WO2018205683A1 - 一种差动式石墨烯谐振梁加速度传感器 - Google Patents

一种差动式石墨烯谐振梁加速度传感器 Download PDF

Info

Publication number
WO2018205683A1
WO2018205683A1 PCT/CN2018/073668 CN2018073668W WO2018205683A1 WO 2018205683 A1 WO2018205683 A1 WO 2018205683A1 CN 2018073668 W CN2018073668 W CN 2018073668W WO 2018205683 A1 WO2018205683 A1 WO 2018205683A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
insulating layer
substrate
sensitive
plate
Prior art date
Application number
PCT/CN2018/073668
Other languages
English (en)
French (fr)
Inventor
樊尚春
石福涛
邢维巍
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to GB1917704.7A priority Critical patent/GB2578014B/en
Priority to US16/611,719 priority patent/US11243225B2/en
Publication of WO2018205683A1 publication Critical patent/WO2018205683A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers

Definitions

  • the invention belongs to the technical field of micro/nano electromechanical systems, and relates to a differential graphene resonant beam acceleration sensitive structure and an acceleration sensor.
  • a sensor realized by the inherent resonance characteristic of the resonant element as a function of the measured change is called a resonant sensor.
  • the resonant sensor itself outputs a periodic signal (quasi-digital signal) that can be converted to a digital signal that is easily received by the microprocessor using a simple digital circuit (not an A/D converter circuit);
  • a simple digital circuit not an A/D converter circuit
  • a resonant acceleration sensor measures the acceleration by using the natural frequency of the resonant beam as a function of the measured acceleration.
  • the resonant beam When the resonant beam is excited, it vibrates at its natural frequency.
  • the axial direction of the resonant beam is displaced, and the stiffness of the resonant beam changes, causing a corresponding change in its natural frequency; the change of the natural frequency can be detected by means of a capacitance detection method, and the solution is processed. After that, the specific acceleration value is obtained.
  • Resonant accelerometers have high accuracy and play a vital role in applications such as inertial navigation and microgravity detection.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a differential graphene resonant beam acceleration sensor with small size, strong anti-interference ability, high sensitivity and low acceleration.
  • a differential graphene resonant beam acceleration sensor comprising a substrate, a sensitive mass plate, an insulating layer, an insulating layer 2, an insulating layer 3, a graphene resonant beam, a graphene resonant beam 2, an excitation electrode pair, an excitation electrode Pair two and vacuum cover.
  • An annular groove is etched on the substrate to form a rectangular boss on the substrate; an upper surface of the base rectangular boss is covered with an insulating layer; the sensitive mass plate is etched to form a sensitive mass along the axial direction of the mass plate, U
  • the thin-plate structure supporting beam and the two graphene beam placing grooves ; the sensitive mass plate is fixed above the substrate, and the inner side of the frame is flush with the outer side of the base groove; the upper surfaces of the two grooves in the sensitive mass plate are respectively covered with the insulating layer And the insulating layer 3; the two ends of the graphene resonant beam are respectively adsorbed on the insulating layer 1 and the insulating layer 2, and the two ends of the graphene resonant beam are respectively adsorbed on the insulating layer 1 and the insulating layer 3, thereby forming two double-end solid a resonant beam; a graphene resonator beam and a graphene resonator beam are respectively placed with an excitation electrode pair and an ex
  • the substrate is the same as the sensitive quality plate material, and both constitute the main body of the acceleration sensor.
  • the insulating layer comprises an insulating layer 1, an insulating layer 2 and an insulating layer 3.
  • the insulating layer, the insulating layer 2 and the insulating layer have the same thickness, and the insulating layer 1 and the insulating layer have the same thickness. Not more than 1/5 of the thickness of the sensitive quality plate.
  • the graphene resonant beam 1 and the graphene resonant beam 2 have the same material and geometrical dimensions, and the thickness is the thickness of the single or multi-layer graphene, the length and the width are much larger than the thickness thereof, and the aspect ratio is not less than 5, Placed in the axial direction of the sensitive mass plate and in a vacuum environment.
  • the graphene resonant beam 1 and the graphene resonant beam 2 are both electrically excited, and the excitation electrode pair and the excitation electrode pair are provided with an external connection circuit.
  • the material of the substrate and the sensitive quality plate may be single crystal silicon or silicon carbide or carbon, and the insulating layer 1, the insulating layer 2, and the insulating layer 3 may be silicon dioxide or silicon nitride.
  • the sensitive quality plate has four or more U-shaped thin plate structural support beams, the geometrical dimensions of the U-shaped thin plate structural support beams are the same, and the number of U-shaped thin plate structural support beams on one side of the sensitive mass can be two Or a multiple of two.
  • the U-shaped thin plate structural support beam on one side of the sensitive mass may include one or more pairs of U-shaped thin plate structural support beams.
  • the distance between the groove on the substrate and the corresponding substrate should be more than 6 ⁇ m at the same time, the sensitive quality plate
  • the thickness of the outer frame is not less than 1/3 of the distance between the groove on the substrate and the four sides of the corresponding substrate, and is not more than 1/2 of the distance between the groove on the substrate and the four sides of the corresponding substrate.
  • the inner dimension of the sensitive mass plate frame should be the same as The dimensions of the grooves on the substrate are substantially the same.
  • the inner dimension of the sensitive quality plate frame is consistent with the outer dimension of the groove on the substrate.
  • the groove depth on the substrate is not less than 1/6 of the thickness of the substrate and not more than 2/3 of the thickness of the substrate, in order to ensure flexible movement of the sensitive mass on the sensitive mass plate.
  • the geometric center of the rectangular boss should coincide with the geometric center of the substrate, and the length and width of the rectangular boss The size should ensure that the distance between the rectangular boss and the inner side of the sensitive mass is not less than twice the width of the U-shaped thin plate support beam.
  • the height of the boss on the substrate should ensure the upper surface of the boss and the bottom surface of the graphene beam on the substrate. On the same level.
  • the length of the excitation electrode pair and the excitation electrode pair is not less than the width of the graphene beam, and the width is not greater than the width of the graphene resonant beam 1 and the graphene resonant beam 2, and the thickness is not greater than Sensitive quality plate thickness of 1/5.
  • the length and width of the insulating layer are not less than the size of the corresponding excitation electrode, not larger than the size of the boss, the length and width of the insulating layer 2, the insulating layer 3, and the resonance of the graphene resonant beam and the graphene.
  • the placement of the excitation electrodes of the beam 2 is uniform, and the thickness of the insulation layer 1, the insulation layer 2 and the insulation layer are uniform and the thickness thereof is not more than 1/5 of the thickness of the sensitive quality plate.
  • the U-shaped thin plate structure support beam has a width of one-fourth of the width of the support beam, and the distance between the two arms is 1/2 of the width of the support beam, and the length of each pair of support beams on one side of the mass is not less than the sensitive mass. 1/2 of the width, the thickness of the support beam is consistent with the thickness of the sensitive mass.
  • the acceleration sensor structure of the invention has an acceleration-sensitive mass placed on a sensitive mass plate, and the graphene material is used as a composite sensitive resonance element sensitive to acceleration in the form of a beam, and the two are combined, wherein the mass generates an axial direction.
  • the graphene beam that displaces and drives the resonance produces an axial stress change, which causes the resonant frequency of the resonant beam to change, and the applied acceleration is measured by detecting a change in the resonant frequency.
  • the principle and working process of the invention are: when the measured acceleration acts on the sensitive mass plate, it is converted into a concentrated force, so that the mass of the U-shaped thin plate structure supporting beam produces an axially small displacement amount, and simultaneously drives the double-end fixed-support graphite. One end of the olefin resonant beam is displaced, causing a change in the axial stress of the graphene resonant beam.
  • the two axial graphene resonant beams work in the differential mode, the axial acceleration causes the axial stress change of the graphene, the axial stress of one graphene resonant beam increases, the resonant frequency increases, and the other graphene resonant beam axial direction The stress is reduced and the resonant frequency is reduced.
  • the magnitude of the measured acceleration can be characterized.
  • the sensitive mass support beam adopts a U-shaped thin plate design, and the thickness of the U-shaped thin plate is much smaller than the axial dimension of the mass, and the mass moves in a small range in the axial direction, thereby obtaining greater sensitivity. Quality, improve the sensitivity of the mass to small acceleration, and achieve ultra-high acceleration displacement sensitivity.
  • This structure can ensure that the movable mass has a good axial stiffness so that the mass is completely sensitive to the axial acceleration, and the elimination mass is affected by the movement caused by the lateral acceleration.
  • U-shaped thin plate supporting beams having a certain thickness and a long cantilever are paired in pairs to support the mass, and the stress concentration problem in the working state of the single supporting beam is solved.
  • the sufficient length of the U-shaped support beam limits the possible rotational movement of the mass around the axial direction (ie the mass of the mass, corresponding to the y-axis mentioned below), with sufficient thickness to limit the mass along the vertical (ie the thickness of the mass)
  • the direction corresponds to the possible up and down motion of the z-axis as will be mentioned below, thereby reducing the effect of other directional accelerations on the desired detected axial (y-axis) acceleration.
  • the resonant structure used in the present invention is symmetrically distributed along the center of gravity of the mass, so that the entire sensitive structure is a highly symmetrical structure, and the U-shaped thin plate supporting beam acts to fundamentally eliminate the sensitive axial direction of the mass due to the non-sensitive axial acceleration.
  • the displacement and rotation in other directions have a small off-axis crosstalk while ensuring ultra-high acceleration displacement sensitivity, ensuring a higher resonant frequency of the resonant sensitive component.
  • the invention adopts a differential resonant structure, can enhance the detection signal, improve the nonlinearity of the accelerometer, improve the sensitivity and the measurement accuracy, and has better suppression and compensation effects on the conjugate interference, so that the acceleration sensor has Better anti-interference performance.
  • the base groove allows the mass to be suspended, avoids friction with the insulating silicon substrate, ensures smooth movement of the mass in the axial direction, and improves sensitivity to acceleration.
  • the base groove corresponds to the outer dimension of the accelerometer sensitive mass, which facilitates the positioning of the sensitive structure in the accelerometer manufacturing process, eliminates the positioning error in the assembly process of the accelerometer, and further ensures the high symmetry of the entire sensitive structure.
  • the present invention uses graphene as a resonant beam material, and the thickness of the single-layer graphene is only 0.335 nm, which reduces the size of the graphene resonator from micron to nano or sub-micron, thereby realizing miniaturization of the graphene acceleration sensor and The possibility of measuring small accelerations.
  • the vacuum cover and the substrate form a tightly sealed vacuum environment, and the resonant structure of the resonant sensor is packaged in the vacuum chamber, thereby obtaining a higher quality beam harmonic oscillator mechanical quality factor and realizing an ultra-high sensitivity acceleration sensor function.
  • FIG. 1 is a schematic structural view of a differential graphene resonant beam acceleration sensor of the present invention.
  • FIG 2 is a plan view of the resonant acceleration sensor when the upper vacuum cover is removed in the present invention.
  • FIG 3 is a cross-sectional view of a differential graphene resonant beam acceleration sensor of the present invention.
  • Embodiment 4 is a simulation model diagram of an acceleration sensor according to Embodiment 1 of the present invention.
  • FIG. 5 is a simulation model diagram of an acceleration sensor according to Embodiment 2 of the present invention.
  • 1 is the substrate
  • 2 is the sensitive mass plate
  • 3 is the insulating layer 1
  • 4 is the insulating layer 2
  • 5 is the excitation electrode pair 1
  • 6 is the graphene resonant beam 1
  • 7 is the graphene resonance Liang 2
  • 8 is the insulating layer 3
  • 9 is the excitation electrode pair 2
  • 10 is the vacuum cover.
  • a differential graphene resonant beam acceleration sensor of an embodiment mainly includes a substrate 1 , a sensitive mass plate 2 , an insulating layer 3 , an insulating layer 2 , and an excitation electrode pair.
  • the excitation electrode pair 5 includes two first excitation electrodes 5; one end of the graphene resonance beam 6 (such as the left end of the graphene resonance beam 6 in FIG.
  • the pair of excitation electrodes 2 includes two second excitation electrodes 9; one end of the graphene resonator beam ii 7 (such as the right end of the graphene resonance beam ii 7 in FIG.
  • the substrate 1 is made of insulating silicon
  • the insulating layer 3, the insulating layer 2, and the insulating layer 8 are made of SiO 2 .
  • An annular groove is etched on the substrate 1 to form a rectangular boss on the substrate; an upper surface of the base rectangular boss is covered with an insulating layer 3; an etch sensitive mass plate 2 is formed along the mass plate axis in the sensitive mass plate 2.
  • the longitudinal directions of the beams 6 and 7 are identical, and each of the graphene beam placement grooves is configured to be placed to place an excitation electrode for exciting the graphene resonant beam to a resonant state.
  • the rectangular boss on the substrate is clearly shown in Fig. 3, which is located in the middle portion of the substrate 1, surrounded by an annular groove etched on the substrate 1.
  • the insulating layer 3 may be formed in an intermediate portion of the rectangular boss, such as shown in FIG. In FIG. 3, the left end of the graphene resonator beam 6 is sandwiched between the insulating layer 2 and a first excitation electrode 5 disposed above the insulating layer 2, and the right end of the graphene resonator beam 6 is clamped.
  • Sensitive masses etched in the sensitive mass plate 2 U-shaped sheet structure support beams and two graphene beam placement grooves are shown in Figures 1, 2 and 3; the corresponding etched sensitive mass
  • the plate 2 comprises a sensitive mass plate frame, a U-shaped sheet structural support beam connected to the frame, a sensitive mass connected to and surrounded by the U-shaped sheet structure support beam, and etched in the sensitive mass
  • Two graphene beams are placed in the grooves.
  • an insulating layer 2 and an insulating layer 3 8 are respectively disposed in the two graphene beam placing grooves.
  • the sensitive mass plate frame is the outermost portion of the etched sensitive mass plate 2, and the sensitive mass is the intermediate portion of the etched sensitive mass plate 2, the sensitive mass in it
  • Each side transverse to the axial direction of the mass plate is connected to the frame via a set of U-shaped thin plate structural support beams; in addition, the intermediate portion of the sensitive mass is etched away to form a hollow aperture portion, a rectangular boss on the substrate 1 Located in the orifice.
  • Each U-shaped thin plate structural support beam may include an opening portion corresponding to the opening side of "U", a bottom portion corresponding to the bottom side of "U”, and two arms corresponding to two parallel sides of "U", U-shaped The arms of the sheet structure support beam may also be referred to as arms or side or single side panels.
  • Each set of U-shaped thin-plate structural support beams may include a pair of opposing U-shaped thin-plate structural support beams - as shown, for example, in Figures 2 and 4, or pairs of opposing U-shaped thin-plate structural support beams - as in Figure 5 Shown.
  • Each pair of opposing U-shaped thin plate structural support beams includes two U-shaped thin plate structural support beams with opposite openings.
  • each U-shaped thin plate structural support beam may be configured such that the support beam is at one end of its opening portion - The free end of the outer arm of the support beam - connected to the frame and at the other end of its opening - the free end of the inner arm of the support beam - is connected to the sensitive mass and the two arms of the support beam are parallel Between the frame and the respective side of the sensitive mass and spaced apart from the respective sides of the frame and the sensitive mass; that is, the connection between the sensitive mass plate frame and the free end of the respective arm (outer arm) of the U-shaped thin plate structural support beam, And the connection between the sensitive mass and the free end of the corresponding arm (inner arm) of the U-shaped thin-plate structural support beam, forming a connection between the sensitive mass plate frame and the sensitive mass.
  • each set of U-shaped thin plate structural support beams includes a plurality of pairs of opposite U-shaped thin plate structural support beams
  • a plurality of pairs of U-shaped thin plate structural support beams may be adjacently arranged, wherein the outermost side The free ends of the outer arms of each of the pair of U-shaped thin-plate structural support beams are connected to the sensitive mass plate frame and the free ends of the inner arms are connected to the free ends of the outer arms of the adjacent support beams, the innermost one The free end of the inner arm of each of the support beams of the U-shaped thin plate structure is connected to the sensitive mass and the free end of the outer arm is connected to the free end of the inner arm of the adjacent support beam, and each pair U in the middle The thin-plate structural support beam,
  • the sensitive mass plate 2 is fixed above the substrate 1, and the inner side of the frame is flush with the outer side of the base groove except for the connection of the U-shaped thin plate structural support beam in the sensitive mass plate frame; the two graphene beams in the sensitive mass plate 2
  • the upper surface of the groove is respectively covered with the insulating layer 2 and the insulating layer 3; the two ends of the graphene resonant beam 6 are respectively adsorbed on the insulating layer 3 and the insulating layer 2, and the two ends of the graphene resonant beam 2 are respectively adsorbed to the insulating layer.
  • the double-ended fixed-supporting resonant beam is a resonant beam fixed and supported at both ends; as described above, the graphene resonant beam 6 and the graphene resonant beam 2 are respectively placed with an excitation electrode pair 5 and an excitation electrode pair 2 for exciting the resonant beam in a resonant state; the vacuum cover 10 is adhered to the substrate, and the inner side of the groove and the sensitive mass plate are The outside of the frame is flushed to complete the closure of the acceleration sensor.
  • the measured acceleration is converted into a concentrated force by the sensitive mass plate 2, resulting in a small axial displacement of the mass with the U-shaped thin plate structure supporting beam, and at the same time driving one end of the double-end fixed-supported graphene resonant beam 6 and graphene
  • One end of the resonant beam II 7 is displaced, thereby causing a change in the axial stress of the graphene resonant beam; the displacement of each of the graphene resonant beam 6 and the graphene resonant beam 2 is located on the sensitive mass. end.
  • the two axial graphene resonant beams work in the differential mode, the axial acceleration causes the axial stress change of the graphene, the axial stress of one graphene resonant beam increases, the resonant frequency increases, and the other graphene resonant beam axial direction The stress is reduced and the resonant frequency is reduced.
  • the magnitude of the measured acceleration can be characterized.
  • the graphene resonator beam 6 and the graphene resonator beam 2 can be aligned in the axial direction and arranged in a line.
  • the above-mentioned insulating layer 1, insulating layer 2 and insulating layer 3 may also be referred to as a first insulating layer, a second insulating layer and a third insulating layer, respectively.
  • the pair of excitation electrode pairs and the pair of excitation electrodes described above may also be referred to as a pair of first excitation electrodes and a pair of second excitation electrodes, respectively.
  • the above-described graphene resonant beam 1 and graphene resonant beam 2 may also be referred to as a first graphene resonant beam and a second graphene resonant beam, respectively.
  • the first group of sensor structures and parameters are used for measuring the acceleration of a small range:
  • the sensitive quality plate 2 and the substrate 1 are of the same material, both of which are insulating silicon, and both of them constitute the main body of the acceleration sensor; the length and width of the substrate are 70 ⁇ m ⁇ 70 ⁇ m ⁇ 6 ⁇ m, and the length and width of the groove are 58 ⁇ m ⁇ 58 ⁇ m ⁇ 3 ⁇ m.
  • the upper boss has a length and a height of 24 ⁇ m ⁇ 14 ⁇ m ⁇ 7 ⁇ m.
  • the length and width of the sensitive mass plate 2 are 60 ⁇ m ⁇ 60 ⁇ m ⁇ 5 ⁇ m, and the length and width of the sensitive mass are 53 ⁇ m ⁇ 53 ⁇ m ⁇ 5 ⁇ m, and the thickness of each U-shaped thin plate support beam is 0.2 ⁇ m.
  • the single-sided plate thickness of the U-shaped thin plate support beam refers to the dimension of the single arm of the U-shaped thin plate support beam in the axial direction.
  • the insulating layer 3, the insulating layer 2, and the insulating layer 3 can be formed by thermal growth oxidation and chemical vapor deposition of the substrate 1, and the thickness of each of the three insulating layers is 0.5 ⁇ m.
  • the graphene resonant beam-6 and the graphene resonant beam ii7 have the same material and geometrical dimensions, and have a length and width of 10 ⁇ m ⁇ 1 ⁇ m ⁇ 0.335 nm (single layer), which are placed along the axial direction of the sensitive mass plate and are in a vacuum environment.
  • the graphene resonant beam 6 and the graphene resonant beam 2 are respectively electrically excited by the excitation electrode pair 5 and the excitation electrode pair 2 to achieve a resonant working state.
  • a simulation model is established for the first group of sensors, an axially measured acceleration is applied thereto, and a simulation calculation is performed to cause the sensitive mass plate to generate an axial displacement consistent with the direction in which the acceleration is applied.
  • the axial direction of the sensitive mass plate in Fig. 4 is the up and down direction, assuming that the direction of axial displacement of the sensitive mass plate is upward, the upper U-shaped support beam is stretched, and the lower U-shaped support beam is compressed, and the tensile range is Consistent with the compression range.
  • the axial displacement of the sensitive mass plate drives the displacement of the two graphene resonant beams.
  • the first-order mode is obtained by simulation.
  • the first-order mode is analyzed and the upper graphene beam is stretched.
  • the lower graphene beam is formed. Compressed, the vibration amplitude and resonance frequency of the two changes with the applied acceleration, and the values of the two have significant differences.
  • the differential measurement results can be obtained by analyzing the difference.
  • the second group of sensor structures and parameters are used for measuring a large range of acceleration:
  • the sensitive quality plate 2 and the substrate 1 are of the same material, both of which are insulating silicon, and both of them constitute the main body of the acceleration sensor; the length and width of the substrate are 90 ⁇ m ⁇ 90 ⁇ m ⁇ 6 ⁇ m, and the length and width of the groove are 78 ⁇ m ⁇ 78 ⁇ m ⁇ 3 ⁇ m.
  • the upper boss has a length and a height of 24 ⁇ m ⁇ 14 ⁇ m ⁇ 7 ⁇ m.
  • the length and width of the sensitive mass plate 2 is 84 ⁇ m ⁇ 84 ⁇ m ⁇ 5 ⁇ m, and the length and width of the sensitive mass are 58 ⁇ m ⁇ 70 ⁇ m ⁇ 5 ⁇ m, and the length and width of the groove on the graphene beam are 6 ⁇ m ⁇ 3 ⁇ m ⁇ 2 ⁇ m.
  • the number of one side of the thin plate support beam is six (ie, three pairs), and the thickness of the single side plate is 0.5 ⁇ m.
  • the gap between the two single side plates, that is, the gap between the arms of the U-shaped thin plate support beam is 1 ⁇ m. .
  • the insulating layer 3, the insulating layer 2, and the insulating layer 3 can be formed by thermal growth oxidation and chemical vapor deposition of the substrate 1, and the thickness of each of the three insulating layers is 0.5 ⁇ m.
  • the graphene resonant beam 6 and the graphene resonant beam 2 are respectively electrically excited by the excitation electrode pair 5 and the excitation electrode pair 2 to achieve a resonant working state.
  • a simulation model is established for the second group of sensors, and an axial acceleration is applied thereto and a simulation calculation is performed to cause the sensitive mass plate to generate an axial displacement consistent with the direction in which the acceleration is applied.
  • the axial direction of the sensitive mass plate in Fig. 5 is the up and down direction, assuming that the direction of the axial displacement of the sensitive mass plate is upward, and the upper 6 (3 pairs) U-shaped support beams are stretched, and the lower side is 6 (3) The U-shaped support beam is compressed, and the stretching amplitude is consistent with the compression amplitude.
  • the axial displacement of the sensitive mass plate drives the displacement of the two graphene resonant beams.
  • the first-order mode is obtained by simulation.
  • the first-order mode is analyzed and the upper graphene beam is stretched.
  • the lower graphene beam is formed. Compressed, the vibration amplitude and resonance frequency of the two changes with the applied acceleration, and the values of the two have significant differences.
  • the differential measurement results can be obtained by analyzing the difference.
  • the vibration amplitude and resonance frequency of the graphene beam in the second group of acceleration sensors are significantly different from those of the first group, so it is applicable. For measuring a wider range of acceleration.
  • the length dimension refers to the axial direction along the sensitive mass plate.
  • the width direction refers to the dimension in the transverse direction transverse to the axial direction - the x direction in Figures 4 and 5, the thickness or depth dimension
  • the dimension refers to the dimension in the vertical direction orthogonal to both the axial direction and the lateral direction, such as the z direction in FIGS. 4 and 5.
  • the width dimension refers to the dimension along the axial direction of the sensitive mass plate, such as the y direction in FIGS. 4 and 5, and the length direction refers to the transverse direction transverse to the axial direction.
  • the thickness or depth dimension refers to the vertical direction along both the axial and lateral directions - as in the z direction of Figures 4 and 5.
  • the width of the entire support beam refers to the maximum dimension of the support beam in the axial direction, corresponding to the distance between the outer sides of the support beams along the axial direction; the support beam
  • the width of a single arm refers to the dimension of the single arm in the axial direction; the length of the arm of the support beam refers to the dimension of the arm in the lateral direction, and also represents the length of the support beam;
  • the thickness of the arm of the support beam refers to the dimension of the arm in the above vertical direction and also represents the thickness of the support beam.
  • each pair of opposite U-shaped thin plate structural support beams includes two U-shaped thin plate structural support beams with opposite openings; such a length of each pair of U-shaped thin plate structural support beams refers to the pair of U-shaped thin plate structures
  • the maximum dimension of the support beam in the lateral direction described above corresponds to the distance between the bottoms of the support beams of the two U-shaped thin plate structures.
  • the dimensions of the invention may be larger or smaller than those given in the examples.
  • the preparation of the present invention can be achieved by a series of processes such as inductively coupled plasma (ICP) etching, thermal oxidation, chemical vapor deposition (CVD), photolithography, oxygen plasma etching, electron beam evaporation, and vacuum bonding techniques.
  • ICP inductively coupled plasma
  • CVD chemical vapor deposition
  • photolithography oxygen plasma etching
  • electron beam evaporation electron beam evaporation
  • vacuum bonding techniques e.g., vacuum bonding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

一种差动式石墨烯谐振梁加速度传感器,包括基底(1)、敏感质量板(2)、绝缘层一(3)、绝缘层二(4)、激励电极对一(5)、石墨烯谐振梁一(6)、石墨烯谐振梁二(7)、绝缘层三(8)、激励电极对二(9)和真空罩(10)。采用间接敏感加速度方式:敏感质量块直接感受被测加速度,将被测加速度转化为集中力引起敏感质量块的轴向位移,进而引起石墨烯谐振梁轴向应力的变化,从而导致梁谐振频率的变化,通过检测梁的谐振频率即可实现对加速度的测量。位于敏感质量块轴向的两个石墨烯谐振梁,在被测加速度方向工作于差动模式,从而增强检测信号,提高灵敏度与测量准确性,抑制共轭干扰。

Description

一种差动式石墨烯谐振梁加速度传感器 技术领域
本发明属于微/纳机电系统技术领域,涉及一种差动式石墨烯(graphene)谐振梁加速度敏感结构、加速度传感器。
背景技术
基于机械谐振技术,以谐振元件固有的谐振特性随被测量变化的规律而实现的传感器称为谐振式传感器。谐振式传感器自身输出为周期信号(准数字信号),只需用简单的数字电路(不是A/D转换器电路)即可转换为易于由微处理器接收的数字信号;同时,由于谐振敏感单元的重复性、分辨力和稳定性等非常优良,因此谐振式测量原理自然成为当今人们研究的重点。
谐振式加速度传感器,是利用谐振梁的固有频率随被测加速度的变化来测量加速度的。当谐振梁受激后,以其固有频率振动。当对加速度传感器施加加速度时,谐振梁轴向产生位移,谐振梁的刚度变化,导致其固有频率发生相应的变化;通过电容检测法等方式可以检测出固有频率的变化,对其进行解算处理后得到具体的加速度值。谐振式加速度传感器具有很高的精度,在诸如惯性导航、微重力探测等应用领域起着至关重要的作用。
近年来,采用单晶硅材料,通过微机械加工工艺制作而成的谐振式硅微结构加速度传感器得到了快速发展,谐振式加速度传感器走上小型化、微型化的道路。而石墨烯作为一种性能优异的新型碳基纳米级超薄材料,出色的力、电、光磁特性决定了它在纳电子、光电子、磁电子器件以及NEMS等领域有着极大的应用前景,因此已引起研究者的广泛关注。继2004年英国曼彻斯特大学物理学家Andre Geim和Konstantin Novoselov利用机械劈裂力学微加工方法首次制备出单层石墨烯之后,关于石墨烯及其纳米带的研究越来越成为人们关注的热点,其中焦点之一则是研究石墨烯及其纳米带的谐振特性。经测量,单层石墨烯的理论厚度只有0.335nm,其面内杨氏模量为1TPa,断裂强度达130GPa,远优于硅、碳纳米管等材料的过载能 力。石墨烯谐振式传感器的理论研究、关键技术突破,还多以实验科学或实验技术为主,具体表现为多针对谐振器特性研究,在谐振式敏感器方面也做了一定的探索性工作,但针对石墨烯谐振梁式传感器的研究,尤其是在加速度测量方面的研究仍未触及到实用传感器层面,具有差动式谐振梁加速度传感器的研究仍处于空白。
对于谐振式加速度传感器,离轴串扰等引起的谐振频率的变化不仅影响传感器的测量精度和灵敏度,也会影响到传感器的工作稳定性。此外,若要提高加速度测量灵敏度,目前绝大多数办法需要重新设计谐振敏感结构,这也极大地增加了设计成本和制作周期。
目前已有通过质量块感受加速度使质量块发生位移并带动谐振敏感元件产生轴向应变从而测量加速度的研究,但敏感元件采用石墨烯材料的研究鲜有报道。而在利用石墨烯梁的振动特性来测量加速度的研究基本都是将质量块或附加质量直接附着于石墨烯梁表面上,对于将质量块作为敏感加速度部件的同时保证质量块与石墨烯梁不直接接触的研究还鲜有报道。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种尺寸小、抗干扰能力强、灵敏度高、可感受极小加速度的一种差动式石墨烯谐振梁加速度传感器。
本发明解决其技术问题所采用的技术方案如下。一种差动式石墨烯谐振梁加速度传感器,包括基底、敏感质量板、绝缘层一、绝缘层二、绝缘层三、石墨烯谐振梁一、石墨烯谐振梁二、激励电极对一、激励电极对二以及真空罩。在基底上刻蚀出环形凹槽,形成基底上的矩形凸台;基底矩形凸台上表面中间覆盖绝缘层一;刻蚀敏感质量板,形成沿质量板轴向对称分布的敏感质量块、U型薄板结构支撑梁以及两个石墨烯梁放置凹槽;敏感质量板固定于基底上方,且其框架内侧与基底凹槽外侧齐平;敏感质量板中两个凹槽上表面分别覆盖绝缘层二和绝缘层三;石墨烯谐振梁一两端分别吸附在绝缘层一和绝缘层二上,石墨烯谐振梁二两端分别吸附在绝缘层一和绝缘层三上,从而形成两个双端固支谐振梁;石墨烯谐振梁一上和石墨烯谐振梁二上分别放置激励电极对一和激励电极对二,用于激励谐振梁处于谐振状态; 真空罩固定于基底上,其上的凹槽内侧与敏感质量板外侧(敏感质量板框架外侧)齐平,从而完成对加速度传感器的封闭。
其中,所述基底与敏感质量板材料相同,两者构成加速度传感器的主体。
其中,所述绝缘层,包括绝缘层一、绝缘层二和绝缘层三,可通过基底材料化学气相沉积、热生长氧化等方法形成,绝缘层一、绝缘层二、绝缘层三厚度一致,且不大于敏感质量板厚度的1/5。
其中,所述石墨烯谐振梁一和石墨烯谐振梁二的材料、几何尺寸一致,厚度为单层或多层石墨烯的厚度,长度与宽度远远大于其厚度,长宽比不小于5,沿敏感质量板轴向方向放置,且处于真空环境。
其中,所述石墨烯谐振梁一和石墨烯谐振梁二均采用电学激励方式,激励电极对一和激励电极对二配有外部连接电路。
其中,所述基底和敏感质量板的材料可采用单晶硅或碳化硅或碳,绝缘层一、绝缘层二、绝缘层三可采用二氧化硅或氮化硅。
其中,所述敏感质量板上具有四个或更多个U型薄板结构支撑梁,这些U型薄板结构支撑梁的几何尺寸一致,敏感质量块单侧的U型薄板结构支撑梁数量可为二或二的倍数。敏感质量块单侧的U型薄板结构支撑梁可包括一对或多对U型薄板结构支撑梁。
其中,为保证所述真空罩具有足够的壁厚且所述敏感质量板在所述基底上具有足够的装配空间,基底上凹槽与对应基底四边距离应同时在6μm以上,所述敏感质量板外侧框架厚度不小于基底上凹槽与对应基底四边距离的1/3,不大于所述基底上凹槽与对应基底四边距离的1/2。
其中,为减小所述基底与所述敏感质量板装配过程中的误差,确保所述差动式石墨烯谐振梁加速度传感器结构的高度对称性,所述敏感质量板框架内侧尺寸应与所述基底上凹槽尺寸基本保持一致。具体地,除敏感质量板框架中连接U型薄板结构支撑梁之处外,敏感质量板框架内侧尺寸与所述基底上凹槽的外侧尺寸保持一致。
其中,为保证所述敏感质量板上敏感质量块能够灵活移动,所述基底上凹槽深度不小于所述基底厚度的1/6,不大于所述基底厚度的2/3。
其中,为防止所述敏感质量块在移动过程中接触到所述基底上矩形凸台,所述矩形凸台的几何中心应与所述基底的几何中心重合,且所述矩形凸台的长宽尺寸应保证所述矩形凸台四周距所述敏感质量块内侧的距离不小于U型薄板支撑梁宽度的2倍。
其中,为确保所述石墨烯谐振梁一和所述石墨烯谐振梁二被水平夹持放置,所述基底上凸台高度应保证凸台上表面与所述基底上石墨烯梁放置凹槽底面在同一水平面上。
其中,所述激励电极对一和所述激励电极对二长度不小于石墨烯梁的宽度,宽度不大于所述石墨烯谐振梁一和所述石墨烯谐振梁二放置凹槽宽度,厚度不大于敏感质量板厚度的1/5。
其中,绝缘层一长宽尺寸不小于相应的激励电极尺寸,不大于凸台尺寸,绝缘层二、绝缘层三的长宽尺寸与用于放置所述石墨烯谐振梁一和所述石墨烯谐振梁二的激励电极的放置凹槽尺寸一致,绝缘层一、绝缘层二和绝缘层三厚度一致且其厚度均不大于敏感质量板厚度的1/5。
其中,U型薄板结构支撑梁单边板宽度为整个支撑梁宽度的1/4,两臂间距为支撑梁宽度的1/2,质量块单侧的每对支撑梁的长度不小于敏感质量块宽度的1/2,支撑梁厚度与敏感质量块厚度一致。
本发明的加速度传感器结构将对加速度敏感的质量块设置在敏感质量板上,将石墨烯材料以梁的形式作为对加速度敏感的复合谐振敏感元件,将二者相结合,其中质量块产生轴向位移并带动谐振的石墨烯梁产生轴向应力变化,导致谐振梁的谐振频率发生改变,通过检测谐振频率的变化来测量施加的加速度。
本发明的原理及工作过程是:被测加速度作用于敏感质量板时被转换为集中力,使具有U型薄板结构支撑梁的质量块产生轴向微小的位移量,同时带动双端固支石墨烯谐振梁的一端产生位移,从而引起石墨烯谐振梁轴向应力的变化。轴向的两个石墨烯谐振梁工作于差动模式,轴向加速度引起石墨烯轴向应力变化,一个石墨烯谐振梁轴向应力增大,谐振频率增加,同时另一个石墨烯谐振梁轴向应力减小,谐振频率降低。通过对两个石墨烯谐振梁谐振频率的检测,即可表征被测加速度大小。
本发明与现有技术相比的优点在于:
(1)本发明中敏感质量块支撑梁采用U型薄板设计,U型薄板单边板厚远小于质量块轴向尺寸,质量块在轴向方向的较小范围内运动,从而获得较大敏感质量,提高质量块对微小加速度的敏感程度,实现超高加速度位移灵敏度。此结构能够保证活动质量块具有较好的轴向刚度使质量块对轴向加速度完全敏感,消除质量块受横向加速度产生移动带来的影响。
(2)本发明中四个或更多个具有一定厚度且有较长悬臂的U型薄板支撑梁两两成对以支撑质量块,解决单一支撑梁工作状态下应力集中问题。U型支撑梁足够的长度限制质量块绕轴向(即质量块轴向,对应于下文会提到的y轴)可能的旋转运动,足够的厚度限制质量块沿竖向(即质量块的厚度方向,对应于下文会提到的z轴)可能的上下运动,从而减小其他方向加速度对所需检测轴向(y轴)加速度的影响。
(3)本发明采用的谐振结构沿质量块重心对称分布,使整个敏感结构为高度对称结构,结合U型薄板支撑梁作用,从根本上消除由于非敏感轴向加速度导致的质量块敏感轴向位移及绕其他方向的转动,在保证超高加速度位移灵敏度的同时拥有较小的离轴串扰,确保谐振敏感元件较高的谐振频率。
(4)本发明采用差动式谐振结构,能够增强检测信号,改善加速度计的非线性,提高灵敏度和测量准确性,同时对共轭干扰的影响具有较好抑制和补偿作用,使加速度传感器具有较好的抗干扰性能。
(5)本发明中基底凹槽可使质量块悬空放置,避免与绝缘硅基底产生摩擦,保证质量块在轴向的顺利运动,提高其对加速度的敏感程度。同时基底凹槽与加速度计敏感质量块外侧尺寸对应,利于加速度计制作过程中敏感结构的定位,消除加速度计组装过程中的定位误差,进一步保证整个敏感结构的高度对称性。
(6)本发明采用石墨烯作为谐振梁材料,单层石墨烯厚度仅为0.335nm,使得石墨烯谐振器尺寸从微米级降至纳或亚微米级,实现了石墨烯加速度传感器的微型化和对微小加速度测量的可能性。
(7)本发明中真空罩与基底形成严格密封真空环境,谐振式传感器的谐振结构封装于真空腔,从而可获得较高量值的梁谐振子机械品质因数,实现超高灵敏度加速度传感器功能。
附图说明
图1为本发明差动式石墨烯谐振梁加速度传感器的结构示意图。
图2为本发明中去除上侧真空罩时的谐振式加速度传感器的俯视图。
图3为本发明差动式石墨烯谐振梁加速度传感器的剖视图。
图4为本发明中实施例一所提供的加速度传感器的仿真模型图。
图5为本发明中实施例二所提供的加速度传感器的仿真模型图。
图中附图标记含义如下:1为基底,2为敏感质量板,3为绝缘层一,4为绝缘层二,5为激励电极对一,6为石墨烯谐振梁一,7为石墨烯谐振梁二,8为绝缘层三,9为激励电极对二,10为真空罩。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1、图2、图3所示,实施例的一种差动式石墨烯谐振梁加速度传感器,主要包括基底1、敏感质量板2、绝缘层一3、绝缘层二4、激励电极对一5、石墨烯谐振梁一6、石墨烯谐振梁二7、绝缘层三8、激励电极对二9和真空罩10。激励电极对一5包括两个第一激励电极5;石墨烯谐振梁一6的一端(如图4中的石墨烯谐振梁一6的左端)置于这两个第一激励电极5中的一个第一激励电极与绝缘层二4之间并由该一个第一激励电极和绝缘层二夹持固定,石墨烯谐振梁一6的另一端(如图4中的石墨烯谐振梁一6的右端)置于这两个第一激励电极5中的另一第一激励电极与绝缘层一3之间并由该另一第一激励电极和绝缘层一夹持固定。激励电极对二9包括两个第二激励电极9;石墨烯谐振梁二7的一端(如图4中的石墨烯谐振梁二7的右端)置于这两个第二激励电极9中的一个第二激励电极与绝缘层三8之间并由该一个第二激励电极和绝缘层三夹持固定,石墨烯谐振梁二7的另一端(如图4中的石墨烯谐振梁二7的左端)置于这两个第二激励电极9中的另一 第二激励电极与绝缘层一3之间并由该另一第二激励电极和绝缘层一夹持固定。在实施例中,作为示例,基底1采用绝缘硅,绝缘层一3、绝缘层二4、绝缘层三8采用SiO 2。在基底1上刻蚀出环形凹槽,形成基底上的矩形凸台;基底矩形凸台上表面中间覆盖绝缘层一3;刻蚀敏感质量板2,在敏感质量板2中形成沿质量板轴向对称分布的敏感质量块、U型薄板结构支撑梁以及两个石墨烯梁放置凹槽,其中质量板的轴向可对应于石墨烯谐振梁6和7的纵向即长度方向,与石墨烯谐振梁6和7的纵向方向一致,每个石墨烯梁放置凹槽被构造为适于放置一个用于激励石墨烯谐振梁达到谐振状态的激励电极。基底上的矩形凸台在图3中被清楚地示出,其位于基底1的中间部分,其周围是在基底1上刻蚀出的环形凹槽。绝缘层一3可形成于矩形凸台的中间部分,例如图3中所示。在图3中,石墨烯谐振梁一6的左端被夹持于绝缘层二4和布置在该绝缘层二4上方的一个第一激励电极5之间,石墨烯谐振梁一6的右端被夹持于绝缘层一3的左侧部分和布置在绝缘层一3的左侧部分上方的另一第一激励电极5之间;石墨烯谐振梁二7的右端被夹持于绝缘层三8和布置在该绝缘层三8上方的一个第二激励电极9之间,石墨烯谐振梁二7的左端被夹持于绝缘层一3的右侧部分和布置在绝缘层一3的右侧部分上方的另一第二激励电极9之间。在敏感质量板2中蚀刻出的敏感质量块、U型薄板结构支撑梁以及两个石墨烯梁放置凹槽在图1、图2和图3中被示出;相应的经蚀刻后的敏感质量板2包括敏感质量板框架、连接至该框架的U型薄板结构支撑梁、经由U型薄板结构支撑梁连接至该框架并由该框架包围的敏感质量块、以及在敏感质量块中蚀刻出的两个石墨烯梁放置凹槽。如图1中所示,绝缘层二4和绝缘层三8分别布置在这两个石墨烯梁放置凹槽中。如从图1和2中可看出,敏感质量板框架为经蚀刻后的敏感质量板2最外围的部分,敏感质量块为经蚀刻后的敏感质量板2的中间部分,敏感质量块在其横向于质量板轴向的每一侧经由一组U型薄板结构支撑梁连接至框架;另外,敏感质量块的中间部被蚀刻掉,从而形成中空的孔口部,基底1上的矩形凸台位于该孔口部中。每个U型薄板结构支撑梁可包括对应于“U”的开口侧的开口部、对应于“U”的底侧的底部和对应于“U”的两个平行侧的两个臂,U型薄板结构支撑梁的臂也可称为臂部或侧部或单边板。每组U型薄板结构支撑梁可包括一对相对的U型薄板结构支撑梁——如例如图2和图4中所示,或多对 相对的U型薄板结构支撑梁——如图5中所示。每对相对的U型薄板结构支撑梁包括开口部相对的两个U型薄板结构支撑梁。在每组U型薄板结构支撑梁包括一对相对的U型薄板结构支撑梁的情况下,每个U型薄板结构支撑梁可被构造为使得,该支撑梁在其开口部的一端——该支撑梁的外侧臂的自由端——连接至框架,且在其开口部的另一端——该支撑梁的内侧臂的自由端——连接至敏感质量块,并且该支撑梁的两个臂平行于框架及敏感质量块的相应侧且与框架及敏感质量块的相应侧间隔开;即,敏感质量板框架与U型薄板结构支撑梁的相应臂(外侧臂)的自由端之间的连接,以及敏感质量块与U型薄板结构支撑梁的相应臂(内侧臂)的自由端之间的连接,构成敏感质量板框架与敏感质量块之间的连接部。另外,每对相对的U型薄板结构支撑梁中的两个U型薄板结构支撑梁的相应臂——成直线对准的臂——可连接在一起,如图2中所示。在每组U型薄板结构支撑梁包括多对相对的U型薄板结构支撑梁的情况下,情况与上文所述的类似,多对U型薄板结构支撑梁可相邻地布置,其中最外侧的一对U型薄板结构支撑梁中每个支撑梁的外侧臂的自由端连接至敏感质量板框架且内侧臂的自由端连接至相邻的支撑梁的外侧臂的自由端,最内侧的一对U型薄板结构支撑梁中每个支撑梁的内侧臂的自由端连接至敏感质量块且外侧臂的自由端连接至相邻的支撑梁的内侧臂的自由端,另外位于中间的每对U型薄板结构支撑梁——如果有的话——中每个支撑梁的外侧臂的自由端和内侧臂的自由端(开口部的两端)分别连接至该支撑梁外侧的相邻支撑梁的内侧臂的自由端和该支撑梁内侧的相邻支撑梁的外侧臂的自由端;敏感质量板框架与最外侧的U型薄板结构支撑梁的相应臂(外侧臂)的自由端之间的连接,以及敏感质量块与最内侧的U型薄板结构支撑梁的相应臂(内侧臂)的自由端之间的连接,构成敏感质量板框架与敏感质量块之间的连接部,如图5中所示。敏感质量板2固定于基底1上方,且除敏感质量板框架中连接U型薄板结构支撑梁之处外,该框架的内侧与基底凹槽外侧齐平;敏感质量板2中两个石墨烯梁放置凹槽上表面分别覆盖绝缘层二4和绝缘层三8;石墨烯谐振梁一6两端分别吸附于绝缘层一3和绝缘层二4,石墨烯谐振梁二7两端分别吸附于绝缘层一3和绝缘层三8,从而形成两个双端固支谐振梁——这里,双端固支谐振梁即双端被固定和支承的谐振梁;如上文所述,石墨烯谐振梁一6上和石墨烯谐振梁二7上分别放置激 励电极对一5和激励电极对二9,用于激励谐振梁处于谐振状态;真空罩10黏合于基底上,其上凹槽内侧与敏感质量板框架外侧齐平,从而完成对加速度传感器的封闭。被测加速度通过敏感质量板2转换为集中力,导致带有U型薄板结构支撑梁的质量块产生轴向微小的位移量,同时带动双端固支石墨烯谐振梁一6的一端及石墨烯谐振梁二7的一端产生位移,从而引起石墨烯谐振梁轴向应力的变化;石墨烯谐振梁一6和石墨烯谐振梁二7中每个的产生位移的那端为位于敏感质量块上的端。轴向的两个石墨烯谐振梁工作于差动模式,轴向加速度引起石墨烯轴向应力变化,一个石墨烯谐振梁轴向应力增大,谐振频率增加,同时另一个石墨烯谐振梁轴向应力减小,谐振频率降低。通过对两个石墨烯谐振梁谐振频率的检测,即可表征被测加速度大小。
如图中所示,石墨烯谐振梁一6和石墨烯谐振梁二7可沿轴向对准,成直线布置。
上述的绝缘层一、绝缘层二和绝缘层三也可分别称为第一绝缘层、第二绝缘层和第三绝缘层。上述的激励电极对一和激励电极对二也可分别称为第一激励电极对和第二激励电极对。上述的石墨烯谐振梁一和石墨烯谐振梁二也可分别称为第一石墨烯谐振梁和第二石墨烯谐振梁。
本实施例一给出第一组传感器结构及参数用于测量范围较小的加速度:
敏感质量板2和基底1材料相同,都为绝缘硅,且两者共同构成加速度传感器的主体;基底长宽厚为70μm×70μm×6μm,其上凹槽长宽深为58μm×58μm×3μm,其上凸台长宽高为24μm×14μm×7μm。敏感质量板2的长宽厚为60μm×60μm×5μm,其上敏感质量块长宽厚为53μm×53μm×5μm,其上每个U型薄板支撑梁单边板厚为0.2μm。U型薄板支撑梁的单边板厚指U型薄板支撑梁的单个臂在轴向方向上的尺寸。
绝缘层一3、绝缘层二4、绝缘层三8可通过基底1材料热生长氧化、化学气相沉积方法形成,三个绝缘层厚度均为0.5μm。
石墨烯谐振梁一6和石墨烯谐振梁二7的材料、几何尺寸一致,长宽厚为10μm×1μm×0.335nm(单层),二者沿敏感质量板轴向方向放置,且处于真空环境。
石墨烯谐振梁一6和石墨烯谐振梁二7分别通过激励电极对一5与激励电极对二9采用电学激励方式达到谐振工作状态。
如图4所示,对第一组传感器建立仿真模型,对其施加轴向被测加速度并进行仿真计算,使敏感质量板产生与加速度施加方向一致的轴向位移。以图4中敏感质量板的轴向方向为上下方向,假设敏感质量板轴向位移的方向是向上的,上侧U型支持梁被拉伸,下侧U型支撑梁被压缩,拉伸幅度与压缩幅度一致。同时,敏感质量板的轴向位移带动两个石墨烯谐振梁产生位移,通过仿真计算得到其一阶振型,分析其一阶振型可知上侧石墨烯梁被拉伸,下侧石墨烯梁被压缩,二者振动幅值及谐振频率随施加加速度的变化而变化,且二者数值具有明显差异,通过分析其差值可获得差动式测量结果。
本实施例二给出第二组传感器结构及参数用于测量范围较大的加速度:
敏感质量板2和基底1材料相同,都为绝缘硅,且两者共同构成加速度传感器的主体;基底长宽厚为90μm×90μm×6μm,其上凹槽长宽深为78μm×78μm×3μm,其上凸台长宽高为24μm×14μm×7μm。敏感质量板2的长宽厚为84μm×84μm×5μm,其上敏感质量块长宽厚为58μm×70μm×5μm,其上石墨烯梁放置凹槽长宽深为6μm×3μm×2μm,其上U型薄板支撑梁单侧数量为6个(即,3对),单边板厚为0.5μm,两个单边板中间的间隙——即U型薄板支撑梁两臂之间的间隙——为1μm。
绝缘层一3、绝缘层二4、绝缘层三8可通过基底1材料热生长氧化、化学气相沉积方法形成,三个绝缘层厚度均为0.5μm。
石墨烯谐振梁一6和石墨烯谐振梁二7的材料、几何尺寸一致,各自长宽为10μm×1μm,层数均为十层,总厚度为10×0.335nm=3.35nm,其中每层(单层)厚度为0.335nm,二者沿敏感质量板轴向方向放置,且处于真空环境。
石墨烯谐振梁一6和石墨烯谐振梁二7分别通过激励电极对一5与激励电极对二9采用电学激励方式达到谐振工作状态。
如图5所示,对第二组传感器建立仿真模型,对其施加轴向加速度并进行仿真计算,使敏感质量板产生与加速度施加方向一致的轴向位移。以图5中敏感质量板的轴向方向为上下方向,假设敏感质量板轴向位移的方向是向上的,上侧6个(3对)U型支持梁被拉伸,下侧6个(3对)U型支撑梁被压缩,拉伸幅度与压缩幅 度一致。同时,敏感质量板的轴向位移带动两个石墨烯谐振梁产生位移,通过仿真计算得到其一阶振型,分析其一阶振型可知上侧石墨烯梁被拉伸,下侧石墨烯梁被压缩,二者振动幅值及谐振频率随施加加速度的变化而变化,且二者数值具有明显差异,通过分析其差值可获得差动式测量结果。同时,由于中间敏感质量块质量的变化以及U型悬臂梁等效刚度的不同,第二组加速度传感器中石墨烯梁的振动幅值及谐振频率与第一组相比有较大差异,因而适用于测量更大范围的加速度。
图4和图5中以坐标轴示出了x方向、y方向、z方向,其中y方向表示敏感质量板的轴向方向,x方向表示横向于敏感质量板的轴向方向的横向方向,z方向表示正交于该轴向方向和横向方向二者的竖直方向。本文中,对于基底、基底上的环形凹槽和凸台、敏感质量板、敏感质量块、石墨烯谐振梁一、石墨烯谐振梁二、各绝缘层,长度尺寸指沿敏感质量板的轴向方向——如图4和5中的y方向——的尺寸,宽度方向指沿横向于该轴向方向的横向方向——如图4和5中的x方向——的尺寸,厚度或深度尺寸指沿正交于该轴向方向和横向方向二者的竖直方向——如图4和5中的z方向——的尺寸。对于激励电极、石墨烯梁放置凹槽,宽度尺寸指沿敏感质量板的轴向方向——如图4和5中的y方向——的尺寸,长度方向指沿横向于该轴向方向的横向方向——如图4和5中的x方向——的尺寸,厚度或深度尺寸指沿正交于该轴向方向和横向方向二者的竖直方向——如图4和5中的z方向——的尺寸。对于U型薄板结构支撑梁,整个该支撑梁的宽度指该支撑梁的沿上述轴向方向的最大尺寸,对应于沿该轴向方向该支撑梁的两臂外侧之间的距离;该支撑梁的单个臂的宽度(单边板厚)指该单个臂在该轴向方向上的尺寸;该支撑梁的臂的长度指该臂在上述横向方向上的尺寸,也代表该支撑梁的长度;该支撑梁的臂的厚度指该臂在上述竖直方向上的尺寸,也代表该支撑梁的厚度。另外,上文提到,每对相对的U型薄板结构支撑梁包括开口部相对的两个U型薄板结构支撑梁;这样的每对U型薄板结构支撑梁的长度指该对U型薄板结构支撑梁在上述横向方向上的最大尺寸,对应于其中两个U型薄板结构支撑梁的底部之间的距离。
本发明的各项尺寸均可大于或小于实施例中所给尺寸。
本发明的制备可通过用电感耦合等离子体(ICP)刻蚀、热氧化、化学气相沉积(CVD)、光刻、氧等离子体刻蚀、电子束蒸发、真空键合技术等系列工艺实现。 对于本领域专业技术人员公知的现有技术,本说明书中未作详细描述。

Claims (15)

  1. 一种差动式石墨烯谐振梁加速度传感器,包括基底(1)、敏感质量板(2)、绝缘层一(3)、绝缘层二(4)、激励电极对一(5)、石墨烯谐振梁一(6)、石墨烯谐振梁二(7)、绝缘层三(8)、激励电极对二(9)和真空罩(10),其特征在于:基底(1)上具有刻蚀出的环形凹槽和由此形成的基底上的矩形凸台;基底(1)上的矩形凸台上表面中间覆盖绝缘层一(3);敏感质量板(2)被刻蚀为形成沿质量板轴向对称分布的敏感质量块、U型薄板结构支撑梁和两个石墨烯梁放置凹槽,以及位于质量板外周的敏感质量板框架,其中U型薄板结构支撑梁布置于敏感质量块的横向于质量板轴向的两侧,并位于敏感质量板框架与敏感质量块之间,所述石墨烯梁放置凹槽用于放置石墨烯谐振梁的激励电极;敏感质量板(2)固定于基底(1)上方,使得除敏感质量板框架中连接U型薄板结构支撑梁之处外,该敏感质量板框架的内侧与基底上的环形凹槽外侧齐平;敏感质量板(2)中两个石墨烯梁放置凹槽上表面分别覆盖绝缘层二(4)和绝缘层三(8);石墨烯谐振梁一(6)两端分别吸附于绝缘层一(3)和绝缘层二(4),石墨烯谐振梁二(7)两端分别吸附于绝缘层一(3)和绝缘层三(8),从而形成两个双端固支谐振梁;石墨烯谐振梁一(6)的两端上分别放置激励电极对一(5)中的两个激励电极,用于激励石墨烯谐振梁一处于谐振状态,石墨烯谐振梁二(7)的两端上分别放置激励电极对二(9)中的两个激励电极,用于激励石墨烯谐振梁二处于谐振状态;真空罩(10)固定于基底(1)上,其上的凹槽内侧与敏感质量板框架外侧齐平,从而完成对加速度传感器的封闭。
  2. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述基底(1)与敏感质量板(2)材料相同,两者构成加速度传感器的主体。
  3. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述绝缘层一(3)、绝缘层二(4)、绝缘层三(8)通过基底(1)材料热生长氧化、化学气相沉积方法形成,绝缘层一(3)、绝缘层二(4)、绝缘层三(8)厚度一致,且不大于敏感质量板(2)厚度的1/5。
  4. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述石墨烯谐振梁一(6)和石墨烯谐振梁二(7)的材料、几何尺寸一致,厚度为单层或多层石墨烯的厚度,长度与宽度远大于其厚度,长宽比不小于5,所述石墨烯谐振梁一和石墨烯谐振梁二沿敏感质量板(2)的轴向方向放置,且处于真空环境。
  5. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述石墨烯谐振梁一(6)和石墨烯谐振梁二(7)均采用电学激励方式进行激励,激励电极对一(5)和激励电极对二(9)配有外部连接电路。
  6. 如权利要求1、2或3所述的差动式石墨烯谐振梁加速度传感器,其特征在于:所述基底(1)和敏感质量板(2)的材料采用单晶硅或碳化硅,所述绝缘层一(3)、绝缘层二(4)、绝缘层三(8)采用二氧化硅或氮化硅。
  7. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述敏感质量板(2)上具有四个或更多个U型薄板结构支撑梁,这些U型薄板结构支撑梁的几何尺寸一致,所述敏感质量块单侧的U型薄板结构支撑梁数量为二或二的倍数。
  8. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述基底(1)上的环形凹槽距所述基底每边的距离均在6μm以上,所述敏感质量板框架的厚度不小于所述环形凹槽距所述基底(1)的对应边的距离的1/3,不大于所述环形凹槽距所述基底(1)的对应边的距离的1/2。
  9. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述敏感质量板框架内侧的尺寸与所述基底(1)上的环形凹槽的外侧尺寸一致。
  10. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述基底(1)上的环形凹槽的深度不小于所述基底(1)厚度的1/6,不大于所述基底(1)厚度的2/3。
  11. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述敏感质量块的中间部具有中空的孔口部,所述矩形凸台位于所述孔口部中,所述矩形凸台的几何中心与所述基底(1)的几何中心重合,且所述矩形凸台的长宽 尺寸使得所述矩形凸台的每边距所述敏感质量块内侧的距离不小于所述U型薄板支撑梁宽度的2倍。
  12. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述矩形凸台的高度使得所述矩形凸台的上表面与所述石墨烯梁放置凹槽的底面在同一水平面上。
  13. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:所述激励电极对一(5)和所述激励电极对二(9)中每个激励电极的长度不小于相应石墨烯谐振梁的宽度,宽度不大于所述石墨烯梁放置凹槽的宽度,厚度不大于敏感质量板(2)厚度的1/5。
  14. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:绝缘层一(3)的长宽尺寸不小于激励电极的尺寸,且不大于所述矩形凸台的尺寸,绝缘层二(4)和绝缘层三(8)的长宽尺寸与所述石墨烯梁放置凹槽的尺寸一致,绝缘层一(3)、绝缘层二(4)和绝缘层三(8)厚度一致且其厚度均不大于敏感质量板(2)厚度的1/5。
  15. 如权利要求1所述的一种差动式石墨烯谐振梁加速度传感器,其特征在于:每个U型薄板结构支撑梁的单个臂的宽度为整个支撑梁宽度的1/4,每个U型薄板结构支撑梁的两臂之间的间距为整个支撑梁宽度的1/2,所述敏感质量块单侧的每对U型薄板结构支撑梁的长度不小于敏感质量块宽度的1/2,每个U型薄板结构支撑梁的厚度与敏感质量块的厚度一致。
PCT/CN2018/073668 2017-05-12 2018-01-22 一种差动式石墨烯谐振梁加速度传感器 WO2018205683A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1917704.7A GB2578014B (en) 2017-05-12 2018-01-22 Acceleration sensor comprising differential graphene resonant beams
US16/611,719 US11243225B2 (en) 2017-05-12 2018-01-22 Acceleration sensor comprising differential graphene resonant beams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710332648.2A CN107015025B (zh) 2017-05-12 2017-05-12 一种差动式石墨烯谐振梁加速度传感器
CN201710332648.2 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018205683A1 true WO2018205683A1 (zh) 2018-11-15

Family

ID=59450528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073668 WO2018205683A1 (zh) 2017-05-12 2018-01-22 一种差动式石墨烯谐振梁加速度传感器

Country Status (4)

Country Link
US (1) US11243225B2 (zh)
CN (1) CN107015025B (zh)
GB (1) GB2578014B (zh)
WO (1) WO2018205683A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988395A (zh) * 2019-12-02 2020-04-10 青岛歌尔智能传感器有限公司 加速度传感器及其制备方法
CN113917186A (zh) * 2021-10-25 2022-01-11 南京林业大学 一种加速度传感器
CN113933537A (zh) * 2021-08-30 2022-01-14 随芯(上海)科技有限公司 加速度传感器芯片及其制备方法
CN116047180A (zh) * 2022-11-24 2023-05-02 南方电网数字电网研究院有限公司 一种石墨烯电场传感器
CN117607489A (zh) * 2024-01-17 2024-02-27 中国工程物理研究院电子工程研究所 压阻式加速度传感器的敏感结构及加速度传感器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107015025B (zh) 2017-05-12 2019-06-25 北京航空航天大学 一种差动式石墨烯谐振梁加速度传感器
CN108807071B (zh) * 2018-05-31 2019-12-17 湖北三江航天红林探控有限公司 一种平面多层惯性开关
CN109437086A (zh) * 2018-10-19 2019-03-08 北京航空航天大学 一种作为二次敏感结构的高q值谐振梁结构
CN109725174B (zh) * 2019-03-07 2024-04-30 中国船舶重工集团公司第七0四研究所 复合型振动加速度传感器
CN110110834B (zh) * 2019-04-15 2024-04-26 同济大学 基于倒f天线的无源无线rfid位移传感器及传感系统
CN110531113B (zh) * 2019-09-17 2024-04-02 东南大学 基于石墨烯谐振器的平面差分式加速度计装置及其加工方法
CN110531112B (zh) * 2019-09-17 2024-08-06 东南大学 基于双层静电弱耦合效应的石墨烯谐振式加速度计装置
CN110824195B (zh) * 2019-11-19 2020-09-01 华东交通大学 一种基于石墨烯双稳态物理转换的加速度传感器
CN111796119B (zh) * 2020-07-20 2022-05-17 合肥工业大学 基于纳米压电梁的谐振式加速度传感器及其制备方法
CN112880887B (zh) * 2021-01-12 2021-10-26 北京航空航天大学 一种真空封装的石墨烯谐振式光纤压力传感器及其制作方法
CN113219206B (zh) * 2021-04-14 2022-12-16 西安航天精密机电研究所 一种石墨烯加速度计
CN113816329B (zh) * 2021-08-25 2023-08-11 中国电子科技集团公司第四十九研究所 一种真空封装结构的谐振压力敏感芯片探头及其封装方法
CN113697764B (zh) * 2021-08-25 2023-07-07 中国电子科技集团公司第四十九研究所 一种隔离封装结构的谐振温度敏感芯片探头及其封装方法
CN113945732B (zh) * 2021-10-18 2024-10-15 中国人民解放军国防科技大学 一种石墨烯双轴差分式谐振式加速度计
CN114397478B (zh) * 2021-11-30 2024-05-10 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种单轴差分谐振梁表头模组及加速度计
CN114348951B (zh) * 2022-01-07 2024-06-18 中国人民解放军国防科技大学 一种抗高过载硅敏感单元、微加速度计及其制备方法
CN115166297B (zh) * 2022-02-21 2024-02-23 东南大学 一种基于石墨烯moems加速度计及其加工方法
CN115824472A (zh) * 2022-12-16 2023-03-21 贵州民族大学 一种多功能传感器及信号检测系统
CN116754107B (zh) * 2023-08-23 2023-10-20 清华四川能源互联网研究院 具有放大结构的高灵敏度谐振压力传感器及信号调理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848307B1 (en) * 2003-10-14 2005-02-01 Kulite Semiconductor Products, Inc. Dual beam frequency-output accelerometer
CN2748921Y (zh) * 2004-11-23 2005-12-28 王武立 石英谐振加速度传感器
CN104374953A (zh) * 2014-11-25 2015-02-25 东南大学 一种分体式差分硅微谐振式加速度计
CN106771358A (zh) * 2016-11-30 2017-05-31 西安交通大学 一种微型差动式全石英谐振加速度计
CN107015025A (zh) * 2017-05-12 2017-08-04 北京航空航天大学 一种差动式石墨烯谐振梁加速度传感器
CN107255736A (zh) * 2017-06-27 2017-10-17 北京航空航天大学 一种谐振式石墨烯双轴加速度计

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656382A (zh) * 2001-05-15 2005-08-17 霍尼韦尔国际公司 加速度计应变消除结构
FI20116082L (fi) * 2011-11-03 2013-05-04 Marko Pudas Anturi
US8683862B2 (en) * 2011-11-03 2014-04-01 The United States Of America As Represented By The Secretary Of The Navy Oscillation apparatus with atomic-layer proximity switch
CN102539832B (zh) * 2012-01-13 2013-04-24 北京航空航天大学 一种田字形双轴谐振式硅微机械加速度计结构
US10228387B2 (en) * 2014-06-16 2019-03-12 Kulite Semiconductor Products, Inc. Two-dimensional material-based accelerometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848307B1 (en) * 2003-10-14 2005-02-01 Kulite Semiconductor Products, Inc. Dual beam frequency-output accelerometer
CN2748921Y (zh) * 2004-11-23 2005-12-28 王武立 石英谐振加速度传感器
CN104374953A (zh) * 2014-11-25 2015-02-25 东南大学 一种分体式差分硅微谐振式加速度计
CN106771358A (zh) * 2016-11-30 2017-05-31 西安交通大学 一种微型差动式全石英谐振加速度计
CN107015025A (zh) * 2017-05-12 2017-08-04 北京航空航天大学 一种差动式石墨烯谐振梁加速度传感器
CN107255736A (zh) * 2017-06-27 2017-10-17 北京航空航天大学 一种谐振式石墨烯双轴加速度计

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, ZHIYONG ET AL.: "A Micromachined Silicon Resonant Accelerometer", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 6, no. 30, 30 June 2009 (2009-06-30), pages 456 - 460, ISSN: 0254-3087 *
JIE, WENBIN ET AL.: "Acceleration Sensing Based on Graphene Resonator", PROC. SPIE 10256, SECOND INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, vol. 10256, 28 February 2017 (2017-02-28), pages 102562E - 1 - 10 2562E-8 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988395A (zh) * 2019-12-02 2020-04-10 青岛歌尔智能传感器有限公司 加速度传感器及其制备方法
CN113933537A (zh) * 2021-08-30 2022-01-14 随芯(上海)科技有限公司 加速度传感器芯片及其制备方法
CN113917186A (zh) * 2021-10-25 2022-01-11 南京林业大学 一种加速度传感器
CN113917186B (zh) * 2021-10-25 2023-09-05 南京林业大学 一种加速度传感器
CN116047180A (zh) * 2022-11-24 2023-05-02 南方电网数字电网研究院有限公司 一种石墨烯电场传感器
CN117607489A (zh) * 2024-01-17 2024-02-27 中国工程物理研究院电子工程研究所 压阻式加速度传感器的敏感结构及加速度传感器
CN117607489B (zh) * 2024-01-17 2024-04-09 中国工程物理研究院电子工程研究所 压阻式加速度传感器的敏感结构及加速度传感器

Also Published As

Publication number Publication date
GB2578014A9 (en) 2021-12-22
GB2578014B (en) 2022-05-04
US11243225B2 (en) 2022-02-08
GB201917704D0 (en) 2020-01-15
GB2578014A (en) 2020-04-15
CN107015025A (zh) 2017-08-04
US20210140991A1 (en) 2021-05-13
CN107015025B (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2018205683A1 (zh) 一种差动式石墨烯谐振梁加速度传感器
US8671756B2 (en) MEMS biaxial resonant accelerometer
CN102608355B (zh) 谐振‑力平衡隧道电流式三轴加速度传感器及制作方法
JP5713737B2 (ja) ノイズを低減した力センサ
CN102608356B (zh) 一种双轴体微机械谐振式加速度计结构及制作方法
US9377482B2 (en) Detection structure for a Z-axis resonant accelerometer
CN102798734B (zh) Mems三轴加速度计及其制造方法
US20150362522A1 (en) Mems resonant accelerometer having improved electrical characteristics
CN106918420A (zh) 一种双石墨烯谐振梁式压力传感器
CN107255736B (zh) 一种谐振式石墨烯双轴加速度计
CN111103073A (zh) 一种多参量协同敏感的谐振式压力传感器及其制备方法
US20140024161A1 (en) Method of fabricating an inertial sensor
WO2016082571A1 (zh) 三轴微机电陀螺仪
CN107688103A (zh) 一种基于石墨烯谐振特性的单轴加速度计
Ding et al. A MEMS resonant accelerometer with high relative sensitivity based on sensing scheme of electrostatically induced stiffness perturbation
Li et al. A micro-machined differential resonance accelerometer based on silicon on quartz method
CN107101629B (zh) 一种硅微机械石墨烯梁谐振式陀螺仪
CN102602879A (zh) 谐振式加速度计谐振梁和支撑梁的二步腐蚀制造方法
Eswaran et al. Sensitivity analysis on MEMS capacitive differential pressure sensor with bossed diaphragm membrane
CN110531112B (zh) 基于双层静电弱耦合效应的石墨烯谐振式加速度计装置
CN112014597A (zh) 三轴谐振电容式微机电加速度计
JP6044607B2 (ja) 振動式センサ装置
CN219065508U (zh) 谐振加速度计、用于其的检测结构以及电子装置
CN212410634U (zh) 三轴谐振电容式微机电加速度计
JP4855078B2 (ja) 振動検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201917704

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180122

122 Ep: pct application non-entry in european phase

Ref document number: 18798528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18798528

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18798528

Country of ref document: EP

Kind code of ref document: A1