenoid valve 45 is widened to increase the responsiveness.
  • the normal mode is an operation mode that is switched during an operation other than the response priority mode.
  • the opening area of the proportional solenoid valve 45 is narrowed and input to the regulator 42.
  • the pump flow control proportional solenoid valve valid / invalid switching unit C4 calculates the calculation result (pump control signal secondary pressure target) of the pump control signal pressure target value calculation unit C2 according to the operation mode switched by the response priority mode switching unit C3.
  • the output of the pump control signal pressure target value calculation unit C2 is used as it is in the subsequent processing block (proportional solenoid valve current calculation unit C5).
  • the pump control signal secondary pressure target value is replaced with the maximum pilot pressure (for example, 4 MPa) of the hydraulic circuit system 40, and the processing block ( Output to the proportional solenoid valve current calculation unit C5).
  • the proportional solenoid valve current calculation unit C5 generates a control signal for the proportional solenoid valve 45 based on the target pressure of the proportional solenoid valve 45 input from the pump flow control proportional solenoid valve valid / invalid switching unit C4 and a predetermined table.
  • the proportional electromagnetic valve 45 is driven by calculating and outputting. That is, when the response priority mode switching unit C3 is switched to the normal mode, the pump control signal primary pressure is changed to the pump control signal secondary pressure based on the calculation result of the pump control signal pressure target value calculation unit C2.
  • the proportional solenoid valve 45 is driven so that the pressure is reduced.
  • the proportional solenoid valve 45 is driven so that the pressure reduction in the proportional solenoid valve 45 becomes invalid.
  • FIG. 4 is a functional block diagram showing details of processing contents of the pump target volume calculation unit.
  • the pump target volume calculation unit C1 calculates the pump target volume of the hydraulic pump 41 based on the operation pilot pressure corresponding to the bucket cloud operation, that is, the detection result of the operation pilot pressure sensor SE1 and a predetermined table. Calculate the pump target volume of the hydraulic pump 41 based on the bucket cloud target volume calculation unit T1 to be calculated, the operation pilot pressure corresponding to the bucket dump operation, that is, the detection result of the operation pilot pressure sensor SE2, and a predetermined table. The larger one of the calculation results of the bucket dump target volume calculation unit T2, the bucket cloud target volume calculation unit T1, and the bucket dump target volume calculation unit T2 is output as the pump target volume calculation result of the pump target volume calculation unit C1. And a maximum value selection unit T3.
  • the table set in the bucket cloud target volume calculation unit T1 sets the input value (operation amount on the bucket cloud side of the operating lever device 52) on the horizontal axis and the pump target volume on the vertical axis.
  • the graph target table is set so that the pump target volume increases as the operation amount on the bucket cloud side of the operation lever device 52 increases.
  • the target volume (shown by a solid line) of the hydraulic pump 41 is set so as to minimize pressure loss and flow rate loss according to the opening area of the control valve 44. Therefore, it is set to be smaller than the reference volume (indicated by a dotted line) of the hydraulic pump 41.
  • the reference volume of the hydraulic pump 41 corresponds to the relationship between the pilot pressure (pump control signal) input to the regulator 42 and the pump volume.
  • the table set in the bucket dump target volume calculation unit T2 for example, as shown in FIG. 4, the horizontal axis represents the input value (the operation amount on the bucket dump side of the operation lever device 52), and the vertical axis represents the pump target. It is a graph-like table in which the volume is set, and is set so that the pump target volume increases as the operation amount on the bucket dump side of the operation lever device 52 increases.
  • the target volume (shown by a solid line) of the hydraulic pump 41 is set so as to minimize pressure loss and flow rate loss according to the opening area of the control valve 44. Therefore, it is set to be smaller than the reference volume (indicated by a dotted line) of the hydraulic pump 41.
  • the maximum value selection unit T3 outputs the larger one of the calculation results of the bucket cloud target volume calculation unit T1 and the bucket dump target volume calculation unit T2 as the calculation result of the pump target volume of the pump target volume calculation unit C1.
  • FIG. 5 is a flowchart for explaining processing contents in the responsiveness priority mode switching unit.
  • the responsiveness priority mode switching unit C3 repeatedly performs the mode determination process (steps S100 to S161) at intervals of time ⁇ t. That is, the time ⁇ t is a cycle in which the mode determination process is repeatedly performed, and is a sampling cycle of the operation pilot pressure sensors SE1 and SE2, and for example, a unit time (for example, 10 ms) of internal calculation in the controller 60 is used.
  • the responsiveness priority mode switching unit C3 first detects the pilot pressure detection value corresponding to the bucket operation at the time of the previous mode determination process (time t ⁇ t), that is, the previous time of the operation pilot pressure sensors SE1 and SE2. Whether the current detection result (current value) is equal to or greater than the threshold value PI_ON (step S100).
  • the threshold value PI_ON is a reference for determining whether or not the operation of the bucket 35 (bucket cloud operation or bucket dump operation) has been performed by the operation lever device 52, and the detection results of the operation pilot pressure sensors SE1 and SE2 are the threshold values.
  • step S100 If it is less than PI_ON, it is determined that the operation lever device 52 is not operated (is in the neutral position), and if it is less than the threshold value PI_ON, it is determined that the operation lever device 52 is operated. If the previous value does not exist for the reason that the process in step S100 is the first mode determination process, the determination in step S100 is performed assuming that the previous value is less than the threshold value PI_ON.
  • step S130 it is determined whether or not the timer T is smaller than a predetermined reference time Tmax (for example, 0.5 seconds) (step S130).
  • a predetermined reference time Tmax for example, 0.5 seconds
  • Step S150 it is determined whether the count N is equal to or greater than a predetermined reference number Nmax (for example, 2 times). If the determination result in step S150 is YES, in other words, the number of times the bucket 35 is operated by the operation lever device 52 within a certain time (here, the reference time Tmax) is a certain number (here, the reference number Nmax). If it is above, the mode is switched to the response priority mode (step S160). If the determination result in step S150 is NO, the mode is switched to the normal mode (step S161), and the mode determination process (steps S100 to S161) is performed. repeat.
  • a predetermined reference number Nmax for example, 2 times.
  • the response priority mode is switched.
  • the pressure reduction of the control signal of the regulator 42 by the proportional solenoid valve 45 is invalidated.
  • the pump volume can be increased in an operation in which the operation amount of the operation lever device 52 changes intermittently and frequently in a short time, so that the responsiveness of the bucket operation can be increased.
  • the normal mode is set when a normal operation other than the operation that sets the responsiveness priority mode is performed.
  • the control signal input to the regulator 42 is reduced and limited (adjusted) by the proportional solenoid valve 45 in accordance with the operation amount of the operation lever device 52.
  • the adjustment of the control signal at this time uses an optimized table (see bucket dump target volume calculation units T1 and T2) that can minimize excessive pressure loss at the control valve 44 and flow rate loss from the center bypass passage. , Fuel consumption can be reduced.
  • the pump of the hydraulic pump It is known to reduce the loss of the bleed-off flow rate by discarding unnecessary pump discharge flow rate into the tank by reducing the volume.
  • the pump reference flow rate according to the lever operation amount to the minimum required pump discharge flow rate according to the opening of the bleed-off valve, pressure loss and bleed-off flow loss are minimized without deteriorating operability. Some of them are known to be suppressed.
  • the response of increase / decrease in the discharge flow rate in the variable displacement hydraulic pump tends to be slower than the response of the directional control valve or the electronically controlled bleed-off valve. Therefore, since it takes time until the discharge flow rate of the hydraulic pump reaches an appropriate discharge flow rate with respect to the opening of the directional control valve and the bleed-off valve, the discharge pressure of the hydraulic pump does not increase until it overcomes the load pressure of the hydraulic actuator. There is a problem that the operation of the hydraulic actuator is delayed. In other words, when the operation lever is operated intermittently and quickly, the operation lever is returned before the pump flow rate finishes increasing, so the pump flow rate is less than in the steady operation, and the operation of the hydraulic actuator becomes extremely worse. There is concern.
  • a skeleton bucket (a bucket in which a mesh hole is opened on the bottom of the bucket and fine earth and sand falls) is attached.
  • Concreed Gala sieving operation In such a sieving operation, it is necessary to vibrate the bucket part by continually turning back the bucket operation (which may be accompanied by an arm operation) to screen the dust in the bucket. There is a concern that the actuator may not operate sufficiently due to a delay in the rise.
  • variable displacement hydraulic pump 41 driven by a prime mover (for example, the engine 22) and a plurality of driven members (for example, the boom 31, the arm 33, and the bucket 35) are rotated.
  • a multi-joint type front work machine 30 configured to be movable and a plurality of hydraulic actuators (for example, boom cylinders 32) that are driven by pressure oil discharged from a hydraulic pump and respectively drive a plurality of driven members.
  • a plurality of operating devices for example, operating lever device 52 for controlling the valve, and at least one of the plurality of operating devices;
  • One or more operation amount detection devices for example, operation pilot pressure sensors SE1, SE2 for detecting the operation amount of the operation device, and the operation amount of at least one operation device among the plurality of operation devices are generated.
  • a controller that controls a signal adjustment valve based on a detection result of an operation amount from at least one operation amount detection device among the operation amount detection devices that detect an operation amount of the operation device related to the control device, Normal mode in which the pump control signal is adjusted by the adjustment valve, and responsiveness priority mode in which the pump control signal is not adjusted by the signal adjustment valve
  • the bucket operation is switched between the normal mode and the response priority mode, and the pump volume control mode is changed according to the operation mode.
  • the same effect can be obtained when the arm operation is switched between the normal mode and the responsiveness priority mode instead of (or in addition to) the bucket operation.
  • FIG. 6 is a functional block diagram showing the calculation contents of the pump target volume in the controller.
  • the controller 60A includes a pump target volume calculation unit C1, a pump control signal pressure target value calculation unit C2, a response priority mode switching unit C3, a pump flow rate control proportional solenoid valve valid / invalid switching unit C4, a proportional solenoid valve current.
  • a calculation unit C5 and a responsiveness priority mode valid / invalid switching unit C6 are provided.
  • the controller 60A is disposed in the cabinet 23, and a monitor (display device) 63a for displaying various information and setting screens related to the excavator 100, and operations for operating various setting screens displayed on the monitor 63a.
  • the input / output device 63 in which the switch group 63b is arranged is connected. Since the operation switch group 63b only needs to be able to operate the content displayed on the monitor 63a, for example, a configuration may be adopted in which selection and determination are performed by rotating and pressing the rotation switch.
  • the pump target volume calculation unit C1 calculates the pump target volume based on the lever operation amount (operation pilot pressure) of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2 and a predetermined table.
  • the pump control signal pressure target value calculation unit C2 calculates a pump control signal secondary pressure target value based on the pump target volume calculated by the pump target volume calculation unit C1 and a predetermined table.
  • the table used to calculate the pump control signal secondary pressure target value from the pump target volume is set from the change characteristic of the pump volume of the hydraulic pump 41 by the pump control signal pressure that is set in hardware by the positive control regulator 42. To do.
  • the responsiveness priority mode switching unit C3 determines whether or not the operation that requires the responsiveness of the bucket operation is performed based on the lever operation amount of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2. If it is determined that an operation requiring responsiveness is being performed, the operation mode is switched to the responsiveness priority mode, and if not, the operation mode is switched to the normal mode.
  • the responsiveness priority mode valid / invalid switching unit 6C responds based on a work mode signal from the input / output device (work mode setting device) 63 and a predetermined valid / invalid determination table 300 (see FIG. 8 later).
  • the pump flow control proportional solenoid valve valid / invalid switching unit C4 in the operation mode switched by the power priority mode switching unit C3 is switched between valid / invalid.
  • the work mode signal input to the responsive priority mode valid / invalid switching unit 6C is output corresponding to the work mode set in the input / output device (work mode setting device) 63. It is set by the operator in accordance with the work contents to be performed.
  • the responsiveness priority mode valid / invalid switching unit 6C selects the responsiveness priority mode among the operation modes switched by the responsiveness priority mode switching unit C3 based on the work mode signal and a predetermined valid / invalid determination table 300. Switch between valid and invalid. Specifically, the responsiveness priority mode valid / invalid switching unit 6C determines whether valid / invalid is set in the valid / invalid determination table 300 for the work mode based on the work mode signal, and is set to valid.
  • the signal indicating the result of the operation mode (ie, “normal mode” or “responsiveness priority mode”) switched by the responsiveness priority mode valid / invalid switching unit 6C is used as it is.
  • the responsiveness priority mode valid / invalid switching unit 6C determines that the responsiveness priority mode is invalid when the work mode based on the work mode signal is set to invalid, and the responsiveness priority mode valid / Regardless of the operation mode switched by the invalid switching unit 6C (that is, whether the operation mode is “normal mode” or “responsiveness priority mode”), a signal indicating the “normal mode” is sent to the pump flow rate.
  • the valid / invalid determination table may be set by the input / output device 63 and stored in the responsiveness priority mode valid / invalid switching unit 6C.
  • the pump flow rate control proportional solenoid valve valid / invalid switching unit C4 calculates the calculation result of the pump control signal pressure target value calculation unit C2 according to the operation mode switched by the response priority mode valid / invalid switching unit 6C (pump control signal 2
  • the output of the pump control signal pressure target value calculation unit C2 is used as it is in the subsequent processing block (proportional solenoid valve current calculation).
  • the pump control signal secondary pressure target value is replaced with the maximum pilot pressure (for example, 4 MPa) of the hydraulic circuit system 40, and the subsequent stage It outputs to a processing block (proportional solenoid valve current calculating part C5).
  • the proportional solenoid valve current calculation unit C5 generates a control signal for the proportional solenoid valve 45 based on the target pressure of the proportional solenoid valve 45 input from the pump flow control proportional solenoid valve valid / invalid switching unit C4 and a predetermined table.
  • the proportional electromagnetic valve 45 is driven by calculating and outputting. That is, when the response priority mode switching unit C3 is switched to the normal mode, the pump control signal primary pressure is changed to the pump control signal secondary pressure based on the calculation result of the pump control signal pressure target value calculation unit C2.
  • the proportional solenoid valve 45 is driven so that the pressure is reduced.
  • the proportional solenoid valve 45 is driven so that the pressure reduction in the proportional solenoid valve 45 becomes invalid.
  • FIG. 7 is a diagram showing an example of a configuration menu configuration displayed on the monitor (display device) of the input / output device.
  • information that can be displayed on the monitor 63 a of the input / output device 63 by operating the operation switch group 63 b by the operator includes an information menu 210 and a setting menu 220 that are displayed by selecting the main menu 200.
  • a work mode setting menu 230 for setting the work mode in accordance with the work content performed by the front work machine 30.
  • the work mode setting menu 230 is selected, for example, an excavation mode 231, a crane mode 232, a breaker mode 233, a crusher mode 234, a crusher mode 235, a tilt bucket mode 236, and the like are displayed as work modes.
  • a work mode is set by selecting a desired work mode. From the input / output device 63, a work mode signal indicating the set work mode is output to the response priority mode valid / invalid switching unit 6C of the controller 60A.
  • FIG. 8 is a diagram illustrating an example of a valid / invalid determination table for determining whether or not switching to the responsiveness priority mode for each work mode is possible.
  • the validity / invalidity determination table 300 indicates whether or not switching to a plurality of types of work modes 301 and the responsiveness priority mode set corresponding to each work mode, that is, valid or invalid.
  • Setting state 302. In the valid / invalid determination table 300, for example, in the crane mode 232 in which a delicate operation is required and the breaker mode 233 in which a heavy attachment whose movement is likely to change suddenly is used, switching to the responsive priority mode is set to invalid. ing.
  • excavation mode 231, tilt bucket mode 236, etc. there is a possibility that operations requiring responsiveness such as sieving operation of gravel and graveling operation may be performed, so it is effective to switch to responsiveness priority mode It is set.
  • the responsiveness priority mode can be disabled in a predetermined work mode, the responsiveness priority mode is switched to a work mode that requires delicate movements or a work mode that uses heavy attachments that tend to change suddenly. Can be set to be invalid, and operability can be improved.
  • This embodiment shows a case where a negative control method is adopted for the regulator of the first embodiment.
  • FIG. 9 is a diagram schematically showing an essential part of the hydraulic circuit system according to the present embodiment.
  • the bucket cylinder 36 and its related configuration are shown as representatives among the plurality of hydraulic actuators, and the other hydraulic actuators and their related configurations are not shown for the sake of simplicity.
  • a hydraulic circuit system 40B includes a variable displacement hydraulic pump 41 and a fixed displacement pilot pump (pilot hydraulic source) 49 driven by the engine 22, and a hydraulic oil tank that is a hydraulic oil supply source of the hydraulic pump. 48 and an operation pilot pressure (operation signal) guided from the operation lever device 52 for operating the bucket through the pilot lines L1 and L2, is supplied from the hydraulic pump 41 to the hydraulic actuator (bucket cylinder) 36 through the discharge line L4.
  • a control valve (direction switching valve) 44 for controlling the direction and flow rate of the hydraulic oil and an operation pilot pressure sensor (operation) for detecting the operation amount of the operation lever device 52 by detecting the operation pilot pressure of the pilot lines L1 and L2.
  • a regulator 42a that controls the pump volume (tilt angle) of the hydraulic pump 41 based on a pilot pressure (pump control signal) generated according to the operation, and a pump control signal that is input from the operation lever device 52 to the regulator 42a.
  • the proportional electromagnetic valve 56 (signal adjustment valve) that can be adjusted and a controller 60B that controls the proportional electromagnetic valve 56 based on the operation amount detection results from the operation pilot pressure sensors SE1 and SE2 are schematically configured.
  • a relief valve 41a that defines the upper limit of the discharge pressure of the hydraulic pump 41 is installed.
  • the center bypass line L5 which is a return line of pressure oil from the control valve 44 to the hydraulic oil tank 48, an upper limit of the pressure on the throttle 53 and the control valve 44 side (that is, the hydraulic pump 41 side) of the throttle 53.
  • a relief valve 54 is provided.
  • the pressure (pump flow rate signal) generated by reducing the pressure on the control valve 44 side (that is, the hydraulic pump 41 side) of the throttle 53 (referred to as a pump flow rate control signal) and the discharge pressure of the pilot pump 49 by the proportional solenoid valve 56.
  • the lower pressure is guided to the shuttle valve 55, and the larger pressure is selectively output to the pilot line L13 as a pump control signal (pilot pressure) and input to the regulator 42a.
  • the regulator 42a is a negative control system that decreases the pump volume of the hydraulic pump 41 as the input pilot pressure (pump control signal) increases.
  • Controller 60B calculates the pump target volume of hydraulic pump 41 based on the detection results of operation pilot pressure sensors SE1, SE2, and controls proportional solenoid valve 56 based on the pump target volume. That is, the proportional solenoid valve 56 and the shuttle valve 55 generate a pump flow rate lowering signal by changing the opening area based on the control signal from the controller 60B, and supply the pump flow rate lowering signal to the pilot line L13 via the shuttle valve 55.
  • a signal adjustment valve capable of adjusting the pump control signal input to the regulator 42a is configured. Since the proportional solenoid valve 56 is held at the position (opening area maximum) shown in FIG. 2 when there is no control signal from the controller 60B, the proportional solenoid valve 56 moves upward in FIG. Decrease.
  • the proportional solenoid valve 56 is controlled to take a larger opening area when the hydraulic actuator does not require a large flow rate, that is, when the lever operation amount is in the fine operation region, and the pump flow rate reduction signal is output.
  • the regulator 42a By inputting to the regulator 42a as a pump control signal via the shuttle valve 55, by reducing the discharge flow rate of the pressure hydraulic pump of the pump control signal, the loss of the bleed-off flow rate that discards unnecessary pump discharge flow rate to the tank can be reduced. To reduce.
  • FIG. 10 is a functional block diagram showing the calculation contents of the pump target volume in the controller.
  • the controller 60B includes a pump target volume calculation unit C1, a pump flow rate decrease signal pressure target value calculation unit C12, a response priority mode switching unit C3, a pump flow rate decrease proportional solenoid valve valid / invalid switching unit C14, and a proportional An electromagnetic valve current calculation unit C5 is provided.
  • the pump target volume calculation unit C1 calculates the pump target volume based on the lever operation amount (operation pilot pressure) of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2 and a predetermined table.
  • the pump flow rate reduction signal pressure target value calculation unit C12 calculates the pump flow rate reduction signal target pressure based on the pump target volume calculated by the pump target volume calculation unit C1 and a predetermined table.
  • the table used to calculate the pump flow rate reduction signal target pressure from the pump target volume is based on the change characteristic of the pump volume of the hydraulic pump 41 by the pump control signal (pilot pressure) set in hardware by the negative control regulator 42a. Set.
  • the responsiveness priority mode switching unit C3 determines whether or not the operation that requires the responsiveness of the bucket operation is performed based on the lever operation amount of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2. If it is determined that an operation requiring responsiveness is being performed, the operation mode is switched to the responsiveness priority mode, and if not, the operation mode is switched to the normal mode.
  • the pump flow rate lowering proportional solenoid valve valid / invalid switching unit C14 calculates the calculation result (pump flow rate lowering signal) of the pump flow rate lowering signal pressure target value computing unit C12 according to the operation mode switched by the response priority mode switching unit C3.
  • the output of the pump flow rate lowering signal pressure target value calculation unit C12 is directly output to the subsequent processing block (proportional solenoid valve current calculation unit C5).
  • the pump flow rate lowering signal is replaced with the minimum pilot pressure (for example, 0 (zero) MPa) of the hydraulic circuit system 40, and the subsequent processing block (proportional electromagnetic To the valve current calculation unit C5).
  • the proportional solenoid valve current calculation unit C5 outputs a control signal for the proportional solenoid valve 56 based on the target pressure of the proportional solenoid valve 56 input from the pump flow rate reduction proportional solenoid valve valid / invalid switching unit C14 and a predetermined table.
  • the proportional electromagnetic valve 56 is driven by calculating and outputting. That is, when the response priority mode switching unit C3 is switched to the normal mode, the proportional solenoid valve is configured so that the pump flow rate reduction signal is generated based on the calculation result of the pump flow rate reduction signal pressure target value calculation unit C12. When the operation mode is switched to the response priority mode, the proportional solenoid valve 56 is driven so that the pressure reduction in the proportional solenoid valve 56 becomes invalid.
  • the response priority mode is switched.
  • the generation of the pump flow rate reduction signal by the proportional solenoid valve 56 and the input as the pump control signal to the regulator 42a via the shuttle valve 55 are invalidated.
  • the pressure (pump flow rate control signal) on the hydraulic pump 41 side of the throttle 53 of the center bypass line L5 is always selected as the pump control signal by the shuttle valve 55, so that the operation amount of the operation lever device 52 is intermittently interrupted.
  • the pump volume can be increased and the responsiveness of the bucket operation can be increased.
  • the normal mode is set when a normal operation other than the operation that sets the responsiveness priority mode is performed.
  • the mode is switched to the normal mode, the generation of the pump flow rate reduction signal by the proportional solenoid valve 56 is enabled according to the operation amount of the operation lever device 52, and is input to the regulator 42a as the pump control signal via the shuttle valve 55.
  • the regulator 42a adjusts the input pump control signal.
  • the adjustment of the control signal at this time uses an optimized table (see bucket dump target volume calculation units T1 and T2) that can minimize excessive pressure loss at the control valve 44 and flow rate loss from the center bypass passage. , Fuel consumption can be reduced.
  • variable displacement hydraulic pump 41 driven by the prime mover (for example, the engine 22) and the plurality of driven members (for example, the boom 31, the arm 33, and the bucket 35) rotate.
  • a multi-joint type front work machine 30 configured to be connected to a plurality of hydraulic actuators (for example, boom cylinders) that are driven by pressure oil discharged from the hydraulic pump and respectively drive the plurality of driven members.
  • a plurality of directional control valves for example, control valve 44
  • a plurality of operating devices for example, operating lever device 52
  • One or more operation amount detection devices for example, operation pilot pressure sensors SE1 and SE2 for detecting an operation amount of at least one operation device, and an operation amount of at least one operation device among a plurality of operation devices.
  • a regulator 42 that controls the pump volume of the hydraulic pump based on the generated pump control signal, and a signal adjustment valve (for example, a proportional solenoid valve 45; a shuttle valve 55) that can adjust the pump control signal input to the regulator.
  • a signal adjustment valve for example, a proportional solenoid valve 45; a shuttle valve 55
  • a controller for controlling the signal adjustment valve and the controller is configured to adjust the pump control signal by the signal adjustment valve. Mode and was assumed to be switched to one of the not adjusted responsive priority mode of the pump control signal by the signal control valve.
  • the regulator is a positive control system that increases the pump volume of the hydraulic pump as the pump control signal increases, and the signal
  • the regulating valve is a proportional solenoid valve capable of reducing the pilot pressure input as a pump control signal to the regulator.
  • the controller determines that the number of times that the operation amount of the operating device has risen beyond a predetermined threshold value within a predetermined time period. When the predetermined number of times has been exceeded, switching to the response priority mode in which the pump control signal is not adjusted by the signal adjustment valve.
  • the work machine of (1) includes a work mode setting device that sets a work mode according to the work content performed by the front work machine, and the controller includes the work mode.
  • the work mode set by the setting device when the response priority mode is set in advance to be invalid, it is not switched to the response priority mode.
  • the responsiveness priority mode can be disabled in a predetermined work mode, so the responsiveness priority mode is required in work modes that require delicate movements or work modes that use heavy attachments that tend to change suddenly. Switching to can be set to be invalid, and operability can be improved.
  • the regulator is a negative control system that decreases the pump volume of the hydraulic pump as the pump control signal increases, and the signal The regulating valve is generated to limit the pump volume control pilot pressure generated so as to decrease as the operation amount of the operating device related to the generation of the pump control signal increases and the pump volume of the hydraulic pump.
  • a shuttle valve that selectively guides the larger pump volume limiting pilot pressure as a pump control signal to the regulator, and a proportional solenoid valve that can reduce the pump volume limiting pilot pressure input to the shuttle valve. It was supposed to be.
  • the present invention is not limited to the above-described embodiment, and includes various modifications and combinations within the scope not departing from the gist thereof. That is, in each of the embodiments described above, the case where the pump control signal is generated according to the operation amount of the operation lever device 52 related to the bucket 35 has been described as an example. Depending on the operation amount of the hydraulic actuator (for example, the boom cylinder 32, the arm cylinder 34, the swing hydraulic motor 27, etc.), that is, when the pump control signal is generated by using the operation amounts of a plurality of hydraulic actuators in combination. The present invention may be applied.
  • the hydraulic actuator for example, the boom cylinder 32, the arm cylinder 34, the swing hydraulic motor 27, etc.
  • the normal mode and the response priority mode are switched based on the operation amount of the operation lever device 52 related to the bucket 35 .
  • the normal mode and response based on the amount of operation of the hydraulic actuator (for example, the arm cylinder 34 related to the arm 33 that may be operated quickly when the bucket is vibrated).
  • the priority mode may be switched, or the operation amount may be used in combination to switch between the normal mode and the response priority mode.
  • the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted. Moreover, you may implement
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Hydraulic pump 41a ... Relief valve, 42, 42a ... Regulator, 43 ... Shuttle valve, 44 ... Control valve ( Directional switching valve), 44a ... check valve, 45, 56 ... proportional solenoid valve, 48 ... Hydraulic oil tank 49 ... Pilot pump (pilot hydraulic power source) 52 ... Operation lever device (operation device) 52a ... Operation lever 52b ... Operation signal generator 52b ... Operation signal generator 53 ... Restriction 54 ... Relief Valve, 55 ... Shuttle valve, 60, 60A, 60B ... Controller, 63 ... I / O device (work mode setting device), 63a ... Monitor (display device), 63b ... Operation switch group, 100 ... Hydraulic excavator (work machine), 200 ... main menu, 210 ... information menu, 220 ... setting menu, 230 ... work mode setting menu, SE1, SE2 ... operation pilot pressure sensor (operation amount detection device)

Abstract

A work machine provided with: a regulator (42) for controlling the pump capacity of a variable capacity hydraulic pump (41) on the basis of a pump control signal generated according to the operation amount of an operation lever device (52) for a bucket (35); a proportional electromagnetic valve (45) that is capable of adjusting the pump control signal input to the regulator; and a controller for controlling the proportional electromagnetic valve (45) on the basis of the operation amount of the operation lever device (52). The controller is able to switch to either a normal mode in which adjustment of the pump control signal is performed by the signal adjustment valve or a responsiveness-priority mode in which adjustment of the pump control signal by the signal adjustment valve is not performed. As a result, it is possible to achieve both reduction of pressure loss and flow loss, which result from control of the flow discharged from the hydraulic pump, and responsiveness of a hydraulic actuator with intermittent, sudden lever operations.

Description

作業機械Work machine
 本発明は、作業機械に関する。 The present invention relates to a work machine.
 油圧ショベルなどの作業機械においては、原動機で油圧ポンプを駆動し、油圧ポンプから吐出される圧油で油圧シリンダなどの油圧アクチュエータを駆動することが一般に行われている。油圧アクチュエータの速度および動作方向は、運転室内に設けられた操作レバー装置に連動して動作する方向制御弁によって油圧ポンプから油圧アクチュエータに供給される圧油の方向および流量を制御することで行われる。 In a working machine such as a hydraulic excavator, a hydraulic pump is generally driven by a prime mover, and a hydraulic actuator such as a hydraulic cylinder is driven by pressure oil discharged from the hydraulic pump. The speed and direction of operation of the hydraulic actuator are performed by controlling the direction and flow rate of the pressure oil supplied from the hydraulic pump to the hydraulic actuator by a direction control valve that operates in conjunction with an operation lever device provided in the cab. .
 近年は、省エネルギーや地球環境保護の観点から作業機械の低燃費化のニーズが高まっており、油圧ポンプから油圧アクチュエータへの油圧エネルギーの流れにおいても損失の極小化が図られている。油圧エネルギーは使用する圧油の圧力と体積の積であることから、エネルギー損失低減のためにはポンプの吐出圧から油圧アクチュエータの入口圧までの圧力損失、或いは、油圧ポンプの吐出流量と油圧アクチュエータの入口流量の差である流量損失を低減することが考えられる。 In recent years, there has been an increasing need for lower fuel consumption of work machines from the viewpoint of energy saving and protection of the global environment, and the loss of hydraulic energy from the hydraulic pump to the hydraulic actuator has been minimized. Since the hydraulic energy is the product of the pressure and volume of the pressure oil used, in order to reduce energy loss, the pressure loss from the pump discharge pressure to the hydraulic actuator inlet pressure, or the hydraulic pump discharge flow rate and the hydraulic actuator It is conceivable to reduce the flow rate loss, which is the difference in the inlet flow rate.
 流量損失を低減する方法としては、例えば、油圧アクチュエータに多くの流量が必要ないようなレバー操作量の微操作の領域では、油圧ポンプの吐出流量を少なくすることによって不必要なポンプ吐出流量をタンクに捨てるブリードオフ流量の損失を低減するものが知られている。また、さらに流量損失を低減するものとして、例えば、特許文献1には、レバー操作量に応じたポンプ基準流量をブリードオフ弁の開度に応じて必要最低限のポンプ吐出流量に調整することで、操作性を悪化させることなく圧損やブリードオフ流量損失を最低限に抑える技術が開示されている。 As a method of reducing the flow rate loss, for example, in a fine operation region of a lever operation amount where a large amount of flow rate is not required for the hydraulic actuator, an unnecessary pump discharge flow rate is reduced by reducing the discharge flow rate of the hydraulic pump. It is known to reduce the loss of bleed-off flow that is discarded. Further, as an example of further reducing the flow loss, for example, in Patent Document 1, the pump reference flow rate according to the lever operation amount is adjusted to the minimum necessary pump discharge flow rate according to the opening of the bleed-off valve. A technique for minimizing pressure loss and bleed-off flow loss without deteriorating operability is disclosed.
特許第5886976号Patent No. 5886976
 しかしながら、上記従来技術には以下のような問題点がある。 However, the above prior art has the following problems.
 可変容積型の油圧ポンプにおける吐出流量の増加・減少の応答は、方向制御弁や電子制御のブリードオフ弁の応答よりも遅い傾向にある。したがって、油圧ポンプの吐出流量が方向制御弁やブリードオフ弁の開度に対して適切な吐出流量となるまで時間がかかるため、油圧ポンプの吐出圧が油圧アクチュエータの負荷圧に打ち勝つまで増加せず、油圧アクチュエータの動作が遅れてしまうという問題がある。つまり、操作レバーを断続的に素早く操作する場合では、ポンプ流量が増加し終える前に操作レバーが戻されるため、定常操作よりもポンプ流量が少なくなり、油圧アクチュエータの動作が極端に悪化してしまうことが懸念される。特に、電磁弁で油圧ポンプの流量制御信号圧を生成する場合には、電磁弁の制御遅れや、電磁弁を通過する際の圧損による信号圧の低下などによって、急激なポンプ制御信号圧の変化が行えない場合があった。 The response of increase / decrease in the discharge flow rate in the variable displacement hydraulic pump tends to be slower than the response of the directional control valve or electronically controlled bleed-off valve. Therefore, since it takes time until the discharge flow rate of the hydraulic pump reaches an appropriate discharge flow rate with respect to the opening of the directional control valve and the bleed-off valve, the discharge pressure of the hydraulic pump does not increase until it overcomes the load pressure of the hydraulic actuator. There is a problem that the operation of the hydraulic actuator is delayed. In other words, when the operation lever is operated intermittently and quickly, the operation lever is returned before the pump flow rate finishes increasing, so the pump flow rate is less than in the steady operation, and the operation of the hydraulic actuator becomes extremely worse. There is concern. In particular, when the flow control signal pressure of a hydraulic pump is generated by a solenoid valve, the pump control signal pressure changes suddenly due to a delay in control of the solenoid valve or a decrease in signal pressure due to pressure loss when passing through the solenoid valve. There was a case that could not be done.
 本発明は上記に鑑みてなされたものであり、油圧ポンプの吐出流量制御による圧力損失や流量損失の低減と、断続的な急レバー操作での油圧アクチュエータの応答性とを両立させることができる作業機械を提供することを目的とする。 The present invention has been made in view of the above, and is an operation capable of achieving both reduction in pressure loss and flow loss by controlling the discharge flow rate of the hydraulic pump and responsiveness of the hydraulic actuator in intermittent sudden lever operation. The purpose is to provide a machine.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、原動機により駆動される可変容積型の油圧ポンプと、複数の被駆動部材が回動可能に連結されて構成された多関節型のフロント作業機と、前記油圧ポンプから吐出される圧油により駆動され、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、前記油圧ポンプから前記複数の油圧アクチュエータにそれぞれ供給される圧油の方向及び流量を制御する複数の方向切換弁と、前記複数の方向切換弁を制御する複数の操作装置と、前記複数の操作装置のうち少なくとも1つの操作装置の操作量を検出する1つ以上の操作量検出装置と、前記複数の操作装置のうち少なくとも1つの操作装置の操作量に応じて生成されるポンプ制御信号に基づいて前記油圧ポンプのポンプ容積を制御するレギュレータと、前記レギュレータに入力される前記ポンプ制御信号を調整可能な信号調整弁と、前記ポンプ制御信号の生成に係わる前記操作装置の操作量を検出する前記操作量検出装置のうちの少なくとも1つの操作量検出装置からの操作量の検出結果に基づいて前記信号調整弁を制御するコントローラとを備え、前記コントローラは、前記信号調整弁により前記ポンプ制御信号の調整を行う通常モードと、前記信号調整弁による前記ポンプ制御信号の調整を行わない応答性優先モードとのいずれか一方に切り換え可能であるものとする。 The present application includes a plurality of means for solving the above-described problems. For example, a variable displacement hydraulic pump driven by a prime mover and a plurality of driven members are rotatably connected. A multi-joint type front working machine, a plurality of hydraulic actuators driven by pressure oil discharged from the hydraulic pump and respectively driving the plurality of driven members, and from the hydraulic pump to the plurality of hydraulic actuators, respectively. A plurality of directional control valves for controlling the direction and flow rate of the supplied pressure oil, a plurality of operating devices for controlling the plurality of directional switching valves, and an operation amount of at least one operating device among the plurality of operating devices. Based on one or more operation amount detection devices to be detected and a pump control signal generated according to an operation amount of at least one operation device among the plurality of operation devices. The regulator that controls the pump volume of the hydraulic pump, the signal adjustment valve that can adjust the pump control signal input to the regulator, and the operation that detects the operation amount of the operating device related to the generation of the pump control signal A controller that controls the signal adjustment valve based on a detection result of an operation amount from at least one operation amount detection device of the amount detection devices, and the controller adjusts the pump control signal by the signal adjustment valve. It is possible to switch between the normal mode in which the control is performed and the response priority mode in which the pump control signal is not adjusted by the signal adjustment valve.
 本発明によれば、油圧ポンプの吐出流量制御による圧力損失や流量損失の低減と、断続的な急レバー操作での油圧アクチュエータの応答性とを両立させることができる。 According to the present invention, it is possible to achieve both reduction in pressure loss and flow rate loss by controlling the discharge flow rate of the hydraulic pump, and responsiveness of the hydraulic actuator in intermittent sudden lever operation.
第1の実施の形態に係る作業機械の一例である油圧ショベルの外観を模式的に示す側面図である。It is a side view which shows typically the appearance of a hydraulic excavator which is an example of the working machine concerning a 1st embodiment. 第1の実施の形態に係る油圧回路システムの要部を抜き出して模式的に示す図である。It is a figure which extracts and shows typically the principal part of the hydraulic circuit system which concerns on 1st Embodiment. コントローラにおけるポンプ目標容積の演算内容を示す機能ブロック図である。It is a functional block diagram which shows the calculation content of the pump target volume in a controller. ポンプ目標容積演算部の処理内容の詳細を示す機能ブロック図である。It is a functional block diagram which shows the detail of the processing content of a pump target volume calculating part. 応答性優先モード切換部における処理内容を説明するフローチャートである。It is a flowchart explaining the processing content in the responsiveness priority mode switching part. 第1の実施の形態の変形例のコントローラにおけるポンプ目標容積の演算内容を示す機能ブロック図である。It is a functional block diagram which shows the calculation content of the pump target volume in the controller of the modification of 1st Embodiment. 第1の実施の形態の変形例における入出力装置のモニタ(表示装置)に表示される設定メニュー構成の一例を示す図である。It is a figure which shows an example of the setting menu structure displayed on the monitor (display apparatus) of the input / output device in the modification of 1st Embodiment. 第1の実施の形態の変形例における作業モードごとの応答性優先モードへの切り換えの可否を判定するための有効・無効判定テーブルの一例を示す図である。It is a figure which shows an example of the validity / invalidity determination table for determining the possibility of switching to the responsiveness priority mode for every work mode in the modification of 1st Embodiment. 第2の実施の形態に係る油圧回路システムの要部を抜き出して模式的に示す図である。It is a figure which extracts and shows typically the principal part of the hydraulic circuit system which concerns on 2nd Embodiment. 第2の実施の形態のコントローラにおけるポンプ目標容積の演算内容を示す機能ブロック図である。It is a functional block diagram which shows the calculation content of the pump target volume in the controller of 2nd Embodiment.
 以下、本発明の実施の形態を図面を参照しつつ説明する。なお、本実施の形態では、作業機械の一例として、フロント装置(フロント作業機)の先端に作業具としてバケットを備える油圧ショベルを例示して説明するが、バケット以外のアタッチメントを備える油圧ショベルに本発明を適用することも可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, as an example of a working machine, a hydraulic excavator provided with a bucket as a work tool at the tip of a front device (front working machine) will be described as an example. However, the present invention is applied to a hydraulic excavator provided with an attachment other than a bucket. The invention can also be applied.
 <第1の実施の形態>
  本発明の第1の実施の形態を図1~図5を参照しつつ説明する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施の形態に係る作業機械の一例である油圧ショベルの外観を模式的に示す側面図である。 FIG. 1 is a side view schematically showing the appearance of a hydraulic excavator that is an example of a working machine according to the present embodiment.
 図1において、油圧ショベル100は、垂直方向にそれぞれ回動する複数の被駆動部材(ブーム31、アーム33、バケット(作業具)35)を連結して構成された多関節型のフロント装置(フロント作業機)30と、車体を構成する上部旋回体20及び下部走行体10とを備えており、上部旋回体20は下部走行体10に対して旋回可能に設けられている。上部旋回体20は、基部となる旋回フレーム21上に各部材を配置して構成されており、上部旋回体20を構成する旋回フレーム21が下部走行体10に対して旋回可能となっている。また、フロント装置30のブーム31の基端は上部旋回体20の前部に垂直方向に回動可能に支持されており、アーム33の一端はブーム31の基端とは異なる端部(先端)に垂直方向に回動可能に支持されており、アーム33の他端にはバケット35が垂直方向に回動可能に支持されている。 In FIG. 1, a hydraulic excavator 100 is a multi-joint type front device (front) that is configured by connecting a plurality of driven members (boom 31, arm 33, bucket (work implement) 35) that rotate in the vertical direction. Working machine) 30 and an upper swing body 20 and a lower traveling body 10 constituting the vehicle body, and the upper swing body 20 is provided so as to be rotatable with respect to the lower traveling body 10. The upper swing body 20 is configured by disposing each member on a swing frame 21 serving as a base, and the swing frame 21 constituting the upper swing body 20 can swing with respect to the lower traveling body 10. Further, the base end of the boom 31 of the front device 30 is supported by the front portion of the upper swing body 20 so as to be rotatable in the vertical direction, and one end of the arm 33 is an end (tip) different from the base end of the boom 31. The bucket 35 is supported at the other end of the arm 33 so as to be rotatable in the vertical direction.
 下部走行体10は、左右一対のクローラフレーム12a(12b)にそれぞれ掛け回された一対のクローラ11a(11b)と、クローラ11a(11b)をそれぞれ駆動する走行油圧モータ13a(13b)とから構成されている。なお、下部走行体10の各構成については、左右一対のうちの一方の構成のみを図示して符号を付し、他方の構成については図中に括弧書きの符号のみを付して図示を省略する。 The lower traveling body 10 includes a pair of crawlers 11a (11b) wound around a pair of left and right crawler frames 12a (12b), and traveling hydraulic motors 13a (13b) that respectively drive the crawlers 11a (11b). ing. In addition, about each structure of the lower traveling body 10, only one structure of right-and-left pair is illustrated and attached | subjected and a code | symbol is attached | subjected about the other structure, and only the code | symbol in brackets is attached in the figure, and illustration is abbreviate | omitted To do.
 ブーム31、アーム33、バケット35、及び下部走行体10は、油圧アクチュエータであるブームシリンダ32、アームシリンダ34、バケットシリンダ36、及び左右の走行油圧モータ13a(13b)によりそれぞれ駆動される。また、上部旋回体20も同様に油圧アクチュエータである旋回油圧モータ27により減速機構26を介して駆動され、下部走行体10に対して旋回動作を行う。 The boom 31, the arm 33, the bucket 35, and the lower traveling body 10 are driven by a boom cylinder 32, an arm cylinder 34, a bucket cylinder 36, and left and right traveling hydraulic motors 13a (13b), which are hydraulic actuators. Similarly, the upper swing body 20 is also driven by a swing hydraulic motor 27 that is a hydraulic actuator via a speed reduction mechanism 26 and performs a swing operation on the lower traveling body 10.
 上部旋回体20を構成する旋回フレーム21上には、原動機であるエンジン22とともに、ブームシリンダ32、アームシリンダ34、バケットシリンダ36、旋回油圧モータ27及び左右の走行油圧モータ13a(13b)などの各油圧アクチュエータを駆動するための油圧回路システム40が搭載されている。 On the revolving frame 21 constituting the upper revolving structure 20, the engine 22 as a prime mover, the boom cylinder 32, the arm cylinder 34, the bucket cylinder 36, the revolving hydraulic motor 27, the left and right traveling hydraulic motors 13a (13b), etc. A hydraulic circuit system 40 for driving the hydraulic actuator is mounted.
 図2は、本実施の形態に係る油圧回路システムの要部を抜き出して模式的に示す図である。なお、図2においては複数の油圧アクチュエータのうちバケットシリンダ36とその関連構成のみを代表して図示し、それ以外の油圧アクチュエータ及びその関連構成については説明の簡単のために図示を省略する。 FIG. 2 is a diagram schematically showing an essential part of the hydraulic circuit system according to the present embodiment. In FIG. 2, only the bucket cylinder 36 and its related configuration are shown as representatives among the plurality of hydraulic actuators, and the other hydraulic actuators and their related configurations are not shown for simplicity of explanation.
 図2において、油圧回路システム40は、エンジン22によって駆動される可変容積型の油圧ポンプ41及び固定容積型のパイロットポンプ(パイロット油圧源)49と、油圧ポンプの作動油供給源である作動油タンク48と、バケット操作用の操作レバー装置52からパイロットラインL1,L2により導かれる操作パイロット圧(操作信号)に基づいて油圧ポンプ41から吐出ラインL4を介して油圧アクチュエータ(バケットシリンダ)36に供給される作動油の方向及び流量を制御するコントロールバルブ(方向切換弁)44と、パイロットラインL1,L2の操作パイロット圧を検出することにより操作レバー装置52の操作量を検出する操作パイロット圧センサ(操作量検出装置)SE1,SE2と、操作レバー装置52の操作に応じて生成されるパイロット圧(ポンプ制御信号)に基づいて油圧ポンプ41のポンプ容積(傾転角)を制御するレギュレータ42と、操作レバー装置52からレギュレータ42に入力されるポンプ制御信号を減圧することにより調整可能な比例電磁弁45(信号調整弁)と、操作パイロット圧センサSE1,SE2からの操作量の検出結果に基づいて比例電磁弁45を制御するコントローラ60とから概略構成されている。油圧ポンプ41からの吐出ラインL4には、油圧ポンプ41の吐出圧力の上限を規定するリリーフ弁41aが設置されている。 In FIG. 2, a hydraulic circuit system 40 includes a variable displacement hydraulic pump 41 and a fixed displacement pilot pump (pilot hydraulic source) 49 driven by the engine 22, and a hydraulic oil tank that is a hydraulic oil supply source of the hydraulic pump. 48 and an operation pilot pressure (operation signal) guided from the operation lever device 52 for operating the bucket through the pilot lines L1 and L2, is supplied from the hydraulic pump 41 to the hydraulic actuator (bucket cylinder) 36 through the discharge line L4. A control valve (direction switching valve) 44 for controlling the direction and flow rate of the hydraulic oil and an operation pilot pressure sensor (operation) for detecting the operation amount of the operation lever device 52 by detecting the operation pilot pressure of the pilot lines L1 and L2. (Quantity detection device) SE1, SE2 and operation lever device 52 operation The regulator 42 that controls the pump volume (tilt angle) of the hydraulic pump 41 based on the pilot pressure (pump control signal) generated according to the pressure, and the pump control signal that is input from the operation lever device 52 to the regulator 42 is reduced. The proportional electromagnetic valve 45 (signal adjusting valve) that can be adjusted by the operation, and the controller 60 that controls the proportional electromagnetic valve 45 based on the detection result of the operation amount from the operation pilot pressure sensors SE1 and SE2. . In the discharge line L4 from the hydraulic pump 41, a relief valve 41a that defines the upper limit of the discharge pressure of the hydraulic pump 41 is installed.
 オペレータが搭乗する運転室23(キャビネット:図1参照)には、油圧アクチュエータ27,32,34,36を操作するための操作信号を出力する複数の操作レバー装置(操作装置)が設けられている。このうち、バケット操作用の操作レバー装置52は、オペレータに傾倒操作される操作レバー52aと、操作レバー52aのレバー操作量及び操作方向に基づいてパイロットラインL1,L2に出力される操作信号を生成する操作信号生成部52bとを有している。操作信号生成部52bは、操作レバー52aが操作されると、その操作方向及び操作量に応じて図示しない一対の減圧弁の一方を作動させ、パイロットポンプ49のパイロット1次圧力をその操作量に応じたパイロット圧に減圧し、操作信号(操作パイロット圧)としてパイロットラインL1,L2の何れか一方に出力する。パイロットラインL1,L2には、操作パイロット圧を検出することにより操作レバー52aの操作量(以降、操作レバー装置52の操作量とも称する)を検出する操作パイロット圧センサ(操作量検出装置)SE1,SE2が配置されており、操作レバー52aによるバケットクラウドの操作信号が操作パイロット圧センサSE1で検出され、操作レバー52aによるバケットダンプの操作信号が操作パイロット圧センサSE2で検出されて、それぞれコントローラ60に送られる。なお、操作レバー装置は電気信号方式であってもよく、オペレータにより操作される操作レバー装置52からの操作信号に相当するレバーの傾倒量(すなわちレバー操作量)を電気的にコントローラ60に出力し、その検出したレバー操作量に基づいてコントローラ60で電磁比例弁などを制御することによって各油圧アクチュエータ27,32,34,36を駆動するパイロット圧を制御するように構成しても良い。 A driver's cab 23 (cabinet: see FIG. 1) in which an operator is boarded is provided with a plurality of operation lever devices (operation devices) that output operation signals for operating the hydraulic actuators 27, 32, 34, and 36. . Among these, the operation lever device 52 for operating the bucket generates an operation signal output to the pilot lines L1 and L2 based on the operation lever 52a tilted by the operator and the lever operation amount and operation direction of the operation lever 52a. And an operation signal generation unit 52b. When the operation lever 52a is operated, the operation signal generation unit 52b operates one of a pair of pressure reducing valves (not shown) according to the operation direction and the operation amount, and sets the pilot primary pressure of the pilot pump 49 to the operation amount. The pressure is reduced to the corresponding pilot pressure and output as an operation signal (operation pilot pressure) to one of the pilot lines L1 and L2. The pilot lines L1 and L2 include an operation pilot pressure sensor (operation amount detection device) SE1, which detects an operation amount of the operation lever 52a (hereinafter also referred to as an operation amount of the operation lever device 52) by detecting an operation pilot pressure. SE2 is arranged, the operation signal of the bucket cloud by the operation lever 52a is detected by the operation pilot pressure sensor SE1, and the operation signal of the bucket dump by the operation lever 52a is detected by the operation pilot pressure sensor SE2, and each is sent to the controller 60. Sent. The operation lever device may be an electric signal system, and the lever tilt amount corresponding to the operation signal from the operation lever device 52 operated by the operator (that is, the lever operation amount) is electrically output to the controller 60. The pilot pressure for driving the hydraulic actuators 27, 32, 34, 36 may be controlled by controlling the electromagnetic proportional valve or the like with the controller 60 based on the detected lever operation amount.
 操作レバー装置52にはバケット35の操作が割り当てられており、操作レバー装置52によってバケットクラウドが操作されると、その操作量に応じてコントロールバルブ44が図2中右側(すなわち、図2に示す方向)に駆動され、油圧ポンプ41から吐出された圧油がコントロールバルブ44を介してバケットシリンダ36のボトム室(バケットシリンダボトム室)36aに供給されるとともに、バケットシリンダ36のロッド室(バケットシリンダロッド室)36bの圧油がコントロールバルブ44を介して作動油タンク48に流れることにより、バケットシリンダ36が伸張してバケットクラウド動作が行われる。同様に、操作レバー装置52によってバケットダンプが操作されると、その操作量に応じてコントロールバルブ44が図2中左側に駆動され、油圧ポンプ41から吐出された圧油がコントロールバルブ44を介してバケットシリンダロッド室36bに供給されるとともに、バケットシリンダボトム室36aの圧油がコントロールバルブ44を介して作動油タンク48に流れることにより、バケットシリンダ36が縮短してバケットダンプ動作が行われる。また、操作レバー装置52による操作がなされていない場合には、コントロールバルブ44は中立位置となり、油圧ポンプ41から吐出された圧油がセンタバイパスラインL5を介して作動油タンク48に戻る。 An operation of the bucket 35 is assigned to the operation lever device 52, and when the bucket cloud is operated by the operation lever device 52, the control valve 44 is moved to the right side in FIG. 2 (that is, as shown in FIG. 2) according to the operation amount. ) And the pressure oil discharged from the hydraulic pump 41 is supplied to the bottom chamber (bucket cylinder bottom chamber) 36a of the bucket cylinder 36 via the control valve 44 and the rod chamber (bucket cylinder) of the bucket cylinder 36. The pressure oil in the rod chamber 36 b flows into the hydraulic oil tank 48 through the control valve 44, whereby the bucket cylinder 36 is extended and the bucket cloud operation is performed. Similarly, when the bucket dump is operated by the operation lever device 52, the control valve 44 is driven to the left in FIG. 2 according to the operation amount, and the pressure oil discharged from the hydraulic pump 41 passes through the control valve 44. While being supplied to the bucket cylinder rod chamber 36b, the pressure oil in the bucket cylinder bottom chamber 36a flows to the hydraulic oil tank 48 via the control valve 44, whereby the bucket cylinder 36 is shortened and the bucket dump operation is performed. When the operation by the operation lever device 52 is not performed, the control valve 44 is in the neutral position, and the pressure oil discharged from the hydraulic pump 41 returns to the hydraulic oil tank 48 via the center bypass line L5.
 コントロールバルブ44の供給流路の上流側(すなわち、油圧ポンプ41側)には、チェック弁44aが設けられている。チェック弁44aは、油圧ポンプ41の吐出圧(ポンプ圧)が油圧アクチュエータ36側の圧力(アクチュエータ圧)よりも高い場合にのみ、油圧アクチュエータ36側への圧油の供給を許容し、ポンプ圧がアクチュエータ圧よりも低い場合は、油圧アクチュエータ36側から油圧ポンプ41側への圧油の通流を遮断する。 A check valve 44 a is provided on the upstream side of the supply flow path of the control valve 44 (that is, on the hydraulic pump 41 side). The check valve 44a permits the supply of hydraulic oil to the hydraulic actuator 36 side only when the discharge pressure (pump pressure) of the hydraulic pump 41 is higher than the pressure (actuator pressure) on the hydraulic actuator 36 side. When the pressure is lower than the actuator pressure, the flow of the pressure oil from the hydraulic actuator 36 side to the hydraulic pump 41 side is blocked.
 パイロットラインL1,L2の操作パイロット圧は、それぞれシャトル弁43に導かれ、大きい方の操作パイロット圧が選択的にパイロットラインL3に出力される(以降、ポンプ制御信号1次圧と称する)。パイロットラインL3に出力されたポンプ制御信号1次圧は、比例電磁弁45で減圧され、レギュレータに42出力される(以降、ポンプ制御信号2次圧と称する)。レギュレータ42は、入力される操作パイロット圧(ポンプ制御信号2次圧)が増加するに従って油圧ポンプ41のポンプ容積(吐出流量)を増加させるポジティブコントロール方式である。 The pilot pilot pressures in the pilot lines L1 and L2 are respectively guided to the shuttle valve 43, and the larger pilot pilot pressure is selectively output to the pilot line L3 (hereinafter referred to as the pump control signal primary pressure). The primary pressure of the pump control signal output to the pilot line L3 is reduced by the proportional solenoid valve 45 and output to the regulator 42 (hereinafter referred to as the pump control signal secondary pressure). The regulator 42 is a positive control system that increases the pump volume (discharge flow rate) of the hydraulic pump 41 as the input operation pilot pressure (pump control signal secondary pressure) increases.
 コントローラ60は、操作パイロット圧センサSE1,SE2の検出結果に基づいて油圧ポンプ41のポンプ目標容積を演算し、ポンプ目標容積に基づいて比例電磁弁45を制御する。すなわち、比例電磁弁45は、コントローラ60からの制御信号に基づいてその開口面積を変化させることにより、レギュレータ42にシャトル弁43を介して入力されるポンプ制御信号(操作パイロット圧)をポンプ制御信号1次圧からポンプ制御信号2次圧に減圧することによって調整可能な信号調整弁である。比例電磁弁45は、コントローラ60からのポンプ制御信号が無いときには図2に示した位置(開口面積最大)に保持され、制御信号の増加に伴って図2における上方向に移動して開口面積が減少する。比例電磁弁45は、油圧アクチュエータに多くの流量が必要ないようなレバー操作量の微操作の領域において、レギュレータ42に入力されるポンプ制御信号を減圧して制限することにより、油圧ポンプの吐出流量を少なくすることによって不必要なポンプ吐出流量をタンクに捨てるブリードオフ流量の損失を低減する。 The controller 60 calculates the pump target volume of the hydraulic pump 41 based on the detection results of the operation pilot pressure sensors SE1, SE2, and controls the proportional solenoid valve 45 based on the pump target volume. That is, the proportional solenoid valve 45 changes the opening area based on the control signal from the controller 60, so that the pump control signal (operation pilot pressure) input to the regulator 42 via the shuttle valve 43 is supplied as the pump control signal. This is a signal adjustment valve that can be adjusted by reducing the primary pressure to the pump control signal secondary pressure. The proportional electromagnetic valve 45 is held at the position shown in FIG. 2 (maximum opening area) when there is no pump control signal from the controller 60, and moves upward in FIG. Decrease. The proportional solenoid valve 45 reduces the pump control signal input to the regulator 42 and restricts it in a fine operation region of the lever operation amount that does not require a large flow rate for the hydraulic actuator, so that the discharge flow rate of the hydraulic pump This reduces the loss of the bleed-off flow that throws away unnecessary pump discharge flow into the tank.
 図3は、コントローラにおけるポンプ目標容積の演算内容を示す機能ブロック図である。 FIG. 3 is a functional block diagram showing the calculation content of the pump target volume in the controller.
 図3において、コントローラ60は、ポンプ目標容積演算部C1、ポンプ制御信号圧力目標値演算部C2、応答性優先モード切換部C3、ポンプ流量制御比例電磁弁有効・無効切換部C4、及び、比例電磁弁電流演算部C5を備えている。 In FIG. 3, the controller 60 includes a pump target volume calculation unit C1, a pump control signal pressure target value calculation unit C2, a response priority mode switching unit C3, a pump flow rate control proportional solenoid valve valid / invalid switching unit C4, and proportional electromagnetics. A valve current calculation unit C5 is provided.
 ポンプ目標容積演算部C1は、操作パイロット圧センサSE1,SE2で検出された操作レバー装置52のレバー操作量(操作パイロット圧)と予め定めたテーブルとに基づいて、ポンプ目標容積を演算する。 The pump target volume calculation unit C1 calculates the pump target volume based on the lever operation amount (operation pilot pressure) of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2 and a predetermined table.
 ポンプ制御信号圧力目標値演算部C2は、ポンプ目標容積演算部C1で算出されたポンプ目標容積と予め定めたテーブルとに基づいて、ポンプ制御信号2次圧目標値を演算する。ポンプ目標容積からポンプ制御信号2次圧目標値を演算するのに用いるテーブルは、ポジティブコントロール方式のレギュレータ42でハード的に設定されたポンプ制御信号(パイロット圧)による油圧ポンプ41のポンプ容積の変化特性から設定する。 The pump control signal pressure target value calculation unit C2 calculates a pump control signal secondary pressure target value based on the pump target volume calculated by the pump target volume calculation unit C1 and a predetermined table. The table used to calculate the pump control signal secondary pressure target value from the pump target volume is the change in the pump volume of the hydraulic pump 41 by the pump control signal (pilot pressure) that is set in hardware by the positive control regulator 42. Set from characteristics.
 応答性優先モード切換部C3は、操作パイロット圧センサSE1,SE2で検出された操作レバー装置52のレバー操作量に基づいて、バケット操作の応答性が必要とされる動作をしているかどうかを判定するものであり、応答性が必要とされる動作をしていると判定した場合は動作モードを応答性優先モードに切り換え、そうでない場合には動作モードを通常モードに切り換える。 The responsiveness priority mode switching unit C3 determines whether or not the operation that requires the responsiveness of the bucket operation is performed based on the lever operation amount of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2. If it is determined that an operation requiring responsiveness is being performed, the operation mode is switched to the responsiveness priority mode, and if not, the operation mode is switched to the normal mode.
 ここで、応答性優先モードとは、例えば、掘削用のバケットを用いた砂利まき動作のように操作レバー装置52をバケットダンプ方向に倒す動作と戻す動作を短時間に繰り返し行う場合や、底面に網目状の穴を有するスケルトンバケット(図示せず)を用いたふるい分け動作のように操作レバー装置52をバケットダンプ方向およびバケットクラウド方向に倒す動作と戻す動作を短時間に繰り返し行ってバケットを振動させるような場合、言い換えると、操作レバー装置52の操作量が短時間で断続的かつ頻繁に変わる場合などのように応答性が必要な動作において切り換えられる動作モードであり、本実施の形態において応答性優先モードに切り換えられると、比例電磁弁45の開口面積を広くして応答性を高くする。また、通常モードとは、応答性優先モード以外の操作時に切り換えられる動作モードであり、本実施の形態において通常モードに切り換えられると、比例電磁弁45の開口面積を狭くしてレギュレータ42に入力されるポンプ制御信号1次圧をポンプ制御信号2次圧に減圧することにより、油圧ポンプのポンプ容積を少なくすることによって不必要なポンプ吐出流量をタンクに捨てるブリードオフ流量の損失を低減する。 Here, the responsiveness priority mode refers to, for example, a case where the operation lever device 52 is repeatedly tilted in the bucket dump direction and returned to the bucket dump in a short time, such as gravel operation using a bucket for excavation, or on the bottom surface. Like the sieving operation using a skeleton bucket (not shown) having a mesh-like hole, the operation lever device 52 is repeatedly moved and returned in the bucket dump direction and bucket cloud direction in a short time to vibrate the bucket. In other words, in other words, this is an operation mode that is switched in an operation that requires responsiveness, such as when the operation amount of the operation lever device 52 changes intermittently and frequently in a short time. When switched to the priority mode, the opening area of the proportional solenoid valve 45 is widened to increase the responsiveness. The normal mode is an operation mode that is switched during an operation other than the response priority mode. When the normal mode is switched in this embodiment, the opening area of the proportional solenoid valve 45 is narrowed and input to the regulator 42. By reducing the primary pressure of the pump control signal to the secondary pressure of the pump control signal, the loss of the bleed-off flow for discarding unnecessary pump discharge flow to the tank is reduced by reducing the pump volume of the hydraulic pump.
 ポンプ流量制御比例電磁弁有効・無効切換部C4は、応答性優先モード切換部C3で切り換えられた動作モードに応じてポンプ制御信号圧力目標値演算部C2の演算結果(ポンプ制御信号2次圧目標値)の扱いを切り換えるものであり、動作モードが通常モードに切り換えられている場合には、ポンプ制御信号圧力目標値演算部C2の出力をそのまま後段の処理ブロック(比例電磁弁電流演算部C5)に出力し、動作モードが応答性優先モードに切り換えられている場合には、ポンプ制御信号2次圧目標値を油圧回路システム40の最大パイロット圧力(例えば、4MPa)に置き換えて後段の処理ブロック(比例電磁弁電流演算部C5)に出力する。 The pump flow control proportional solenoid valve valid / invalid switching unit C4 calculates the calculation result (pump control signal secondary pressure target) of the pump control signal pressure target value calculation unit C2 according to the operation mode switched by the response priority mode switching unit C3. When the operation mode is switched to the normal mode, the output of the pump control signal pressure target value calculation unit C2 is used as it is in the subsequent processing block (proportional solenoid valve current calculation unit C5). When the operation mode is switched to the response priority mode, the pump control signal secondary pressure target value is replaced with the maximum pilot pressure (for example, 4 MPa) of the hydraulic circuit system 40, and the processing block ( Output to the proportional solenoid valve current calculation unit C5).
 比例電磁弁電流演算部C5は、ポンプ流量制御比例電磁弁有効・無効切換部C4から入力される比例電磁弁45の目標圧力と、予め定めたテーブルとに基づいて比例電磁弁45の制御信号を演算して出力し、比例電磁弁45を駆動する。すなわち、応答性優先モード切換部C3で通常モードに切り換えられている場合には、ポンプ制御信号圧力目標値演算部C2の演算結果に基づいてポンプ制御信号1次圧がポンプ制御信号2次圧に減圧されるよう比例電磁弁45は駆動され、動作モードが応答性優先モードに切り換えられている場合には、比例電磁弁45での減圧が無効となるように比例電磁弁45は駆動される。 The proportional solenoid valve current calculation unit C5 generates a control signal for the proportional solenoid valve 45 based on the target pressure of the proportional solenoid valve 45 input from the pump flow control proportional solenoid valve valid / invalid switching unit C4 and a predetermined table. The proportional electromagnetic valve 45 is driven by calculating and outputting. That is, when the response priority mode switching unit C3 is switched to the normal mode, the pump control signal primary pressure is changed to the pump control signal secondary pressure based on the calculation result of the pump control signal pressure target value calculation unit C2. The proportional solenoid valve 45 is driven so that the pressure is reduced. When the operation mode is switched to the response priority mode, the proportional solenoid valve 45 is driven so that the pressure reduction in the proportional solenoid valve 45 becomes invalid.
 図4は、ポンプ目標容積演算部の処理内容の詳細を示す機能ブロック図である。 FIG. 4 is a functional block diagram showing details of processing contents of the pump target volume calculation unit.
 図4において、ポンプ目標容積演算部C1は、バケットクラウド操作に相当する操作パイロット圧、すなわち、操作パイロット圧センサSE1の検出結果と、予め定めたテーブルとに基づいて油圧ポンプ41のポンプ目標容積を演算するバケットクラウド目標容積演算部T1と、バケットダンプ操作に相当する操作パイロット圧、すなわち、操作パイロット圧センサSE2の検出結果と、予め定めたテーブルとに基づいて油圧ポンプ41のポンプ目標容積を演算するバケットダンプ目標容積演算部T2と、バケットクラウド目標容積演算部T1とバケットダンプ目標容積演算部T2の演算結果のうち、大きい方をポンプ目標容積演算部C1のポンプ目標容積の演算結果として出力する最大値選択部T3とを有している。 In FIG. 4, the pump target volume calculation unit C1 calculates the pump target volume of the hydraulic pump 41 based on the operation pilot pressure corresponding to the bucket cloud operation, that is, the detection result of the operation pilot pressure sensor SE1 and a predetermined table. Calculate the pump target volume of the hydraulic pump 41 based on the bucket cloud target volume calculation unit T1 to be calculated, the operation pilot pressure corresponding to the bucket dump operation, that is, the detection result of the operation pilot pressure sensor SE2, and a predetermined table. The larger one of the calculation results of the bucket dump target volume calculation unit T2, the bucket cloud target volume calculation unit T1, and the bucket dump target volume calculation unit T2 is output as the pump target volume calculation result of the pump target volume calculation unit C1. And a maximum value selection unit T3.
 バケットクラウド目標容積演算部T1に設定されるテーブルは、例えば、図4に示すように横軸に入力値(操作レバー装置52のバケットクラウド側の操作量)を、縦軸にポンプ目標容積を設定したグラフ状のテーブルであり、操作レバー装置52のバケットクラウド側の操作量が増加するのに伴ってポンプ目標容積が増加するように設定されている。バケットクラウド目標容積演算部T1に設定されるテーブルにおいて、油圧ポンプ41の目標容積(実線で示す)は、コントロールバルブ44の開口面積に応じて圧損や流量損失が最小限となるように設定されており、油圧ポンプ41の基準容積(点線で示す)よりも小さくなるように設定されている。ここで、油圧ポンプ41の基準容積とは、レギュレータ42に入力されるパイロット圧力(ポンプ制御信号)とポンプ容積の関係に相当する。 The table set in the bucket cloud target volume calculation unit T1, for example, as shown in FIG. 4, sets the input value (operation amount on the bucket cloud side of the operating lever device 52) on the horizontal axis and the pump target volume on the vertical axis. The graph target table is set so that the pump target volume increases as the operation amount on the bucket cloud side of the operation lever device 52 increases. In the table set in the bucket cloud target volume calculation unit T1, the target volume (shown by a solid line) of the hydraulic pump 41 is set so as to minimize pressure loss and flow rate loss according to the opening area of the control valve 44. Therefore, it is set to be smaller than the reference volume (indicated by a dotted line) of the hydraulic pump 41. Here, the reference volume of the hydraulic pump 41 corresponds to the relationship between the pilot pressure (pump control signal) input to the regulator 42 and the pump volume.
 同様に、バケットダンプ目標容積演算部T2に設定されるテーブルは、例えば、図4に示すように横軸に入力値(操作レバー装置52のバケットダンプ側の操作量)を、縦軸にポンプ目標容積を設定したグラフ状のテーブルであり、操作レバー装置52のバケットダンプ側の操作量が増加するのに伴ってポンプ目標容積が増加するように設定されている。バケットダンプ目標容積演算部T2に設定されるテーブルにおいて、油圧ポンプ41の目標容積(実線で示す)は、コントロールバルブ44の開口面積に応じて圧損や流量損失が最小限となるように設定されており、油圧ポンプ41の基準容積(点線で示す)よりも小さくなるように設定されている。 Similarly, the table set in the bucket dump target volume calculation unit T2, for example, as shown in FIG. 4, the horizontal axis represents the input value (the operation amount on the bucket dump side of the operation lever device 52), and the vertical axis represents the pump target. It is a graph-like table in which the volume is set, and is set so that the pump target volume increases as the operation amount on the bucket dump side of the operation lever device 52 increases. In the table set in the bucket dump target volume calculation unit T2, the target volume (shown by a solid line) of the hydraulic pump 41 is set so as to minimize pressure loss and flow rate loss according to the opening area of the control valve 44. Therefore, it is set to be smaller than the reference volume (indicated by a dotted line) of the hydraulic pump 41.
 最大値選択部T3は、バケットクラウド目標容積演算部T1とバケットダンプ目標容積演算部T2の演算結果のうち、大きい方をポンプ目標容積演算部C1のポンプ目標容積の演算結果として出力する。 The maximum value selection unit T3 outputs the larger one of the calculation results of the bucket cloud target volume calculation unit T1 and the bucket dump target volume calculation unit T2 as the calculation result of the pump target volume of the pump target volume calculation unit C1.
 図5は、応答性優先モード切換部における処理内容を説明するフローチャートである。 FIG. 5 is a flowchart for explaining processing contents in the responsiveness priority mode switching unit.
 図5において、応答性優先モード切換部C3は、モード判定処理(ステップS100~S161)を時間Δtの間隔で繰り返し実施する。すなわち、時間Δtは、モード判定処理の実施を繰り返す周期であって、操作パイロット圧センサSE1,SE2のサンプリング周期であり、例えば、コントローラ60における内部演算の単位時間(例えば、10ms)が用いられる。 In FIG. 5, the responsiveness priority mode switching unit C3 repeatedly performs the mode determination process (steps S100 to S161) at intervals of time Δt. That is, the time Δt is a cycle in which the mode determination process is repeatedly performed, and is a sampling cycle of the operation pilot pressure sensors SE1 and SE2, and for example, a unit time (for example, 10 ms) of internal calculation in the controller 60 is used.
 応答性優先モード切換部C3は、まず、前回のモード判定処理の実施時(時刻t-Δtとする)におけるバケット操作に相当するパイロット圧の検出値、すなわち、操作パイロット圧センサSE1,SE2の前回の検出結果(前回値)が予め定めた閾値PI_ON未満であり、かつ、現在(時刻tとする)の検出結果(現在値)が閾値PI_ON以上であるかどうかを判定する(ステップS100)。閾値PI_ONは、操作レバー装置52によってバケット35の操作(バケットクラウド操作又はバケットダンプ操作)がなされたかどうかを判定するための基準となるものであり、操作パイロット圧センサSE1,SE2の検出結果が閾値PI_ON未満の場合は操作レバー装置52が操作されていない(ニュートラル位置である)と判定し、閾値PI_ON未満の場合は操作レバー装置52が操作されていると判定する。なお、ステップS100の処理がモード判定処理の初回である等の理由によって前回値が存在しない場合には、前回値は閾値PI_ON未満であるとしてステップS100の判定を行う。 The responsiveness priority mode switching unit C3 first detects the pilot pressure detection value corresponding to the bucket operation at the time of the previous mode determination process (time t−Δt), that is, the previous time of the operation pilot pressure sensors SE1 and SE2. Whether the current detection result (current value) is equal to or greater than the threshold value PI_ON (step S100). The threshold value PI_ON is a reference for determining whether or not the operation of the bucket 35 (bucket cloud operation or bucket dump operation) has been performed by the operation lever device 52, and the detection results of the operation pilot pressure sensors SE1 and SE2 are the threshold values. If it is less than PI_ON, it is determined that the operation lever device 52 is not operated (is in the neutral position), and if it is less than the threshold value PI_ON, it is determined that the operation lever device 52 is operated. If the previous value does not exist for the reason that the process in step S100 is the first mode determination process, the determination in step S100 is performed assuming that the previous value is less than the threshold value PI_ON.
 ステップS100での判定結果がYESの場合、すなわち、時間Δtの間に操作レバー装置52によってバケット35の操作がなされた場合には、時間をカウントするための変数であるタイマTをリセットしてT(t)=0とし(ステップS110)、操作レバー装置52によってバケット35の操作がなされた回数(動作回数)をカウントするための変数であるカウントNに1を加算する(ステップS120)。また、ステップS100での判定結果がNOの場合、すなわち、時間Δtの間に操作レバー装置52によってバケット35の操作がなされなかった場合には、タイマTに時間Δtを加算する(ステップS111)。 If the determination result in step S100 is YES, that is, if the bucket 35 is operated by the operation lever device 52 during the time Δt, the timer T, which is a variable for counting time, is reset and T (T) = 0 is set (step S110), and 1 is added to a count N that is a variable for counting the number of times that the bucket 35 has been operated by the operating lever device 52 (number of times of operation) (step S120). If the determination result in step S100 is NO, that is, if the bucket 35 is not operated by the operation lever device 52 during the time Δt, the time Δt is added to the timer T (step S111).
 続いて、タイマTが予め定めた基準時間Tmax(例えば、0.5秒)よりも小さいかどうかを判定する(ステップS130)。ステップS100での判定結果がNOの場合(言い換えると、基準時間Tmaxの間に操作レバー装置52によってバケット35の操作がなされなかった場合)には、カウントNをリセットしてN(t)=0とする(ステップS140)。 Subsequently, it is determined whether or not the timer T is smaller than a predetermined reference time Tmax (for example, 0.5 seconds) (step S130). When the determination result in step S100 is NO (in other words, when the operation of the bucket 35 is not performed by the operation lever device 52 during the reference time Tmax), the count N is reset and N (t) = 0. (Step S140).
 続いて、ステップS130での判定結果がYESの場合、又は、ステップS140での処理が終了した場合には、カウントNが予め定めた基準回数Nmax(例えば、2回)以上であるかどうかを判定する(ステップS150)。ステップS150での判定結果がYESの場合、言い換えると、一定時間(ここでは、基準時間Tmax)内に操作レバー装置52によってバケット35の操作がなされた回数が一定回数(ここでは、基準回数Nmax)以上となった場合には、応答優先モードに切り換え(ステップS160)、ステップS150での判定結果がNOの場合には通常モードに切り換えて(ステップS161)、モード判定処理(ステップS100~S161)を繰り返す。 Subsequently, if the determination result in step S130 is YES, or if the process in step S140 ends, it is determined whether the count N is equal to or greater than a predetermined reference number Nmax (for example, 2 times). (Step S150). If the determination result in step S150 is YES, in other words, the number of times the bucket 35 is operated by the operation lever device 52 within a certain time (here, the reference time Tmax) is a certain number (here, the reference number Nmax). If it is above, the mode is switched to the response priority mode (step S160). If the determination result in step S150 is NO, the mode is switched to the normal mode (step S161), and the mode determination process (steps S100 to S161) is performed. repeat.
 以上のように構成した本実施の形態の動作を説明する。 The operation of the present embodiment configured as described above will be described.
 本実施の形態の作業機械100において、操作レバー装置52の操作量が短時間に断続的かつ頻繁に変化するような作業を行う場合、すなわち、例えば砂利まき動作やコンクリートガラふるい分け動作のように操作レバー装置52をバケットダンプ方向(或いは、クラウド方向)に倒す動作と戻す動作を短時間に繰り返し行う場合には応答性優先モードに切り換えられる。応答性優先モードに切り換えられると、比例電磁弁45によるレギュレータ42の制御信号の減圧を無効にする。これにより、操作レバー装置52の操作量が短時間で断続的かつ頻繁に変わるような動作において、ポンプ容積を増加させることができるので、バケット操作の応答性を高くすることができる。 In the work machine 100 according to the present embodiment, when an operation in which the operation amount of the operation lever device 52 is intermittently and frequently changed in a short time, that is, for example, an operation like a gravel rolling operation or a concrete gravel screening operation is performed. When the operation of returning the lever device 52 in the bucket dump direction (or the cloud direction) and the operation of returning the lever device 52 are repeatedly performed in a short time, the response priority mode is switched. When switched to the response priority mode, the pressure reduction of the control signal of the regulator 42 by the proportional solenoid valve 45 is invalidated. As a result, the pump volume can be increased in an operation in which the operation amount of the operation lever device 52 changes intermittently and frequently in a short time, so that the responsiveness of the bucket operation can be increased.
 また、応答性優先モードが設定されるような操作以外の通常の操作が行われた場合には通常モードが設定される。通常モードに切り換えられると、操作レバー装置52の操作量に応じて比例電磁弁45によりレギュレータ42に入力される制御信号を減圧して制限(調整)する。このときの制御信号の調整では、コントロールバルブ44での過度な圧損やセンタバイパス通路からの流量損失を最小限にできる最適化されたテーブル(バケットダンプ目標容積演算部T1、T2参照)を用いるため、燃費低減を実現することができる。 Also, the normal mode is set when a normal operation other than the operation that sets the responsiveness priority mode is performed. When the mode is switched to the normal mode, the control signal input to the regulator 42 is reduced and limited (adjusted) by the proportional solenoid valve 45 in accordance with the operation amount of the operation lever device 52. The adjustment of the control signal at this time uses an optimized table (see bucket dump target volume calculation units T1 and T2) that can minimize excessive pressure loss at the control valve 44 and flow rate loss from the center bypass passage. , Fuel consumption can be reduced.
 以上のように構成した本実施の形態の効果を説明する。 The effect of the present embodiment configured as described above will be described.
 油圧ポンプから油圧アクチュエータへの油圧エネルギーの流れにおいて、流量損失を低減する従来技術としては、例えば、油圧アクチュエータに多くの流量が必要ないようなレバー操作量の微操作の領域では、油圧ポンプのポンプ容積を少なくすることによって不必要なポンプ吐出流量をタンクに捨てるブリードオフ流量の損失を低減するものが知られている。また、レバー操作量に応じたポンプ基準流量をブリードオフ弁の開度に応じて必要最低限のポンプ吐出流量に調整することで、操作性を悪化させることなく圧損やブリードオフ流量損失を最低限に抑えるものも知られている。 As a conventional technique for reducing the flow loss in the flow of hydraulic energy from the hydraulic pump to the hydraulic actuator, for example, in the region of fine operation of the lever operation amount that does not require a large flow rate in the hydraulic actuator, the pump of the hydraulic pump It is known to reduce the loss of the bleed-off flow rate by discarding unnecessary pump discharge flow rate into the tank by reducing the volume. In addition, by adjusting the pump reference flow rate according to the lever operation amount to the minimum required pump discharge flow rate according to the opening of the bleed-off valve, pressure loss and bleed-off flow loss are minimized without deteriorating operability. Some of them are known to be suppressed.
 しかしながら、可変容積型の油圧ポンプにおける吐出流量の増加・減少の応答は、方向制御弁や電子制御のブリードオフ弁の応答よりも遅い傾向にある。したがって、油圧ポンプの吐出流量が方向制御弁やブリードオフ弁の開度に対して適切な吐出流量となるまで時間がかかるため、油圧ポンプの吐出圧が油圧アクチュエータの負荷圧に打ち勝つまで増加せず、油圧アクチュエータの動作が遅れてしまうという問題がある。つまり、操作レバーを断続的に素早く操作する場合では、ポンプ流量が増加し終える前に操作レバーが戻されるため、定常操作よりもポンプ流量が少なくなり、油圧アクチュエータの動作が極端に悪化してしまうことが懸念される。特に、電磁弁で油圧ポンプの流量制御信号圧を生成する場合には、電磁弁の制御遅れや、電磁弁を通過する際の圧損による信号圧の低下などによって、急激なポンプ制御信号圧の変化が行えない場合があった。 However, the response of increase / decrease in the discharge flow rate in the variable displacement hydraulic pump tends to be slower than the response of the directional control valve or the electronically controlled bleed-off valve. Therefore, since it takes time until the discharge flow rate of the hydraulic pump reaches an appropriate discharge flow rate with respect to the opening of the directional control valve and the bleed-off valve, the discharge pressure of the hydraulic pump does not increase until it overcomes the load pressure of the hydraulic actuator. There is a problem that the operation of the hydraulic actuator is delayed. In other words, when the operation lever is operated intermittently and quickly, the operation lever is returned before the pump flow rate finishes increasing, so the pump flow rate is less than in the steady operation, and the operation of the hydraulic actuator becomes extremely worse. There is concern. In particular, when the flow control signal pressure of a hydraulic pump is generated by a solenoid valve, the pump control signal pressure changes suddenly due to a delay in control of the solenoid valve or a decrease in signal pressure due to pressure loss when passing through the solenoid valve. There was a case that could not be done.
 具体的に、油圧ショベルにおいて応答性を要求される作業としては、例えば、スケルトンバケット(バケット底面に網目状に穴が開いており、細かい土砂が下に落ちる構造となっているバケット)を装着して行うコンクリードガラのふるい分け動作などがある。このようなふるい作業では、バケット操作(アーム操作を伴う場合もある)を素早く切返し続けることでバケット部を振動させてバケット内のガラをふるいにかける必要があるため、従来技術においてはポンプ流量の立ち上がりの遅れにより、アクチュエータが十分動作しない懸念がある。 Specifically, as an operation that requires responsiveness in a hydraulic excavator, for example, a skeleton bucket (a bucket in which a mesh hole is opened on the bottom of the bucket and fine earth and sand falls) is attached. Concreed Gala sieving operation. In such a sieving operation, it is necessary to vibrate the bucket part by continually turning back the bucket operation (which may be accompanied by an arm operation) to screen the dust in the bucket. There is a concern that the actuator may not operate sufficiently due to a delay in the rise.
 これに対して本実施の形態においては、原動機(例えば、エンジン22)により駆動される可変容積型の油圧ポンプ41と、複数の被駆動部材(例えば、ブーム31、アーム33、バケット35)が回動可能に連結されて構成された多関節型のフロント作業機30と、油圧ポンプから吐出される圧油により駆動され、複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータ(例えば、ブームシリンダ32、アームシリンダ34、バケットシリンダ36)と、油圧ポンプから複数の油圧アクチュエータにそれぞれ供給される圧油の方向及び流量を制御する複数の方向切換弁(例えば、コントロールバルブ44)と、複数の方向切換弁を制御する複数の操作装置(例えば、操作レバー装置52)と、複数の操作装置のうち少なくとも1つの操作装置の操作量を検出する1つ以上の操作量検出装置(例えば、操作パイロット圧センサSE1,SE2)と、複数の操作装置のうちの少なくとも1つの操作装置の操作量に応じて生成されるポンプ制御信号に基づいて前記油圧ポンプのポンプ容積を制御するレギュレータ42と、レギュレータに入力されるポンプ制御信号を調整可能な信号調整弁(例えば、比例電磁弁45)と、ポンプ制御信号の生成に係わる操作装置の操作量を検出する前記操作量検出装置のうちの少なくとも1つの操作量検出装置からの操作量の検出結果に基づいて信号調整弁を制御するコントローラとを備え、コントローラは、信号調整弁によりポンプ制御信号の調整を行う通常モードと、信号調整弁によるポンプ制御信号の調整を行わない応答性優先モードとのいずれか一方に切り換え可能であるように構成したので、砂利まき動作やふるい分け動作のように操作レバーを断続的に素早く操作してバケットを振動させるような場合、言い換えると、操作レバー装置の操作量が短時間で断続的かつ頻繁に変わる場合などのように応答性が必要な動作においては応答性優先モードに切り換えることができるので、油圧ポンプのポンプ容積(吐出流量)制御による圧力損失や流量損失の低減と、断続的な急レバー操作での油圧アクチュエータの応答性とを両立させることができる。 In contrast, in the present embodiment, a variable displacement hydraulic pump 41 driven by a prime mover (for example, the engine 22) and a plurality of driven members (for example, the boom 31, the arm 33, and the bucket 35) are rotated. A multi-joint type front work machine 30 configured to be movable and a plurality of hydraulic actuators (for example, boom cylinders 32) that are driven by pressure oil discharged from a hydraulic pump and respectively drive a plurality of driven members. Arm cylinder 34, bucket cylinder 36), a plurality of directional control valves (for example, control valve 44) for controlling the direction and flow rate of pressure oil respectively supplied from the hydraulic pump to the plurality of hydraulic actuators, and a plurality of directional switching. A plurality of operating devices (for example, operating lever device 52) for controlling the valve, and at least one of the plurality of operating devices; One or more operation amount detection devices (for example, operation pilot pressure sensors SE1, SE2) for detecting the operation amount of the operation device, and the operation amount of at least one operation device among the plurality of operation devices are generated. A regulator 42 for controlling the pump volume of the hydraulic pump based on the pump control signal, a signal adjusting valve (for example, a proportional solenoid valve 45) capable of adjusting the pump control signal input to the regulator, and generation of the pump control signal A controller that controls a signal adjustment valve based on a detection result of an operation amount from at least one operation amount detection device among the operation amount detection devices that detect an operation amount of the operation device related to the control device, Normal mode in which the pump control signal is adjusted by the adjustment valve, and responsiveness priority mode in which the pump control signal is not adjusted by the signal adjustment valve When switching the control lever intermittently and quickly to vibrate the bucket, such as gravel operation or sieving operation, in other words, operating the control lever device In an operation that requires responsiveness, such as when the amount changes intermittently and frequently in a short time, it is possible to switch to the responsiveness priority mode, so pressure loss and flow rate by controlling the pump volume (discharge flow rate) of the hydraulic pump It is possible to achieve both a reduction in loss and the response of the hydraulic actuator with intermittent sudden lever operation.
 なお、本実施の形態においては、バケット操作について通常モードと応答性優先モードとを切り換え、動作モードに応じてポンプ容積の制御様態を変更するように構成した場合を例示して説明したが、これに限られず、例えば、バケット操作に代えて(或いは、加えて)アーム操作について通常モードと応答性優先モードとを切り換えるように構成した場合においても、同様の効果を得ることができる。 In the present embodiment, the bucket operation is switched between the normal mode and the response priority mode, and the pump volume control mode is changed according to the operation mode. For example, the same effect can be obtained when the arm operation is switched between the normal mode and the responsiveness priority mode instead of (or in addition to) the bucket operation.
 <第1の実施の形態の変形例>
  第1の実施の形態の変形例を図6~図8を参照しつつ説明する。
<Modification of the first embodiment>
A modification of the first embodiment will be described with reference to FIGS.
 本変形例は、第1の実施の形態において、フロント作業機で行う作業内容に応じて設定される作業モードごとに、動作モードの通常モードから応答性優先モードへの切り換えの可否を設定可能に構成したものである。 In this modification, in the first embodiment, for each work mode set according to the work content to be performed on the front work machine, whether or not the operation mode can be switched from the normal mode to the responsive priority mode can be set. It is composed.
 図6は、コントローラにおけるポンプ目標容積の演算内容を示す機能ブロック図である。 FIG. 6 is a functional block diagram showing the calculation contents of the pump target volume in the controller.
 図6において、コントローラ60Aは、ポンプ目標容積演算部C1、ポンプ制御信号圧力目標値演算部C2、応答性優先モード切換部C3、ポンプ流量制御比例電磁弁有効・無効切換部C4、比例電磁弁電流演算部C5、及び応答性優先モード有効・無効切換部C6を備えている。また、コントローラ60Aには、キャビネット23に配置され、油圧ショベル100に関する種々の情報や設定画面等を表示するためのモニタ(表示装置)63aと、モニタ63aに表示される各種設定画面を操作する操作スイッチ群63bとが配置された入出力装置63が接続されている。なお、操作スイッチ群63bは、モニタ63aに表示される内容の操作を行えれば良いため、例えば、回転スイッチを回転および押下することにより選択や決定を行うよう構成を採用しても良い。 In FIG. 6, the controller 60A includes a pump target volume calculation unit C1, a pump control signal pressure target value calculation unit C2, a response priority mode switching unit C3, a pump flow rate control proportional solenoid valve valid / invalid switching unit C4, a proportional solenoid valve current. A calculation unit C5 and a responsiveness priority mode valid / invalid switching unit C6 are provided. Further, the controller 60A is disposed in the cabinet 23, and a monitor (display device) 63a for displaying various information and setting screens related to the excavator 100, and operations for operating various setting screens displayed on the monitor 63a. The input / output device 63 in which the switch group 63b is arranged is connected. Since the operation switch group 63b only needs to be able to operate the content displayed on the monitor 63a, for example, a configuration may be adopted in which selection and determination are performed by rotating and pressing the rotation switch.
 ポンプ目標容積演算部C1は、操作パイロット圧センサSE1,SE2で検出された操作レバー装置52のレバー操作量(操作パイロット圧)と予め定めたテーブルとに基づいて、ポンプ目標容積を演算する。 The pump target volume calculation unit C1 calculates the pump target volume based on the lever operation amount (operation pilot pressure) of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2 and a predetermined table.
 ポンプ制御信号圧力目標値演算部C2は、ポンプ目標容積演算部C1で算出されたポンプ目標容積と予め定めたテーブルとに基づいて、ポンプ制御信号2次圧目標値を演算する。ポンプ目標容積からポンプ制御信号2次圧目標値を演算するのに用いるテーブルは、ポジティブコントロール方式のレギュレータ42でハード的に設定されたポンプ制御信号圧力による油圧ポンプ41のポンプ容積の変化特性から設定する。 The pump control signal pressure target value calculation unit C2 calculates a pump control signal secondary pressure target value based on the pump target volume calculated by the pump target volume calculation unit C1 and a predetermined table. The table used to calculate the pump control signal secondary pressure target value from the pump target volume is set from the change characteristic of the pump volume of the hydraulic pump 41 by the pump control signal pressure that is set in hardware by the positive control regulator 42. To do.
 応答性優先モード切換部C3は、操作パイロット圧センサSE1,SE2で検出された操作レバー装置52のレバー操作量に基づいて、バケット操作の応答性が必要とされる動作をしているかどうかを判定するものであり、応答性が必要とされる動作をしていると判定した場合は動作モードを応答性優先モードに切り換え、そうでない場合には動作モードを通常モードに切り換える。 The responsiveness priority mode switching unit C3 determines whether or not the operation that requires the responsiveness of the bucket operation is performed based on the lever operation amount of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2. If it is determined that an operation requiring responsiveness is being performed, the operation mode is switched to the responsiveness priority mode, and if not, the operation mode is switched to the normal mode.
 応答性優先モード有効・無効切換部6Cは、入出力装置(作業モード設定装置)63からの作業モード信号と予め定めた有効・無効判定テーブル300(後の図8参照)とに基づいて、応答性優先モード切換部C3で切り換えられた動作モードのポンプ流量制御比例電磁弁有効・無効切換部C4への出力の有効・無効を切り換えるものである。 The responsiveness priority mode valid / invalid switching unit 6C responds based on a work mode signal from the input / output device (work mode setting device) 63 and a predetermined valid / invalid determination table 300 (see FIG. 8 later). The pump flow control proportional solenoid valve valid / invalid switching unit C4 in the operation mode switched by the power priority mode switching unit C3 is switched between valid / invalid.
 応答性優先モード有効・無効切換部6Cに入力される作業モード信号は、入出力装置(作業モード設定装置)63において設定される作業モードに対応して出力されるものであり、フロント作業機30で行う作業内容に応じてオペレータにより設定される。応答性優先モード有効・無効切換部6Cは、作業モード信号と予め定めた有効・無効判定テーブル300とに基づいて応答性優先モード切換部C3で切り換えられた動作モードのうち、応答性優先モードを有効とするか無効とするかを切り換える。具体的には、応答性優先モード有効・無効切換部6Cは、作業モード信号に基づく作業モードについて有効・無効判定テーブル300で有効・無効の何れが設定されているかを判定し、有効に設定されている場合には、応答性優先モード有効・無効切換部6Cで切り換えられた動作モードの結果(すなわち、「通常モード」または「応答性優先モード」)を示す信号をそのままポンプ流量制御比例電磁弁有効・無効切換部C4に出力する。また、応答性優先モード有効・無効切換部6Cは、作業モード信号に基づく作業モードについて無効に設定されている場合には、応答性優先モードが無効であると判定し、応答性優先モード有効・無効切換部6Cで切り換えられた動作モードの如何によらず(すなわち、動作モードが「通常モード」及び「応答性優先モード」の何れであっても)、「通常モード」を示す信号をポンプ流量制御比例電磁弁有効・無効切換部C4に出力する。なお、有効・無効判定テーブルは、入出力装置63で設定し、応答性優先モード有効・無効切換部6Cに記憶させるよう構成しても良い。 The work mode signal input to the responsive priority mode valid / invalid switching unit 6C is output corresponding to the work mode set in the input / output device (work mode setting device) 63. It is set by the operator in accordance with the work contents to be performed. The responsiveness priority mode valid / invalid switching unit 6C selects the responsiveness priority mode among the operation modes switched by the responsiveness priority mode switching unit C3 based on the work mode signal and a predetermined valid / invalid determination table 300. Switch between valid and invalid. Specifically, the responsiveness priority mode valid / invalid switching unit 6C determines whether valid / invalid is set in the valid / invalid determination table 300 for the work mode based on the work mode signal, and is set to valid. If it is, the signal indicating the result of the operation mode (ie, “normal mode” or “responsiveness priority mode”) switched by the responsiveness priority mode valid / invalid switching unit 6C is used as it is. Output to the valid / invalid switching section C4. The responsiveness priority mode valid / invalid switching unit 6C determines that the responsiveness priority mode is invalid when the work mode based on the work mode signal is set to invalid, and the responsiveness priority mode valid / Regardless of the operation mode switched by the invalid switching unit 6C (that is, whether the operation mode is “normal mode” or “responsiveness priority mode”), a signal indicating the “normal mode” is sent to the pump flow rate. Output to control proportional solenoid valve valid / invalid switching section C4. The valid / invalid determination table may be set by the input / output device 63 and stored in the responsiveness priority mode valid / invalid switching unit 6C.
 ポンプ流量制御比例電磁弁有効・無効切換部C4は、応答性優先モード有効・無効切換部6Cで切り換えられた動作モードに応じてポンプ制御信号圧力目標値演算部C2の演算結果(ポンプ制御信号2次圧目標値)の扱いを切り換えるものであり、動作モードが通常モードに切り換えられている場合には、ポンプ制御信号圧力目標値演算部C2の出力をそのまま後段の処理ブロック(比例電磁弁電流演算部C5)に出力し、動作モードが応答性優先モードに切り換えられている場合には、ポンプ制御信号2次圧目標値を油圧回路システム40の最大パイロット圧力(例えば、4MPa)に置き換えて後段の処理ブロック(比例電磁弁電流演算部C5)に出力する。 The pump flow rate control proportional solenoid valve valid / invalid switching unit C4 calculates the calculation result of the pump control signal pressure target value calculation unit C2 according to the operation mode switched by the response priority mode valid / invalid switching unit 6C (pump control signal 2 When the operation mode is switched to the normal mode, the output of the pump control signal pressure target value calculation unit C2 is used as it is in the subsequent processing block (proportional solenoid valve current calculation). When the operation mode is switched to the response priority mode, the pump control signal secondary pressure target value is replaced with the maximum pilot pressure (for example, 4 MPa) of the hydraulic circuit system 40, and the subsequent stage It outputs to a processing block (proportional solenoid valve current calculating part C5).
 比例電磁弁電流演算部C5は、ポンプ流量制御比例電磁弁有効・無効切換部C4から入力される比例電磁弁45の目標圧力と、予め定めたテーブルとに基づいて比例電磁弁45の制御信号を演算して出力し、比例電磁弁45を駆動する。すなわち、応答性優先モード切換部C3で通常モードに切り換えられている場合には、ポンプ制御信号圧力目標値演算部C2の演算結果に基づいてポンプ制御信号1次圧がポンプ制御信号2次圧に減圧されるよう比例電磁弁45は駆動され、動作モードが応答性優先モードに切り換えられている場合には、比例電磁弁45での減圧が無効となるように比例電磁弁45は駆動される。 The proportional solenoid valve current calculation unit C5 generates a control signal for the proportional solenoid valve 45 based on the target pressure of the proportional solenoid valve 45 input from the pump flow control proportional solenoid valve valid / invalid switching unit C4 and a predetermined table. The proportional electromagnetic valve 45 is driven by calculating and outputting. That is, when the response priority mode switching unit C3 is switched to the normal mode, the pump control signal primary pressure is changed to the pump control signal secondary pressure based on the calculation result of the pump control signal pressure target value calculation unit C2. The proportional solenoid valve 45 is driven so that the pressure is reduced. When the operation mode is switched to the response priority mode, the proportional solenoid valve 45 is driven so that the pressure reduction in the proportional solenoid valve 45 becomes invalid.
 図7は、入出力装置のモニタ(表示装置)に表示される設定メニュー構成の一例を示す図である。 FIG. 7 is a diagram showing an example of a configuration menu configuration displayed on the monitor (display device) of the input / output device.
 図7に示すように、オペレータによる操作スイッチ群63bの操作によって入出力装置63のモニタ63aに表示可能な情報としては、メインメニュー200の選択によって表示される情報メニュー210や設定メニュー220などの他に、フロント作業機30で行う作業内容に応じて作業モードを設定する作業モード設定メニュー230などがある。作業モード設定メニュー230が選択されると、例えば、作業モードとして掘削モード231、クレーンモード232、ブレーカモード233、小割機モード234、破砕機モード235、チルトバケットモード236などが表示され、オペレータが所望の作業モードを選択することにより、作業モードが設定される。入出力装置63からは、設定された作業モードを示す作業モード信号がコントローラ60Aの応答性優先モード有効・無効切換部6Cに出力される。 As shown in FIG. 7, information that can be displayed on the monitor 63 a of the input / output device 63 by operating the operation switch group 63 b by the operator includes an information menu 210 and a setting menu 220 that are displayed by selecting the main menu 200. In addition, there is a work mode setting menu 230 for setting the work mode in accordance with the work content performed by the front work machine 30. When the work mode setting menu 230 is selected, for example, an excavation mode 231, a crane mode 232, a breaker mode 233, a crusher mode 234, a crusher mode 235, a tilt bucket mode 236, and the like are displayed as work modes. A work mode is set by selecting a desired work mode. From the input / output device 63, a work mode signal indicating the set work mode is output to the response priority mode valid / invalid switching unit 6C of the controller 60A.
 図8は、作業モードごとの応答性優先モードへの切り換えの可否を判定するための有効・無効判定テーブルの一例を示す図である。 FIG. 8 is a diagram illustrating an example of a valid / invalid determination table for determining whether or not switching to the responsiveness priority mode for each work mode is possible.
 図8において、有効・無効判定テーブル300は、複数種類の作業モード301と、各作業モードに対応して設定された応答性優先モードへの切り換えの可否、すなわち、有効であるか無効であるかの設定状態302とから構成されている。有効・無効判定テーブル300において、例えば、繊細な動作を要求されるクレーンモード232や、動きが急変しやすい重いアタッチメントを使用するブレーカモード233などでは、応答性優先モードへの切り換えを無効に設定している。一方で、掘削モード231やチルトバケットモード236などでは、ガラのふるい動作や砂利まき動作など、応答性が要求される動作が行われる可能性があるため、応答性優先モードへの切り換えを有効に設定している。 In FIG. 8, the validity / invalidity determination table 300 indicates whether or not switching to a plurality of types of work modes 301 and the responsiveness priority mode set corresponding to each work mode, that is, valid or invalid. Setting state 302. In the valid / invalid determination table 300, for example, in the crane mode 232 in which a delicate operation is required and the breaker mode 233 in which a heavy attachment whose movement is likely to change suddenly is used, switching to the responsive priority mode is set to invalid. ing. On the other hand, in excavation mode 231, tilt bucket mode 236, etc., there is a possibility that operations requiring responsiveness such as sieving operation of gravel and graveling operation may be performed, so it is effective to switch to responsiveness priority mode It is set.
 その他の構成は第1の実施の形態と同様である。 Other configurations are the same as those in the first embodiment.
 以上のように構成した本変形例においても第1の実施の形態と同様の効果を得ることができる。 Also in this modified example configured as described above, the same effects as those of the first embodiment can be obtained.
 また、所定の作業モードにおいては応答性優先モードを無効とすることができるので、繊細な動作を要求される作業モードや動きが急変しやすい重いアタッチメントを使用する作業モードでは、応答性優先モードへの切り換えを無効に設定することができ、操作性を向上することができる。 In addition, since the responsiveness priority mode can be disabled in a predetermined work mode, the responsiveness priority mode is switched to a work mode that requires delicate movements or a work mode that uses heavy attachments that tend to change suddenly. Can be set to be invalid, and operability can be improved.
 <第2の実施の形態>
  本発明の第2の実施の形態を図9及び図10を参照しつつ説明する。本実施の形態では第1の実施の形態との相違点についてのみ説明するものとし、図面において第1の実施の形態と同様の部材には同じ符号を付し、説明を省略する。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIGS. In this embodiment, only differences from the first embodiment will be described. In the drawings, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 本実施の形態は、第1の実施の形態のレギュレータにネガティブコントロール方式を採用した場合を示すものである。 This embodiment shows a case where a negative control method is adopted for the regulator of the first embodiment.
 図9は、本実施の形態に係る油圧回路システムの要部を抜き出して模式的に示す図である。なお、図9においては複数の油圧アクチュエータのうちバケットシリンダ36とその関連構成のみを代表して図示し、それ以外の油圧アクチュエータ及びその関連構成については説明の簡単のために図示を省略する。 FIG. 9 is a diagram schematically showing an essential part of the hydraulic circuit system according to the present embodiment. In FIG. 9, only the bucket cylinder 36 and its related configuration are shown as representatives among the plurality of hydraulic actuators, and the other hydraulic actuators and their related configurations are not shown for the sake of simplicity.
 図9において、油圧回路システム40Bは、エンジン22によって駆動される可変容積型の油圧ポンプ41及び固定容積型のパイロットポンプ(パイロット油圧源)49と、油圧ポンプの作動油供給源である作動油タンク48と、バケット操作用の操作レバー装置52からパイロットラインL1,L2により導かれる操作パイロット圧(操作信号)に基づいて油圧ポンプ41から吐出ラインL4を介して油圧アクチュエータ(バケットシリンダ)36に供給される作動油の方向及び流量を制御するコントロールバルブ(方向切換弁)44と、パイロットラインL1,L2の操作パイロット圧を検出することにより操作レバー装置52の操作量を検出する操作パイロット圧センサ(操作量検出装置)SE1,SE2と、操作レバー装置52の操作に応じて生成されるパイロット圧(ポンプ制御信号)に基づいて油圧ポンプ41のポンプ容積(傾転角)を制御するレギュレータ42aと、操作レバー装置52からレギュレータ42aに入力されるポンプ制御信号を調整可能な比例電磁弁56(信号調整弁)と、操作パイロット圧センサSE1,SE2からの操作量の検出結果に基づいて比例電磁弁56を制御するコントローラ60Bとから概略構成されている。油圧ポンプ41からの吐出ラインL4には、油圧ポンプ41の吐出圧力の上限を規定するリリーフ弁41aが設置されている。 In FIG. 9, a hydraulic circuit system 40B includes a variable displacement hydraulic pump 41 and a fixed displacement pilot pump (pilot hydraulic source) 49 driven by the engine 22, and a hydraulic oil tank that is a hydraulic oil supply source of the hydraulic pump. 48 and an operation pilot pressure (operation signal) guided from the operation lever device 52 for operating the bucket through the pilot lines L1 and L2, is supplied from the hydraulic pump 41 to the hydraulic actuator (bucket cylinder) 36 through the discharge line L4. A control valve (direction switching valve) 44 for controlling the direction and flow rate of the hydraulic oil and an operation pilot pressure sensor (operation) for detecting the operation amount of the operation lever device 52 by detecting the operation pilot pressure of the pilot lines L1 and L2. (Quantity detection device) SE1, SE2 and operation lever device 52 A regulator 42a that controls the pump volume (tilt angle) of the hydraulic pump 41 based on a pilot pressure (pump control signal) generated according to the operation, and a pump control signal that is input from the operation lever device 52 to the regulator 42a. The proportional electromagnetic valve 56 (signal adjustment valve) that can be adjusted and a controller 60B that controls the proportional electromagnetic valve 56 based on the operation amount detection results from the operation pilot pressure sensors SE1 and SE2 are schematically configured. In the discharge line L4 from the hydraulic pump 41, a relief valve 41a that defines the upper limit of the discharge pressure of the hydraulic pump 41 is installed.
 コントロールバルブ44から作動油タンク48への圧油の戻りラインであるセンタバイパスラインL5の最下流には、絞り53と、絞り53のコントロールバルブ44側(つまり、油圧ポンプ41側)の圧力の上限を規定するリリーフ弁54とが設置されている。絞り53のコントロールバルブ44側(つまり、油圧ポンプ41側)の圧力(ポンプ流量制御信号と称する)と、パイロットポンプ49の吐出圧を比例電磁弁56で減圧することによって生成される圧力(ポンプ流量低下信号と称する)は、それぞれシャトル弁55に導かれ、大きい方の圧力が選択的にポンプ制御信号(パイロット圧)としてパイロットラインL13に出力され、レギュレータに42aに入力される。レギュレータ42aは、入力されるパイロット圧(ポンプ制御信号)が増加するに従って油圧ポンプ41のポンプ容積を減少させるネガティブコントロール方式である。 At the most downstream of the center bypass line L5, which is a return line of pressure oil from the control valve 44 to the hydraulic oil tank 48, an upper limit of the pressure on the throttle 53 and the control valve 44 side (that is, the hydraulic pump 41 side) of the throttle 53. And a relief valve 54 is provided. The pressure (pump flow rate signal) generated by reducing the pressure on the control valve 44 side (that is, the hydraulic pump 41 side) of the throttle 53 (referred to as a pump flow rate control signal) and the discharge pressure of the pilot pump 49 by the proportional solenoid valve 56. The lower pressure is guided to the shuttle valve 55, and the larger pressure is selectively output to the pilot line L13 as a pump control signal (pilot pressure) and input to the regulator 42a. The regulator 42a is a negative control system that decreases the pump volume of the hydraulic pump 41 as the input pilot pressure (pump control signal) increases.
 コントローラ60Bは、操作パイロット圧センサSE1,SE2の検出結果に基づいて油圧ポンプ41のポンプ目標容積を演算し、ポンプ目標容積に基づいて比例電磁弁56を制御する。すなわち、比例電磁弁56及びシャトル弁55は、コントローラ60Bからの制御信号に基づいてその開口面積を変化させることによりポンプ流量低下信号を生成し、シャトル弁55を介してパイロットラインL13に供給することにより、レギュレータ42aに入力されるポンプ制御信号を調整可能な信号調整弁を構成する。比例電磁弁56は、コントローラ60Bからの制御信号が無いときには図2に示した位置(開口面積最大)に保持されるので、制御信号の増加に伴って図2における上方向に移動して開口面積が減少する。比例電磁弁56は、油圧アクチュエータに多くの流量が必要ないような場合、すなわち、レバー操作量が微操作の領域にある場合においてはより大きな開口面積をとるように制御され、ポンプ流量低下信号をシャトル弁55を介してポンプ制御信号としてレギュレータ42aに入力することによって、ポンプ制御信号の圧力油圧ポンプの吐出流量を少なくすることにより、不必要なポンプ吐出流量をタンクに捨てるブリードオフ流量の損失を低減する。 Controller 60B calculates the pump target volume of hydraulic pump 41 based on the detection results of operation pilot pressure sensors SE1, SE2, and controls proportional solenoid valve 56 based on the pump target volume. That is, the proportional solenoid valve 56 and the shuttle valve 55 generate a pump flow rate lowering signal by changing the opening area based on the control signal from the controller 60B, and supply the pump flow rate lowering signal to the pilot line L13 via the shuttle valve 55. Thus, a signal adjustment valve capable of adjusting the pump control signal input to the regulator 42a is configured. Since the proportional solenoid valve 56 is held at the position (opening area maximum) shown in FIG. 2 when there is no control signal from the controller 60B, the proportional solenoid valve 56 moves upward in FIG. Decrease. The proportional solenoid valve 56 is controlled to take a larger opening area when the hydraulic actuator does not require a large flow rate, that is, when the lever operation amount is in the fine operation region, and the pump flow rate reduction signal is output. By inputting to the regulator 42a as a pump control signal via the shuttle valve 55, by reducing the discharge flow rate of the pressure hydraulic pump of the pump control signal, the loss of the bleed-off flow rate that discards unnecessary pump discharge flow rate to the tank can be reduced. To reduce.
 図10は、コントローラにおけるポンプ目標容積の演算内容を示す機能ブロック図である。 FIG. 10 is a functional block diagram showing the calculation contents of the pump target volume in the controller.
 図10において、コントローラ60Bは、ポンプ目標容積演算部C1、ポンプ流量低下信号圧力目標値演算部C12、応答性優先モード切換部C3、ポンプ流量低下比例電磁弁有効・無効切換部C14、及び、比例電磁弁電流演算部C5を備えている。 In FIG. 10, the controller 60B includes a pump target volume calculation unit C1, a pump flow rate decrease signal pressure target value calculation unit C12, a response priority mode switching unit C3, a pump flow rate decrease proportional solenoid valve valid / invalid switching unit C14, and a proportional An electromagnetic valve current calculation unit C5 is provided.
 ポンプ目標容積演算部C1は、操作パイロット圧センサSE1,SE2で検出された操作レバー装置52のレバー操作量(操作パイロット圧)と予め定めたテーブルとに基づいて、ポンプ目標容積を演算する。 The pump target volume calculation unit C1 calculates the pump target volume based on the lever operation amount (operation pilot pressure) of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2 and a predetermined table.
 ポンプ流量低下信号圧力目標値演算部C12は、ポンプ目標容積演算部C1で算出されたポンプ目標容積と予め定めたテーブルとに基づいて、ポンプ流量低下信号目標圧力を演算する。ポンプ目標容積からポンプ流量低下信号目標圧力を演算するのに用いるテーブルは、ネガティブコントロール方式のレギュレータ42aでハード的に設定されたポンプ制御信号(パイロット圧)による油圧ポンプ41のポンプ容積の変化特性から設定する。 The pump flow rate reduction signal pressure target value calculation unit C12 calculates the pump flow rate reduction signal target pressure based on the pump target volume calculated by the pump target volume calculation unit C1 and a predetermined table. The table used to calculate the pump flow rate reduction signal target pressure from the pump target volume is based on the change characteristic of the pump volume of the hydraulic pump 41 by the pump control signal (pilot pressure) set in hardware by the negative control regulator 42a. Set.
 応答性優先モード切換部C3は、操作パイロット圧センサSE1,SE2で検出された操作レバー装置52のレバー操作量に基づいて、バケット操作の応答性が必要とされる動作をしているかどうかを判定するものであり、応答性が必要とされる動作をしていると判定した場合は動作モードを応答性優先モードに切り換え、そうでない場合には動作モードを通常モードに切り換える。 The responsiveness priority mode switching unit C3 determines whether or not the operation that requires the responsiveness of the bucket operation is performed based on the lever operation amount of the operation lever device 52 detected by the operation pilot pressure sensors SE1 and SE2. If it is determined that an operation requiring responsiveness is being performed, the operation mode is switched to the responsiveness priority mode, and if not, the operation mode is switched to the normal mode.
 ポンプ流量低下比例電磁弁有効・無効切換部C14は、応答性優先モード切換部C3で切り換えられた動作モードに応じてポンプ流量低下信号圧力目標値演算部C12の演算結果(ポンプ流量低下信号)の扱いを切り換えるものであり、動作モードが通常モードに切り換えられている場合には、ポンプ流量低下信号圧力目標値演算部C12の出力をそのまま後段の処理ブロック(比例電磁弁電流演算部C5)に出力し、動作モードが応答性優先モードに切り換えられている場合には、ポンプ流量低下信号を油圧回路システム40の最少パイロット圧力(例えば、0(ゼロ)MPa)に置き換えて後段の処理ブロック(比例電磁弁電流演算部C5)に出力する。 The pump flow rate lowering proportional solenoid valve valid / invalid switching unit C14 calculates the calculation result (pump flow rate lowering signal) of the pump flow rate lowering signal pressure target value computing unit C12 according to the operation mode switched by the response priority mode switching unit C3. When the operation mode is switched to the normal mode, the output of the pump flow rate lowering signal pressure target value calculation unit C12 is directly output to the subsequent processing block (proportional solenoid valve current calculation unit C5). When the operation mode is switched to the response priority mode, the pump flow rate lowering signal is replaced with the minimum pilot pressure (for example, 0 (zero) MPa) of the hydraulic circuit system 40, and the subsequent processing block (proportional electromagnetic To the valve current calculation unit C5).
 比例電磁弁電流演算部C5は、ポンプ流量低下比例電磁弁有効・無効切換部C14から入力される比例電磁弁56の目標圧力と、予め定めたテーブルとに基づいて比例電磁弁56の制御信号を演算して出力し、比例電磁弁56を駆動する。すなわち、応答性優先モード切換部C3で通常モードに切り換えられている場合には、ポンプ流量低下信号圧力目標値演算部C12の演算結果に基づいてポンプ流量低下信号が生成されるように比例電磁弁56は駆動され、動作モードが応答性優先モードに切り換えられている場合には、比例電磁弁56での減圧が無効となるように比例電磁弁56は駆動される。 The proportional solenoid valve current calculation unit C5 outputs a control signal for the proportional solenoid valve 56 based on the target pressure of the proportional solenoid valve 56 input from the pump flow rate reduction proportional solenoid valve valid / invalid switching unit C14 and a predetermined table. The proportional electromagnetic valve 56 is driven by calculating and outputting. That is, when the response priority mode switching unit C3 is switched to the normal mode, the proportional solenoid valve is configured so that the pump flow rate reduction signal is generated based on the calculation result of the pump flow rate reduction signal pressure target value calculation unit C12. When the operation mode is switched to the response priority mode, the proportional solenoid valve 56 is driven so that the pressure reduction in the proportional solenoid valve 56 becomes invalid.
 その他の構成は第1の実施の形態と同様である。 Other configurations are the same as those in the first embodiment.
 以上のように構成した本実施の形態の作用効果を説明する。 The operation and effect of the present embodiment configured as described above will be described.
 本実施の形態の作業機械100において、操作レバー装置52の操作量が短時間に断続的かつ頻繁に変化するような作業を行う場合、すなわち、例えば砂利まき動作やコンクリートガラふるい分け動作のように操作レバー装置52をバケットダンプ方向(或いは、クラウド方向)に倒す動作と戻す動作を短時間に繰り返し行う場合には応答性優先モードに切り換えられる。応答性優先モードに切り換えられると、比例電磁弁56によるポンプ流量低下信号の生成およびシャトル弁55を介してのレギュレータ42aへのポンプ制御信号としての入力を無効にする。これにより、センタバイパスラインL5の絞り53の油圧ポンプ41側の圧力(ポンプ流量制御信号)がシャトル弁55によりポンプ制御信号として常に選択されるので、操作レバー装置52の操作量が短時間で断続的かつ頻繁に変わるような動作において、ポンプ容積を増加させることができ、バケット操作の応答性を高くすることができる。 In the work machine 100 according to the present embodiment, when an operation in which the operation amount of the operation lever device 52 is intermittently and frequently changed in a short time, that is, for example, an operation like a gravel rolling operation or a concrete gravel screening operation is performed. When the operation of returning the lever device 52 in the bucket dump direction (or the cloud direction) and the operation of returning the lever device 52 are repeatedly performed in a short time, the response priority mode is switched. When switched to the responsiveness priority mode, the generation of the pump flow rate reduction signal by the proportional solenoid valve 56 and the input as the pump control signal to the regulator 42a via the shuttle valve 55 are invalidated. As a result, the pressure (pump flow rate control signal) on the hydraulic pump 41 side of the throttle 53 of the center bypass line L5 is always selected as the pump control signal by the shuttle valve 55, so that the operation amount of the operation lever device 52 is intermittently interrupted. In an operation that changes frequently and frequently, the pump volume can be increased and the responsiveness of the bucket operation can be increased.
 また、応答性優先モードが設定されるような操作以外の通常の操作が行われた場合には通常モードが設定される。通常モードに切り換えられると、操作レバー装置52の操作量に応じて比例電磁弁56によるポンプ流量低下信号の生成を有効にし、シャトル弁55を介してポンプ制御信号としてレギュレータ42aに入力し、結果的にレギュレータ42aに入力ポンプ制御信号を調整する。このときの制御信号の調整では、コントロールバルブ44での過度な圧損やセンタバイパス通路からの流量損失を最小限にできる最適化されたテーブル(バケットダンプ目標容積演算部T1、T2参照)を用いるため、燃費低減を実現することができる。 Also, the normal mode is set when a normal operation other than the operation that sets the responsiveness priority mode is performed. When the mode is switched to the normal mode, the generation of the pump flow rate reduction signal by the proportional solenoid valve 56 is enabled according to the operation amount of the operation lever device 52, and is input to the regulator 42a as the pump control signal via the shuttle valve 55. The regulator 42a adjusts the input pump control signal. The adjustment of the control signal at this time uses an optimized table (see bucket dump target volume calculation units T1 and T2) that can minimize excessive pressure loss at the control valve 44 and flow rate loss from the center bypass passage. , Fuel consumption can be reduced.
 次に上記の各実施の形態の特徴について説明する。 Next, features of the above embodiments will be described.
 (1)上記の実施の形態では、原動機(例えば、エンジン22)により駆動される可変容積型の油圧ポンプ41と、複数の被駆動部材(例えば、ブーム31、アーム33、バケット35)が回動可能に連結されて構成された多関節型のフロント作業機30と、前記油圧ポンプから吐出される圧油により駆動され、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータ(例えば、ブームシリンダ32、アームシリンダ34、バケットシリンダ36)と、前記油圧ポンプから前記複数の油圧アクチュエータにそれぞれ供給される圧油の方向及び流量を制御する複数の方向切換弁(例えば、コントロールバルブ44)と、前記複数の方向切換弁を制御する複数の操作装置(例えば、操作レバー装置52)と、前記複数の操作装置のうち少なくとも1つの操作装置の操作量を検出する1つ以上の操作量検出装置(例えば、操作パイロット圧センサSE1,SE2)と、複数の操作装置のうち少なくとも1つの操作装置の操作量に応じて生成されるポンプ制御信号に基づいて前記油圧ポンプのポンプ容積を制御するレギュレータ42と、前記レギュレータに入力される前記ポンプ制御信号を調整可能な信号調整弁(例えば、比例電磁弁45;シャトル弁55、比例電磁弁56)と、前記ポンプ制御信号の生成に係わる操作装置の操作量を検出する前記操作量検出装置のうちの少なくとも1つの操作量検出装置からの操作量の検出結果に基づいて前記信号調整弁を制御するコントローラとを備え、前記コントローラは、前記信号調整弁により前記ポンプ制御信号の調整を行う通常モードと、前記信号調整弁による前記ポンプ制御信号の調整を行わない応答性優先モードとのいずれか一方に切り換え可能であるものとした。 (1) In the above embodiment, the variable displacement hydraulic pump 41 driven by the prime mover (for example, the engine 22) and the plurality of driven members (for example, the boom 31, the arm 33, and the bucket 35) rotate. A multi-joint type front work machine 30 configured to be connected to a plurality of hydraulic actuators (for example, boom cylinders) that are driven by pressure oil discharged from the hydraulic pump and respectively drive the plurality of driven members. 32, arm cylinder 34, bucket cylinder 36), a plurality of directional control valves (for example, control valve 44) for controlling the direction and flow rate of pressure oil respectively supplied from the hydraulic pump to the plurality of hydraulic actuators, A plurality of operating devices (for example, operating lever device 52) for controlling the plurality of directional control valves; One or more operation amount detection devices (for example, operation pilot pressure sensors SE1 and SE2) for detecting an operation amount of at least one operation device, and an operation amount of at least one operation device among a plurality of operation devices. A regulator 42 that controls the pump volume of the hydraulic pump based on the generated pump control signal, and a signal adjustment valve (for example, a proportional solenoid valve 45; a shuttle valve 55) that can adjust the pump control signal input to the regulator. , Based on a detection result of an operation amount from at least one operation amount detection device among the operation amount detection devices for detecting an operation amount of the operation device related to the generation of the pump control signal. A controller for controlling the signal adjustment valve, and the controller is configured to adjust the pump control signal by the signal adjustment valve. Mode and was assumed to be switched to one of the not adjusted responsive priority mode of the pump control signal by the signal control valve.
 これにより、砂利まき動作やふるい分け動作のように操作レバーを断続的に素早く操作してバケットを振動させるような場合、言い換えると、操作レバー装置の操作量が短時間で断続的かつ頻繁に変わる場合などのように応答性が必要な動作においては応答性優先モードに切り換えることができるので、通常操作時の作業性を低下させることなく、操作レバーの操作量が短時間で頻繁に変わる動作など応答性が必要な動作では応答性を高くすることができ、作業効率の低下を抑制することができる。 As a result, when the bucket is vibrated by operating the operation lever intermittently and quickly, such as gravel operation or sieving operation, in other words, when the operation amount of the operation lever device changes intermittently and frequently in a short time For operations that require responsiveness, such as responsiveness, it is possible to switch to responsiveness priority mode, so that the amount of operation of the operating lever changes frequently in a short time without degrading workability during normal operation. In an operation that requires high performance, responsiveness can be increased, and a reduction in work efficiency can be suppressed.
 (2)また、上記の実施の形態では、(1)の作業機械において、前記レギュレータは、前記ポンプ制御信号が増加するに従って前記油圧ポンプのポンプ容積を増加させるポジティブコントロール方式であって、前記信号調整弁は、前記レギュレータにポンプ制御信号として入力されるパイロット圧を減圧可能な比例電磁弁であるものとした。 (2) In the above embodiment, in the work machine of (1), the regulator is a positive control system that increases the pump volume of the hydraulic pump as the pump control signal increases, and the signal The regulating valve is a proportional solenoid valve capable of reducing the pilot pressure input as a pump control signal to the regulator.
 (3)また、上記の実施の形態では、(1)の作業機械において、前記コントローラは、前記操作装置の操作量が予め定めた一定時間内に予め定めた閾値を越えて上昇した回数が予め定めた回数を超えた場合に、前記信号調整弁による前記ポンプ制御信号の調整を行わない応答性優先モードに切り換えるものとした。 (3) In the above-described embodiment, in the work machine of (1), the controller determines that the number of times that the operation amount of the operating device has risen beyond a predetermined threshold value within a predetermined time period. When the predetermined number of times has been exceeded, switching to the response priority mode in which the pump control signal is not adjusted by the signal adjustment valve.
 (4)また、上記の実施の形態では、(1)の作業機械において、前記フロント作業機で行う作業内容に応じた作業モードを設定する作業モード設定装置を備え、前記コントローラは、前記作業モード設定装置により設定された作業モードについて、応答性優先モードが無効となるよう予め設定されている場合には、前記応答性優先モードに切り換えないものとした。 (4) In the above-described embodiment, the work machine of (1) includes a work mode setting device that sets a work mode according to the work content performed by the front work machine, and the controller includes the work mode. In the work mode set by the setting device, when the response priority mode is set in advance to be invalid, it is not switched to the response priority mode.
 これにより、所定の作業モードにおいては応答性優先モードを無効とすることができるので、繊細な動作を要求される作業モードや動きが急変しやすい重いアタッチメントを使用する作業モードでは、応答性優先モードへの切り換えを無効に設定することができ、操作性を向上することができる。 As a result, the responsiveness priority mode can be disabled in a predetermined work mode, so the responsiveness priority mode is required in work modes that require delicate movements or work modes that use heavy attachments that tend to change suddenly. Switching to can be set to be invalid, and operability can be improved.
 (5)また、上記の実施の形態では、(1)の作業機械において、前記レギュレータは、前記ポンプ制御信号が増加するに従って前記油圧ポンプのポンプ容積を減少させるネガティブコントロール方式であって、前記信号調整弁は、前記ポンプ制御信号の生成に係わる前記操作装置の操作量が増加するに従って減少するように生成されるポンプ容積制御用パイロット圧と、前記油圧ポンプのポンプ容積を制限するために生成されるポンプ容積制限用パイロット圧の大きい方をポンプ制御信号として選択的に前記レギュレータに導くシャトル弁と、前記シャトル弁に入力される前記ポンプ容積制限用パイロット圧を減圧可能な比例電磁弁とを有するものとした。 (5) In the above embodiment, in the work machine of (1), the regulator is a negative control system that decreases the pump volume of the hydraulic pump as the pump control signal increases, and the signal The regulating valve is generated to limit the pump volume control pilot pressure generated so as to decrease as the operation amount of the operating device related to the generation of the pump control signal increases and the pump volume of the hydraulic pump. A shuttle valve that selectively guides the larger pump volume limiting pilot pressure as a pump control signal to the regulator, and a proportional solenoid valve that can reduce the pump volume limiting pilot pressure input to the shuttle valve. It was supposed to be.
 <付記>
 なお、上記の実施の形態においては、エンジン等の原動機で油圧ポンプを駆動する一般的な油圧ショベルを例に挙げて説明したが、油圧ポンプをエンジン及びモータで駆動するハイブリッド式の油圧ショベルや、油圧ポンプをモータのみで駆動する電動式の油圧ショベル等にも本発明が適用可能であることは言うまでもない。
<Appendix>
In the above embodiment, a general hydraulic excavator that drives a hydraulic pump with a prime mover such as an engine has been described as an example, but a hybrid hydraulic excavator that drives the hydraulic pump with an engine and a motor, Needless to say, the present invention can also be applied to an electric hydraulic excavator that drives a hydraulic pump only by a motor.
 また、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。すなわち、上記各実施の形態においては、バケット35に係わる操作レバー装置52の操作量に応じてポンプ制御信号を生成する場合を例示して説明したが、これに限られず、バケット35以外の構成に係わる油圧アクチュエータ(例えば、ブームシリンダ32、アームシリンダ34、旋回油圧モータ27など)の操作量に応じて、すなわち、複数の油圧アクチュエータの操作量を複合的に用いてポンプ制御信号を生成する場合に本発明を適用しても良い。また、上記各実施の形態においては、バケット35に係わる操作レバー装置52の操作量に基づいて通常モードと応答性優先モードとを切り換える場合を例示して説明したが、これに限られず、操作レバーを断続的に素早く操作する可能性のある構成に係わる油圧アクチュエータ(例えば、バケットを振動させる場合に素早く操作する可能性のあるアーム33に係わるアームシリンダ34)の操作量に基づいて通常モードと応答性優先モードとを切り換えるように構成しても良いし、それらの操作量を複合的に用いて通常モードと応答性優先モードとを切り換えるように構成しても良い。 Further, the present invention is not limited to the above-described embodiment, and includes various modifications and combinations within the scope not departing from the gist thereof. That is, in each of the embodiments described above, the case where the pump control signal is generated according to the operation amount of the operation lever device 52 related to the bucket 35 has been described as an example. Depending on the operation amount of the hydraulic actuator (for example, the boom cylinder 32, the arm cylinder 34, the swing hydraulic motor 27, etc.), that is, when the pump control signal is generated by using the operation amounts of a plurality of hydraulic actuators in combination. The present invention may be applied. In each of the above-described embodiments, the case where the normal mode and the response priority mode are switched based on the operation amount of the operation lever device 52 related to the bucket 35 has been described as an example. The normal mode and response based on the amount of operation of the hydraulic actuator (for example, the arm cylinder 34 related to the arm 33 that may be operated quickly when the bucket is vibrated). The priority mode may be switched, or the operation amount may be used in combination to switch between the normal mode and the response priority mode.
 また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。 Further, the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted. Moreover, you may implement | achieve part or all of said each structure, function, etc., for example by designing with an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
 10…下部走行体、11a(11b)…クローラ、12a(12b)…クローラフレーム、13a(13b)…走行油圧モータ、13b…走行油圧モータ、20…上部旋回体、21…旋回フレーム、22…エンジン、23…運転室(キャビネット)、26…減速機構、27…旋回油圧モータ、30…フロント装置(フロント作業機)、31…ブーム、32…ブームシリンダ、33…アーム、35…バケット、36…バケットシリンダ、36a…バケットシリンダボトム室、36b…バケットシリンダロッド室、40,40B…油圧回路システム、41…油圧ポンプ、41a…リリーフ弁、42,42a…レギュレータ、43…シャトル弁、44…コントロールバルブ(方向切換弁)、44a…チェック弁、45,56…比例電磁弁、48…作動油タンク、49…パイロットポンプ(パイロット油圧源)、52…操作レバー装置(操作装置)、52a…操作レバー、52b…操作信号生成部、52b…操作信号生成部、53…絞り、54…リリーフ弁、55…シャトル弁、60,60A,60B…コントローラ、63…入出力装置(作業モード設定装置)、63a…モニタ(表示装置)、63b…操作スイッチ群、100…油圧ショベル(作業機械)、200…メインメニュー、210…情報メニュー、220…設定メニュー、230…作業モード設定メニュー、SE1,SE2…操作パイロット圧センサ(操作量検出装置) DESCRIPTION OF SYMBOLS 10 ... Lower traveling body, 11a (11b) ... Crawler, 12a (12b) ... Crawler frame, 13a (13b) ... Traveling hydraulic motor, 13b ... Traveling hydraulic motor, 20 ... Upper turning body, 21 ... Turning frame, 22 ... Engine , 23 ... cab (cabinet), 26 ... deceleration mechanism, 27 ... turning hydraulic motor, 30 ... front device (front work machine), 31 ... boom, 32 ... boom cylinder, 33 ... arm, 35 ... bucket, 36 ... bucket Cylinder, 36a ... Bucket cylinder bottom chamber, 36b ... Bucket cylinder rod chamber, 40, 40B ... Hydraulic circuit system, 41 ... Hydraulic pump, 41a ... Relief valve, 42, 42a ... Regulator, 43 ... Shuttle valve, 44 ... Control valve ( Directional switching valve), 44a ... check valve, 45, 56 ... proportional solenoid valve, 48 ... Hydraulic oil tank 49 ... Pilot pump (pilot hydraulic power source) 52 ... Operation lever device (operation device) 52a ... Operation lever 52b ... Operation signal generator 52b ... Operation signal generator 53 ... Restriction 54 ... Relief Valve, 55 ... Shuttle valve, 60, 60A, 60B ... Controller, 63 ... I / O device (work mode setting device), 63a ... Monitor (display device), 63b ... Operation switch group, 100 ... Hydraulic excavator (work machine), 200 ... main menu, 210 ... information menu, 220 ... setting menu, 230 ... work mode setting menu, SE1, SE2 ... operation pilot pressure sensor (operation amount detection device)

Claims (5)

  1.  原動機により駆動される可変容積型の油圧ポンプと、
     複数の被駆動部材が回動可能に連結されて構成された多関節型のフロント作業機と、
     前記油圧ポンプから吐出される圧油により駆動され、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、
     前記油圧ポンプから前記複数の油圧アクチュエータにそれぞれ供給される圧油の方向及び流量を制御する複数の方向切換弁と、
     前記複数の方向切換弁を制御する複数の操作装置と、
     前記複数の操作装置のうち少なくとも1つの操作装置の操作量を検出する1つ以上の操作量検出装置と、
     前記複数の操作装置のうち少なくとも1つの操作装置の操作量に応じて生成されるポンプ制御信号に基づいて前記油圧ポンプのポンプ容積を制御するレギュレータと、
     前記レギュレータに入力される前記ポンプ制御信号を調整可能な信号調整弁と、
     前記ポンプ制御信号の生成に係わる前記操作装置の操作量を検出する前記操作量検出装置のうちの少なくとも1つの操作量検出装置からの操作量の検出結果に基づいて前記信号調整弁を制御するコントローラとを備え、
     前記コントローラは、前記信号調整弁により前記ポンプ制御信号の調整を行う通常モードと、前記信号調整弁による前記ポンプ制御信号の調整を行わない応答性優先モードとのいずれか一方に切り換え可能であることを特徴とする作業機械。
    A variable displacement hydraulic pump driven by a prime mover;
    A multi-joint type front work machine configured such that a plurality of driven members are rotatably connected;
    A plurality of hydraulic actuators that are driven by pressure oil discharged from the hydraulic pump and that respectively drive the plurality of driven members;
    A plurality of directional control valves for controlling the direction and flow rate of pressure oil respectively supplied from the hydraulic pump to the plurality of hydraulic actuators;
    A plurality of operating devices for controlling the plurality of directional control valves;
    One or more operation amount detection devices for detecting an operation amount of at least one operation device among the plurality of operation devices;
    A regulator for controlling a pump volume of the hydraulic pump based on a pump control signal generated according to an operation amount of at least one operation device among the plurality of operation devices;
    A signal adjustment valve capable of adjusting the pump control signal input to the regulator;
    A controller that controls the signal adjustment valve based on a detection result of an operation amount from at least one operation amount detection device among the operation amount detection devices that detect an operation amount of the operation device related to generation of the pump control signal. And
    The controller can be switched between a normal mode in which the pump control signal is adjusted by the signal adjustment valve and a responsiveness priority mode in which the pump control signal is not adjusted by the signal adjustment valve. A working machine characterized by
  2.  請求項1記載の作業機械において、
     前記レギュレータは、前記ポンプ制御信号が増加するに従って前記油圧ポンプのポンプ容積を増加させるポジティブコントロール方式であって、
     前記信号調整弁は、前記レギュレータにポンプ制御信号として入力されるパイロット圧を減圧可能な比例電磁弁であることを特徴とする作業機械。
    The work machine according to claim 1,
    The regulator is a positive control system that increases the pump volume of the hydraulic pump as the pump control signal increases,
    The work machine according to claim 1, wherein the signal adjusting valve is a proportional electromagnetic valve capable of reducing a pilot pressure input as a pump control signal to the regulator.
  3.  請求項1記載の作業機械において、
     前記コントローラは、前記操作装置の操作量が予め定めた一定時間内に予め定めた閾値を越えて上昇した回数が予め定めた回数を超えた場合に、前記信号調整弁による前記ポンプ制御信号の調整を行わない応答性優先モードに切り換えることを特徴とする作業機械。
    The work machine according to claim 1,
    The controller adjusts the pump control signal by the signal adjustment valve when the number of times that the operation amount of the operating device has increased beyond a predetermined threshold within a predetermined time exceeds a predetermined number. A work machine characterized by switching to a responsiveness priority mode in which no operation is performed.
  4.  請求項1記載の作業機械において、
     前記フロント作業機で行う作業内容に応じた作業モードを設定する作業モード設定装置を備え、
     前記コントローラは、前記作業モード設定装置により設定された作業モードについて、応答性優先モードが無効となるよう予め設定されている場合には、前記応答性優先モードに切り換えないことを特徴とする作業機械。
    The work machine according to claim 1,
    A work mode setting device for setting a work mode according to the work content to be performed by the front work machine;
    The controller does not switch to the responsiveness priority mode when the responsiveness priority mode is set in advance to be invalid for the work mode set by the work mode setting device. .
  5.  請求項1記載の作業機械において,
     前記レギュレータは、前記ポンプ制御信号が増加するに従って前記油圧ポンプのポンプ容積を減少させるネガティブコントロール方式であって、
     前記信号調整弁は、
     前記ポンプ制御信号の生成に係わる前記操作装置の操作量が増加するに従って減少するように生成されるポンプ容積制御用パイロット圧と、前記油圧ポンプのポンプ容積を制限するために生成されるポンプ容積制限用パイロット圧の大きい方をポンプ制御信号として選択的に前記レギュレータに導くシャトル弁と、
     前記シャトル弁に入力される前記ポンプ容積制限用パイロット圧を減圧可能な比例電磁弁とを有することを特徴とする作業機械。
    The work machine according to claim 1,
    The regulator is a negative control system that decreases the pump volume of the hydraulic pump as the pump control signal increases,
    The signal regulating valve is
    Pump volume control pilot pressure generated so as to decrease as the operation amount of the operating device related to generation of the pump control signal increases, and pump volume limit generated to limit the pump volume of the hydraulic pump A shuttle valve that selectively guides the larger pilot pressure to the regulator as a pump control signal;
    A work machine comprising: a proportional solenoid valve capable of reducing the pump volume limiting pilot pressure input to the shuttle valve.
PCT/JP2017/017600 2017-05-09 2017-05-09 Work machine WO2018207268A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019516780A JP6788733B2 (en) 2017-05-09 2017-05-09 Work machine
PCT/JP2017/017600 WO2018207268A1 (en) 2017-05-09 2017-05-09 Work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017600 WO2018207268A1 (en) 2017-05-09 2017-05-09 Work machine

Publications (1)

Publication Number Publication Date
WO2018207268A1 true WO2018207268A1 (en) 2018-11-15

Family

ID=64105384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017600 WO2018207268A1 (en) 2017-05-09 2017-05-09 Work machine

Country Status (2)

Country Link
JP (1) JP6788733B2 (en)
WO (1) WO2018207268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014606A1 (en) * 2020-07-15 2022-01-20 日立建機株式会社 Work machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633905A (en) * 1992-07-17 1994-02-08 Yutani Heavy Ind Ltd Hydraulic circuit for special working device
JP2007051781A (en) * 2006-08-25 2007-03-01 Komatsu Ltd Control device for hydraulic drive machine
JP2011111796A (en) * 2009-11-26 2011-06-09 Caterpillar Sarl Turning hydraulic control device for working machine
JP5886976B2 (en) * 2012-10-18 2016-03-16 日立建機株式会社 Work machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633905A (en) * 1992-07-17 1994-02-08 Yutani Heavy Ind Ltd Hydraulic circuit for special working device
JP2007051781A (en) * 2006-08-25 2007-03-01 Komatsu Ltd Control device for hydraulic drive machine
JP2011111796A (en) * 2009-11-26 2011-06-09 Caterpillar Sarl Turning hydraulic control device for working machine
JP5886976B2 (en) * 2012-10-18 2016-03-16 日立建機株式会社 Work machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014606A1 (en) * 2020-07-15 2022-01-20 日立建機株式会社 Work machine
JP2022018504A (en) * 2020-07-15 2022-01-27 日立建機株式会社 Work machine
JP7053731B2 (en) 2020-07-15 2022-04-12 日立建機株式会社 Work machine
US11946492B2 (en) 2020-07-15 2024-04-02 Hitachi Construction Machinery Co., Ltd. Work machine

Also Published As

Publication number Publication date
JPWO2018207268A1 (en) 2019-07-04
JP6788733B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6676827B2 (en) Work machine
JP6474908B2 (en) Hydraulic system of work machine
JP6474718B2 (en) Hydraulic control equipment for construction machinery
KR101755424B1 (en) Hydraulic drive device for hydraulic excavator
EP2461044A1 (en) Hydraulic drive for construction machine
JP5380240B2 (en) Hydraulic drive device for work machine
US11643793B2 (en) Operation control device for working vehicle
KR102460499B1 (en) shovel
JP6695620B2 (en) Construction machinery
JP6675871B2 (en) Excavator
WO2018207268A1 (en) Work machine
JP3788686B2 (en) Hydraulic drive control device
JP6675870B2 (en) Excavator
JP6797523B2 (en) Work machine
US10954968B2 (en) Operation control device for working vehicle
EP3492664B1 (en) Construction machine
JP6807289B2 (en) Construction machinery
JP6989548B2 (en) Construction machinery
JP2005147040A (en) Pump control device for construction machinery
WO2015019489A1 (en) Work vehicle
JP2020023793A (en) Construction machine
JP2019178582A (en) Work machine
JP2009162293A (en) Device for reducing noise of construction machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909646

Country of ref document: EP

Kind code of ref document: A1