WO2018206015A1 - 一种光反射膜及其制作方法及光伏电池组件 - Google Patents

一种光反射膜及其制作方法及光伏电池组件 Download PDF

Info

Publication number
WO2018206015A1
WO2018206015A1 PCT/CN2018/091012 CN2018091012W WO2018206015A1 WO 2018206015 A1 WO2018206015 A1 WO 2018206015A1 CN 2018091012 W CN2018091012 W CN 2018091012W WO 2018206015 A1 WO2018206015 A1 WO 2018206015A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
width
apex
light reflecting
reflecting film
Prior art date
Application number
PCT/CN2018/091012
Other languages
English (en)
French (fr)
Inventor
张丽萍
高瑞
丁晶
Original Assignee
苏州高德辰光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州高德辰光电科技有限公司 filed Critical 苏州高德辰光电科技有限公司
Priority to US16/307,328 priority Critical patent/US20190140126A1/en
Priority to JP2018002666U priority patent/JP3218463U/ja
Priority to DE102018118667.3A priority patent/DE102018118667A1/de
Publication of WO2018206015A1 publication Critical patent/WO2018206015A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a light reflecting film, in particular to a light reflecting film applied to a photovoltaic module, a manufacturing method thereof and a photovoltaic cell assembly.
  • the photovoltaic welding strip is applied to the connection between the photovoltaic module cells, and plays an important role in conducting electricity.
  • the surface of the welding strip is coated with a tin layer.
  • the smooth tin layer will directly reflect the sunlight, this part of the sun Light can't be used by the panel, causing a waste of light energy.
  • Some strips have a stripe structure on the body to reflect light, but the strip substrate is made of copper.
  • the stripe structure is difficult to be micro-structured during processing, the reflection effect is not ideal, and the thickness of the surface tin layer is uneven. It is easy to cause fragmentation of the battery sheet and affect production efficiency.
  • microstructures such as microprisms are reflected to reflect sunlight, and the light conversion efficiency of the photovoltaic cell module is improved.
  • the microprism structure such as the reflective film of the triangular prism structure has a fixed angle of reflection to light, and The trajectory of the sun is a 180° arc, so its optimal reflection efficiency is shorter and needs to be improved.
  • a light reflecting film having a flat body, the body being provided with a microstructure for reflecting light, the microstructure comprising at least one prism, the prism having the following features:
  • the height of the apex of the prism and/or the width of the bottom of the prism vary periodically.
  • Creativity makes use of the height of the apex of the prism and/or the width of the bottom of the prism to change periodically to form a multi-faceted structure.
  • the adjacent faces can be mirrored so that the entire prism can simultaneously reflect the reflection of the morning and afternoon sunlight, so that the sunlight during the whole work period
  • the reflection efficiency is improved to make up for the shortcomings of the prior art.
  • the reflecting surface of the flat triangular prism has a fixed angle with respect to the axis of the working plane of the photovoltaic cell module, and therefore, it has a high reflection efficiency only for sunlight at a certain time.
  • the granular microstructure of the reflective microstructure such as the triangular pyramid, although it can be two sides of the triangular pyramid to align with the sunlight, taking into account the sunlight reflection in the afternoon, but the gap between the particles is more, which has a hindrance to the reflection efficiency.
  • micro-structure processing is difficult and costly, which is not conducive to industrial application.
  • the height of the apex of the prism and/or the width of the bottom of the prism periodically change in a smooth curve.
  • the cross section of the prism is one or two or a combination of two or more of a closed curve in which a triangle, a semicircle, a trapezoid, a polygon, a plurality of straight segments and a curved segment are combined.
  • the width of the bottom of the prism changes according to the change of the height of the apex of the prism.
  • the width of the bottom of the prism is synchronously increased.
  • the width of the bottom of the prism is synchronously smaller.
  • the curve of the width of the bottom of the prism and the height of the apex of the prism are both sinusoidal.
  • the surface angle ⁇ between the point A at which the bottom width of the prism is the largest and the point a at the minimum width is between 20° and 80°
  • is an angle between the straight line T and the straight line Q, wherein T is the perpendicular line from point a to the central axis of the prism, and Q is the tangent between the point a to the bottom curve between point a and point A.
  • is preferably from 45° to 65°.
  • the prism has a triangular cross section, and the apex angle of the triangle is 1-150°, preferably 110°-130°, and optimally 120°.
  • the width at the widest portion of the bottom of the prism is 1-150 ⁇ m, preferably 40-60 ⁇ m.
  • the invention also provides a method for processing a light reflecting film, comprising the following steps:
  • the mold is made, and the tool is moved back and forth periodically, and at least one groove with a periodically varying depth is processed on the uniform rotating roller or the plane template moving at a constant speed;
  • a prismatic structure fitted to the groove is embossed on the reflective film by means of a pressure roller or a flat template.
  • the reflective film in the second step comprises a flat body, and a colloid layer or a layer of reflective material laminated on the flat body.
  • a reflective layer is formed on the colloid layer of the embossed prism structure.
  • the present invention also provides a photovoltaic cell assembly comprising a plurality of battery sheets, a solder ribbon connecting the battery sheets, and a light reflecting surface, the photovoltaic reflective film being disposed between the upper surface of the solder ribbon or the battery sheet a gap region, the photovoltaic reflective film may also be disposed at a gap region between the upper surface of the solder ribbon and the battery sheet, the length direction of the photovoltaic reflective film and the length direction of the solder ribbon, the gap The length of the area is set in parallel.
  • the reflective film is disposed in a spatial position in the photovoltaic module where the illumination is not utilized, and the surface of the solar cell is reflected and converted into electric energy, thereby increasing the power generation of the photovoltaic module.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of a prism in the present invention.
  • FIG. 3 is a schematic structural view of a prior art
  • 4 and 5 are schematic views of the structure of the product application of the present invention.
  • a light reflecting film having a flat body 1 is provided with a microstructure for reflecting light, and the microstructure comprises at least one prism 2,
  • the prism 2 has the following features:
  • the height of the apex of the prism and/or the width of the bottom of the prism vary periodically.
  • Fig. 1 an example in which the apex height of the prism and the bottom width of the prism are periodically changed at the same time, other structures are easily understood, and no illustration is given.
  • the inventive invention utilizes the height of the apex of the prism 2 and/or the width of the bottom of the prism 2 to periodically change to form a multi-faceted structure, and the adjacent faces may have a mirror image structure (as shown in Fig. 2, adjacent surfaces of 23 and 22).
  • the entire prism 2 can simultaneously reflect the reflection of the morning and afternoon sunlight, so that the reflection efficiency of the sunlight during the whole work is improved, which makes up for the deficiencies of the prior art.
  • the reflecting surface of the flat triangular prism has a fixed angle with respect to the axis of the working plane of the photovoltaic cell module, and therefore, it has a high reflection efficiency only for sunlight at a certain time.
  • the granular microstructure of the reflective microstructure such as the triangular pyramid, although it can be two sides of the triangular pyramid to align with the sunlight, taking into account the sunlight reflection in the afternoon, but the gap between the particles is more, which has a hindrance to the reflection efficiency.
  • micro-structure processing is difficult and costly, which is not conducive to industrial application.
  • the research on improving the efficiency of light utilization has never stopped.
  • the invention patent of US20160172518A1 proposed by the famous company 3MINNOVATIVE PROPERTIES COMPANY, its proposed scheme is shown in Figure 3, and it is only the original three.
  • the prism is changed to a form similar to a semi-cylindrical shape, and the plane reflection surface of the original triangular prism is changed to a circular arc surface, and is changed from a single reflection angle to a multi-reflection angle in a direction perpendicular to the long axis of the reflective microstructure, but In the non-perpendicular direction, the angle of reflection does not change because, like other prior art, the cross-section of any of the reflective microstructures is uniform.
  • Other prior art techniques are similarly similar to fine tuning and exploration of applications in different locations in photovoltaic cell assemblies.
  • the height of the apex of the prism and/or the width of the bottom of the prism periodically change in a smooth curve. In this way, it is beneficial to increase the processing speed, and the reflection angle of the light is more abundant, and the range of the reflected light coverage is improved.
  • the cross section of the prism is one or two or a combination of two or more of a closed curve in which a triangle, a semicircle, a trapezoid, a polygon, a plurality of straight segments and a curved segment are combined.
  • the width of the bottom of the prism changes according to the change of the height of the apex of the prism.
  • the width of the bottom of the prism becomes synchronously larger.
  • the width of the bottom of the prism becomes smaller synchronously.
  • the curve of the width of the bottom of the prism and the height of the apex of the prism are both sinusoidal.
  • the surface angle ⁇ between the point A at which the bottom width of the prism is the largest and the point a at the minimum width is between 20° and 80°.
  • is the angle between the straight line T and the straight line Q, where T is the perpendicular line between the point a and the central axis of the prism, and Q is the tangent between the point a to the bottom curve between point a and point A.
  • is preferably from 45° to 65°. That is, the angle ⁇ shown in Fig.
  • the reflection efficiency of sunlight may be the highest in a certain area, then we can process
  • the speed or advance speed of the mold, as well as the stroke and speed of the tool feed and retraction are conveniently controlled, and further adjustments can be made in the shape change of the tool as needed.
  • the curved surface of the reflecting surface is easy to control and adjust, and is suitable for large-scale production. For the application of different dimensions, it can be easily adjusted.
  • the mirror surface with periodic changes can also improve the coverage of the reflected sunlight with multi-angle reflection, so that the reflected light is not It will focus on the limited band area on the cell. As a general choice, you can choose 45° or 65°.
  • the cross section of the prism may be selected as a triangle having an apex angle of 1-150°, preferably a range of 110°-130°, and an optimum choice of 120°.
  • the width at the widest portion of the bottom of the prism is 1-150 ⁇ m, such as 5 um, 10 um, 20 um ... 70 um, 80 um, 90 um, 100 um, etc.; preferably 40-60 ⁇ m. Such as 40 ⁇ m, 50 ⁇ m or 60 ⁇ m.
  • the prism can also be set according to the following rules:
  • the widths of the bottoms of the prisms corresponding to the two highest points on the prism are inconsistent. In this way, by adjusting the width of the bottom of the prism corresponding to the highest point of the prism, the angle of sunlight reflection at different positions of the prism can be conveniently adjusted, so that the position distribution of the sunlight reflection can be precisely controlled, and the utilization efficiency of the sunlight can be further improved.
  • the width of the bottom of the prism corresponding to the highest point of each prism is arranged at a size, that is, the widths of the bottoms of the prisms corresponding to the two highest points are inconsistent.
  • the width of the bottom of the prism corresponding to the highest point may be two or more, for example, 60 um and 40 um, or three, for example, 40 ⁇ m, 50 ⁇ m, and 60 ⁇ m, and of course, may be three or more, as needed.
  • the corresponding highest points of the prisms are on the same straight line, but between the two adjacent prisms, the highest point of one prism corresponds to the width of the bottom of the prism and the highest point of the corresponding position of the other prism corresponds to the width of the bottom of the prism. And the portion having a large bottom portion and the portion having a small width at the bottom of the adjacent prism are nested. This can increase the density of arrangement between the prisms, increase the number of prisms, and improve the utilization of sunlight.
  • the width of the bottom of the prism corresponding to the lowest point of the prism can also be arranged according to the regularity: the widths of the bottoms of the prisms corresponding to the two lowest points on the prism are inconsistent.
  • the width of the bottom of the prism corresponding to the lowest point of the prism can be conveniently adjusted, so that the position distribution of the sunlight reflection can be precisely controlled, and the utilization efficiency of the sunlight can be further improved.
  • the width of the bottom of the prism corresponding to the lowest point of each prism is arranged at a size interval, that is, the widths of the bottoms of the prisms corresponding to the two lowest points are inconsistent.
  • the width of the bottom of the prism corresponding to the lowest point may be two or more, for example, 20 um and 10 um, or three, for example, 30 ⁇ m, 20 ⁇ m, and 10 ⁇ m, and of course, may be three or more, as needed.
  • the corresponding lowest points of the prisms are on the same straight line, but between the two adjacent prisms, the lowest point of one prism corresponds to the width of the bottom of the prism and the lowest point of the corresponding position of the other prism corresponds to the width of the bottom of the prism. And the portion having a large bottom portion and the portion having a small width at the bottom of the adjacent prism are nested. This can increase the density of arrangement between the prisms, increase the number of prisms, and improve the utilization of sunlight.
  • the invention also provides a method for processing a light reflecting film, comprising the following steps:
  • the mold is made, and the tool is moved back and forth periodically, and at least one groove having a periodically varying depth is processed on the uniform rotating roller or the plane template moving at a constant speed;
  • a prismatic structure fitted to the groove is embossed on the reflective film by means of a pressure roller or a flat template.
  • the reflective film in the second step comprises a flat body, and a colloid layer or a layer of reflective material laminated on the flat body.
  • the third step is further included, and a reflective layer is formed on the colloid layer of the embossed prism structure.
  • the flat body can be a flexible film material, and the material of the gel layer can be found in the prior art, and details are not described herein.
  • the above method is only a product of a two-layer structure, and a product of a multi-layer structure can also be produced by the method. The difference is only that a flat body of a plurality of layers is first manufactured, or another functional layer is compounded in a subsequent process.
  • the present invention also provides a photovoltaic cell assembly comprising a plurality of battery sheets, a solder ribbon connecting the battery sheets, and a light reflecting film in the foregoing example, the photovoltaic reflective film being disposed on the upper surface or the solder ribbon In the gap region between the battery sheets, the photovoltaic reflective film may also be disposed at a gap region between the upper surface of the solder ribbon and the battery sheet, the length direction of the photovoltaic reflective film and the length of the solder ribbon The direction and the length direction of the gap region are arranged in parallel.
  • the reflective film is disposed in a spatial position in the photovoltaic module where the illumination is not utilized, and the surface of the solar cell is reflected and converted into electric energy, thereby increasing the power generation of the photovoltaic module.
  • a photovoltaic reflective film is applied to a photovoltaic module 4 for boosting photovoltaic module power;
  • the photovoltaic module 4 includes a plurality of battery sheets 41, and a solder strip 42 connecting the battery sheets.
  • the photovoltaic reflective film is disposed on the upper surface of the solder ribbon 42, and the photovoltaic reflective film is further disposed in the gap region 45 between the battery sheets 41, or at the same time in the above two regions; the length direction and the gap region 45 of the photovoltaic reflective film
  • the longitudinal directions are arranged in parallel, and the longitudinal direction of the photovoltaic reflective film is disposed in parallel with the longitudinal direction of the solder ribbon 42.
  • the photovoltaic reflective film is disposed in a spatial position where the illumination is not utilized in the photovoltaic component, and the light is reflected to the surface of the battery sheet to be converted into electric energy, thereby improving the power generation of the photovoltaic module.
  • the photovoltaic reflective film 43 of the present invention is applied to the surface of the solder ribbon 42, and the incident light 51 (sunlight) is incident on the reflective layer of the photovoltaic reflective film 43 via the glass sheet 44.
  • the reflection changes the path into the reflected light 52, and then the total reflection of the surface of the glass sheet 44 changes the path to the total reflected light 53 to finally reach the cell sheet 41, and the light energy is absorbed and converted into electrical energy.
  • the angle ⁇ of the reflecting surface is easy to adjust.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明提供一种光反射膜及加工方法和光伏电池组件,本发明创造性利用棱柱的顶点的高度和/或棱柱的底部宽度呈周期性变化形成多面结构,相邻的面可以呈现镜像结构,使得整个棱柱可以同时兼顾上午和下午阳光的反射,使得整个工作期间阳光的反射效率得到提高,弥补了现有技术的不足。现有技术中,平直的三棱柱的反射面相对于光伏电池组件的工作平面的轴线具有一个固定不变的角度,因此,其只对某一时间的阳光具有较高的反射效率。而颗粒型的反射微结构,如三棱锥,虽然可以是三棱锥的其中两面来对准阳光,兼顾上下午的阳光反射,但其颗粒之间的空白区域较多,对反射效率有阻碍作用,并且这种微结构加工难度较大,成本较高,不利于产业化应用。

Description

一种光反射膜及其制作方法及光伏电池组件 技术领域
本发明涉及一种光反射膜,特别是一种应用于光伏组件的光反射膜及其制作方法及光伏电池组件。
背景技术
光伏焊带应用于光伏组件电池片之间的连接,发挥导电聚电的重要作用。为了保证焊带与电池片的焊接牢靠和防止焊带腐蚀,焊带表面涂布有锡层,当太阳光直射到焊带表面时,平滑的锡层会将太阳光直接反射出去,此部分太阳光不能被电池板所利用,造成了光能的浪费。
有部分焊带本体上设有条纹结构用来反射光线,但是焊带基材为铜材,在加工时条纹结构难以做到微型结构,反射效果并不理想,而且会导致表面锡层厚度不均匀,易造成电池片的碎片,影响生产效率。
现有技术中出现了微棱镜等微结构来反射阳光,提高光伏电池组件的光转换效率,但是目前微棱镜结构如三棱柱结构的反射膜,其对光的反射角度是一个固定的角度,而太阳的运动轨迹是一个180°的圆弧,因此其最佳反射效率的时间较短,亟待提高。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供了一种结构简单、成本低,能将光线充分利用的光伏反射膜。
为达到上述目的,本发明解决其技术问题所采用的技术方案是:
一种光反射膜,具有偏平的本体,所述本体上设有用于反射光线的微结构,所述微结构包括至少一条棱柱构成,所述棱柱具有以下特征:
棱柱的顶点的高度和/或棱柱的底部宽度呈周期性变化。
创造性利用棱柱的顶点的高度和/或棱柱的底部宽度呈周期性变 化形成多面结构,相邻的面可以呈现镜像结构,使得整个棱柱可以同时兼顾上午和下午阳光的反射,使得整个工作期间阳光的反射效率得到提高,弥补了现有技术的不足。现有技术中,平直的三棱柱的反射面相对于光伏电池组件的工作平面的轴线具有一个固定不变的角度,因此,其只对某一时间的阳光具有较高的反射效率。而颗粒型的反射微结构,如三棱锥,虽然可以是三棱锥的其中两面来对准阳光,兼顾上下午的阳光反射,但其颗粒之间的空白区域较多,对反射效率有阻碍作用,并且这种微结构加工难度较大,成本较高,不利于产业化应用。
进一步的,所述棱柱的顶点的高度和/或棱柱的底部宽度按照平滑的曲线呈周期性变化。
进一步的,所述棱柱的横截面为三角形、半圆、梯形、多边形中、多条直线段与曲线段组合的闭合曲线中的一种或两种及两种以上组合。
进一步的,所述棱柱的底部宽度跟随棱柱顶点高度的变化而变化,当棱柱顶点的高度变大时,棱柱底部的宽度同步变大,当棱柱顶点的高度变小时,棱柱底部的宽度同步变小。
进一步的,所述棱柱的底部宽度和棱柱顶点高度的变化曲线均为正弦曲线。
进一步的,所述棱柱的底部宽度最大处的A点与宽度最小处的a点之间的曲面角度α在20°-80°之间,α为直线T和直线Q之间的夹角,其中T为a点到棱柱中轴线之间的垂线,Q为a点到a点与A点之间底部曲线之间的切线。α优选为45°-65°。
进一步的,所述棱柱的横截面为三角形,所述三角形的顶角为1-150°,优选为110°-130°,最优120°。
进一步的,所述棱柱底部最宽处的宽度为1-150μm,优选为40-60μm。
本发明还提供一种光反射膜的加工方法,包括以下步骤:
第一步,制作模具,周期性来回移动的刀具,在匀速旋转的压辊 上或匀速移动的平面模板上加工至少一条深度周期性变化的凹槽;
第二步,利用压辊或平面模板在反光膜上压印出于与凹槽嵌合的棱柱结构。
进一步的,第二步中的反光膜包括扁平本体,和复合于扁平本体上的胶体层或反光材料层。
或,还包括第三步,在压印出棱柱结构的胶体层上制作反光层。
本发明还提供一种光伏电池组件,所述光伏组件包括多个电池片、连接电池片的焊带和光反射面,所述光伏反射膜设置在所述焊带上表面或所述电池片之间的间隙区域,所述光伏反射膜也可同时设置在所述焊带上表面和所述电池片之间的间隙区域,所述光伏反射膜的长度方向与所述焊带长度方向、所述间隙区域长度方向平行设置。
采用上述优选的方案,反射膜设置到光伏组件中光照没有被利用的空间位置,将光照反射到电池片的表面转化为电能,提高了光伏组件的发电功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种实施方式的结构示意图;
图2是本发明中棱柱的结构示意图;
图3是一种现有技术的结构示意图;
图4和图5是本发明的产品应用的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部 分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了达到本发明的目的,如图1所示,一种光反射膜,具有偏平的本体1,所述本体1上设有用于反射光线的微结构,所述微结构包括至少一条棱柱2构成,所述棱柱2具有以下特征:
棱柱的顶点的高度和/或棱柱的底部宽度呈周期性变化。
图1中是棱柱的顶点高度和棱柱的底部宽度同时呈周期性的变化的一种示例,其它结构易于理解,没有给出图示。
本发明创造性利用棱柱2的顶点的高度和/或棱柱2的底部宽度呈周期性变化形成多面结构,相邻的面可以呈现镜像结构(如图2中标号为23与22的相邻曲面),使得整个棱柱2可以同时兼顾上午和下午阳光的反射,使得整个工作期间阳光的反射效率得到提高,弥补了现有技术的不足。现有技术中,平直的三棱柱的反射面相对于光伏电池组件的工作平面的轴线具有一个固定不变的角度,因此,其只对某一时间的阳光具有较高的反射效率。而颗粒型的反射微结构,如三棱锥,虽然可以是三棱锥的其中两面来对准阳光,兼顾上下午的阳光反射,但其颗粒之间的空白区域较多,对反射效率有阻碍作用,并且这种微结构加工难度较大,成本较高,不利于产业化应用。而对于提高光利用效率的研究,从来没有停止过,如业内著名的公司3MINNOVATIVE PROPERTIES COMPANY提出的公告号为US20160172518A1的发明专利,其提出的方案如图3所示,其也仅仅是将原来的三棱柱改为类似于半圆柱的形式,将原来三棱柱的平面反射面改为圆弧面,在与反射微结构的长轴的垂直方向,由单一的反射角度改变为多反射角度,但是其在非垂直方向上,反射角度没有改变,因为它和其他现有技术一样,其反射微结构的任意处横截面是一致的。其他现有技术也多是类似的微调及在光伏电池组件中不同位置应用的探索。可见受现有技术思想的束缚,每一点小小的改变都要付出艰辛的努力,而不能从表面上看,认为是易于想到的,这一点从该领域的专利申请的技 术发展轨迹中可能清晰的看到。因此,本发明提出的技术方案具有突出的实质性特点和显著的进步。
在一些实施例中,所述棱柱的顶点的高度和/或棱柱的底部宽度按照平滑的曲线呈周期性变化。这样,既利于提高加工速度,也对光的反射角度更加丰富,提高反射光覆盖的范围。
在实际应用中,所述棱柱的横截面为三角形、半圆、梯形、多边形中、多条直线段与曲线段组合的闭合曲线中的一种或两种及两种以上组合。
优选的,所述棱柱的底部宽度跟随棱柱顶点高度的变化而变化,当棱柱顶点的高度变大时,棱柱底部的宽度同步变大,当棱柱顶点的高度变小时,棱柱底部的宽度同步变小。
其中一个特例,所述棱柱的底部宽度和棱柱顶点高度的变化曲线均为正弦曲线。
如图2所示,为了兼顾不同地区及上午下午的阳光反射效率,所述棱柱的底部宽度最大处的A点与宽度最小处的a点之间的曲面角度α在20°-80°之间,α为直线T和直线Q之间的夹角,其中T为a点到棱柱中轴线之间的垂线,Q为a点到a点与A点之间底部曲线之间的切线。α优选为45°-65°。即图2所示的夹角α,例如,当α为20°或45°时或50°或65°或80°时,可能在某一地区对阳光的反射效率最高,那么,我们可以通过加工时模具的转速或前进速度,以及刀具进刀和退刀的行程和速度来方便的控制,根据需要,还可以在刀具的形状变化上来获得进一步的调整。这样一来,反射面的曲面变化易于控制调整及加工,适宜于规模化生产。针对不同维度地区的应用,可以方便的进行调整,周期性变化的镜像曲面除了可以兼顾上午下午不同时段的阳光反射效率以外,还以多角度的反射提高了反射阳光的覆盖区域,使得反射光不会集中照射在电池片上的有限带状区域。作为通用的选择,可以选取45°或65°。
在实际应用中,棱柱的横截面可以选择为三角形,所述三角形的顶角为1-150°,优选范围为110°-130°,最优选择120°。
在实际应用中,所述棱柱底部最宽处的宽度为1-150μm,如5um、10um、20um…70um、80um、90um、100um等等;优选为40-60μm。如40μm、50μm或60μm。
在实际应用中,还可以按照以下规律设置棱柱:
棱柱上相邻两个最高点所对应的棱柱底部宽度不一致。这样,通过调整棱柱最高点对应的棱柱底部宽度,可以方便的调整棱柱不同位置的阳光反射角度,使得可以精确控制阳光反射的位置分布,进一步提高阳光的利用效率。
例如,每条棱柱的最高点所对应的棱柱底部宽度呈大小间隔排布,即相邻两个最高点所对应的棱柱底部宽度不一致。其中,最高点对应的棱柱底部宽度可以是一大一下两种,例如60um和40um,也可以是三种,例如40μm、50μm和60μm,当然也可以是三种以上,根据需要而定。
进一步的,各棱柱的对应的最高点在同一直线上,但相邻两条棱柱之间,其中一条棱柱的最高点对应棱柱底部的宽度和另一条棱柱对应位置最高点对应棱柱底部的宽度不同,及底部宽度大的部位与邻近棱柱的底部宽度小的部位嵌套排布。这样可以提高棱柱之间的排列密度,提高棱柱的数量,提高阳光的反射利用率。
同样的,棱柱最低点所对应的棱柱底部宽度也可以按照该规律排布:棱柱上相邻两个最低点所对应的棱柱底部宽度不一致。这样,通过调整棱柱最低点对应的棱柱底部宽度,可以方便的调整棱柱不同位置的阳光反射角度,使得可以精确控制阳光反射的位置分布,进一步提高阳光的利用效率。
例如,每条棱柱的最低点所对应的棱柱底部宽度呈大小间隔排布,即相邻两个最低点所对应的棱柱底部宽度不一致。其中,最低点对应的棱柱底部宽度可以是一大一下两种,例如20um和10um,也可以是三种,例如30μm、20μm和10μm,当然也可以是三种以上,根据需要而定。
进一步的,各棱柱的对应的最低点在同一直线上,但相邻两条棱 柱之间,其中一条棱柱的最低点对应棱柱底部的宽度和另一条棱柱对应位置最低点对应棱柱底部的宽度不同,及底部宽度大的部位与邻近棱柱的底部宽度小的部位嵌套排布。这样可以提高棱柱之间的排列密度,提高棱柱的数量,提高阳光的反射利用率。
本发明还提供一种光反射膜的加工方法,包括以下步骤:
第一步,制作模具,周期性来回移动的刀具,在匀速旋转的压辊上或匀速移动的平面模板上加工至少一条深度周期性变化的凹槽;
第二步,利用压辊或平面模板在反光膜上压印出于与凹槽嵌合的棱柱结构。
进一步的,第二步中的反光膜包括扁平本体,和复合于扁平本体上的胶体层或反光材料层。
进一步的,还包括第三步,在压印出棱柱结构的胶体层上制作反光层。
上述扁平状的本体可以是柔性的膜状材料,以及胶体层的材质都可以在现有技术中找到相关资料,在这里不再赘述。上述方法仅是以两层结构的产品为例,多层结构的产品也可以采用该方法生产,差异仅仅是先制造多层的扁平本体,或者在后续的工序中再复合其它功能层。
本发明还提供一种光伏电池组件,所述光伏组件包括多个电池片、连接电池片的焊带和前述示例中的光反射膜,所述光伏反射膜设置在所述焊带上表面或所述电池片之间的间隙区域,所述光伏反射膜也可同时设置在所述焊带上表面和所述电池片之间的间隙区域,所述光伏反射膜的长度方向与所述焊带长度方向、所述间隙区域长度方向平行设置。
采用上述优选的方案,反射膜设置到光伏组件中光照没有被利用的空间位置,将光照反射到电池片的表面转化为电能,提高了光伏组件的发电功率。
如图4所示,一种光伏反射膜的应用,光伏反射膜应用于光伏组件4中,用以提升光伏组件功率;光伏组件4包括多个电池片41、连 接电池片的焊带42,所述光伏反射膜设置在焊带42上表面,所述光伏反射膜还设置在电池片41之间的间隙区域45,或同时设置在上述两区域;所述光伏反射膜的长度方向与间隙区域45长度方向平行设置,所述光伏反射膜的长度方向与焊带42长度方向平行设置。采用上述技术方案的有益效果是:光伏反射膜设置到光伏组件中光照没有被利用的空间位置,将光照反射到电池片的表面转化为电能,提高了光伏组件的发电功率。
下面结合图5阐述本发明在光伏组件中反射光线的原理,本发明光伏反射膜43贴付于焊带42表面,入射光线51(阳光)经玻璃片44入射到光伏反射膜43的反射层上反射改变路径成反射光线52,再经玻璃片44表面全反射改变路径成全反射光线53,最终到达电池片41,光能被吸收转化为电能。
本发明带来以下优点:
1、利于加工和规模化生产,加工成本低。
2、针对不同维度地区,反射面角度α易于调整。
3、针对整个日照时间,针对阳光的不同入射角度,提高了反射率,增加了太阳能光伏电池组件的发电功率。
上述实施例只为说明本发明的技术构思及特点,其目的在于让本领域普通技术人员能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (11)

  1. 一种光反射膜,其特征在于,具有偏平的本体,所述本体上设有用于反射光线的微结构,所述微结构包括至少一条棱柱构成,所述棱柱具有以下特征:
    棱柱的顶点的高度和/或棱柱的底部宽度呈周期性变化。
  2. 根据权利要求1所述的光反射膜,其特征在于,所述棱柱的顶点的高度和/或棱柱的底部宽度按照平滑的曲线呈周期性变化。
  3. 根据权利要求1所述的光反射膜,其特征在于,所述棱柱的横截面为三角形、半圆、梯形、多边形中、多条直线段与曲线段组合的闭合曲线中的一种或两种及两种以上组合。
  4. 根据权利要求1、2或3所述的光反射膜,其特征在于,所述棱柱的底部宽度跟随棱柱顶点高度的变化而变化,当棱柱顶点的高度变大时,棱柱底部的宽度同步变大,当棱柱顶点的高度变小时,棱柱底部的宽度同步变小。
  5. 根据权利要求4所述的光反射膜,其特征在于,所述棱柱的底部宽度和棱柱顶点高度的变化曲线均为正弦曲线。
  6. 根据权利要求4所述的光反射膜,其特征在于,所述棱柱的底部宽度最大处的A点与宽度最小处的a点之间的曲面角度α在20°-80°之间,α为直线T和直线Q之间的夹角,其中T为a点到棱柱中轴线之间的垂线,Q为a点到a点与A点之间底部曲线之间的切线,α优选为45°-65°。
  7. 根据权利要求6所述的光反射膜,其特征在于,所述棱柱的横截面为三角形,所述三角形的顶角为1-150°,优选为110°-130°,最优120°。
  8. 根据权利要求6所述的光反射膜,其特征在于,所述棱柱底部最宽处的宽度为1-150μm,优选为40-60μm。
  9. 一种光反射膜的加工方法,其特征在于,包括以下步骤:
    第一步,制作模具,周期性来回移动的刀具,在匀速旋转的压辊上 或匀速移动的平面模板上加工至少一条深度周期性变化的凹槽;
    第二步,利用压辊或平面模板在反光膜上压印出于与凹槽嵌合的棱柱结构。
  10. 根据权利要求9所述的光反射面的加工方法,其特征在于,第二步中的反光膜包括扁平本体,和复合于扁平本体上的胶体层或反光材料层,或,还包括第三步,在压印出棱柱结构的胶体层上制作反光层。
  11. 一种光伏电池组件,其特征在于,所述光伏组件包括多个电池片、连接电池片的焊带和光反射面,所述光伏反射膜设置在所述焊带上表面或所述电池片之间的间隙区域,所述光伏反射膜也可同时设置在所述焊带上表面和所述电池片之间的间隙区域,所述光伏反射膜的长度方向与所述焊带长度方向、所述间隙区域长度方向平行设置。
PCT/CN2018/091012 2017-05-08 2018-06-13 一种光反射膜及其制作方法及光伏电池组件 WO2018206015A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/307,328 US20190140126A1 (en) 2017-05-08 2018-06-13 Light reflective film and manufacturing method thereof and photovoltaic cell module
JP2018002666U JP3218463U (ja) 2018-06-13 2018-07-12 光反射膜及び光起電力電池モジュール
DE102018118667.3A DE102018118667A1 (de) 2017-05-08 2018-08-01 Lichtreflektierende Folie und ihr Herstellungsverfahren sowie photovoltaisches Modul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710319517.0 2017-05-08
CN201710319517.0A CN106950626B (zh) 2017-05-08 2017-05-08 一种光反射膜及其制作方法及光伏电池组件

Publications (1)

Publication Number Publication Date
WO2018206015A1 true WO2018206015A1 (zh) 2018-11-15

Family

ID=59479746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091012 WO2018206015A1 (zh) 2017-05-08 2018-06-13 一种光反射膜及其制作方法及光伏电池组件

Country Status (4)

Country Link
US (1) US20190140126A1 (zh)
CN (1) CN106950626B (zh)
DE (1) DE102018118667A1 (zh)
WO (1) WO2018206015A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950626B (zh) * 2017-05-08 2021-08-06 苏州高德辰光电科技有限公司 一种光反射膜及其制作方法及光伏电池组件
CN107482077A (zh) * 2017-09-26 2017-12-15 苏州宇邦新型材料股份有限公司 一种光伏焊带
CN108022997A (zh) * 2017-12-08 2018-05-11 中天科技精密材料有限公司 一种光伏组件用的光全反射膜
CN109298476A (zh) * 2017-12-12 2019-02-01 宁波激智科技股份有限公司 一种背板组件用反光贴条及其制备方法
CN107994082A (zh) * 2017-12-22 2018-05-04 彭仲林 一种光重导向膜及光伏电池组件
CN108259002A (zh) * 2018-03-22 2018-07-06 上海玛企电子科技有限公司 一种光伏组件反射膜及光伏组件
CN108400193A (zh) * 2018-04-17 2018-08-14 上海玛企电子科技有限公司 一种用于光伏组件的反射膜及光伏组件
CN108831948A (zh) * 2018-06-07 2018-11-16 善仁(浙江)新材料科技有限公司 一种防眩光增益膜
US20210313482A1 (en) * 2018-08-31 2021-10-07 3M Innovative Properties Company Light redirecting film having stray-light mitigation properties useful with solar modules
CN110854212B (zh) * 2019-11-05 2022-03-22 泰州隆基乐叶光伏科技有限公司 一种光伏电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751679B1 (en) * 2008-12-12 2010-07-06 Univacco Technology Inc. Brightness enhancement film and backlight module
CN102544174A (zh) * 2012-01-06 2012-07-04 南通美能得太阳能电力科技有限公司 一种增加光能利用率的太阳能电池组件
CN103681911A (zh) * 2013-12-31 2014-03-26 赛维Ldk太阳能高科技(南昌)有限公司 一种光伏组件
CN104900765A (zh) * 2015-06-30 2015-09-09 西安泰力松新材料股份有限公司 一种光伏焊带的生产方法及使用该方法制成的光伏焊带
CN106449841A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种光伏反射膜及光伏组件
CN106950626A (zh) * 2017-05-08 2017-07-14 苏州高德辰光电科技有限公司 一种光反射膜及其制作方法及光伏电池组件
CN206920636U (zh) * 2017-05-08 2018-01-23 苏州高德辰光电科技有限公司 一种光反射膜及光伏电池组件
CN108133969A (zh) * 2018-02-09 2018-06-08 常州斯威克新材料科技有限公司 一种光伏防眩光增效反光贴膜及光伏电池组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378946A (zh) 2013-07-09 2016-03-02 3M创新有限公司 用于太阳能组件的带有含曲面微结构的反射微结构化膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751679B1 (en) * 2008-12-12 2010-07-06 Univacco Technology Inc. Brightness enhancement film and backlight module
CN102544174A (zh) * 2012-01-06 2012-07-04 南通美能得太阳能电力科技有限公司 一种增加光能利用率的太阳能电池组件
CN103681911A (zh) * 2013-12-31 2014-03-26 赛维Ldk太阳能高科技(南昌)有限公司 一种光伏组件
CN104900765A (zh) * 2015-06-30 2015-09-09 西安泰力松新材料股份有限公司 一种光伏焊带的生产方法及使用该方法制成的光伏焊带
CN106449841A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种光伏反射膜及光伏组件
CN106950626A (zh) * 2017-05-08 2017-07-14 苏州高德辰光电科技有限公司 一种光反射膜及其制作方法及光伏电池组件
CN206920636U (zh) * 2017-05-08 2018-01-23 苏州高德辰光电科技有限公司 一种光反射膜及光伏电池组件
CN108133969A (zh) * 2018-02-09 2018-06-08 常州斯威克新材料科技有限公司 一种光伏防眩光增效反光贴膜及光伏电池组件

Also Published As

Publication number Publication date
CN106950626A (zh) 2017-07-14
US20190140126A1 (en) 2019-05-09
CN106950626B (zh) 2021-08-06
DE102018118667A1 (de) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018206015A1 (zh) 一种光反射膜及其制作方法及光伏电池组件
US8048250B2 (en) Method of manufacturing photovoltaic (PV) enhancement films
CN108550645A (zh) 反射膜、光伏玻璃面板、光伏组件及光伏组件的制造方法
CN112262479A (zh) 用于优化两面太阳能模块的性能的光管理系统
TWI382551B (zh) 太陽能集光模組
WO2015003851A1 (en) Lens for light source
JP2020502800A (ja) 光起電力反射膜及びその用途
CN104332521A (zh) 一种光伏组件及其制作方法
US20160172518A1 (en) Reflective microstructured films with microstructures having curved surfaces, for use in solar modules
CN103681923A (zh) 斜射型反光焊带
CN109473501A (zh) 一种提高光伏转换效率的反光膜及其制备方法
CN208570639U (zh) 一种用于光伏组件的反射膜及光伏组件
JP3218463U (ja) 光反射膜及び光起電力電池モジュール
US20160172517A1 (en) Reflecting films with rounded microstructures for use in solar modules
CN206920636U (zh) 一种光反射膜及光伏电池组件
CN103681924A (zh) 折射型反光焊带
CN103681925A (zh) 反射型反光焊带
CN208315567U (zh) 反射膜、光伏玻璃面板及光伏组件
CN206301822U (zh) 一种用于光伏组件焊带上的反光膜
CN208596683U (zh) 一种光伏组件用平面紧密堆积型反光膜
CN213950958U (zh) 一种压花镀膜玻璃用压花辊及压花镀膜玻璃
WO2015081961A1 (en) Flexible fresnel solar concentrator
CN110350049B (zh) 一种防眩光太阳能电池组件盖板玻璃
CN209515687U (zh) 光伏组件
CN103021498A (zh) 一种用于聚焦x射线的光学器件、制作方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798247

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18798247

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18798247

Country of ref document: EP

Kind code of ref document: A1