WO2018203680A1 - 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2018203680A1 WO2018203680A1 PCT/KR2018/005137 KR2018005137W WO2018203680A1 WO 2018203680 A1 WO2018203680 A1 WO 2018203680A1 KR 2018005137 W KR2018005137 W KR 2018005137W WO 2018203680 A1 WO2018203680 A1 WO 2018203680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- srs
- base station
- srs resource
- uplink
- timing advance
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for setting timing advance in connection with transmission and reception of a signal using a beam and an apparatus for supporting the same.
- Mobile communication systems have been developed to provide voice services while ensuring user activity.
- the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
- the present specification proposes a method and apparatus for setting a plurality of timing advance processes (TA processes) in consideration of a plurality of beam pairs.
- TA processes timing advance processes
- the present specification provides a method for setting and / or indicating a plurality of TA processes based on reference RS (s) when a plurality of TA processes are required for transmission and reception of signals between a terminal and a base station.
- a method and apparatus therefor are proposed.
- the plurality of TA processes when a plurality of TA processes are required to transmit and receive a signal between a terminal and a base station, the plurality of TA processes may be configured and / or based on resource (s) of a sounding reference signal (SRS). Or a method for indicating and an apparatus therefor are proposed.
- SRS sounding reference signal
- the method SRS resources for transmitting a sounding reference signal (SRS) from the base station Receiving configuration information (SRS resource configuration information), and the SRS resource configuration information includes configuration information indicating at least one timing advance value preset for one or more SRS resources. And receiving, from the base station, control information indicating a specific SRS resource among the one or more SRS resources, and an uplink transmission time point configured using a timing advance value corresponding to the specific SRS resource.
- the process includes transmitting an uplink signal.
- the SRS resource configuration information may include one or more identifiers representing the one or more SRS resources, and the at least one preset timing advance value may include: It can be set using one or more identifiers.
- a timing advance value may be set differently for each SRS resource group. have.
- a timing advance value is set differently for each beam group. Can be.
- a timing advance value is set differently for each cell group. Can be.
- the uplink signal may be a physical uplink shared channel (PUSCH).
- PUSCH physical uplink shared channel
- control information may be received through an SRS resource indicator field of an uplink grant.
- the SRS resource configuration information may include at least one virtual cell identifier or power control preset for one or more SRS resources. It may further include setting information indicating the control.
- the method when the terminal receives, from the base station, control information indicating a plurality of SRS resources of the one or more SRS resources, corresponding to the plurality of SRS resources
- the method may further include transmitting the uplink signal at an uplink transmission time point set using a maximum value among timing advance values.
- the method when the terminal receives, from the base station, control information indicating a plurality of SRS resources of the one or more SRS resources, corresponding to the plurality of SRS resources
- the method may further include transmitting the uplink signal at an uplink transmission time point set using an average value of timing advance values.
- the SRS resource configuration information may be received through higher layer signaling.
- the method may include transmitting the uplink signal at an uplink transmission time point configured using a first timing advance value corresponding to the specific SRS resource and a second timing advance value corresponding to the specific reference signal.
- the one or more reference signals may include at least one of a synchronization signal block or a channel state information reference signal (CSI-RS).
- CSI-RS channel state information reference signal
- the terminal may be functionally connected to an RF module and a RF module for transmitting and receiving a radio signal.
- a processor connected to the processor, the processor receiving SRS resource configuration information for transmitting a sounding reference signal (SRS) from a base station, wherein the SRS resource configuration information is And configuration information indicating at least one timing advance value preset for one or more SRS resources, and controlling, from the base station, to indicate a specific SRS resource among the one or more SRS resources.
- SRS sounding reference signal
- the SRS resource configuration information includes one or more identifiers representing the one or more SRS resources, and the at least one preset timing advance value is It can be set using one or more identifiers.
- an optimal timing advance (TA) value for each beam pair may be applied. It can be effective.
- the TA can be efficiently set by using the resources of the sounding reference signal without a separate signaling procedure for TA setting.
- the TA setting is performed hierarchically, there is an effect of preventing the overhead that may occur in the TA setting.
- Figure 1 shows an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
- FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
- FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
- FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
- FIG. 5 shows an example of a connection scheme of a TXRU and an antenna element to which the method proposed in the present specification can be applied.
- FIG. 6 shows various examples of a service area for each TXRU to which the method proposed in the present specification can be applied.
- FIG. 7 shows examples of a beam pair configuration for transmitting and receiving data between a terminal and base stations to which the method proposed in the present specification can be applied.
- FIG 8 shows an example of a method of performing uplink transmission using a TA process setting based on SRS resources to which the method proposed in the present specification can be applied.
- FIG. 9 illustrates an example of an uplink beam management method through SRS transmission to which the method described herein may be applied.
- FIG. 10 is a flowchart illustrating an operation of a terminal for performing uplink transmission by setting timing advance to which the method proposed in the present specification may be applied.
- FIG. 11 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
- FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), base transceiver system (BTS), access point (AP), next generation NB, general NB , gNodeB), and the like.
- a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
- UE user equipment
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS Advanced Mobile Station
- WT Wireless Terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station.
- a transmitter may be part of a base station, and a receiver may be part of a terminal.
- a transmitter may be part of a terminal and a receiver may be part of a base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- eLTE eNB An eLTE eNB is an evolution of an eNB that supports connectivity to EPC and NGC.
- gNB Node that supports NR as well as connection with NGC.
- New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
- Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
- Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
- NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
- NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
- Non-standalone NR A deployment configuration where a gNB requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
- Non-Standalone E-UTRA Deployment configuration in which the eLTE eNB requires gNB as an anchor for control plane connection to NGC.
- User plane gateway The endpoint of the NG-U interface.
- FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
- the NG-RAN consists of gNBs that provide control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE (User Equipment).
- RRC control plane
- the gNBs are interconnected via an Xn interface.
- the gNB is also connected to the NGC via an NG interface.
- the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
- AMF Access and Mobility Management Function
- UPF User Plane Function
- the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
- the plurality of subcarrier intervals may be represented by an integer N (or, Can be derived by scaling. Further, even if it is assumed that very low subcarrier spacing is not used at very high carrier frequencies, the used numerology may be selected independently of the frequency band.
- OFDM Orthogonal Frequency Division Multiplexing
- Multiple OFDM numerologies supported in the * NR system may be defined as shown in Table 1.
- the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
- Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
- each radio frame is It consists of 10 subframes having a section of.
- FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
- the transmission of an uplink frame number i from a user equipment (UE) is greater than the start of the corresponding downlink frame at the corresponding UE. You must start before.
- slots within a subframe Numbered in increasing order of within a radio frame They are numbered in increasing order of.
- One slot is Consists of consecutive OFDM symbols of, Is determined according to the numerology and slot configuration used. Slot in subframe Start of OFDM symbol in the same subframe Is aligned with the beginning of time.
- Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols of a downlink slot or an uplink slot can be used.
- Table 2 shows numerology Shows the number of OFDM symbols per slot for a normal CP in Table 3, This indicates the number of OFDM symbols per slot for the extended CP in.
- an antenna port In relation to physical resources in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
- the antenna port is defined so that the channel on which the symbol on the antenna port is carried can be inferred from the channel on which another symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be deduced from the channel carrying the symbol on another antenna port, then the two antenna ports are quasi co-located or QC / QCL. quasi co-location relationship.
- the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
- FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
- the resource grid is in the frequency domain
- one subframe includes 14 x 2 u OFDM symbols, but is not limited thereto.
- the transmitted signal is One or more resource grids composed of subcarriers, and Is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
- the numerology And one resource grid for each antenna port p.
- FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
- each element of the resource grid for antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe. Index pair when referring to a resource element in a slot This is used. From here, to be.
- Numerology Resource elements for antenna and antenna port p Is a complex value Corresponds to If there is no risk of confusion, or if no specific antenna port or numerology is specified, the indices p and Can be dropped, so the complex value is or This can be
- the physical resource block (physical resource block) is in the frequency domain It is defined as consecutive subcarriers. On the frequency domain, the physical resource blocks can be zero Numbered until. At this time, a physical resource block number on the frequency domain And resource elements The relationship between is given by Equation 1.
- the terminal may be configured to receive or transmit using only a subset of the resource grid.
- the set of resource blocks set to be received or transmitted by the UE is from 0 on the frequency domain. Numbered until.
- Physical uplink control signaling should be able to carry at least hybrid-ARQ acknowledgment, CSI report (including beamforming information if possible), and scheduling request.
- At least two transmission methods are supported for an uplink control channel (UL control channel) supported by the NR system.
- UL control channel uplink control channel
- the uplink control channel may be transmitted in a short duration around the uplink symbol (s) transmitted last in the slot.
- the uplink control channel is time-division-multiplexed and / or frequency-division-multiplexed with the UL data channel in the slot.
- transmission of one symbol unit of a slot is supported.
- the short uplink control information (UCI) and data are frequency-divided between the UE and the terminals when at least the physical resource block (PRB) for the short UCI and data does not overlap. -Multiplexed.
- Whether symbol (s) in the slot for transmitting the short PUCCH are supported at least 6 GHz or more to support time division multiplexing (TDM) of short PUCCHs from different terminals in the same slot; Mechanisms for notifying the terminal are supported.
- TDM time division multiplexing
- the UCI and RS are multiplexed to a given OFDM symbol by frequency division multiplexing (FDM); and 2)
- FDM frequency division multiplexing
- At least, short-term PUCCH over a 2-symbol duration of the slot is supported.
- the subcarrier spacing between the downlink (DL) / uplink (UL) data and the short-term PUCCH in the same slot is supported.
- a semi-static configuration is supported in which a PUCCH resource of a given terminal in a slot, ie short PUCCHs of different terminals, can be time division multiplexed within a given duration in the slot.
- PUCCH resources include a time domain, a frequency domain, and, if applicable, a code domain.
- the short-term PUCCH may be extended to the end of the slot from the terminal perspective. In this case, an explicit gap symbol is unnecessary after the short-term PUCCH.
- Frequency division multiplexing may be performed by a terminal.
- the uplink control channel may be transmitted in long-duration over a plurality of uplink symbols to improve coverage.
- the uplink control channel is frequency division multiplexed with the uplink data channel in the slot.
- a UCI carried by a long duration UL control channel with at least a Peak to Average Power Ratio (PAPR) design may be transmitted in one slot or multiple slots.
- PAPR Peak to Average Power Ratio
- Transmission using multiple slots is allowed in at least some cases for a total duration (eg 1 ms).
- time division multiplexing between RS and UCI is supported for DFT-S-OFDM.
- the long UL part of the slot may be used for long time PUCCH transmission. That is, a long time PUCCH is supported for both an uplink dedicated slot (UL-only slot) and a slot having a variable number of symbols composed of at least four symbols.
- the UCI may be repeated in N slots (N> 1), where the N slots may or may not be contiguous in slots for which a long time PUCCH is allowed. .
- Simultaneous transmission of PUSCH and PUCCH is supported for at least long PUCCH. That is, even if data exists, uplink control on PUCCH resources is transmitted.
- UCI in PUSCH is supported.
- Intra-TTI slot frequency hopping is supported within TTI.
- TDM and FDM between short-term PUCCH and long-term PUCCH are supported for other terminals in at least one slot.
- the PRB (or multiple PRBs) is the minimum resource unit size for the uplink control channel.
- frequency resources and hopping may not be spread over carrier bandwidth.
- the UE specific RS is used for NR-PUCCH transmission.
- the set of PUCCH resources is set by higher layer signaling, and the PUCCH resources in the set are indicated by downlink control information (DCI).
- DCI downlink control information
- the timing between the data reception and the hybrid-ARQ acknowledgment transmission should be able to be indicated dynamically (at least with the RRC).
- the combination of a semi-static configuration and dynamic signaling (for at least some type of UCI information) is used to determine the PUCCH resources for the 'long and short PUCCH format'.
- the PUCCH resource includes a time domain, a frequency domain, and, if applicable, a code domain.
- uplink transmission of at least a single HARQ-ACK bit is at least supported.
- mechanisms are supported to enable frequency diversity.
- a time interval between scheduling request (SR) resources set for the UE may be smaller than one slot.
- Beam management in NR is defined as follows.
- Beam determination the TRP (s) or the UE selecting its transmit / receive beam.
- Beam measurement an operation in which the TRP (s) or the UE measures the characteristics of the received beamforming signal.
- Beam reporting the UE reporting information of the beamformed signal based on the beam measurement.
- Beam sweeping an operation of covering a spatial region using beams transmitted and / or received during a time interval in a predetermined manner.
- Tx / Rx beam correspondence (correspondence) at the TRP and the UE is defined as follows.
- the Tx / Rx beam correspondence in the TRP is maintained if at least one of the following is met.
- the TRP may determine the TRP receive beam for uplink reception based on downlink measurements of the UE for one or more transmit beams of the TRP.
- the TRP may determine the TRP Tx beam for downlink transmission based on the uplink measurement of the TRP for one or more Rx beams of the TRP.
- the Tx / Rx beam correspondence at the UE is maintained if at least one of the following is met.
- the UE may determine the UE Tx beam for uplink transmission based on the downlink measurement of the UE for one or more Rx beams of the UE.
- the UE may determine the UE receive beam for downlink reception based on the indication of the TRP based on uplink measurement for one or more Tx beams.
- TRP capability indication of UE beam response related information is supported.
- the following DL L1 / L2 beam management procedure is supported within one or multiple TRPs.
- P-1 Used to enable UE measurement for different TRP Tx beams to support the selection of TRP Tx beams / UE Rx beam (s).
- Beamforming in TRP generally includes intra / inter-TRP Tx beam sweeps in different beam sets.
- Beamforming at the UE it typically includes a UE Rx beam sweep from a set of different beams.
- P-2 UE measurements for different TRP Tx beams are used to change the inter / intra-TRP Tx beam (s).
- P-3 UE measurement for the same TRP Tx beam is used to change the UE Rx beam when the UE uses beam forming.
- At least aperiodic reporting triggered by the network is supported in P-1, P-2 and P-3 related operations.
- the UE measurement based on RS for beam management (at least CSI-RS) consists of K (total number of beams) beams, and the UE reports the measurement results of the selected N Tx beams.
- N is not necessarily a fixed number.
- Procedures based on RS for mobility purposes are not excluded.
- the reporting information includes information indicating the measurand for the N beam (s) and the N DL transmission beams if at least N ⁇ K.
- the UE may report a CRI (CSI-RS resource indicator) of N'.
- the UE may be configured with the following higher layer parameters for beam management.
- the links between the report setup and the resource setup are established in the agreed CSI measurement setup.
- CSI-RS based P-1 and P-2 are supported with resource and reporting configuration.
- -P-3 can be supported with or without reporting settings.
- a reporting setting that includes at least the following:
- Time domain operations e.g., aperiodic, periodic, semi-persistent
- a resource setting that includes at least the following:
- RS type at least NZP CSI-RS
- Each CSI-RS resource set includes K ⁇ 1 CSI-RS resources (some parameters of K CSI-RS resources may be the same, e.g. port number, time domain operation, density and period)
- NR supports the next beam report considering the L group with L> 1.
- Measurement quantity for the N1 beam (supporting L1 RSRP and CSI reporting (if CSI-RS is for CSI acquisition))
- Group-based beam reporting as described above may be configured in units of UEs.
- NR supports that the UE can trigger a mechanism to recover from beam failure.
- a beam failure event occurs when the quality of the beam pair link of the associated control channel is low enough (eg compared to a threshold, timeout of the associated timer).
- the mechanism for recovering from beam failure (or failure) is triggered when a beam failure occurs.
- the network is explicitly configured in the UE with resources for transmitting UL signals for recovery purposes.
- the configuration of resources is supported where the base station listens from all or part of the direction (eg, random access region).
- the UL transmission / resource reporting a beam failure may be located at the same time instance as the PRACH (resource orthogonal to the PRACH resource) or at a different time instance (configurable for UE) than the PRACH. Transmission of the DL signal is supported so that the UE can monitor the beam to identify new potential beams.
- NR supports beam management regardless of beam-related indications. If a beam related indication is provided, the information about the UE side beam forming / receiving procedure used for CSI-RS based measurement may be indicated to the UE via QCL.
- QCL parameters to be supported in NR parameters for delay, doppler, average gain, etc. used in the LTE system, as well as spatial parameters for beamforming at the receiving end will be added, and angle of arrival (AOA) from the perspective of the terminal receiving beamforming. Parameters of angle of departure (AOD) may be included in terms of related parameters and / or base station receive beamforming.
- the angle of arrival related parameter is collectively called a spatial Rx (receive) parameter. That is, the fact that a specific antenna port is QCLed from another antenna port and a spatial Rx parameter point of view means that a receiver receiving the two antenna ports may use the same spatial filter. This is the same as informing the terminal that the base station applies the same or similar transmission beam when transmitting the two antenna ports from a downlink perspective.
- NR supports the use of the same or different beams in the control channel and corresponding data channel transmissions.
- the UE may be configured to monitor the NR-PDCCH on M beam pair links simultaneously.
- the maximum values of M ⁇ 1 and M may depend at least on the UE capabilities.
- the UE may be configured to monitor the NR-PDCCH on different beam pair link (s) in different NR-PDCCH OFDM symbols.
- Parameters related to UE Rx beam setup for monitoring the NR-PDCCH on multiple beam pair links are configured by higher layer signaling or MAC CE and / or are considered in the search space design.
- NR supports the indication of the spatial QCL assumption between the DL RS antenna port (s) and the DL RS antenna port (s) for demodulation of the DL control channel.
- candidate signaling methods for beam indication for NR-PDCCH i.e., configuration method for monitoring NR-PDCCH
- MAC CE signaling RRC signaling
- DCI signaling spec transparent and / or implicit methods, and combinations of these signaling methods. to be.
- the NR For reception of a unicast DL data channel, the NR supports the indication of the spatial QCL assumption between the DL RS antenna port and the DMRS antenna port of the DL data channel.
- Information indicative of the RS antenna port is indicated via DCI (downlink grant). This information also indicates a DMRS antenna port and a QCL RS antenna port.
- the different set of DMRS antenna ports for the DL data channel can be represented as QCL with another set of RS antenna ports.
- next-generation communication such as 5G and New Rat (NR)
- NR New Rat
- RAT radio access technology
- massive MTC Machine Type Communications
- next-generation radio access technology considering enhanced mobile broadband (eMBB) communication, massive MTC (mMTC), Ultra-Reliable and Low Latency Communication (URLLC), and the like are currently discussed.
- eMBB enhanced mobile broadband
- mMTC massive MTC
- URLLC Ultra-Reliable and Low Latency Communication
- NR 'new RAT
- the New RAT system uses an OFDM transmission scheme or a similar transmission scheme and typically has the OFDM numerology of Table 4 below.
- Table 4 shows an example of OFDM parameters of the New RAT system.
- mmW millimeter wave
- the wavelength is 1 cm
- a total of 64 (8x8) antenna elements can be installed in a 2-dimension array at intervals of 0.5 lambda (wavelength) on a panel of 4 x 4 cm.
- a plurality of antenna elements are used to increase beamforming (BF) gain to increase coverage or to increase throughput.
- BF beamforming
- TXRU Transceiver Unit
- the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
- hybrid BF having B TXRUs having a smaller number than Q antenna elements in an intermediate form between Digital BF and analog BF may be considered.
- HBF is different depending on the connection method of B TXRU and Q antenna elements, but the direction of beams that can be simultaneously transmitted is limited to B or less.
- FIG 5 shows an example of a connection method of the TXRU and the antenna element to which the method proposed in the present specification can be applied.
- the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna elements.
- FIG. 5A illustrates an example of a method in which a TXRU is connected to a sub-array.
- the antenna element is connected to only one TXRU. Unlike (a) of FIG. 5, (b) shows how the TXRU is connected to all antenna elements.
- the antenna element is connected to all TXRUs.
- W represents a phase vector multiplied by an analog phase shifter.
- the direction of analog beamforming is determined by W.
- the mapping between the CSI-RS antenna ports and the TXRUs may be 1-to-1 or 1-to-many.
- PDSCH transmission is possible only in one analog beam direction at one time by analog beamforming in mmW.
- the base station transmits data only to some few UEs in a specific direction.
- FIG. 6 shows various examples of a service area for each TXRU to which the method proposed in the present specification can be applied.
- FIG. 6 illustrates a structure in which four sub-arrays are formed by dividing 256 antenna elements into four, and a TXRU is connected to each sub-array.
- each sub-array is composed of a total of 64 (8x8) antenna elements in the form of a 2-dimension array, it is possible to cover an area corresponding to the horizontal angle region of 15 degrees and the vertical angle region of 15 degrees by a specific analog beamforming.
- the area that the base station should serve is divided into a plurality of areas, and the service is performed one at a time.
- antenna port and TXRU may be interpreted to have the same meaning in the following description.
- a digital beam having a higher resolution may be formed to increase throughput of a corresponding region.
- each TXRU (antenna port, sub-array) has a different analog beamforming direction
- data can be simultaneously transmitted in a corresponding subframe (SF) to UEs distributed in a wider area.
- two of the four antenna ports are used for PDSCH transmission to UE1 in region 1, and the other two are used for PDSCH transmission to UE2 in region 2. Do it.
- FIG. 6B illustrates an example in which PDSCH 1 transmitted to UE1 and PDSCH 2 transmitted to UE2 are spatial division multiplexed (SDM).
- SDM spatial division multiplexed
- PDSCH 1 transmitted to UE1 and PDSCH 2 transmitted to UE2 may be transmitted by frequency division multiplexing (FDM).
- FDM frequency division multiplexing
- the method of serving one area using all antenna ports and the method of dividing the antenna ports to serve multiple areas simultaneously may be changed according to the RANK and MCS serving the UE. have.
- the preferred method also changes according to the amount of data to be transmitted to each UE.
- the base station calculates the cell throughput or scheduling metric that can be obtained when serving one region by using all antenna ports, and calculates the cell throughput or scheduling metric that can be obtained when serving two regions by dividing the antenna ports.
- the base station compares the cell throughput or scheduling metric obtained through each scheme to select the final transmission scheme.
- the base station In order for the base station to calculate the transmission MCS of the PDSCH according to the number of antenna ports and reflect the scheduling algorithm, CSI feedback from the UE suitable for this is required.
- the user equipment In the 3GPP LTE (-A) system, the user equipment (UE) is defined to report the channel state information (CSI) to the base station (BS).
- CSI channel state information
- the channel state information refers to information that may indicate the quality of a radio channel (or 'link') formed between the UE and the antenna port.
- RI rank indicator
- PMI precoding matrix indicator
- CQI channel quality indicator
- RI represents rank information of a channel, which means the number of streams that a UE receives through the same time-frequency resource. Since this value is determined dependent on the long term fading of the channel, it is fed back from the UE to the BS with a period that is usually longer than PMI, CQI.
- PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
- CQI is a value indicating the strength of the channel, and generally means a reception SINR that can be obtained when the BS uses PMI.
- the base station may configure a plurality of CSI processes to the UE, and receive and report the CSI for each process.
- the CSI process consists of a CSI-RS for signal quality specification from a base station and a CSI-interference measurement (CSI-IM) resource for interference measurement.
- CSI-IM CSI-interference measurement
- the network is a known signal (eg, measurement reference signal (MRS), beam reference signal (BRS), to which the respective beam is applied in order to allow the UE to perform measurement on beams intended to be used in the cell (or eNB can use), It may be configured as a beamformed CSI-RS (channel state information reference signal) or the like, hereinafter referred to as 'BRS' for convenience of explanation) may be aperiodic / periodically transmitted.
- MRS measurement reference signal
- BRS beam reference signal
- 'BRS' channel state information reference signal
- the UE may select an eNB Tx beam suitable for the UE through measurement of BRS.
- the UE may perform measurements using different Rx beams and select beam combination (s) in consideration of the Tx beam of the eNB and the Rx beam of the UE.
- the Tx-Rx beam association of the eNB and the UE may be determined to be explicit or implicit.
- the network may instruct the UE to report the top X Tx-Rx beam combinations as a result of the measurement.
- the number of beam combinations to report may be previously defined, signaled by a network (via high layer signaling, etc.), or all beam combinations whose measurement results exceed a specific threshold may be reported.
- the specific threshold may be defined in advance or signaled by the network.
- a category considering the decoding performance of the UE may be defined, and a threshold for each category may be defined.
- the report on the beam combination may be performed by the network instructions periodically and / or aperiodically.
- event-triggered reporting can be performed when the previous report and current measurement results change more than a certain level.
- the predetermined level may be predefined or signaled by the network (via high layer signaling, etc.).
- the UE may report (one or multiple) beam associations determined by the manner mentioned above. When a plurality of beam indexes are reported, priority may be given for each beam. For example, it may be reported to be interpreted in the form of a first (1 st ) preferred beam, a second (2 nd ) preferred beam, and the like.
- Preferred beam reporting of the UE in the UE decision based beam association may be performed in the same manner as the aforementioned explicit beam association.
- the best beam (s) reported by the UE may be a measurement result when assuming one Rx beam or a measurement result when a plurality of Rx beams are assumed, and the assumption about the Rx beam is configured by the network. Can be.
- the UE performs the measurement using all the Rx beams, and selects the best (eNB) Tx beam of the measurement results. After the selection, the 1 st , 2 nd , and 3 rd best results may be reported among the measurement results by the Rx beam used in the corresponding Tx beam measurement.
- the reported measurement results may be limited to exceed a certain threshold. For example, if the measurement value of the 1 st , 2 nd , and 3 rd best beams measured by the UE by a specific Rx beam exceeds a specific threshold (predefined or configured by the network), only the 1 st best beam is used. The UE may report only 1 st best beam to the base station.
- a specific threshold predefined or configured by the network
- a method of demodulating (demodulation) to a UE-specific RS such as a specific DMRS is considered. Since the DMRS is transmitted together only for the scheduled RB (s) of the PDSCH and is transmitted only during the time interval in which the scheduled PDSCH is transmitted, there may be a limitation in reception performance in performing channel estimation only with the DMRS itself.
- DMRS density may not be enough to obtain only DMRS existing in a time / frequency region in which the scheduled PDSCH is transmitted. have.
- LSP major large-scale parameter
- LTE-A defines quasi co-location signaling / assumption / behavior between RS ports as follows, and supports schemes for setting / operating the terminal accordingly.
- the two antenna ports are said to be quasi co-located (QCL).
- the large-scale characteristic includes one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
- the UE may assume antenna ports 0 to 3, and the antenna ports for the primary / secondary synchronization signal of the serving cell are QCL for Doppler shift and average delay.
- PDSCH Physical Downlink Shared Channel resource Mapping Resource mapping parameters
- a UE configured with transmission mode 10 for a given serving cell has four parameter sets by higher layer signaling to decode the PDSCH according to the detected PDCCH / EPDCCH with the DCI format 2D intended for the UE and the given serving cell. Can be configured.
- the UE sends a 'PDSCH RE Mapping and Quasi-Co-Location indicator on the detected PDCCH / EPDCCH with DCI format 2D to determine PDSCH RE mapping and to determine PDSCH antenna port QCL when the UE is configured with a Type B QCL type. It will use the parameter set according to the value of the 'field.
- the UE For a PDSCH without a corresponding PDCCH / EPDCCH, the UE will use the parameter set indicated in the PDCCH / EPDCCH with the DCI format 2D corresponding to the associated SPS activation to determine the PDSCH RE mapping and the PDSCH antenna port QCL.
- Table 5 below shows a PDSCH RE Mapping and Quasi-Co-Location Indicator field in DCI format 2D.
- the following parameters for determining PDSCH RE mapping and PDSCH antenna port QCL are configured via higher layer signaling for each parameter set:
- ZeroTxPowerCSI-RS2-r12 if the UE is configured with a higher layer parameter eMIMO-Type for the TDD serving cell
- a UE configured with transmission modes 8-10 for a serving cell has a subframe in which antenna ports 7-14 of the serving cell are given for delay spread, Doppler spread, Doppler shift, average gain and average delay. Can be assumed to be QCL.
- a UE configured with transmission modes 1-9 for a serving cell may assume that antenna ports 0-3, 5, and 7-30 of the serving cell are QCL for Doppler shift, Doppler spread, average delay, and delay spread.
- a UE configured in transmission mode 10 for a serving cell is configured with one of two QCL types for the serving cell by higher layer parameter QCL operation to decode the PDSCH according to the transmission scheme associated with antenna ports 7-14:
- Type A The UE may assume that antenna ports 0-3 and 7-30 of the serving cell are QCL for delay spread, Doppler spread, Doppler shift, and average delay.
- Type B The UE has antenna ports 15-30 corresponding to the CSI-RS resource configuration identified by the higher layer parameter qcl-CSI-RS-ConfigNZPId-r11 and antenna ports 7-14 associated with the PDSCH are Doppler shift, Doppler spread. can be assumed to be QCL for, average delay, and delay spread.
- the UE is not expected to be configured with QCL type B.
- CSI-RS Channel-State Information-Reference Signal
- the UE may be configured with one CSI-RS resource configuration.
- the UE may be configured with one CSI-RS resource configuration.
- the UE may be configured with one or more CSI-RS resource configurations.
- the UE may be configured with one or more CSI-RS resource configuration (s).
- the following parameters, which the UE should assume non-zero transmit power for CSI-RS, are configured via higher layer signaling for each CSI-RS resource configuration:
- UE assumption of reference PDSCH transmit power P c for CSI feedback when UE is set to transmission mode 9
- P c is set for each CSI subframe set of that CSI process.
- CDM type parameter if UE is configured with higher layer parameter eMIMO-Type and eMIMO-Type is set to 'class A' for CSI process.
- the upper layer parameter qcl-CRS-Info-r11CRS for QCL Type B, UE assumption of CRS antenna ports and CSI-RS antenna ports having the following parameters:
- P c is the assumed ratio of PDSCH EPRE to CSI-RS EPRE when the UE derives CSI feedback and takes a value in the [-8, 15] dB range with 1 dB step size.
- the PDSCH EPRE corresponds to symbols whose ratio between the PDSCH EPRE and the cell specific RS EPRE is represented by ⁇ A.
- the UE does not expect the configuration of the CSI-RS and PMCH in the same subframe of the serving cell.
- the UE receives the CSI-RS configuration index belonging to the set [20-31] for the normal CP case or the set [16-27] for the extended CP case. Do not expect
- the UE may assume that the CSI-RS antenna port of the CSI-RS resource configuration is QCL for delay spread, Doppler spread, Doppler shift, average gain, and average delay.
- UE configured with transmission mode 10 and QCL type B has antenna ports 0 to 3 associated with qcl-CRS-Info-r11 corresponding to CSI-RS resource configuration and antenna ports 15 to 30 corresponding to CSI-RS resource configuration are Doppler shift. And QCL for Doppler spread.
- UE configured with transport mode 10, configured with higher layer parameter eMIMO-Type, eMIMO-Type set to 'Class B', and the number of configured CSI resources is more than one for one CSI process and QCL type B is higher It is not expected to receive CSI-RS resource configuration for CSI process with different values of layer parameter qcl-CRS-Info-r11.
- a BL / CE UE configured with CEModeA or CEModeB is not expected to be configured with non-zero transmit power CSI-RS.
- the UE does not assume that the two antenna ports are QCL unless otherwise specified.
- the UE may assume that antenna ports 0 to 3 of the serving cell are QCL for delay spread, Doppler spread, Doppler shift, average gain, and average delay.
- the UE does not assume that there is a signal or physical channel other than the discovery signal.
- the UE supports discoverySignalsInDeactSCell-r12, the UE is configured with discovery signal based RRM measurement at the carrier frequency applicable to the secondary cell at the same carrier frequency, the secondary cell is deactivated, and the UE is to receive the MBMS at the secondary cell If not configured by the higher layer, the UE, except for discovery signal transmission, PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS and CSI-RS activation command received for the secondary cell It is not transmitted by the corresponding secondary cell until the subframe.
- the aperiodic CSI-RS transmission scheme is considered in that the CSI-RS transmission itself is transmitted only when necessary out of the conventional periodic form, and thus, as a QCL CSI-RS.
- the RS density to be utilized may be significantly shorter than before.
- QCL parameters considered in an NR environment at least one of the following may be defined / configured:
- antenna ports where QCL is guaranteed from the AA point of view for example, the reception beam direction (and / or when receiving a transmission signal from another antenna port (s) based on AA estimated from a particular antenna port (s)). Or receive beam width / sweeping degree), or the like (or in connection with this), and it may mean that it is possible to perform receive processing (meaning that receiving performance when operated in this manner is guaranteed to be above a certain level). .
- AA may also be expressed by, for example, a name such as "(Almost) Dominant arrival angle".
- the receiver may use / apply the AA estimated from a specific indicated QCLed RS / SS as it is “almost” as it is, thereby enabling efficient receiver operation / operation.
- the receiver may use / apply the AA estimated from a specific indicated QCLed RS / SS as it is “almost” as it is, thereby enabling efficient receiver operation / operation.
- QCL means that an AS estimated from one port can be derived, estimated or applied from an AS estimated from another port.
- the AS may be defined separately or together for each specific dimension as Azimuth and / or Zenith AS, or may be separately or together in terms of departure and / or arrival.
- (And / or receive beam direction) and the like, or similarly (in connection with it) may mean that it is possible to process and receive (meaning that the receiving performance when operated in this way is guaranteed to be above a certain level).
- the AS is interpreted as a parameter regarding how far the beam direction is spread by reflector distribution (such as centered on the AA). Can be.
- PAP Power Angle (-of-Arrival) Profile
- QCL in terms of PAP between two antenna ports may mean that a PAP estimated from one port may be derived (or estimated, applied, or treated identically) from a PAP estimated from another port.
- the PAP may be separately defined for each specific dimension or may be defined together as a PAP for the Azimuth and / or Zenith angle-domain.
- the PAPs may be defined separately or together, respectively, in terms of departure and / or arrival.
- Partial QCL may be referred to as sub-QCL, fractional QCL, or quasi-sub-location (QSL).
- a partial QCL is established (or configured and indicated) for a signal and / or a channel transmitted from a specific antenna port group A and a signal and / or a channel transmitted from a specific antenna port group B.
- the corresponding QCL parameter and / or QCL property for A is a subset of the corresponding QCL parameter and / or QCL property estimated from antenna port group B It can mean that you can (or apply, utilize).
- a base station ie, a cell or a transmission and reception point (TRP)
- a terminal have a plurality of antenna elements, and are transmitted through analog beamforming.
- a reception beam (Transmission-Reception beam, Tx-Rx beam) may be formed.
- the terminal may transmit and receive data (simultaneously or sequentially) with the plurality of base stations using the plurality of beams.
- the terminal may transmit and receive data by forming (or setting) a different Tx-Rx beam pair for each of a plurality of base stations.
- a transmit-receive beam pair Tx-Rx beam pair
- a beam pair is referred to as a beam pair.
- FIG. 7 shows examples of a beam pair configuration for transmitting and receiving data between a terminal and base stations to which the method proposed in the present specification can be applied. 7 is merely for convenience of description and does not limit the scope of the invention.
- FIG. 7A illustrates a case where a user equipment (UE) transmits an uplink signal (or a channel or data) by forming a first beam pair with a first base station (ie, TRP 1). Uplink transmission (UL Transmission 1)).
- UE user equipment
- UL Transmission 1 Uplink transmission
- b of FIG. 7 illustrates a case in which the UE forms a second beam pair with a second base station (ie, TRP 2) and transmits an uplink signal (ie, a second uplink transmission (UL Transmission 2)).
- TRP 2 second base station
- the terminal may transmit an uplink signal using different beam pairs (ie, different paths) for the first base station and the second base station.
- different beam pairs ie, different paths
- This is not limited to the first base station and the second base station, and may be extended and applied to the case where the terminal performs uplink transmission with a plurality of base stations.
- a plurality of timing advances (TAs) may be required. That is, when the path differences between the terminal and the base stations are largely set, a plurality of TAs (that is, a plurality of TA offset values) may be required to compensate for the path differences.
- the terminal may transmit an uplink signal by applying an appropriate TA value (or TA process) for each base station.
- the UE transmits an uplink signal by applying a TA value (or TA process), and the UE reflects a TA offset corresponding to the TA value (or TA process). Frame) and transmit an uplink signal or a channel according to the set uplink transmission time point.
- a method for configuring and indicating a plurality of TA processes by a base station and a terminal associated with the same Look at the operation and the operation of the base station e.g. 7
- LTE systems i.e. legacy LTE systems
- OL open-loop
- CL Solid Loop
- the UE adjusts a subframe boundary by measuring a timing error using a reference RS (for example, CRS and CSI-RS), and adjusts the subframe boundary.
- a reference RS for example, CRS and CSI-RS
- This may mean a method of adjusting (or setting) uplink transmit timing.
- the base station receives an uplink RS (eg, a sounding RS (Sounding RS)) from the terminal, and through this, a TA offset and / or a TA command. ) May be directly transmitted to the terminal through a medium access control-control element (MAC-CE).
- MAC-CE medium access control-control element
- the plurality of TA processes are set in consideration of the OL TA process and / or the CL TA process described above. And how to indicate.
- a method of configuring and indicating a plurality of TA processes using a reference reference signal may be considered.
- RRS reference reference signal
- the base station may configure reference reference signals (RRS) (s) for a plurality of OL TA processes through higher layer signaling. That is, the base station may transmit configuration information about a pre-defined (or pre-configured) RRS for each of the plurality of OL TA processes to the terminal through higher layer signaling.
- the higher layer signaling may include an RRC message or a MAC-CE.
- the RRS (s) may comprise a Synchronization Signal Block (SS block) and / or a periodic or semi-persistence CSI-RS.
- the sync signal block may include at least one of a primary SS (PSS), a secondary SS (SSS), and a physical broadcast channel (PBCH).
- PSS primary SS
- SSS secondary SS
- PBCH physical broadcast channel
- the SS block index may be represented by a cell ID indicator and an index of a sync signal block of the corresponding cell.
- the CSI-RS may include a CSI-RS configured for beam management (ie, for beam management).
- the base station setting a specific predefined (or preset) RRS for each OL TA process means that the (base station) has a specific transmit-receive beam direction (e.g., beam pair link). It may mean that the OL TA process is indicated (or set) for a beam pair link and a beam pair.
- the base station may set the RRS for each OL TA process.
- the first OL TA process (OL TA process # 1) is mapped (or corresponding) to the first SS block index (SS block index # 1)
- the second OL TA process (OL TA process # 2). ) Is mapped to the fourth SS block index (SS block index # 4)
- the third OL TA process (OL TA process # 3) is mapped to the second CSI-RS resource identifier (CSI-RS resource ID # 2).
- the higher layer signaling e.g., considering the Tx-Rx beam update and / or serving beam update
- RRC message e.g., RRC message, MAC-CE, etc.
- the terminal may include a synchronization signal block having the largest received signal power (eg, RSRP, RSRQ) (for beam management) and
- the periodic or semi-periodic CSI-RS may be recognized (or identified, determined, determined) as an RRS.
- the UE may recognize the most recently indicated sync signal block and / or periodic / semi-periodic CSI-RS as RRS.
- the UE may recognize the sync signal block and / or the periodic / semi-periodic CSI-RS corresponding to the serving beam (s) (eg, beam pair link) as an RRS.
- the OL TA process in this manner may be referred to as a default OL TA process.
- the method i.e., using RRS (s) for multiple OL TA processes, is also applicable when using (or setting, directing) RRS (s) for multiple power control processes.
- the RRS (s) for multiple power control processes may include a sync signal block and / or a periodic / semi-persistent CSI-RS.
- the base station may transmit (or indicate, configure) configuration information on the RRS (s) to the terminal through higher layer signaling.
- a method of setting and / or indicating a plurality of TA processes using a sounding reference signal resource may also be considered.
- SRS resource sounding reference signal resource
- the base station may configure (and / or indicate) a CL TA process for each SRS resource through higher layer signaling.
- the base station may transmit configuration information on the SRS resource to the terminal through higher layer signaling. That is, SRS resource configuration may be performed through higher layer signaling, and a CL TA process may be additionally configured (or mapped) for each SRS resource ID.
- the higher layer signaling may include an RRC message or a MAC-CE.
- the base station may set SRS support for each CL TA process.
- the first CL TA process (CL TA process # 1) is mapped (or corresponds to) the first SRS resource identifier (SRS resource ID # 1)
- the second CL TA process (CL TA process # 2) is created.
- 2 may be mapped to an SRS resource ID # 2
- a third CL TA process # 3 may be mapped to a third SRS resource ID # 3.
- the base station may additionally set specific information for each SRS resource.
- the base station may additionally set (and / or indicate) not only the aforementioned TA process but also a virtual cell ID (VCID) and / or a power control process for each SRS resource. Can be.
- VCID virtual cell ID
- the base station may set (and / or indicate) the same CL TA process for each SRS resource. That is, the base station may not set and map one SRS resource to one CL TA process, but may map and configure one or more SRS resources to one CL TA process.
- the base station may configure (or associate) the CL TA process for a specific group related to the SRS resource. That is, the base station may set up (or associate) an SRS resource group based CL TA process.
- the specific group related to the SRS resource may be an SRS resource group, a beam group of the SRS resource, or a BS group (or cell / TRP group) of the SRS resource. group)).
- the CL TA process is set or indicated for each port of the SRS resource as well as the SRS resource. Methods may also be considered.
- a method of defining SRS resource types differently according to the use (or purpose) of the SRS is considered.
- Type A SRS resources for UL CSI acquisition can be considered.
- Type B SRS resources for UL beam management can be considered.
- Type C SRS resources for DL CSI acquisition can be considered.
- the Type C SRS resource may be considered when reciprocity is established between the downlink channel and the uplink channel.
- the base station may set (or indicate) different CL TA processes for each SRS resource type as shown in the following examples.
- SRS resources allocated for uplink beam management (ie, for uplink beam management) to the same TRP (ie, for the same TRP) may be set to the same CL TA process.
- all SRS resources for which beam management is set up (or assigned) are assigned to a preset default CL TA process (e.g., CL TA process of primary cell / TRP) or to the same CL TA process (which satisfies certain conditions). Can be set to correspond.
- the base station may set and / or indicate a CL TA process according to the UE capability.
- the base station may set (or associate, assume) the same CL TA process for the SRS resources allocated to the same UE panel (ie, an antenna panel of the UE).
- the above-described CL TA process setting for each SRS resource, CL TA process setting based on the SRS resource group, CL TA process setting for each port of the SRS resource, and / or CL TA process setting for each SRS resource type may include higher layer signaling (eg, : Can be changed or modified through RRC message, MAC-CE, etc.).
- the configuration may be updated through higher layer signaling in consideration of a Tx-Rx beam update and / or a serving beam update.
- the terminal may assume a default CL TA process.
- the default CL TA process may be a CL TA process of the basic cell / TRP, or a CL TA process most recently set up (or indicated).
- the base station sets (or indicates) the RRS for the OL TA for each SRS resource, and measures (or sets) reference timing using the set RRS. Methods may also be considered.
- an SRS resource ID may be set (or indicated) for each CL TA process ID by setting an information element for the CL TA process.
- an RRS and an SRS resource identifier may be simultaneously set for each TA process.
- a first SS block index (for the RRS use of the OL TA process) and a second SRS resource identifier (for the CL TA process) corresponding to the first TA process (TA process # 1). (SRS resource ID # 2) may be set.
- the terminal may transmit an uplink signal (e.g., to a different base station) Infer a TA value associated with (or associated with) the SRS resource indicated by control information for PUSCH transmission, and transmit the uplink signal by applying the inferred TA value.
- the UE infers a TA value associated with an SRS resource indicated in an SRS (SRS resource Indicator) field of an uplink grant (UL grant) for PUSCH transmission, and infers the TA value.
- Uplink data (UL data) may be transmitted at an uplink transmission time set by applying a value.
- 8 shows an example of a method of performing uplink transmission using a TA process setting based on SRS resources to which the method proposed in the present specification can be applied. 8 is merely for convenience of description and does not limit the scope of the present invention.
- the base station 802 and the terminal 812 operate in a multiple base station system (ie, a multi-cell / TRP environment), and a plurality of TA processes associated with a plurality of beam pairs are based on SRS resources in the manner described above. Is assumed to be configured (or for each SRS resource).
- the base station 802 may deliver (or transmit) configuration information (for example, TA process configuration information) for a plurality of TA processes preset for each SRS resource to the terminal through higher layer signaling.
- the configuration information may include configuration information (or information element) indicating an SRS resource ID set for each TA process.
- step S805 the terminal 812 is assigned SRS resources (ie, first SRS resource # 1), second SRS resource # 2, and third SRS resource # 3 allocated by the base station 802. SRS transmission may be performed using)).
- the terminal may perform SRS transmission using all SRS resources allocated by the base station, or may perform SRS transmission using only some of the allocated SRS resources.
- SRS resources may refer to SRS resources allocated for transmitting SRS using different beam directions (ie, beam pair link). That is, different SRS resources may mean different beam directions used for SRS transmission.
- the terminal 812 may perform SRS transmission by applying the TA value set for each SRS resource.
- the base station 802 may indicate a specific SRS resource by using an SRS (SRS Resource Indicator) and / or a port index (ie, a port index of the SRS resource).
- SRS SRS Resource Indicator
- a port index ie, a port index of the SRS resource.
- a scheme in which the base station performs an indication of a specific SRS resource selected from previously (or previously) SRS resources through the SRI field of the uplink grant may be considered.
- the base station 802 indicates a specific SRI (that is, a specific SRS resource) through the SRI field of the uplink grant
- the terminal is upward in a multi-cell / TRP transmission or different beam (or precoder) direction. It may be instructed to transmit link data.
- the base station may select a specific SRS resource from the SRS resources transmitted from the terminal or the SRS resources allocated to the terminal.
- the terminal 812 may transmit an uplink signal and / or a channel according to an indication of the base station 802 (that is, an SRS resource indication). For example, the terminal 812 may transmit an uplink signal and / or a channel (eg, uplink data) by inferring and applying a TA value associated with (or corresponding to) the SRS resource indicated by the base station 802. . In other words, the terminal 812 identifies the mapped TA process corresponding to the specific SRS resource indicated by the base station 802 and sets uplink transmission time (ie, uplink subframe boundary) by applying a TA offset value of the identified TA process. (Or adjust) and transmit an uplink signal and / or a channel at a set uplink transmission time point.
- an indication of the base station 802 that is, an SRS resource indication
- the terminal 812 may transmit an uplink signal and / or a channel (eg, uplink data) by inferring and applying a TA value associated with (or corresponding to) the SRS
- the terminal 812 further applies an uplink signal and / or a channel (eg, uplink data) by additionally applying a VCID and / or a power control process interworking with a corresponding SRS resource (ie, a specific SRS resource indicated by the base station). ) Can also be sent.
- an uplink signal and / or a channel eg, uplink data
- a VCID and / or a power control process interworking with a corresponding SRS resource ie, a specific SRS resource indicated by the base station.
- the base station 802 may indicate a number of SRIs and / or port indices, rather than a specific SRI or a particular port index.
- the base station may indicate a plurality of SRS resources for the terminal.
- the UE may transmit an uplink signal and / or a channel by applying the same TA value to a plurality of SRS resources or by applying different TA values corresponding to each SRS resource.
- the UE 812 selects a maximum TA value of the corresponding SRS resources (ie, a maximum TA value of the corresponding SRS resources). Uplink transmission can be performed. Alternatively, the terminal 812 may calculate an average of TA values of corresponding SRS resources, and perform uplink transmission by setting the calculated average TA value as a TA value of the SRS resources. In this case, by using the average of the TA values optimized for each base station (ie, cell / TRP), the uplink signal can reach the highest probability within a cyclic prefix (CP) period. Alternatively, the UE may perform uplink transmission by setting a TA value to which a weighted average of a predetermined function (or preset) for the corresponding SRS resources is applied as the TA value for the SRS resources. have.
- CP cyclic prefix
- the base station may use separate signaling (eg, higher layer signaling, downlink control information (DCI)) regardless of the SRI field of the uplink grant described above.
- the uplink beam indication (UL beam indication) associated with the beam information for uplink transmission may be transmitted to the terminal.
- the UE may infer beam information for SRS transmission and a TA value associated with (or corresponding) the corresponding SRS resource through the corresponding uplink beam indication.
- FIG. 9 illustrates an example of an uplink beam management method through SRS transmission to which the method described herein may be applied. 9 is merely for convenience of description and does not limit the scope of the invention.
- the base station 902 performs uplink beam management through Type B SRS resources configured for beam management.
- the base station 902 indicates to the terminal 912 uplink beam information selected through the uplink beam management using an SRS (SRS Resource Indicator) and / or a port index (that is, a port index of the SRS resource). )can do.
- SRS SRS Resource Indicator
- a port index that is, a port index of the SRS resource.
- the UE 912 may type B SRS resources (that is, a first Type B SRS resource # 1, a second Type B SRS resource # 2, and a third Type B). SRS transmission may be performed using an SRS resource (Type B SRS resource # 3).
- the SRS resources may be classified according to the beam direction (ie, beam pair link) used for SRS transmission.
- the base station 902 may perform an uplink beam management procedure using SRSs transmitted through Type B SRS resources.
- the base station 902 may instruct the terminal 912 with a beam indication indicating a selected uplink beam information by SRI and / or a port index.
- the selected uplink beam information may refer to information on the uplink beam selected by the base station 902 through an uplink beam management procedure performed using the SRSs transmitted in step S905.
- the configuration information (or indication information) for the beam indication may be configured or indicated through signaling (eg, MAC-CE, DCI, etc.) separate from the information (or information element) of the SRI field of the uplink grant described above. have.
- the base station may include a TA offset and / or a TA command to configure or indicate through higher layer signaling. That is, when a TA change or modification is required for the corresponding SRS resource (eg, the SRS resource related to the selected uplink beam information), the base station 902 may perform a TA offset and / or TA command ( The TA command may be additionally set or indicated through higher layer signaling (eg, MAC-CE).
- the setting (or indication) for the TA offset and / or TA command may be performed simultaneously with the setting (or indication) for the setting information for the beam indication, or may be performed separately.
- the terminal 912 may perform uplink transmission using an uplink beam indicated by the base station 902.
- the terminal 912 may perform SRS transmission for CSI acquisition using the Type A SRS resource indicated by the base station.
- the terminal 912 modifies the TA value with a TA offset or TA command value for the corresponding SRS resource included in the beam indication of the base station, and / or infers a TA value associated with the corresponding SRS resource to perform uplink transmission. can do.
- the base station transmits the uplink beam information to a specific downlink reference signal (for example, a CSI-RS Resource Indicator (CRI)). And / or port index (ie, port index of CSI-RS resource).
- a specific downlink reference signal for example, a CSI-RS Resource Indicator (CRI)
- / or port index ie, port index of CSI-RS resource
- the UE may regard the indication as indicating a Type A SRS resource for CSI acquisition as a reciprocal uplink beam of the downlink beam.
- the UE may not infer a separate CL TA process, may infer a default OL TA process, or may recognize only a Tx beam indication for SRS transmission.
- the UE may transmit different transmission beams according to PUCCH type (eg, short PUCCH, long PUCCH) and / or time pattern. And / or transmit the PUCCH via a receive beam (ie, beam pair).
- the base station may preset or indicate a beam indication for PUCCH transmission through an SRS (SRS Resource Indicator).
- SRS Resource Indicator SRS Resource Indicator
- the UE may perform PUCCH transmission using a (CL) TA process interworking with the corresponding SRS resource (ie, the SRS resource indicated by the base station).
- a (CL) TA process scheme based on transmission (ie, SRS resource) has been described.
- the base station may additionally (or consider) the configuration information for association (or combination) between the OL TA process and the CL TA process, in consideration of the transmit-receive beam or beam pair link (between terminals). Separately).
- the base station may first adjust the rough TA value by using the CL TA process method, and then set (or indicate, design) to use the OL TA process method for fine adjustment of the TA value. In this manner, the complexity and overhead of adjusting the TA value of the UE can be reduced.
- the base station may transmit information on the configuration to the terminal through higher layer signaling (eg, RRC message, MAC-CE, etc.).
- the UE may set (or adjust) an uplink transmission time point using the CL TA process method and / or the OL TA process method according to the configuration, and perform uplink transmission at the configured uplink transmission time point.
- FIG. 10 is a flowchart illustrating an operation of a terminal for performing uplink transmission by setting timing advance to which the method proposed in the present specification may be applied. 10 is merely for convenience of description and does not limit the scope of the invention.
- a terminal transmits and receives a signal to or from a base station (ie, cell / TRP) using a system that transmits and receives a signal through one or more beam pairs, that is, one or more beam pairs. do.
- the terminal receives SRS resource configuration information (SRS resource configuration) for transmitting the sounding reference signal (SRS) from the base station.
- SRS resource configuration information includes configuration information indicating at least one timing advance value (TA value) preset for one or more SRS resources.
- the SRS resource configuration information may refer to configuration information related to the SRS resource in the above-described embodiments.
- the terminal may receive the SRS resource configuration information through higher layer signaling (eg, RRC message, MAC-CE, etc.).
- the SRS resource configuration information includes one or more identifiers (ie, SRS resource identifiers described above) representing the one or more SRS resources, wherein the at least one preset TA value is the one or more identifiers. It can be set using the.
- the content of setting the TA value according to the SRS resource identifier is the same as described above.
- the timing advance value may be set differently for each SRS resource group.
- the timing advance value may be set differently for each beam group.
- the timing advance value may be set differently for each cell group.
- the SRS resource configuration information is configuration information indicating at least one virtual cell identifier (VCID) or power control (that is, a power control process) preset for one or more SRS resources. It may further include.
- VID virtual cell identifier
- power control that is, a power control process
- the terminal may receive control information indicating a specific SRS resource of the one or more SRS resources from the base station. That is, the terminal may receive a specific SRS resource among the SRS resources allocated by the base station.
- the control information may be received through an SRS resource indication field (SRI field) of an uplink grant (UL grant).
- SRI field SRS resource indication field
- UL grant uplink grant
- the base station may instruct the terminal to transmit the uplink signal in the direction of a plurality of cells / TRP or different beams (or precoder).
- step S1015 the UE transmits an uplink signal (eg, PUSCH, uplink data) at an uplink transmission time (ie, an uplink subframe) that is set using a TA value corresponding to the specific SRS resource.
- an uplink signal eg, PUSCH, uplink data
- an uplink transmission time ie, an uplink subframe
- TA value corresponding to the specific SRS resource.
- the terminal when the terminal receives, from the base station, control information indicating a plurality of SRS resources of the one or more SRS resources, the terminal is the maximum value of the timing advance values corresponding to the plurality of SRS resources (
- the uplink signal may be transmitted at an uplink transmission time set using the maximum value.
- the terminal may transmit the uplink signal at an uplink transmission time set using an average value of timing advance values corresponding to the plurality of SRS resources.
- the SRS resource (ie, the scheme of the second embodiment described above) set for the TA process (ie, TA value) and the reference signal (ie, RRS) set for the TA process (ie, The method of the first embodiment described above may be used in combination.
- the terminal may receive configuration information indicating one or more TA values preset for one or more reference signals, in addition to the SRS resource configuration information.
- the terminal may include a first timing advance value corresponding to the specific SRS resource and a second timing advance value corresponding to the specific reference signal.
- the uplink signal may be transmitted.
- the one or more reference signals may include at least one of a sync signal block or a CSI-RS, as described above in the first embodiment.
- FIG. 11 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
- a wireless communication system includes a base station (or network) 1110 and a terminal 1120.
- the base station 1110 includes a processor 1111, a memory 1112, and a communication module 1113.
- the processor 1111 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10. Layers of the wired / wireless interface protocol may be implemented by the processor 1111.
- the memory 1112 is connected to the processor 1111 and stores various information for driving the processor 1111.
- the communication module 1113 is connected to the processor 1111 and transmits and / or receives a wired / wireless signal.
- the communication module 1113 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
- RF radio frequency unit
- the terminal 1120 includes a processor 1121, a memory 1122, and a communication module (or RF unit) 1123.
- the processor 1121 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10. Layers of the air interface protocol may be implemented by the processor 1121.
- the memory 1122 is connected to the processor 1121 and stores various information for driving the processor 1121.
- the communication module 1123 is connected to the processor 1121 and transmits and / or receives a radio signal.
- the memories 1112 and 1122 may be inside or outside the processors 1111 and 1121, and may be connected to the processors 1111 and 1121 by various well-known means.
- the base station 1110 and / or the terminal 1120 may have a single antenna or multiple antennas.
- FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- FIG. 12 is a diagram illustrating the terminal of FIG. 11 in more detail.
- the terminal may include a processor (or a digital signal processor (DSP) 1210, an RF module (or RF unit) 1235, a power management module 1205). ), Antenna 1240, battery 1255, display 1215, keypad 1220, memory 1230, SIM card Subscriber Identification Module card) 1225 (this configuration is optional), speaker 1245, and microphone 1250.
- the terminal may also include a single antenna or multiple antennas. Can be.
- the processor 1210 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10.
- the layer of the air interface protocol may be implemented by the processor 1210.
- the memory 1230 is connected to the processor 1210 and stores information related to the operation of the processor 1210.
- the memory 1230 may be inside or outside the processor 1210 and may be connected to the processor 1210 by various well-known means.
- the user enters command information, such as a telephone number, for example by pressing (or touching) a button on keypad 1220 or by voice activation using microphone 1250.
- the processor 1210 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 1225 or the memory 1230. In addition, the processor 1210 may display command information or driving information on the display 1215 for the user to recognize and for convenience.
- the RF module 1235 is connected to the processor 1210 to transmit and / or receive an RF signal.
- the processor 1210 communicates command information to the RF module 1235 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
- the RF module 1235 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
- the antenna 1240 functions to transmit and receive a radio signal.
- the RF module 1235 may transmit the signal and convert the signal to baseband for processing by the processor 1210.
- the processed signal may be converted into audible or readable information output through the speaker 1245.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in memory and driven by the processor.
- the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
- a method of transmitting and receiving a signal through a beam has been described with reference to an example applied to a 3GPP LTE / LTE-A system and 5G, but may be applied to various wireless communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 명세서는 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법을 제공한다. 본 명세서에서 단말이 하나 이상의 빔들을 통해 신호를 송수신하는 방법은, 기지국으로부터, 사운딩 참조 신호(Sounding Reference Signal, SRS)의 전송을 위한 SRS 자원 설정 정보(SRS resource configuration information)를 수신하는 과정과, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 타이밍 어드밴스(timing advance) 값을 나타내는 설정 정보를 포함하고, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 특정 SRS 자원을 지시하는 제어 정보(control information)를 수신하는 과정과, 상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상향링크 전송 시점에서 상향링크 신호를 전송하는 과정을 포함할 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 빔을 이용하는 신호의 송수신과 관련하여 타이밍 어드밴스(timing advance)를 설정하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 다수의 빔 쌍(beam pair)들을 고려하여 다수의 타이밍 어드밴스 프로세스(Timing Advance process, TA process)를 설정하는 방법 및 이를 위한 장치를 제안한다.
이와 관련하여, 본 명세서는, 단말과 기지국들 간의 신호의 송수신에서 다수의 TA 프로세스들이 요구되는 경우, 기준 참조 신호(reference RS)(들)에 기반하여 다수의 TA 프로세스들을 설정 및/또는 지시하는 방법 및 이를 위한 장치를 제안한다.
또한, 본 명세서는 단말과 기지국들 간의 신호의 송수신에서 다수의 TA 프로세스들이 요구되는 경우, 사운딩 참조 신호(Sounding Reference Signal, SRS)의 자원(들)에 기반하여 다수의 TA 프로세스들을 설정 및/또는 지시하는 방법 및 이를 위한 장치를 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 단말이 하나 이상의 빔들을 통해 신호를 송수신하는 방법에 있어서, 상기 방법은, 기지국으로부터, 사운딩 참조 신호(Sounding Reference Signal, SRS)의 전송을 위한 SRS 자원 설정 정보(SRS resource configuration information)를 수신하는 과정과, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 타이밍 어드밴스(timing advance) 값을 나타내는 설정 정보를 포함하고, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 특정 SRS 자원을 지시하는 제어 정보(control information)를 수신하는 과정과, 상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상향링크 전송 시점에서 상향링크 신호를 전송하는 과정을 포함한다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 SRS 자원 설정 정보는, 상기 하나 이상의 SRS 자원들을 나타내는 하나 이상의 식별자(identifier)들을 포함하고, 상기 미리 설정된 적어도 하나의 타이밍 어드밴스 값은, 상기 하나 이상의 식별자들을 이용하여 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 SRS 자원들이 다수의 SRS 자원 그룹(SRS resource group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, SRS 자원 그룹 별로 서로 다르게 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 SRS 자원들의 빔(beam)들이 다수의 빔 그룹(beam group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, 빔 그룹 별로 서로 다르게 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 SRS 자원들의 셀(cell)들이 다수의 셀 그룹(cell group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, 셀 그룹 별로 서로 다르게 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 상향링크 신호는, PUSCH(Physical Uplink Shared Channel)일 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제어 정보는, 상향링크 그랜트(uplink grant)의 SRS 자원 지시 필드(SRS resource indicator field)를 통해 수신될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 가상 셀 식별자(virtual cell identifier) 또는 전력 제어(power control)를 나타내는 설정 정보를 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법은, 상기 단말이, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 다수의 SRS 자원을 지시하는 제어 정보를 수신하는 경우, 상기 다수의 SRS 자원에 대응하는 타이밍 어드밴스 값들 중 최대 값(maximum value)을 이용하여 설정된 상향링크 전송 시점에서 상기 상향링크 신호를 전송하는 과정을 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법은, 상기 단말이, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 다수의 SRS 자원을 지시하는 제어 정보를 수신하는 경우, 상기 다수의 SRS 자원에 대응하는 타이밍 어드밴스 값들의 평균 값(average value)을 이용하여 설정된 상향링크 전송 시점에서 상기 상향링크 신호를 전송하는 과정을 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 SRS 자원 설정 정보는, 상위 계층 시그널링(higher layer signaling)을 통해 수신될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상기 상향링크 전송 시점에서 상기 상향링크 신호를 전송하는 과정은, 상기 기지국으로부터, 하나 이상의 참조 신호(reference signal)들에 대해 미리 설정된 하나 이상의 타이밍 어드밴스 값들을 나타내는 설정 정보를 수신하는 과정과, 상기 기지국으로부터, 상기 다수의 참조 신호들 중 특정 참조 신호를 수신하는 과정과,
상기 특정 SRS 자원에 대응하는 제1 타이밍 어드밴스 값과 상기 특정 참조 신호에 대응하는 제2 타이밍 어드밴스 값을 이용하여 설정된 상향링크 전송 시점에서, 상기 상향링크 신호를 전송하는 과정을 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 참조 신호들은, 동기 신호 블록(Synchronization Signal block) 또는 CSI-RS(Channel State Information-Reference Signal) 중 적어도 하나를 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 무선 통신 시스템에서 하나 이상의 빔들을 통해 신호를 송수신하는 단말에 있어서, 상기 단말은, 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module) 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 기지국으로부터, 사운딩 참조 신호(Sounding Reference Signal, SRS)의 전송을 위한 SRS 자원 설정 정보(SRS resource configuration information)를 수신하고, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 타이밍 어드밴스(timing advance) 값을 나타내는 설정 정보를 포함하고, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 특정 SRS 자원을 지시하는 제어 정보(control information)를 수신하고, 상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상향링크 전송 시점에서 상향링크 신호를 전송하도록 제어한다.
또한, 본 발명의 실시 예에 따른 상기 단말에 있어서, 상기 SRS 자원 설정 정보는, 상기 하나 이상의 SRS 자원들을 나타내는 하나 이상의 식별자(identifier)들을 포함하고, 상기 미리 설정된 적어도 하나의 타이밍 어드밴스 값은, 상기 하나 이상의 식별자들을 이용하여 설정될 수 있다.
본 발명의 실시 예에 따르면, 단말이 다수의 빔 쌍(beam pair)들을 이용하여 기지국들과 신호를 송수신하는 경우에도, 각 빔 쌍에 맞는 최적의 타이밍 어드밴스(Timing Advance, TA) 값을 적용할 수 있는 효과가 있다.
또한, 본 발명의 실시 예에 따르면, TA 설정을 위한 별도의 시그널링 절차 없이, 사운딩 참조 신호의 자원 등을 이용하여 효율적으로 TA 설정을 할 수 있는 효과가 있다.
또한, 본 발명의 실시 예에 따르면, TA 설정을 계층적으로 수행함에 따라, TA 설정에 대해 발생 가능한 오버헤드(overhead)를 방지할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU와 안테나 요소의 연결 방식의 일례들을 나타낸다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU 별 서비스 영역의 다양한 일례들을 나타낸다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 단말과 기지국들 간에 데이터를 송수신하기 위한 빔 쌍(beam pair) 설정의 예들을 나타낸다.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 SRS 자원에 기반한 TA 프로세스 설정을 이용하여 상향링크 전송을 수행하는 방법의 일례를 나타낸다.
도 9는 본 명세서에서 설명하는 방법이 적용될 수 있는 SRS 전송(SRS transmission)을 통한 상향링크 빔 관리(uplink beam management) 방법의 일례를 나타낸다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 타이밍 어드밴드(timing advance)를 설정하여 상향링크 전송(uplink transmission)을 수행하는 단말의 동작 순서도(flow chart)를 나타낸다.
도 11은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 12는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(next generation NB, general NB, gNodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는, )으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
*
*NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는 의 시간 단위의 배수로 표현된다. 여기에서, 이고, 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각 의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 이전에 시작해야 한다.
뉴머롤로지 에 대하여, 슬롯(slot)들은 서브프레임 내에서 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 의 연속하는 OFDM 심볼들로 구성되고, 는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯 의 시작은 동일 서브프레임에서 OFDM 심볼 의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지 에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지 에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로 서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 의 OFDM 심볼들에 의해 설명된다. 여기에서, 이다. 상기 는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 에 의해 고유적으로 식별된다. 여기에서, 는 주파수 영역 상의 인덱스이고, 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 이 이용된다. 여기에서, 이다.
뉴머롤로지 및 안테나 포트 p에 대한 자원 요소 는 복소 값(complex value) 에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및 는 드롭(drop)될 수 있으며, 그 결과 복소 값은 또는 이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의 연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터 까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number) 와 자원 요소들 간의 관계는 수학식 1과 같이 주어진다.
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터 까지 번호가 매겨진다.
상향링크 제어 채널(Uplink control channel)
물리 상향링크 제어 시그널링(physical uplink control signaling)은 적어도 hybrid-ARQ acknowledgement, CSI 보고(CSI report)(가능하다면 빔포밍(beamforming) 정보 포함), 및 스케줄링 요청(scheduling request)을 운반할 수 있어야 한다.
NR 시스템에서 지원하는 상향링크 제어 채널(UL control channel)에 대해 적어도 두 가지 전송 방법이 지원된다.
상향링크 제어 채널은 슬롯(slot)의 마지막으로 전송된 상향링크 심볼(들) 주위에서 단기간(short duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내에서 상향링크 데이터 채널(UL data channel)과 시간-분할-다중화(time-division-multiplexed) 및/또는 주파수-분할-다중화(frequency-division-multiplexed)된다. 단기간의 상향링크 제어 채널에 대해, 슬롯의 1 심볼 단위 전송이 지원된다.
- 짧은 상향링크 제어 정보(Uplink Control Information, UCI) 및 데이터는 적어도 짧은 UCI 및 데이터에 대한 물리 자원 블록(Physical Resource Block, PRB)이 중첩되지 않는 경우 단말(UE) 및 단말들 사이에서 주파수-분할-다중화된다.
- 동일한 슬롯 내의 상이한 단말들로부터의 짧은 PUCCH(short PUCCH)의 시간 분할 다중화(Time Division Multiplexing, TDM)를 지원하기 위해, 짧은 PUCCH를 전송할 슬롯 내의 심볼(들)이 적어도 6GHz 이상에서 지원되는지 여부를 단말에게 알리는 메커니즘(mechanism)이 지원된다.
- 1 심볼 기간(1-symbol duration)에 대해서는 적어도 1) 참조 신호 (Reference Signal, RS)가 다중화되면 UCI와 RS는 주파수 분할 다중화(Frequency Division Multiplexing, FDM) 방식으로 주어진 OFDM 심볼에 다중화되는 점 및 2) 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격(subcarrier spacing)이 동일한 점이 지원된다.
- 적어도, 슬롯의 2 심볼 기간(2-symbol duration)에 걸친 단기간의 PUCCH가 지원된다. 이 때, 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격이 동일하다.
- 적어도, 슬롯내의 주어진 단말의 PUCCH 자원 즉, 상이한 단말들의 짧은 PUCCH들은 슬롯에서 주어진 지속 기간(duration) 내에 시분할 다중화될 수 있는 반-정적 구성(semi-static configuration)이 지원된다.
- PUCCH 자원에는 시간 영역(time domain), 주파수 영역(frequency domain), 및 적용 가능한 경우에는 코드 영역(code domain)이 포함된다.
- 단기간의 PUCCH는 단말 관점에서 슬롯의 끝까지 확장될 수 있다. 이 때, 단기 간의 PUCCH 이후 명시적인 갭 심볼(explicit gap symbol)이 불필요하다.
- 짧은 상향링크 부분(short UL part)을 갖는 슬롯(즉, DL 중심의 슬롯(DL-centric slot))에 대해, 데이터가 짧은 상향링크 부분에서 스케줄링(scheduling)되면 '짧은 UCI' 및 데이터는 하나의 단말에 의해 주파수 분할 다중화될 수 있다.
상향링크 제어 채널은 커버리지(coverage)를 개선하기 위하여 다수의 상향링크 심볼들에 걸쳐 장기간(long-duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내의 상향링크 데이터 채널과 주파수 분할 다중화된다.
- 적어도 PAPR(Peak to Average Power Ratio)이 낮은 설계로 장시간의 상향링크 제어 채널(long duration UL control channel)에 의해 운반되는 UCI는 하나의 슬롯 또는 다수의 슬롯들에서 전송될 수 있다.
- 다수의 슬롯들을 이용하는 전송은 적어도 일부의 경우에 총 지속 시간(total duration)(예: 1ms) 동안 허용된다.
- 장시간의 상향링크 제어 채널의 경우, RS와 UCI 간의 시간 분할 다중화(TDM)는 DFT-S-OFDM에 대해 지원된다.
- 슬롯의 긴 상향링크 부분(long UL part)은 장시간의 PUCCH 전송에 이용될 수 있다. 즉, 장시간의 PUCCH는 상향링크 전용 슬롯(UL-only slot)과 최소 4개의 심볼들로 구성되는 가변 개수의 심볼들을 갖는 슬롯 모두에 대해 지원된다.
- 적어도 1 또는 2 비트 UCI에 대해, 상기 UCI는 N 개의 슬롯(N>1) 내에서 반복될 수 있으며, 상기 N 개의 슬롯은 장시간의 PUCCH가 허용되는 슬롯들에서 인접하거나 또는 인접하지 않을 수 있다.
- 적어도 긴 PUCCH(long PUCCH)에 대해 PUSCH와 PUCCH의 동시 전송(simultaneous transmission)이 지원된다. 즉, 데이터가 존재하는 경우에도 PUCCH 자원에 대한 상향링크 제어가 전송된다. 또한, PUCCH-PUSCH 동시 전송 외에도, PUSCH에서의 UCI가 지원된다.
- TTI 내에서의 슬롯 주파수 호핑(intra-TTI slot frequency hopping)이 지원된다.
- DFT-s-OFDM 파형(waveform)이 지원된다.
- 전송 안테나 다이버시티(transmit antenna diversity)가 지원된다.
단기간의 PUCCH와 장기간의 PUCCH 사이의 TDM 및 FDM은 적어도 하나의 슬롯에서 다른 단말들에 대해 지원된다. 주파수 영역에서, PRB(또는 다수의 PRB들)는 상향링크 제어 채널에 대한 최소 자원 단위 크기(minimum resource unit size)이다. 호핑(hopping)이 이용되는 경우, 주파수 자원 및 호핑은 캐리어 대역폭(carrier bandwidth)으로 확산되지 않을 수 있다. 또한, 단말 특정 RS는 NR-PUCCH 전송에 이용된다. PUCCH 자원들의 집합(set)은 상위 계층 시그널링(higher layer signaling)에 의해 설정되고, 설정된 집합 내의 PUCCH 자원은 하향링크 제어 정보(Downlink Control Information, DCI)에 의해 지시된다.
DCI의 일부로서, 데이터 수신(data reception)과 hybrid-ARQ acknowledgement 전송 간의 타이밍(timing)은 다이나믹하게(dynamically) (적어도 RRC와 함께) 지시될 수 있어야 한다. 반-정적 구성(semi-static configuration) 및(적어도 일부 유형의 UCI 정보에 대한) 다이나믹한 시그널링(dynamic signaling)의 결합은 '긴 및 짧은 PUCCH 포맷'에 대한 PUCCH 자원을 결정하기 위해 이용된다. 여기에서, PUCCH 자원은 시간 영역, 주파수 영역, 및 적용 가능한 경우에는 코드 영역을 포함한다. PUSCH 상의 UCI 즉, UCI에 대한 스케줄된 자원의 일부를 사용하는 것은 UCI와 데이터의 동시 전송의 경우에 지원된다.
또한, 적어도 단일 HARQ-ACK 비트의 상향링크 전송이 적어도 지원된다. 또한, 주파수 다이버시티(frequency diversity)를 가능하게 하는 메커니즘이 지원된다. 또한, URLLC(Ultra-Reliable and Low-Latency Communication)의 경우, 단말에 대해 설정된 스케줄링 요청(SR) 자원들 간의 시간 간격(time interval)은 한 슬롯보다 작을 수 있다.
빔 관리(Beam management)
NR에서 빔 관리는 다음과 같이 정의된다.
빔 관리(Beam management): DL 및 UL 송수신에 사용될 수 있는 TRP(들) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 L1/L2 절차들의 세트로서, 적어도 다음 사항들을 포함한다:
- 빔 결정: TRP (들) 또는 UE가 자신의 송신 / 수신 빔을 선택하는 동작.
- 빔 측정: TRP (들) 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 보고: UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 시간 간격 동안 송신 및 / 또는 수신된 빔을 이용하여 공간 영역을 커버하는 동작.
또한, TRP 및 UE에서의 Tx / Rx 빔 대응(correspondence)는 다음과 같이 정의된다.
- TRP에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- TRP는 TRP의 하나 이상의 송신 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 수신을 위한 TRP 수신 빔을 결정할 수 있다.
- TRP는 TRP의 하나 이상의 Rx 빔들에 대한 TRP의 상향링크 측정에 기초하여 하향링크 전송에 대한 TRP Tx 빔을 결정할 수 있다.
- UE에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- UE는 UE의 하나 이상의 Rx 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 전송을 위한 UE Tx 빔을 결정할 수 있다.
- UE는 하나 이상의 Tx 빔에 대한 상향링크 측정에 기초한 TRP의 지시에 기초하여 하향링크 수신을 위한 UE 수신 빔을 결정할 수 있다.
- TRP로 UE 빔 대응 관련 정보의 능력 지시가 지원된다.
다음과 같은 DL L1 / L2 빔 관리 절차가 하나 또는 다수의 TRP들 내에서 지원된다.
P-1: TRP Tx 빔 / UE Rx 빔 (들)의 선택을 지원하기 위해 상이한 TRP Tx 빔에 대한 UE 측정을 가능하게 하기 위해 사용된다.
- TRP에서의 빔포밍의 경우 일반적으로 서로 다른 빔 세트에서 인트라(intra)/인터(inter)-TRP Tx 빔 스윕(sweep)을 포함한다. UE에서의 빔포밍을 위해, 그것은 통상적으로 상이한 빔들의 세트로부터의 UE Rx 빔 sweep를 포함한다.
P-2: 상이한 TRP Tx 빔에 대한 UE 측정이 인터/인트라-TRP Tx 빔(들)을 변경하도록 하기 위해 사용된다.
P-3: UE가 빔 포밍을 사용하는 경우에 동일한 TRP Tx 빔에 대한 UE 측정이 UE Rx 빔을 변경시키는데 사용된다.
적어도 네트워크에 의해 트리거된 비주기적 보고(apreiodic reporting)는 P-1, P-2 및 P-3 관련 동작에서 지원된다.
빔 관리 (적어도 CSI-RS)를 위한 RS에 기초한 UE 측정은 K (빔의 총 개수) 빔으로 구성되며, UE는 선택된 N개의 Tx 빔들의 측정 결과를 보고한다. 여기서, N은 반드시 고정된 수는 아니다. 이동성 목적을 위한 RS에 기반한 절차는 배제되지 않는다. 보고 정보는 적어도 N <K 인 경우 N 개의 빔 (들)에 대한 측정량 및 N 개의 DL 송신 빔을 나타내는 정보를 포함한다. 특히, UE가 K'> 1 논-제로-파워 (NZP) CSI- RS 자원들에 대해, UE는 N'의 CRI (CSI-RS 자원 지시자)를 보고 할 수 있다.
UE는 빔 관리를 위해 다음과 같은 상위 계층 파라미터(higher layer parameter)들로 설정될 수 있다.
- N≥1 보고 설정(setting), M≥1 자원 설정
- 보고 설정과 자원 설정 간의 링크들은 합의된 CSI 측정 설정에서 설정된다.
- CSI-RS 기반 P-1 및 P-2는 자원 및 보고 설정으로 지원된다.
- P-3은 보고 설정의 유무에 관계없이 지원될 수 있다.
- 적어도 이하 사항들을 포함하는 보고 설정(reporting setting)
- 선택된 빔을 나타내는 정보
- L1 측정 보고(L1 measurement reporting)
- 시간 영역 동작(예: 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 반-지속적(semi-persistent) 동작)
- 여러 주파수 세분성(frequency granularity)이 지원되는 경우의 주파수 세분성
- 적어도 이하 사항들을 포함하는 리소스 설정(resource setting)
- 시간 영역 동작(예: 비주기적 동작, 주기적 동작, 반-지속적 동작)
- RS 유형: 적어도 NZP CSI-RS
- 적어도 하나의 CSI-RS 자원 세트. 각 CSI-RS 자원 세트는 K≥1 CSI-RS 자원들을 포함(K개의 CSI-RS 자원들의 일부 파라미터들은 동일할 수 있다. 예를 들어, 포트 번호, 시간 영역 동작, 밀도 및 주기)
또한, NR은 L> 1 인 L 그룹을 고려하여 다음 빔 보고를 지원한다.
- 최소한의 그룹을 나타내는 정보
- N1 빔에 대한 측정량(measurement quantity)(L1 RSRP 및 CSI 보고 지원 (CSI-RS가 CSI 획득을 위한 경우))
- 적용 가능한 경우, Nl개의 DL 송신 빔을 나타내는 정보
상술한 바와 같은 그룹 기반의 빔 보고는 UE 단위로 구성할 수 있다. 또한, 상기 그룹 기반의 빔 보고는 UE 단위로 턴-오프(turn-off) 될 수 있다(예를 들어, L = 1 또는 Nl = 1인 경우).
NR은 UE가 빔 실패로부터 복구하는 메커니즘을 트리거할 수 있음을 지원한다.
빔 실패(beam failure) 이벤트는 연관된 제어 채널의 빔 쌍 링크(beam pair link)의 품질이 충분히 낮을 때 발생한다(예를 들어 임계 값과의 비교, 연관된 타이머의 타임 아웃). 빔 실패(또는 장애)로부터 복구하는 메커니즘은 빔 장애가 발생할 때 트리거된다.
네트워크는 복구 목적으로 UL 신호를 전송하기 위한 자원을 갖는 UE에 명시적으로 구성한다. 자원들의 구성은 기지국이 전체 또는 일부 방향으로부터(예를 들어, random access region) 청취(listening)하는 곳에서 지원된다.
빔 장애를 보고하는 UL 송신/자원은 PRACH (PRACH 자원에 직교하는 자원)와 동일한 시간 인스턴스(instance)에 또는 PRACH와 다른 시간 인스턴스(UE에 대해 구성 가능)에 위치할 수 있다. DL 신호의 송신은 UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 지원된다.
NR은 빔 관련 지시(beam-related indication)에 관계 없이 빔 관리를 지원한다. 빔 관련 지시가 제공되는 경우, CSI-RS 기반 측정을 위해 사용된 UE 측 빔 형성 / 수신 절차에 관한 정보는 QCL을 통해 UE에 지시될 수 있다. NR에서 지원할 QCL 파라미터로는 LTE시스템에서 사용하던 delay, Doppler, average gain등에 대한 파라미터 뿐만 아니라 수신단에서의 빔포밍을 위한 공간 파라미터가 추가될 예정이며, 단말 수신 빔포밍 관점에서 angle of arrival (AOA) 관련 파라미터 및/또는 기지국 수신 빔포밍 관점에서 angle of departure (AOD) 관련 파라미터들이 포함될 수 있다.
NR에서 상기 angle of arrival 관련 파라미터를 통칭하여 spatial Rx(receive) parameter라 명칭하기로 하였다. 즉, 특정 antenna port가 다른 antenna port와 spatial Rx parameter 관점에서 QCL되어 있다고 함은 해당 두 antenna port를 수신하는 수신기가 동일한 수신 빔(spatial filter)을 사용해도 무방함을 지칭한다. 이는, 하향링크 관점에서 기지국이 해당 두 antenna port를 전송할 때 동일 혹은 유사한 전송 빔을 적용함을 단말에게 알려주는 것과 동일하다.
NR은 제어 채널 및 해당 데이터 채널 전송에서 동일하거나 다른 빔을 사용하는 것을 지원한다.
빔 쌍 링크 블로킹(beam pair link blocking)에 대한 견고성(robustness)를 지원하는 NR-PDCCH 전송을 위해, UE는 동시에 M개의 빔 쌍 링크상에서 NR-PDCCH를 모니터링하도록 구성될 수 있다. 여기서, M≥1 및 M의 최대값은 적어도 UE 능력에 의존할 수 있다.
UE는 상이한 NR-PDCCH OFDM 심볼들에서 상이한 빔 쌍 링크(들)상의 NR-PDCCH를 모니터링하도록 구성될 수 있다. 다수의 빔 쌍 링크들 상에서 NR-PDCCH를 모니터링하기 위한 UE Rx 빔 설정과 관련된 파라미터는 상위 계층 시그널링 또는 MAC CE에 의해 구성되거나 및 / 또는 탐색 공간 설계에서 고려된다.
적어도, NR은 DL RS 안테나 포트(들)과 DL 제어 채널의 복조를 위한 DL RS 안테나 포트(들) 사이의 공간 QCL 가정의 지시를 지원한다. NR-PDCCH(즉, NR-PDCCH를 모니터링하는 구성 방법)에 대한 빔 지시를 위한 후보 시그널링 방법은 MAC CE 시그널링, RRC 시그널링, DCI 시그널링, 스펙 transparent 및/또는 암시적 방법, 및 이들 시그널링 방법의 조합이다.
유니 캐스트 DL 데이터 채널의 수신을 위해, NR은 DL RS 안테나 포트와 DL 데이터 채널의 DMRS 안테나 포트 사이의 공간 QCL 가정의 지시를 지원한다.
RS 안테나 포트를 나타내는 정보는 DCI (다운 링크 허가)를 통해 표시된다. 또한, 이 정보는 DMRS 안테나 포트와 QCL 되어 있는 RS 안테나 포트를 나타낸다. DL 데이터 채널에 대한 DMRS 안테나 포트의 상이한 세트는 RS 안테나 포트의 다른 세트와 QCL로서 나타낼 수 있다.
이하, 본 명세서에서 제안하는 방법들을 구체적으로 설명하기에 앞서 본 명세서에서 제안하는 방법들과 직/간접적으로 관련된 내용들에 대해 먼저 간략히 살펴보기로 한다.
5G, New Rat(NR) 등 차세대 통신에서는, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology(RAT)에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다.
또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다.
뿐만 아니라, 신뢰성(reliability) 및 지연(latency)에 민감한 서비스 및/또는 단말(UE)를 고려한 통신 시스템의 디자인 또는 구조가 논의되고 있다.
이와 같이, enhanced mobile broadband(eMBB) communication, massive MTC(mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology(RAT)의 도입이 현재 논의되고 있으며, 본 명세서에서는 편의상 해당 technology를 'new RAT(NR)'로 통칭하기로 한다.
NR에서의 OFDM numerology
New RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용하며, 대표적으로 아래 표 4의 OFDM numerology를 갖는다.
즉, 표 4는 New RAT 시스템의 OFDM parameter의 일례를 나타낸다.
아날로그 빔포밍(Analog beamforming)
밀리미터 웨이브(Millimeter Wave, mmW)에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 element들의 설치가 가능해 진다.
즉, 30GHz 대역에서 파장은 1cm로써 4 x 4cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)개의 안테나 element 설치가 가능하다.
그러므로, mmW에서는 다수 개의 안테나 element를 사용하여 beamforming(BF) 이득을 높여 커버리지를 증가시키거나, throughput을 높이려고 한다.
이 경우에 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 beamforming이 가능하다.
그러나, 약 100개의 안테나 element 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다.
그러므로, 하나의 TXRU에 다수 개의 안테나 element를 mapping하고 아날로그 위상 천이기(analog phase shifter)로 beam의 방향을 조절하는 방식이 고려되고 있다.
이러한 analog beamforming 방식은 전 대역에 있어서 하나의 beam 방향만을 만들 수 있어 주파수 선택적 beamforming을 해줄 수 없는 단점을 갖는다.
이러한 이유로 인해, Digital BF와 analog BF의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF(HBF)를 고려할 수 있다.
HBF는 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU와 안테나 element의 연결 방식의 일례들을 나타낸다.
여기서, TXRU 가상화(virtualization) 모델은 TXRU의 출력 signal과 antenna elements의 출력 signal의 관계를 나타낸다.
도 5의 (a)는 TXRU가 sub-array에 연결된 방식의 일례를 나타낸다.
도 5의 (a)를 참고하면, 안테나 element는 하나의 TXRU에만 연결된다. 도 5의 (a)와 달리 도 5의 (b)는 TXRU가 모든 안테나 element에 연결된 방식을 나타낸다.
즉, 도 5의 (b)의 경우, 안테나 element는 모든 TXRU에 연결된다.
도 5에서, W는 analog phase shifter에 의해 곱해지는 위상 벡터를 나타낸다.
즉, W에 의해 analog beamforming의 방향이 결정된다. 여기서, CSI-RS antenna ports와 TXRU들과의 mapping은 1-to-1 또는 1-to-many 일 수 있다.
참조 신호 가상화(RS virtualization)
mmW에서 analog beamforming에 의해 한 시점에 하나의 analog beam 방향으로만 PDSCH 전송이 가능하다.
그러므로, 기지국은 특정 방향에 있는 일부 소수의 UE에게만 데이터를 전송하게 된다.
따라서, 필요에 따라서 안테나 포트별로 analog beam 방향을 다르게 설정하여 여러 analog beam 방향에 있는 다수의 UE들에게 동시에 데이터 전송을 수행할 수 있도록 한다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU 별 서비스 영역의 다양한 일례들을 나타낸다.
도 6의 경우, 256 antenna element를 4등분하여 4개의 sub-array를 형성하고, 각 sub-array에 TXRU를 연결한 구조에 관한 것으로 이를 예로 들어 설명한다.
각 sub-array가 2-dimension 배열 형태로 총 64(8x8)의 안테나 element로 구성되면, 특정 analog beamforming에 의해 15도의 수평각 영역과 15도의 수직각 영역에 해당하는 지역을 커버할 수 있게 된다.
즉, 기지국이 서비스해야 되는 지역을 다수 개의 영역으로 나누어, 한번에 하나씩 서비스 하게 된다.
이하의 설명에서 CSI-RS antenna port와 TXRU는 1-to-1 mapping되었다고 가정한다.
따라서, antenna port와 TXRU는 이하의 설명에서 같은 의미를 갖는 것으로 해석될 수 있다.
도 6의 (a)와 같이, 모든 TXRU(안테나 포트, sub-array)가 동일 analog beamforming 방향을 가지면, 더 높은 resolution을 갖는 digital beam을 형성하여 해당 지역의 throughput을 증가시킬 수 있다.
또한, 해당 지역으로 전송 데이터의 랭크(rank)를 증가시켜 해당 지역의 throughput을 증가시킬 수 있다.
또한, 도 6의 (b)와 같이, 각 TXRU(안테나 포트, sub-array)가 다른 analog beamforming 방향을 가지면, 더 넓은 영역에 분포된 UE들에게 해당 subframe(SF)에서 동시에 데이터 전송이 가능해 진다.
도 도 6의 (b)에 도시된 바와 같이, 4개의 안테나 포트들 중에서 2개는 영역 1에 있는 UE1에게 PDSCH 전송을 위해 사용하고, 나머지 2개는 영역 2에 있는 UE2에게 PDSCH 전송을 위해 사용하도록 한다.
또한, 도 6의 (b)는 UE1에게 전송되는 PDSCH 1과 UE2에게 전송되는 PDSCH 2가 SDM(Spatial Division Multiplexing)된 예를 나타낸다.
이와 달리, 도 6의 (c)에서와 같이, UE1에게 전송되는 PDSCH 1과 UE2에게 전송되는 PDSCH 2가 FDM(Frequency Division Multiplexing)되어 전송될 수도 있다.
모든 안테나 포트를 사용하여 한 영역을 서비스 하는 방식과 안테나 포트들을 나누어 여러 영역을 동시에 서비스 하는 방식 중에서 cell throughput을 최대화(maximization)하기 위하여, UE에게 서비스하는 RANK 및 MCS에 따라서 선호되는 방식이 바뀔 수 있다.
또한, 각 UE에게 전송할 데이터의 양에 따라서도 선호되는 방식이 바뀌게 된다.
기지국은 모든 안테나 포트를 사용하여 한 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산하고, 안테나 포트를 나누어서 두 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산한다.
기지국은 각 방식을 통해 얻을 수 있는 cell throughput 또는 scheduling metric을 비교하여 최종 전송 방식을 선택하도록 한다.
결과적으로, SF-by-SF으로 PDSCH 전송에 참여하는 안테나 포트의 개수가 변동되게 된다.
기지국이 안테나 포트의 개수에 따른 PDSCH의 전송 MCS를 계산하고 scheduling 알고리즘에 반영하기 위하여, 이에 적합한 UE로부터의 CSI 피드백이 요구된다.
CSI feedback
3GPP LTE(-A) 시스템에서는, 사용자 기기(UE)가 채널상태정보(CSI)를 기지국(BS)으로 보고하도록 정의되어 있다.
여기서, 채널상태정보(CSI)라 함은 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 '링크'라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.
예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩행렬 지시자(precoding matrix indicator, PMI), 채널품질지시자(channel quality indicator, CQI) 등이 이에 해당한다.
여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기를 가지고 UE에서 BS로 피드백된다.
PMI는 채널 공간 특성을 반영한 값으로, SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다.
CQI는 채널의 세기를 나타내는 값으로, 일반적으로 기지국(BS)가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE(-A) 시스템에서 기지국은 다수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다.
여기서, CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS와 간섭 측정을 위한 CSI-interference measurement (CSI-IM) 자원으로 구성된다.
Tx-Rx 빔 연관(beam association)
Network은 해당 cell에서 사용하고자 하는 (혹은 eNB가 사용할 수 있는) beams에 대한 measurement를 UE가 수행하도록 하기 위해 각 beam이 적용된 known signal (e.g., measurement reference signal (MRS), beam reference signal (BRS), beamformed CSI-RS (channel state information reference signal) 등으로 구성될 수 있으며, 이하에서는 설명의 편의를 위해 'BRS'로 통칭한다)를 비주기적/주기적으로 전송할 수 있으다.
그리고, UE는 BRS의 measurement를 통해 UE에게 적합한 eNB Tx beam을 선별할 수 있다.
UE의 Rx beam까지 고려할 경우, UE는 서로 다른 Rx beam을 사용하여 measurement를 수행하고 eNB의 Tx beam과 UE의 Rx beam을 고려한 beam 조합(들)을 선택할 수 있다.
이와 같은 과정을 수행한 이후, eNB와 UE의 Tx-Rx beam association은 explicit하게 혹은 implicit하게 결정될 수 있다.
(1) 네트워크 결정 기반 빔 연관(Network decision based beam association)
Network은 UE에게 measurement 결과 상위 X개의 Tx-Rx beam 조합을 report하도록 지시할 수 있다. 이 때, report하는 beam 조합의 수는 사전에 정의되거나, network에 의해 (high layer signaling등을 통하여) signaling 되거나, measurement 결과가 특정 threshold를 초과하는 beam 조합을 모두 report할 수 있다.
이때, 특정 threshold는 사전에 정의되거나 network에 의해 signaling될 수 있으며, UE 별로 decoding 성능이 다를 경우, UE의 decoding 성능을 고려한 category가 정의되고, category별 threshold가 정의될 수도 있다.
또한, beam 조합에 대한 report는 주기적 및/또는(and/or) 비주기적으로 network의 지시에 의해 수행될 수 있다. 혹은, 이전 report 결과와 현재 measurement 결과가 일정 레벨 이상 변화할 경우 event-triggered reporting을 수행할 수 있다. 이때, 일정 레벨은 사전에 정의되거나 network이 (high layer signaling등을 통해) signaling할 수 있다.
UE는 위에서 언급한 방식에 의해 결정된 (하나의 혹은 다수의) beam association을 report할 수 있다. 다수의 beam index가 report될 경우, beam별 priority가 부여될 수도 있다. 예를 들어, 첫 번째(1st) preferred beam, 두 번째(2nd) preferred beam 등과 같은 형태로 해석되도록 report될 수 있다.
(2) UE 결정 기반 빔 연관(UE decision based beam association)
UE decision based beam association에서 UE의 preferred beam reporting은 앞서 살핀 explicit beam association과 같은 방식으로 수행될 수 있다.
측정을 위한 Rx beam 가정(Rx beam assumption for the measurement)
추가적으로, UE가 report하는 best beam(s)은 하나의 Rx beam을 가정했을 때의 measurement 결과이거나, 다수의 Rx beams을 가정했을 때의 measurement 결과일 수 있으며, Rx beam에 대한 가정은 network에 의해 configure될 수 있다.
예를 들어, network이 하나의 Rx beam을 가정했을 때의 measurement 결과를 3개 report하라고 지시할 경우, UE는 모든 Rx beam을 이용하여 measurement를 수행하고, measurement 결과 중 가장 좋은 (eNB) Tx beam을 선택한 뒤, 해당 Tx beam measurement에 사용된 Rx beam에 의한 measurement 결과 중 1st, 2nd, 3rd best 결과를 report할 수 있다.
또한, report되는 measurement 결과는 특정 threshold를 초과한 것으로 제한할 수도 있다. 예를 들어, UE가 특정 Rx beam으로 measure한 1st, 2nd, 3rd best beam 중 measurement 값이 (사전에 정의되거나 network에 의해 configure된) 특정 threshold를 초과하는 beam이 1st best beam 뿐일 경우, UE는 1st best beam만을 기지국으로 report할 수 있다.
Quasi co-location (QCL)
단말이 데이터(e.g., PDSCH)를 수신할 때 특정 DMRS와 같은 UE-specific RS로 복조(demodulation)을 하도록 하는 방식을 고려한다. 이러한 DMRS는 해당 PDSCH의 scheduled RB(s)에 대하여만 함께 전송되고 scheduled PDSCH가 전송되는 시간 구간 동안에만 전송되므로 해당 DMRS 자체로만 채널 추정을 수행하는 데에 수신 성능의 한계가 존재할 수 있다.
예를 들어, 채널 추정을 수행하는데 있어서 무선 채널의 주요 large-scale parameter (LSP)의 추정 값이 필요하며 이를 상기 scheduled PDSCH가 전송되는 time/frequency 영역에 존재하는 DMRS만으로 얻기에는 DMRS density가 부족할 수가 있다.
따라서, 이러한 단말의 구현을 지원하기 위하여 LTE-A에서는 아래와 같은 RS port간의 quasi co-location signaling/assumption/behavior를 정의하고, 이에 따라 단말을 설정/동작시킬 수 있는 방식들을 지원하고 있다.
즉, 하나의 안테나 포트상의 심볼이 전달되는 채널의 large-scale 특성이 다른 안테나 포트상의 심볼이 전달되는 채널로부터 추론될 수 있다면, 2개의 안테나 포트는 quasi co-located (QCL) 되어 있다고 말해진다.
여기서, large-scale 특성은 지연 확산, 도플러 확산, 도플러 시프트, 평균 이득 및 평균 지연 중 하나 이상을 포함한다.
또한, UE는 안테나 포트 0 내지 3을 가정할 수 있고, 서빙 셀의 프라이머리 / 세컨더리 동기 신호에 대한 안테나 포트는 도플러 시프트 및 평균 지연에 대해 QCL되어 있다.
PDSCH
(Physical
Downlink
Shared Channel) 자원
매핑
파라미터(resource mapping parameters)
주어진 서빙 셀에 대한 전송 모드 10으로 구성된(configured) UE는 UE 및 주어진 서빙셀에 대해 의도된 DCI 포맷 2D를 갖는 검출된 PDCCH / EPDCCH에 따라 PDSCH를 디코딩하기 위해 상위 계층 시그널링에 의해 4 개의 파라미터 세트까지 구성될 수있다. UE는 PDSCH RE 매핑을 결정하기 위해 그리고, UE가 Type B QCL 타입으로 구성된 경우 PDSCH 안테나 포트 QCL을 결정하기 위해 DCI 포맷 2D를 가진 검출된 PDCCH / EPDCCH에서 'PDSCH RE Mapping 및 Quasi-Co-Location indicator' 필드의 값에 따라 설정된 파라미터를 사용할 것이다.
대응하는 PDCCH / EPDCCH가 없는 PDSCH의 경우, UE는 PDSCH RE 매핑 과 PDSCH 안테나 포트 QCL을 결정하기 위해 연관된 SPS 활성화에 대응하는 DCI 포맷 2D를 갖는 PDCCH / EPDCCH에서 지시된 파라미터 세트를 사용할 것이다.
아래 표 5는 DCI format 2D에서의 PDSCH RE Mapping and Quasi-Co-Location Indicator field를 나타낸다.
PDSCH RE 매핑 및 PDSCH 안테나 포트 QCL을 결정하기 위한 다음 파라미터들은 각 파라미터 세트에 대한 상위 계층 시그널링을 통해 구성된다:
- crs-PortsCount-r11
- crs-FreqShift-r11
- mbsfn-SubframeConfigList-r11
- csi-RS-ConfigZPId-r11
- pdsch-Start-r11
- qcl-CSI-RS-ConfigNZPId-r11
- UE가 TDD 서빙 셀에 대해 상위 계층 파라미터 eMIMO-Type으로 구성되는 경우, zeroTxPowerCSI-RS2-r12
PDSCH에
대한 안테나 포트
QCL
서빙 셀을 위한 송신 모드 8-10으로 구성된 UE는 서빙 셀의 안테나 포트들 7-14가 지연 스프레드(delay spread), 도플러 스프레드(Doppler spread), Doppler shift, average gain 및 average delay에 대해 주어진 서브 프레임에 대해 QCL이라고 가정할 수 있다.
서빙 셀을 위한 송신 모드 1-9로 구성된 UE는 서빙 셀의 안테나 포트 0-3, 5, 7-30이 Doppler shift, Doppler spread, average delay, delay spread에 대해 QCL이라고 가정할 수 있다.
서빙 셀을 위한 송신 모드 10으로 구성된 UE는 안테나 포트들 7-14와 관련된 송신 방식에 따라 PDSCH를 디코딩하기 위하여 상위 계층 파라미터 QCL 동작에 의해 서빙 셀에 대한 2 개의 QCL 타입들 중 하나로 구성된다:
- 타입 A : UE는 서빙 셀의 안테나 포트 0-3, 7-30이 delay spread, Doppler spread, Doppler shift, 및 average delay에 대해 QCL이라고 가정할 수 있다.
- 타입 B : UE는 상위 계층 파라미터 qcl-CSI-RS-ConfigNZPId-r11 에 의해 식별된 CSI-RS 자원 구성에 해당하는 안테나 포트 15-30과 PDSCH와 연관된 안테나 포트 7-14는 Doppler shift, Doppler spread, average delay, 및 delay spread에 대해 QCL이라고 가정할 수 있다.
LAA Scell의 경우, UE는 QCL type B로 구성될 것으로 예상되지 않는다.
Channel-State Information - Reference Signal (CSI-RS) 정의
전송 모드 9로 구성되고 상위 계층 파라메터 eMIMO-Type으로 구성되지 않은 서빙 셀 및 UE에 대해, UE는 하나의 CSI-RS 자원 구성(configuration)으로 구성될 수 있다.
전송 모드 9로 구성되고 상위 계층 파라미터 eMIMO-Type으로 구성되고 eMIMO-Type이 'class A'로 설정된 서빙 셀 및 UE에 대해, UE는 하나의 CSI-RS 리소스 구성으로 구성될 수 있다.
전송 모드 9로 구성되고 상위 계층 파라미터 eMIMO-Type으로 구성되고 eMIMO-Type이 'class B'로 설정된 서빙 셀 및 UE에 대해, UE는 하나 이상의 CSI-RS 자원 구성으로 구성될 수 있다.
전송 모드 10으로 구성된 서빙 셀 및 UE에 대해, UE는 하나 이상의 CSI-RS 자원 구성(들)로 구성될 수 있다. UE가 CSI-RS에 대해 non-zero 송신 전력을 가정해야 하는 다음 파라미터들은 각 CSI-RS 자원 구성에 대한 상위 계층 시그널링을 통해 구성된다:
- UE가 전송 모드 10으로 구성되면 CSI-RS 자원 구성 identity
*- CSI-RS 포트의 수
- CSI RS 구성
- CSI RS 서브프래임 구성 ICSI-RS
- UE가 전송 모드 9로 설정되는 경우, CSI 피드백을 위한 기준 PDSCH 전송 전력 Pc에 대한 UE 가정
- UE가 전송 모드 10으로 구성된 경우, 각 CSI 프로세스에 대해 CSI 피드백을 위한 기준 PDSCH 전송 전력 Pc에 대한 UE 가정
- 만약 CSI 서브프래임 세트들 CCSI,0 및 CCSI,1가 하나의 CSI 프로세스에 대해 상위 계층 시그널링으로 구성된 경우, Pc는 해당 CSI 프로세스의 각 CSI 서브프래임 세트에 대해 설정된다.
- Pseudo-random 시퀀스 제너레이터 파라미터 nID
- UE가 상위 계층 파라미터 eMIMO-Type으로 구성되고, eMIMO-Type이 CSI 프로세스에 대해 'class A'로 설정된 경우, CDM 타입 파라미터.
- UE가 전송 모드 10으로 구성된 경우, QCL 타입 B에 대한 상위 계층 파라미터 qcl-CRS-Info-r11CRS, 다음 파라미터들을 가지는 CRS 안테나 포트와 CSI-RS 안테나 포트들의 UE 가정:
- qcl-ScramblingIdentity-r11.
- crs-PortsCount-r11.
- mbsfn-SubframeConfigList-r11.
Pc은 UE가 CSI 피드백을 도출하고 1dB 스텝(step) 크기로 [-8, 15] dB 범위의 값을 취할 때 CSI-RS EPRE에 대한 PDSCH EPRE의 가정된 비율이다.
여기서, PDSCH EPRE는 PDSCH EPRE와 셀 특정 RS EPRE과의 비율이 ρA로 표시되는 심볼들에 해당한다.
UE는 서빙 셀의 동일한 서브 프레임에서 CSI-RS 및 PMCH의 구성을 기대하지 않는다.
프레임 구조 타입 2 서빙 셀과 4 개의 CRS 포트에 대해, UE는 normal CP case에 대한 세트 [20-31] 또는 extended CP case에 대한 세트 [16-27]에 속하는 CSI-RS configuration index를 수신하는 것을 기대하지 않는다.
UE는 CSI-RS 자원 구성의 CSI-RS 안테나 포트가 delay spread, Doppler spread, Doppler shift, average gain, 및 average delay에 대해 QCL이라고 가정할 수 있다.
송신 모드 10 및 QCL 타입 B로 구성된 UE는 CSI-RS 자원 구성에 대응하는 qcl-CRS-Info-r11과 연관된 안테나 포트 0 내지 3 및 CSI-RS 자원 구성에 해당하는 안테나 포트 15 내지 30은 Doppler shift 및 Doppler spread에 대해 QCL이라고 가정할 수 있다.
전송 모드 10으로 구성되고 상위 계층 파라미터 eMIMO-Type으로 구성되고 eMIMO-Type이 '클래스 B'로 설정되고, 구성된 CSI 자원의 개수가 하나의 CSI 프로세스에 대해 하나보다 많고 QCL 타입 B를 가지는 UE는 상위 계층 파라미터 qcl-CRS-Info-r11의 상이한 값을 갖는 CSI 프로세스에 대한 CSI-RS 자원 구성을 수신할 것으로 기대하지 않는다.
CEModeA 또는 CEModeB로 구성된 BL / CE UE는 non-zero 송신 전력 CSI-RS로 구성될 것으로 기대하지 않는다.
Assumptions independent of physical channel
UE는 다르게 명시하지 않는 한 두 개의 안테나 포트가 QCL이라고 가정하지 않는다.
UE는 서빙 셀의 안테나 포트 0 내지 3이 delay spread, Doppler spread, Doppler shift, average gain, 및 average delay에 대해 QCL이라고 가정할 수 있다.
디스커버리 신호 기반 측정의 목적을 위해, UE는 디스커버리 신호 이외의 다른 신호 또는 물리 채널이 있다고 가정하지 않는다.
UE가 discoverySignalsInDeactSCell-r12를 지원하고, 동일한 캐리어 주파수에서 세컨더리 셀에 적용 가능한 캐리어 주파수에서 디스커버리 신호 기반 RRM 측정으로 UE가 구성되어 있고, 세컨더리 셀이 비활성화되어 있고, UE가 세컨더리 셀에서 MBMS를 수신하기 위해 상위 계층에 의해 구성되지 않은 경우, UE는 디스커버리 신호 전송을 제외하고 PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS 및 CSI-RS가 활성화 명령이 세컨더리 셀에 대해 수신된 서브프레임까지 해당 세컨더리 셀에 의해 전송되지 않는다.
앞서 살핀 동작에 있어서, 예를 들어 QCL Type B로 설정되는 단말의 경우, scheduled PDSCH와 함께 전송되는 DMRS의 채널 추정 도움을 받기 위해서는 해당 scheduling DCI에서 지시하는 특정 QCLed CSI-RS resource로부터 추정된 LSP들을 사용할 수 있도록 제한하고 있다.
하지만 본 명세서에서 고려하는 New RAT (NR) 환경에서는 CSI-RS의 전송 자체가 종래의 주기적인 형태를 벗어나 필요할 때만 전송한다는 관점에서의 aperiodic CSI-RS 전송 방식을 고려하고 있어서, QCL CSI-RS로서 활용하기 위한 RS density가 기존대비 현저히 부족해질 수 있다는 문제점이 있다.
QCL 파라미터(QCL parameter)
NR 환경에서 고려하는 QCL parameters로서, 다음 중 적어도 하나가 정의/설정될 수 있다:
- 지연 확산(Delay spread)
- 도플러 확산(Doppler spread)
- 도플러 천이(Doppler shift)
- 평균 이득(Average gain)
- 평균 지연(Average delay)
- 평균 각도(Average angle, AA):
AA관점에서 QCL이 보장되는 antenna ports간에는, 예를 들어 특정 antenna port(s)로부터 추정되는 AA를 바탕으로 또 다른 antenna port(s)로부터의 전송 신호를 수신하고자 할 때의 수신 빔 방향 (그리고/또는 수신 빔 폭/sweeping정도) 등을 같거나 또는 (이와 연관하여) 유사하게 설정하고 수신 처리하는 것이 가능함을 의미할 수 있다 (이와 같이 동작했을 때의 수신 성능이 특정 수준 이상으로 보장됨을 의미).
AA는 예를 들어 "(Almost) Dominant arrival angle" 등의 명칭으로도 표현될 수 있다.
결국, 특정 antenna port로부터 측정되는 신호의 특정 dominant (arrival) angle S가 있다고 할 때, 이와 QCL 가정 가능한 다른 antenna port로부터 측정되는 신호의 특정 dominant (arrival) angle은 상기 S와 "거의(almost)" 유사하다는 의미를 가질 수 있다.
즉, 이와 같은 QCL 가정이 가능한 경우에 수신기는 특정 지시된 QCLed RS/SS로부터 추정된 AA를 "almost" 그대로 수신 처리에 활용/적용해도 된다는 뜻이 되어, 효율적인 수신기의 구현/동작이 가능하도록 한다는 장점이 있다.
- Angular spread (AS):
Two antenna ports간에 AS 관점에서 QCL이란 의미는, 하나의 port로부터 추정되는 AS가 다른 port로부터 추정되는 AS로부터 유도 또는 추정 또는 적용될 수 있다는 것을 의미한다.
이 때, AS는 Azimuth 및/또는 Zenith AS로서 각각의 특정 dimension별로 따로 정의될 수도 있거나 함께 정의될 수도 있으며, 또한 departure 및/또는 arrival 관점에서 각각 따로 또는 함께 정의될 수도 있다.
AS 관점에서 QCL이 보장되는 antenna ports 간에는, 예를 들어 특정 antenna port(s)로부터 추정되는 AS를 바탕으로 또 다른 antenna port(s)로부터의 전송 신호를 수신하고자 할 때의 수신 빔 폭/sweeping 정도 (그리고/또는 수신 빔 방향) 등을 같거나 또는 (이와 연관하여) 유사하게 설정하고 수신 처리하는 것이 가능함을 의미할 수 있다(이와 같이 동작했을 때의 수신 성능이 특정 수준 이상으로 보장됨을 의미).
즉, 상기 AA가 평균적인, (가장) 유효한/dominant beam direction을 의미하는 특징이 있다면, AS는 (상기 AA를 중심/기준으로) 반사체 분포 등에 의해 얼마나 빔 방향이 퍼져서 수신되는지에 관한 파라미터로 해석될 수 있다.
- Power Angle(-of-Arrival) Profile (PAP):
Two antenna ports간에 PAP 관점에서의 QCL은, 하나의 port로부터 추정되는 PAP가 다른 port로부터 추정되는 PAP로부터 유도(또는 추정, 적용, 동일 취급)될 수 있다는 것을 의미할 수 있다. 이 때, PAP는 Azimuth 및/또는 Zenith angle-domain에 대한 PAP로서 각각의 특정 dimension별로 따로 정의될 수도, 또는 함께 정의될 수도 있다. 또한, PAP는 시작(departure) 및/또는 도착(arrival) 관점에서 각각 따로 또는 함께 정의될 수도 있다.
또한, PAP 관점에서 QCL이 보장되는 antenna ports간에는, 예를 들어 특정 antenna port(s)로부터 추정되는 PAP에 기반하여, 또 다른 antenna port(s)로부터의 전송 신호를 수신하고자 할 때의 수신 빔 폭/스위핑(sweeping) 정도 (그리고/또는 수신 빔 방향) 등을 같거나 또는 (이와 관련하여) 유사하게 설정하고 수신 처리하는 것이 가능함을 의미할 수 있다. 즉, PAP는, 이와 같이 동작했을 때의 수신 성능이 특정 수준 이상으로 보장됨을 의미할 수 있다.
부분적 QCL (Partial QCL)
Partial QCL은 sub-QCL, fractional QCL, 또는 quasi-sub-location(QSL)로 지칭될 수도 있다.
예를 들어, 특정 antenna port group A로부터 전송되는 신호 및/또는 채널이 특정 antenna port group B로부터 전송되는 신호 및 또는 채널에 대하여 Partial QCL이 성립한다고 가정(또는 설정, 지시)되는 것은, Antenna port group A에 대한 해당 QCL 파라미터(parameter) 및/또는 QCL 특성(property)이 antenna port group B로부터 추정된 해당 QCL 파라미터(parameter) 및/또는 QCL 특성(property)의 부분 집합(sub-set)인 것으로 가정(또는 적용, 활용)할 수 있다는 것을 의미할 수 있다.
NR(New RAT) 시스템에서는, 기지국(즉, 셀(cell) 또는 TRP(Transmission and Reception Point)) 및 단말은 다수 개의 안테나 요소(antenna element)들을 가지며, 아날로그 빔포밍(analog beamforming)을 통해 전송-수신 빔(Transmission-Reception beam, Tx-Rx beam)을 형성할 수 있다. 이 때, 단말은 다수의 빔들을 이용하여 다수의 기지국들과 (동시에 또는 순차적으로) 데이터를 송수신할 수 있다. 일례로, 단말은 다수의 기지국들 대해 각각 다른 전송-수신 빔 쌍(Tx-Rx beam pair)을 형성(또는 설정)하여 데이터를 송수신할 수 있다. 이하, 본 명세서에서는 설명의 편의를 위하여, 전송-수신 빔 쌍(Tx-Rx beam pair)을 빔 쌍(beam pair)로 지칭한다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 단말과 기지국들 간에 데이터를 송수신하기 위한 빔 쌍(beam pair) 설정의 예들을 나타낸다. 도 7은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 7의 (a)는 단말(User Equipment, UE)이 제1 기지국(즉, TRP 1)과 제1 빔 쌍을 형성하여 상향링크 신호(또는 채널, 데이터)를 전송하는 경우(즉, 제1 상향링크 전송(UL Transmission 1))를 나타낸다. 반면, 도 7의 (b)는 단말이 제2 기지국(즉, TRP 2)와 제2 빔 쌍을 형성하여 상향링크 신호를 전송하는 경우(즉, 제2 상향링크 전송(UL Transmission 2))를 나타낸다.
도 7에 나타난 것과 같이, 단말은 제1 기지국 및 제2 기지국에 대해 서로 다른 빔 쌍(즉, 서로 다른 경로)을 이용하여 상향링크 신호를 전송할 수 있다. 이는, 제1 기지국 및 제2 기지국에 한정되는 것이 아닌, 단말이 다수의 기지국들과 상향링크 전송을 수행하는 경우에도 확장되어 적용될 수 있음은 물론이다.
단말이 기지국들에 대해 서로 다른 빔 쌍들을 이용하여 상향링크 전송을 수행하는 경우, 상기 서로 다른 빔 쌍들에 따른 다수의 타이밍 어드밴스(Timing Advance, TA)들이 요구될 수 있다. 즉, 단말과 기지국들 간의 경로 차들이 크게 설정되는 경우에는, 상기 경로 차들을 보상(compensation)하기 위한 다수의 TA들(즉, 다수의 TA 오프셋(TA offset) 값들)이 요구될 수 있다.
이 경우, 단말은 각 기지국에 대해 적합한 TA 값(또는 TA 프로세스(TA process))을 적용하여 상향링크 신호를 전송할 수 있다. 여기에서, 단말이 TA 값(또는 TA 프로세스)을 적용하여 상향링크 신호를 전송하는 것은, 단말이 TA 값(또는 TA 프로세스)에 해당하는 TA 오프셋을 반영하여 상향링크 전송 시점(즉, 상향링크 서브프레임)을 설정(또는 결정)하고, 설정된 상향링크 전송 시점에 따라 상향링크 신호 또는 채널을 전송하는 것을 의미할 수 있다.
이하, 본 명세서에서, 단말이 다수의 기지국들과 데이터를 송수신할 수 있는 환경에서(예: 도 7), 기지국이 다수의 TA process들을 설정(configuration) 및 지시(indication)하는 방법 및 이와 관련된 단말 동작 및 기지국의 동작에 대한 내용을 살펴본다.
기존의 LTE 시스템(즉, 레거시 LTE 시스템)은, 전력 제어 프로세스(power control process)와 같이, TA 프로세스와 관련하여 개-루프(Open Loop, OL) 방식(즉, OL TA 프로세스) 및 폐-루프(Closed Loop, CL) 방식(즉, CL TA 프로세스)을 모두 지원한다.
여기에서, OL TA 프로세스는, 단말이 기준 참조 신호(reference RS)(예: CRS, CSI-RS)를 이용하여 타이밍 오류(timing error)를 측정하여 서브프레임 경계(subframe boundary)를 조정하고, 이를 통해 상향링크 전송 시점(uplink transmit timing)을 조절(또는 설정)하는 방식을 의미할 수 있다. 이와 달리, CL TA 프로세스는, 기지국이 단말로부터 상향링크 참조 신호(uplink RS)(예: 사운딩 참조 신호(Sounding RS, SRS))를 수신하고, 이를 통해 TA 오프셋 및/또는 TA 명령(TA command)를 직접적으로 단말에게 MAC-CE(Medium Access Control-Control Element)를 통해 전달하는 방식을 의미할 수 있다.
이하에서, 다양한 실시 예들을 통해, 다수의 TA 프로세스들이 요구되는 경우(즉, 다수의 TA 값들이 요구되는 경우), 상술한 OL TA 프로세스 및/또는 CL TA 프로세스를 고려하여 다수의 TA 프로세스들을 설정 및 지시하는 방법에 대해 살펴본다.
또한, 이하 설명되는 실시 예들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 예를 들어, 이하 제2 실시 예에서 설명되는 방식이 제1 실시 예에서 설명되는 방식에 추가적으로 적용될 수 있으며, 그 반대의 경우도 가능하다.
제1 실시 예 - 기준 참조 신호(reference RS, RRS)를 이용하는 방법
먼저, 기준 참조 신호(RRS)를 이용하여 다수의 TA 프로세스들을 설정하고, 지시하는 방법이 고려될 수 있다. 이하, 설명의 편의를 위하여, 해당 방법은 OL TA 프로세스에 적용되는 것으로 설명되지만, CL TA 프로세스에도 동일하게 적용될 수 있음은 물론이다.
구체적으로, 기지국은 다수의 OL TA 프로세스들을 위한 기준 참조 신호(RRS)(들)를 상위 계층 시그널링(higher layer signaling)을 통해 설정할 수 있다. 즉, 기지국은, 다수의 OL TA 프로세스들 각각에 대해 미리 정의된(pre-defined)(또는 미리 설정된(pre-configured)) RRS에 대한 설정 정보를 상위 계층 시그널링을 통해 단말로 전달할 수 있다. 여기에서, 상기 상위 계층 시그널링은 RRC 메시지 또는 MAC-CE 등을 포함할 수 있다.
상기 RRS(들)는 동기 신호 블록(Synchronization Signal block, SS block) 및/또는 주기적(periodic) 또는 반-지속적(semi-persistence) CSI-RS를 포함할 수 있다. 여기에서, 상기 동기 신호 블록은 PSS(Primary SS), SSS(Secondary SS), PBCH(Physical Broadcast Channel) 중 적어도 하나를 포함할 수 있다. 이 때, 동기 신호 블록의 인덱스(SS block index)는 셀 식별자 지시자(cell ID indicator), 해당 셀의 동기 신호 블록의 인덱스로 표현될 수 있다. 또한, 상기 CSI-RS는 빔 관리(beam management)를 위해 설정된(즉, 빔 관리 용도) CSI-RS를 포함할 수 있다.
이 경우, 기지국이 각각의 OL TA 프로세스에 대하여 특정 미리 정의된(또는 미리 설정된) RRS를 설정하는 것은, (기지국이) 특정 전송-수신 빔 방향(Tx-Rx beam direction)(예: 빔 쌍 링크(beam pair link), 빔 쌍(beam pair))에 대해 해당 OL TA 프로세스를 지시(또는 설정)하는 것을 의미할 수 있다. 예를 들어, 기지국은 OL TA 프로세스 별로 RRS를 설정할 수 있다. 구체적으로, 제1 OL TA 프로세스(OL TA process #1)는 제1 SS 블록 인덱스(SS block index #1)에 매핑(mapping)(또는 대응)되고, 제2 OL TA 프로세스(OL TA process #2)는 제4 SS 블록 인덱스(SS block index #4)에 매핑되고, 제3 OL TA 프로세스(OL TA process #3)는 제2 CSI-RS 자원 식별자(CSI-RS resource ID #2)에 매핑될 수 있다.
또한, 상술한 다수의 OL TA 프로세스들을 위한 RRS(들)는, 전송-수신 빔의 업데이트(Tx-Rx beam update) 및/또는 서빙 빔 업데이트(serving beam update)를 고려하여 상위 계층 시그널링(예: RRC 메시지, MAC-CE 등)을 통해 변경(change) 또는 수정(modify)될 수 있다.
또한, OL TA 프로세스(들)를 위한 RRS(들)가 별도로 지시(또는 설정)되지 않는 경우, 단말은 수신 신호 전력(예: RSRP, RSRQ)이 가장 큰 (빔 관리를 위한) 동기 신호 블록 및/또는 주기적/반 주기적 CSI-RS를 RRS로 인식(또는 식별, 결정, 판단)할 수 있다. 또는, 이 경우, 단말은 가장 최근에 지시된 동기 신호 블록 및/또는 주기적/반 주기적 CSI-RS를 RRS로 인식할 수도 있다. 또는, 이 경우, 단말은 서빙 빔(들)(예: 빔 쌍 링크)에 해당하는 동기 신호 블록 및/또는 주기적/반 주기적 CSI-RS를 RRS로 인식할 수도 있다. 이러한 방식의 OL TA 프로세스는, 디폴트 OL TA 프로세스(default OL TA process)로 지칭될 수 있다.
또한, 상기 방법 즉, 다수의 OL TA 프로세스들을 위한 RRS(들)를 이용하는 방법은, 다수의 전력 제어 프로세스(power control process)들을 위한 RRS(들)를 이용(또는 설정, 지시)하는 경우에도 적용될 수 있다. 예를 들어, 상기 방법과 같이, 다수의 전력 제어 프로세스(power control process)들을 위한 RRS(들)는 동기 신호 블록 및/또는 주기적/반-지속적 CSI-RS를 포함할 수 있다. 또한, 기지국은 상기 RRS(들)에 대한 설정 정보를 상위 계층 시그널링을 통해 단말로 전송(또는 지시, 설정)할 수 있다.
제2 실시 예 - 사운딩 참조 신호 자원(SRS resource)를 이용하는 방법
앞서 설명된 것과 달리, 사운딩 참조 신호 자원(SRS resource)를 이용하여 다수의 TA 프로세스들을 설정 및/또는 지시하는 방법도 고려될 수 있다. 이하, 설명의 편의를 위하여, 해당 방법은 CL TA 프로세스에 적용되는 것으로 설명되지만, OL TA 프로세스에도 동일하게 적용될 수 있음은 물론이다.
구체적으로, 기지국은 상위 계층 시그널링(higher layer signaling)을 통해 SRS 자원 별로 CL TA 프로세스를 설정(및/또는 지시)할 수 있다. 이 때, 기지국은 SRS 자원에 대한 설정 정보를 상위 계층 시그널링을 통해 단말로 전달할 수 있다. 즉, SRS 자원 설정은 상위 계층 시그널링을 통해 수행될 수 있으며, 각각의 SRS 자원 식별자(SRS resource ID)에 대해 추가적으로 CL TA 프로세스를 설정(또는 매핑(mapping))할 수 있다. 여기에서, 상기 상위 계층 시그널링은 RRC 메시지 또는 MAC-CE 등을 포함할 수 있다.
예를 들어, 기지국은 CL TA 프로세스 별로 SRS 지원을 설정할 수 있다. 구체적으로, 제1 CL TA 프로세스(CL TA process #1)는 제1 SRS 자원 식별자(SRS resource ID #1)에 매핑(또는 대응)되고, 제2 CL TA 프로세스(CL TA process #2)는 제2 SRS 자원 식별자(SRS resource ID #2)에 매핑되고, 제3 CL TA 프로세스(CL TA process #3)는 제3 SRS 자원 식별자(SRS resource ID #3)에 매핑될 수 있다.
또한, 다-지점 협력 동작(Coordinated Multi-Point operation, CoMP operation)을 고려하여, 기지국은, SRS 자원 별로, 특정 정보를 추가적으로 설정할 수도 있다. 예를 들어, 기지국은, SRS 자원 별로, 상술한 TA 프로세스뿐만 아니라, 가상 셀 식별자(Virtual Cell ID, VCID) 및/또는 전력 제어 프로세스(power control process) 등을 추가적으로 설정(및/또는 지시)할 수 있다.
또한, 기지국은, SRS 자원 별로 동일한 CL TA 프로세스를 설정(및/또는 지시)할 수 있다. 즉, 기지국은 하나의 SRS 자원을 하나의 CL TA 프로세스에 매핑하여 설정하는 것이 아닌, 하나 이상의 SRS 자원들을 하나의 CL TA 프로세스에 매핑하여 설정할 수도 있다. 예를 들어, 기지국은 SRS 자원과 관련된 특정 그룹 별로 CL TA 프로세스를 설정(configuration)(또는 연관(association))할 수 있다. 즉, 기지국은 SRS 자원 그룹 기반의 CL TA 프로세스를 설정(또는 연관)할 수 있다. 여기에서, SRS 자원과 관련된 특정 그룹은, SRS 자원 그룹(SRS resource group), SRS 자원의 빔 그룹(beam group), 또는 SRS 자원의 기지국 그룹(BS group)(또는 셀/TRP 그룹(cell/TRP group)) 등일 수 있다.
또한, 해당 SRS 자원의 포트(port)(즉, 안테나 포트(antenna port)) 별로 서로 다른 빔(beam)이 이용되는 경우, SRS 자원뿐만 아니라, SRS 자원의 포트 별로 CL TA 프로세스를 설정 또는 지시하는 방법도 고려될 수 있다.
또한, NR 시스템에서는, SRS의 용도(또는 목적)에 따라 SRS 자원 유형을 서로 다르게 정의하는 방식이 고려된다. 일례로, 상향링크 CSI 획득(UL CSI acquisition)을 위한 Type A SRS 자원, 상향링크 빔 관리(UL beam management)를 위한 Type B SRS 자원, 하향링크 CSI 획득(DL CSI acquisition)을 위한 Type C SRS 자원 등이 고려될 수 있다. 여기에서, Type C SRS 자원은 하향링크 채널과 상향링크 채널 간의 호혜성(reciprocity)이 성립하는 경우에 고려될 수 있다. 이와 관련하여, 기지국은, 다음 예시들과 같이, SRS 자원 유형 별로 CL TA 프로세스를 서로 다르게 설정(또는 지시)할 수 있다.
예를 들어, 동일한 TRP로의(즉, 동일한 TRP에 대한) 상향링크 빔 관리를 위해 할당된(즉, 상향링크 빔 관리 용도의) SRS 자원들은 동일한 CL TA 프로세스로 설정될 수 있다. 이 때, 빔 관리를 설정된(또는 할당된) 모든 SRS 자원들은 미리 설정된 디폴트 CL TA 프로세스(예: 기본(primary) 셀/TRP의 CL TA 프로세스) 또는 (특정 조건을 만족하는) 동일한 CL TA 프로세스에 대응하도록 설정될 수 있다.
다른 예를 들어, 기지국은 단말의 능력(UE capability)에 따라 CL TA 프로세스를 설정 및/또는 지시할 수 있다. 일례로, 기지국은 동일한 단말 패널(UE panel)(즉, 단말의 안테나 패널(antenna panel))에 할당된 SRS 자원에 대해 동일한 CL TA 프로세스를 설정(또는 연관, 가정(assumption))할 수 있다.
또한, 상술한 SRS 자원 별 CL TA 프로세스 설정, SRS 자원 그룹 기반의 CL TA 프로세스 설정, SRS 자원의 포트 별 CL TA 프로세스 설정, 및/또는 SRS 자원 유형 별 CL TA 프로세스 설정은, 상위 계층 시그널링(예: RRC 메시지, MAC-CE 등)을 통해 변경 또는 수정될 수 있다. 일례로, 상기 설정은, 전송-수신 빔의 업데이트(Tx-Rx beam update) 및/또는 서빙 빔 업데이트(serving beam update)를 고려하여 상위 계층 시그널링을 통해 업데이트될 수 있다.
또한, 앞서 설명된 제1 실시 예와 유사하게, SRS 자원 별로 별도의 CL TA 프로세스(들)이 설정(또는 지시)되지 않는 경우, 단말은 디폴트 CL TA 프로세스를 가정할 수 있다. 이 때, 디폴트 CL TA 프로세스는, 기본 셀/TRP의 CL TA 프로세스, 또는 가장 최근에 설정(또는 지시)된 CL TA 프로세스 등일 수 있다.
또한, 앞서 설명된 제1 실시 예를 확대 적용하여, 기지국이 SRS 자원 별로 OL TA를 위한 RRS를 설정(또는 지시)하고, 설정된 RRS를 이용하여 기준 시점(reference timing)을 측정(또는 설정)하는 방법도 고려될 수 있다.
또한, CL TA 프로세스에 대한 정보 요소(information element)를 설정하여 CL TA 프로세스 식별자(CL TA process ID) 별로 SRS 자원 식별자(SRS resource ID)가 설정(또는 지시)될 수 있다.
또한, TA 프로세스 별로 RRS와 SRS 자원 식별자가 동시에 설정될 수도 있다. 일례로, 제1 TA 프로세스(TA process #1)에 대응하여 (OL TA 프로세스의 RRS 용도의) 제1 SS 블록 인덱스(SS block index #1) 및 (CL TA 프로세스를 위한) 제2 SRS 자원 식별자(SRS resource ID #2)가 설정될 수 있다.
이하, 상술한 바와 같이 SRS 자원에 기반하여 다수의 TA 프로세스들이 설정 또는 지시된 경우, 상향링크 전송(즉, 상향링크 신호 및/또는 채널의 전송)을 위한 기지국 및 단말의 동작에 대해 구체적으로 살펴본다.
다중 기지국(즉, 셀/TRP(multi cell/TRP)) 시스템(또는 환경)(예: 동적인 지점 선택(dynamic point selection)이 고려되는 경우, 단말은 서로 다른 기지국으로의 상향링크 신호(예: PUSCH) 전송을 위한 제어 정보(control information)에 의해 지시된 SRS 자원과 연동된(또는 연관된, 대응하는) TA 값을 유추(infer)하고, 유추된 TA 값을 적용하여 상향링크 신호를 전송할 수 있다. 일례로, 다중 기지국 시스템이 고려되는 경우, 단말은 PUSCH 전송을 위해 상향링크 그랜트(UL grant)의 SRI(SRS resource Indicator) 필드에서 지시된 SRS 자원과 연동된 TA 값을 유추하고, 유추된 TA 값을 적용하여 설정된 상향링크 전송 시점에서 상향링크 데이터(UL data)를 전송할 수 있다.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 SRS 자원에 기반한 TA 프로세스 설정을 이용하여 상향링크 전송을 수행하는 방법의 일례를 나타낸다. 도 8은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 8을 참고하면, 기지국 802와 단말 812는 다중 기지국 시스템(즉, 다중 셀/TRP 환경)에서 동작하고, 다수의 빔 쌍과 관련된 다수의 TA 프로세스들이 상술한 바와 같은 방식을 통해 SRS 자원에 기반하여(또는 SRS 자원 별로) 설정되는 경우가 가정된다.
이 때, 기지국 802는 SRS 자원 별로 미리 설정된 다수의 TA 프로세스들에 대한 설정 정보(예: TA process configuration information)를 상위 계층 시그널링(higher layer signaling)을 통해 단말로 전달(또는 전송)할 수 있다. 여기에서, 상기 설정 정보는, TA 프로세스 별로 설정된 SRS 자원 식별자(SRS resource ID)를 나타내는 설정 정보(또는 정보 요소)를 포함할 수 있다.
S805 단계에서, 단말 812는 기지국 802에 의해 할당된 SRS 자원들(즉, 제1 SRS 자원(SRS resource #1), 제2 SRS 자원(SRS resource #2), 제3 SRS 자원(SRS resource #3))을 이용하여 SRS 전송(SRS transmission)을 수행할 수 있다. 이 때, 단말은 기지국에 의해 할당된 모든 SRS 자원들을 이용하여 SRS 전송을 수행하거나, 또는 할당된 SRS 자원들 중 일부만을 이용하여 SRS 전송을 수행할 수도 있다.
여기에서, SRS 자원들은, 서로 다른 빔 방향(즉, 빔 쌍 링크(beam pair link))을 이용하여 SRS를 전송하기 위해 할당된 SRS 자원들을 의미할 수 있다. 즉, 서로 다른 SRS 자원들은, SRS 전송에 이용되는 서로 다른 빔 방향을 의미할 수 있다. 또한, 이 경우, 단말 812는 각 SRS 자원에 대해 설정된 TA 값을 각각 적용하여 SRS 전송을 수행할 수 있다.
이 후, S810 단계에서, 기지국 802는 SRI(SRS Resource Indicator) 및/또는 포트 인덱스(port index)(즉, SRS 자원의 포트 인덱스)를 이용하여 특정 SRS 자원을 지시(indication)할 수 있다. 이와 관련하여, NR 시스템에서는, 기지국이 사전에(또는 이전에) 전송된 SRS 자원들 중 선택된 특정 SRS 자원에 대한 지시를 상향링크 그랜트의 SRI 필드를 통해 수행하는 방식이 고려될 수 있다. 일례로, 기지국 802는 상향링크 그랜트의 SRI 필드를 통해 특정 SRI(즉, 특정 SRS 자원)을 지시함에 따라, 단말이 다중 셀/TRP 전송 또는 서로 다른 빔(또는 프리코더(precoder)) 방향으로 상향링크 데이터를 전송하도록 지시할 수 있다. 이 때, 기지국은 단말로부터 SRS가 전송된 SRS 자원들 또는 단말에 대해 할당한 SRS 자원들 중에서 특정 SRS 자원을 선택할 수 있다.
이 후, S815 단계에서, 단말 812는 기지국 802의 지시(즉, SRS 자원에 대한 지시(SRS resource indication))에 따라 상향링크 신호 및/또는 채널을 전송할 수 있다. 예를 들어, 단말 812는 기지국 802에 의해 지시된 SRS 자원과 연동된(또는 대응하는, 관련된) TA 값을 유추 및 적용하여 상향링크 신호 및/또는 채널(예: 상향링크 데이터)을 전송할 수 있다. 다시 말해, 단말 812는 기지국 802에 의해 지시된 특정 SRS 자원에 대응하여 매핑된 TA 프로세스를 식별하고, 식별된 TA 프로세스의 TA 오프셋 값을 적용하여 상향링크 전송 시점(즉, uplink subframe boundary)을 설정(또는 조정)하고, 설정된 상향링크 전송 시점에서 상향링크 신호 및/또는 채널을 전송할 수 있다.
또한, 이 경우, 단말 812는 해당 SRS 자원(즉, 기지국에 의해 지시된 특정 SRS 자원)과 연동된 VCID 및/또는 전력 제어 프로세스를 추가적으로 적용하여 상향링크 신호 및/또는 채널(예: 상향링크 데이터)를 전송할 수도 있다.
또한, S810 단계와 관련하여, 기지국 802는 특정 SRI 또는 특정 포트 인덱스가 아닌, 다수의 SRI들 및/또는 포트 인덱스들을 지시할 수도 있다. 다시 말해, 기지국은 단말에 대해 다수의 SRS 자원들을 지시할 수 있다. 이 때, 단말은 다수의 SRS 자원들에 대해 동일한 TA 값을 적용하거나, 또는 각 SRS 자원에 해당하는 서로 다른 TA 값을 적용하여 상향링크 신호 및/또는 채널을 전송할 수 있다.
지시된 다수의 SRS 자원들에 대해 동일한 TA 값을 적용하는 경우와 관련하여, 단말 812는 해당 SRS 자원들의 최대 TA 값(즉, 해당 SRS 자원들 중 최대 TA 값)을 SRS 자원들에 대한 TA 값으로 설정하여 상향링크 전송을 수행할 수 있다. 또는 단말 812는 해당 SRS 자원들의 TA 값들의 평균을 산출하고, 산출된 평균 TA 값을 SRS 자원들에 대한 TA 값으로 설정하여 상향링크 전송을 수행할 수도 있다. 이 경우, 각 기지국(즉, 셀/TRP)에 최적화된 TA 값들의 평균을 이용함으로써, 상향링크 신호가 CP(Cyclic Prefix) 구간 안에 가장 높은 확률로 도달할 수 있다. 또는, 단말은 해당 SRS 자원들에 대해 미리 정의된(또는 미리 설정된) 특정 함수에 의한 가중 평균(weighted average)을 적용한 TA 값을 SRS 자원들에 대한 TA 값으로 설정하여 상향링크 전송을 수행할 수도 있다.
또한, 본 발명의 다양한 실시 예들에서, 기지국은, 앞서 설명된 상향링크 그랜트의 SRI 필드와 관계 없이, 별도의 시그널링(예: 상위 계층 시그널링, 하향링크 제어 정보(Downlink Control Information, DCI))을 통해, 상향링크 전송을 위한 빔 정보와 관련된 상향링크 빔 지시(uplink beam indication, UL beam indication)를 단말로 전달할 수 있다. 이 경우, 단말은 해당 상향링크 빔 지시를 통해 SRS 전송을 위한 빔 정보 및 해당 SRS 자원과 연동된(또는 대응하는) TA 값을 유추할 수 있다.
도 9는 본 명세서에서 설명하는 방법이 적용될 수 있는 SRS 전송(SRS transmission)을 통한 상향링크 빔 관리(uplink beam management) 방법의 일례를 나타낸다. 도 9는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 9를 참고하면, 기지국 902가 빔 관리를 위해 설정된 Type B SRS 자원을 통해 상향링크 빔 관리를 수행하는 경우가 가정된다. 이 때, 기지국 902는, SRI(SRS Resource Indicator) 및/또는 포트 인덱스(즉, SRS 자원의 포트 인덱스)를 이용하여, 상기 상향링크 빔 관리를 통해 선택된 상향링크 빔 정보를 단말 912에게 지시(indication)할 수 있다. 이 경우, 기지국 902 및 단말 912의 구체적인 동작은 다음과 같다.
S905 단계에서, 단말 912는 Type B SRS 자원들(즉, 제1 Type B SRS 자원(Type B SRS resource #1), 제2 Type B SRS 자원(Type B SRS resource #2), 및 제3 Type B SRS 자원(Type B SRS resource #3))을 이용하여 SRS 전송을 수행할 수 있다. 이 때, SRS 자원들은, SRS 전송을 위해 이용되는 빔 방향(즉, 빔 쌍 링크(beam pair link))에 따라 구분될 수 있다. 이 경우, 기지국 902는 Type B SRS 자원들을 통해 전송된 SRS들을 이용하여 상향링크 빔 관리 절차를 수행할 수 있다.
이 후, S910 단계에서, 기지국 902는 선택된 상향링크 빔 정보를 나타내는 빔 지시(beam indication)을 SRI 및/또는 포트 인덱스로 단말 912에게 지시할 수 있다. 여기에서, 선택된 상향링크 빔 정보는, S905 단계에서 전송된 SRS들을 이용하여 수행된 상향링크 빔 관리 절차를 통해 기지국 902에 의해 선택된 상향링크 빔에 대한 정보를 의미할 수 있다.
이러한 빔 지시를 위한 설정 정보(또는 지시 정보)는 앞서 설명된 상향링크 그랜트의 SRI 필드의 정보(또는 정보 요소)와는 별개의 시그널링(예: MAC-CE, DCI 등)을 통해 설정 또는 지시될 수 있다. 또한, 해당 SRS 자원의 TA 수정이 필요한 경우, 기지국은 TA 오프셋 및/또는 TA 명령도 포함하여 상위 계층 시그널링을 통해 설정 또는 지시할 수 있다. 즉, 해당 SRS 자원(예: 상기 선택된 상향링크 빔 정보와 관련된 SRS 자원)에 대한 TA 변경(change) 또는 수정(modify)이 필요한 경우, 기지국 902는 TA 오프셋(TA offset) 및/또는 TA 명령(TA command)을 상위 계층 시그널링(higher layer signaling)(예: MAC-CE)을 통해 추가적으로 설정 또는 지시할 수 있다. TA 오프셋 및/또는 TA 명령에 대한 설정(또는 지시)은, 상기 빔 지시를 위한 설정 정보에 대한 설정(또는 지시)와 동시에 수행되거나, 또는 별개로 수행될 수도 있다.
이 후, S915 단계에서, 단말 912는 기지국 902에 의해 지시된 상향링크 빔을 이용하여 상향링크 전송을 수행할 수 있다. 일례로, 단말 912는 기지국에 의해 지시된 Type A SRS 자원을 이용하여 CSI 획득을 위한 SRS 전송을 수행할 수 있다. 이 때, 단말 912는 기지국의 빔 지시에 포함된 해당 SRS 자원에 대한 TA 오프셋 또는 TA 명령 값으로 TA 값을 수정하거나, 및/또는 해당 SRS 자원과 연동된 TA 값을 유추하여 상향링크 전송을 수행할 수 있다.
이 때, 하향링크 채널 및 상향링크 채널 간의 호혜성(reciprocity) 또는 빔 대응(beam correspondence)이 성립되는 경우, 기지국은 상향링크 빔 정보를 특정 하향링크 참조 신호(예: CRI(CSI-RS Resource Indicator) 및/또는 포트 인덱스(즉, CSI-RS 자원의 포트 인덱스))를 이용하여 단말에게 지시할 수 있다. 이 때, 단말은 상기 지시를 하향링크 빔의 호혜적인 상향링크 빔으로 CSI 획득을 위한 Type A SRS 자원을 지시하는 것으로 간주할 수 있다. 또한, 단말은 별도의 CL TA 프로세스를 유추하지 않고, 디폴트 OL TA 프로세스를 유추하거나, 또는 오직 SRS 전송을 위한 전송 빔 지시(Tx beam indication)로만 인식할 수도 있다.
또한, 앞서 설명된 실시 예들에서는, 지시된(또는 설정된) SRS 자원에 연동된(또는 대응하는) (CL) TA 프로세스를 이용하여 SRS 및/또는 PUSCH(즉, 상향링크 데이터)를 전송하는 방법이 설명되었다. 그러나, 상술한 방법은, SRS 또는 PUSCH 전송뿐만 아니라, 서로 다른 기지국(즉, 셀/TRP)으로의 PUCCH(즉, 상향링크 제어 정보) 전송에도 동일 또는 유사하게 적용될 수 있다.
예를 들어, NR 시스템에서, 단말은, PUCCH 유형(PUCCH type)(예: 짧은 PUCCH(short PUCCH), 긴 PUCCH(long PUCCH)) 및/또는 시간 패턴(time pattern)에 따라 서로 다른 전송 빔 및/또는 수신 빔(즉, 빔 쌍)을 통해 PUCCH를 전송할 수 있다. 이 때, 기지국은 PUCCH 전송을 위한 빔 지시(beam indication)에 대해 SRI(SRS Resource Indicator) 등을 통해 미리 설정 또는 지시할 수 있다. 이 경우, 단말은 해당 SRS 자원(즉, 기지국에 의해 지시된 SRS 자원)에 연동된 (CL) TA 프로세스를 이용하여 PUCCH 전송을 수행할 수 있다.
또한, 앞서 설명된 실시 예들에서, 다수의 전송-수신 빔(Tx-Rx beam) 또는 빔 쌍 링크(beam pair link)를 고려하여, RRS 설정(또는 지시)에 기반한 (OL) TA 프로세스 방식과 SRS 전송(즉, SRS 자원)에 기반한 (CL) TA 프로세스 방식이 설명되었다. 이와 관련하여, 기지국은, (단말 간의) 전송-수신 빔 또는 빔 쌍 링크를 고려하여, OL TA 프로세스와 CL TA 프로세스 간의 연계(association)(또는 조합(combination))에 대한 설정 정보를 추가적으로(또는 별개로) 지시(또는 설정)할 수 있다. 예를 들어, 기지국은 우선적으로 CL TA 프로세스 방식을 이용하여 대략적인 TA 값을 조정한 후, TA 값에 대한 세밀한 조정을 위해 OL TA 프로세스 방식을 이용하도록 설정(또는 지시, 설계)할 수 있다. 이와 같은 방식을 통해, 단말의 TA 값 조정에 대한 복잡도(complexity) 및 오버헤드(overhead)가 감소될 수 있는 효과가 있다.
이 경우, 상기 기지국은 이러한 설정에 대한 정보를 상위 계층 시그널링(예: RRC 메시지, MAC-CE 등)을 통해 단말로 전달할 수 있다. 해당 단말은 상기 설정에 따라 CL TA 프로세스 방식 및/또는 OL TA 프로세스 방식을 이용하여 상향링크 전송 시점을 설정(또는 조정)하고, 설정된 상향링크 전송 시점에서 상향링크 전송을 수행할 수 있다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 타이밍 어드밴드(timing advance)를 설정하여 상향링크 전송(uplink transmission)을 수행하는 단말의 동작 순서도(flow chart)를 나타낸다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 10을 참고하면, 단말이 하나 이상의 빔들을 통해 신호를 송수신하는 시스템 즉, 하나 이상의 빔 쌍(beam pair)들을 이용하여 하나 이상의 기지국(즉, 셀/TRP)들과 신호를 송수신하는 경우가 가정된다.
S1005 단계에서, 단말은, 기지국으로부터 사운딩 참조 신호(SRS)의 전송을 위한 SRS 자원 설정 정보(SRS resource configuration)를 수신한다. 여기에서, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 타이밍 어드밴스 값(TA 값)을 나타내는 설정 정보를 포함한다. 이 때, 상기 SRS 자원 설정 정보는 앞서 설명된 실시 예들에서의 SRS 자원과 관련된 설정 정보를 의미할 수 있다. 이 경우, 단말은 상기 SRS 자원 설정 정보를 상위 계층 시그널링(예: RRC 메시지, MAC-CE 등)을 통해 수신할 수 있다.
여기에서, 상기 SRS 자원 설정 정보는, 상기 하나 이상의 SRS 자원들을 나타내는 하나 이상의 식별자(identifier)(즉, 앞서 설명된 SRS 자원 식별자)들을 포함하며, 상기 미리 설정된 적어도 하나의 TA 값은 상기 하나 이상의 식별자들을 이용하여 설정될 수 있다. SRS 자원 식별자에 따라 TA 값을 설정하는 내용은 상술한 내용과 같다.
예를 들어, 상기 하나 이상의 SRS 자원들이 다수의 SRS 자원 그룹(SRS resource group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, SRS 자원 그룹 별로 서로 다르게 설정될 수 있다. 다른 예를 들어, 상기 하나 이상의 SRS 자원들의 빔(beam)들이 다수의 빔 그룹(beam group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, 빔 그룹 별로 서로 다르게 설정될 수도 있다. 또 다른 예를 들어, 상기 하나 이상의 SRS 자원들의 셀(cell)들이 다수의 셀 그룹(cell group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, 셀 그룹 별로 서로 다르게 설정될 수도 있다.
또한, 앞서 설명된 바와 같이, 상기 SRS 자원 설정 정보는 하나 이상의 SRS 자원들에 대해 미리 설정된 적어도 하나의 가상 셀 식별자(Virtual Cell Identifier, VCID) 또는 전력 제어(즉, 전력제어 프로세스)를 나타내는 설정 정보를 더 포함할 수 있다.
이 후, S1010 단계에서, 단말은 상기 기지국으로부터 상기 하나 이상의 SRS 자원들 중 특정 SRS 자원을 지시하는 제어 정보(control information)를 수신할 수 있다. 즉, 단말은 기지국에 의해 할당 받은 SRS 자원들 중에서 특정 SRS 자원을 지시 받을 수 있다. 이 때, 단말이 특정 SRS 자원에 해당하는 빔 자원을 이용하여 PUSCH를 전송하고자 하는 경우, 상기 제어 정보는, 상향링크 그랜트(UL grant)의 SRS 자원 지시 필드(SRI field)를 통해 수신될 수 있다. 상기 제어 정보를 통해, 기지국은 다수의 셀/TRP 또는 서로 다른 빔(또는 프리코더) 방향으로의 상향링크 신호 전송을 단말에게 지시할 수 있다.
이 후, S1015 단계에서, 단말은 상기 특정 SRS 자원에 대응하는 TA 값을 이용하여 설정된 상향링크 전송 시점(즉, 상향링크 서브프레임)에서 상향링크 신호(예: PUSCH, 상향링크 데이터)를 전송한다. 단말이 TA 값을 이용하여 상향링크 전송 시점을 설정하는 방법은 상술한 바와 같다.
이 때, 상기 단말이, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 다수의 SRS 자원을 지시하는 제어 정보를 수신하는 경우, 상기 단말은 상기 다수의 SRS 자원에 대응하는 타이밍 어드밴스 값들 중 최대 값(maximum value)을 이용하여 설정된 상향링크 전송 시점에서 상기 상향링크 신호를 전송할 수 있다. 또는, 이 경우, 상기 단말은 상기 다수의 SRS 자원에 대응하는 타이밍 어드밴스 값들의 평균 값(average value)을 이용하여 설정된 상향링크 전송 시점에서 상기 상향링크 신호를 전송할 수도 있다.
또한, 본 발명의 다양한 실시 예들에서, TA 프로세스(즉, TA 값)에 대해 설정된 SRS 자원(즉, 앞서 설명된 제2 실시 예의 방식)과 TA 프로세스에 대해 설정된 참조 신호(즉, RRS)(즉, 앞서 설명된 제1 실시 예의 방식)가 결합되어 이용될 수도 있다.
구체적으로, 상기 단말은 SRS 자원 설정 정보 이외에, 하나 이상의 참조 신호들에 대해 미리 설정된 하나 이상의 TA 값들을 나타내는 설정 정보를 수신할 수 있다. 이 때, 상기 단말이 상기 다수의 참조 신호들 중 특정 참조 신호를 수신하는 경우, 상기 단말은, 상기 특정 SRS 자원에 대응하는 제1 타이밍 어드밴스 값과 상기 특정 참조 신호에 대응하는 제2 타이밍 어드밴스 값을 이용하여 설정된 상향링크 전송 시점에서, 상기 상향링크 신호를 전송할 수 있다. 여기에서, 상기 하나 이상의 참조 신호들은, 제1 실시 예에서 상술한 바와 같이, 동기 신호 블록 또는 CSI-RS 중 적어도 하나를 포함할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 11은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 11을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1110)와 단말(1120)을 포함한다.
기지국(1110)는 프로세서(processor, 1111), 메모리(memory, 1112) 및 통신 모듈(communication module, 1113)을 포함한다.
프로세서(1111)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1111)에 의해 구현될 수 있다. 메모리(1112)는 프로세서(1111)와 연결되어, 프로세서(1111)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1113)은 프로세서(1111)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1113)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1120)은 프로세서(1121), 메모리(1122) 및 통신 모듈(또는 RF부)(1123)을 포함한다. 프로세서(1121)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1121)에 의해 구현될 수 있다. 메모리(1122)는 프로세서(1121)와 연결되어, 프로세서(1121)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1123)는 프로세서(1121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1112, 1122)는 프로세서(1111, 1121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1111, 1121)와 연결될 수 있다.
또한, 기지국(1110) 및/또는 단말(1120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 12는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 12에서는 앞서 도 11의 단말을 보다 상세히 예시하는 도면이다.
도 12를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1210), RF 모듈(RF module)(또는 RF 유닛)(1235), 파워 관리 모듈(power management module)(1205), 안테나(antenna)(1240), 배터리(battery)(1255), 디스플레이(display)(1215), 키패드(keypad)(1220), 메모리(memory)(1230), 심카드(SIM(Subscriber Identification Module) card)(1225)(이 구성은 선택적임), 스피커(speaker)(1245) 및 마이크로폰(microphone)(1250)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1210)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1210)에 의해 구현될 수 있다.
메모리(1230)는 프로세서(1210)와 연결되고, 프로세서(1210)의 동작과 관련된 정보를 저장한다. 메모리(1230)는 프로세서(1210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1210)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1220)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1250)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1210)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1225) 또는 메모리(1230)로부터 추출할 수 있다. 또한, 프로세서(1210)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1215) 상에 디스플레이할 수 있다.
RF 모듈(1235)는 프로세서(1210)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1210)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1235)에 전달한다. RF 모듈(1235)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1240)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1235)은 프로세서(1210)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1245)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법은 3GPP LTE/LTE-A 시스템, 5G에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (15)
- 무선 통신 시스템에서 단말이 하나 이상의 빔들을 통해 신호를 송수신하는 방법에 있어서,기지국으로부터, 사운딩 참조 신호(Sounding Reference Signal, SRS)의 전송을 위한 SRS 자원 설정 정보(SRS resource configuration information)를 수신하는 과정과, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 타이밍 어드밴스(timing advance) 값을 나타내는 설정 정보를 포함하고,상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 특정 SRS 자원을 지시하는 제어 정보(control information)를 수신하는 과정과,상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상향링크 전송 시점에서 상향링크 신호를 전송하는 과정을 포함하는 방법.
- 제 1항에 있어서,상기 SRS 자원 설정 정보는, 상기 하나 이상의 SRS 자원들을 나타내는 하나 이상의 식별자(identifier)들을 포함하고,상기 미리 설정된 적어도 하나의 타이밍 어드밴스 값은, 상기 하나 이상의 식별자들을 이용하여 설정되는 방법.
- 제 2항에 있어서,상기 하나 이상의 SRS 자원들이 다수의 SRS 자원 그룹(SRS resource group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, SRS 자원 그룹 별로 서로 다르게 설정되는 방법.
- 제 2항에 있어서,상기 하나 이상의 SRS 자원들의 빔(beam)들이 다수의 빔 그룹(beam group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, 빔 그룹 별로 서로 다르게 설정되는 방법.
- 제 2항에 있어서,상기 하나 이상의 SRS 자원들의 셀(cell)들이 다수의 셀 그룹(cell group)들로 그룹화되는 경우, 타이밍 어드밴스 값은, 셀 그룹 별로 서로 다르게 설정되는 방법.
- 제 2항에 있어서,상기 상향링크 신호는, PUSCH(Physical Uplink Shared Channel)인 방법.
- 제 6항에 있어서,상기 제어 정보는, 상향링크 그랜트(uplink grant)의 SRS 자원 지시 필드(SRS resource indicator field)를 통해 수신되는 방법.
- 제 2항에 있어서,상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 가상 셀 식별자(virtual cell identifier) 또는 전력 제어(power control)를 나타내는 설정 정보를 더 포함하는 방법.
- 제 1항에 있어서,상기 단말이, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 다수의 SRS 자원을 지시하는 제어 정보를 수신하는 경우, 상기 다수의 SRS 자원에 대응하는 타이밍 어드밴스 값들 중 최대 값(maximum value)을 이용하여 설정된 상향링크 전송 시점에서 상기 상향링크 신호를 전송하는 과정을 더 포함하는 방법.
- 제 1항에 있어서,상기 단말이, 상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 다수의 SRS 자원을 지시하는 제어 정보를 수신하는 경우, 상기 다수의 SRS 자원에 대응하는 타이밍 어드밴스 값들의 평균 값(average value)을 이용하여 설정된 상향링크 전송 시점에서 상기 상향링크 신호를 전송하는 과정을 더 포함하는 방법.
- 제 2항에 있어서,상기 SRS 자원 설정 정보는, 상위 계층 시그널링(higher layer signaling)을 통해 수신되는 방법.
- 제 2항에 있어서,상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상기 상향링크 전송 시점에서 상기 상향링크 신호를 전송하는 과정은,상기 기지국으로부터, 하나 이상의 참조 신호(reference signal)들에 대해 미리 설정된 하나 이상의 타이밍 어드밴스 값들을 나타내는 설정 정보를 수신하는 과정과,상기 기지국으로부터, 상기 하나 이상의 참조 신호들 중 특정 참조 신호를 수신하는 과정과,상기 특정 SRS 자원에 대응하는 제1 타이밍 어드밴스 값과 상기 특정 참조 신호에 대응하는 제2 타이밍 어드밴스 값을 이용하여 설정된 상향링크 전송 시점에서, 상기 상향링크 신호를 전송하는 과정을 포함하는 방법.
- 제 12항에 있어서,상기 하나 이상의 참조 신호들은, 동기 신호 블록(Synchronization Signal block) 또는 CSI-RS(Channel State Information-Reference Signal) 중 적어도 하나를 포함하는 방법.
- 무선 통신 시스템에서 하나 이상의 빔들을 통해 신호를 송수신하는 단말에 있어서,무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고,상기 프로세서는,기지국으로부터, 사운딩 참조 신호(Sounding Reference Signal, SRS)의 전송을 위한 SRS 자원 설정 정보(SRS resource configuration information)를 수신하고, 상기 SRS 자원 설정 정보는, 하나 이상의 SRS 자원(SRS resource)들에 대해 미리 설정된 적어도 하나의 타이밍 어드밴스(timing advance) 값을 나타내는 설정 정보를 포함하고,상기 기지국으로부터, 상기 하나 이상의 SRS 자원들 중 특정 SRS 자원을 지시하는 제어 정보(control information)를 수신하고,상기 특정 SRS 자원에 대응하는 타이밍 어드밴드 값을 이용하여 설정된 상향링크 전송 시점에서 상향링크 신호를 전송하도록 제어하는 단말.
- 제 14항에 있어서,상기 SRS 자원 설정 정보는, 상기 하나 이상의 SRS 자원들을 나타내는 하나 이상의 식별자(identifier)들을 포함하고,상기 미리 설정된 적어도 하나의 타이밍 어드밴스 값은, 상기 하나 이상의 식별자들을 이용하여 설정되는 단말.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18795085.2A EP3614766B1 (en) | 2017-05-04 | 2018-05-03 | Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method |
CN201880029530.5A CN110637495B (zh) | 2017-05-04 | 2018-05-03 | 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置 |
US16/610,490 US11159347B2 (en) | 2017-05-04 | 2018-05-03 | Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762501703P | 2017-05-04 | 2017-05-04 | |
US62/501,703 | 2017-05-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018203680A1 true WO2018203680A1 (ko) | 2018-11-08 |
Family
ID=64016128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/005137 WO2018203680A1 (ko) | 2017-05-04 | 2018-05-03 | 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11159347B2 (ko) |
EP (1) | EP3614766B1 (ko) |
CN (1) | CN110637495B (ko) |
WO (1) | WO2018203680A1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166818A1 (ko) * | 2019-02-15 | 2020-08-20 | 엘지전자 주식회사 | 무선 통신 시스템에서, 사용자 장치에 의하여, srs를 송신하는 방법 및 장치 |
WO2020192350A1 (zh) * | 2019-03-25 | 2020-10-01 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN112312556A (zh) * | 2019-08-02 | 2021-02-02 | 大唐移动通信设备有限公司 | 一种定时提前配置方法、终端和网络侧设备 |
WO2021025439A1 (en) * | 2019-08-07 | 2021-02-11 | Samsung Electronics Co., Ltd. | Method and apparatus for low-latency beam selection |
EP3930241A4 (en) * | 2019-02-20 | 2022-05-18 | Vivo Mobile Communication Co., Ltd. | DEVICE AND METHOD FOR CONFIGURING RESOURCES |
EP4096110A4 (en) * | 2020-02-13 | 2023-06-28 | Huawei Technologies Co., Ltd. | Method and apparatus for transmitting physical uplink shared channel |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108880630A (zh) * | 2017-05-12 | 2018-11-23 | 索尼公司 | 电子设备和通信方法 |
CN111226411B (zh) * | 2017-08-11 | 2022-12-02 | 苹果公司 | 探测参考信号(srs)的控制信令 |
EP3603254B1 (en) * | 2018-01-12 | 2023-09-27 | Telefonaktiebolaget LM Ericsson (Publ) | Scheduling request resource configuration |
CN110838861B (zh) * | 2018-08-17 | 2023-03-17 | 大唐移动通信设备有限公司 | 信号传输方法、波束确定方法及其装置 |
CN109417717B (zh) * | 2018-09-27 | 2022-06-24 | 北京小米移动软件有限公司 | 测量配置方法、装置、设备、系统及存储介质 |
WO2020145676A1 (ko) * | 2019-01-10 | 2020-07-16 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치 |
CN111586855B (zh) * | 2019-02-15 | 2024-02-09 | 华为技术有限公司 | 信号传输的方法与装置 |
EP4066428A4 (en) * | 2020-01-21 | 2022-11-30 | ZTE Corporation | BEAM DISPLAY METHODS IN WIRELESS COMMUNICATION SYSTEMS |
US20230030275A1 (en) * | 2020-01-25 | 2023-02-02 | Qualcomm Incorporated | Sounding reference signal configuration |
US20220400501A1 (en) * | 2020-02-04 | 2022-12-15 | Lg Electronics Inc. | Method and device for repeatedly transmitting uplink channel in wireless communication system |
KR20220146498A (ko) * | 2020-02-25 | 2022-11-01 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | 정보 전송 방법, 단말기 및 네트워크 기기 |
EP4099747B1 (en) * | 2020-03-09 | 2024-05-22 | Mitsubishi Electric Corporation | Communication device |
US20230188303A1 (en) * | 2020-05-15 | 2023-06-15 | Beijing Xiaomi Mobile Software Co., Ltd. | Data transmission processing method and apparatus, communication device and storage medium |
WO2021237703A1 (en) * | 2020-05-29 | 2021-12-02 | Qualcomm Incorporated | Distance based srs configuration |
US20220014328A1 (en) * | 2020-07-13 | 2022-01-13 | Qualcomm Incorporated | Multi-trp srs resource set |
CN113973260B (zh) * | 2020-07-22 | 2023-08-01 | 大唐移动通信设备有限公司 | 上行信号定位的方法、通信基站和测量基站及ue |
CN115668840B (zh) * | 2020-08-21 | 2024-09-17 | Oppo广东移动通信有限公司 | 无线通信方法和设备 |
CN114245369B (zh) * | 2020-09-09 | 2023-07-21 | 中国移动通信有限公司研究院 | 信道质量上报方法、波束恢复参考信号配置方法及装置 |
US11569876B2 (en) * | 2020-09-15 | 2023-01-31 | Qualcomm Incorporated | Beam index reporting based at least in part on a precoded channel state information reference signal |
US20220085966A1 (en) * | 2020-09-17 | 2022-03-17 | Qualcomm Incorporated | Timing event trigger full duplex abortion |
CN116325940A (zh) * | 2020-10-15 | 2023-06-23 | 苹果公司 | 用于多trp操作的上行链路传输增强 |
EP4209096A4 (en) * | 2020-10-16 | 2024-06-12 | ZTE Corporation | NEW MEASUREMENT CONFIGURATION |
US20220210825A1 (en) * | 2020-12-28 | 2022-06-30 | Samsung Electronics Co., Ltd. | Method and apparatus of uplink timing adjustment |
CN115918185A (zh) * | 2021-08-02 | 2023-04-04 | 北京小米移动软件有限公司 | 定位测量方法、通信装置和存储介质 |
CN115915428A (zh) * | 2021-09-30 | 2023-04-04 | 大唐移动通信设备有限公司 | Sps pdsch的确定方法、终端、电子设备及存储介质 |
CN116633507A (zh) * | 2022-02-11 | 2023-08-22 | 北京三星通信技术研究有限公司 | 一种用于定位信号的发送和接收测量方法和装置 |
US12088371B2 (en) * | 2022-02-14 | 2024-09-10 | Qualcomm Incorporated | Selection of beamforming configuration parameters for a multi-panel active antenna system (AAS) |
CN117322101A (zh) * | 2022-04-29 | 2023-12-29 | 北京小米移动软件有限公司 | 基于多发送接收点的通信方法、装置、设备及存储介质 |
CN117177345A (zh) * | 2022-05-25 | 2023-12-05 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN117641384A (zh) * | 2022-08-11 | 2024-03-01 | 华为技术有限公司 | 通信方法及相关装置 |
CN116671059A (zh) * | 2023-03-31 | 2023-08-29 | 北京小米移动软件有限公司 | 一种通信方法、装置、设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011142608A2 (ko) * | 2010-05-12 | 2011-11-17 | 엘지전자 주식회사 | 무선통신 시스템에서 srs 트리거링 기반 srs 전송 방법 |
US20150016428A1 (en) * | 2013-07-10 | 2015-01-15 | Motorola Mobility Llc | Methods and device for performing device-to-device communication |
US20150023191A1 (en) * | 2013-07-18 | 2015-01-22 | Electronics And Telecommunications Research Institute | Cell and mobile terminal discoverly method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7778151B2 (en) * | 2006-10-03 | 2010-08-17 | Texas Instruments Incorporated | Efficient scheduling request channel for wireless networks |
US8917593B2 (en) * | 2010-03-18 | 2014-12-23 | Qualcomm Incorporated | Random access design in a multiple component carrier communication network |
CN108924942B (zh) * | 2011-01-27 | 2021-09-24 | 富士通互联科技有限公司 | 基站装置、移动台装置、无线通信方法 |
CN102740447B (zh) * | 2011-04-13 | 2016-05-25 | 华为技术有限公司 | 确定定时提前量的方法、终端设备和网络侧设备 |
KR101306377B1 (ko) * | 2011-09-29 | 2013-09-09 | 엘지전자 주식회사 | 상향링크 전송 방법 및 장치 |
US9167597B2 (en) * | 2012-07-13 | 2015-10-20 | Samsung Electronics Co., Ltd. | Methods and apparatus for transmission of uplink sounding reference signals in a communication system with large number of antennas |
WO2015034311A1 (ko) * | 2013-09-05 | 2015-03-12 | 엘지전자 주식회사 | 다중 안테나 지원 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치 |
CN108024325B (zh) | 2016-11-03 | 2020-04-03 | 华为技术有限公司 | 无线通信方法和装置 |
-
2018
- 2018-05-03 CN CN201880029530.5A patent/CN110637495B/zh active Active
- 2018-05-03 WO PCT/KR2018/005137 patent/WO2018203680A1/ko unknown
- 2018-05-03 US US16/610,490 patent/US11159347B2/en active Active
- 2018-05-03 EP EP18795085.2A patent/EP3614766B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011142608A2 (ko) * | 2010-05-12 | 2011-11-17 | 엘지전자 주식회사 | 무선통신 시스템에서 srs 트리거링 기반 srs 전송 방법 |
US20150016428A1 (en) * | 2013-07-10 | 2015-01-15 | Motorola Mobility Llc | Methods and device for performing device-to-device communication |
US20150023191A1 (en) * | 2013-07-18 | 2015-01-22 | Electronics And Telecommunications Research Institute | Cell and mobile terminal discoverly method |
Non-Patent Citations (3)
Title |
---|
"On Timing Advance for Multi-beam Operation", R1-1704726, 3GPP TSG RAN WG1 MEETING #88BIS, 25 March 2017 (2017-03-25), Spokane, USA, XP051251454 * |
See also references of EP3614766A4 * |
ZTE ET AL.: "Discussion on SRS Design for NR", R1-1704414, 3GPP TSG RAN WG1 MEETING #88BIS, 25 March 2017 (2017-03-25), Spokane, USA, XP051251215 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166818A1 (ko) * | 2019-02-15 | 2020-08-20 | 엘지전자 주식회사 | 무선 통신 시스템에서, 사용자 장치에 의하여, srs를 송신하는 방법 및 장치 |
US20220159596A1 (en) * | 2019-02-15 | 2022-05-19 | Lg Electronics Inc. | Method by which user equipment transmits srs in wireless communication system, and apparatus |
US11968641B2 (en) | 2019-02-15 | 2024-04-23 | Lg Electronics Inc. | Method by which user equipment transmits SRS in wireless communication system, and apparatus |
EP3930241A4 (en) * | 2019-02-20 | 2022-05-18 | Vivo Mobile Communication Co., Ltd. | DEVICE AND METHOD FOR CONFIGURING RESOURCES |
US11973710B2 (en) | 2019-02-20 | 2024-04-30 | Vivo Mobile Communication Co., Ltd. | Resource configuration method and device |
WO2020192350A1 (zh) * | 2019-03-25 | 2020-10-01 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN112312556A (zh) * | 2019-08-02 | 2021-02-02 | 大唐移动通信设备有限公司 | 一种定时提前配置方法、终端和网络侧设备 |
EP4009717A4 (en) * | 2019-08-02 | 2022-09-14 | Datang Mobile Communications Equipment Co., Ltd. | ADVANCE CONFIGURATION METHOD OF SYNCHRONIZATION, TERMINAL AND NETWORK DEVICE |
CN112312556B (zh) * | 2019-08-02 | 2024-07-26 | 大唐移动通信设备有限公司 | 一种定时提前配置方法、终端和网络侧设备 |
WO2021025439A1 (en) * | 2019-08-07 | 2021-02-11 | Samsung Electronics Co., Ltd. | Method and apparatus for low-latency beam selection |
US11206076B2 (en) | 2019-08-07 | 2021-12-21 | Samsung Electronics Co., Ltd. | Method and apparatus for low-latency beam selection |
EP4096110A4 (en) * | 2020-02-13 | 2023-06-28 | Huawei Technologies Co., Ltd. | Method and apparatus for transmitting physical uplink shared channel |
Also Published As
Publication number | Publication date |
---|---|
US20200162289A1 (en) | 2020-05-21 |
CN110637495A (zh) | 2019-12-31 |
EP3614766A1 (en) | 2020-02-26 |
EP3614766B1 (en) | 2024-10-23 |
CN110637495B (zh) | 2023-11-28 |
US11159347B2 (en) | 2021-10-26 |
EP3614766A4 (en) | 2020-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018203680A1 (ko) | 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2018128351A1 (ko) | 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2018203679A1 (ko) | 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2018174413A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018164332A1 (ko) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2019098798A1 (ko) | 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2018203704A1 (ko) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2018128376A1 (ko) | 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2018128365A1 (ko) | 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치 | |
WO2018199704A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2018143665A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018230975A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치 | |
WO2018147676A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2019103562A1 (en) | Method for reporting channel state information in wireless communication system and apparatus for the same | |
WO2019139288A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2018143721A1 (ko) | 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치 | |
WO2019098762A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2019066618A1 (ko) | 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2018203728A1 (ko) | 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치 | |
WO2019107873A1 (en) | Method for reporting channel state information in wireless communication system and apparatus for the same | |
WO2018212530A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018199703A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2019017751A1 (ko) | 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2019050380A1 (ko) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2019190236A1 (ko) | 무선 통신 시스템에서 사운딩 참조 신호(srs)를 전송하는 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18795085 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018795085 Country of ref document: EP Effective date: 20191119 |