WO2018205644A1 - 移动组装3d打印装备、3d打印主体装备及3d打印机 - Google Patents

移动组装3d打印装备、3d打印主体装备及3d打印机 Download PDF

Info

Publication number
WO2018205644A1
WO2018205644A1 PCT/CN2018/000095 CN2018000095W WO2018205644A1 WO 2018205644 A1 WO2018205644 A1 WO 2018205644A1 CN 2018000095 W CN2018000095 W CN 2018000095W WO 2018205644 A1 WO2018205644 A1 WO 2018205644A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
chamber
printing
main body
moving
Prior art date
Application number
PCT/CN2018/000095
Other languages
English (en)
French (fr)
Inventor
窦鹤鸿
Original Assignee
窦鹤鸿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 窦鹤鸿 filed Critical 窦鹤鸿
Publication of WO2018205644A1 publication Critical patent/WO2018205644A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of laser selective metal melting 3D printing technology, in particular to a mobile assembly 3D printing equipment, a 3D printing main equipment and a 3D printer.
  • Additive manufacturing 3D printing technology is based on digital model files (CAD), using powdered metal, PVC, resin, fiber and other materials, through fused deposition, laser sintering, laser selective melting, laser curing, laser cladding, etc.
  • CAD digital model files
  • the way to build shaped objects on CAD 3D graphics through dedicated software, to slice and reduce dimensions, and then to print the high-end manufacturing technology of structured objects layer by layer is an emerging technology that is rapidly developing in the manufacturing industry.
  • the article "The Third Industrial Revolution” is known as one of the important symbols of the third industrial revolution.
  • the powder supply system and the construction chamber and the working room of the laser selective melting 3D printer in the prior art are all designed in an integrated box type body, and have no structural design of the main body platform.
  • the piston and the piston plate are arranged in the construction chamber, and the working substrate is placed on the piston plate.
  • the piston plate pushes the working substrate to rise to a thickness of the working surface of the metal powder layer from the bottom of the working chamber, the thickness of the working surface is flattened by the powder supplying device.
  • the metal powder layer forms the working surface, and then the laser system is mounted on the top of the 3D printer, and the laser beam is reflected by the laser galvanometer to the metal powder layer on the current working surface, and the deflection angle of the laser galvanometer is adjusted by the control system.
  • the current metal powder layer is selectively melted in the form of the current layer slice pattern, thereby completing the processing operation of the current layer of the constituent member.
  • the workbench is lowered by a predetermined layer height, and the powder supply system lays a metal powder of a predetermined layer thickness to the workbench, and then the laser system performs the current layer slice pattern.
  • This process technology is a metal 3D printing technology that is widely used in the field of additive manufacturing. The technology can manufacture metal parts with complex shapes. The molded parts have good mechanical properties and high precision, and the density reaches more than 99% of traditional metallurgical parts. It is important in medical, aerospace, military, nuclear power construction, product development and other fields. application.
  • the 3D printer equipment for the metal powder bed laser melting process of the prior art is a design of an integrated box type body. There is no mobile assembly design, and there is no extension of the main body platform, which greatly limits the installation.
  • the size and processing efficiency of the 3D printer; the powder supply system used is a single powder feeding cylinder, a single powder roller or an independent plastering brush. In the large-size working surface, the working efficiency is very low.
  • the metal powder bed laser selective zone melting process 3D printer equipment manufactured by the prior art all absorbs the remaining powder from the working chamber, and then rises to build the piston plate and then takes out the working substrate and the molded part.
  • the object of the present invention is to provide a mobile assembled 3D printing equipment, a 3D printing main equipment and a 3D printer, so as to solve the processing conditions in the prior art that can not meet the forming member length, width, height ⁇ 1 m or more.
  • Technical problem is to provide a mobile assembled 3D printing equipment, a 3D printing main equipment and a 3D printer, so as to solve the processing conditions in the prior art that can not meet the forming member length, width, height ⁇ 1 m or more.
  • the present invention provides a mobile assembled 3D printing apparatus comprising: a building chamber and a moving mechanism; the moving mechanism is coupled to the building chamber for moving the building chamber; It is used for detachably fixed connection with the main body platform of the 3D printer.
  • the moving mechanism includes a moving wheel and a moving motor; the moving wheel is rotatably connected to the building chamber, and the moving motor is coupled to the moving wheel for driving the moving wheel to rotate.
  • the construction chamber includes a plurality of sub-chambers penetrating up and down; a plurality of the sub-chambers are sequentially connected from top to bottom, and a plurality of the sub-chambers are detachably fixedly connected; the mobile device and the lowermost portion The sub-chamber is connected; the sub-chamber located at the top is used for detachably fixed connection with the main body platform of the 3D printer.
  • the mobile assembled 3D printing apparatus further includes a heating mechanism for heating the interior of the building chamber to counteract a stress reaction of the component due to a temperature difference during the construction molding process.
  • the mobile assembled 3D printing apparatus further includes a height lifting mechanism; the height lifting mechanism is coupled to the building chamber for raising or lowering the building chamber.
  • the present invention also provides a 3D printing main body equipment comprising a main body platform and a mobile assembled 3D printing apparatus according to the present invention; the construction chamber is detachably fixed to the main body platform Below; the main body platform is used to install a laser selective melting mechanism of the 3D printer.
  • the mobile assembled 3D printing apparatus includes a work table and a plurality of lifters; the worktable is disposed in the construction chamber; and the plurality of lifters are connected to the workbench for driving the work The table moves up and down.
  • the workbench includes a substrate and a build chamber piston plate disposed in order from top to bottom; the main body platform is provided with a mounting port; the substrate is disposed at the mounting port; the mounting port, the The base plate and the construction chamber piston plate are both square; the construction chamber piston plate is connected to the lifter; the length and width of the substrate are smaller than the length and width of the construction chamber piston plate; The length and width of the plate are the same as the length and width of the mounting opening.
  • the 3D printing main body equipment further includes a powder supply system;
  • the powder supply system includes two powdering rollers, a powder feeding device, and a powder roller driving mechanism; two of the powdering rollers are oppositely disposed in the operation a first end and a second end of the table;
  • the powder roller driving mechanism is coupled to the two powder rollers for driving the two powder rollers to reciprocate above the work table to
  • the metal powder in the powder feeding device is laid on the work table; the powder roller driving mechanism is used for electrical connection with a control system of the 3D printer.
  • the present invention also provides a 3D printer including a laser selective melting mechanism and a 3D printing main body apparatus according to the present invention; the laser selective melting mechanism is mounted on the main body platform.
  • the present invention provides a mobile assembled 3D printing apparatus comprising a construction chamber and a moving mechanism.
  • the construction chamber is detachably fixedly connected to the main body platform of the main body platform of the 3D printer.
  • the user removes the construction room from the main body platform, and then moves the construction room from the construction mechanism.
  • the main platform is moved to the preset position, and finally the components are taken out from the construction room.
  • the mobile assembled 3D printing apparatus moves the construction chamber to a preset position by a moving mechanism, and then takes out the component from the construction chamber, compared with the prior art method of taking out the molding member from above the working chamber. It not only facilitates the user to take out, but also saves manpower and time. It not only improves the efficiency of picking up, but also the processing design condition of the process equipment meets the processing conditions of forming parts of length, width and height ⁇ 1m or larger.
  • the scope fills the blank of the process technology equipment without mobile assembly design, which effectively solves the worldwide technical problem that the large-scale components can not be formed by the process equipment in the world for more than 30 years.
  • FIG. 1 is a schematic structural diagram of a 3D printing main body device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a moving mechanism and a height lifting mechanism according to an embodiment of the present invention
  • FIG. 3 is a schematic partial structural diagram of a 3D printing main body device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a lifter and a workbench according to an embodiment of the present invention.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • a mobile assembled 3D printing device includes: a construction room 1 and a mobile device.
  • Mechanism 2 the moving mechanism 2 is connected to the building chamber 1 for moving the building chamber 1; the building chamber 1 is for detachably fixedly connecting with the body platform 4 of the 3D printer.
  • the mobile assembled 3D printing equipment provided by the embodiment of the invention comprises a construction chamber 1 and a moving mechanism 2.
  • the construction chamber 1 is detachably and fixedly coupled to the main body platform 4 of the main body platform 4 of the 3D printer.
  • the user removes the construction chamber 1 from the main body platform 4, and then The construction chamber 1 is moved from the main body platform 4 to the preset position by the moving mechanism 2, and finally the components are taken out from the construction chamber 1.
  • the mobile assembled 3D printing equipment moves the construction chamber 1 to a preset position by the moving mechanism 2, and then takes out the component from the construction chamber 1 and removes it from the upper side of the working room in the prior art. Compared with the molded component, it saves manpower and time, and improves the efficiency of picking up. More importantly, the design form of the device can meet the conditions for constructing a component having a length, a width, a height of 1 m or more, and breaks through 30 pieces. The world has severely constrained the worldwide technical problems of the promotion and application of this process technology worldwide.
  • the moving mechanism 2 can be configured in various forms.
  • the moving mechanism 2 includes a motor, a gear, a rack, a slide rail, and a slider matched with the slide rail; the gear is disposed on the power output shaft of the motor, and the rack and the rack
  • the building chamber 1 is fixedly coupled and the rack meshes with the gears.
  • the slider is fixedly disposed on the building chamber 1.
  • the motor drives the gear to rotate, the gear drives the rack to move, and the rack drives the construction chamber 1 to move along the slide rail.
  • the moving mechanism 2 is a schematic structural view of a moving mechanism and a height lifting mechanism according to an embodiment of the present invention; as shown in FIG. 1 and FIG. 2, on the basis of the above embodiment, further, the moving mechanism 2 includes a moving wheel 22 and a moving motor 21.
  • the moving wheel 22 is rotatably coupled to the building chamber 1, and the moving motor 21 is coupled to the moving wheel 22 for driving the moving wheel 22 to rotate.
  • the moving mechanism 2 is set as the moving wheel 22 and the moving motor 21, and the moving motor 21 drives the moving wheel 22 to rotate, thereby moving the building chamber 1 to the preset position.
  • the setting of the moving wheel 22 can reduce the friction between the building chamber 1 and the ground while moving the building chamber 1, thereby reducing the power required to move the building chamber 1, reducing energy consumption, and saving. Resources.
  • the moving motor 21 is fixedly coupled to the outer wall of the building chamber 1.
  • the moving wheel 22 can be rotatably connected to the bottom of the building chamber 1, or can be rotatably connected to the middle of the building chamber 1.
  • the building chamber 1 includes a plurality of sub-chambers 11 penetrating up and down; the plurality of sub-chambers 11 are sequentially connected from top to bottom, and the plurality of sub-chambers 11 are detachably fixedly connected.
  • the mobile device is connected to the lowermost sub-chamber 11; the uppermost sub-chamber 11 is for detachably fixedly connected to the main body platform 4 of the 3D printer.
  • the building chamber 1 is provided as a plurality of detachably fixedly connected sub-chambers 11. After the forming member is formed, the user removes the building chamber 1 from the main body platform 4, and then moves the building chamber through the moving wheel 22. 1 to the preset position. The sub-chamber 11 is removed from top to bottom until the appropriate position of the component is taken out, and finally the component is taken out.
  • the construction chamber 1 is provided as a plurality of detachable and fixedly connected sub-chambers 11. When the components are taken out, the height of the construction chamber 1 can be lowered, and the user can further facilitate the removal of the components.
  • the building chamber 1 is provided as three sub-chambers 11 which are, in order from top to bottom, a first sub-chamber 11, a second sub-chamber 11 and a third sub-chamber 11.
  • the cross sections of the first sub-chamber 11 and the second sub-chamber 11 are both square and have a side length of 2100 mm, the height of the first sub-chamber 11 is 1000 mm, and the height of the second sub-chamber 11 is 1500 mm.
  • the mobile assembled 3D printing apparatus further includes a heating mechanism; the heating mechanism is for heating the inside of the construction chamber 1 to counteract the stress reaction of the constituents due to the temperature difference during the construction molding process.
  • the inside of the building chamber 1 is heated by providing a heating mechanism, so that the temperature of the component below which is shorter in the molding time is lower, and the temperature of the component above the molding time is higher, and the component is high.
  • the temperature difference between different positions is large, and a stress reaction is generated, thereby affecting the forming effect of the constituent members.
  • the heating mechanism may be heated by a resistance wire, or may be infrared heating or the like.
  • the electric resistance wire can be uniformly covered on the inner wall of the construction chamber 1, and the electric resistance wire is heated to heat the inner wall of the construction chamber 1.
  • the mobile assembled 3D printing apparatus further includes a height lifting mechanism 3; the height lifting mechanism 3 is connected with the building chamber 1 for raising the building chamber 1 or decline.
  • the user moves the building chamber 1 to the position to be installed below the square of the main body by the moving mechanism 2, then raises the building chamber 1 to the preset position by the height lifting mechanism 3, and finally installs the building chamber 1 and the main body platform 4. .
  • the building chamber 1 is detached from the main body platform 4, and then the building chamber 1 is lowered to a preset position by the height lifting mechanism 3, so that there is a gap between the building chamber 1 and the main body platform 4, and then moved.
  • the mechanism 2 moves the building room 1.
  • the setting of the height lifting mechanism 3 facilitates the user to install and move the building chamber 1.
  • the height lifting mechanism 3 may be a hydraulic cylinder or a cylinder or the like.
  • an embodiment of the present invention further provides a 3D printing main body equipment, the 3D printing main equipment includes a main body platform 4 and a mobile assembled 3D printing equipment according to the present invention;
  • the chamber 1 is detachably fixed below the main body platform 4;
  • the main body platform 4 is for mounting a laser selective melting mechanism of the 3D printer.
  • Mobile assembly 3D printing equipment works as above.
  • the mobile assembled 3D printing equipment includes a workbench 8 and a plurality of The lifter 9; the workbench 8 is disposed in the construction chamber 1; and the plurality of lifters 9 are connected to the workbench 8 for driving the workbench 8 to move up and down.
  • the plurality of lifters 9 simultaneously drive the work table 8 to move up and down in the construction chamber 1, so that the work table 8 can be quickly moved, and the stability of the work table 8 when moving can be improved.
  • the plurality of lifters 9 are evenly spaced in the circumferential direction of the work table 8, so that the work table 8 can be evenly stressed, and the stability of the work table 8 when moving can be further improved.
  • the lifter 9 can be a hydraulic cylinder or a cylinder or the like.
  • the work table 8 has a square shape, and its side length can be set to be 2 meters or more.
  • the bottom of the main body fixing table is provided with a positioning protrusion; the upper end of the construction chamber 1 is provided with a positioning groove that cooperates with the positioning protrusion.
  • the height lifting mechanism 3 raises the construction chamber 1 so that the positioning protrusions are stuck in the positioning grooves, and then fixes the construction chamber 1 and the main body platform 4 by bolts. connection.
  • the positioning protrusion and the positioning groove are arranged to make the connection position of the construction chamber 1 and the main body platform 4 precise, so that the through hole on the main body platform 4 is accurately aligned with the through hole on the construction chamber 1, and then fixed by bolts, which is convenient for the user. Operational connection.
  • the workbench 8 includes a substrate 81 and a build chamber piston plate 82 which are disposed in order from top to bottom; the main body platform 4 is provided with a mounting port; the substrate 81 is disposed at The mounting port, the substrate 81 and the building chamber piston plate 82 are both square; the building chamber piston plate 82 is connected to the lifter 9; the length and width of the substrate 81 are both smaller than the length and width of the building chamber piston plate 82; The length and width of the piston plate 82 are the same as the length and width of the mounting opening.
  • the size of the substrate 81 is smaller than that of the piston plate, and the size of the piston plate is equal to the size of the mounting port.
  • the powder roller 51 lays the metal powder in the powder feeding cylinder 52 on the substrate 81
  • the size of the substrate 81 is smaller than
  • the piston plate is constructed, and the excess metal powder will slide down on the construction piston plate.
  • the beneficial effect of the design is that a safe working belt is formed between the area of the substrate 81 and the mounting surface of the main body platform 4 on the largest working surface, and the metal can be avoided.
  • the molded member after selective melting of the powder is metallurgically connected to the main body platform 4.
  • the mounting port, the substrate 81 and the building chamber piston plate 82 are both square, the side length of the substrate 81 is 2 m, and the side lengths of the construction chamber piston plate 82 and the mounting opening are both 2.01 m.
  • the 3D printing main equipment further includes a powder supply system 5;
  • the supply system 5 includes two powdering rollers 51, a powder feeding device and a driving roller 51 driving mechanism; two powdering rollers 51 are oppositely disposed at the first end and the second end of the working table 8; the driving roller 51 driving mechanism and Two powder roller 51 are connected for driving the two powder roller 51 while reciprocating above the work table 8 to lay the metal powder in the powder feeding device on the work table 8; It is electrically connected to the control system of the 3D printer.
  • the two powder rolling rollers 51 work at the same time, and the metal powder in the powder feeding device is laid on the working table 8, thereby improving the spreading efficiency. Especially when working on large-size working surfaces, the beneficial effects are more obvious.
  • the driving roller 51 driving mechanism can drive the two spreading rollers 51 to move in the same direction at the same time, or can drive the two spreading rollers 51 to move in the opposite directions at the same time.
  • the spreading roller 51 driving mechanism is for driving the two spreading rollers 51 while moving in opposite directions. That is, before the work, the two powder spreading rollers 51 are respectively located at both ends of the work table 8, and during the operation, the driving roller 51 driving mechanism drives the two powder rollers 51 to simultaneously move toward the center of the work table 8. This can greatly improve the efficiency of powder spreading.
  • the driving mechanism of the powder roller 51 may be of various types.
  • the driving mechanism of the powder roller 51 includes two powder spreading motors and two transmission structures. Each of the powder spreading motors is connected to a spreading roller 51 through a transmission structure to drive the spreading roller 51 to reciprocate.
  • the driving roller 51 driving mechanism further comprises a controller, and a pressure sensor is disposed on each of the two powder roller 51, the pressure sensor is electrically connected with the powder spreading motor connected to the powder roller 51, and two powder coating motors, Both pressure sensors are electrically connected to the controller.
  • the two powder spreading motors respectively drive the two powder spreading rollers 51 to move toward the center of the work table 8.
  • the two powder rollers 51 When the two powder rollers 51 are in contact, the two powder rollers 51 simultaneously give each other a force, and the two pressure sensors receive The pressure value is increased, and the received pressure value is transmitted to the controller, and the controller controls the two powder spreading motors to reverse. At this time, the two powder spreading motors respectively drive the two powder spreading rollers 51 to their original positions. Moving, that is, the two spreading rollers 51 return to the original positions, respectively. Then, it is simultaneously moved to the center of the work table 8 to circulate the powder.
  • Such an arrangement enhances the compaction efficiency of the metal powder layer while improving the powder spreading efficiency.
  • the transmission structure may be in various forms, for example, the transmission structure includes a gear and a rack.
  • the gear is disposed on the power output shaft of the powder spreading motor, the rack meshes with the gear, and the powder roller 51 is fixed to the rack.
  • the powder spreading motor rotates to drive the gear to rotate, and the gear wheel drives the rack to reciprocate, thereby driving the powder roller 51 to reciprocate.
  • the work table 8 is square, and the side length of the work can be set to 800 mm to 2000 mm.
  • the powder feeding device comprises two powder feeding assemblies; each of the powder feeding assemblies comprises a powder feeding cylinder 52, a powder feeding piston and a powder feeding piston plate; and two powder feeding cylinders 52 are respectively disposed at the first end of the working table 8 And a second end; the powder feeding piston plate is disposed in the powder feeding cylinder 52, and the powder feeding piston is connected with the powder feeding piston plate for driving the powder feeding piston to move up and down; the powder feeding piston plate is used for placing the metal powder required for the operation .
  • two powder feeding cylinders 52 are respectively disposed at the first end and the second end of the work table 8, and the driving mechanism of the powder discharging roller 51 drives the two powder discharging rollers 51 to move, and the powder discharging roller 51 moves to the working table 8. At this time, the powder roller 51 pushes the metal powder in the powder feeding cylinder 52 onto the work table 8, thereby laying the metal powder on the work table 8.
  • the laser selective melting mechanism selectively melts the metal powder layer on the workbench 8, and then the workbench 8 in the spreading device moves downward by a preset height, and the two powdering rollers 51 return to the original position, and each of the powder feeding cylinders
  • the powder feeding piston in 52 drives the powder feeding piston plate to move upward, so that the metal powder on the powder feeding piston plate moves to a preset height, and the two powder discharging rollers 51 move to the working table 8 again, and the powder feeding cylinder 52 is again
  • the metal powder is pushed onto the work table 8, and the laser selective melting mechanism again selectively melts the metal powder layer on the work table 8. Then, the work table 8 is lowered again, and the powder feeding piston plate is raised again, thereby circulating, and finally, the metal powder of the predetermined thickness laid on the work table 8 is finally formed.
  • the powder feeding device is disposed as two powder feeding assemblies, and the two powder feeding cylinders 52 are respectively disposed at the first end and the second end, that is, one powder discharging roller 51 is correspondingly provided with a powder feeding cylinder 52, This allows the powder feeding roller to quickly lay the metal powder in the powder feeding cylinder 52 on the work table 8, further improving the work efficiency.
  • the structure of the powder feeding cylinder 52 is the same as that of the construction chamber 1.
  • the powder feeding cylinder 52 includes a plurality of powder feeding chambers detachably connected from top to bottom, and the powder feeding chamber at the uppermost portion is detachably connected to the main body platform 4.
  • a moving wheel 22 is rotatably connected to the bottom of the lowermost powder feeding chamber, and a height lifting mechanism 3 is provided.
  • the powder supply system 5 further includes a flat powder device 53;
  • the flat powder device 53 includes a flat powder member 531, a flat powder driving mechanism 532, and two powder collecting cylinders 533; a square; two powder collecting cylinders 533 are respectively disposed at opposite third and fourth ends of the working table 8, for accommodating the excess powder after the flat powder member 531 is smoothed by the working table 8;
  • the flat powder driving mechanism 532 and the flat powder A member 531 is connected for driving the flat powder member 531 to reciprocate between the two collecting cylinders 533 to smooth the metal powder on the work table 8.
  • the powder supply system 5 further includes a flat powder device 53.
  • the flat powder driving mechanism 532 drives the flat powder member 531.
  • the two powder collecting cylinders 533 reciprocately move, the flat powder member 531 smoothes the metal powder on the working table 8, and the excess metal powder moves with the flat powder member 531, and finally falls into the collecting cylinder 533 for collection. That is, when the flat powder member 531 is moved from the third end to the fourth end, the excess metal powder falls into the collecting cylinder 533 at the fourth end.
  • the flat powder member 531 is moved from the fourth end to the third end, the excess metal powder falls into the collecting cylinder 533 at the third end.
  • the flat powder member 531 is disposed to smooth the metal powder on the work table 8, thereby making the metal powder layer on the work table 8 more flat, thereby causing the laser selective melting mechanism to selectively melt the metal powder layer.
  • the resulting components are more refined and standard.
  • a collecting cylinder 533 is respectively disposed at the third end and the fourth end of the working table 8, and the two powder discharging rollers 51 are respectively disposed at the first end and the second end of the working table 8, and the arrangement manner can be compact. Reduce the footprint.
  • the two collecting cylinders 533 are disposed at a position sufficient to receive the excess metal powder when the flat powder member 531 is in operation to prevent the metal powder from falling outside.
  • the flat powder member 531 may be a flat powder board, a flat powder block, or a flat powder brush.
  • the flat powder member 531 is a flat powder brush, and the flat powder brush uniformly acts on the metal powder layer, so that the effect of smoothing the metal powder layer is best.
  • the flat powder driving mechanism 532 includes a flat powder motor, a gear, and a rack that cooperates with the gear; the gear is disposed on the power output shaft of the flat powder motor; the flat powder member 531 is fixed at On the rack; the flat powder motor is used to drive the rack to reciprocate through the gear.
  • the flat powder driving mechanism 532 is set as a flat powder motor, a gear, and a rack.
  • the flat powder driving motor drives the gears to rotate forward and backward, and the gears drive the rack to move forward and backward, thereby driving the flat powder member 531 to reciprocate.
  • the structure is simple and easy to operate.
  • the 3D printing main body equipment further includes a printer working room installed above the main body platform 4; on the 3D printer working room 6, above the mounting opening, a powder injection port is provided; and the powder injection port is provided There is a powder injection switch for opening or closing the powder injection port 7; the construction chamber 1 is installed below the main body platform 4; and the powder supply system 5 is mounted on the main body platform 4.
  • the main body platform 4 is fixed on the ground
  • the powder supply system 5 is mounted on the main body platform 4
  • the construction chamber 1 is installed below the main body platform 4
  • the 3D printer working room 6 is mounted above the main body platform 4.
  • a powder injection port and a powder injection switch are disposed on the outer wall of the 3D printer working chamber 6. The user opens the powder injection port through the powder injection switch, and then injects metal powder into the powder feeding cylinder 52 through the powder injection port, and the metal powder in the powder feeding cylinder 52 is laid on the work table 8.
  • the embodiment of the present invention further provides a 3D printer including a laser selection melting mechanism and a 3D printing main body equipment according to the present invention; the laser selection melting mechanism is installed on the main platform 4 on.
  • the working principle of the 3D printing main equipment is the same as above, and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种移动组装3D打印装备,包括构建室(1)和移动机构(2),移动机构与构建室连接,用于移动构建室;构建室用于与3D打印机的主体平台(4)可拆卸地固定连接。还公开了一种3D打印主体装备及3D打印机。上述移动组装3D打印装备、3D打印主体装备及3D打印机,通过移动机构将构建室移动至预设位置,然后再将构成件从构建室内取出,与现有技术中的从作业室的上方取出成型构件的方法相比,既方便使用者取出,又节省人力和时间,提高了取件效率,可满足成型大尺寸构成件的加工条件。

Description

移动组装3D打印装备、3D打印主体装备及3D打印机 技术领域
本发明涉及激光选区熔化金属3D打印技术领域,尤其是涉及一种移动组装3D打印装备、3D打印主体装备及3D打印机。
背景技术
增材制造3D打印技术是一种以数字模型文件(CAD)为基础,运用粉末状金属、PVC、树脂、纤维等材料,通过熔融沉积、激光烧结、激光选区熔化、激光固化、激光熔覆等方式通过专用软件对CAD三维图形构建成型物体,进行切片降维,然后按片逐层打印构造物体的高端制造技术,是制造业中正在迅速发展的一项新兴技术,在英国《经济学人》杂志《第三次工业革命》一文中被称为第三次工业革命的重要标志之一。
现有技术中的激光选区熔化3D打印机的粉末供应系统和构建室及作业室均为一体化箱式机体设计,没有主体平台的结构设计。构建室内设置有活塞和活塞板,活塞板上活动放置作业基板,当活塞板推动作业基板升起至与作业室底部差一个金属粉末层作业面厚度时,由供粉装置铺平一个作业面厚度的金属粉末层,即形成作业面,然后由安装在3D打印机顶部的激光系统,通过激光振镜反射激光光束到当前作业面上的金属粉末层,并通过控制系统对激光振镜偏转角度的调节,按当前层切片图形的形态选择性熔化当前金属粉末层,从而完成 对构成件当前层的加工作业。当完成当前切片图形金属粉末层作业后,工作台下降一个预设层的高度,粉末供应系统再向工作台铺设一个预设层厚度的金属粉末,然后再由激光系统按当前层切片图形形态进行选择性熔化,按此方法反复加工,层层叠加作业,最终得到完整的成型构件。该工艺技术是目前增材制造领域应用较多的一种金属3D打印技术。该技术可制造复杂形状的金属零件,其成型件力学性能好、精度高,致密度达传统冶金制成件99%以上,在医疗、航空航天、军工、核电建设、产品研发等领域均有重要应用。
但是,现有技术生产制造的金属粉末床激光选区熔化工艺3D打印机装备,都是一体化箱式机体的设计,没有移动组装式的设计,没有外延式主体平台这一设施,极大的限制了3D打印机的尺寸规模和加工生产效能;而其所采用的供粉系统都是单一送粉缸,一个单一铺粉辊或一个独立铺粉刷,在大尺寸面积作业面,作业时其工作效率非常低下。而且现有技术生产制造的金属粉末床激光选区熔化工艺3D打印机装备,都是由作业室处吸出剩余粉末,再升起构建活塞板而后取出作业基板与成型件,当成型构件较大时,从作业室的上方无法取出成型构件无法满足大尺寸构件的作业需求,机械装备设计单一,取出成型件方法单一,也不具备成型长、宽、高≥2m大尺寸构成件的条件,这已经成为30几年来严重制约该工艺技术在世界范围内推广与应用的世界性难题。
发明内容
本发明的目的在于提供一种移动组装3D打印装备、3D打印主体装备及3D打印机,以解决现有技术中存在的无法满足成型构件长、宽、高≥1m或更大尺寸构成件的加工条件的技术问题。
本发明提供的一种移动组装3D打印装备,所述移动组装3D打印装备包括:构建室和移动机构;所述移动机构与所述构建室连接,用于移动所述构建室;所述构建室用于与3D打印机的主体平台可拆卸地固定连接。
进一步地,所述移动机构包括移动轮和移动电机;所述移动轮与所述构建室转动连接,所述移动电机与所述移动轮连接,用于驱动所述移动轮转动。
进一步地,所述构建室包括上下贯通的多个子室;多个所述子室由上至下依次连通,且多个所述子室可拆卸地固定连接;所述移动装置与最下方的所述子室连接;位于最上方的所述子室用于与3D打印机的主体平台可拆卸地固定连接。
进一步地,所述移动组装3D打印装备还包括加热机构;所述加热机构用于加热所述构建室的内部,以抵消在构建成型过程中构成件由于温差而产生的应力反应。
进一步地,所述移动组装3D打印装备还包括高度升降机构;所述高度升降机构与所述构建室连接,用于将所述构建室上升或者下降。
进一步地,本发明还提供一种3D打印主体装备,所述3D打印主体装备包括主体平台以及如本发明所述的移动组装3D打印装备;所述构建室可拆卸地固定在所述主体平台的下方;所述主体平台用于安装3D打印机的激光选区熔化机构。
进一步地,所述移动组装3D打印装备包括作业台和多个升降器;所述作业台设置在所述构建室内;多个所述升降器均与所述作业台连接,用于驱动所述作业台上下移动。
进一步地,所述作业台包括由上至下依次设置的基板和构建室活塞板;所述主体平台上设置有安装口;所述基板设置在所述安装口处; 所述安装口、所述基板与所述构建室活塞板均呈方形;所述构建室活塞板与所述升降器连接;所述基板的长度和宽度均小于所述构建室活塞板的长度和宽度;所述构建室活塞板的长度和宽度均与所述安装口的长度和宽度相同。
进一步地,所述3D打印主体装备还包括粉末供应系统;所述粉末供应系统包括两个铺粉辊、送粉装置以及铺粉辊驱动机构;两个所述铺粉辊相对设置在所述作业台的第一端和第二端;所述铺粉辊驱动机构与两个所述铺粉辊连接,用于驱动两个所述铺粉辊同时在所述作业台的上方往复移动,以将所述送粉装置内的金属粉末铺设在所述作业台上;所述铺粉辊驱动机构用于与3D打印机的控制系统电连接。
进一步地,本发明还提供一种3D打印机,所述3D打印机包括激光选区熔化机构以及如本发明所述的3D打印主体装备;所述激光选区熔化机构安装在所述主体平台上。
本发明提供的移动组装3D打印装备,包括构建室和移动机构。在使用时,构建室与3D打印机的主体平台的主体平台可拆卸地固定连接,当构建室内的构成件成型后,使用者将构建室从主体平台上拆下,然后通过移动机构使得构建室从主体平台处移开至预设位置,最后将构成件从构建室内取出即可。
本发明提供的移动组装3D打印装备,通过移动机构将构建室移动至预设位置,然后再将构成件从构建室内取出,与现有技术中的从作业室的上方取出成型构件的方法相比,既方便使用者取出,又节省人力和时间,不但提高了取件效率,更主要的是该工艺装备设计形态满足成型长、宽、高≥1m或更大尺寸构成件的加工条件,在全球范围内填补了该工艺技术装备没有移动组装式设计的空白,有效解决了世界范围内、30几年来无法利用该工艺装备成型较大尺寸构成件的世界性技术难题。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的3D打印主体装备的结构示意图;
图2为本发明实施例提供的移动机构和高度升降机构的结构示意图;
图3为本发明实施例提供的3D打印主体装备的局部结构示意图;
图4为本发明实施例提供的升降器和作业台的结构示意图。
附图标记:
1-构建室;211-子室;2-移动机构;21-移动电机;22-移动轮;3-高度升降机构;4-主体平台;5-粉末供应系统;51-铺粉辊;52-送粉缸;53-平粉装置;531-平粉件;532-平粉件驱动机构;533-集粉缸;6-3D打印机作业室;7-注粉口;8-作业台;81-基板;82-构建室活塞板;9-升降器。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
图1为本发明实施例提供的3D打印主体装备的结构示意图;如图1所示,本发明实施例提供的一种移动组装3D打印装备,该移动组装3D打印装备包括:构建室1和移动机构2;移动机构2与构建室1连接,用于移动构建室1;构建室1用于与3D打印机的主体平台4可拆卸地固定连接。
本发明实施例提供的移动组装3D打印装备,包括构建室1和移动机构2。在使用时,构建室1与3D打印机的主体平台4的主体平台4可拆卸地固定连接,当构建室1内的构成件成型后,使用者将构建室1从主体平台4上拆下,然后通过移动机构2使得构建室1从主体平台4处移开至预设位置,最后将构成件从构建室1内取出即可。
本发明实施例提供的移动组装3D打印装备,通过移动机构2将构建室1移动至预设位置,然后再将构成件从构建室1内取出,与现有技术中的从作业室的上方取出成型构件相比,既节省人力和时间, 又提高了取件效率,更重要的是该装备设计形态可满足构建成型体积长、宽、高1m或更大尺寸构成件的条件,突破了30几年来严重制约该工艺技术在世界范围内推广与应用的世界性技术难题。
其中,移动机构2的结构形式可以为多种,例如,移动机构2包括电机、齿轮、齿条、滑轨和与滑轨配合的滑块;齿轮设置在电机的动力输出轴上,齿条与构建室1固定连接,且齿条与齿轮啮合。滑块固定设置在构建室1上。电机带动齿轮转动,齿轮带动齿条移动,齿条带动构建室1沿着滑轨移动。
图2为本发明实施例提供的移动机构和高度升降机构的结构示意图;如图1和图2所示,在上述实施例的基础上,进一步地,移动机构2包括移动轮22和移动电机21;移动轮22与构建室1转动连接,移动电机21与移动轮22连接,用于驱动移动轮22转动。
本实施例中,将移动机构2设置为移动轮22和移动电机21,移动电机21带动移动轮22转动,从而将构建室1移动至预设位置。
本实施例中,移动轮22的设置可在移动构建室1的同时减小了构建室1与地面的摩擦力,从而减小了移动构建室1所需的动力,减少了能源消耗,节省了资源。
优选地,移动电机21固定连接在构建室1的外壁上。
移动轮22可以转动连接在构建室1的底部,也可以转动连接在构建室1的中部。
如图1所示,在上述实施例的基础上,进一步地,构建室1包括上下贯通的多个子室11;多个子室11由上至下依次连通,且多个子室11可拆卸地固定连接;移动装置与最下方的子室11连接;位于最上方的子室11用于与3D打印机的主体平台4可拆卸地固定连接。
本实施例中,将构建室1设置为多个可拆卸固定连接的子室11,当构成件成型后,使用者将构建室1从主体平台4上拆下,然后通过 移动轮22移动构建室1至预设位置。由上至下将子室11拆掉,直至取出构成件合适位置,最后将构成件取出即可。
本实施例中,将构建室1设置为多个可拆卸固定连接的子室11,在取出构成件时,可降低构建室1的高度,进一步方便使用者取出构成件。
优选地,构建室1设置为三个子室11,由上至下依次为第一子室11、第二子室11和第三子室11。第一子室11和第二子室11的截面均呈正方形,且边长均为2100mm,第一子室11的高度为1000mm,第二子室11的高度为1500mm。
在上述实施例的基础上,进一步地,移动组装3D打印装备还包括加热机构;加热机构用于加热构建室1的内部,以抵消在构建成型过程中构成件由于温差而产生的应力反应。
本实施例中,通过设置加热机构对构建室1的内部进行加热,避免成型时间较长的位于下方的构成件温度较低,成型时间较短的位于上方的构成件温度较高,构成件的不同位置的温度差较大,会产生应力反应,从而影响构成件的成型效果。
其中,加热机构可以为电阻丝加热,也可以为红外线加热等等。当加热机构为电阻丝加热时,电阻丝可均匀覆盖在构建室1的内壁上,电阻丝通电后对构建室1的内壁加热。
如图1和图2所示,在上述实施例的基础上,进一步地,移动组装3D打印装备还包括高度升降机构3;高度升降机构3与构建室1连接,用于将构建室1上升或者下降。
本实施例中,使用者通过移动机构2将构建室1移动至主体平方下方待安装位置,然后通过高度升降机构3将构建室1上升至预设位置,最后将构建室1与主体平台4安装。当构成件成型后,将构建室1从主体平台4上拆下,然后通过高度升降机构3将构建室1下降至 预设位置,使得构建室1与主体平台4之间具有间隙,再通过移动机构2移动构建室1。
本实施例中,高度升降机构3的设置可方便使用者安装和移动构建室1。高度升降机构3可以为液压缸或者气缸等等。
如图1所示,在上述实施例的基础上,进一步地,本发明实施例还提供一种3D打印主体装备,3D打印主体装备包括主体平台4以及如本发明的移动组装3D打印装备;构建室1可拆卸地固定在主体平台4的下方;主体平台4用于安装3D打印机的激光选区熔化机构。移动组装3D打印装备的工作原理同上。
图4为本发明实施例提供的升降器和作业台的结构示意图,如图1和图4所示,在上述实施例的基础上,进一步地,移动组装3D打印装备包括作业台8和多个升降器9;作业台8设置在构建室1内;多个升降器9均与作业台8连接,用于驱动作业台8上下移动。
本实施例中,多个升降器9同时驱动作业台8在构建室1内上下移动,可使作业台8快速移动,同时还可提高作业台8移动时的稳定性。
优选地,多个升降器9沿作业台8的周向依次均匀间隔地设置,这样可使作业台8受力均匀,进一步提高作业台8移动时的稳定性。优选地,升降器9为四个,四个升降器9分别位于作业台8的四角处。
升降器9可以为液压缸或者气缸等等。
其中,作业台8呈正方形,其边长可设置为大于等于2米。
进一步地,主体平定台的底部设置有定位凸起;构建室1的上端设置有与定位凸起相配合的定位凹槽。当移动机构2将构建室1移动至主体平台4下方后,高度升降机构3将构建室1上升,使得定位凸起卡设在定位凹槽中,然后通过螺栓将构建室1与主体平台4固定连接。定位凸起和定位凹槽的设置可使构建室1与主体平台4的连接位 置精准,使得主体平台4上的通孔与构建室1上的通孔精准对齐,然后通过螺栓固定,方便使用者操作连接。
如图4所示,在上述实施例的基础上,进一步地,作业台8包括由上至下依次设置的基板81和构建室活塞板82;主体平台4上设置有安装口;基板81设置在安装口处;安装口、基板81与构建室活塞板82均呈方形;构建室活塞板82与升降器9连接;基板81的长度和宽度均小于构建室活塞板82的长度和宽度;构建室活塞板82的长度和宽度均与安装口的长度和宽度相同。
本实施例中,基板81的尺寸小于构建活塞板,构建活塞板的尺寸等于安装口的尺寸,当铺粉辊51将送粉缸52内的金属粉末铺设在基板81上后,由于基板81尺寸小于构建活塞板,多余的金属粉末会向下滑落在构建活塞板上,这样设计的有益效果是:在最大作业面既基板81面积与主体平台4安装口之间形成一道安全作业带,可避免金属粉末选择性熔化后的成型构件与主体平台4发生冶金连接。
其中,安装口、基板81与构建室活塞板82均呈正方形,基板81的边长为2m,构建室活塞板82和安装口的边长均为2.01m。
图3为本发明实施例提供的3D打印主体装备的局部结构示意图;如图3和图5所示,在上述实施例的基础上,进一步地,3D打印主体装备还包括粉末供应系统5;粉末供应系统5包括两个铺粉辊51、送粉装置以及铺粉辊51驱动机构;两个铺粉辊51相对设置在作业台8的第一端和第二端;铺粉辊51驱动机构与两个铺粉辊51连接,用于驱动两个铺粉辊51同时在作业台8的上方往复移动,以将送粉装置内的金属粉末铺设在作业台8上;铺粉辊51驱动机构用于与3D打印机的控制系统电连接。
本发明实施例提供的3D打印装备,在铺粉时,两个铺粉辊51同时工作,同时将送粉装置内的金属粉末铺设在作业台8上,提高了铺粉效率。尤其是在大尺寸面积作业面作业时,有益效果更为明显。
其中,铺粉辊51驱动机构可以驱动两个铺粉辊51同时向同方向移动,也可以驱动两个铺粉辊51同时向相反方向移动。优选地,铺粉辊51驱动机构用于驱动两个铺粉辊51同时向相反方向移动。也即,在作业前,两个铺粉辊51分别位于作业台8的两端,作业时,铺粉辊51驱动机构驱动两个铺粉辊51同时向作业台8的中心移动。这样可大大提高铺粉效率。
铺粉辊51驱动机构的结构形式可以为多种,例如,铺粉辊51驱动机构包括两个铺粉电机和两个传动结构。每个铺粉电机均通过一个传动结构与一个铺粉辊51连接,以驱动该铺粉辊51往复移动。优选地,铺粉辊51驱动机构还包括控制器,在两个铺粉辊51上均设置压力传感器,压力传感器与和该铺粉辊51连接的铺粉电机电连接,两个铺粉电机、两个压力传感器均与控制器电连接。两个铺粉电机分别带动两个铺粉辊51向作业台8的中心移动,当两个铺粉辊51接触时,两个铺粉辊51同时给对方一个作用力,两个压力传感器接收到的压力值增大,并将接收到的压力值传输至控制器,控制器控制两个铺粉电机均反转,此时,两个铺粉电机分别带动两个铺粉辊51向其原始位置移动,也即,两个铺粉辊51分别返回原始位置。然后,再同时向作业台8的中心移动,以此循环铺粉。这样的设置在提高铺粉效率的同时,还增强了金属粉末层的密实度。
其中,传动结构的结构形式可以为多种,例如,传动结构包括齿轮和齿条。齿轮设置在铺粉电机的动力输出轴上,齿条与齿轮啮合,铺粉辊51固定在齿条上。铺粉电机转动,带动齿轮转动,齿轮带动齿条往复移动,从而带动铺粉辊51往复移动。
其中,作业台8为正方形,作业的边长可设置为800mm-2000mm。
进一步地,送粉装置包括两个送粉组件;每个送粉组件均包括送粉缸52、送粉活塞以及送粉活塞板;两个送粉缸52分别设置在作业台8的第一端和第二端;送粉活塞板设置在送粉缸52内,送粉活塞与送粉活塞板连接,用于驱动送粉活塞板上下移动;送粉活塞板上用于放置作业所需金属粉末。
本实施例中,两个送粉缸52分别设置在作业台8的第一端和第二端,铺粉辊51驱动机构驱动两个铺粉辊51移动,铺粉辊51向作业台8移动时,铺粉辊51将送粉缸52内的金属粉末推送至作业台8上,从而将金属粉末铺设在作业台8上。激光选区熔化机构对作业台8上的金属粉末层进行选择性熔化,然后,铺粉装置内的作业台8向下移动预设高度,两个铺粉辊51返回原来位置,每个送粉缸52内的送粉活塞带动送粉活塞板向上移动,使得送粉活塞板上的金属粉末移动上升至预设高度,两个铺粉辊51再次向作业台8移动,再次将送粉缸52内的金属粉末推送至作业台8上,激光选区熔化机构再次对作业台8上的金属粉末层进行选择性熔化。然后,作业台8再次下降,送粉活塞板再次上升,以此循环,最终将作业台8上铺设的预设厚度的金属粉末。
本实施例中,将送粉装置设置为两个送粉组件,两个送粉缸52分别设置在第一端和第二端,也即,一个铺粉辊51对应设置一个送粉缸52,这样可使送粉辊快速将送粉缸52内的金属粉末铺设在作业台8上,进一步提高工作效率。
其中,送粉缸52的结构形式与构建室1的结构形式相同。送粉缸52包括由上至下依次可拆卸连接的多个送粉室,位于最上方的送粉室与主体平台4可拆卸连接。位于最下方的送粉室的底部转动连接有移动轮22以及设置有高度升降机构3。
在上述实施例的基础上,进一步地,粉末供应系统5还包括平粉装置53;平粉装置53包括平粉件531、平粉件驱动机构532以及两个集粉缸533;作业台8呈方形;两个集粉缸533分别设置在作业台8相对的第三端和第四端,用于收纳平粉件531抹平作业台8之后的多余粉末;平粉件驱动机构532与平粉件531连接,用于驱动平粉件531在两个集粉缸533之间往复移动,以将作业台8上的金属粉末抹平。
本实施例中,粉末供应系统5还包括平粉装置53,当铺粉辊51将送粉缸52内的金属粉末铺设在作业台8预设高度后,平粉件驱动机构532驱动平粉件531在两个集粉缸533之间往复移动,平粉件531将作业台8上的金属粉末抹平,多余的金属粉末随平粉件531移动,最终落入集粉缸533内收集。也即,当平粉件531从第三端向第四端移动时,多余的金属粉末落入位于第四端处的集粉缸533内。当平粉件531从第四端向第三端移动时,多余的金属粉末落入位于第三端处的集粉缸533内。
本实施例中,平粉件531的设置可将作业台8上的金属粉末抹平,从而使得作业台8上的金属粉末层更加平整,进而使得激光选区熔化机构对金属粉末层选择性熔化后形成的构成件更加精细和标准。在作业台8的第三端和第四端分别设置一个集粉缸533,两个铺粉辊51分别设置在作业台8的第一端和第二端,这样的设置方式可使结构紧凑,减小占用空间。两个集粉缸533的设置位置可充分接收平粉件531工作时多余的金属粉末,避免金属粉末落入外部。
其中,平粉件531可以为平粉板、平粉块,也可以为平粉刷。优选地,平粉件531为平粉刷,平粉刷均匀地作用于金属粉末层上,从而可将金属粉末层抹平的效果最好。
在上述实施例的基础上,进一步地,平粉件驱动机构532包括平粉电机、齿轮以及与齿轮相配合的齿条;齿轮设置在平粉电机的动力输出轴上;平粉件531固定在齿条上;平粉电机用于通过齿轮带动齿条往复移动。
本实施例中,将平粉件驱动机构532设置为平粉电机、齿轮和齿条。平粉驱动电机带动齿轮正反和反转,齿轮带动齿条正向移动和反向移动,从而带动平粉件531往复移动。结构简单,方便操作。
如图1所示,进一步地,3D打印主体装备还包括安装在主体平台4上方的打印机作业室;3D打印机作业室6上,位于安装口的上方,设置有粉末注入口;粉末注入口处设置有用于打开或者关闭注粉口7的注粉开关;构建室1安装在主体平台4的下方;粉末供应系统5安装在主体平台4上。
本实施例中,主体平台4固定在地面上,粉末供应系统5安装在主体平台4上,构建室1安装在主体平台4的下方,3D打印机作业室6安装在主体平台4的上方。3D打印机作业室6的外壁上设置粉末注入口以及注粉开关。使用者通过注粉开关打开粉末注入口,然后通过粉末注入口向送粉缸52内注入金属粉末,铺粉缸再将送粉缸52内的金属粉末铺设在作业台8上。
在上述实施例的基础上,进一步地,本发明实施例还提供一种3D打印机,该3D打印机包括激光选区熔化机构以及如本发明所述的3D打印主体装备;激光选区熔化机构安装在主体平台4上。3D打印主体装备的工作原理同上,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替 换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种移动组装3D打印装备,其特征在于,包括:构建室和移动机构;
    所述移动机构与所述构建室连接,用于移动所述构建室;所述构建室用于与3D打印机的主体平台可拆卸地固定连接。
  2. 根据权利要求1所述的移动组装3D打印装备,其特征在于,所述移动机构包括移动轮和移动电机;
    所述移动轮与所述构建室转动连接,所述移动电机与所述移动轮连接,用于驱动所述移动轮转动。
  3. 根据权利要求1所述的移动组装3D打印装备,其特征在于,所述构建室包括上下贯通的多个子室;
    多个所述子室由上至下依次连通,且多个所述子室可拆卸地固定连接;所述移动装置与最下方的所述子室连接;位于最上方的所述子室用于与3D打印机的主体平台可拆卸地固定连接。
  4. 根据权利要求1所述的移动组装3D打印装备,其特征在于,还包括加热机构;
    所述加热机构用于加热所述构建室的内部,以抵消在构建成型过程中构成件由于温差而产生的应力反应。
  5. 根据权利要求1所述的移动组装3D打印装备,其特征在于,还包括高度升降机构;
    所述高度升降机构与所述构建室连接,用于将所述构建室上升或者下降。
  6. 一种3D打印主体装备,其特征在于,包括主体平台以及如权利要求1-5任一项所述的移动组装3D打印装备;
    所述构建室可拆卸地固定在所述主体平台的下方;所述主体平台用于安装3D打印机的激光选区熔化机构。
  7. 根据权利要求6所述的3D打印主体装备,其特征在于,所述移动组装3D打印装备包括作业台和多个升降器;
    所述作业台设置在所述构建室内;多个所述升降器均与所述作业台连接,用于驱动所述作业台上下移动。
  8. 根据权利要求7所述的3D打印主体装备,其特征在于,所述作业台包括由上至下依次设置的基板和构建室活塞板;所述主体平台上设置有安装口;
    所述基板设置在所述安装口处;所述构建室活塞板与所述升降器连接;所述基板的长度和宽度均小于所述构建室活塞板的长度和宽度;所述构建室活塞板的长度和宽度均与所述安装口的长度和宽度相同。
  9. 根据权利要求8所述的3D打印主体装备,其特征在于,还包括粉末供应系统;
    所述粉末供应系统包括两个铺粉辊、送粉装置以及铺粉辊驱动机构;
    两个所述铺粉辊相对设置在所述作业台的第一端和第二端;所述铺粉辊驱动机构与两个所述铺粉辊连接,用于驱动两个所述铺粉辊同时在所述作业台的上方往复移动,以将所述送粉装置内的金属粉末铺设在所述作业台上;
    所述铺粉辊驱动机构用于与3D打印机的控制系统电连接。
  10. 一种3D打印机,其特征在于,包括激光选区熔化机构以及如权利要求6-9任一项所述的3D打印主体装备;
    所述激光选区熔化机构安装在所述主体平台上。
PCT/CN2018/000095 2017-05-10 2018-03-06 移动组装3d打印装备、3d打印主体装备及3d打印机 WO2018205644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710327056.1 2017-05-10
CN201710327056.1A CN106914619B (zh) 2017-05-10 2017-05-10 移动组装3d打印装备、3d打印主体装备及3d打印机

Publications (1)

Publication Number Publication Date
WO2018205644A1 true WO2018205644A1 (zh) 2018-11-15

Family

ID=59568503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000095 WO2018205644A1 (zh) 2017-05-10 2018-03-06 移动组装3d打印装备、3d打印主体装备及3d打印机

Country Status (2)

Country Link
CN (1) CN106914619B (zh)
WO (1) WO2018205644A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109910296A (zh) * 2019-04-09 2019-06-21 苏州慧通汇创科技有限公司 一种便于操控的dlp激光快速成型3d打印机平台
CN112108650A (zh) * 2020-10-10 2020-12-22 浙江意动科技股份有限公司 一种slm设备用金属粉处理系统
CN114346914A (zh) * 2021-12-15 2022-04-15 潍坊华星机械有限公司 一种吊挂通过式高效抛丸机
CN114378307A (zh) * 2021-11-01 2022-04-22 北京星航机电装备有限公司 一种激光选区熔化3d打印生产线系统及生产方法
CN114505501A (zh) * 2021-12-24 2022-05-17 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种用于激光选区熔化成形过程的实时热处理系统及方法
CN114619055A (zh) * 2022-03-22 2022-06-14 浙江同擎科技有限公司 一种金属粉末3d打印调平更换基板装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914619B (zh) * 2017-05-10 2019-10-08 窦鹤鸿 移动组装3d打印装备、3d打印主体装备及3d打印机
CN112264620A (zh) * 2020-11-07 2021-01-26 齐齐哈尔金车工业有限责任公司 电阻选区加热的简易3d打印系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962557A (zh) * 2014-05-05 2014-08-06 武汉新瑞达激光工程有限责任公司 一种可分离的选区快速成形设备
WO2014183222A1 (en) * 2013-05-17 2014-11-20 Castanon Diego Improved system for three-dimensional printing by selective sintering
JP2016074957A (ja) * 2014-10-08 2016-05-12 株式会社ソディック 積層造形装置
CN105921882A (zh) * 2016-04-29 2016-09-07 西安交通大学 一种可升降推拉式激光选区熔化slm设备成型缸
CN106001416A (zh) * 2016-07-14 2016-10-12 辽宁森远增材制造科技有限公司 一次性完成高精度砂型制作的激光3d打印机
CN106914619A (zh) * 2017-05-10 2017-07-04 窦鹤鸿 移动组装3d打印装备、3d打印主体装备及3d打印机
CN206747590U (zh) * 2017-05-10 2017-12-15 窦鹤鸿 移动组装3d打印装备、3d打印主体装备及3d打印机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139448C (zh) * 2001-04-27 2004-02-25 清华大学 基于液体热化学反应的直接快速精密金属型成形方法
US7520740B2 (en) * 2005-09-30 2009-04-21 3D Systems, Inc. Rapid prototyping and manufacturing system and method
CN201168783Y (zh) * 2008-02-03 2008-12-24 何德生 激光粉末烧结快速成型机
CN102274968A (zh) * 2011-08-22 2011-12-14 华南理工大学 一种选区激光熔化制备非线性树状吸液芯装置
JP6483551B2 (ja) * 2015-07-03 2019-03-13 株式会社アスペクト 粉末床溶融結合装置
DE102015010390B4 (de) * 2015-08-08 2022-02-17 Additive 3D Training Gmbh Anlage zur generativen Fertigung dreidimensionaler Strukturen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183222A1 (en) * 2013-05-17 2014-11-20 Castanon Diego Improved system for three-dimensional printing by selective sintering
CN103962557A (zh) * 2014-05-05 2014-08-06 武汉新瑞达激光工程有限责任公司 一种可分离的选区快速成形设备
JP2016074957A (ja) * 2014-10-08 2016-05-12 株式会社ソディック 積層造形装置
CN105921882A (zh) * 2016-04-29 2016-09-07 西安交通大学 一种可升降推拉式激光选区熔化slm设备成型缸
CN106001416A (zh) * 2016-07-14 2016-10-12 辽宁森远增材制造科技有限公司 一次性完成高精度砂型制作的激光3d打印机
CN106914619A (zh) * 2017-05-10 2017-07-04 窦鹤鸿 移动组装3d打印装备、3d打印主体装备及3d打印机
CN206747590U (zh) * 2017-05-10 2017-12-15 窦鹤鸿 移动组装3d打印装备、3d打印主体装备及3d打印机

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109910296A (zh) * 2019-04-09 2019-06-21 苏州慧通汇创科技有限公司 一种便于操控的dlp激光快速成型3d打印机平台
CN109910296B (zh) * 2019-04-09 2024-05-03 苏州慧通汇创科技有限公司 一种便于操控的dlp激光快速成型3d打印机平台
CN112108650A (zh) * 2020-10-10 2020-12-22 浙江意动科技股份有限公司 一种slm设备用金属粉处理系统
CN114378307A (zh) * 2021-11-01 2022-04-22 北京星航机电装备有限公司 一种激光选区熔化3d打印生产线系统及生产方法
CN114378307B (zh) * 2021-11-01 2024-04-05 北京星航机电装备有限公司 一种激光选区熔化3d打印生产线系统及生产方法
CN114346914A (zh) * 2021-12-15 2022-04-15 潍坊华星机械有限公司 一种吊挂通过式高效抛丸机
CN114346914B (zh) * 2021-12-15 2023-11-14 潍坊华星机械有限公司 一种吊挂通过式高效抛丸机
CN114505501A (zh) * 2021-12-24 2022-05-17 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种用于激光选区熔化成形过程的实时热处理系统及方法
CN114619055A (zh) * 2022-03-22 2022-06-14 浙江同擎科技有限公司 一种金属粉末3d打印调平更换基板装置

Also Published As

Publication number Publication date
CN106914619B (zh) 2019-10-08
CN106914619A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2018205644A1 (zh) 移动组装3d打印装备、3d打印主体装备及3d打印机
CN201735793U (zh) 一种激光烧结成型机
CN103464340B (zh) 自动上下料多层烘烤固化点胶机
CN105710205A (zh) 板料整体自阻加热渐进成形装置
CN104772461B (zh) 一种激光粉末快速成形机精量铺粉装置
CN105728721A (zh) 一种金属粉末快速成型均匀铺粉装置
CN113709994B (zh) 一种在电路板阻焊表面上成型导电层的生产设备及方法
CN105252776A (zh) 一种桌面级3d打印机
CN206241264U (zh) 一种3d快速成型设备
CN209320306U (zh) 一种用于增材制造粉床粉层厚度的测量装置
CN205439279U (zh) 易于剥离增材制造打印台上成型件的装置
CN106272881A (zh) 一种矿物粉料增材制造工艺及制造装置
CN112756634A (zh) 增材制造设备的下供粉装置及其供粉方法、增材制造设备
CN111097909A (zh) 一种可变缸径升降装置
CN107855525A (zh) 一种激光粉末快速烧结铺粉装置
CN206677187U (zh) 3d打印装备及3d打印机
CN104828589B (zh) 一种双滚轮送料机构
CN107008903B (zh) 长方体形3d打印装备及3d打印机
CN206747590U (zh) 移动组装3d打印装备、3d打印主体装备及3d打印机
CN206936376U (zh) 一种可变台面范围的工作缸体
CN203110104U (zh) 一种免烧砖成型模具
CN113305991B (zh) 一种水泥预制构件制作自动化成型机械
CN205889677U (zh) 一种互感器浇注流水线
CN112497416B (zh) 一种纤维板热压成型设备及其工作方法
CN204123517U (zh) 一种墙板自动捅浆机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798800

Country of ref document: EP

Kind code of ref document: A1