WO2018205943A1 - 模块化控温反应器 - Google Patents

模块化控温反应器 Download PDF

Info

Publication number
WO2018205943A1
WO2018205943A1 PCT/CN2018/086101 CN2018086101W WO2018205943A1 WO 2018205943 A1 WO2018205943 A1 WO 2018205943A1 CN 2018086101 W CN2018086101 W CN 2018086101W WO 2018205943 A1 WO2018205943 A1 WO 2018205943A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
reaction
temperature
curved plate
distribution
Prior art date
Application number
PCT/CN2018/086101
Other languages
English (en)
French (fr)
Inventor
余圣婴
刘英民
倪昊尹
徐月亭
Original Assignee
德艾柯工程技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德艾柯工程技术(上海)有限公司 filed Critical 德艾柯工程技术(上海)有限公司
Publication of WO2018205943A1 publication Critical patent/WO2018205943A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles

Definitions

  • the present disclosure relates to the field of chemical reaction devices, for example, to a modular temperature controlled reactor.
  • the isothermal reactor usually adopts a tubular reactor, but the heat transfer coefficient of the heat exchange tube is not high, requires more heat exchange area, and the reactor volume is large; most of the catalyst is packed in the heat exchange tube, one reactor There are thousands of internal heat exchange tubes, the catalyst loading and unloading workload is large, and the leak detection maintenance is complicated. Even if the catalyst is packed in the casing, the loading of the catalyst is still complicated and complicated due to the presence of the upper and lower tube sheets; in particular, it needs to be realized.
  • tubular reactors often face problems such as large pressure drop, high hot spots, and large volume.
  • the radial tube reactor can solve the problems of large pressure drop and high energy consumption, the following problems also exist: the tube sheet causes difficulty in loading and unloading the catalyst, and the tube sheet structure is not suitable for field welding, and there are size restrictions on transportation.
  • the pipe box or the ring pipe structure is adopted, the heat exchange tube needs special bending, the process is numerous, the processing is difficult; the tube bundle support is difficult to set; the tube has the requirements of the pipe diameter and the pipe center distance, so that the heat transfer component accounts for the total reactor
  • the space is small, and in the region of intense heat release or heat absorption, the heat exchange area and heat exchange capacity are insufficient, which may easily lead to flight temperature or sudden reaction. In the region where the reaction heat release amount is small or the heat absorption amount is small, the heat exchange area is rich in surplus. This leads to an increase in reactor volume and an increase in cost.
  • the plate isothermal reactor avoids some of the disadvantages of the tubular radial reactor, it also has drawbacks.
  • the plate is in the form of a radial divergence, which results in a plate near the central pipe.
  • the sheet is denser than the outer layer of the catalyst, resulting in uneven heat transfer.
  • FIG. 1 is a temperature distribution curve of three different heat release rates provided by the embodiment.
  • the exothermic or endothermic processes of different reactions are different, and the positions of the hot spot temperatures are different, and the single The arrangement is difficult to apply, and it is inevitable that temperature accumulation or temperature decrease occurs in the place where the exothermic heat is strongest or the heat absorption is strongest and the heat exchange area is insufficient, causing local temperature too high or insufficient temperature and local catalyst coking to be inactivated or not activated.
  • the temperature which affects the selectivity of the reaction and the reaction rate, is more likely to cause the reactor to be in an unstable state, with a flying temperature or a sudden reaction.
  • the present application proposes a modular temperature-controlled reactor, which is divided into a completely independent and flexible and variable reaction by a structure of a plurality of temperature-control reaction modules which can be spliced and detached to each other by a central cylinder.
  • the cavity is easy to operate, install and transport, which is beneficial to the large-scale equipment; and for different exothermic or endothermic reactions, based on the analysis of reaction and heat transfer, different adjustments are made to make the reaction the most exothermic or the most endothermic. Get the best and best heat transfer effect in a strong position, reduce or remove heat exchange components in the weakest part of the reaction, save energy and reduce emissions, and achieve high economy.
  • Fully independent modules can be filled with the same or different amounts or even different types of catalysts to achieve integration of multiple reactions.
  • the present application provides a modular temperature-controlled reactor comprising: a reaction chamber in which at least one modular heat exchange unit is disposed, and the heat exchange unit is provided with a gas annulus distribution cylinder center cylinder
  • the outside of the heat exchange unit is further provided with a gas annulus distribution tube gas annulus distribution tube
  • the reaction chamber is further connected with a raw material gas inlet, a reaction gas outlet, at least one heat exchange medium inlet and at least one a heat exchange medium outlet corresponding to the heat exchange medium inlet, one of the feed gas inlet and the reaction gas outlet is in communication with the gas annulus distribution tube, the raw material gas inlet (1) and the reaction gas outlet (6)
  • the other of the two is in communication with the central cylinder, the heat exchange medium inlet and the heat exchange medium outlet are in communication with the heat exchange unit, the heat exchange unit comprising a plurality of mutually spliced and independently detachable temperature control distributed around the central cylinder Reaction modules, and each temperature control reaction module is filled with a different catalyst.
  • the temperature control reaction module includes a control cavity in communication with the outside, the control cavity is internally provided with at least one heat exchange element, and the control cavity is provided with at least one for placing a catalyst The opening is connected with a detachable cover plate.
  • the plurality of control cavities are radially distributed around the axis of the center cylinder
  • the temperature control reaction module includes a front curved plate and a rear curved plate, and the front curved plate and a rear curved plate and two heat exchange elements connected to both sides of the front curved plate (91) and the rear curved plate (92) constitute a hollow control cavity, and the control cavity
  • the upper part and the lower part are openings, and the opening is connected with a detachable cover plate; at least one of the front curved plate piece and the rear curved plate piece is provided with a flow guiding hole for guiding the reaction gas.
  • the front curved plate is provided with a plurality of card slots
  • the rear curved plate (92) is provided with a plurality of corresponding slots of the front curved plate.
  • Each of the heat exchange elements is detachably snapped onto the corresponding card slot, and the number of heat exchange elements set by each temperature control reaction module is adjustable.
  • control cavity comprises a plate cavity formed by the catalyst upper cover and the catalyst lower cover being connected along the edge, and the plurality of heat exchange components belonging to the same temperature control reaction module become a heat exchange component group.
  • Each of the heat exchange elements in each heat exchange element group is sequentially connected through a distribution pipe, and the flow distribution pipe is embedded in a slit of a top end and a bottom end of each heat exchange element, and the plate cavity is opened There are openings respectively communicating with the heat exchange distribution branch pipe and the heat exchange collection branch pipe, and the heat exchange distribution branch pipe and the heat exchange collection branch pipe are respectively embedded in the slats of the top end and the bottom end of each heat exchange element The distribution pipe is connected.
  • each of the two ends of the distribution tube of the heat exchange element group is respectively connected with a heat exchange distribution branch pipe and a heat exchange collection branch pipe, and each of the heat exchange distribution branch pipes is connected to the same heat exchange medium through a riser pipe.
  • the heat exchange distribution manifold, each of the heat exchange collection branch pipes is connected to the heat exchange collecting manifold of the same heat exchange medium through the riser, and the heat exchange distribution manifold of the same heat exchange medium communicates with the heat exchange medium of the same heat exchange medium through the pipeline
  • the medium inlet, the heat exchange collecting manifold of the same heat exchange medium is connected to the heat exchange medium outlet of the same heat exchange medium through the pipeline.
  • the heat exchange unit further includes a support frame surrounding the central cylinder, the support frame includes a plurality of ring beams disposed around a central axis of the reaction chamber and a plurality of vertical beams connected between the ring beams.
  • a tapered barrel is also connected to the lower end of the innermost ring beam, and the tapered barrel is connected to the lower head.
  • the heat exchange unit comprises at least one temperature-controlled reaction layer composed of a plurality of temperature-controlled reaction modules.
  • the heat exchange unit further includes at least one temperature control reaction layer, wherein each temperature control reaction layer is composed of at least one splicing of the temperature control reaction module and the insulation module.
  • different layer thicknesses of the temperature-control reaction layer are different.
  • the utility model has the advantages that the structure of the temperature-control reaction module which can be spliced and detached and connected to each other around the central cylinder divides the inside of the reactor into a completely independent and flexible and variable reaction chamber, which is convenient for operation, installation and transportation. , to improve production efficiency, is conducive to large-scale equipment; and for different exothermic or endothermic reactions, based on the analysis of reaction and heat transfer, make different adjustments, so that the reaction is obtained at the position with the strongest exotherm or the strongest heat absorption The best and best heat transfer effect, reduce or remove heat exchange components in the weakest part of the reaction, save energy and reduce emissions, and achieve high economic efficiency. Fully independent modules can be filled with the same or different amounts or even different types of catalysts to achieve integration of multiple reactions.
  • the independent loading and unloading of the different modules between the completely independent modules allows the catalyst to be partially replaced in the same reactor, ie only the catalyst in the module that has been deactivated or in a large amount of coking is replaced while the remaining modules are retained, minimizing investment.
  • the arrangement of the central cylinder ensures that the raw material gas enters the heat exchange unit unidirectionally and performs sufficient reaction, and the gas annulus is distributed outside the cylinder so that the raw material gas entering the heat exchange unit is fully reacted therein.
  • Figure 1 is a temperature profile of three different heat release rates
  • FIG. 2 is a schematic structural view of a modular temperature control reactor according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a temperature control reaction module according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view of a modular temperature control reactor according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view of a modular temperature control reactor provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural view of a modular temperature control reactor provided by another embodiment of the present application.
  • FIG. 7 is a schematic structural view of a temperature-controlled reaction layer equal-thickness modular temperature-controlled reactor according to an embodiment of the present application.
  • FIG. 8 is a schematic structural view of a modular temperature-controlled reactor in which the temperature-control reaction layer is not equal in thickness according to Embodiment 2 of the present application;
  • Example 9 is a schematic structural view of a modular temperature-controlled reactor provided in Example 3 of the present application.
  • the present application provides a modular temperature-controlled reactor, as shown in FIGS. 2-6, including a housing 10, and an upper head 2 and a lower head 3 connected to the upper and lower sides of the housing 10, the housing 10.
  • the interior of the upper head 2 and the lower head 3 form a sealed reaction chamber 11 in which at least one modular heat exchange unit 9 is disposed, the outer portion of which is also provided A gas cylinder outer distribution cylinder 5 is disposed, and the heat exchange unit 9 is provided with a central cylinder 4, and the outer portion of the heat exchange unit 9 is also provided with a gas annulus outer distribution cylinder 5, and the reaction chamber 11 is further Connected with a feed gas inlet 1, a reaction gas outlet 6, at least one heat exchange medium inlet 7 and at least one heat exchange medium outlet 8 corresponding to the heat exchange medium inlet 7, in the feed gas inlet 1 and the reaction gas outlet 6
  • One is in communication with the gas annulus distribution tube 5, and the other of the feed gas inlet (1) and the reaction gas outlet (6) is in communication with the central cylinder 4, the heat exchange
  • FIG. 4 is a schematic structural view of a modular temperature control reactor provided by the embodiment. As shown in FIG. 4, a plurality of the mutually detached and independently detachable temperature control reaction modules are centered on the central cylinder 4 and enclose a temperature control reaction layer.
  • Each temperature-controlled reaction module that is completely independent can be filled with the same or different amounts or even different kinds of catalysts to achieve integration of various reactions.
  • the independent loading and unloading of the different modules between the completely independent modules allows the catalyst to be partially replaced in the same reactor, ie only the catalyst in the module that has been deactivated or in a large amount of coking is replaced while the remaining modules are retained, minimizing investment.
  • the arrangement of the central cylinder 4 ensures that the feed gas enters the heat exchange unit 9 in one direction and performs a sufficient reaction, and the gas annulus distributes the arrangement of the cylinder 5 such that the feed gas entering the heat exchange unit 9 is sufficiently reacted therein.
  • the raw material gas enters the reaction chamber 11 from the raw material gas inlet 1 and is converted into a reaction gas from the reaction gas outlet 8 after being catalytically reacted in the catalytic environment in the heat exchange unit 9, and the heat exchange medium is self-heating medium.
  • the raw material gas inlet 1 is opened on the upper header 2, and the reaction gas outlet 6 is opened on the lower header 3.
  • the raw material gas inlet 1 and the reaction gas outlet 6 may be opened on the same side.
  • the temperature control reaction module includes a control cavity in communication with the outside, and the interior of the control cavity is provided with at least one heat exchange element 93, and the control cavity is provided with at least one for placing An opening of the catalyst to which a detachable cover plate is attached.
  • the shape of the control cavity is not limited, and may be square, trapezoidal, or circular.
  • the control cavity may communicate with the outside by opening a through hole or opening in the wall of the cavity, the cover plate is a closed cover or a grille 94, and the cover plate or the grille 94 is opened for accommodating heat exchange A distribution through pipe and a through hole through which the heat exchange collecting branch pipe passes.
  • the control cavity comprises a plate-length cavity formed by connecting the catalyst upper cover plate and the catalyst lower cover plate along the edge, and the heat exchange element 93 belonging to the same temperature-control reaction module becomes a heat exchange component group.
  • Each of the heat exchange elements 93 in each heat exchange element group is sequentially connected by a distribution pipe, which is respectively embedded in a slit of a top end and a bottom end of each heat exchange element 93, the plate path cavity
  • the upper opening is provided with a port respectively communicating with the heat exchange distribution branch pipe and the heat exchange collecting branch pipe, and the heat exchange distribution branch pipe and the heat exchange collecting branch pipe are respectively respectively fitted with the plate joints embedded at the top end and the bottom end of each heat exchange element 93.
  • the distribution pipes are connected.
  • the distribution tubes are respectively embedded in the top end and the bottom end slit of the heat exchange element 93, so that the heat exchange medium is uniformly distributed into each of the heat exchange elements 93.
  • the inlet cross-sectional area is larger and has higher pressure bearing capacity, which can effectively reduce the risk of leakage.
  • the heat exchange element 93 has a linear, wavy or irregular arc shape in a cross section of the temperature control reaction module.
  • the structure of the plate cavity may be a cuboid, a wave body or other irregular shape.
  • the plate cavity is formed by a metal plate heat exchange plate by welding to form a sealed heat exchange cavity.
  • the heat exchange element 93 may be a hollow flat plate structure, or a hollow corrugated sheet, or a hollow structure welded by two metal sheets.
  • the welding method is spot welding or strip welding.
  • the weld locations are staggered such that the pair of surfaces are contoured to form a heat exchange medium of different viscosities.
  • the heat exchange plates include, but are not limited to, metal sheets. In order to meet the requirements of each temperature control reaction module, the aspect ratio, thickness, depth of bump, solder joint or electrode density of at least one of each of the upper tube sheet and the lower tube sheet are adjustable.
  • two ends of the distribution tube of each of the heat exchange element groups are respectively connected with a heat exchange distribution branch pipe and a heat exchange collection branch pipe, and each of the heat exchange distribution branch pipes is connected to the same heat exchange medium through a riser pipe.
  • the heat exchange distribution manifold, each of the heat exchange collection branch pipes is connected to the heat exchange collecting manifold of the same heat exchange medium through the riser, and the heat exchange distribution manifold of the same heat exchange medium communicates with the heat exchange medium of the same heat exchange medium through the pipeline
  • the medium inlet 7, the heat exchange collecting manifold of the same heat exchange medium is connected to the heat exchange medium outlet 8 of the same heat exchange medium through a pipeline.
  • the heat exchange distribution branch pipe and the heat exchange collection branch pipe adopt a plate joint pipe structure, that is, the heat exchange distribution branch pipe and the heat exchange collection branch pipe are embedded in the heat exchange plate of the heat exchange cavity, and do not affect the grid 94 and the catalyst. Opening and placing ensure the independence of each temperature control module.
  • the grille 94 When the cover plate is the grille 94, the grille 94 includes two sub-grids which are spliced with each other. The intermediate positions of the two sub-grids are provided with through holes for accommodating the heat exchange distribution branch pipe and the heat exchange collecting branch pipe.
  • the grid 94 is also covered with a wire mesh.
  • the upper and lower ends of the control cavity are respectively provided with openings, and the two openings are respectively detachably connected with the grille 94 by bolts to facilitate the placement and removal of the catalyst.
  • FIG. 3 is a schematic structural diagram of a temperature control reaction module according to an embodiment of the present invention.
  • the temperature control reaction module includes a front curved plate 91 and a rear curved plate 92 such that the front curved plate 91 and the rear curved plate 92 are coupled to the front curved plate.
  • the two heat exchange elements 93 on both sides of the sheet (91) and the rear curved plate (92) constitute a hollow control cavity, and the upper and lower portions of the control cavity are open, and the opening passes through A detachable cover is attached to the bolt, clamp or hinge.
  • the front curved plate 91 and the rear curved plate 92 may be linear structures, and the front curved plate 91 and the rear curved plate 92 may also be curved structures, when the front curved plate When the 91 and rear curved plates 92 are curved, their utilization of space is higher.
  • a plurality of the control cavities radially distributed around the axis of the central cylinder 4 may be arranged more densely.
  • the temperature is controlled in the reaction chamber.
  • the front curved plate 91 and the rear curved plate 92 are all circular arc structures, and the front curved plate 91 and the rear curved plate 92 are centered on the axis of the center cylinder 4,
  • the cross section of the control cavity is a fan-shaped structure, and the structure is more compact and more convenient to process than the structure of the center cylinder 4.
  • the temperature-control reaction module may comprise 3 to 100 sets of identical heat exchange elements, and exhibit an angular arrangement of 1° to 45°.
  • the distance between the front curved plate 91 and the rear curved plate 92 is determined by the width of the heat exchange element 93, and the thickness of the different temperature control reaction layers depends on the temperature control.
  • the width of the heat exchange element 93 between the reaction layers, the front curved plate 91, the rear curved plate 92 and the heat exchange element 93 are equal.
  • the front curved plate 91 and the rear curved plate 92 are provided with a flow guiding hole 95 for guiding the reaction gas.
  • An ordered flow guiding passage is formed between the front curved plate 91 and the oppositely disposed flow guiding holes 95 on the rear curved plate 92 to quickly guide the reacted gas.
  • the length of the front curved plate 91 is smaller than the length of the rear curved plate 92.
  • the opening ratio of the rear curved plate 91 is 15% to 40%
  • the opening ratio of the front curved plate 92 is 1% to 10%
  • the diameter of the opening 95 is 0.25.
  • the shape of the opening can be a circle, a rectangle, a triangle, and the like.
  • the front curved plate 91 is provided with a plurality of card slots
  • the rear curved plate (92) is provided with corresponding to the plurality of card slots of the front curved plate.
  • a plurality of card slots, a set number of heat exchange elements 93 are detachably snapped onto the corresponding card slots.
  • the number of the card slots is greater than or equal to the number of the heat exchange elements 93, and the number of heat exchange elements 93 set by each temperature control reaction module is adjustable.
  • the number and density of heat exchange elements 93 between the front curved panel 91 and the rear curved panel 92 can be adjusted depending on the chemical reaction.
  • the heat exchange unit 9 further includes a support frame surrounding the center cylinder 4, the support frame includes a plurality of ring beams disposed around a central axis of the reaction chamber 11 and a plurality of rings connected between the ring beams
  • the vertical beam, the lower end of the innermost ring beam is also connected with a cone type barrel, and the cone type barrel is connected to the lower head 3.
  • the arrangement of the cone type barrel makes the pressure bearing performance of the support frame better and more stable.
  • a plurality of the temperature-control reaction modules that can be spliced and detached together are centered on the central cylinder 4 and form a temperature-controlled reaction layer, that is, a plurality of equal-temperature temperature-control reaction modules are spliced into a ring.
  • the column is connected to the central cylinder 4 and is externally distributed by a gas annulus.
  • all of the heat exchange elements 93 have the same width, that is, the catalyst bed thickness in each temperature control reaction module is uniform and the loading amount is the same.
  • the modular temperature-controlled reactor employs a connection structure of a feed gas inlet 1 and a reaction gas outlet 6 and a concentric central cylinder 4.
  • the raw material gas inlet 1 and the reaction gas outlet 6 may be at the same end of the reaction chamber 11 to distribute the fluid in the reactor; as shown in FIG. 5, the raw material gas inlet 1 and the reaction
  • the gas outlets 6 can also have a Z-shaped distribution at different ends of the reaction chamber 11.
  • the heat exchange medium distribution manifold and the heat exchange medium collection manifold are located in the central cylinder 4 of the reaction chamber 11 or the gas annulus distribution cylinder 5.
  • the static pressure in the heat transfer medium distribution manifold and the heat transfer medium distribution branch increases with the fluid flow direction, and the static pressure in the heat exchange medium collecting manifold and the heat exchange medium collecting branch is in accordance with the flow direction.
  • the change in static pressure during the diversion, diversion and collection processes results in a small difference in static pressure between the two channels, which is suitable for a momentum exchange type radial reactor.
  • FIG. 7 is a schematic structural diagram of a temperature-controlled reaction layer equal-thickness modular temperature-controlled reactor according to an embodiment of the present invention. As shown in FIG.
  • a plurality of the temperature control reaction modules that can be spliced and detached from each other are centered on the center cylinder 4 and enclose two or more temperature control reaction layers, and the thickness of each of the temperature control reaction layers
  • a plurality of the temperature-control reaction modules that can be spliced and detached with each other are centered on the central cylinder 4, and are surrounded by two temperature-control reaction layers, and the thicknesses of the two temperature-control reaction layers are the same.
  • the modular temperature-controlled reactor is provided with a temperature-control reaction module of the heat exchange element 93 having a smaller spacing near the region where the hot spot temperature occurs, to form a temperature control with a smaller thickness.
  • Reactive layer and further increase the number of heat exchange elements 93 in each temperature control reaction module to form a ring-shaped temperature-controlled reaction layer with a larger diameter to form a multi-layer temperature-controlled reaction of the outer ring The structure of the layer.
  • FIG. 8 is a schematic structural view of a modular temperature-controlled reactor with a temperature-controlled reaction layer having an unequal thickness according to the embodiment.
  • the modular temperature-controlled reactor adopts a structure of a multi-layer temperature-control reaction layer, and is close to a region where the reaction is intense and concentrated.
  • the temperature-control reaction layer includes a plurality of temperature-controlled reaction modules having a small pitch and a short radial length.
  • each of the temperature control reaction modules arranged in the temperature control reaction module has a plurality of heat exchange elements 93, and constitutes a first temperature control reaction layer, and the temperature control reaction layer of the remaining reaction areas includes a plurality of temperature control reaction modules having a long radial length.
  • the arrangement of the temperature control reaction module is relatively sparse relative to the first temperature control reaction layer, that is, the heat exchange unit 9 of the modular temperature control reactor forms a circular ring with a short loop width and multiple heat exchange elements and a longer length
  • the annular column of the ring width and slightly sparse heat exchange elements constitutes a multi-ring wide multi-layer hybrid collar structure.
  • the distance between the front curved plate 91 and the rear curved plate 92 is determined by the width of the heat exchange element 93.
  • the thickness of the different temperature-control reaction layers depends on the width of the heat exchange element 93 disposed between the temperature-control reaction layers.
  • the front curved plate 91, the rear curved plate 92 and the heat exchange element 93 are equal in height.
  • FIG. 9 is a schematic structural view of still another modular temperature control reactor provided by the embodiment.
  • the temperature-control reaction layer of the heat exchange unit 9 of the modular temperature-controlled reactor further comprises one or more blank modules 90 without heat exchange plates. That is, an adiabatic section is added to the temperature-control reaction layer to ensure that there is still enough heat to maintain the catalyst activity at the end of the reaction process, or to integrate the transition sections of each reaction in the reaction.
  • the parameters are set to meet the heat transfer requirements, and the reaction temperature is maintained within an appropriate range as much as possible to achieve the highest economic efficiency.
  • the blank module 90 may be an annular heat insulating layer disposed on the central cylinder 4 or between two adjacent temperature control reaction layers, or the blank module 90 may be detached and detached with the temperature control reaction module, adjacent or The spacing is set in the temperature-controlled reaction layer.
  • the fan-shaped structure is the equal-width three-layer loop structure of FIG.
  • the reaction gas passes radially from the gas annulus distribution cylinder 5 through a catalyst bed packed between the temperature control reaction modules, and the reaction product is collected through the center cylinder 4.
  • the temperature-control reaction layer of the outer layer has a heat-dissipating element 93 arranged densely, and the number of heat-exchange elements is 200-400, and the temperature-control reaction layer of the intermediate layer is arranged slightly, and the number of heat exchange elements 93 included is 60.
  • the temperature control reaction layer of the inner layer is composed of a blank module 90 having no heat exchange element 93, that is, a heat insulating layer.
  • the arrangement of the pair of plates and the number of pairs of plates are determined according to parameters such as changes in heat of reaction, changes in heat transfer curves, and requirements for temperature difference control.
  • the above modular temperature-controlled reactor is applied to the CO isothermal reforming process, and a single reactor is filled with a cobalt-molybdenum-based catalyst of 150 m3, and the treatment amount thereof can be matched with a 1.2 million tons/year syngas-to-methanol process.
  • reaction pressure 3.8Mpa reaction material inlet temperature 280 ° C, by-product 250 ° C, 4 MPa steam 160t / h.
  • the loading of the catalyst is uniform, the pressure field distribution is uniform, the pressure drop is less than 10 KPa, and under the action of the heat exchange element 93 of the embodiment, the reaction heat is removed in time, and the reaction hot spot temperature can be controlled at Within 350 ° C, the reaction proceeds in the positive direction, while the radial feed can effectively avoid the pressure drop is too high, and the suspension setting of the heat exchange unit 9 effectively solves the problem of thermal expansion during the reaction.
  • the catalyst maintains high activity and has few side reactions, meets the process requirements, and has significant benefits.
  • Fully independent modules can be filled with the same or different amounts or even different types of catalysts to achieve integration of multiple reactions.
  • the independent loading and unloading of the different modules between the completely independent modules allows the catalyst to be partially replaced in the same reactor, ie only the catalyst in the module that has been deactivated or in a large amount of coking is replaced while the remaining modules are retained, minimizing investment.
  • the arrangement of the central cylinder 4 ensures that the feed gas enters the heat exchange unit 9 in one direction and performs a sufficient reaction, and the gas annulus distributes the arrangement of the cylinder 5 such that the feed gas entering the heat exchange unit 9 is sufficiently reacted therein.
  • the present invention provides a modular temperature-controlled reactor for different exothermic or endothermic reactions, and the heat exchange unit can be loaded with the same or different amounts or even different kinds of catalysts respectively to realize integration of various reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种模块化控温反应器,包括:反应腔室(11),反应腔室(11)内设置有至少一个模块化的换热单元(9),换热单元(9)中设有中心筒(4),换热单元(9)的外部还套设有气体环隙外分布筒(5),反应腔室(11)还连通有原料气进口(1)、反应气出口(6)、至少一个换热介质进口(7)和至少一个与换热介质进口(7)相对应的换热介质出口(8),原料气进口(1)和反应气出口(6)中的一个与气体环隙外分布筒(5)相连通,另一个与中心筒(4)相连通,换热介质进口(7)和换热介质出口(8)均与换热单元(9)连通,换热单元(9)包括围绕中心筒(4)分布的多个相互拼接并独立可拆卸的控温反应模块,且每个控温反应模块装填不同的催化剂。

Description

模块化控温反应器 技术领域
本公开涉及化学反应装置技术领域,例如涉及一种模块化控温反应器。
背景技术
多数化学反应过程往往伴随放热或吸热现象,如CO变换、合成气制甲烷、合成甲醇、合成二甲醚、二甲醚制乙醇、醇制烯烃、合成氨及加氢反应等等。随着人们对化学反应热力学和动力学的研究,绝热式反应器由于其温升高,催化剂易失活,导致反应选择性下降,转化率低,同时由于催化剂耐温区间较小,绝热反应需要多台反应器与多台换热器串联,导致整个工艺流程复杂、压降过大及投资高等问题,已逐渐被等温反应所取代。
相关的等温反应工艺中,通常采用列管式反应器或板式反应器两种不同形式。在应用中,等温反应器通常采用列管式反应器,但是换热管的传热系数不高,需要较多的换热面积,反应器体积大;催化剂多数装填在换热管内,一个反应器内换热管数量有成千上万根,催化剂装卸工作量大,检漏维修等较为复杂;即使催化剂装填于壳体内,由于上下管板的存在,催化剂的装填仍然复杂繁琐;尤其是需要实现高产能和单台设备高产量时,列管式反应器往往面临压降大、热点高以及体积大等问题。
采用径向列管式反应器虽然可以解决压降大、能耗高的问题,但同时也存在以下问题:管板导致催化剂装卸困难,且管板结构不适合现场焊接,在运输上存在尺寸限制;采用管箱或环管结构,换热管需特殊弯制,工序繁多,加工难度大;管束支撑设置困难;列管有管径和管心距等要求,使得移热组件占比总反应器空间小,且在剧烈放热或吸热区域,换热面积及换热能力不足,容易导致飞温或反应骤停,在反应放热量小或吸热量少的区域,换热面积大量富余,导致反应器体积增加,成本增加。
板式等温反应器虽然避免了列管式径向反应器的某些缺点,但同时也存在弊端,比如由于径向板式结构中,板呈径向发散形式,这样就导致在靠近中心管处的板片比催化剂外围床层处密集,造成换热效果不均匀。另外,考虑到催化剂活性,需要同时兼顾热点温度或最低温度和出口温度,往往板对间角度较 小,造成靠近中心筒处的板对太过密集,换热面积大量富余;且装填催化剂时,易造成搭桥阻塞;换热介质进出支管设置紧密,且管径受限,不能满足换热介质流量大的情况
图1是本实施例提供的三种不同放热速率的温度分布曲线,如图1所示,不同反应的放热或吸热过程各有不同,其热点温度出现的位置各有不同,单一的排列形式难以适用,难免会在放热最强或吸热最强而换热面积不足的地方出现温度积累或温度降低,造成局部温度过高或温度不足和局部催化剂结焦失活或未达到起活温度,从而影响反应的选择性及反应速度,更有可能使反应器处于失稳状态,出现飞温或反应骤停等。
发明内容
本申请提出一种模块化控温反应器,通过绕中心筒相互连接的多个可相互拼接拆卸的控温反应模块的结构,将反应器内部分割成一个个完全独立且灵活,多变的反应腔体,便于操作、安装、运输,有利于设备大型化;而且针对不同放热或吸热反应,基于反应和传热的分析,做出不同调整,使得反应在放热最强或吸热最强的位置上获得最大最好的传热效果,在反应最弱的部位减少或移除换热元件,节能减排,实现高经济性。完全独立的模块可以分别装填相同或不同量甚至不同种类的催化剂,实现多种反应的集成。
本申请提供了一种模块化控温反应器,包括:反应腔室,所述反应腔室内设置有至少一个模块化的换热单元,所述换热单元中设有气体环隙分布筒中心筒,所述换热单元的外部还套设有气体环隙外分布筒气体环隙分布筒,所述反应腔室还连通有原料气进口、反应气出口、至少一个换热介质进口和至少一个与换热介质进口相对应的换热介质出口,所述原料气进口和反应气出口中的一个与气体环隙外分布筒相连通,所述原料气进口(1)和所述反应气出口(6)中的另一个与中心筒相连通,所述换热介质进口和换热介质出口与换热单元连通,所述换热单元包括围绕中心筒分布的多个相互拼接且独立可拆卸的控温反应模块,且每个控温反应模块填装不同的催化剂。
在一实施例中,所述控温反应模块包括与外部相连通的控制腔体,所述控制腔体的内部设置有至少一个换热元件,所述控制腔体开设有至少一个用于放置催化剂的开口,所述开口上连接有可拆卸的盖板。
在一实施例中,多个控制腔体以中心筒的轴心为中心呈放射状分布,所述控温反应模块包括前弧形板片和后弧形板片,所述前弧形板片和后弧形板片与连接在所述前弧形板片(91)和所述后弧形板片(92)两侧的两个换热元件构成中空的控制腔体,且所述控制腔体的上部和下部为开口,所述开口上连接有可拆卸的盖板;所述前弧形板片和后弧形板片中至少一个开设有用于引导反应气体的导流孔。
在一实施例中,所述前弧形板片开设有多个卡槽,所述后弧形板片(92)开设有与所述前弧形板的所述多个卡槽相对应的多个卡槽,每个换热元件可拆卸的卡接在相应的卡槽上,且每个控温反应模块所设定的换热元件的数量可调。
在一实施例中,所述控制腔体包括由催化剂上盖板和催化剂下盖板沿边连接形成的板程腔体,属于同一个控温反应模块的多个换热元件成为一个换热元件组,通过配流管顺次连接每个换热元件组内的每一个换热元件,所述配流管内嵌在每一个换热元件的顶端和底端的板缝中,所述板程腔体上开设有分别与换热分配支管和换热收集支管相连通的通口,且所述换热分配支管和换热收集支管分别与内嵌在每个换热元件的顶端和底端的的板缝中的配流管相连。
在一实施例中,每一个所述换热元件组的配流管的两端分别连接有换热分配支管和换热收集支管,每一个所述换热分配支管通过立管连接到同一换热介质的换热分配总管,每一个所述换热收集支管通过立管连接到同一换热介质的换热收集总管上,同一换热介质的换热分配总管通过管路连通同一换热介质的换热介质进口,同一换热介质的换热收集总管通过管路连通同一换热介质的换热介质出口。
在一实施例中,所述换热单元还包括环绕中心筒的支撑架,所述支撑架包括环绕反应腔室中心轴设置的多个环梁和连接在环梁之间的多个竖梁,最内层的环梁下端还连接有锥型桶,所述锥型桶连接在下封头上。
在一实施例中,所述换热单元包括至少一个由多个控温反应模块拼接组成的控温反应层。
在一实施例中,所述换热单元还包括至少一个控温反应层,其中,每个控温反应层由控温反应模块和隔绝模块中至少一个拼接组成。
在一实施例中,不同的所述控温反应层的层厚不同。
有益效果:绕中心筒相互连接的多个可相互拼接拆卸的控温反应模块的结 构,将反应器内部分割成一个个完全独立且灵活,多变的反应腔体,不仅便于操作、安装、运输,提高生产效率,有利于设备大型化;而且针对不同放热或吸热反应,基于反应和传热的分析,做出不同调整,使得反应在放热最强或吸热最强的位置上获得最大最好的传热效果,在反应最弱的部位减少或移除换热元件,节能减排,实现高经济性。完全独立的模块可以分别装填相同或不同量甚至不同种类的催化剂,实现多种反应的集成。另外完全独立模块所带来的不同模块间催化剂的独立装卸使得催化剂在同一反应器内可以实现部分更换,即只更换已失活或大量结焦的模块内的催化剂而保留其余可用模块,最大程度减少投资。所述中心筒的设置保证原料气单向进入换热单元并进行充分的反应,所述气体环隙外分布筒的设置,使得进入换热单元的原料气在其内充分反应。
附图说明
图1是三种不同放热速率的温度分布曲线;
图2是本申请一实施例提供的模块化控温反应器的结构示意图;
图3是本申请一实施例提供的控温反应模块的结构示意图;
图4是本申请一实施例提供的模块化控温反应器的结构示意图;
图5是本申请另一实施例提供的模块化控温反应器的结构示意图;
图6是本申请又一实施例提供的模块化控温反应器的结构示意图;
图7是本申请一实施例提供的控温反应层等厚的模块化控温反应器的结构示意图;
图8是本申请实施例2提供的控温反应层不等厚的模块化控温反应器的结构示意图;
图9是本申请实施例3提供的模块化控温反应器的结构示意图。
图中:
原料气进口;2、上封头;3、下封头;4、中心筒;5、气体环隙外分布筒;6、反应气出口;7、换热介质进口;8、换热介质出口;9、换热单元;10、壳体;11、反应腔室;90、空白模块;91、前弧形板;92、后弧形板;93、换热元件;94、格栅;95、导流孔。
具体实施方式
下面结合附图并通过实施方式对本申请作详细说明。
本申请提供了一种模块化控温反应器,如图2-6所示,包括壳体10,以及连接在壳体10上下两侧的上封头2和下封头3,所述壳体10、上封头2和下封头3的内部形成密封的反应腔室11,所述反应腔室11内设置有至少一个模块化的换热单元9,所述换热单元9的外部还套设有气体环隙外分布筒5,所述换热单元9中设有中心筒4,所述换热单元9的外部还套设有气体环隙外分布筒5,所述反应腔室11还连通有原料气进口1、反应气出口6、至少一个换热介质进口7和至少一个与换热介质进口7相对应的换热介质出口8,所述原料气进口1和反应气出口6中的一个与气体环隙外分布筒5相连通,所述原料气进口(1)和所述反应气出口(6)中的另一个与中心筒4相连通,所述换热介质进口7和换热介质出口8均与换热单元9连通,所述换热单元9包括围绕中心筒4分布的多个可相互拼接且独立拆卸的控温反应模块,且每个控温反应模块可以填装不同的催化剂。当所述控温反应模块的排列采用单层简单圆环结构能换热量满足反应要求时,即反应热量不大,反应较为平稳。图4为本实施例提供的一种模块化控温反应器的结构示意图。如图4所示,多个所述相互拼接且独立可拆卸的控温反应模块以中心筒4为中心,围成一个控温反应层。
绕中心筒4相互连接的多个可相互拼接且独立拆卸的控温反应模块的结构,模块化的设置将反应器内部分割成一个个完全独立且灵活,多变的反应腔体,不仅便于操作、安装、运输,提高生产效率,有利于设备大型化;而且针对不同放热或吸热反应,基于反应和传热的分析,做出不同调整,使得反应在放热最强或吸热最强的位置上获得最大最好的传热效果,在反应最弱的部位减少或移除换热元件,节能减排,实现高经济性。完全独立的每个控温反应模块可以分别装填相同或不同量甚至不同种类的催化剂,实现多种反应的集成。另外完全独立模块所带来的不同模块间催化剂的独立装卸使得催化剂在同一反应器内可以实现部分更换,即只更换已失活或大量结焦的模块内的催化剂而保留其余可用模块,最大程度减少投资。所述中心筒4的设置保证原料气单向进入换热单元9并进行充分的反应,所述气体环隙外分布筒5的设置,使得进入换热单元9的原料气在其内充分反应。
发生反应时,原料气自原料气进口1进入反应腔室11,并在换热单元9内的催化环境下催化反应后成为反应气体从反应气出口8导出,所述换热介质自 换热介质进口7进入,通过在换热单元9内与换热单元9内的热量充分交换后,由换热介质出口8排出,所述壳体10为圆筒形,所述上封头2和下封头3为半球形或半椭球形。所述原料气进口1开设在上封头2上,所述反应气出口6开设在下封头3上,也可以将原料气进口1和反应气出口6开在同侧。
在一实施例中,所述控温反应模块包括与外部相连通的控制腔体,所述控制腔体的内部设置有至少一个换热元件93,所述控制腔体开设有至少一个用于放置催化剂的开口,所述开口上连接有可拆卸的盖板。
在一实施例中,所述控制腔体的形状不限,可以是方形的,梯形的,或者圆形等。所述控制腔体可以通过在腔体的墙壁上开设通孔或开口与外界连通,所述盖板为封闭盖板或格栅94,所述盖板或格栅94上开设有用于容纳换热分配支管和换热收集支管通过的通孔。
在一实施例中,所述控制腔体包括由催化剂上盖板和催化剂下盖板沿边连接形成的板程腔体,属于同一个控温反应模块的换热元件93成为一个换热元件组,通过配流管顺次连接每个换热元件组内的每一个换热元件93,所述配流管分别内嵌在每一个换热元件93的顶端和底端的板缝中,所述板程腔体上开设有分别与换热分配支管和换热收集支管相连通的通口,且所述换热分配支管和换热收集支管分别与内嵌在每个换热元件93的顶端和底端的板缝中的配流管相连。分别内嵌在换热元件93的顶端和底端板缝中的配流管,使得换热介质均匀地分布到每个换热元件93中。同时,与普通的支管相比,进口截面积更大,且具有更高的承压性,可以有效降低泄漏的风险。
在一实施例中,所述的换热元件93在控温反应模块的横截面上呈直线形、波浪形或不规则弧形。板程腔体的结构可以是长方体、波浪体或者其他不规则形状。在一实施例中,所述板程腔体由金属板类换热板材通过焊接连接成为密闭的换热腔体。根据换热介质的黏度、性质和承压要求,所述的换热元件93可以是中空的平板结构,或者中空的带有波纹状的板片,或者通过两张金属板片焊接的中空结构。焊接方式为点形焊接或条形焊接。在一实施例中,焊接位置交错设置,使板对表面形成凹凸形状,以针对不同粘度的换热介质。所述换热板材包括但不限于金属板材。为了满足每个控温反应模块的要求,每块上管板和下管板中至少一个的长宽比,厚度,凹凸深度,焊点或焊条密度都是可调的。
在一实施例中,每个所述换热元件组的配流管的两端分别连接有换热分配 支管和换热收集支管,每一个所述换热分配支管通过立管连接到同一换热介质的换热分配总管,每一个所述换热收集支管通过立管连接到同一换热介质的换热收集总管上,同一换热介质的换热分配总管通过管路连通同一换热介质的换热介质进口7,同一换热介质的换热收集总管通过管路连通同一换热介质的换热介质出口8。所述换热分配支管和换热收集支管采用板缝接管结构,即所述换热分配支管和换热收集支管内镶在换热腔体的换热板上,不影响格栅94和催化剂的开启和放置,保证了每一个控温反应模块的独立性。
当所述盖板为格栅94时,所述格栅94包括两块相互拼接的子格栅,两个子格栅的中间位置开设有用于容纳换热分配支管和换热收集支管通过的通孔,所述格栅94上还覆盖有丝网。在一实施例中,所述控制腔体的上下端均开设有开口,两个所述开口上均通过螺栓可拆卸的连接有格栅94,以便于催化器的放置和取出。
在一实施例中,多个所述控制腔体以中心筒4的轴心为中心呈放射状分布。图3为本实施例提供的一种控温反应模块的结构示意图。如图3所示,控温反应模块包括前弧形板片91和后弧形板片92,使得所述前弧形板片91和后弧形板片92与连接在所述前弧形板片(91)和所述后弧形板片(92)两侧的两个换热元件93构成中空的控制腔体,且所述控制腔体的上部和下部均为开口,所述开口上通过螺栓、卡栓或合页连接有可拆卸的盖板。所述前弧形板片91和后弧形板片92可以是直线结构,所述前弧形板片91和后弧形板片92也可以是弧形结构,当所述前弧形板片91和后弧形板片92为弧形结构时,其对空间的利用率更高。
在一实施例中,当前弧形板片91和后弧形板片92形状一致时,以中心筒4的轴心为中心呈放射状分布的多个所述控制腔体可以更为密集的排列在控温反应腔室内。以所述前弧形板片91和后弧形板片92均为圆弧结构为例,所述前弧形板91和后弧形板片92以中心筒4的轴心为圆心,所述控制腔体的截面为扇形结构,相对于中心筒4的结构,其结构更为紧凑,加工更为便利。例如可以是,控温反应模块包括3~100组相同的换热元件组成,呈现1°~45°角度排列。
在一实施例中,所述前弧形板片91和后弧形板片92之间的距离由所述换热元件93的宽度决定,不同的控温反应层的厚度取决于设置在控温反应层之间 的换热元件93的宽度,所述前弧形板片91、后弧形板片92和换热元件93等高。
在一实施例中,所述前弧形板片91和后弧形板片92开设有用于引导反应气体的导流孔95。前弧形板片91和后弧形板片92上相对设置的导流孔95之间形成有序的导流通道,将反应后的气体快速导出。所述前弧形板91的长度小于后弧形板92的长度。例如可以是,所述后弧形板片91上的开孔率为15%~40%,前弧形板片92的开孔率为1%~10%,导流孔95的孔径大小在0.25mm~10mm,开孔形状可以为圆形、矩形、三角形等。通过调节开孔率、孔径大小及形状可以确定设定的穿孔压降,结合床层压降,实现配流均匀。
在一实施例中,所述前弧形板片91开设有多个卡槽,所述后弧形板片(92)开设有与所述前弧形板的所述多个卡槽相对应的多个卡槽,设定数量的换热元件93可拆卸的卡接在相应的卡槽上。所述卡槽的数量大于等于所述换热元件93的数量,且每个控温反应模块所设定的换热元件93的数量可调。在一实施例中,可根据化学反应的情况,调整所述前弧形板片91和后弧形板片92之间的换热元件93的数量和密度。
在一实施例中,所述换热单元9还包括环绕中心筒4的支撑架,所述支撑架包括环绕反应腔室11中心轴设置的多个环梁和连接在环梁之间的多个竖梁,最内层的环梁下端还连接有锥型桶,所述锥型桶连接在下封头3上。所述锥型桶的设置使得支撑架的承压性能更好,更稳固。
在一实施例中,多个所述可相互拼接拆卸的控温反应模块以中心筒4为中心,围成一个控温反应层,也就是多个等宽的控温反应模块拼接成一个圆环柱,内接中心筒4,外靠气体环隙外分布筒。在一实施例中,所有的换热元件93具有相同的宽度,即每个控温反应模块内的催化剂床层厚度一致,装填量相同。
在一实施例中,所述模块化控温反应器采用原料气进口1和反应气出口6和同心的中心筒4相连接结构。如图4所示,所述原料气进口1和反应气出口6可以在反应腔室11的同一端,使反应器内流体Π型分布;如图5所示,所述原料气进口1和反应气出口6也可以在反应腔室11的不同端,使流体为Z型分布。
在一实施例中,所述的换热介质分配总管和换热介质收集总管位于反应腔室11的中心筒4或气体环隙外分布筒5。当内流体Π型分布,此时换热介质分 配总管和换热介质分配支管内的静压随流体流动方向而升高,换热介质收集总管和换热介质收集支管内静压随流动方向而下降,分流和集流过程中静压的变化引起两流道的静压差别较小,适合动量交换型径向反应器。
当化学反应的反应热量较大,所述模块化控温反应器采用上述实施例中的单层简单圆环结构的换热量不能满足反应温度要求或反应比较复杂需控制反应器内各点的温度时,采用多层独立圆环结构相互组合。图7为本实施例提供的一种控温反应层等厚的模块化控温反应器的结构示意图。如图7所示,也就是多个所述可相互拼接拆卸的控温反应模块以中心筒4为中心,围成2个或多个控温反应层,每个所述控温反应层的厚度相同,多个所述可相互拼接拆卸的控温反应模块以中心筒4为中心,围成2个控温反应层,2个控温反应层的厚度相同。当化学反应的反应剧烈热量很大时,所述模块化控温反应器在热点温度出现的区域附近设置具有较小间距的换热元件93的控温反应模块,以组成厚度较小的控温反应层,并进一步的加大每个控温反应模块中换热元件93的数量,以组成直径较大的圆环状控温反应层,形成外密内疏的等环宽多层控温反应层的结构。
图8是本实施例提供的一种控温反应层不等厚的模块化控温反应器的结构示意图。如图8所示,当化学反应的反应剧烈,且集中于某一区域的情况下,所述模块化控温反应器采用多层控温反应层的结构,且靠近反应剧烈且集中的区域的控温反应层包括多个间距较小且径向长度较短的控温反应模块。且每个控温反应模块排布的换热元件93较多,构成第一控温反应层,其余反应区域的控温反应层包括多个径向长度较长的控温反应模块。且控温反应模块的排布相对第一控温反应层较稀疏,也就是所述模块化控温反应器的换热单元9形成一种短环宽多换热元件的圆环柱和较长环宽、略微稀疏换热元件的圆环柱构成多环宽多层混合套环结构。
在一实施例中,所述前弧形板片91和后弧形板片92之间的距离由所述换热元件93的宽度决定。不同的控温反应层的厚度取决于设置在控温反应层之间的换热元件93的宽度。所述前弧形板片91、后弧形板片92和换热元件93等高。
图9是本实施例提供的又一种模块化控温反应器的结构示意图。如图9所示,所述模块化控温反应器的换热单元9的控温反应层中还包括一段或多段不 含换热板片的空白模块90。即在控温反应层中添加绝热段,以保证反应过程末期仍有足够的热量维持催化剂活性,或集成反应中各反应的过渡段。其设置参数以满足换热需求为目的,尽量将反应温度维持在合适的范围内,实现最高经济性。空白模块90可以是圆环状的绝热层,套设在中心筒4上或相邻的两个控温反应层之间,或者空白模块90为可与控温反应模块相拼接拆卸,相邻或间隔的设置在控温反应层中。
如CO变换反应,其末期仍需要有足够的热量维持催化剂的活性。为了满足这种变换反应的放热方式,所述的扇形结构为图6的等环宽三层套环结构。反应气体从气体环隙外分布筒5径向通过装填在各控温反应模块间的催化剂床层,反应产物通过中心筒4收集。外层的控温反应层其换热元件93排布较密,换热元件数量为200~400个,中间层的控温反应层其排列略疏,其包括的换热元件93的数量为60~180个,内层的控温反应层为没有换热元件93的空白模块90构成,即绝热层。板对排列形式和板对数量根据反应热量的变化、换热曲线的变化以及对温差控制的要求等参数确定。
将上述模块化温控反应器应用于CO等温变换工艺中,单台反应器装填钴钼系催化剂150m3,其处理量可与120万吨/年合成气制甲醇工艺配套。在操作条件下:反应压力3.8Mpa、反应物料进口温度280℃、副产250℃、4MPa的蒸汽160t/h。在本实施例的反应器内催化剂的装填均匀,压力场分布均匀,压降小于10KPa,而且在本实施例的换热元件93的作用下,及时移除反应热,可以将反应热点温度控制在350℃以内,使得反应向着正方向进行,同时径向进料能够有效避免压降过高,并且换热单元9的悬空设置有效解决了反应过程中热膨胀的问题。催化剂保持较高活性且副反应少,满足工艺要求,且效益显著。
综上所述,绕中心筒4相互连接的多个可相互拼接拆卸的控温反应模块的结构,模块化的设置将反应器内部分割成一个个完全独立且灵活,多变的反应腔体,不仅便于操作、安装、运输,提高生产效率,有利于设备大型化;而且针对不同放热或吸热反应,基于反应和传热的分析,做出不同调整,使得反应在放热最强或吸热最强的位置上获得最大最好的传热效果,在反应最弱的部位减少或移除换热元件,节能减排,实现高经济性。完全独立的模块可以分别装填相同或不同量甚至不同种类的催化剂,实现多种反应的集成。另外完全独立模块所带来的不同模块间催化剂的独立装卸使得催化剂在同一反应器内可以实 现部分更换,即只更换已失活或大量结焦的模块内的催化剂而保留其余可用模块,最大程度减少投资。所述中心筒4的设置保证原料气单向进入换热单元9并进行充分的反应,所述气体环隙外分布筒5的设置,使得进入换热单元9的原料气在其内充分反应。
工业实用性
本公开提供的一种模块化控温反应器针对不同放热或吸热反应,换热单元可以分别装填相同或不同量甚至不同种类的催化剂,实现多种反应的集成。

Claims (10)

  1. 一种模块化控温反应器,包括:反应腔室(11),所述反应腔室(11)内设置有至少一个模块化的换热单元(9),所述换热单元(9)中设有中心筒(4),所述换热单元(9)的外部还套设有气体环隙外分布筒(5),所述反应腔室(11)还连通有原料气进口(1)、反应气出口(6)、至少一个换热介质进口(7)和至少一个与换热介质进口(7)相对应的换热介质出口(8),所述原料气进口(1)和所述反应气出口(6)中的一个与所述气体环隙外分布筒(5)相连通,所述原料气进口(1)和所述反应气出口(6)中的另一个与所述中心筒(4)相连通,所述换热介质进口(7)和所述换热介质出口(8)均与换热单元(9)连通,所述换热单元(9)包括围绕所述中心筒(4)分布的多个相互拼接并独立可拆卸的控温反应模块,且每个控温反应模块装填不同的催化剂。
  2. 根据权利要求1所述的模块化控温反应器,其中所述控温反应模块包括与外部相连通的控制腔体,所述控制腔体的内部设置有至少一个换热元件(93),所述控制腔体开设有至少一个用于放置催化剂的开口,所述开口上连接有可拆卸的盖板。
  3. 根据权利要求2所述的模块化控温反应器,其中,多个控制腔体以所述中心筒(4)的轴心为中心呈放射状分布,所述控温反应模块包括前弧形板片(91)和后弧形板片(92),所述前弧形板片(91)和所述后弧形板片(92)与连接在所述前弧形板片(91)和所述后弧形板片(92)两侧的两个换热元件(93)构成中空的控制腔体,且所述控制腔体的上部和下部为开口,所述开口上连接有可拆卸的盖板;所述前弧形板片(91)和所述后弧形板片(92)中至少一个开设有用于引导反应气体的导流孔(95)。
  4. 根据权利要求3所述的模块化控温反应器,所述前弧形板片(91)开设有多个卡槽,所述后弧形板片(92)开设有与所述前弧形板的所述多个卡槽相对应的多个卡槽,每个所述换热元件(93)可拆卸的卡接在相应的卡槽上,且每个控温反应模块所设定的换热元件(93)的数量可调。
  5. 根据权利要求1-4任一项所述的模块化控温反应器,其中,所述控制腔体包括由催化剂上盖板和催化剂下盖板沿边连接形成的板程腔体,属于同一个控温反应模块的多个换热元件(93)成为一个换热元件组,通过配流管顺次连接每个换热元件组内的每一个换热元件(93),所述配流管内嵌在每一个换热元件(93)的顶端和底端的板缝中,所述板程腔体上开设有分别与换热分配支管和 换热收集支管相连通的通口,且所述换热分配支管和换热收集支管分别与内嵌在每个换热元件(93)的顶端和底端的板缝中的配流管相连。
  6. 根据权利要求1-5任一项所述的模块化控温反应器,其中,每个所述换热元件组的配流管的两端分别连接有换热分配支管和换热收集支管,每一个所述换热分配支管通过立管连接到同一换热介质的换热分配总管,每一个所述换热收集支管通过立管连接到同一换热介质的换热收集总管上,同一换热介质的换热分配总管通过管路连通同一换热介质的换热介质进口(7),同一换热介质的换热收集总管通过管路连通同一换热介质的换热介质出口(8)。
  7. 根据权利要求1-6任一项所述的模块化控温反应器,其中,所述换热单元(9)还包括环绕中心筒(4)的支撑架,所述支撑架包括环绕反应腔室(11)中心轴设置的多个环梁和连接在环梁之间的多个竖梁,最内层的环梁下端还连接有锥型桶,所述锥型桶连接在下封头(3)上。
  8. 根据权利要求1-7任一项所述的模块化控温反应器,其中,所述换热单元(9)包括至少一个由多个控温反应模块拼接组成的控温反应层。
  9. 根据权利要求1-7任一项所述的模块化控温反应器,其中,所述换热单元(9)还包括至少一个控温反应层,其中,每个控温反应层由控温反应模块和隔绝模块中至少一个拼接组成。
  10. 根据权利要求8或9所述的模块化控温反应器,其中,不同的所述控温反应层的层厚不同。
PCT/CN2018/086101 2017-05-09 2018-05-09 模块化控温反应器 WO2018205943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710320469.7 2017-05-09
CN201710320469.7A CN108854861A (zh) 2017-05-09 2017-05-09 一种模块化控温反应器

Publications (1)

Publication Number Publication Date
WO2018205943A1 true WO2018205943A1 (zh) 2018-11-15

Family

ID=64105192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086101 WO2018205943A1 (zh) 2017-05-09 2018-05-09 模块化控温反应器

Country Status (2)

Country Link
CN (1) CN108854861A (zh)
WO (1) WO2018205943A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477187A (zh) * 2021-07-21 2021-10-08 甘肃蓝科石化高新装备股份有限公司 一种板式轴向反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321234A (en) * 1979-04-03 1982-03-23 Toyo Engineering Corporation Chemical process and apparatus therefor
CN105032305A (zh) * 2015-08-27 2015-11-11 德艾柯工程技术(上海)有限公司 一种新型径向板式反应器
CN105080433A (zh) * 2015-09-02 2015-11-25 德艾柯工程技术(上海)有限公司 一种新型板式轴向反应器
CN204816462U (zh) * 2015-06-04 2015-12-02 珠海长炼石化设备有限公司 一种大型高效径向反应器
CN207102558U (zh) * 2017-07-11 2018-03-16 德艾柯工程技术(上海)有限公司 一种模块化控温反应器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038195A (ja) * 1999-06-28 2001-02-13 Basf Ag 熱交換板を備えた反応器
EP1300190A1 (en) * 2001-10-04 2003-04-09 Methanol Casale S.A. Heterogeneous catalytic reactor with modular catalytic cartridge
CN101254442B (zh) * 2007-12-07 2012-01-11 华东理工大学 一种气固相固定床催化反应器在制备甲醇中的应用
CN105413592B (zh) * 2015-12-17 2018-03-23 北京烨晶科技有限公司 一种组合式固定床反应器及由其形成的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321234A (en) * 1979-04-03 1982-03-23 Toyo Engineering Corporation Chemical process and apparatus therefor
CN204816462U (zh) * 2015-06-04 2015-12-02 珠海长炼石化设备有限公司 一种大型高效径向反应器
CN105032305A (zh) * 2015-08-27 2015-11-11 德艾柯工程技术(上海)有限公司 一种新型径向板式反应器
CN105080433A (zh) * 2015-09-02 2015-11-25 德艾柯工程技术(上海)有限公司 一种新型板式轴向反应器
CN207102558U (zh) * 2017-07-11 2018-03-16 德艾柯工程技术(上海)有限公司 一种模块化控温反应器

Also Published As

Publication number Publication date
CN108854861A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN207102558U (zh) 一种模块化控温反应器
CN105032305B (zh) 一种新型径向板式反应器
CN203916623U (zh) 热交换反应器
CN102164662B (zh) 用于等温化学反应器的具有径向布置的元件的热交换器
EP2173470B1 (en) Reactor panel for catalytic processes
CN105080433A (zh) 一种新型板式轴向反应器
CN204841617U (zh) 一种多床层甲烷化反应器
US9120068B2 (en) Isothermal chemical reactor with plate heat exchanger
CN105664804A (zh) 一种轴径向等温反应器
WO2018205943A1 (zh) 模块化控温反应器
CN103585933A (zh) 一种波纹板式均温加氢反应器
CN204933424U (zh) 一种新型径向板式反应器
CN105107434A (zh) 一种用于过氧化氢氧化丙烯制环氧丙烷的新型反应器
CN205235936U (zh) 一种组合式固定床反应器及由其形成的装置
CN209230367U (zh) 反应或换热设备用内件
RU2701307C2 (ru) Радиально-сильфонный теплообменно-контактный аппарат
RU2775262C2 (ru) Химический реактор с адиабатическими слоями катализатора и аксиальным потоком
CN210700014U (zh) 一种内置模块装配式换热管束的二甲醚反应器
US10960374B2 (en) Chemical reactor with adiabatic catalytic beds and axial flow
CN216879280U (zh) 筒式反应器
CN220238585U (zh) 宽适应温度等温绝热反应器
JP2022085877A (ja) 大規模dmo反応に用いられる横型マルチフロープレート式反応装置
CN205182684U (zh) 一种用于过氧化氢氧化丙烯制环氧丙烷的新型反应器
RU2619431C2 (ru) Радиально-пластинчатый теплообменно-контактный аппарат
CN114272872A (zh) 筒式反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797603

Country of ref document: EP

Kind code of ref document: A1