WO2018205601A1 - 光刻胶组合物及其制备方法、oled阵列基板及其制备方法 - Google Patents

光刻胶组合物及其制备方法、oled阵列基板及其制备方法 Download PDF

Info

Publication number
WO2018205601A1
WO2018205601A1 PCT/CN2017/115958 CN2017115958W WO2018205601A1 WO 2018205601 A1 WO2018205601 A1 WO 2018205601A1 CN 2017115958 W CN2017115958 W CN 2017115958W WO 2018205601 A1 WO2018205601 A1 WO 2018205601A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
mass percentage
photoresist composition
thermochromic pigment
solvent
Prior art date
Application number
PCT/CN2017/115958
Other languages
English (en)
French (fr)
Inventor
李伟
张星
谢蒂旎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/072,728 priority Critical patent/US11392030B2/en
Publication of WO2018205601A1 publication Critical patent/WO2018205601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning

Definitions

  • At least one embodiment of the present disclosure relates to a photoresist composition, a method of fabricating the same, an organic light emitting diode (OLED) array substrate, and a method of fabricating the same.
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • the material of the pixel defining layer in the organic electroluminescent diode is generally a photoresist.
  • Photoresists can be divided into two major categories: positive photoresists and negative photoresists. With the rapid development of the large-scale integrated circuit industry, the diversity of integrated circuit products and varieties, the requirements for the performance of photoresists are getting higher and higher, for example, improving the resolution of photoresists, thereby improving the alignment accuracy, etc. .
  • At least one embodiment of the present disclosure provides a photoresist composition
  • a photoresist composition comprising: an alkali-soluble resin, a photosensitive monomer, a thermochromic pigment, and a solvent, the alkali-soluble resin having a mass percentage of 10 wt. % to 30% by weight, the photosensitive monomer has a mass percentage of 1% by weight to 12% by weight, the thermochromic pigment has a mass percentage of 5% by weight to 20% by weight, and the solvent has a mass percentage of 40% by weight. % to 65 wt%; the thermochromic pigment will be darkened under heating conditions.
  • the photoresist composition provided by at least one embodiment of the present disclosure further includes: a silicone/fluoro photosensitive resin having a mass percentage of 5 wt% to 10 wt%, the alkali soluble resin The mass percentage is 10% by weight to 25% by weight, and the mass of the photosensitive monomer is 100%.
  • the content of the component is from 1% by weight to 10% by weight
  • the mass percentage of the thermochromic pigment is from 5% by weight to 20% by weight
  • the mass percentage of the solvent is from 40% by weight to 63% by weight.
  • the silicone/fluoro photosensitive resin comprises a silicone/fluoro photosensitive resin of a silsesquioxane cage structure and an organic organic compound of a linear silicone fluororesin. At least one of a silicon/fluoro photosensitive resin.
  • thermochromic pigment comprises: (NH 4 ) 3 PO 4 ⁇ 12MoO 3 , [Cr(NH 3 ) 6 ] 4 (P 2 O 7 ) 3 , Co(NH 3 ) 5 Cl 3 and at least one of triarylmethane-based crystal violet lactone and a derivative thereof.
  • thermochromic pigment is darkened when heated at 190 ° C to 230 ° C.
  • the alkali-soluble resin includes at least one of an alkali-soluble resin of acrylic acid and a polyimide-based alkali-soluble resin.
  • the photosensitive monomer includes a diazonaphthoquinone-based photosensitive monomer.
  • the solvent includes a fatty alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl Ether, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexane, two At least one of toluene and isopropanol.
  • a fatty alcohol ethylene glycol monomethyl ether
  • ethylene glycol monoethyl ether ethylene glycol monopropyl ether
  • ethylene glycol monobutyl Ether methyl ethyl ketone
  • methyl isobutyl ketone methyl isobutyl ketone
  • ⁇ -butyrolactone butyl carbitol, butyl
  • the photoresist composition provided by at least one embodiment of the present disclosure further includes a photoinitiator including a diimidazole compound, a benzoin compound, a polynuclear lanthanide compound, a benzophenone compound, and benzene.
  • a photoinitiator including a diimidazole compound, a benzoin compound, a polynuclear lanthanide compound, a benzophenone compound, and benzene.
  • the photoresist composition provided by at least one embodiment of the present disclosure further includes a dispersing agent, and the dispersing agent includes a lignosulfonate.
  • the photoresist composition provided by at least one embodiment of the present disclosure further includes one or more of a coupling agent, an antioxidant, an ultraviolet absorber, and an antifoaming agent.
  • At least one embodiment of the present disclosure also provides an organic light emitting diode (OLED) array substrate including a pixel defining layer prepared from any of the above photoresist compositions.
  • OLED organic light emitting diode
  • At least one embodiment of the present disclosure also provides a method for preparing a photoresist composition, the preparation method
  • the method comprises: sequentially adding an alkali-soluble resin, a photosensitive monomer, and a thermochromic pigment in a solvent to form the photoresist composition, the alkali-soluble resin having a mass percentage of 10% by weight to 30% by weight, the photosensitive
  • the mass percentage of the monomer is from 1% by weight to 12% by weight
  • the mass percentage of the thermochromic pigment is from 5% by weight to 20% by weight
  • the mass percentage of the solvent is from 40% by weight to 65% by weight
  • the heat The color-changing pigment will darken under heating conditions.
  • the method before adding the thermochromic pigment, further comprises: adding a silicone/fluorine photosensitive resin to the solvent, the silicone/ The fluorine photosensitive resin has a mass percentage of 5 wt% to 10 wt%, the alkali soluble resin has a mass percentage of 10 wt% to 25 wt%, and the photosensitive monomer has a mass percentage of 1 wt% to 10 wt%.
  • the mass percentage of the thermochromic pigment is from 5% by weight to 20% by weight, and the mass percentage of the solvent is from 40% by weight to 63% by weight.
  • At least one embodiment of the present disclosure further provides a method for fabricating an organic light emitting diode (OLED) array substrate, the method comprising: providing a substrate; forming a photoresist combination of any of the above described on the substrate a thin film of the photoresist composition; a patterning process is performed on the thin film of the photoresist composition to form a pattern of the pixel defining layer; and the pattern of the transparent pixel defining layer is heat treated to form a pattern of the color deepened pixel defining layer.
  • OLED organic light emitting diode
  • FIG. 1 is a schematic cross-sectional view of an organic light emitting diode (OLED) array substrate according to an embodiment of the present disclosure
  • FIG. 2 is a flow chart of a method for preparing a photoresist composition according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a method for preparing another photoresist composition according to an embodiment of the present disclosure
  • OLED organic light emitting diode
  • Figure 5 is a graph showing the relationship between the amount of thermochromic pigment added and the transmittance of white light provided by an embodiment of the present disclosure.
  • the pixel defining layer in the organic electroluminescent display device can prevent the white light emitted by the light emitting layer and the light reflected by the metal from being irradiated to the active layer of the driving transistor to prevent the driving transistor from being caused by a dark color such as black. Adverse effects can also prevent undesirable phenomena such as light leakage and color mixing.
  • the material of the pixel defining layer having the light shielding property is mostly a negative photoresist, and the resolution of the negative photoresist is lower than that of the positive photoresist, and the alignment precision is insufficient when forming the pattern of the pixel defining layer. In addition, if the shading ability of the pixel defining layer is too strong, there is a problem that the alignment cannot be performed.
  • Embodiments of the present application provide a photoresist composition for preparing a Pixel Definition Layer of an organic electroluminescent display device (OLED).
  • OLED organic electroluminescent display device
  • the pixel defining layer film can transmit light to facilitate the alignment alignment, and form the pixel defining layer.
  • the thermochromic pigment in the pixel defining layer may undergo an irreversible color change, and the color of the pixel defining layer may be deepened to achieve a shading effect.
  • the photoresist is a positive photoresist, whereby its resolution is higher relative to a negative photoresist, which can improve the accuracy of alignment.
  • At least one embodiment of the present disclosure further provides a photoresist composition
  • a photoresist composition comprising: an alkali-soluble resin, a photosensitive monomer, a thermochromic pigment, and a solvent, the alkali-soluble resin having a mass percentage of 10 wt. % to 30 wt%, the mass percentage of the photosensitive monomer is 1 wt% to 12 wt%, the mass percentage of the thermochromic pigment is 5 wt% to 20 wt%, and the mass percentage of the solvent is 40 wt% to 65 wt%. %; the thermochromic pigment will be darkened under heating conditions, so that the photoresist composition can be applied in the pixel defining layer of the organic electroluminescent display device (OLED), and can simultaneously satisfy the alignment accuracy Requirements and shading ability requirements.
  • OLED organic electroluminescent display device
  • At least one embodiment of the present disclosure provides a photoresist composition
  • the color of the thermochromic pigment contained in the photoresist composition can be changed at a certain temperature, the color can be deepened, and light can be realized. Occlusion.
  • the photoresist composition provided by at least one embodiment of the present disclosure includes: an alkali-soluble resin, a photosensitive monomer, a thermochromic pigment, and a solvent, the alkali-soluble resin having a mass percentage of 10% by weight to 30% by weight, the photosensitive monomer The mass percentage is from 1% by weight to 12% by weight, the mass percentage of the thermochromic pigment is from 5% by weight to 20% by weight, and the mass percentage of the solvent is from 40% by weight to 65% by weight; the thermochromic pigment is heated The color will be deeper under the conditions.
  • the alkali-soluble resin has a mass percentage of 20% by weight to 28% by weight
  • the photosensitive monomer has a mass percentage of 6wt% to 10% by weight
  • the thermochromic pigment has a mass percentage of 7wt% to 18% by weight.
  • the solvent has a mass percentage of from 55 wt% to 60 wt%.
  • the alkali-soluble resin has a mass percentage of 22% by weight
  • the photosensitive monomer has a mass percentage of 8% by weight
  • the thermochromic pigment has a mass percentage of 12% by weight
  • the solvent has a mass percentage of 58 wt%.
  • thermochromic pigment comprises: (NH 4 ) 3 PO 4 ⁇ 12MoO 3 , [Cr(NH 3 ) 6 ] 4 (P 2 O 7 ) 3 , Co(NH 3 ) 5 Cl 3 or contains triarylmethanes. Crystal violet lactone and its derivatives.
  • the thermochromic pigment will be darkened when heated at 190 ° C to 230 ° C.
  • the pre-bake temperature at the time of forming the film layer is generally from 90 ° C to 120 ° C, and a material which undergoes thermochromism at a temperature lower than 90 ° C is not suitable for use in the present disclosure.
  • thermochromic pigments For example, the discoloration mechanisms of the above various thermochromic pigments are:
  • thermochromic pigment Co(NH 3 ) 5 Cl 3 is a purplish red color at normal temperature, and the composition formed by mixing with an alkali-soluble resin, a photosensitive monomer and a solvent is brownish red, and the above composition is coated. Bright red when covered on a transparent glass substrate.
  • the thermochromic pigment Co(NH 3 ) 5 Cl 3 loses ammonia to form blue-black CoCl 2 , so that the film structure formed by the composition eventually turns blue-black to large Part of the light is blocked.
  • the equation for the reaction when heating is:
  • thermochromic pigment will be darkened when heated at 190 ° C or higher. If the heating temperature is too low, the thermochromic pigment cannot be decomposed, so that it cannot be discolored, and the solvent residue is liable to occur, and the curing cannot be completed completely. The residual water and oxygen may affect the subsequently formed luminescent layer. If the temperature of the reaction is too high, for example, above 230 ° C, it will adversely affect other components and increase production costs.
  • Thermochromic pigment (NH 4 ) 3 PO 4 ⁇ 12MoO 3 is yellow at normal temperature, and the composition formed by mixing with an alkali-soluble resin, a photosensitive monomer, and a solvent is pale yellow, and the above combination is The material exhibited a pale yellow color when coated on a transparent glass substrate.
  • the thermochromic pigment (NH 4 ) 3 PO 4 ⁇ 12MoO 3 forms ammonia gas, phosphoric acid, and black MoO 3 , so that the film structure formed by the composition eventually becomes blue-black, Block most of the light.
  • the equation for the reaction when heating is:
  • thermochromic pigment will be darkened when heated at 190 ° C or higher. If the heating temperature is too low, the thermochromic pigment cannot be decomposed, so that it cannot be discolored, and the solvent residue is liable to occur, and the curing cannot be completed completely. The residual water and oxygen may affect the subsequently formed luminescent layer. If the temperature of the reaction is too high, for example, above 230 ° C, it will adversely affect other components and increase production costs.
  • thermochromic pigment [Cr(NH 3 ) 6 ] 4 (P 2 O 7 ) 3 is yellow at normal temperature, and the color of the composition formed by mixing with an alkali-soluble resin, a photosensitive monomer, and a solvent is Light yellow, the composition was pale yellow when applied to a transparent glass substrate.
  • the crystal lattice of the thermochromic pigment changes, and the color deepens, and the resulting film structure eventually turns purple-black to block most of the light.
  • thermochromic pigment will be darkened when heated at 190 ° C or higher.
  • thermochromic pigment (4) The molecular formula of the thermochromic pigment is as follows:
  • composition formed by mixing with an alkali-soluble resin, a photosensitive monomer, and a solvent has a light red color, and when the above composition is coated on a transparent glass substrate, it exhibits a bright red color.
  • the color of the product produced after the completion of the reaction is different, for example, when the substituents R and X are both H, it behaves as purple-black; when the substituent R is CH 3 , the substituent When X is N(CH 3 ) 2 , it behaves as blue-violet black; when the substituent R is CH 3 and the substituent X is OCH 3 , it behaves as blue-black.
  • the thermochromic pigment reacts with an acidic substance such as bisphenol A, and a trace amount of acid may be added to the photoresist combination species; the heating temperature ranges from 190 ° C to 230 °C, if the temperature of the reaction is too low, the reaction cannot be carried out, and the phenomenon of residual solvent is liable to occur, and the curing cannot be completed completely, thereby affecting the subsequently formed luminescent layer. If the temperature of the reaction is too high, the solvent may volatilize, adversely affect other components, and increase production costs.
  • an acidic substance such as bisphenol A
  • the mechanism of the above reaction is that the carbon atoms connecting the three benzene rings are changed from the sp3 hybrid state to the sp2 hybrid state, and the originally separated ⁇ system is transformed into a complete large ⁇ system, and the absorption spectrum is red-shifted, thereby allowing the compound to Colorless turns dark.
  • thermochromic pigment becomes purple black or blue black. Very good shading effect.
  • the alkali-soluble resin includes at least one of an alkali-soluble resin of acrylic acid and a polyimide-based alkali-soluble resin.
  • the alkali-soluble resin contains a hydroxyl group, and reacts with a photosensitive monomer to become an alkali-insoluble resin to form a film-forming resin. When irradiated with ultraviolet light, the photosensitive group reacts to form an acid radical, which is further dissolved in the alkali solution.
  • the alkali-soluble resin has relatively high developing performance and reactivity, and the pattern formed by the prepared photoresist has a high resolution.
  • the photosensitive monomer includes a diazonaphthoquinone-based photosensitive monomer.
  • the diazonaphthoquinone-based photosensitive monomer has a photosensitive effect and is easily dissolved in an alkaline developing solution.
  • a positive photoresist is used, and the positive photoresist has higher resolution than the negative photoresist, and can be formed when forming a film structure. Improve alignment accuracy.
  • the photosensitive monomer may include the following:
  • the solvent includes a fatty alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, Methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexane, xylene and At least one of isopropyl alcohol.
  • the photoresist composition provided by at least one embodiment of the present disclosure may further include a silicone/fluoro photosensitive resin or the like.
  • the mass percentage of the silicone/fluoro photosensitive resin may be 5 wt% to 10 wt%, and the mass percentage of the alkali soluble resin may be 10 wt% to 25 wt%, the mass percentage of the photosensitive monomer may be 1 wt% to 10 wt%, the mass percentage of the thermochromic pigment may be 5 wt% to 20 wt%, and the mass percentage of the solvent may be 40 wt%. 63wt%.
  • the mass percentage of the silicone/fluoro photosensitive resin may be 6 wt% to 8 wt%, and the mass percentage of the alkali soluble resin may be 8wt% to 24wt%, the mass percentage of the photosensitive monomer may be 3wt% to 8wt%, the mass percentage of the thermochromic pigment may be 6wt% to 18wt%, and the mass percentage of the solvent may be 45wt% ⁇ 60wt%.
  • the silicone/fluoro photosensitive resin may have a mass percentage of 7 wt%, and the alkali-soluble resin may have a mass percentage of 15 wt%.
  • the mass percentage of the photosensitive monomer may be 5% by weight, the mass percentage of the thermochromic pigment may be 15% by weight, and the mass percentage of the solvent may be 58% by weight.
  • the silicone/fluoro photosensitive resin comprises a silicone/fluoro photosensitive resin of a silsesquioxane cage structure and a silicone of a linear silicone fluororesin structure/ At least one of fluorine photosensitive resins.
  • silicone/fluoro photosensitive resins include the following:
  • A is a silicone/fluoro photosensitive resin having a silsesquioxane cage structure
  • B is a silicone/fluoro photosensitive resin having a linear silicone fluororesin structure.
  • the photoresist composition provided by at least one embodiment of the present disclosure may further include a photoinitiator including a diimidazole compound, a benzoin compound, a polynuclear lanthanide compound, a benzophenone compound, and a phenylethyl group.
  • a photoinitiator including a diimidazole compound, a benzoin compound, a polynuclear lanthanide compound, a benzophenone compound, and a phenylethyl group.
  • a photoinitiator including a diimidazole compound, a benzoin compound, a polynuclear lanthanide compound, a benzophenone compound, and a phenylethyl group.
  • the photoresist composition provided in at least one embodiment of the present disclosure may further include a dispersing agent including a lignosulfonate or the like.
  • the photoresist composition provided by at least one embodiment of the present disclosure may further include one or more of a coupling agent, an antioxidant, an ultraviolet absorber, and an antifoaming agent.
  • the thermochromic pigment may be darkened when heated at 190 ° C to 230 ° C, for example, the photoresist composition is used as a photoresist composition.
  • the heating temperature is greater than the pre-baking temperature at the time of fabrication of the pixel defining layer and less than the post-baking temperature, that is, before the post-baking process, the color of the thermochromic pigment is Light color, after the post-baking process is completed, the color of the thermochromic pigment is dark, so that the pixel-defining film can be permeable to light when aligned, and can be shielded after the alignment is completed to achieve the film.
  • the active layer of the transistor is shielded from light.
  • At least one embodiment of the present disclosure also provides an organic light emitting diode (OLED) array substrate, the OLED array substrate including a pixel defining layer prepared from any of the above photoresist compositions.
  • OLED organic light emitting diode
  • FIG. 1 is a schematic cross-sectional view of an organic light emitting diode (OLED) array substrate according to an embodiment of the present disclosure.
  • the OLED array substrate includes: a substrate substrate 101 and a driving transistor 102 disposed on the substrate substrate 101 , a first electrode 103 , a second electrode 104 , a pixel defining layer 110 , and an organic material functional layer 105 .
  • the organic material functional layer 105 is located between the first electrode 103 and the second electrode 104;
  • the driving transistor 102 includes a gate 1021, a source 1022, a drain 1023, and an active layer 1024, and the first electrode 103 and the source 1022 or the drain
  • the pole 1023 is electrically connected.
  • the pixel defining layer 110 is disposed directly above the active layer 1024, and the finally formed pixel defining layer is dark, and the dark pixel defining layer may shield the active layer 1024 of the driving transistor.
  • the first electrode 103, the organic material functional layer 105 and the second electrode 104 form a sandwich stack structure, and an organic light emitting diode (OLED) is obtained, which may be an organic light emitting diode such as a top emission type, a bottom emission type or a double-sided emission type as needed ( OLED).
  • OLED organic light emitting diode
  • the organic material functional layer 105 may further include a plurality of sub-layers including, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like. Embodiments of the present disclosure are not limited to these specific configurations.
  • At least one embodiment of the present disclosure further provides a method for preparing a photoresist composition, comprising: sequentially adding an alkali-soluble resin, a photosensitive monomer, and a thermochromic pigment to a solvent to obtain the photoresist composition, wherein
  • the mass percentage of the alkali-soluble resin is 10% by weight to 30% by weight
  • the mass percentage of the photosensitive monomer is 1% by weight to 12% by weight
  • the mass percentage of the thermochromic pigment is 5% by weight to 20% by weight
  • the mass of the solvent is 100%.
  • the content of the component is 40% by weight to 65% by weight; the color of the thermochromic pigment is deepened under heating conditions.
  • FIG. 2 is a flowchart of a method for preparing a photoresist composition according to an embodiment of the present disclosure, and a method for preparing the photoresist composition includes:
  • the solvent includes a fatty alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, Butyl carbitol, At least one of butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexane, xylene, and isopropanol.
  • Step S12 An alkali-soluble resin is added to the solvent-containing container, and completely dissolved to be transparent.
  • the alkali-soluble resin includes at least one of an alkali-soluble resin of acrylic acid and a polyimide-based alkali-soluble resin.
  • Step S13 A photosensitive monomer is added to a solvent in which an alkali-soluble resin is dissolved, and the reaction is stirred for half an hour.
  • the photosensitive monomer is a diazonaphthoquinone-based photosensitive monomer, for example, 2-diazo-1-naphthoquinone-5-sulfonyl chloride, 2-diazo-1-naphthoquinone-4-sulfonyl chloride, or 2-diazo-1-naphthoquinone-9-acid chloride.
  • Step S14 adding a thermochromic pigment to the above solvent to which the photosensitive monomer is added.
  • thermochromic pigments include: (NH 4 ) 3 PO 4 ⁇ 12MoO 3 , [Cr(NH 3 ) 6 ] 4 (P 2 O 7 ) 3 , Co(NH 3 ) 5 Cl 3 , and triarylmethane-containing crystals. At least one of the lactone and its derivatives.
  • the method of preparing a photoresist composition may further include adding a silicone/fluoro photosensitive resin to a solvent before adding the thermochromic pigment.
  • the silicone/fluoro photosensitive resin has a mass percentage of 5 wt% to 10 wt%
  • the alkali soluble resin has a mass percentage of 10 wt% to 25 wt%
  • the photosensitive monomer has a mass percentage of 1 wt% to 10 wt%.
  • the mass percentage of the thermochromic pigment is from 5 wt% to 20 wt%
  • the mass percentage of the solvent is from 40 wt% to 63 wt%.
  • FIG. 3 is a flowchart of a method for preparing another photoresist composition according to at least one embodiment of the present disclosure, the method for preparing the photoresist composition includes:
  • Step S21 The solvent-filled container was placed in a constant temperature water bath at 40 ° C, and the solvent was heated to 40 ° C and kept at a constant temperature for 5 minutes.
  • the solvent includes a fatty alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, At least one of butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexane, xylene, and isopropanol.
  • Step S22 A silicone/fluoro photosensitive resin is added to the solvent-containing container, and completely dissolved to be transparent.
  • silicone/fluoro photosensitive resins include the following:
  • A is a silicone/fluoro photosensitive resin having a silsesquioxane cage structure
  • B is a silicone/fluoro photosensitive resin having a linear silicone fluororesin structure.
  • Step S23 An alkali-soluble resin is added to the solvent to which the silicone/fluoro photosensitive resin is added, and completely dissolved to be transparent.
  • the alkali-soluble resin includes at least one of an alkali-soluble resin of acrylic acid and a polyimide-based alkali-soluble resin.
  • Step S24 A photosensitive monomer is added to a solvent in which an alkali-soluble resin is dissolved, and the reaction is stirred for half an hour.
  • the photosensitive monomer is a diazonaphthoquinone-based photosensitive monomer, for example, 2-diazo-1-naphthoquinone-5-sulfonyl chloride, 2-diazo-1-naphthoquinone-4-sulfonyl chloride, or 2-diazo-1-naphthoquinone-9-acid chloride.
  • Step S25 adding a thermochromic pigment to the above solvent to which the photosensitive monomer is added.
  • thermochromic pigments include: (NH 4 ) 3 PO 4 ⁇ 12MoO 3 , [Cr(NH 3 ) 6 ] 4 (P 2 O 7 ) 3 , Co(NH 3 ) 5 Cl 3 , and triarylmethane-containing crystals. At least one of the lactone and its derivatives.
  • a photoinitiator, a dispersing agent, a coupling agent, an antioxidant, an ultraviolet absorber, and/or an antifoaming agent may be added to the solvent to which the thermochromic pigment is added.
  • the photoinitiator includes a diimidazole compound, a benzoin compound, a polynuclear oxime compound, a benzophenone compound, an acetophenone compound, a triazine compound, a diazo compound, an anthrone compound, and an anthracene.
  • a ketone compound, an oxime ester compound, an iodonium salt, and a sulfonium salt At least one of a ketone compound, an oxime ester compound, an iodonium salt, and a sulfonium salt.
  • the dispersing agent includes a lignosulfonate.
  • a silicone/fluoro photosensitive resin can reduce the surface energy of the film structure formed with the photoresist composition.
  • a component having a lower surface free energy such as silicon, fluorine, or the like of the silicone/fluorine photosensitive resin is enriched on the surface thereof to minimize surface free energy.
  • At least one embodiment of the present disclosure further provides a method for fabricating an organic light emitting diode (OLED) array substrate, the method comprising: providing a substrate; forming a thin film of any of the above photoresist compositions on the substrate; A patterning process is performed on the thin film of the photoresist composition to form a pattern of the pixel defining layer; the pattern of the transparent pixel defining layer is heat treated to form a pattern of the color deepened pixel defining layer.
  • OLED organic light emitting diode
  • FIG. 4 is a flowchart of a method for fabricating an organic light emitting diode (OLED) array substrate according to an example of an embodiment of the present disclosure.
  • the preparation method comprises the following steps:
  • Step S31 providing a base substrate.
  • the base substrate is cleaned by a standard method, and the base substrate may be a glass substrate, a quartz substrate, a plastic substrate, or the like.
  • Step S32 forming a first electrode on the base substrate.
  • the process of forming the first electrode includes depositing a conductive film by magnetron sputtering, and the material of the conductive film includes indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGO indium gallium oxide
  • gallium zinc oxide gallium zinc oxide
  • GZO a transparent conductive oxide such as zinc oxide (ZnO), indium oxide (In 2 O 3 ), or aluminum zinc oxide (AZO), and may further include a metal conductive material including copper (Cu), chromium ( a single metal such as Cr), molybdenum (Mo), gold (Au), silver (Ag), or platinum (Pt) or an alloy of copper-chromium alloy (CuCr) or chromium-molybdenum alloy (CrMo) formed by the above metal, and then deposited
  • the conductive film is coated with a common photoresist, and after the exposure, development and the like, a pattern of the first electrode is formed, and the thickness of the first electrode is 100 nm to 200 nm.
  • Step S33 forming a thin film of any of the above photoresist compositions on the base substrate on which the first electrode is formed.
  • a film of the photoresist composition is formed by spin coating or printing, and the film formed by the photoresist composition is transparent (for example, having a light transmittance of more than 50%), facilitating formation of a pattern of a pixel defining layer.
  • the alignment is performed during the process.
  • Step S34 A patterning process is performed on the film of the photoresist composition to form a pattern of transparent pixel defining layers.
  • the pre-baking temperature is 90° C. to 120° C., and the pre-baking process is performed for 1.5 minutes (min) to 3 minutes (min).
  • Patterning the film of the photoresist composition subjected to the pre-baking process includes aligning with a mask, and then exposing, developing, etc. the film of the photoresist composition to form a transparent film (for example, light transmittance) More than 50%) the pattern of pixels defining the layer.
  • Step S35 heat-treating the pattern of the transparent pixel defining layer to form a pattern of the pixel defining layer that is opaque (for example, the light transmittance is less than 50%).
  • the temperature range of the pattern of the transparent pixel defining layer is 190 ° C to 230 ° C, and the heating time is 30 minutes (min) to 60 minutes (min), for example, the pattern of the transparent pixel defining layer is performed.
  • the temperature of the heat treatment is 190 ° C, and the heating time is 45 minutes (min), so that the color of the pixel-defining layer after the heat treatment is deepened, for example, it becomes blue-black, blue-violet or black to form opacity (for example, the light transmittance is less than 50%) of the pixel defining layer, the opaque pixel defining layer can occlude the active layer of the thin film transistor.
  • the pixel defining layer has a thickness of from 1.0 ⁇ m to 1.5 ⁇ m, for example, 1.0 ⁇ m, 1.2 ⁇ m, 1.4 ⁇ m or 1.5 ⁇ m.
  • Step S36 forming an organic material functional layer and a second electrode on the pattern of the opaque pixel defining layer.
  • the functional layer of the organic material includes: an organic light-emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, etc.
  • the organic light-emitting layer has a thickness of 200 nm to 300 nm, for example, 200 nm, 220 nm, 250 nm or 300 nm.
  • the organic light-emitting layer can be formed by an evaporation process or an inkjet printing process.
  • the material of the second electrode includes silver, magnesium, aluminum, lithium single metal or magnesium aluminum alloy (MgAl), lithium aluminum alloy (LiAl), etc.
  • the thickness of the second electrode may be 500 nm to 600 nm, for example, 500 nm, 520 nm. , 550nm or 600nm.
  • the second electrode may be formed by evaporation.
  • the preparation process of the organic light emitting diode (OLED) array substrate further includes: forming a thin film transistor on the base substrate, and the thin film transistor may be a top gate type, a bottom gate type or a double gate type thin film transistor, and the preparation process of the thin film transistor may be See the conventional manufacturing process, and will not be described here.
  • the first electrode is formed before the pixel defining layer is formed; in another example, the first electrode may also be formed after the pixel defining layer is formed.
  • thermochromic pigment as Co(NH 3 ) 5 Cl 3
  • the pixel defining layers of the organic light emitting diode (OLED) array substrate are respectively formed using the photoresist compositions exemplified below.
  • the content of the silicone/fluoro photosensitive resin is 7 wt%, and the mass of the alkali-soluble resin is 100%.
  • the content of the component is 15% by weight, the mass percentage of the photosensitive monomer is 5% by weight, the mass percentage of the thermochromic pigment is 0% by weight, the mass percentage of the solvent is 58% by weight, and the mass percentage of the photoinitiator is 10% by weight, the mass percentage of the dispersant is 3% by weight, and the mass percentage of the antioxidant is 2% by weight.
  • the mass percentage of the silicone/fluoro photosensitive resin is 7 wt%, the mass percentage of the alkali-soluble resin is 15 wt%, the mass percentage of the photosensitive monomer is 5 wt%, and the mass percentage of the thermochromic pigment is 2 wt%. %, the mass percentage of the solvent was 58 wt%, the mass percentage of the photoinitiator was 8 wt%, the mass percentage of the dispersant was 3 wt%, and the mass percentage of the antioxidant was 2 wt%.
  • the mass percentage of the silicone/fluoro photosensitive resin is 7 wt%, the mass percentage of the alkali soluble resin is 15 wt%, the mass percentage of the photosensitive monomer is 5 wt%, and the mass percentage of the thermochromic pigment is 4 wt%.
  • the mass percentage of the solvent was 58 wt%, the mass percentage of the photoinitiator was 7 wt%, the mass percentage of the dispersant was 3 wt%, and the mass percentage of the antioxidant was 1 wt%.
  • the mass percentage of the silicone/fluoro photosensitive resin is 7 wt%, the mass percentage of the alkali soluble resin is 15 wt%, the mass percentage of the photosensitive monomer is 5 wt%, and the mass percentage of the thermochromic pigment is 6 wt%. %, the mass percentage of the solvent is 56% by weight, the mass percentage of the photoinitiator is 7% by weight, the mass percentage of the dispersing agent is 3% by weight, and the mass percentage of the antioxidant is 1% by weight.
  • the mass percentage of the silicone/fluoro photosensitive resin is 7 wt%, the mass percentage of the alkali soluble resin is 15 wt%, the mass percentage of the photosensitive monomer is 5 wt%, and the mass percentage of the thermochromic pigment is 8 wt%. %, the mass percentage of the solvent was 54% by weight, the mass percentage of the photoinitiator was 7% by weight, the mass percentage of the dispersing agent was 3% by weight, and the mass percentage of the antioxidant was 1% by weight.
  • Figure 5 is a graph showing the relationship between the amount of thermochromic pigment added and the transmittance of white light provided by an embodiment of the present disclosure.
  • the transmittance of light having a wavelength of 380 nm to 630 nm is 80% to 95%.
  • the transmittance of light having a wavelength of 380 nm to 630 nm is substantially close to 0, so that Example 2 to Example 5 are used.
  • the pixel-defining layer formed by the photoresist composition can block most of the light having a wavelength of 380 nm to 630 nm to block short-wavelength blue and violet light to prevent short-wavelength light from adversely affecting the performance of the thin film transistor (TFT). That is, when the color of the thermochromic pigment becomes purple black or blue black, the TFT can be well shielded.
  • TFT thin film transistor
  • At least one embodiment of the present disclosure provides a photoresist composition, a method for fabricating the same, an organic light emitting diode (OLED) array substrate, and a method for fabricating the same, which have at least one of the following beneficial effects:
  • thermochromic pigment in the pixel defining layer may undergo an irreversible color change, for example, during the post-baking process, so that The color of the pixel defining layer is deepened to achieve a shading effect;
  • the photoresist composition provided by at least one embodiment of the present disclosure adopts a positive photoresist, and the positive photoresist has higher resolution than the negative photoresist, and the alignment precision can be improved;
  • the silicone/fluorine photosensitive resin contained in the photoresist composition provided by at least one embodiment of the present disclosure can reduce the surface energy of the formed pixel defining layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Electroluminescent Light Sources (AREA)
  • Materials For Photolithography (AREA)

Abstract

一种光刻胶组合物及其制备方法、有机发光二极管(OLED)阵列基板及其制备方法,该光刻胶组合物包括:碱可溶性树脂、感光单体、热致变色颜料和溶剂,碱可溶性树脂的质量百分含量为10wt%~30wt%,感光单体的质量百分含量为1wt%~12wt%,热致变色颜料的质量百分含量为5wt%~20wt%,溶剂的质量百分含量为40wt%~65wt%;热致变色颜料在加热的条件下颜色会加深。在由该光刻胶组合物形成像素界定层时,在对像素界定层薄膜进行后烘工序之前,其可使光线透过,以提高对位精度;在形成像素界定层的图案后,在进行后烘工序时,该像素界定层中的热致变色颜料会发生不可逆的颜色变化,以使该像素界定层的颜色加深,以实现遮光的效果。

Description

光刻胶组合物及其制备方法、OLED阵列基板及其制备方法
本申请要求于2017年5月12日递交的中国专利申请第201710335687.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种光刻胶组合物及其制备方法、有机发光二极管(OLED)阵列基板及其制备方法。
背景技术
有机电致发光二极管(OLED,Organic Light Emitting Diode)是一种有机薄膜电致发光器件,其具有制备工艺简单、成本低、发光效率高、易形成柔性结构等优点。因此,利用有机电致发光二极管的显示技术已成为一种重要的显示技术。
有机电致发光二极管中的像素界定层的材料一般为光刻胶。光刻胶可分为正性光刻胶和负性光刻胶两大类。随着大规模集成电路工业的飞速发展,集成电路产品及品种的多样化,对光刻胶的性能的要求越来越高,例如,提高光刻胶的分辨率,进而提高其对位精度等。
发明内容
本公开至少一实施例提供一种光刻胶组合物,该光刻胶组合物包括:碱可溶性树脂、感光单体、热致变色颜料和溶剂,所述碱可溶性树脂的质量百分含量为10wt%~30wt%,所述感光单体的质量百分含量为1wt%~12wt%,所述热致变色颜料的质量百分含量为5wt%~20wt%,所述溶剂的质量百分含量为40wt%~65wt%;所述热致变色颜料在加热的条件下颜色会加深。
例如,本公开至少一实施例提供的光刻胶组合物还包括:有机硅/氟光敏树脂,所述有机硅/氟光敏树脂的质量百分含量为5wt%~10wt%,所述碱可溶性树脂的质量百分含量为10wt%~25wt%,所述感光单体的质量百 分含量为1wt%~10wt%,所述热致变色颜料的质量百分含量为5wt%~20wt%,所述溶剂的质量百分含量为40wt%~63wt%。
例如,在本公开至少一实施例提供的光刻胶组合物中,所述有机硅/氟光敏树脂包括硅倍半氧烷笼结构的有机硅/氟光敏树脂和线性有机硅氟树脂结构的有机硅/氟光敏树脂中的至少之一。
例如,在本公开至少一实施例提供的光刻胶组合物中,所述热致变色颜料包括:(NH4)3PO4·12MoO3、[Cr(NH3)6]4(P2O7)3、Co(NH3)5Cl3和含有三芳甲烷类结晶紫内酯及其衍生物中的至少之一。
例如,在本公开至少一实施例提供的光刻胶组合物中,所述热致变色颜料在190℃~230℃的条件下加热时颜色会加深。
例如,在本公开至少一实施例提供的光刻胶组合物中,所述碱可溶性树脂包括丙烯酸碱可溶性树脂和聚酰亚胺碱可溶性树脂中的至少之一。
例如,在本公开至少一实施例提供的光刻胶组合物中,所述感光单体包括重氮萘醌系感光单体。
例如,在本公开至少一实施例提供的光刻胶组合物中,所述溶剂包括脂肪醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、甲乙酮、甲基异丁基酮、γ-丁内酯、丁基卡必醇、丁基卡必醇醋酸酯、丙二醇单甲基醚、丙二醇单甲基醚醋酸酯、环己烷、二甲苯和异丙醇中的至少之一。
例如,本公开至少一实施例提供的光刻胶组合物,还包括光引发剂,所述光引发剂包括二咪唑系化合物、安息香系化合物、多核醌系化合物、二苯甲酮系化合物、苯乙酮系化合物、三嗪系化合物、重氮系化合物、蒽酮系化合物、咕吨酮系化合物、肟酯类化合物、碘鎓盐和硫鎓盐中的至少之一。
例如,本公开至少一实施例提供的光刻胶组合物还包括分散剂,所述分散剂包括木质素磺酸盐。
例如,本公开至少一实施例提供的光刻胶组合物还包括偶联剂、抗氧化剂、紫外吸收剂和消泡剂中的一种或多种。
本公开至少一实施例还提供一种有机发光二极管(OLED)阵列基板,包括像素界定层,所述像素界定层由上述任一光刻胶组合物制备而成。
本公开至少一实施例还提供一种光刻胶组合物的制备方法,该制备方 法包括:在溶剂中依次加入碱可溶性树脂、感光单体、热致变色颜料以形成所述光刻胶组合物,所述碱可溶性树脂的质量百分含量为10wt%~30wt%,所述感光单体的质量百分含量为1wt%~12wt%,所述热致变色颜料的质量百分含量为5wt%~20wt%,所述溶剂的质量百分含量为40wt%~65wt%;所述热致变色颜料在加热的条件下颜色会加深。
例如,在本公开至少一实施例提供的光刻胶组合物的制备方法中,在加入所述热致变色颜料之前,还包括:在溶剂中加入有机硅/氟光敏树脂,所述有机硅/氟光敏树脂的质量百分含量为5wt%~10wt%,所述碱可溶性树脂的质量百分含量为10wt%~25wt%,所述感光单体的质量百分含量为1wt%~10wt%,所述热致变色颜料的质量百分含量为5wt%~20wt%,所述溶剂的质量百分含量为40wt%~63wt%。
本公开至少一实施例还提供一种有机发光二极管(OLED)阵列基板的制备方法,该制备方法包括:提供衬底基板;在所述衬底基板上形成上述任一所述的光刻胶组合物的薄膜;对所述光刻胶组合物的薄膜进行构图工艺以形成像素界定层的图案;对所述透明的像素界定层的图案进行加热处理以形成颜色加深的像素界定层的图案。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种有机发光二极管(OLED)阵列基板的截面结构示意图;
图2为本公开一实施例提供的一种光刻胶组合物的制备方法的流程图;
图3为本公开一实施例提供的另一种光刻胶组合物的制备方法的流程图;
图4为本公开一实施例提供的一种有机发光二极管(OLED)阵列基板的制备方法的流程图;以及
图5为本公开一实施例提供的加入的热致变色颜料的量与白光的透过率的关系图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
有机电致发光显示器件(OLED)中的像素界定层如果是黑色等深色时,其可以防止发光层发出的白光以及金属反射的光线照射至驱动晶体管的有源层,以防止对驱动晶体管造成不利影响,也可以防止漏光以及混色等不良现象。具有遮光性能的像素界定层的材料多为负性光刻胶,相对于正性光刻胶,负性光刻胶的分辨率更低,在形成像素界定层的图案时其对位精度不够,除此之外,如果像素界定层的遮光能力太强会出现无法对位的问题。
本申请的实施例提供一种用于制备有机电致发光显示器件(OLED)的像素界定层(Pixel Definition Layer)的光刻胶组合物。例如,由该光刻胶组合物形成像素界定层的过程中,在对像素界定层薄膜进行后烘工序之前,像素界定层薄膜可使光线透过,以便于曝光对位,在形成像素界定层的图案后,在后续的后烘工序中,该像素界定层中的热致变色颜料会发生不可逆的颜色变化,该像素界定层的颜色会变深以实现遮光的效果。例如,该光刻胶为正性光刻胶,由此相对于负性光刻胶,其分辨率更高,其能够提高对位的精度。
本公开至少一实施例还提供一种光刻胶组合物,该光刻胶组合物包括:碱可溶性树脂、感光单体、热致变色颜料和溶剂,该碱可溶性树脂的质量百分含量为10wt%~30wt%,该感光单体的质量百分含量为1wt%~12wt%,该热致变色颜料的质量百分含量为5wt%~20wt%,该溶剂的质量百分含量为40wt%~65wt%;该热致变色颜料在加热的条件下颜色会加深,这样该光刻胶组合物可以实现在有机电致发光显示器件(OLED)的像素界定层中的应用,可以同时满足于对位精度的要求和遮光能力的要求。
本公开至少一实施例提供一种光刻胶组合物,该光刻胶组合物中含有的热致变色颜料的颜色在一定的温度下可以发生变化,颜色可以变得更深,可以实现对光线进行遮挡。
本公开至少一实施例提供的光刻胶组合物包括:碱可溶性树脂、感光单体、热致变色颜料和溶剂,该碱可溶性树脂的质量百分含量为10wt%~30wt%,该感光单体的质量百分含量为1wt%~12wt%,该热致变色颜料的质量百分含量为5wt%~20wt%,该溶剂的质量百分含量为40wt%~65wt%;该热致变色颜料在加热的条件下颜色会加深。
例如,该碱可溶性树脂的质量百分含量为20wt%~28wt%,该感光单体的质量百分含量为6wt%~10wt%,该热致变色颜料的质量百分含量为7wt%~18wt%,该溶剂的质量百分含量为55wt%~60wt%。
例如,该碱可溶性树脂的质量百分含量为22wt%,该感光单体的质量百分含量为8wt%,该热致变色颜料的质量百分含量为12wt%,该溶剂的质量百分含量为58wt%。
例如,该热致变色颜料包括:(NH4)3PO4·12MoO3、[Cr(NH3)6]4(P2O7)3、Co(NH3)5Cl3或者含有三芳甲烷类结晶紫内酯及其衍生物。例如,该热致变色颜料在190℃~230℃的条件下加热时颜色会加深。形成膜层时的前烘温度一般在90℃~120℃,在低于90℃的条件下就会发生热致变色的材料则不适用于本公开。
例如,上述各种热致变色颜料的变色机理分别为:
(1)热致变色颜料Co(NH3)5Cl3在常温下为紫红色,其与碱可溶性树脂、感光单体和溶剂混合后形成的组合物的颜色为棕红色,将上述组合物涂覆在透明的玻璃基板上时呈现亮红色。对该组合物加热时,热致变色颜 料Co(NH3)5Cl3会失去氨,以形成蓝黑色的CoCl2,这样由该组合物形成的膜层结构最终变为蓝黑色,以对大部分的光线进行遮挡。例如,加热时反应的方程式为:
Figure PCTCN2017115958-appb-000001
例如,该热致变色颜料在190℃或者高于190℃的条件下加热时颜色会加深。如果加热的温度太低,该热致变色颜料不能分解,从而不能变色,且易出现溶剂残留的现象,不能固化完全,残留的水、氧会对后续形成的发光层造成影响。如果反应的温度太高,例如,高于230℃时,会对其他部件造成不利影响,且会增加生产成本。
(2)热致变色颜料(NH4)3PO4·12MoO3在常温下为黄色,其与碱可溶性树脂、感光单体、和溶剂混合后形成的组合物的颜色为浅黄色,将上述组合物涂覆在透明的玻璃基板上时呈现淡黄色。对该组合物加热时,热致变色颜料(NH4)3PO4·12MoO3会形成氨气、磷酸以及黑色的MoO3,这样由该组合物形成的膜层结构最终变为蓝黑色,以对大部分的光线进行遮挡。例如,加热时反应的方程式为:
Figure PCTCN2017115958-appb-000002
例如,该热致变色颜料在190℃或者高于190℃的条件下加热时颜色会加深。如果加热的温度太低,该热致变色颜料不能分解,从而不能变色,且易出现溶剂残留的现象,不能固化完全,残留的水、氧会对后续形成的发光层造成影响。如果反应的温度太高,例如,高于230℃时,会对其他部件造成不利影响,且会增加生产成本。
(3)热致变色颜料[Cr(NH3)6]4(P2O7)3在常温下为黄色,其与碱可溶性树脂、感光单体、和溶剂混合后形成的组合物的颜色为浅黄色,将上述组合物涂覆在透明的玻璃基板上时呈现淡黄色。对该组合物加热时,热致变色颜料的晶格会发生变化,从而颜色加深,形成的膜层结构最终变为紫黑色,以对大部分的光线进行遮挡。
例如,该热致变色颜料在190℃或者高于190℃的条件下加热时颜色会加深。
(4)热致变色颜料的分子式如下所示:
Figure PCTCN2017115958-appb-000003
常温下其表现为无色。其与碱可溶性树脂、感光单体、和溶剂混合后形成的组合物的颜色为浅红色,将上述组合物涂覆在透明的玻璃基板上时呈现亮红色。
例如,加热时反应的方程式为:
Figure PCTCN2017115958-appb-000004
例如,根据取代基R的选择的不同,反应完成后生产的产物的颜色不同,例如,当取代基R、X均为H时,其表现为紫黑色;当取代基R为CH3,取代基X为N(CH3)2时,其表现为蓝紫黑色;当取代基R为CH3,取代基X为OCH3时,其表现为蓝黑色。
例如,在加热的条件下,该热致变色颜料和酸性的物质反应,该酸性的物质例如为双酚A,在光刻胶组合物种可以加微量的酸;加热的温度范围为190℃~230℃,如果反应的温度太低,则反应无法进行,且易出现溶剂残留的现象,没法固化完全,进而对后续形成的发光层造成影响。如果反应的温度太高,溶剂可能会挥发,会对其他部件造成不利影响,且会增加生产成本。
上述反应的机理为:连接三个苯环的碳原子由sp3杂化态转为sp2杂化态,原来被隔开的π体系转变为完整的大π体系,吸收光谱红移,从而使化合物从无色变为深色。
需要说明的是,主要是短波长的蓝光、紫光对作为开关元件的薄膜晶体管(TFT)的性能有不利影响,当热致变色颜料的颜色变为紫黑色或者蓝黑色时也可以对TFT起到很好的遮光作用。
例如,该碱可溶性树脂包括丙烯酸碱可溶性树脂和聚酰亚胺碱可溶性树脂中的至少之一。例如,碱可溶性树脂中含有羟基,可与感光单体发生反应,变为碱不溶树脂,以形成成膜树脂。当紫外光照射时,光敏基团发生反应生成酸根,进而溶于碱液。另外,碱可溶性树脂的显影性能、反应活性均比较高,其制备的光刻胶所形成的图案具有较高的分辨率。
例如,感光单体包括重氮萘醌系感光单体。重氮萘醌系感光单体具有感光的作用,在碱性显影液中易溶解。在本公开至少一实施例提供的光刻胶组合物中,采用的是正性光刻胶,相对于负性光刻胶,正性光刻胶的分辨率更高,在形成膜层结构时能够提高对位精度。
例如,感光单体可以包括以下几种:
Figure PCTCN2017115958-appb-000005
例如,在本公开至少一实施例提供的光刻胶组合物中,溶剂包括脂肪醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、甲乙酮、甲基异丁基酮、γ-丁内酯、丁基卡必醇、丁基卡必醇醋酸酯、丙二醇单甲基醚、丙二醇单甲基醚醋酸酯、环己烷、二甲苯和异丙醇中的至少之一。
例如,本公开至少一实施例提供的光刻胶组合物还可以包括有机硅/氟光敏树脂等。
例如,在包含有该有机硅/氟光敏树脂的光刻胶组合物中,该有机硅/氟光敏树脂的质量百分含量可以为5wt%~10wt%,碱可溶性树脂的质量百分含量可以为10wt%~25wt%,感光单体的质量百分含量可以为1wt%~10wt%,热致变色颜料的质量百分含量可以为5wt%~20wt%,溶剂的质量百分含量可以为40wt%~63wt%。
例如,在包含有该有机硅/氟光敏树脂的光刻胶组合物中,该有机硅/氟光敏树脂的质量百分含量可以为6wt%~8wt%,碱可溶性树脂的质量百分含量可以为8wt%~24wt%,感光单体的质量百分含量可以为3wt%~8wt%,热致变色颜料的质量百分含量可以为6wt%~18wt%,溶剂的质量百分含量可以为45wt%~60wt%。
例如,在包含有该有机硅/氟光敏树脂的光刻胶组合物中,该有机硅/氟光敏树脂的质量百分含量可以为7wt%,碱可溶性树脂的质量百分含量可以为15wt%,感光单体的质量百分含量可以为5wt%,热致变色颜料的质量百分含量可以为15wt%,溶剂的质量百分含量可以为58wt%。
例如,在本公开至少一实施例提供的光刻胶组合物中,有机硅/氟光敏树脂包括硅倍半氧烷笼结构的有机硅/氟光敏树脂和线性有机硅氟树脂结构的有机硅/氟光敏树脂中的至少之一。
例如,有机硅/氟光敏树脂包括以下几种:
Figure PCTCN2017115958-appb-000006
A为硅倍半氧烷笼结构的有机硅/氟光敏树脂,B为线性有机硅氟树脂结构的有机硅/氟光敏树脂。这里,基团R为F或者CF3,n=10~40。
例如,本公开至少一实施例提供的光刻胶组合物还可以包括光引发剂,该光引发剂包括二咪唑系化合物、安息香系化合物、多核醌系化合物、二苯甲酮系化合物、苯乙酮系化合物、三嗪系化合物、重氮系化合物、蒽酮系化合物、咕吨酮系化合物、肟酯类化合物、碘鎓盐和硫鎓盐中的至少之一。
例如,本公开至少一实施例提供的光刻胶组合物还可以包括分散剂,该分散剂包括木质素磺酸盐等。
例如,本公开至少一实施例提供的光刻胶组合物还可以包括偶联剂、抗氧化剂、紫外吸收剂、消泡剂中的一种或多种。
例如,在本公开至少一实施例提供的光刻胶组合物中,该热致变色颜料可以在190℃~230℃的条件下加热时颜色会加深,例如,将该光刻胶组合物用作像素界定层的材料时,如果加热温度大于像素界定层制作时的前烘温度,同时小于后烘温度,即在后烘过程之前,热致变色颜料的颜色为 浅色,后烘过程完成之后,热致变色颜料的颜色为深色,则可以实现像素界定层薄膜在对位时为可透光的,在对位完成后为可遮光的,以实现对薄膜晶体管的有源层进行遮光。
本公开至少一实施例还提供一种有机发光二极管(OLED)阵列基板,该OLED阵列基板包括像素界定层,该像素界定层由上述任一光刻胶组合物制备而成。
例如,图1为本公开一实施例提供的一种有机发光二极管(OLED)阵列基板的截面结构示意图。如图1所示,该OLED阵列基板包括:衬底基板101以及设置在衬底基板101上的驱动晶体管102、第一电极103、第二电极104、像素界定层110以及有机材料功能层105,该有机材料功能层105位于第一电极103和第二电极104之间;驱动晶体管102包括栅极1021、源极1022、漏极1023以及有源层1024,第一电极103与源极1022或漏极1023电连接。像素界定层110设置在有源层1024的正上方,且最终形成的像素界定层为深色,该深色的像素界定层可以为驱动晶体管的有源层1024进行遮光。
第一电极103、有机材料功能层105和第二电极104构成三明治堆叠结构,得到有机发光二极管(OLED),根据需要其可以为顶发射型、底发射型或双面发射型等有机发光二极管(OLED)。有机材料功能层105还可以包括多个子层,例如包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。本公开的实施例不限于这些具体构造。
本公开至少一实施例还提供一种光刻胶组合物的制备方法,包括:在溶剂中依次加入碱可溶性树脂、感光单体、热致变色颜料以获得所述光刻胶组合物,其中,碱可溶性树脂的质量百分含量为10wt%~30wt%,感光单体的质量百分含量为1wt%~12wt%,热致变色颜料的质量百分含量为5wt%~20wt%,溶剂的质量百分含量为40wt%~65wt%;热致变色颜料在加热的条件下颜色会加深。
例如,图2为本公开一实施例提供的一种光刻胶组合物的制备方法的流程图,该光刻胶组合物的制备方法包括:
S11:将装有溶剂的容器放入40℃的恒温水浴条件下,使溶剂加热至40℃并保持恒温5分钟。
例如,该溶剂包括脂肪醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、甲乙酮、甲基异丁基酮、γ-丁内酯、丁基卡必醇、 丁基卡必醇醋酸酯、丙二醇单甲基醚、丙二醇单甲基醚醋酸酯、环己烷、二甲苯和异丙醇中的至少之一。
步骤S12:在装有溶剂的容器中加入碱可溶性树脂,并使其完全溶解至透明。
例如,该碱可溶性树脂包括丙烯酸碱可溶性树脂和聚酰亚胺碱可溶性树脂中的至少之一。
步骤S13:在溶解有碱可溶性树脂的溶剂中加入感光单体并搅拌反应半小时。
例如,该感光单体为包括重氮萘醌系感光单体,例如,2-重氮-1-萘醌-5-磺酰氯、2-重氮-1-萘醌-4-磺酰氯,或者2-重氮-1-萘醌-9-酰氯。
步骤S14:在上述加入有感光单体的溶剂中加入热致变色颜料。
例如,热致变色颜料包括:(NH4)3PO4·12MoO3、[Cr(NH3)6]4(P2O7)3、Co(NH3)5Cl3和含有三芳甲烷类结晶紫内酯及其衍生物中的至少之一。
例如,在本公开至少一实施例提供的光刻胶组合物的制备方法中,在加入热致变色颜料之前还可以包括在溶剂中加入有机硅/氟光敏树脂。例如,该有机硅/氟光敏树脂的质量百分含量为5wt%~10wt%,碱可溶性树脂的质量百分含量为10wt%~25wt%,感光单体的质量百分含量为1wt%~10wt%,热致变色颜料的质量百分含量为5wt%~20wt%,溶剂的质量百分含量为40wt%~63wt%。
例如,图3为本公开至少一实施例提供的另一种光刻胶组合物的制备方法的流程图,该光刻胶组合物的制备方法包括:
步骤S21:将装有溶剂的容器放入40℃的恒温水浴条件下,使溶剂加热至40℃并保持恒温5分钟。
例如,该溶剂包括脂肪醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、甲乙酮、甲基异丁基酮、γ-丁内酯、丁基卡必醇、丁基卡必醇醋酸酯、丙二醇单甲基醚、丙二醇单甲基醚醋酸酯、环己烷、二甲苯和异丙醇中的至少之一。
步骤S22:在装有溶剂的容器中加入有机硅/氟光敏树脂,并使其完全溶解至透明。
例如,有机硅/氟光敏树脂包括以下几种:
Figure PCTCN2017115958-appb-000007
A为硅倍半氧烷笼结构的有机硅/氟光敏树脂,B为线性有机硅氟树脂结构的有机硅/氟光敏树脂。基团R为F或者CF3,n=10~40。
步骤S23:在加入有机硅/氟光敏树脂的溶剂中加入碱可溶性树脂,并使其完全溶解至透明。
例如,该碱可溶性树脂包括丙烯酸碱可溶性树脂和聚酰亚胺碱可溶性树脂中的至少之一。
步骤S24:在溶解有碱可溶性树脂的溶剂中加入感光单体并搅拌反应半小时。
例如,该感光单体为包括重氮萘醌系感光单体,例如,2-重氮-1-萘醌-5-磺酰氯、2-重氮-1-萘醌-4-磺酰氯,或者2-重氮-1-萘醌-9-酰氯。
步骤S25:在上述加入有感光单体的溶剂中加入热致变色颜料。
例如,热致变色颜料包括:(NH4)3PO4·12MoO3、[Cr(NH3)6]4(P2O7)3、Co(NH3)5Cl3和含有三芳甲烷类结晶紫内酯及其衍生物中的至少之一。
例如,在图2和图3所示的示例中,在加入了热致变色颜料的溶剂中还可以加入光引发剂、分散剂、偶联剂、抗氧化剂、紫外吸收剂和/或消泡剂。
例如,该光引发剂包括二咪唑系化合物、安息香系化合物、多核醌系化合物、二苯甲酮系化合物、苯乙酮系化合物、三嗪系化合物、重氮系化合物、蒽酮系化合物、咕吨酮系化合物、肟酯类化合物、碘鎓盐和硫鎓盐中的至少之一。
例如,该分散剂包括木质素磺酸盐。
例如,有机硅/氟光敏树脂的加入可以降低用光刻胶组合物形成的膜层结构的表面能。有机硅/氟光敏树脂的具有较低表面自由能的组分如硅、氟等会在其表面上富集而使表面自由能极小化。
本公开至少一实施例还提供一种有机发光二极管(OLED)阵列基板的制备方法,该制备方法包括:提供衬底基板;在衬底基板上形成上述任一种光刻胶组合物的薄膜;对光刻胶组合物的薄膜进行构图工艺以形成像素界定层的图案;对透明的像素界定层的图案进行加热处理以形成颜色加深的像素界定层的图案。
例如,图4为本公开一实施例的一个示例提供的一种有机发光二极管(OLED)阵列基板的制备方法的流程图。该制备方法包括如下步骤:
步骤S31:提供衬底基板。
例如,该衬底基板采用标准方法进行清洗,该衬底基板可以为玻璃基板、石英基板以及塑料基板等。
步骤S32:在衬底基板上形成第一电极。
例如,形成第一电极的过程包括采用磁控溅射的方法沉积导电薄膜,该导电薄膜的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)等透明的导电氧化物,还可以包括金属导电材料,该金属导电材料包括铜(Cu)、铬(Cr)、钼(Mo)、金(Au)、银(Ag)以及铂(Pt)等单金属或者上述金属形成的合金材料铜铬合金(CuCr)或者铬钼合金(CrMo)等,然后在沉积的导电薄膜上涂覆一层普通的光刻胶,并经过曝光、显影等工序后形成第一电极的图案,该第一电极的厚度为100nm~200nm。
步骤S33:在形成有第一电极的衬底基板上形成上述任一光刻胶组合物的薄膜。
例如,采用旋涂或者印刷的方式形成该光刻胶组合物的薄膜,该光刻胶组合物形成的薄膜是透明的(例如透光率大于50%),便于在形成像素界定层的图案的过程中进行对位。
步骤S34:对光刻胶组合物的薄膜进行构图工艺以形成透明的像素界定层的图案。
例如,对该光刻胶组合物的薄膜进行构图工艺之前,还包括前烘工序,前烘的温度为90℃~120℃,前烘工序的持续时间为1.5分钟(min)~3分钟(min);对经过前烘工序的光刻胶组合物的薄膜进行构图包括采用掩膜板进行对位,然后对光刻胶组合物的薄膜进行曝光、显影等过程以形成透明的(例如透光率大于50%)像素界定层的图案。
步骤S35:对透明的像素界定层的图案进行加热处理以形成不透明(例如透光率小于50%)的像素界定层的图案。
例如,对透明的像素界定层的图案进行加热处理的温度范围为190℃~230℃,加热的时间为30分钟(min)~60分钟(min),例如,对透明的像素界定层的图案进行加热处理的温度为190℃,加热的时间为45分钟(min),这样加热处理后的像素界定层的颜色加深,例如变为蓝黑色、蓝紫色或者黑色,以形成不透明(例如透光率小于50%)的像素界定层,该不透明的像素界定层可以对薄膜晶体管的有源层进行遮挡。该像素界定层的厚度为1.0μm~1.5μm,例如,1.0μm,1.2μm,1.4μm或者1.5μm。
步骤S36:在不透明的像素界定层的图案上形成有机材料功能层和第二电极。
例如,有机材料功能层包括:有机发光层、空穴传输层、空穴注入层、电子传输层以及电子注入层等,例如,该有机发光层的厚度为200nm~300nm,例如:200nm、220nm、250nm或者300nm。可以采用蒸镀制程或者喷墨打印制程形成该有机发光层。
例如,该第二电极的材料包括银、镁、铝、锂单金属或者镁铝合金(MgAl)、锂铝合金(LiAl)等,第二电极的厚度可以为500nm~600nm,例如:500nm、520nm、550nm或者600nm。可以采用蒸镀的方法形成该第二电极。
该有机发光二极管(OLED)阵列基板的制备过程还包括:在衬底基板上形成薄膜晶体管,该薄膜晶体管可以是顶栅型、底栅型或者双栅型的薄膜晶体管,薄膜晶体管的制备过程可以参见常规的制作工艺,在此不再赘述。
在上述示例中,在形成像素界定层之前形成了第一电极;在另一个示例中,也可以在形成了像素界定层之后形成第一电极。
对采用上述方法形成的有机发光二极管(OLED)阵列基板光的透过率加以分析,并比较加入的热致变色颜料的量与白光的透过率的关系。以热致变色颜料为Co(NH3)5Cl3为例加以说明,有机发光二极管(OLED)阵列基板的像素界定层分别采用下述示例的光刻胶组合物形成。
示例一:
有机硅/氟光敏树脂的质量百分含量为7wt%,碱可溶性树脂的质量百 分含量为15wt%,感光单体的质量百分含量为5wt%,热致变色颜料的质量百分含量为0wt%,溶剂的质量百分含量为58wt%,光引发剂的质量百分含量为10wt%,分散剂的质量百分含量为3wt%,抗氧化剂的质量百分含量为2wt%。
示例二:
有机硅/氟光敏树脂的质量百分含量为7wt%,碱可溶性树脂的质量百分含量为15wt%,感光单体的质量百分含量为5wt%,热致变色颜料的质量百分含量为2wt%,溶剂的质量百分含量为58wt%,光引发剂的质量百分含量为8wt%,分散剂的质量百分含量为3wt%,抗氧化剂的质量百分含量为2wt%。
示例三:
有机硅/氟光敏树脂的质量百分含量为7wt%,碱可溶性树脂的质量百分含量为15wt%,感光单体的质量百分含量为5wt%,热致变色颜料的质量百分含量为4wt%,溶剂的质量百分含量为58wt%,光引发剂的质量百分含量为7wt%,分散剂的质量百分含量为3wt%,抗氧化剂的质量百分含量为1wt%。
示例四:
有机硅/氟光敏树脂的质量百分含量为7wt%,碱可溶性树脂的质量百分含量为15wt%,感光单体的质量百分含量为5wt%,热致变色颜料的质量百分含量为6wt%,溶剂的质量百分含量为56wt%,光引发剂的质量百分含量为7wt%,分散剂的质量百分含量为3wt%,抗氧化剂的质量百分含量为1wt%。
示例五:
有机硅/氟光敏树脂的质量百分含量为7wt%,碱可溶性树脂的质量百分含量为15wt%,感光单体的质量百分含量为5wt%,热致变色颜料的质量百分含量为8wt%,溶剂的质量百分含量为54wt%,光引发剂的质量百分含量为7wt%,分散剂的质量百分含量为3wt%,抗氧化剂的质量百分含量为1wt%。
图5为本公开一实施例提供的加入的热致变色颜料的量与白光的透过率的关系图。从图5中可以看出,当加入的热致变色颜料的质量百分含量为为0wt%时,波长为380nm~630nm的光的透过率为80%~95%,当加 入的热致变色颜料的质量百分含量分别为2wt%、4wt%、6wt%和8wt%时,波长为380nm~630nm的光的透过率基本接近于0,这样采用示例二至示例五中的光刻胶组合物形成的像素界定层可以遮挡大部分的波长为380nm~630nm的光,以遮挡短波长的蓝、紫光,以防止短波长的光线对薄膜晶体管(TFT)的性能造成不利影响,即当热致变色颜料的颜色变为紫黑色或者蓝黑色时可以对TFT起到很好的遮光作用。
本公开至少一实施例提供一种光刻胶组合物及其制备方法、有机发光二极管(OLED)阵列基板及其制备方法具有以下至少一项有益效果:
(1)本公开至少一实施例提供的光刻胶组合物,在由该光刻胶组合物形成像素界定层时,在对像素界定层薄膜进行后烘工序之前,像素界定层薄膜可以使光线透过,以便于对位形成像素界定层的图案;在形成像素界定层的图案后,在进行后烘工序时,该像素界定层中的热致变色颜料会例如发生不可逆的颜色变化,以使该像素界定层的颜色加深,以实现遮光的效果;
(2)本公开至少一实施例提供的光刻胶组合物,采用正性光刻胶,相对于负性光刻胶,正性光刻胶的分辨率更高,能提高对位精度;
(3)本公开至少一实施例提供的光刻胶组合物中含有的有机硅/氟光敏树脂,可以降低形成的像素界定层的表面能。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光刻胶组合物,包括:碱可溶性树脂、感光单体、热致变色颜料和溶剂,其中,
    所述碱可溶性树脂的质量百分含量为10wt%~30wt%,
    所述感光单体的质量百分含量为1wt%~12wt%,
    所述热致变色颜料的质量百分含量为5wt%~20wt%,
    所述溶剂的质量百分含量为40wt%~65wt%;
    所述热致变色颜料在加热的条件下颜色会加深。
  2. 根据权利要求1所述的光刻胶组合物,还包括:有机硅/氟光敏树脂,其中,
    所述有机硅/氟光敏树脂的质量百分含量为5wt%~10wt%,
    所述碱可溶性树脂的质量百分含量为10wt%~25wt%,
    所述感光单体的质量百分含量为1wt%~10wt%,
    所述热致变色颜料的质量百分含量为5wt%~20wt%,
    所述溶剂的质量百分含量为40wt%~63wt%。
  3. 根据权利要求2所述的光刻胶组合物,其中,所述有机硅/氟光敏树脂包括硅倍半氧烷笼结构的有机硅/氟光敏树脂和线性有机硅氟树脂结构的有机硅/氟光敏树脂中的至少之一。
  4. 根据权利要求1~3中任一项所述的光刻胶组合物,其中,所述热致变色颜料包括:(NH4)3PO4·12MoO3、[Cr(NH3)6]4(P2O7)3、Co(NH3)5Cl3和含有三芳甲烷类结晶紫内酯及其衍生物中的至少之一。
  5. 根据权利要求4所述的光刻胶组合物,其中,所述热致变色颜料在190℃~230℃的条件下加热时颜色会加深。
  6. 根据权利要求1~3中任一项所述的光刻胶组合物,其中,所述碱可溶性树脂包括丙烯酸碱可溶性树脂和聚酰亚胺碱可溶性树脂中的至少之一。
  7. 根据权利要求1~3中任一项所述的光刻胶组合物,其中,所述感光单体包括重氮萘醌系感光单体。
  8. 根据权利要求1~3中任一项所述的光刻胶组合物,其中,所述溶剂包括脂肪醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁 醚、甲乙酮、甲基异丁基酮、γ-丁内酯、丁基卡必醇、丁基卡必醇醋酸酯、丙二醇单甲基醚、丙二醇单甲基醚醋酸酯、环己烷、二甲苯和异丙醇中的至少之一。
  9. 根据权利要求1~3中任一项所述的光刻胶组合物,还包括光引发剂,其中,所述光引发剂包括二咪唑系化合物、安息香系化合物、多核醌系化合物、二苯甲酮系化合物、苯乙酮系化合物、三嗪系化合物、重氮系化合物、蒽酮系化合物、咕吨酮系化合物、肟酯类化合物、碘鎓盐和硫鎓盐中的至少之一。
  10. 根据权利要求1~3中任一项所述的光刻胶组合物,还包括分散剂,其中,所述分散剂包括木质素磺酸盐。
  11. 根据权利要求1~3中任一项所述的光刻胶组合物,还包括偶联剂、抗氧化剂、紫外吸收剂和消泡剂中的一种或多种。
  12. 一种有机发光二极管(OLED)阵列基板,包括像素界定层,其中,所述像素界定层由权利要求1~11中任一项所述的光刻胶组合物制备而成。
  13. 一种光刻胶组合物的制备方法,包括:
    在溶剂中依次加入碱可溶性树脂、感光单体、热致变色颜料以形成所述光刻胶组合物,其中,
    所述碱可溶性树脂的质量百分含量为10wt%~30wt%,
    所述感光单体的质量百分含量为1wt%~12wt%,
    所述热致变色颜料的质量百分含量为5wt%~20wt%,
    所述溶剂的质量百分含量为40wt%~65wt%;
    所述热致变色颜料在加热的条件下颜色会加深。
  14. 根据权利要求13所述的制备方法,在加入所述热致变色颜料之前,还包括:在溶剂中加入有机硅/氟光敏树脂,其中,
    所述有机硅/氟光敏树脂的质量百分含量为5wt%~10wt%,
    所述碱可溶性树脂的质量百分含量为10wt%~25wt%,
    所述感光单体的质量百分含量为1wt%~10wt%,
    所述热致变色颜料的质量百分含量为5wt%~20wt%,
    所述溶剂的质量百分含量为40wt%~63wt%。
  15. 一种有机发光二极管(OLED)阵列基板的制备方法,包括:
    提供衬底基板;
    在所述衬底基板上形成权利要求1~11中任一项所述的光刻胶组合物的薄膜;
    对所述光刻胶组合物的薄膜进行构图工艺以形成像素界定层的图案;
    对所述像素界定层的图案进行加热处理以形成颜色加深的像素界定层的图案。
PCT/CN2017/115958 2017-05-12 2017-12-13 光刻胶组合物及其制备方法、oled阵列基板及其制备方法 WO2018205601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/072,728 US11392030B2 (en) 2017-05-12 2017-12-13 Photoresist composition and manufacturing method thereof, OLED array substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710335687.8A CN107024835B (zh) 2017-05-12 2017-05-12 光刻胶组合物及其制备方法、oled阵列基板及其制备方法
CN201710335687.8 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018205601A1 true WO2018205601A1 (zh) 2018-11-15

Family

ID=59528734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115958 WO2018205601A1 (zh) 2017-05-12 2017-12-13 光刻胶组合物及其制备方法、oled阵列基板及其制备方法

Country Status (3)

Country Link
US (1) US11392030B2 (zh)
CN (1) CN107024835B (zh)
WO (1) WO2018205601A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024835B (zh) 2017-05-12 2020-07-28 京东方科技集团股份有限公司 光刻胶组合物及其制备方法、oled阵列基板及其制备方法
CN108231840A (zh) * 2017-12-29 2018-06-29 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
KR20200133086A (ko) * 2019-05-16 2020-11-26 삼성디스플레이 주식회사 표시 패널
CN110164948B (zh) * 2019-06-13 2021-12-28 京东方科技集团股份有限公司 一种像素界定层、制作方法和显示面板
EP3808755A1 (en) * 2019-10-14 2021-04-21 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Production of fragments of lignin with functional groups
TWI782241B (zh) * 2019-11-12 2022-11-01 臺灣永光化學工業股份有限公司 聚醯亞胺正型光阻組成物
CN111326082B (zh) * 2020-04-14 2021-08-03 Tcl华星光电技术有限公司 背板单元及其制造方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315520A (zh) * 2008-07-25 2008-12-03 深圳市容大电子材料有限公司 一种pcb油墨组合物、其制法、应用和印制电路板
CN102654731A (zh) * 2011-09-02 2012-09-05 京东方科技集团股份有限公司 一种彩色光阻剂、彩色滤光片及含有其的显示装置
CN103792789A (zh) * 2014-01-27 2014-05-14 京东方科技集团股份有限公司 一种光刻胶组合物
CN105301907A (zh) * 2015-11-16 2016-02-03 北京中科紫鑫科技有限责任公司 一种正性光刻胶组合物
CN105378309A (zh) * 2013-08-19 2016-03-02 马勒国际有限公司 滑动发动机部件
CN107024835A (zh) * 2017-05-12 2017-08-08 京东方科技集团股份有限公司 光刻胶组合物及其制备方法、oled阵列基板及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252766A (en) * 1990-09-14 1993-10-12 Director-General Of Agency Of Industrial Science Method for producing polysilanes
CN101126902B (zh) * 2006-08-17 2011-06-15 达兴材料股份有限公司 感光性树脂组合物
US20080179572A1 (en) 2007-01-05 2008-07-31 Cheil Industries Inc. Photosensitive Resin Composition for Producing Color Filter and Color Filter for Image Sensor Produced Using the Composition
JP5293934B2 (ja) * 2007-06-13 2013-09-18 Jsr株式会社 着色層形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
US20090047599A1 (en) * 2007-08-15 2009-02-19 Geoffrey Horne Negative-working imageable elements and methods of use
KR101544793B1 (ko) * 2008-12-04 2015-08-18 삼성디스플레이 주식회사 가변 투명도를 가지는 차광 부재 및 이를 포함하는 표시판과 그 제조 방법
CN104144624B (zh) * 2011-09-30 2019-02-15 汉斯·O·里比 高级多元素一次性耗材产品
CN105283317B (zh) * 2013-03-15 2018-02-06 西甘产业股份有限公司 用于在颜色变化组合物中降低背景色的化合物
US9527992B2 (en) * 2014-08-29 2016-12-27 Creopop Pte. Ltd. Composition for 3D printing
US20190142713A1 (en) * 2016-04-13 2019-05-16 Segan Industries, Inc. Optical Evanescent Color Change Compositions and Methods of Making and Using the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315520A (zh) * 2008-07-25 2008-12-03 深圳市容大电子材料有限公司 一种pcb油墨组合物、其制法、应用和印制电路板
CN102654731A (zh) * 2011-09-02 2012-09-05 京东方科技集团股份有限公司 一种彩色光阻剂、彩色滤光片及含有其的显示装置
CN105378309A (zh) * 2013-08-19 2016-03-02 马勒国际有限公司 滑动发动机部件
CN103792789A (zh) * 2014-01-27 2014-05-14 京东方科技集团股份有限公司 一种光刻胶组合物
CN105301907A (zh) * 2015-11-16 2016-02-03 北京中科紫鑫科技有限责任公司 一种正性光刻胶组合物
CN107024835A (zh) * 2017-05-12 2017-08-08 京东方科技集团股份有限公司 光刻胶组合物及其制备方法、oled阵列基板及其制备方法

Also Published As

Publication number Publication date
CN107024835B (zh) 2020-07-28
US11392030B2 (en) 2022-07-19
US20210208502A1 (en) 2021-07-08
CN107024835A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2018205601A1 (zh) 光刻胶组合物及其制备方法、oled阵列基板及其制备方法
US10177204B2 (en) Method for manufacturing display substrate, display substrate and display device
US10224483B2 (en) Crosslinkable quantum dot and preparing method thereof, array substrate and preparing method thereof
TWI735434B (zh) 樹脂積層膜、含有其之積層體、tft基板、有機el元件、彩色濾光片以及彼等之製造方法。
US9620572B2 (en) OLED display panel, method for manufacturing the same and display device
CN110767660B (zh) 阵列基板及其制备方法、显示面板
US11398536B2 (en) Display substrate, production method thereof and display device
KR101699191B1 (ko) 컬러 필터 형성 기판 및 유기 el 표시 장치
US10038097B2 (en) Light emitting diode display substrate, a method for manufacturing the same, and display device
KR102003269B1 (ko) 광학 필터의 제조 방법 및 광학 필터를 구비하는 유기 발광 표시 장치의 제조 방법
CN100495760C (zh) 有机el显示器件
TWI570448B (zh) 彩色濾光片基板、及使用它之影像顯示裝置
CN106462062B (zh) 元件、绝缘膜及其制造方法以及感放射线性树脂组合物
TW201920200A (zh) 有機el顯示裝置、以及像素分割層及平坦化層之形成方法
US20210222065A1 (en) Quantum Dot Layer and Manufacturing Method Thereof, Quantum Dot Color Filter, Color Filter Substrate, Display Panel, and Display Device
US10153335B1 (en) Manufacturing method of transistor on color filter type organic light emitting display and transistor on color filter type organic light emitting display
US20210233964A1 (en) Display substrate, manufacturing method thereof, and display device
WO2021022587A1 (zh) 显示面板及其制作方法
US11387285B2 (en) Display substrate and manufacturing method thereof including depositing different quantum dot solutions wettable to different material layers
KR20100131074A (ko) 상부 발광방식 유기전계발광소자 및 이의 제조방법
DE112019006594T5 (de) Anzeigevorrichtung
US9508958B2 (en) Display substrate and manufacturing method thereof and display device
KR101622182B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR20140070473A (ko) 도전막, 이를 포함하는 유기 태양 전지 및 이들의 제조 방법
US20180224741A1 (en) Compositions and methods for forming a pixel-defining layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17908959

Country of ref document: EP

Kind code of ref document: A1