WO2018205560A1 - 触控面板及其制备方法、触控装置 - Google Patents

触控面板及其制备方法、触控装置 Download PDF

Info

Publication number
WO2018205560A1
WO2018205560A1 PCT/CN2017/113476 CN2017113476W WO2018205560A1 WO 2018205560 A1 WO2018205560 A1 WO 2018205560A1 CN 2017113476 W CN2017113476 W CN 2017113476W WO 2018205560 A1 WO2018205560 A1 WO 2018205560A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
electrodes
display
substrate
Prior art date
Application number
PCT/CN2017/113476
Other languages
English (en)
French (fr)
Inventor
木素真
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/070,913 priority Critical patent/US11188176B2/en
Publication of WO2018205560A1 publication Critical patent/WO2018205560A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • Embodiments of the present disclosure relate to a touch panel, a method of fabricating the same, and a touch device.
  • touch technologies may include various types such as capacitive touch technology, surface acoustic wave touch technology, resistive touch technology, and optical touch technology.
  • Capacitive touch technology has developed rapidly and has been widely used in electronic products such as mobile phones, tablets, and notebook computers because of its high reliability and durability.
  • Multi-touch has become a research direction of touch technology, and multi-touch can simultaneously accept touch information from multiple points on the touch panel to perform human-computer interaction.
  • Multi-touch can realize touch operations such as zooming, rotating, turning pages, and panning, thereby increasing the diversity of human-computer interaction, realizing more functions, and improving the user's operating experience.
  • At least one embodiment of the present disclosure provides a touch panel including: a plurality of first touch electrodes, at least one second touch electrode, and a plurality of first display electrodes.
  • the first touch electrodes and the second touch electrodes are stacked and insulated from each other.
  • Each of the first touch electrodes includes at least one touch electrode pattern
  • each of the first display electrodes includes a display electrode pattern, a touch electrode pattern and a display electrode. The patterns match.
  • the touch electrode pattern includes a plurality of touch electrode strips
  • the display electrode pattern includes a plurality of display electrode strips
  • a touch panel further includes a first substrate and a second substrate disposed in parallel with each other.
  • the plurality of first touch electrodes are arranged in an array on the first substrate, and the second touch electrode is disposed.
  • the first display electrodes are disposed on the first substrate, and the touch electrode patterns and the display electrode patterns substantially overlap each other in a direction perpendicular to the first substrate and the second substrate. .
  • the first touch electrode and the second touch electrode are disposed on the same side or different sides of the first substrate, and the second touch is opposite to the first touch electrode.
  • the control electrode is closer to the second substrate.
  • the second touch electrode is a plate electrode.
  • a touch panel provided by an embodiment of the present disclosure includes a plurality of second touch electrodes.
  • Each of the second touch electrodes corresponds to at least two first touch electrodes.
  • a plurality of first touch electrode arrays are arranged in a plurality of rows and columns, and second touch electrodes are arranged in a plurality of rows, each of the second touch electrodes and Corresponding to at least one of the first touch electrodes; or
  • the second touch electrodes are arranged in a plurality of columns, and each of the second touch electrodes corresponds to at least one column of all the first touch electrodes.
  • a touch panel provided by an embodiment of the present disclosure further includes a plurality of first electrode leads and at least one second electrode lead.
  • the first electrode lead is electrically connected to the first touch electrode for transmitting an electrical signal
  • the second electrode lead is electrically connected to the second touch electrode for transmitting an electrical signal.
  • the plurality of first electrode leads are electrically connected to the plurality of first touch electrodes in one-to-one correspondence.
  • a plurality of first electrode leads extend in the same direction.
  • a touch panel provided by an embodiment of the present disclosure further includes: at least one third electrode lead.
  • the third electrode lead is connected between the second touch electrode and the ground for transmitting the electrostatic charge on the second touch electrode to the ground.
  • the first touch electrode, the second touch electrode, and the first display electrode are both transparent electrodes.
  • the first display electrode is a pixel electrode or a common electrode.
  • a touch panel provided by an embodiment of the present disclosure further includes a plurality of second display electrodes.
  • the first display electrode and the second display electrode are stacked and insulated, one of the first display electrode and the second display electrode is a comb electrode, and the other is a plate electrode, one of the first display electrode and the second display electrode
  • the other is a common electrode and the other is a pixel electrode.
  • the first substrate and the second substrate are opposite to each other to form a liquid crystal touch panel, and the first substrate is an opposite substrate, and the second substrate is an array substrate.
  • a touch panel provided by an embodiment of the present disclosure further includes a third substrate.
  • the second substrate and the third substrate are opposite to each other to form a liquid crystal touch panel, the second substrate is an array substrate, the third substrate is an opposite substrate, and the first substrate is disposed on a side of the third substrate away from the second substrate.
  • At least one embodiment of the present disclosure provides a touch device including the touch panel of any of the above.
  • a touch device provided by an embodiment of the present disclosure further includes a touch chip.
  • the touch chip is configured to apply an electrical signal to the first touch electrode or the second touch electrode, and is further configured to read an electrical signal from the second touch electrode or the first touch electrode.
  • the touch panel is configured to display an image
  • the first touch electrode and the second touch electrode are disposed on the display side of the touch panel.
  • At least one embodiment of the present disclosure provides a method for fabricating a touch panel, including: forming a plurality of first touch electrodes and at least one second touch electrode, each first touch electrode including at least one touch electrode pattern, The first touch electrode and the second touch electrode are stacked and insulated from each other; and a plurality of first display electrodes are formed, each of the first display electrodes including a display electrode pattern.
  • the touch electrode pattern matches the display electrode pattern.
  • At least one embodiment of the present disclosure provides a touch panel, a method of fabricating the same, and a touch device.
  • the touch panel reduces or avoids the moiré phenomenon by matching the touch electrode pattern of the touch electrode with the display electrode pattern of the display electrode, thereby improving the quality of the display screen.
  • 1A is a schematic plan view of a touch panel
  • FIG. 1B is a schematic cross-sectional view of the touch panel along the line AA' of FIG. 1A;
  • FIG. 2A is a schematic plan view of a first substrate of a touch panel according to an embodiment of the present disclosure
  • 2B is a schematic plan view of a second substrate of a touch panel according to an embodiment of the present disclosure
  • 2C is a schematic cross-sectional view of the touch panel along the line BB′ of FIG. 2A ;
  • FIG. 3 is a schematic structural diagram of another first substrate of a touch panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of still another first substrate of a touch panel according to an embodiment of the present disclosure.
  • FIG. 5A is a schematic plan view of a first substrate of another touch panel according to an embodiment of the present disclosure
  • FIG. 5B is a schematic plan view of a second substrate of another touch panel according to an embodiment of the present disclosure.
  • 5C is a schematic cross-sectional view of the touch panel along the line C-C' in FIG. 5A;
  • FIG. 5D is a schematic cross-sectional view of a touch panel according to an embodiment of the present disclosure.
  • FIG. 6A is a schematic plan view of a first substrate of still another touch panel according to an embodiment of the present disclosure
  • 6B is a schematic cross-sectional view of the touch panel along the line DD' of FIG. 6A;
  • FIG. 7 is a schematic diagram of a planar structure of a touch device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of a touch device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for preparing a touch panel according to an embodiment of the present disclosure.
  • the single layer multi-point out-cell (SLOC) touch technology is relatively simple, and only a single layer of indium tin oxide electrode pattern (ITO pattern) can be formed on the display panel. Multi-touch, therefore, SLOC touch technology in portable, mobile electronics The product market is highly competitive.
  • FIG. 1A is a schematic plan view of a touch panel
  • FIG. 1B is a cross-sectional structural view of the touch panel taken along line A-A' of FIG. 1A.
  • the touch panel shown in FIG. 1A is a SLOC touch panel.
  • a SLOC touch panel includes a color filter substrate 30 and an array substrate 40.
  • a plurality of touch driving electrodes 31 and a plurality of touch sensing electrodes 32 are disposed on the color filter substrate 30.
  • the touch driving electrodes 31 and the touch sensing electrodes 32 are insulated from each other, and the plurality of touch driving electrodes 31 are also insulated from each other.
  • the touch sensing electrodes 32 are also insulated from each other.
  • the plurality of touch driving electrodes 31 are arranged in a plurality of columns, and the array of the plurality of touch sensing electrodes 32 is arranged in a plurality of rows and columns. All the touch sensing electrodes 32 in the same column correspond to one touch driving electrode 31, and mutual capacitance can be formed at the gap between the two, so that the touch signal can be sensed and the touch function can be realized.
  • the color film substrate 30 is further provided with a plurality of driving electrode lines 33 and a plurality of sensing electrode lines 34 electrically connected to, for example, a touch chip (not shown), each of the touch driving electrodes 31 and one driving electrode line 33. Electrically connected to transmit drive signals, each touch sensing electrode 32 is electrically coupled to a sensing electrode line 34 for transmitting an inductive signal.
  • the touch chip can determine the touch position by detecting the sensing signal transmitted on the sensing electrode line 34 during the touch time period.
  • the gap formed between the touch driving electrode 31 and the touch sensing electrode 32 in the same layer is narrow, and the electric field strength of the mutual capacitance formed is limited, thereby causing poor sensitivity and touch precision of the touch panel. Lower.
  • a plurality of pixel electrodes 41 are disposed on the array substrate 40, and a plurality of pixel electrodes 41 are arranged in an array.
  • each of the pixel electrodes 41 may have a slit pattern.
  • the plurality of pixel electrodes 41 form a first stripe
  • the plurality of touch driving electrodes 31 form a second stripe
  • the plurality of touch sensing electrodes 32 form a third stripe, due to the first stripe and the second stripe
  • the spatial frequency between the stripes and/or the third stripes is slightly different.
  • the display structure of the SLOC touch panel requires the electrostatic discharge path of the entire surface of the panel surface to be sacrificed, so that the static charge generated during the working, transportation, etc. of the product cannot be released and accumulated.
  • electrostatic discharge ESD, Electro-Static Discharge
  • ESD Electro-Static Discharge
  • the SLOC touch panel has high requirements on the operating environment and poor work repeatability.
  • At least one embodiment of the present disclosure provides a touch panel, a method of fabricating the same, and a touch device.
  • the touch panel of this embodiment includes a plurality of first touch electrodes, at least one second touch electrode, and a plurality of first display electrodes.
  • the first touch electrodes and the second touch electrodes are stacked and insulated from each other.
  • Each of the first touch electrodes includes at least one touch electrode pattern
  • each of the first display electrodes includes a display electrode pattern, a touch electrode pattern and a display electrode. The patterns match.
  • the touch panel reduces or eliminates the moiré phenomenon by matching the touch electrode pattern of the first touch electrode with the display electrode pattern of the first display electrode, thereby improving the quality of the display screen.
  • An embodiment of the present disclosure provides a touch panel.
  • 2A is a plan view showing a first substrate of a touch panel according to an embodiment of the present disclosure
  • FIG. 2B is a plan view showing a second substrate of a touch panel according to an embodiment of the present disclosure.
  • 2C is a schematic cross-sectional view of the touch panel along the line BB' of FIG. 2A;
  • FIG. 3 is a schematic structural view of another first substrate of the touch panel according to an embodiment of the present disclosure;
  • FIG. 4 is a schematic structural diagram of still another first substrate of a touch panel according to an embodiment of the present disclosure.
  • the touch panel includes a plurality of first touch electrodes 201 , at least one second touch electrode 202 , and a plurality of first display electrodes 101 .
  • the first touch electrodes 201 and the second touch electrodes 202 are stacked and insulated from each other.
  • Each of the first touch electrodes 201 includes at least one touch electrode pattern 2011, and each of the first display electrodes 101 includes a display electrode pattern 1011.
  • the control electrode pattern 2011 matches the display electrode pattern 1011.
  • the touch electrode pattern 2011 matches the display electrode pattern 1011, and the period of the touch electrode pattern 2011 may coincide with the period of the display electrode pattern 1011, and the first touch electrode
  • the overlap position of the first display electrode 201 does not cause an offset, so that the periodic first beat electrode 201 and the first display electrode 101 can be prevented from forming a spatial beat frequency effect, which can be reduced or avoided accordingly.
  • Moiré is generated on the touch panel to improve the quality of the display.
  • “matching” may mean that the touch electrode pattern 2011 and the display electrode pattern 1011 are substantially the same.
  • the orthographic projection of the touch electrode pattern 2011 on the first substrate 20 and the orthographic projection of the display electrode pattern 1011 on the first substrate 20 substantially overlap each other, and “substantially overlap” may Indicates complete overlap or substantial overlap.
  • the “matching” may also indicate that the spatial arrangement period of the touch electrode pattern 2011 and the spatial arrangement period of the display electrode pattern 1011 are in an integer multiple relationship, that is, the touch electrode pattern 2011 is formed with the plurality of display electrode patterns 1011.
  • the periodic electrode patterns are substantially the same, or the display electrode patterns 1011 are substantially the same as the periodic electrode patterns formed by the plurality of touch electrode patterns 2011.
  • the touch electrode pattern 2011 may be substantially the same as the periodic electrode pattern formed by the N display electrode patterns 1011, where N is a positive integer.
  • “Substantially the same” may mean that the electrode patterns are identical, and may also mean that the electrode patterns are substantially identical (eg, approximately the same).
  • the first touch electrodes 201 are in one-to-one correspondence with the first display electrodes 101, and the arrangement intervals of the first touch electrodes 201 and the first display electrodes 101 are consistent, and
  • the touch electrode pattern 2011 is substantially identical to the display electrode pattern 1011, so that the structure of the touch electrode of the embodiment of the present disclosure can reduce the moiré phenomenon, even eliminate the moiré phenomenon, and improve the display image quality;
  • the electrode pattern 2011 is substantially identical to the display electrode pattern 1011.
  • the first touch electrode 201 and the first display electrode 101 can be formed by the same mask plate, thereby saving the number of masks and saving production costs. It should be noted that "identical" can mean substantially the same.
  • each of the first touch electrodes 201 can also correspond to the plurality of first display electrodes 101, and each of the first touch electrodes 201 can include a plurality of touch electrode patterns 2011, and the plurality of touch electrode patterns 2011
  • the display electrode patterns 1011 formed by the plurality of first display electrodes 101 are in one-to-one correspondence.
  • each of the first touch electrodes 201 may correspond to five first display electrodes 101 of the same column or the same row, so that the first touch electrodes 201 may include five touch electrode patterns arranged in a row or a row.
  • the five touch electrode patterns 2011 are arranged at intervals and are in one-to-one correspondence with the five first display electrodes 101; or each of the first touch electrodes 201 may be arranged with four first displays arranged in two rows and two columns.
  • the electrodes 101 correspond to each other, so that the first touch electrodes 201 can include four touch electrode patterns 2011 arranged in two rows and two columns.
  • each touch electrode pattern 2011 may also correspond to the display electrode patterns 1011 of the plurality of first display electrodes 101. The implementation of the present disclosure is not limited thereto.
  • the first touch electrode 201 and the first display electrode 101 may be slit electrodes, so that the touch electrode pattern 2011 includes a plurality of touch electrode strips disposed at intervals, and the display electrode pattern includes an interval setting.
  • the plurality of display electrode strips are electrically connected to each other, and the plurality of display electrode strips in each of the first display electrodes 101 are also electrically connected to each other.
  • the touch electrode strip and the display electrode strip are rectangular electrode strips; as shown in FIG.
  • the touch electrode strip may also be a zigzag electrode strip, and correspondingly, the display electrode
  • the strip is also a zigzag electrode strip, so that a plurality of domains can be disposed in the display area corresponding to each of the first display electrodes 101, and the display electrode strips of the plurality of domains have different extending directions, so that the touch panel can further have a compensation color. Deviation, suppression of grayscale inversion, or expansion of viewing angle, shortened response time, and improved product quality. It should be noted that the shape and the extending direction of the touch electrode strip and the display electrode strip are not limited to those shown in the drawings, and are not limited thereto.
  • the first touch electrode 201 and the second touch electrode 202 form a mutual capacitive touch technology, so that, for example, multi-touch can be realized.
  • a coupling capacitor is formed at an intersection of the first touch electrode 201 and the second touch electrode 202. By detecting a change amount of the capacitance of the coupling capacitor, the touch position can be determined to implement the touch function.
  • the touch panel further includes a first substrate 20 and a second substrate 10 which are disposed in parallel with each other.
  • the orthographic projection of the first substrate 20 on the second substrate 10 may substantially overlap the second substrate 10 in a direction perpendicular to the first substrate 20.
  • the plurality of first touch electrodes 201 are arranged on the first substrate 20 in an array, and the second touch electrodes 202 are also disposed on the first substrate 20.
  • a plurality of first display electrodes 101 are arranged on the second substrate 10 in an array.
  • the touch electrode pattern 2011 and the display electrode pattern 1011 substantially overlap each other in a direction perpendicular to the first substrate 20.
  • each of the first touch electrodes 201 can form a touch sensing point.
  • the adjacent two first touch electrodes 201 are disposed at a distance from each other to be insulated from each other, so that each of the first touch electrodes 201 forms a touch sensing point.
  • each touch sensing point may also be formed by a plurality of first touch electrodes 201.
  • two first touch electrodes 201 adjacent to each other in the same row may be electrically connected to form one touch sensing point. The embodiments of the present disclosure do not limit this.
  • the number and spacing of the plurality of first touch electrodes 201 may be specifically set according to actual conditions according to requirements such as the size, accuracy, and aperture ratio of the touch panel. For example, when the required precision is low, in order to increase the aperture ratio, the number of the plurality of first touch electrodes 201 may be reduced, and the interval between the adjacent first touch electrodes 201 may be increased. On the contrary, when the required precision is high, the number of the first touch electrodes 201 can be increased, and the interval between the adjacent first touch electrodes 201 can be reduced. In addition, the number and spacing of the second touch electrodes 202 may also be specifically set according to actual conditions.
  • the first touch electrode 201 and the second touch electrode 202 are disposed on the same side or different sides of the first substrate 20 , and the second touch electrode 202 is closer to the second substrate 10 than the first touch electrode 201 . .
  • the first touch electrode 201 and the second touch electrode 202 are both disposed on a surface of the first substrate 20 away from the second substrate 10 .
  • the second touch electrode 202 can also be disposed on the surface of the first substrate 20 adjacent to the second substrate 10 , and the first touch electrode 201 is disposed on the surface of the first substrate 20 away from the second substrate 10 .
  • the first touch electrode 201 and the second touch electrode 202 are stacked and insulated to form a vertical electric field structure.
  • the touch panel further includes a first insulating layer 203 disposed between the first touch electrode 201 and the second touch electrode 202 to enable the first touch electrode 201 and the first
  • the two touch electrodes 202 are insulated from each other.
  • the first insulating layer 203 may be disposed on the second touch electrode 202, and the first touch electrode 201 is disposed on the first insulating layer 203, so that the first touch electrode 201 and the second touch electrode 202 form a vertical electric field.
  • a vertical electric field is present in the entire touch unit, thereby enhancing the electric field strength between the first touch electrode 201 and the second touch electrode 202, and improving touch precision.
  • the second touch electrode 202 can be a plate electrode.
  • the plate electrode can quickly conduct the electrostatic charge on the second touch electrode 202 to the ground end, avoid electrostatic discharge accumulation and generate electrostatic discharge, cause ESD damage to the touch panel, improve electrostatic discharge failure, and improve the touch product. Yield.
  • the touch panel may include a plurality of second touch electrodes 202.
  • Each of the second touch electrodes 202 corresponds to the at least two first touch electrodes 201 to form a coupling capacitance at the intersection of the electrodes.
  • the plurality of first touch electrodes 201 are arranged in a plurality of rows and columns, and the plurality of second touch electrodes 202 are arranged in a plurality of rows and columns.
  • the control electrodes 201 correspond to each other; or the plurality of second touch electrodes 202 are arranged in a row and a plurality of columns, and each of the second touch electrodes 202 corresponds to at least one column of all the first touch electrodes 201.
  • the touch panel includes three strip-shaped second touch electrodes 202.
  • the three second touch electrodes 202 are arranged in a row and three columns, and each of the second touch electrodes 202 corresponds to the three first touch electrodes 201 of the same column to form a coupling capacitance at the intersection of the electrodes.
  • the plurality of second touch electrodes 202 may also be arranged in multiple rows and columns.
  • the array of the plurality of first touch electrodes 201 is arranged in three rows and four columns, and the plurality of second touch electrodes 202 are arranged in three rows and two columns, and each of the second touch electrodes 202 and the two touch electrodes 202 are located in a row.
  • a touch electrode 201 corresponds to each other.
  • the touch panel further includes a plurality of first electrode leads 204 and at least one strip.
  • the second electrode lead 205 is electrically connected to the first touch electrode 201 for transmitting an electrical signal
  • the second electrode lead 205 is electrically connected to the second touch electrode 202 for transmitting an electrical signal.
  • the first electrode lead 204 and the second electrode lead 205 can respectively lead the first touch electrode 201 and the second touch electrode 202 out of the touch area to be electrically connected to, for example, a touch chip (not shown), so as to facilitate The first touch electrode 201 and the second touch electrode 202 apply or read a control signal.
  • the plurality of first electrode leads 204 are electrically connected to the plurality of first touch electrodes 201 in a one-to-one correspondence, so that each of the first touch electrodes 201 is separately detected, thereby implementing a multi-touch function.
  • the plurality of first electrode leads 204 extend in the same direction. As shown in FIG. 2A, a plurality of first electrode leads 204 extend in the Y direction. It should be noted that the plurality of first electrode leads 204 may also extend in different directions. For example, a part of the plurality of first electrode leads 204 extends in the Y direction, and the remaining portions extend in a direction opposite to the Y direction, so that the trace width of the electrode leads on the touch panel can be reduced.
  • the touch panel further includes a flexible circuit board (not shown in Figures 2A-2C).
  • a flexible circuit board may be disposed on the first insulating layer 203, the first electrode lead 204 extends to the flexible circuit board, and the second electrode lead 205 extends to the flexible state, for example, through a via provided on the first insulating layer 203 Circuit board.
  • the flexible circuit board can be electrically connected to the external touch chip (not shown in FIGS. 2A-2C), so that the touch chip can apply or read a control signal to the touch panel to implement touch detection and control.
  • the touch panel further includes at least one third electrode lead 206.
  • the third electrode lead 206 is connected between the second touch electrode 202 and the ground line 207 for transmitting the electrostatic charge on the second touch electrode 202 to the ground line 207, thereby achieving in-plane electrostatic discharge and avoiding static electricity.
  • the charge causes ESD damage to the touch panel, improves the ESD defect of the touch panel, and improves the yield of the product.
  • a switching element may be disposed on the third electrode lead 206.
  • the switching element When the touch panel is required to be electrostatically discharged, the switching element is turned on, and the second touch electrode 202 is connected to the ground line 207 through the third electrode lead 206 to perform electrostatic charge transfer; when the touch panel is not required to be electrostatically discharged
  • the switching element When the switching element is turned off, the second touch electrode 202 and the ground line 207 are disconnected, so as to avoid the coupling of the ground line 207 to the first touch electrode 201 and the second touch electrode 202 during the touch operation. Capacitance has an effect.
  • the first display electrode 101 is a pixel electrode of a sub-pixel connected to a switching element (for example, a thin film transistor) or a common electrode connected to a common electrode line, and the pixel electrode or the common electrode may be, for example, a slit electrode.
  • a switching element for example, a thin film transistor
  • a common electrode connected to a common electrode line
  • the pixel electrode or the common electrode may be, for example, a slit electrode.
  • FIG. 5A is a schematic plan view showing a first substrate of another touch panel according to an embodiment of the present disclosure.
  • FIG. 5B is a schematic plan view of a second substrate of a touch panel according to another embodiment of the present disclosure;
  • FIG. 5C is a schematic cross-sectional view of the touch panel along line C-C' of FIG. 5A.
  • the touch panel further includes a plurality of second display electrodes 105.
  • the first display electrodes 101 may, for example, be in the same layer as the second display electrodes 105 and are at least partially staggered with each other.
  • the first display electrode 101 includes a plurality of display electrode strips disposed at intervals
  • the second display electrode 102 also includes a plurality of display electrode strips disposed at intervals, and the electrode strips of the first display electrode 101 and the electrodes of the second display electrode 105 The strips are alternately arranged, so that the touch panel can be applied to an In-plane-switching (IPS) type liquid crystal panel.
  • IPS In-plane-switching
  • the first display electrode 101 and the second display electrode 105 may also be stacked and insulated, that is, the first display electrode 101 and the second display electrode 105 may be located in different layers.
  • one of the first display electrode 101 and the second display electrode 105 is a comb electrode, and the other is a plate electrode.
  • the first display electrode 101 and the second display electrode 105 are separated by a second insulating layer 106. They are insulated from each other, so that the touch panel can also be applied to an Advanced Super Dimension Switch (ADS) type liquid crystal panel.
  • ADS Advanced Super Dimension Switch
  • one of the first display electrode 101 and the second display electrode 105 is a common electrode and the other is a pixel electrode.
  • the first display electrode 101 and the second display electrode 105 may be transparent electrodes, so that the aperture ratio and transmittance of the liquid crystal panel can be increased.
  • first display electrode 101 and the second display electrode 105 are stacked and insulated, and the first display electrode 101 and the second display electrode 105 are comb electrodes, so that the touch panel can also be applied to the fringe field switch (Fringe Field Switching, FFS) LCD panel.
  • FFS fringe Field Switching
  • the touch electrode pattern 2011 formed by the first touch electrode 201 is the same as the display electrode pattern formed by the first display electrode 101.
  • the first display electrode 101 may include three display electrode strips, that is, the display electrode pattern is formed by three display electrode strips, so that the touch electrode pattern 2011 may also be composed of three touches.
  • the electrode strip is formed.
  • FIG. 6A is a schematic plan view of a first substrate of a touch panel according to another embodiment of the present disclosure
  • FIG. 6B is a schematic cross-sectional view of the touch panel along a line DD′ of FIG. 6A .
  • the second substrate 10 is further provided with a plurality of data lines 102 and a plurality of scan lines 103, and the plurality of data lines 102 and the plurality of scan lines 103 cross each other to define a plurality of display areas, each display The area includes a first display electrode 101 and a second display electrode 105.
  • the touch electrode pattern 2011 formed by the first touch electrode 201 can also be combined with the display electrode pattern in one display area. 1011 is the same.
  • the first display electrode 101 includes three display electrode strips
  • the second display electrode 105 also includes three display electrode strips, that is, the display electrode pattern is formed by six display electrode strips. Therefore, the touch electrode pattern 2011 can also be formed by six touch electrode strips.
  • a thin film transistor 104 is provided at a position where the data line 102 and the scanning line 103 intersect.
  • the thin film transistor 104 can function as a switching element of the display area.
  • the first touch electrode 201 can be a touch driving electrode or a touch sensing electrode.
  • the second touch electrode 202 is a touch sensing electrode or a touch driving electrode.
  • first touch electrode 201 and the second touch electrode 202 may be transparent electrodes.
  • the transparent electrode may be transparent materials or other suitable electrically conductive material prepared, for example, a transparent conductive material (ITO), indium zinc oxide (IZO), indium oxide (In 2 O 3), aluminum zinc oxide (AZO indium tin oxide ) and carbon nanotubes.
  • ITO transparent conductive material
  • IZO indium zinc oxide
  • In 2 O 3 indium oxide
  • AZO indium tin oxide aluminum zinc oxide
  • carbon nanotubes carbon nanotubes
  • the material of the first electrode lead 204, the second electrode lead 205, and the third electrode lead 206 may be a metal conductive material, for example, may be any one or more selected from the group consisting of molybdenum, copper, aluminum, and titanium. One or more of the alloys formed in combination or other suitable materials are formed.
  • the material of the first electrode lead 204, the second electrode lead 205, and the third electrode lead 206 may also be a transparent conductive material, so that the first electrode lead 204, the second electrode lead 205, and the third electrode lead 206 may not affect the touch panel.
  • the aperture ratio may be any one or more selected from the group consisting of molybdenum, copper, aluminum, and titanium.
  • One or more of the alloys formed in combination or other suitable materials are formed.
  • the material of the first electrode lead 204, the second electrode lead 205, and the third electrode lead 206 may also be a transparent conductive material, so that the first electrode lead 204, the second electrode lead 205, and the third electrode lead 206
  • the first substrate 20 may be a transparent insulating substrate
  • the second substrate 10 may also be a transparent insulating substrate.
  • the transparent insulating substrate may be a glass substrate, a quartz substrate, a plastic substrate, a ceramic substrate, a silica gel substrate, or other suitable substrate.
  • examples of the material of the first insulating layer 203 include silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiNxOy), or other suitable materials.
  • examples of the material of the second insulating layer 106 also include silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiNxOy), or other suitable materials.
  • first touch electrode 201 and the second touch electrode 202 of the three rows and three columns are shown in FIG. 2A.
  • the touch panel provided by the embodiment of the present disclosure A plurality of first touch electrodes 201 and second touch electrodes 202 may be disposed, and the disclosure is not limited herein. It should be noted that, in the touch panel provided by the embodiment of the present disclosure, the plurality of first electrode leads and the at least one second electrode lead do not need to be traced at the edge of the touch panel, thereby being applicable to narrow borders or even borderless electronic products. .
  • FIG. 7 is a schematic diagram showing a planar structure of a touch device according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a touch device according to an embodiment of the present disclosure. Schematic diagram of the sectional structure.
  • the touch device includes the touch panel 100 according to any one of the above.
  • the touch panel 100 is configured to accept touch information.
  • the touch electrode pattern formed by the first touch electrode of the touch panel 100 matches the display electrode pattern formed by the first display electrode, thereby preventing the first touch electrode of the periodic structure from forming a space shot with the first display electrode. Frequency effect, avoiding moiré phenomenon and improving the quality of display screen.
  • the touch panel 100 can be of various types, such as an OGS (One Glass Solution) type touch panel, an In-Cell (in-line) touch panel, or an On-Cell (in-line) touch panel. Any one.
  • OGS One Glass Solution
  • In-Cell in-line
  • On-Cell in-line
  • the touch device further includes a touch chip 200.
  • the touch chip 200 is configured to apply an electrical signal to the first touch electrode or the second touch electrode, and is further configured to read an electrical signal from the second touch electrode or the first touch electrode. Touch detection.
  • the touch chip 200 is electrically connected to the first touch electrode and the second touch electrode through the first electrode lead and the second electrode lead to transmit an electrical signal.
  • the touch chip 200 may be provided separately or may be integrally formed with other computing devices, such as a dedicated computing device (such as a digital processor (DSP), etc.) or a general-purpose computing device (such as a central processing unit (CPU). )achieve.
  • a dedicated computing device such as a digital processor (DSP), etc.
  • DSP digital processor
  • CPU central processing unit
  • the touch panel 100 may also be configured to display an image, and the first substrate is disposed on the display side of the touch panel 100.
  • the touch panel 100 can be a liquid crystal touch panel, and the first substrate and the second substrate are disposed on the box.
  • the first substrate is a counter substrate
  • the second substrate is an array substrate.
  • the opposite substrate is, for example, a color film substrate.
  • the color film substrate is provided with a polarizing layer.
  • the first touch electrode and the second touch electrode are disposed between the substrate of the color film substrate and the polarizing layer.
  • the touch panel 100 is an On-Cell type touch panel.
  • the touch panel 100 may further include a third substrate 30 .
  • the touch panel 100 can be a liquid crystal touch panel.
  • the second substrate 10 and the third substrate 30 are disposed to form a display panel, and the second substrate 10 is an array substrate, and the third substrate 30 is an opposite substrate.
  • the opposite substrate may be a color filter substrate, so that a color film layer, a black matrix, or the like is provided on the third substrate 30.
  • the first substrate 20 may be disposed on a side of the third substrate 30 away from the second substrate 10. In this case, the first substrate 20 and the display panel can be separately fabricated and then assembled together.
  • the touch panel 100 can also be an organic light emitting diode (OLED) touch panel, and the first substrate is a package substrate, and the second substrate is an array substrate.
  • OLED organic light emitting diode
  • the touch panel 100 provided by the embodiment of the present disclosure may be a rectangular touch panel, a circular touch panel, an elliptical touch panel, or a polygonal touch panel.
  • the touch panel 100 can be not only a flat touch panel, but also a curved touch panel or even a spherical touch panel.
  • the touch device can be any product or component having a touch function such as a television, a digital camera, a smart phone, a watch, a tablet, a notebook, a navigator, or the like.
  • the embodiment of the present disclosure further provides a method for preparing a touch panel, which can be used to prepare the touch panel of any of the above embodiments.
  • FIG. 9 is a schematic flowchart of a method of manufacturing a touch panel provided by an embodiment of the present disclosure.
  • the preparation method may include the following steps:
  • Step S1 forming a plurality of first touch electrodes and at least one second touch electrode, each of the first touch electrodes includes at least one touch electrode pattern, and the first touch electrodes and the second touch electrodes are stacked and arranged insulation;
  • Step S2 forming a plurality of first display electrodes, each of the first display electrodes including a display electrode pattern.
  • step S1 and step S2 the touch electrode pattern is matched with the display electrode pattern, so that the moiré phenomenon can be reduced or avoided, and the quality of the display screen can be improved.
  • the touch panel includes a first substrate and a second substrate that are disposed in parallel with each other.
  • the first touch electrode and the second touch electrode are formed on the first substrate.
  • the first display electrode is formed on the second substrate.
  • the step S1 may include: depositing a first conductive layer on the first substrate, the first conductive layer is used to form the second touch electrode; and then in the second touch Depositing an insulating layer film on the electrode to form a first insulating layer; then forming a second conductive layer on the first insulating layer by using a patterning process, the second conductive layer is used to form a first touch electrode, and the first touch
  • the control electrode includes at least one touch electrode pattern.
  • the first touch electrode and the second touch electrode are stacked, and may pass through the first insulating layer to achieve the purpose of insulating each other.
  • depositing the first conductive layer and the second conductive layer may be formed by a vapor deposition method, a magnetron sputtering method, a vacuum evaporation method, or other suitable treatment.
  • the material of the first conductive layer and the second conductive layer may be a transparent conductive material or other suitable materials such as indium tin oxide (ITO), indium zinc oxide (IZO), carbon nanotubes, and the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • carbon nanotubes and the like.
  • the deposited insulating film may be formed by chemical vapor deposition (CVD), such as plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), or the like. Physical vapor deposition (PVD), etc.
  • CVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • PVD Physical vapor deposition
  • the first touch electrode and the second touch electrode form a mutual capacitance touch technology, thereby implementing a multi-touch function.
  • the first touch electrode and the second touch electrode at least partially overlap in a direction perpendicular to the first substrate, and a coupling capacitor is formed at the overlap to sense a touch operation.
  • the first touch electrodes are disposed in one-to-one correspondence with the first display electrodes, and the plurality of first touch electrodes are arranged on the first substrate in an array, and the plurality of first display electrodes are arranged in the array in the second On the substrate.
  • the touch electrode pattern and the display electrode pattern substantially overlap each other in a direction perpendicular to the first substrate, thereby further avoiding the moiré phenomenon.
  • the second touch electrode can be a plate electrode.
  • the plate electrode can realize in-plane electrostatic discharge, avoiding electrostatic discharge caused by electrostatic charge accumulation, causing ESD damage to the touch panel, improving ESD defects, and improving the yield of the touch product.
  • the first display electrode includes a plurality of display electrode strips disposed at intervals, and correspondingly, the first touch electrode includes a plurality of touch electrode strips disposed at intervals.
  • step S2 may further include: forming a second display electrode on the second substrate.
  • the second display electrode also includes a plurality of display electrode strips disposed at intervals, the first display electrode and the second display electrode are formed in the same layer, and the electrode strips of the first display electrode and the electrode strips of the second display electrode are mutually At least partially interlaced.
  • the first display electrode and the second display electrode may also be stacked and insulated, that is, the first display electrode and the second display electrode may be located in different layers.
  • one of the first display electrode and the second display electrode is a pixel electrode and the other is a common electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Quality & Reliability (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板及其制备方法、触控装置。该触控面板包括:多个第一触控电极(201)、至少一个第二触控电极(202)和多个第一显示电极(101)。第一触控电极(201)和第二触控电极(202)层叠设置且彼此绝缘,每个第一触控电极(201)包括至少一个触控电极图案(2011),每个第一显示电极(101)包括显示电极图案(1011),触控电极图案(2011)与显示电极图案(1011)相匹配。该触控面板通过将第一触控电极(201)的触控电极图案(2011)与第一显示电极(101)的显示电极图案(1011)相匹配,从而减少或规避摩尔纹现象,提高显示画面的品质。

Description

触控面板及其制备方法、触控装置
本申请要求于2017年05月12日递交的中国专利申请第201710335259.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种触控面板及其制备方法、触控装置。
背景技术
通常,触控技术可以包括电容式触控技术、表面声波式触控技术、电阻式触控技术和光学式触控技术等多种类型。电容式触控技术因具有可靠性高、耐用性好等优点,从而发展异常迅猛,已经广泛应用于手机、平板、笔记本电脑等电子产品中。
随着触控技术的不断发展,多点触控成为触控技术的一个研究方向,多点触控能够同时接受来自触控面板上多个点的触摸信息,从而进行人机交互操作。多点触控可以实现缩放、旋转、翻页、平移等触控操作,从而增加人机交互的多样性、实现更多功能、提升用户的操作体验。
发明内容
本公开至少一个实施例提供一种触控面板,其包括:多个第一触控电极、至少一个第二触控电极和多个第一显示电极。第一触控电极和第二触控电极层叠设置且彼此绝缘,每个第一触控电极包括至少一个触控电极图案,每个第一显示电极包括显示电极图案,触控电极图案与显示电极图案相匹配。
例如,在本公开一实施例提供的触控面板中,触控电极图案包括多个触控电极条,显示电极图案包括多个显示电极条。
例如,本公开一实施例提供的触控面板,还包括相互平行设置的第一基板和第二基板,多个第一触控电极按阵列排布设置在第一基板上,第二触控电极设置在第一基板上,多个第一显示电极按阵列排布设置在第二基板上,且在垂直于第一基板和第二基板的方向上,触控电极图案与显示电极图案彼此大致重叠。
例如,在本公开一实施例提供的触控面板中,第一触控电极和第二触控电极设置在第一基板的同一侧或不同侧,且相对于第一触控电极,第二触控电极更靠近第二基板。
例如,在本公开一实施例提供的触控面板中,第二触控电极为板状电极。
例如,本公开一实施例提供的触控面板,包括多个第二触控电极。每个第二触控电极与至少两个第一触控电极相对应。
例如,在本公开一实施例提供的触控面板中,多个第一触控电极阵列排布为多行多列,第二触控电极排布为多行,每个第二触控电极与至少一行所有的第一触控电极相对应;或者
第二触控电极排布为多列,每个第二触控电极与至少一列所有的第一触控电极相对应。
例如,本公开一实施例提供的触控面板,还包括多条第一电极引线和至少一条第二电极引线。第一电极引线与第一触控电极电连接以用于传输电信号,第二电极引线与第二触控电极电连接以用于传输电信号。
例如,在本公开一实施例提供的触控面板中,多条第一电极引线与多个第一触控电极一一对应电连接。
例如,在本公开一实施例提供的触控面板中,多条第一电极引线沿同一方向延伸。
例如,本公开一实施例提供的触控面板,还包括:至少一条第三电极引线。该第三电极引线连接在第二触控电极和地线之间,以用于将第二触控电极上的静电电荷传输至地线。
例如,在本公开一实施例提供的触控面板中,第一触控电极、第二触控电极和第一显示电极均为透明电极。
例如,在本公开一实施例提供的触控面板中,第一显示电极为像素电极或公共电极。
例如,本公开一实施例提供的触控面板,还包括多个第二显示电极。第一显示电极与第二显示电极层叠且绝缘设置,第一显示电极和第二显示电极其中之一为梳状电极,另一个为板状电极,第一显示电极和第二显示电极其中之一为公共电极,另一个为像素电极。
例如,在本公开一实施例提供的触控面板中,第一基板和第二基板彼此对盒以形成液晶触控面板,且第一基板为对置基板,第二基板为阵列基板。
例如,本公开一实施例提供的触控面板,还包括第三基板。第二基板与第三基板彼此对盒以形成液晶触控面板,第二基板为阵列基板,第三基板为对置基板,且第一基板设置在第三基板远离第二基板的一侧。
本公开至少一个实施例提供一种触控装置,其包括:上述任一项所述的触控面板。
例如,本公开一实施例提供的触控装置,还包括触控芯片。该触控芯片被配置为给第一触控电极或第二触控电极施加电信号,还被配置为从第二触控电极或第一触控电极上读取电信号。
例如,在本公开一实施例提供的触控装置中,触控面板被配置显示图像,且第一触控电极和第二触控电极设置在触控面板的显示侧。
本公开至少一个实施例提供一种触控面板的制备方法,包括:形成多个第一触控电极和至少一个第二触控电极,每个第一触控电极包括至少一个触控电极图案,第一触控电极和第二触控电极层叠设置且彼此绝缘;以及形成多个第一显示电极,每个第一显示电极包括显示电极图案。触控电极图案与显示电极图案相匹配。
本公开至少一个实施例提供一种触控面板及其制备方法、触控装置。该触控面板通过将触控电极的触控电极图案与显示电极的显示电极图案相匹配,从而减少或规避摩尔纹现象,提高显示画面的品质。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种触控面板的平面示意图;
图1B为沿图1A中线A-A'方向该触控面板的截面结构示意图;
图2A为本公开一实施例提供的一种触控面板的第一基板的平面示意图;
图2B为本公开一实施例提供的一种触控面板的第二基板的平面示意图;
图2C为沿图2A中线B-B'方向该触控面板的截面结构示意图;
图3为本公开一实施例提供的一种触控面板的另一种第一基板的结构示意图;
图4为本公开一实施例提供的一种触控面板的又一种第一基板的结构示意 图;
图5A为本公开一实施例提供的又一种触控面板的第一基板的平面示意图;
图5B为本公开一实施例提供的又一种触控面板的第二基板的平面示意图;
图5C为沿图5A中线C-C'方向该触控面板的截面结构示意图;
图5D为本公开一实施例提供的一种触控面板的截面结构示意图;
图6A为本公开一实施例提供的再一种触控面板的第一基板的平面示意图;
图6B为沿图6A中线D-D'方向该触控面板的截面结构示意图;
图7为本公开一实施例提供的一种触控装置的平面结构示意图;
图8为本公开一实施例提供的一种触控装置的截面结构示意图;以及
图9为本公开一实施例提供的一种触控面板的制备方法的示意性流程图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
在触控技术领域,单层多点外嵌式(SLOC,Single Layer On Cell)触控技术工艺较为简单,只需在显示面板上形成单层的氧化铟锡电极图案(ITO Pattern)即可实现多点触控,因此,SLOC触控技术在便携式、移动式电子产 品市场具有极高的竞争力。
目前,SLOC触控技术主要利用位于同层的触控感应电极和触控驱动电极形成的电容而实现接收触控信号,进行触控操作。图1A示出了一种触控面板的平面示意图,图1B示出了沿图1A中线A-A′方向该触控面板的截面结构示意图。图1A所示的触控面板为SLOC触控面板。
例如,如图1A和1B所示,一种SLOC触控面板包括彩膜基板30和阵列基板40。彩膜基板30上设置有多个触控驱动电极31和多个触控感应电极32,触控驱动电极31和触控感应电极32彼此绝缘,且多个触控驱动电极31也彼此绝缘,多个触控感应电极32也彼此绝缘。例如,多个触控驱动电极31排布为多列,多个触控感应电极32阵列排布为多行多列。位于同一列的所有触控感应电极32与一个触控驱动电极31相对应,且两者之间的间隙处可以形成互电容,从而可感应触控信号,实现触控功能。
例如,彩膜基板30上还设置有与例如触控芯片(未示出)电连接的多条驱动电极线33和多条感应电极线34,每个触控驱动电极31与一条驱动电极线33电连接以传输驱动信号,每个触控感应电极32与一条感应电极线34电连接以传输感应信号。当手指触摸到触控面板时,被触摸的触控感应电极32和与其相对应的触控驱动电极31之间的耦合电容将会发生变化,从而改变这两个电极之间的电容量。例如,当对所有触控驱动电极31施加相同的驱动信号时,则在触控时间段内,触控芯片通过检测感应电极线34上传输的感应信号即可判断出触控位置。
由于工艺限制,位于同层的触控驱动电极31和触控感应电极32之间形成的间隙较窄,从而形成的互电容的电场强度有限,进而导致触控面板的灵敏度较差、触控精度较低。
例如,阵列基板40上设置有多个像素电极41,多个像素电极41阵列排布,例如每个像素电极41本身可以具有狭缝图案。在显示时,多个像素电极41会形成的第一条纹,多个触控驱动电极31会形成第二条纹,多个触控感应电极32会形成的第三条纹,由于第一条纹和第二条纹和/或第三条纹之间的空间频率略有差异。在整个触控面板上,第一条纹和第二条纹和/或第三条纹叠加时,由于条纹间隔的差异,其重合位置会逐渐偏移,从而形成摩尔纹,影响显示画面的品质。
另外,对于高级超维场开关(Advanced Super Dimension Switch,ADS)模 式的显示面板,该SLOC触控面板的电极结构设计需要牺牲面板表面整层电极的静电释放路径,由此例如在产品的工作、运输等过程中产生的静电荷不能被很好地释放而积累,从而导致静电放电(ESD,Electro-Static Discharge)发生,造成ESD损害,产生显示画面发绿等不良现象;另一方面,SLOC触控面板对操作环境要求较高,工作重复性较差。
本公开至少一实施例提供一种触控面板及其制备方法、触控装置。该实施例的触控面板包括:多个第一触控电极、至少一个第二触控电极和多个第一显示电极。第一触控电极和第二触控电极层叠设置且彼此绝缘,每个第一触控电极包括至少一个触控电极图案,每个第一显示电极包括显示电极图案,触控电极图案与显示电极图案相匹配。
该触控面板通过将第一触控电极的触控电极图案与第一显示电极的显示电极图案相匹配,从而减少或规避摩尔纹现象,提高显示画面的品质。
下面结合附图对本公开的实施例提供的触控面板及其制备方法、触控装置进行说明。
本公开实施例提供一种触控面板。图2A示出了本公开实施例提供的一种触控面板的一种第一基板的平面示意图;图2B示出了本公开实施例提供的一种触控面板的一种第二基板的平面示意图;图2C为沿图2A中线B-B'方向该触控面板的截面结构示意图;图3示出了本公开实施例提供的一种触控面板的另一种第一基板的结构示意图;图4示出了本公开实施例提供的一种触控面板的又一种第一基板的结构示意图。
例如,如图2A至2C所示,该触控面板包括多个第一触控电极201、至少一个第二触控电极202和多个第一显示电极101。第一触控电极201和第二触控电极202层叠设置且彼此绝缘,每个第一触控电极201包括至少一个触控电极图案2011,每个第一显示电极101包括显示电极图案1011,触控电极图案2011与显示电极图案1011相匹配。
在本公开实施例提供的触控面板中,触控电极图案2011与显示电极图案1011相匹配,且触控电极图案2011的周期可以与显示电极图案1011的周期相一致,在第一触控电极201与第一显示电极101相重叠时,其重合位置不会产生偏移,从而可以避免周期性的第一触控电极201与第一显示电极101形成空间拍频效应,相应地可以减少或避免在触控面板上产生摩尔纹,进而提高显示画面的品质。
需要说明的是,在本公开的描述中,“相匹配”可以表示触控电极图案2011和显示电极图案1011大致相同。例如,在垂直于第一基板20的方向上,触控电极图案2011在第一基板20上的正投影与显示电极图案1011在第一基板20上的正投影彼此大致重叠,“大致重叠”可以表示完全重叠或基本重叠。“相匹配”还可以表示触控电极图案2011的空间布置周期和显示电极图案1011的空间布置周期之间为整数倍关系,也就是说,触控电极图案2011与多个显示电极图案1011形成的周期性电极图案大致相同,或者显示电极图案1011与多个触控电极图案2011形成的周期性电极图案大致相同。例如,触控电极图案2011可以与N个显示电极图案1011形成的周期性电极图案大致相同,其中,N为正整数。“大致相同”可以表示电极图案完全相同,还可以表示电极图案实质上相同(例如,近似相同)。
例如,如图2A和2B所示,在一个示例中,第一触控电极201与第一显示电极101一一对应,第一触控电极201与第一显示电极101的排布周期一致,且触控电极图案2011与显示电极图案1011基本上完全相同,从而本公开实施例的触控电极的结构可以减少摩尔纹现象,甚至消除摩尔纹现象,提高显示画质;另一方面,由于触控电极图案2011与显示电极图案1011基本上完全相同,第一触控电极201与第一显示电极101则可以采用同一块掩膜板形成,从而可以节省掩模板数量,节约生产成本。需要说明的是,“完全相同”可以表示大致相同。
又例如,每个第一触控电极201还可以与多个第一显示电极101相对应,每个第一触控电极201可以包括多个触控电极图案2011,且多个触控电极图案2011与多个第一显示电极101形成的显示电极图案1011一一对应。例如,每个第一触控电极201可以与同一列或同一行的五个第一显示电极101相对应,从而第一触控电极201可以包括排布为一列或一行的五个触控电极图案2011,该五个触控电极图案2011间隔排列且与五个第一显示电极101一一对应;或者每个第一触控电极201还可以与排布为两行两列的四个第一显示电极101相对应,从而第一触控电极201可以包括排布为两行两列的四个触控电极图案2011。需要说明的是,每个触控电极图案2011还可以与多个第一显示电极101的显示电极图案1011相对应。本公开实施对此不作限制。
例如,第一触控电极201和第一显示电极101可以为狭缝电极,从而触控电极图案2011包括间隔设置的多个触控电极条,显示电极图案包括间隔设置 的多个显示电极条,且每个第一触控电极201中的多个触控电极条彼此电连接,每个第一显示电极101中的多个显示电极条彼此也电连接。如图2A和2B所示,在一个示例中,触控电极条和显示电极条都为矩形电极条;如图3所示,触控电极条还可以为锯齿状电极条,相应地,显示电极条也为锯齿状电极条,从而每个第一显示电极101对应的显示区域中可以设置多个畴,且多个畴的显示电极条具有不同的延伸方向,从而触控面板可以进一步具有补偿颜色偏差、抑制灰阶反转的效果,或者扩大视角、缩短响应时间、提高产品品质的效果。需要说明的是,触控电极条和显示电极条的形状和延伸方向等不限于图中所示,对此不作限制。
例如,第一触控电极201与第二触控电极202形成互电容式触控技术,从而例如可以实现多点触控。第一触控电极201与第二触控电极202的交叠处形成耦合电容,通过检测该耦合电容的电容值的变化量,即可判断出触控位置,实现触控功能。
例如,如图2A至2C所示,该触控面板还包括相互平行设置的第一基板20和第二基板10。例如,在垂直于第一基板20的方向上,第一基板20在第二基板10上的正投影可以与第二基板10大致重叠。
例如,多个第一触控电极201按阵列排布设置在第一基板20上,第二触控电极202也设置在第一基板20上。多个第一显示电极101按阵列排布设置在第二基板10上。在垂直于第一基板20的方向上,触控电极图案2011与显示电极图案1011彼此大致重叠。
例如,每个第一触控电极201可形成一个触摸感应点。如图2A所示,在一个示例中,相邻两个第一触控电极201之间间隔一定距离设置以相互绝缘,从而每个第一触控电极201形成一个触摸感应点。需要说明的是,每个触摸感应点也可以由多个第一触控电极201形成。例如,同一行相邻的两个第一触控电极201可以电连接以形成一个触摸感应点。本公开实施例对此不作限制。
需要说明的是,根据触控面板的大小、精度以及开口率等要求,多个第一触控电极201的数量和间距可根据实际情况而具体设置。例如,当所需要的精度较低时,为增大开口率,可减小多个第一触控电极201的数量,增大相邻的第一触控电极201之间的间隔。反之,当所需要的精度较高时,可增加第一触控电极201的数量,减少相邻的第一触控电极201之间的间隔。另外,第二触控电极202的数量和间距也可根据实际情况而具体设置。
例如,第一触控电极201和第二触控电极202设置在第一基板20的同一侧或不同侧,且相对于第一触控电极201,第二触控电极202更靠近第二基板10。例如,如图2C所示,在一个示例中,第一触控电极201和第二触控电极202均设置在第一基板20远离第二基板10的一侧的表面上。又例如,第二触控电极202还可以设置在第一基板20靠近第二基板10的表面上,第一触控电极201设置在第一基板20远离第二基板10的表面上。
例如,第一触控电极201和第二触控电极202层叠且绝缘设置,从而可以形成垂直电场结构。如图2C所示,该触控面板还包括第一绝缘层203,第一绝缘层203设置在第一触控电极201和第二触控电极202之间以使第一触控电极201和第二触控电极202彼此绝缘。例如,第一绝缘层203可以覆盖在第二触控电极202上,第一触控电极201设置在第一绝缘层203上,从而第一触控电极201和第二触控电极202形成垂直电场,且在整个触控单元中都会存在垂直电场,从而增强第一触控电极201和第二触控电极202之间的电场强度,提高触控精度。
例如,如图2A所示,第二触控电极202可以为板状电极。该板状电极可以快速地将第二触控电极202上的静电电荷传导至接地端,避免静电电荷累积而产生静电放电,对触控面板造成ESD损害,改善静电释放不良现象,提升触控产品的良率。
例如,触控面板可以包括多个第二触控电极202。每个第二触控电极202与至少两个第一触控电极201相对应以在电极的交叠处形成耦合电容。
例如,多个第一触控电极201阵列排布为多行多列,多个第二触控电极202排布为多行一列,每个第二触控电极202与至少一行所有的第一触控电极201相对应;或者多个第二触控电极202排布为一行多列,每个第二触控电极202与至少一列所有的第一触控电极201相对应。例如,如图4所示,在一个示例中,触控面板包括三个条状的第二触控电极202。该三个第二触控电极202排布为一行三列,且每个第二触控电极202与同一列的三个第一触控电极201相对应以在电极的交叠处形成耦合电容。
需要说明的是,多个第二触控电极202也可以排布为多行多列。例如,多个第一触控电极201阵列排布为三行四列,多个第二触控电极202排布为三行两列,每个第二触控电极202与位于一行的两个第一触控电极201相对应。
例如,如图2A所示,触控面板还包括多条第一电极引线204和至少一条 第二电极引线205。第一电极引线204与第一触控电极201电连接以用于传输电信号,第二电极引线205与第二触控电极202电连接以用于传输电信号。第一电极引线204和第二电极引线205可以将第一触控电极201和第二触控电极202分别引出至触控区域之外与例如触控芯片(未示出)电连接,以便于对第一触控电极201和第二触控电极202施加或读取控制信号。
例如,多条第一电极引线204分别与多个第一触控电极201一一对应电连接,以实现对每个第一触控电极201单独检测,从而实现多点触控功能。
例如,多条第一电极引线204沿同一方向延伸。如图2A所示,多条第一电极引线204沿Y方向延伸。需要说明的是,多条第一电极引线204还可以沿不同的方向延伸。例如,多条第一电极引线204的其中一部分沿Y方向延伸,其余部分沿与Y方向相反的方向延伸,从而可以减少触控面板上电极引线的走线宽度。
例如,该触控面板还包括柔性电路板(图2A-2C中未示出)。在一个示例中,柔性电路板可以设置在第一绝缘层203上,第一电极引线204延伸至柔性电路板,第二电极引线205例如通过设置在第一绝缘层203上的过孔延伸至柔性电路板。柔性电路板可以与外界触控芯片(图2A-2C中未示出)电性连接,从而触控芯片可以向触摸面板施加或读取控制信号,实现触摸检测和控制。
例如,如图2A所示,触控面板还包括至少一条第三电极引线206。该第三电极引线206连接在第二触控电极202和地线207之间,以用于将第二触控电极202上的静电电荷传输至地线207,从而实现面内静电释放,避免静电电荷对触控面板造成ESD损害,改善触控面板的ESD不良现象,提高产品良率。
例如,第三电极引线206上可以设置开关元件。当需要对触控面板进行静电放电时,打开开关元件,使第二触控电极202通过第三电极引线206与地线207连接,从而进行静电电荷传输;当不需要对触控面板进行静电放电时,关闭开关元件,使第二触控电极202和地线207断开,从而在触控操作过程中,避免地线207对第一触控电极201和第二触控电极202之间的耦合电容产生影响。
例如,第一显示电极101为子像素中连接到开关元件(例如薄膜晶体管)的像素电极或连接到公共电极线的公共电极,像素电极或公共电极例如可以为狭缝电极。
图5A示出了本公开实施例提供的又一种触控面板的第一基板的平面示意 图;图5B示出了本公开实施例提供的又一种触控面板的第二基板的平面示意图;图5C为沿图5A中线C-C'方向该触控面板的截面结构示意图。
例如,如图5A至5C所示,在一个示例中,触控面板还包括多个第二显示电极105。第一显示电极101例如可以与第二显示电极105位于同一层,且彼此之间至少部分交错。例如,第一显示电极101包括间隔设置的多个显示电极条,第二显示电极102也包括间隔设置的多个显示电极条,且第一显示电极101的电极条和第二显示电极105的电极条彼此交替设置,从而该触控面板可以适用于面内切换(In-plane-switching,IPS)型液晶面板。
又例如,如图5D所示,第一显示电极101和第二显示电极105还可以层叠且绝缘设置,即第一显示电极101和第二显示电极105可以位于不同层。例如,第一显示电极101和第二显示电极105其中之一为梳状电极,另一个为板状电极,第一显示电极101与第二显示电极105之间通过第二绝缘层106相间隔以彼此绝缘,从而该触控面板还可以适用于高级超维场转换技术(Advanced Super Dimension Switch,ADS)型液晶面板。
例如,第一显示电极101和第二显示电极105其中之一为公共电极,另一个为像素电极。
例如,第一显示电极101和第二显示电极105可以为透明电极,从而可以增加液晶面板的开口率和透过率。
又例如,第一显示电极101和第二显示电极105层叠且绝缘设置,且第一显示电极101与第二显示电极105均为梳状电极,从而触控面板还可以适用于边缘场开关(Fringe Field Switching,FFS)型液晶面板。
例如,第一触控电极201形成的触控电极图案2011与第一显示电极101形成的显示电极图案相同。在一个示例中,如图5A至5C所示,第一显示电极101可以包括三个显示电极条,即显示电极图案由三个显示电极条形成,从而触控电极图案2011也可以由三个触控电极条形成。
图6A示出了本公开实施例提供的再一种触控面板的第一基板的平面示意图;图6B为沿图6A中线D-D'方向该触控面板的截面结构示意图。
例如,如图2B所示,第二基板10还设置有多条数据线102和多条扫描线103,多条数据线102和多条扫描线103相互交叉以界定多个显示区域,每个显示区域内包括一个第一显示电极101和一个第二显示电极105。第一触控电极201形成的触控电极图案2011还可以与一个显示区域中的显示电极图案 1011相同。如图6A和6B所示,在一个示例中,第一显示电极101包括三个显示电极条,第二显示电极105也包括三个显示电极条,即显示电极图案由六个显示电极条形成,从而触控电极图案2011也可以由六个触控电极条形成。
例如,如图2B所示,在数据线102和扫描线103交叉的位置处设置有薄膜晶体管104。该薄膜晶体管104可以作为显示区域的开关元件。
例如,第一触控电极201可以为触控驱动电极或触控感应电极,相应地,第二触控电极202为触控感应电极或触控驱动电极。
例如,第一触控电极201和第二触控电极202可以为透明电极。
例如,透明电极可以采用透明导电材料或其他合适的材料制备,透明导电材料例如可以为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。
例如,第一电极引线204、第二电极引线205和第三电极引线206的材料可以为金属导电材料,例如可以由选自钼、铜、铝、钛中的一种或多种或以上金属任意组合形成的合金中的一种或多种或其他合适的材料形成。第一电极引线204、第二电极引线205和第三电极引线206的材料还可以为透明导电材料,从而第一电极引线204、第二电极引线205和第三电极引线206可以不影响触控面板的开口率。
例如,第一基板20可以为透明绝缘基板,第二基板10也可以为透明绝缘基板。透明绝缘基板的示例可以为玻璃基板、石英基板、塑料基板、陶瓷基板、硅胶基板或其他合适的基板。
例如,第一绝缘层203的材料的示例包括氮化硅(SiNx)、氧化硅(SiOx)、氮氧化硅(SiNxOy)或其他合适的材料。第二绝缘层106的材料的示例也包括氮化硅(SiNx)、氧化硅(SiOx)、氮氧化硅(SiNxOy)或其他合适的材料。
需要说明的是,为了清楚显示上述连接关系,图2A中仅示出了三行三列的第一触控电极201和一个第二触控电极202,显然,本公开实施例提供的触控面板还可设置更多的第一触控电极201和第二触控电极202,本公开在此不作限制。值得注意的是,本公开实施例提供的触控面板中,多条第一电极引线和至少一条第二电极引线无需在触控面板的边缘走线,从而可适用于窄边框甚至无边框电子产品。
本公开实施例还提供一种触控装置。图7示出了本公开实施例提供的一种触控装置的平面结构示意图,图8示出了本公开实施例提供的一种触控装置的 截面结构示意图。
例如,如图7所示,该触控装置包括上述任一项所述的触控面板100。触控面板100被配置为接受触摸信息。该触控面板100的第一触控电极形成的触控电极图案与第一显示电极形成的显示电极图案相匹配,从而可避免周期性结构的第一触控电极与第一显示电极形成空间拍频效应,规避摩尔纹现象,提高显示画面的品质。
例如,该触控面板100可以为多种类型,例如OGS(One Glass Solution)式触控面板、In-Cell(内嵌式)触控面板或者On-Cell(外嵌式)触控面板中的任意一种。
例如,触控装置还包括触控芯片200。触控芯片200被配置为给第一触控电极或第二触控电极施加电信号,相应地,还被配置为从第二触控电极或第一触控电极上读取电信号,从而实现触控检测。例如,触控芯片200通过第一电极引线和第二电极引线分别与第一触控电极和第二触控电极电连接以传输电信号。
例如,触控芯片200可以单独提供,也可以和其他计算设备一体形成,例如可以采用专用计算设备(例如数字处理器(DSP)等),也可以采用通用计算设备(例如中央处理单元(CPU))实现。
例如,触控面板100还可以被配置为显示图像,且第一基板设置在触控面板100的显示侧。
例如,触控面板100可以为液晶触控面板,且第一基板和第二基板对盒设置。例如,第一基板为对置基板,第二基板为阵列基板。对置基板例如为彩膜基板,彩膜基板上设置有一偏光层,第一触控电极和第二触控电极设置在彩膜基板的衬底基板和偏光层之间,此时,触控面板100为On-Cell型触控面板。
例如,如图8所示,在一个示例中,触控面板100还可以包括第三基板30。触控面板100可以为液晶触控面板,第二基板10与第三基板30对盒设置以形成显示面板,且第二基板10为阵列基板,第三基板30为对置基板。例如,对置基板可以为彩膜基板,从而在第三基板30上设置有彩膜层和黑矩阵等。第一基板20可以设置在第三基板30远离第二基板10的一侧。在该情形中,第一基板20和显示面板可以分别独立制作,然后再组装在一起。
例如,该触控面板100还可以为有机发光二极管(OLED)触控面板,且第一基板为封装基板,第二基板为阵列基板。
例如,本公开实施例提供的触控面板100可以为矩形触控面板、圆形触控面板、椭圆形触控面板或多边形触控面板等。另外,该触控面板100不仅可以为平面触控面板,也可以为曲面触控面板,甚至球面触控面板。
例如,触控装置可以为电视、数码相机、智能手机、手表、平板电脑、笔记本电脑、导航仪等任何具有触控功能的产品或者部件。
本公开实施例还提供一种触控面板的制备方法,该制备方法可以用于制备上述任一实施例所述的触控面板。图9示出了本公开实施例提供的触控面板的制备方法的示意性流程图。
例如,如图9所示,该制备方法可以包括如下步骤:
步骤S1:形成多个第一触控电极和至少一个第二触控电极,每个第一触控电极包括至少一个触控电极图案,第一触控电极和第二触控电极层叠设置且彼此绝缘;
步骤S2:形成多个第一显示电极,每个第一显示电极包括显示电极图案。
例如,在步骤S1和步骤S2中,触控电极图案与显示电极图案相匹配,从而可以减少或规避摩尔纹现象,提高显示画面的品质。
例如,触控面板包括相互平行设置的第一基板和第二基板。在步骤S1中,第一触控电极和第二触控电极形成在第一基板上。在步骤S2中,第一显示电极形成在第二基板上。
例如,在本公开实施例的一个示例中,步骤S1可以包括:在第一基板上沉积一层第一导电层,该第一导电层用于形成第二触控电极;然后在第二触控电极上沉积一层绝缘层薄膜,以形成第一绝缘层;接着利用构图工艺在第一绝缘层上形成第二导电层,该第二导电层用于形成第一触控电极,且第一触控电极包括至少一个触控电极图案。
例如,第一触控电极和第二触控电极层叠设置,且可以通过第一绝缘层以实现彼此绝缘的目的。
例如,沉积第一导电层和第二导电层可以采用气相沉积法、磁控溅射法、真空蒸镀法或其他合适的处理形成。
例如,第一导电层和第二导电层的材料可以为透明导电材料或其他合适的材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)和碳纳米管等。
例如,沉积绝缘层薄膜可以采用化学气相沉积(CVD),如等离子体增强化学气相沉积法(PECVD)、低压力化学气相沉积(LPCVD)等,亦可以为物 理气相沉积(PVD)等。
例如,第一触控电极和第二触控电极形成互电容触控技术,从而可以实现多点触控功能。在垂直于第一基板的方向上,第一触控电极和第二触控电极至少部分交叠,且在交叠处形成耦合电容,以感测触控操作。
例如,第一触控电极和第一显示电极一一对应设置,且多个第一触控电极按阵列排布形成在第一基板上,多个第一显示电极按阵列排布形成在第二基板上。在垂直于第一基板的方向上,触控电极图案和显示电极图案彼此大致重叠,从而进一步规避摩尔纹现象。
例如,第二触控电极可以为板状电极。该板状电极可以实现面内静电释放,避免静电电荷累积导致的静电放电对触控面板造成ESD损害,改善ESD不良现象,提升触控产品的良率。
例如,第一显示电极包括间隔设置的多个显示电极条,相应地,第一触控电极包括间隔设置的多个触控电极条。
例如,在本公开实施例的一个示例中,步骤S2还可以包括:在第二基板上形成第二显示电极。例如,第二显示电极也包括间隔设置的多个显示电极条,第一显示电极与第二显示电极形成在同一层中,且第一显示电极的电极条和第二显示电极的电极条彼此之间至少部分交错设置。又例如,第一显示电极和第二显示电极还可以层叠且绝缘设置,即第一显示电极和第二显示电极可以位于不同层。
例如,第一显示电极和第二显示电极其中之一为像素电极,另一个为公共电极。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种触控面板,包括:
    多个第一触控电极和至少一个第二触控电极;
    多个第一显示电极,
    其中,所述第一触控电极和所述第二触控电极层叠设置且彼此绝缘,每个所述第一触控电极包括至少一个触控电极图案,每个所述第一显示电极包括显示电极图案,所述触控电极图案与所述显示电极图案相匹配。
  2. 根据权利要求1所述的触控面板,其中,所述触控电极图案包括多个触控电极条,所述显示电极图案包括多个显示电极条。
  3. 根据权利要求1或2所述的触控面板,还包括相互平行设置的第一基板和第二基板,
    其中,所述多个第一触控电极按阵列排布设置在所述第一基板上,所述第二触控电极设置在所述第一基板上,所述多个第一显示电极按阵列排布设置在所述第二基板上,且在垂直于所述第一基板方向上,所述触控电极图案与所述显示电极图案彼此大致重叠。
  4. 根据权利要求3所述的触控面板,其中,所述第一触控电极和所述第二触控电极设置在所述第一基板的同一侧或不同侧,且相对于所述第一触控电极,所述第二触控电极更靠近所述第二基板。
  5. 根据权利要求1-4任一项所述的触控面板,其中,所述第二触控电极为板状电极。
  6. 根据权利要求1-5任一项所述的触控面板,包括多个第二触控电极,
    其中,每个所述第二触控电极与至少两个所述第一触控电极相对应。
  7. 根据权利要求6所述的触控面板,其中,所述多个第一触控电极阵列排布为多行多列,
    所述多个第二触控电极排布为多行,每个所述第二触控电极与至少一行所有的所述第一触控电极相对应;或者
    所述多个第二触控电极排布为多列,每个所述第二触控电极与至少一列所有的所述第一触控电极相对应。
  8. 根据权利要求1-7任一项所述的触控面板,还包括多条第一电极引线和至少一条第二电极引线,
    其中,所述第一电极引线与所述第一触控电极电连接以用于传输电信号,所述第二电极引线与所述第二触控电极电连接以用于传输电信号。
  9. 根据权利要求8所述的触控面板,其中,所述多条第一电极引线与所述多个第一触控电极一一对应电连接。
  10. 根据权利要求8或9所述的触控面板,其中,所述多条第一电极引线沿同一方向延伸。
  11. 根据权利要求1-10任一项所述的触控面板,还包括至少一条第三电极引线,
    其中,所述第三电极引线连接在所述第二触控电极和地线之间,以用于将所述第二触控电极上的静电电荷传输至所述地线。
  12. 根据权利要求1-11任一项所述的触控面板,其中,所述第一触控电极、所述第二触控电极和所述第一显示电极为透明电极。
  13. 根据权利要求1-12任一项所述的触控面板,其中,所述第一显示电极为像素电极或公共电极。
  14. 根据权利要求1-13任一项所述的触控面板,还包括多个第二显示电极,
    其中,所述第一显示电极与所述第二显示电极层叠且绝缘设置,所述第一显示电极和所述第二显示电极其中之一为梳状电极,另一个为板状电极,所述第一显示电极和所述第二显示电极其中之一为公共电极,另一个为像素电极。
  15. 根据权利要求3或4所述的触控面板,其中,所述第一基板和所述第二基板彼此对盒以形成液晶触控面板,且所述第一基板为对置基板,所述第二基板为阵列基板。
  16. 根据权利要求3或4所述的触控面板,还包括第三基板,
    其中,所述第二基板与所述第三基板彼此对盒以形成液晶触控面板,所述第二基板为阵列基板,所述第三基板为对置基板,所述第一基板设置在所述第三基板远离所述第二基板的一侧。
  17. 一种触控装置,包括:权利要求1-16任一项所述的触控面板。
  18. 根据权利要求17所述的触控装置,还包括触控芯片,
    其中,所述触控芯片被配置为给所述第一触控电极或所述第二触控电极施加电信号,还被配置为从所述第二触控电极或所述第一触控电极上读取电信号。
  19. 根据权利要求17或18所述的触控装置,其中,所述触控面板被配置显示图像,且所述第一触控电极和所述第二触控电极设置在所述触控面板的显示侧。
  20. 一种应用于权利要求1-16任一项所述的触控面板的制备方法,包括:
    形成多个第一触控电极和至少一个第二触控电极,每个所述第一触控电极包括至少一个触控电极图案,所述第一触控电极和所述第二触控电极层叠设置且彼此绝缘;以及
    形成多个第一显示电极,每个所述第一显示电极包括显示电极图案,
    其中,所述触控电极图案与所述显示电极图案相匹配。
PCT/CN2017/113476 2017-05-12 2017-11-29 触控面板及其制备方法、触控装置 WO2018205560A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/070,913 US11188176B2 (en) 2017-05-12 2017-11-29 Touch panel and manufacture thereof, touch device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710335259.5 2017-05-12
CN201710335259.5A CN108874244B (zh) 2017-05-12 2017-05-12 触控面板及触控装置

Publications (1)

Publication Number Publication Date
WO2018205560A1 true WO2018205560A1 (zh) 2018-11-15

Family

ID=64105546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113476 WO2018205560A1 (zh) 2017-05-12 2017-11-29 触控面板及其制备方法、触控装置

Country Status (3)

Country Link
US (1) US11188176B2 (zh)
CN (1) CN108874244B (zh)
WO (1) WO2018205560A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884828B (zh) * 2019-04-17 2022-01-11 京东方科技集团股份有限公司 显示面板及移动终端
JP2021072030A (ja) * 2019-11-01 2021-05-06 双葉電子工業株式会社 タッチパネル装置
CN113826063A (zh) * 2020-03-24 2021-12-21 京东方科技集团股份有限公司 触控面板及触控显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201812113U (zh) * 2010-09-02 2011-04-27 东莞市飞尔液晶显示器有限公司 一种双面触摸液晶显示屏
CN105159514A (zh) * 2015-09-15 2015-12-16 深圳市华星光电技术有限公司 一种触控面板及其制备方法
CN106527790A (zh) * 2016-10-31 2017-03-22 上海天马微电子有限公司 显示面板、显示装置及显示面板的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140210784A1 (en) * 2011-02-24 2014-07-31 Cypress Semiconductor Corporation Touch sensor device
TW201506724A (zh) * 2013-08-08 2015-02-16 Wintek Corp 觸控面板以及觸控顯示裝置
CN103885636B (zh) * 2014-03-10 2016-11-16 京东方科技集团股份有限公司 一种触摸显示装置及其制作方法
CN104199575B (zh) * 2014-08-29 2017-11-03 昆山龙腾光电有限公司 触控显示装置及其制作方法
CN105807979B (zh) * 2014-10-17 2019-02-05 奕力科技股份有限公司 内嵌式触控显示面板
CN104835439B (zh) * 2015-04-17 2018-02-06 业成光电(深圳)有限公司 显示装置及驱动方法
KR102410428B1 (ko) * 2015-11-04 2022-06-20 엘지디스플레이 주식회사 터치형 표시 장치
CN106201149B (zh) * 2016-08-02 2019-07-09 厦门天马微电子有限公司 触控显示面板及装置
CN106648219B (zh) * 2016-11-11 2020-03-10 京东方科技集团股份有限公司 触控组件、显示面板及制造触控组件的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201812113U (zh) * 2010-09-02 2011-04-27 东莞市飞尔液晶显示器有限公司 一种双面触摸液晶显示屏
CN105159514A (zh) * 2015-09-15 2015-12-16 深圳市华星光电技术有限公司 一种触控面板及其制备方法
CN106527790A (zh) * 2016-10-31 2017-03-22 上海天马微电子有限公司 显示面板、显示装置及显示面板的制造方法

Also Published As

Publication number Publication date
US11188176B2 (en) 2021-11-30
CN108874244A (zh) 2018-11-23
US20210208732A1 (en) 2021-07-08
CN108874244B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US10310345B2 (en) In-cell touch liquid crystal display apparatus, method of manufacturing the same, method of manufacturing thin film transistor array substrate, and method of manufacturing color filter array substrate
CN110321027B (zh) 具有保护的显示器用触摸传感器
US9529482B2 (en) Capacitive in-cell touch screen and display device
CN110321029B (zh) 用于显示器的触摸传感器
KR102489956B1 (ko) 표시 장치 및 표시 장치의 구동 방법
TWI476666B (zh) 內嵌式觸控面板
US9619066B2 (en) Touch sensor integrated type display device
US10175834B2 (en) Position input device and display device
US9104254B2 (en) Touch screen panel
US20190050076A1 (en) Touch panel, mutual capacitive touch screen, and touch display device
KR20180063175A (ko) 인-셀 터치 액정 패널 및 그 어레이 기판
US20110169783A1 (en) Touch Display Device
WO2017020367A1 (zh) 内嵌式自电容触控显示面板及其制作方法
US20130265282A1 (en) Touch panel and display device with touch panel
US20180275809A1 (en) In-cell touch screen and display device
US20120212701A1 (en) Liquid crystal display and method for manufacturing the same
JP2015109067A (ja) 入力装置および表示装置
TWI480633B (zh) 觸控面板及使用其之觸控液晶顯示面板
US20150362949A1 (en) Touch display device and touch substrate
WO2018205560A1 (zh) 触控面板及其制备方法、触控装置
WO2017161693A1 (zh) 触控基板及显示装置
US9753572B2 (en) Touch panel, method of fabricating the same and touch display device
US20160239130A1 (en) Touch panel and touch display device using the same
US20160349870A1 (en) Self Capacitance Type Touch Panel and Conductive Layer Structure Thereof
WO2020113750A1 (zh) 一种显示屏及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909170

Country of ref document: EP

Kind code of ref document: A1