WO2018203610A1 - 무선 셀룰라 통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치 - Google Patents

무선 셀룰라 통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치 Download PDF

Info

Publication number
WO2018203610A1
WO2018203610A1 PCT/KR2018/004752 KR2018004752W WO2018203610A1 WO 2018203610 A1 WO2018203610 A1 WO 2018203610A1 KR 2018004752 W KR2018004752 W KR 2018004752W WO 2018203610 A1 WO2018203610 A1 WO 2018203610A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
transmission
symbols
terminal
slot
Prior art date
Application number
PCT/KR2018/004752
Other languages
English (en)
French (fr)
Inventor
최승훈
김영범
김윤선
김태형
여정호
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201880029299.XA priority Critical patent/CN110603859B/zh
Priority to EP21207597.2A priority patent/EP3975627B1/en
Priority to US16/603,673 priority patent/US11317358B2/en
Priority to EP18794329.5A priority patent/EP3592046B1/en
Priority to CN202310729283.2A priority patent/CN116782353A/zh
Priority to AU2018263683A priority patent/AU2018263683B2/en
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP24155276.9A priority patent/EP4340471A3/en
Publication of WO2018203610A1 publication Critical patent/WO2018203610A1/ko
Priority to US16/596,254 priority patent/US11224020B2/en
Priority to US17/571,994 priority patent/US11553441B2/en
Priority to US18/093,180 priority patent/US11956735B2/en
Priority to US18/425,086 priority patent/US20240172129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control

Definitions

  • the present invention relates to a power control method and apparatus for uplink transmission in a wireless cellular communication system.
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM and QAM Modulation
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA NOMA
  • non orthogonal multiple access non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
  • LTE Long Term Evolution
  • LTE-Advanced there is a need for a method and apparatus for controlling power of uplink transmission in a wireless cellular communication system.
  • the terminal when uplink transmission intervals, such as an uplink data channel, an uplink control channel, and an uplink sounding reference signal, are changed in units of OFDM symbols, uplink coverage is maintained or super reliability is required.
  • the terminal provides a method and an apparatus therefor for controlling the power of the uplink transmissions within the maximum transmit power value of the terminal.
  • a method of a terminal including: checking a number of symbols to be used for uplink transmission, determining a transmission power for uplink transmission based on the number of symbols, and Transmitting an uplink signal to the base station using the transmit power in the symbol.
  • the terminal according to an embodiment for solving the above problems, the transceiver for transmitting and receiving signals, and the number of symbols to be used for uplink transmission, and the transmission for uplink transmission based on the number of symbols And a controller configured to determine power and to transmit an uplink signal to a base station using transmission power in a symbol.
  • a method of a base station includes transmitting information related to uplink transmission power to a terminal, and receiving an uplink signal transmitted at a transmission power determined based on the information from the terminal. And a transmission power is determined based on the number of symbols on which the uplink signal is transmitted.
  • the base station for solving the above problems, the transceiver for transmitting and receiving a signal, and transmits the information related to the uplink transmission power to the terminal, and transmits at the transmission power determined based on the information from the terminal And a control unit configured to receive an uplink signal, wherein the transmission power is determined based on the number of symbols on which the uplink signal is transmitted.
  • an uplink transmission such as an uplink data channel, an uplink control channel, an uplink sounding reference signal varies in units of OFDM symbols, or uplink transmission in a service having a super reliability requirement
  • the uplink control channel, the uplink sounding reference signal through the method according to the present invention for controlling the power of the uplink transmissions within the maximum transmit power value of the terminal. Uplink coverage may be maintained when transmitting the data, and reliability of uplink transmission may be satisfied.
  • FIG. 1 illustrates a basic structure of a time-frequency domain in an LTE system.
  • FIG. 2 is a diagram illustrating an example in which 5G services are multiplexed and transmitted in one system.
  • FIG. 3 is a diagram illustrating an embodiment of a communication system to which the present invention is applied.
  • FIG. 4 is a diagram illustrating operations of a terminal and a base station operating in a communication system to which the proposed embodiment is applied.
  • FIG. 5 is a diagram illustrating physical uplink control channel (PUCCH) transmission in a 5G system.
  • PUCCH physical uplink control channel
  • FIG. 6 is a diagram illustrating uplink transmission such as PUCCH, sounding reference signal (SRS), and physical uplink shared channel (PUSCH) transmission in a 5G system.
  • uplink transmission such as PUCCH, sounding reference signal (SRS), and physical uplink shared channel (PUSCH) transmission in a 5G system.
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • FIG. 7 is a diagram illustrating a base station and a terminal procedure for embodiments of the present invention.
  • FIG. 8 is a diagram illustrating a base station apparatus according to the present invention.
  • FIG. 9 is a diagram illustrating a terminal device according to the present invention.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • an OFDM-based wireless communication system in particular the 3GPP EUTRA standard will be the main target, but the main subject of the present invention is another communication system having a similar technical background and channel form.
  • the main subject of the present invention is another communication system having a similar technical background and channel form.
  • the present invention relates to a wireless communication system, and more particularly, different wireless communication systems coexist at one carrier frequency or multiple carrier frequencies, and a terminal capable of transmitting and receiving data in at least one communication system among different communication systems.
  • the present invention relates to a method and an apparatus for transmitting and receiving data with each communication system.
  • mobile communication systems have been developed to provide voice services while guaranteeing user activity.
  • mobile communication systems are gradually expanding to not only voice but also data services, and have now evolved to provide high-speed data services.
  • a shortage of resources and users demand faster services, and thus, a more advanced mobile communication system is required.
  • LTE Long Term Evolution
  • 3GPP The 3rd Generation Partnership Project
  • LTE is a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps.
  • various methods are discussed.
  • the network structure can be simplified to reduce the number of nodes located on the communication path, or the wireless protocols can be as close to the wireless channel as possible.
  • the LTE system employs a hybrid automatic repeat request (HARQ) scheme in which the data is retransmitted in the physical layer when a decoding failure occurs in the initial transmission.
  • HARQ hybrid automatic repeat request
  • the receiver when the receiver does not correctly decode the data, the receiver transmits NACK (Negative Acknowledgement) indicating the decoding failure to the transmitter so that the transmitter can retransmit the corresponding data in the physical layer.
  • NACK Negative Acknowledgement
  • the receiver combines the data retransmitted by the transmitter with the previously decoded data to improve the data reception performance.
  • the transmitter may transmit an acknowledgment (ACK) indicating the decoding success to the transmitter so that the transmitter may transmit new data.
  • ACK acknowledgment
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource region in which the data or control channel is transmitted in downlink in an LTE system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the minimum transmission unit in the time domain is an OFDM symbol, N symb (102) OFDM symbols are gathered to form one slot 106, two slots are gathered to form one subframe 105.
  • the length of the slot is 0.5ms and the length of the subframe is 1.0ms.
  • the radio frame 114 is a time domain unit consisting of 10 subframes.
  • the minimum transmission unit in the frequency domain is a subcarrier, and the bandwidth of the entire system transmission bandwidth is composed of a total of N BW 104 subcarriers.
  • the basic unit of a resource in the time-frequency domain may be represented by an OFDM symbol index and a subcarrier index as a resource element (RE).
  • the resource block 108 (Resource Block; RB or PRB) is defined as N symb 102 consecutive OFDM symbols in the time domain and N RB 110 consecutive subcarriers in the frequency domain.
  • one RB 108 is composed of N symb x N RB REs 112.
  • the minimum transmission unit of data is the RB unit.
  • the data rate increases in proportion to the number of RBs scheduled for the UE.
  • the LTE system defines and operates six transmission bandwidths.
  • the downlink transmission bandwidth and the uplink transmission bandwidth may be different.
  • the channel bandwidth represents a radio frequency (RF) bandwidth corresponding to the system transmission bandwidth.
  • Table 1 shows the correspondence between the system transmission bandwidth and the channel bandwidth defined in the LTE system. For example, an LTE system with a 10 MHz channel bandwidth consists of 50 RBs in transmission bandwidth.
  • the downlink control information is transmitted within the first N OFDM symbols in the subframe.
  • N ⁇ 1, 2, 3 ⁇ . Therefore, the N value varies in each subframe according to the amount of control information to be transmitted in the current subframe.
  • the control information includes a control channel transmission interval indicator indicating how many control information is transmitted over the OFDM symbol, scheduling information for downlink data or uplink data, HARQ ACK / NACK signal, and the like.
  • DCI downlink control information
  • An uplink (UL) refers to a radio link through which a terminal transmits data or a control signal to a base station
  • a downlink (DL) refers to a radio link through which a base station transmits data or a control signal to a terminal.
  • DCI defines various formats to determine whether scheduling information (UL (uplink) grant) for uplink data or scheduling information (DL (downlink) grant) for downlink data and whether compact DCI having a small size of control information.
  • the DCI format is determined according to whether it is used, whether to apply spatial multiplexing using multiple antennas, or whether it is a DCI for power control.
  • DCI format 1 which is scheduling control information (DL grant) for downlink data is configured to include at least the following control information.
  • Resource allocation type 0/1 flag Notifies whether the resource allocation method is type 0 or type 1.
  • Type 0 uses the bitmap method to allocate resources in resource block group (RBG) units.
  • a basic unit of scheduling is a resource block (RB) represented by time and frequency domain resources, and the RBG is composed of a plurality of RBs to become a basic unit of scheduling in a type 0 scheme.
  • Type 1 allows allocating a specific RB within the RBG.
  • Resource block assignment Notifies the RB allocated for data transmission.
  • the resource to be expressed is determined by the system bandwidth and the resource allocation method.
  • Modulation and coding scheme Notifies the modulation scheme used for data transmission and the size of the transport block that is the data to be transmitted.
  • HARQ process number Notifies the process number of HARQ.
  • New data indicator notifies whether HARQ initial transmission or retransmission.
  • Redundancy version Notifies the redundant version of the HARQ.
  • TPC Transmit Power Control
  • PUCCH Physical Uplink Control CHannel
  • the DCI is transmitted through a physical downlink control channel (PDCCH) or an enhanced PDCCH (EPDCCH), which is a downlink physical control channel through channel coding and modulation.
  • PDCH physical downlink control channel
  • EPDCCH enhanced PDCCH
  • the DCI is channel-coded independently for each UE, and then configured and transmitted with independent PDCCHs.
  • the PDCCH is mapped and transmitted during the control channel transmission period.
  • the frequency domain mapping position of the PDCCH is determined by the identifier (ID) of each terminal and spread over the entire system transmission band.
  • the downlink data is transmitted through a physical downlink shared channel (PDSCH) which is a physical channel for downlink data transmission.
  • PDSCH is transmitted after the control channel transmission interval, and scheduling information such as specific mapping positions and modulation schemes in the frequency domain is informed by the DCI transmitted through the PDCCH.
  • the base station informs the UE of the modulation scheme applied to the PDSCH to be transmitted and the size of the data to be transmitted (transport block size (TBS)) through the MCS configured of 5 bits among the control information configuring the DCI.
  • TBS transport block size
  • the TBS corresponds to a size before channel coding for error correction is applied to data (transport block, TB) that the base station intends to transmit.
  • Quadrature Phase Shift Keying QPSK
  • Quadrature Amplitude Modulation (16QAM) Quadrature Amplitude Modulation
  • 64QAM 64QAM.
  • Each modulation order (Qm) corresponds to 2, 4, and 6. That is, 2 bits per symbol for QPSK modulation, 4 bits per symbol for 16QAM modulation, and 6 bits per symbol for 64QAM modulation.
  • bandwidth extension technology has been adopted to support higher data throughput compared to LTE Rel-8.
  • This technique called bandwidth extension or carrier aggregation (CA)
  • CA bandwidth extension or carrier aggregation
  • Each of the bands is called a component carrier (CC)
  • the LTE Rel-8 terminal is defined to have one component carrier for each of downlink and uplink.
  • the downlink component carrier and the uplink component carrier connected to the SIB-2 are collectively called a cell.
  • the SIB-2 connection relationship between the downlink component and the uplink component is transmitted as a system signal or a higher signal.
  • the terminal supporting the CA may receive downlink data through a plurality of serving cells and transmit uplink data.
  • a base station transmits a PDCCH from another serving cell when it is difficult to send a physical downlink control channel (PDCCH) from a specific serving cell to a specific UE, and the corresponding PDCCH is a physical downlink shared channel (PDSCH) of another serving cell or
  • a carrier indicator field may be set as a field indicating that a PUSCH (Physical Uplink Shared Channel) is indicated.
  • the CIF may be set to a terminal supporting the CA. The CIF is determined so that another serving cell can be indicated by adding 3 bits to the PDCCH information in a specific serving cell, CIF is included only when cross carrier scheduling, and CIF is not included. Do not do it.
  • the CIF When the CIF is included in downlink allocation information (DL assignment), the CIF indicates a serving cell to which a PDSCH scheduled by DL assignment is to be transmitted, and the CIF is included in UL resource allocation information (UL grant).
  • the CIF is defined to indicate the serving cell to which the PUSCH scheduled by the UL grant is to be transmitted.
  • carrier aggregation which is a bandwidth extension technology
  • LTE-10 carrier aggregation
  • a plurality of serving cells may be configured in the terminal.
  • the terminal transmits channel information about the plurality of serving cells periodically or aperiodically to the base station for data scheduling of the base station.
  • the base station schedules and transmits data for each carrier, and the terminal transmits A / N feedback for the data transmitted for each carrier.
  • LTE Rel-10 it is designed to transmit A / N feedback of maximum 21 bits, and when A / N feedback and channel information overlap in one subframe, it is designed to transmit A / N feedback and discard channel information.
  • up to 22 bits of A / N feedback and one cell channel information are transmitted in PUCCH format 3 from PUCCH format 3 by multiplexing channel information of one cell with A / N feedback. It was.
  • LTE-13 a maximum of 32 serving cell configuration scenarios are assumed, and the concept of extending the number of serving cells up to 32 using not only a licensed band but also a band in an unlicensed band (ie, an unlicensed band) has been completed.
  • the LTE service has been provided in an unlicensed band such as the 5 GHz band, which is called LAA (Licensed Assisted Access).
  • LAA Licensed Assisted Access
  • the LAA applied Carrier aggregation technology in LTE to support the operation of the LTE cell, which is a licensed band, as the P-cell, and the LAA cell, which is the unlicensed band, as the S-cell.
  • LTE refers to including all of LTE evolution technology, such as LTE-A, LAA.
  • 5G fifth generation wireless cellular communication system
  • 5G fifth generation wireless cellular communication system
  • 5G is referred to as increased mobile broadband communication (eMBB: Enhanced Mobile BroadBand, hereinafter referred to as eMBB), Massive Machine Type Communication (mMTC: referred to herein as mMTC),
  • eMBB Enhanced Mobile BroadBand
  • mMTC Massive Machine Type Communication
  • URLLC ultra reliable low delay communication
  • URLLC Ultra Reliable and Low Latency Communications
  • mMTC is being considered to support application services such as the Internet of Thing (IoT) in 5G.
  • IoT Internet of Thing
  • the mMTC needs a requirement for supporting large terminal access in a cell, improving terminal coverage, improved battery time, and reducing terminal cost.
  • the IoT is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals / km 2 ) in a cell.
  • mMTC is likely to be located in a shadow area such as the basement of a building or an area that a cell cannot cover due to the characteristics of the service, it requires more coverage than the coverage provided by eMBB.
  • the mMTC is likely to be composed of a low cost terminal, and very long battery life time is required because it is difficult to frequently change the battery of the terminal.
  • URLLC Ultra-low latency and ultra-reliability.
  • URLLC must satisfy a maximum latency of less than 0.5 ms, while simultaneously providing a packet error rate of less than 10 ⁇ -5. Accordingly, a transmission time interval (TTI) smaller than a 5G service such as eMBB is required for URLLC, and a design that needs to allocate a wide resource in a frequency band is required.
  • TTI transmission time interval
  • the services considered in the above-mentioned fifth generation wireless cellular communication system should be provided as a framework. That is, for efficient resource management and control, it is desirable that each service is integrated and controlled and transmitted as one system rather than operated independently.
  • FIG. 2 is a diagram illustrating an example in which services considered in 5G are transmitted to one system.
  • the frequency-time resource 201 used by 5G in FIG. 2 may consist of a frequency axis 202 and a time axis 203. 2 illustrates that 5G operates eMBB 205, mMTC 206 and URLLC 207 in one framework.
  • an enhanced mobile broadcast / multicast service (eMBMS) 208 for providing a broadcast service on a cellular basis may be considered.
  • Services considered in 5G, such as eMBB 205, mMTC 206, URLLC 207, and eMBMS 208 are time-division multiplexing (TDM) or frequency within one system frequency bandwidth operating at 5G.
  • TDM time-division multiplexing
  • FDM frequency division multiplexing
  • spatial division multiplexing may also be considered.
  • FDM frequency division multiplexing
  • eMBB 205 it is desirable to occupy the maximum frequency bandwidth at a certain arbitrary time in order to provide the increased data transmission rate described above. Accordingly, in the case of the eMBB 205 service, it is preferable to transmit TDM in another service and system transmission bandwidth 201, but it is also desirable to transmit FDM in other services and system transmission bandwidth according to the needs of other services. .
  • the mMTC 206 unlike other services, an increased transmission interval is required to secure wide coverage, and coverage can be secured by repeatedly transmitting the same packet within the transmission interval. At the same time, there is a limit on the transmission bandwidth that the terminal can receive in order to reduce the complexity of the terminal and the terminal price. Given this requirement, it is desirable for the mMTC 206 to be transmitted in FDM with other services within a 5G transmission system bandwidth 201.
  • URLLC 207 preferably has a short Transmit Time Interval (TTI) when compared to other services to meet the ultra-delay requirements required by the service. At the same time, it is desirable to have a wide bandwidth on the frequency side because it must have a low coding rate in order to satisfy the super reliability requirements. Given this requirement of URLLC 207, URLLC 207 is preferably TDM with other services within 5G of transmission system bandwidth 201.
  • TTI Transmit Time Interval
  • Each of the above-described services may have different transmission / reception schemes and transmission / reception parameters in order to satisfy requirements required by each service.
  • each service can have a different numerology based on each service requirement. Numerology is a cyclic prefix (CP) length and subcarrier spacing in a communication system based on Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA). spacing), OFDM symbol length, transmission interval length (TTI), and the like.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • spacing OFDM symbol length
  • TTI transmission interval length
  • the eMBMS 208 may have a longer CP length than other services. Since eMBMS transmits broadcast-based higher traffic, all cells can transmit the same data.
  • a shorter OFDM symbol length may be required as a smaller TTI is required than other services, and at the same time, a wider subcarrier interval may be required.
  • the terminal supporting the eMTC cannot receive a physical downlink control channel (PDCCH) transmitted in the entire bandwidth of the system transmission bandwidth, so that a signal is transmitted in a time interval in which the PDCCH is transmitted.
  • PDCCH physical downlink control channel
  • the 5G communication system should be designed so that the services considered after the 5G communication system operate while coexisting efficiently with the 5G communication system.
  • resources that should be considered in the future should be able to freely allocate and transmit resource resources so that they can be freely transmitted in the time-frequency resource area supported by the 5G communication system. Therefore, in order to support future compatibility in the 5G communication system, the 5G terminal is supported to receive an indication of the allocation of the reserved resource through at least an upper signal.
  • one TTI may be defined as one slot, and may include 14 OFDM symbols or 7 OFDM symbols. Therefore, in case of 15kHz subcarrier spacing, one slot has a length of 1ms or 0.5ms.
  • one TTI can be defined as one mini-slot or sub-slot for emergency transmission and transmission to the unlicensed band, and one mini-slot is from 1 to the number of OFDM symbols in the slot. It may have a number of OFDM symbols). For example, when the length of one slot is 14 OFDM symbols, the length of the mini slot may be determined from 1 to 13 OFDM symbols.
  • a slot-only TTI may be defined.
  • one slot may be set differently for each terminal, and one slot may have the number of OFDM symbols from 1 to "the number of OFDM symbols in a slot".
  • the length of the slot or minislot is defined in the standard or transmitted by higher-order signal or system information can be received by the terminal. Slots or mini-slots may be defined to have various transmission formats, and may be classified into the following formats.
  • Downlink-only slot (DL only slot or full DL slot): Downlink-only slot consists of only a downlink period, only downlink transmission is supported.
  • a DL center slot is composed of a downlink section, a GP, and an uplink section, and the number of OFDM symbols in the downlink section is larger than the number of OFDM symbols in the uplink section.
  • the up center slot is composed of a down period, a GP, and an up period, and the number of OFDM symbols in the down period is less than the number of OFDM symbols in the up period.
  • the uplink only slot consists of an uplink only, only uplink transmission is supported.
  • the mini-slot may be classified by the same classification method. That is, it may be classified into a downlink only mini slot, a down center mini slot, an up center mini slot, an uplink dedicated mini slot, and the like.
  • the transmission interval (or transmission start symbol and end symbol) of uplink transmission may vary according to the format of the slot or mini slot. In addition, even if a reserved resource is configured in one slot, a transmission interval of uplink transmission may vary.
  • an uplink control channel having a short transmission interval hereinafter referred to as short PUCCH in the present invention
  • an uplink control channel having a long transmission interval hereinafter referred to as long PUCCH in the present invention
  • uplink transmission intervals such as an uplink data channel, an uplink control channel, and an uplink sounding reference signal
  • the uplink transmission value within the maximum transmit power value of the terminal is maintained to maintain uplink coverage.
  • a scheme for controlling the power of link transmissions is required in order to satisfy the reliability of uplink transmission in a service requiring super reliability.
  • the uplink transmission of the uplink transmission in the slot or the mini-slot of the base station and the terminal is maintained, and in order to satisfy the reliability of the uplink transmission in consideration of the number of OFDM symbols or reliability in the maximum transmission power value of the terminal To provide a scheme for controlling the power of link transmissions.
  • LTE and 5G system will be the main target, but the main subject of the present invention greatly extends the scope of the present invention to other communication systems having a similar technical background and channel form. Applicable in a few variations without departing from the scope, which will be possible in the judgment of those skilled in the art.
  • FIG. 3 is a diagram illustrating an embodiment of a communication system to which the present invention is applied.
  • the drawings illustrate a form in which the 5G system is operated, and the methods proposed in the present invention can be applied to the system of FIG. 3.
  • FIG. 3 illustrates a case in which a 5G cell 302 operates in one base station 301 in a network.
  • the terminal 303 is a 5G capable terminal having a 5G transmission / reception module.
  • the terminal 303 acquires synchronization through a synchronization signal transmitted from the 5G cell 302, and after receiving system information, transmits and receives data through the base station 301 and the 5G cell 302.
  • the uplink control transmission is transmitted through the 5G cell 302 when the 5G cell is a P cell.
  • the 5G cell may include a plurality of serving cells, and in total, 32 serving cells may be supported.
  • the base station 301 includes a 5G transmission / reception module (system), and the base station 301 may manage and operate the 5G system in real time.
  • system 5G transmission / reception module
  • the base station 301 transmits synchronization, system information, and higher configuration information for 5G to the 5G capable terminal 303.
  • the synchronization signal for 5G separate synchronization signals may be transmitted for eMBB, mMTC, and URLLC using different numerologies, and a common synchronization signal may be transmitted to a specific 5G resource using one numerology.
  • a common system signal may be transmitted to a specific 5G resource using one numerology, and separate system information may be transmitted for eMBB, mMTC, and URLLC using another numerology.
  • the system information and higher configuration information include configuration information on whether data transmission / reception is to a slot or a mini slot, and may include the number of OFDM symbols and numerology of a slot or a mini slot.
  • the system information and higher configuration information may include configuration information related to the downlink common control channel reception when the downlink common control channel reception is configured for the terminal.
  • the terminal when the terminal performs power control such as uplink transmission, the terminal may include configuration information related to power control.
  • step 412 the base station 301 transmits and receives data for 5G service from the 5G resource to the 5G capable terminal 303.
  • a downlink control channel required for scheduling data is transmitted, and the downlink control channel may include a necessary command for the terminal to control uplink power.
  • the 5G capable terminal 303 receives a 5G resource from the base station 301 and describes a procedure of transmitting and receiving data in the 5G resource.
  • the 5G capable terminal 303 acquires synchronization from the synchronization signal for 5G transmitted by the base station 301, and receives system information and higher configuration information transmitted by the base station 301.
  • the synchronization signal for 5G separate synchronization signals may be transmitted for eMBB, mMTC, and URLLC using different numerologies, and a common synchronization signal may be transmitted to a specific 5G resource using one numerology.
  • a common system signal may be transmitted to a specific 5G resource using one numerology, and separate system information may be transmitted for eMBB, mMTC, and URLLC using another numerology.
  • the system information and higher configuration information include configuration information on whether data transmission / reception is to a slot or a mini slot, and may include the number of OFDM symbols and numerology of a slot or a mini slot.
  • the system information and higher configuration information may include configuration information related to the downlink common control channel reception when the downlink common control channel reception is configured for the terminal.
  • the terminal when the terminal performs power control such as uplink transmission, the terminal may include configuration information related to power control.
  • the 5G capable terminal 303 transmits and receives data for 5G service with the base station 301 in 5G resources.
  • the terminal attempts to decode by receiving a downlink control channel including scheduling information of the data, and the downlink control channel may include a necessary command for the terminal to control the uplink power.
  • 5 is a diagram illustrating PUCCH transmission in a 5G system.
  • the long PUCCH and the short PUCCH are multiplexed in the frequency domain (FDM, 500) or in the time domain (TDM, 501). It will be described that long PUCCH and short PUCCH are transmitted over various OFDM symbols in a slot based on FIG. 5.
  • 520 and 521 may have various names such as slots (subframes or transmission time intervals (TTIs), etc., which are 5G transmission basic units.
  • TTIs transmission time intervals
  • uplink is mainly used within a slot). That is, the UL centric slot is shown.
  • the number of OFDM symbols used for uplink is mostly, and the entire OFDM symbol may be used for uplink transmission. Alternatively, some of the preceding OFDM symbols may be used for downlink transmission. If the downlink and the uplink are simultaneously present in one slot, a transmission gap may exist between the two.
  • the first OFDM symbol in one slot is used for downlink transmission, for example, downlink control channel transmission 502, and is used for uplink transmission from the third OFDM symbol.
  • the second OFDM symbol is used as a transmission gap.
  • uplink transmission uplink data channel transmission and uplink control channel transmission are possible.
  • the long PUCCH 503 Since the control channel of the long transmission period is used for the purpose of increasing the cell coverage, it can be transmitted in the DFT-S-OFDM scheme, which is a single carrier transmission rather than an OFDM transmission. Therefore, in this case, only the consecutive subcarriers should be transmitted, and in order to obtain a frequency diversity effect, an uplink control channel of a long transmission section is configured at a distance such as 508 and 509. In terms of time, the number of OFDM symbols for transmitting long PUCCH is supported from 4 to 14.
  • the distance 505 dropped in terms of frequency should be smaller than the bandwidth supported by the terminal, and is transmitted using a PRB-1 as in 508 at the front of the slot, and using a PRB-2 as in 509 at the rear of the slot.
  • the PRB is a physical resource block, which means a minimum transmission unit on the frequency side, and may be defined as 12 subcarriers. Therefore, the frequency side distance between the PRB-1 and the PRB-2 should be smaller than the maximum supported bandwidth of the terminal, and the maximum supported bandwidth of the terminal may be equal to or smaller than the bandwidth 506 supported by the system.
  • the frequency resources PRB-1 and PRB-2 may be set to the terminal by a higher signal, the frequency resources are mapped to the bit field by the higher signal, and which frequency resources are used in the bit field included in the downlink control channel. It may be instructed to the terminal by.
  • the control channel transmitted at the front of the slot of 508 and the control channel transmitted at the rear of the slot of 509 are composed of uplink control information (UCI) and terminal reference signal 511 of 510, respectively. Assume that it is transmitted in an OFDM symbol.
  • UCI uplink control information
  • Short PUCCH may be transmitted in both the downlink center slot and the uplink center slot, and is generally used in the last symbol of the slot, or in the last OFDM symbol (for example, the last OFDM symbol or the second to last OFDM symbol, or the last two). OFDM symbol). Of course, it is also possible to transmit the Short PUCCH at any position within the slot.
  • the short PUCCH may be transmitted using one OFDM symbol or a plurality of OFDM symbols. In FIG. 5, the Short PUCCH is transmitted in the last symbol 518 of the slot. Radio resources for the Short PUCCH are allocated in units of PRBs on the frequency side.
  • the allocated PRBs may be allocated a plurality of consecutive PRBs or may be allocated a plurality of PRBs spaced apart from each other in the frequency band.
  • the allocated PRB should be included in the same or smaller band than the frequency band 507 supported by the UE.
  • the plurality of PRBs, which are the allocated frequency resources may be set to the terminal by a higher signal, and a frequency resource is mapped to a bit field by a higher signal, and which frequency resource is used by a bit field included in a downlink control channel.
  • the terminal may be instructed.
  • the uplink control information 530 and the demodulation reference signal 531 should be multiplexed in a frequency band in one PRB.
  • a method of transmitting a demodulation reference signal to one subcarrier for every two symbols Alternatively, a method of transmitting a demodulation reference signal to one subcarrier for every three symbols as shown in 513 or a method of transmitting a demodulation reference signal to one subcarrier for every four symbols as shown in 514.
  • FIG 5 illustrates examples in which PUCCH transmission is transmitted in various OFDM symbols.
  • 601 indicates a downlink control channel, and may be a terminal common control channel or a terminal dedicated control channel.
  • the terminal common control channel includes information that can be commonly indicated to terminals such as format information of a slot or a mini slot.
  • the terminal dedicated control channel includes terminal specific information such as data transmission frequency position information for up and down data scheduling.
  • 602 indicates an uplink data channel, and the data channel includes uplink data and RS necessary for uplink data transmission and reception.
  • 603 indicates an uplink control channel, and the RS included in uplink control information together with uplink control information is included in the control channel.
  • 604 indicates a time and frequency domain in which downlink transmission is possible in one slot.
  • 605 indicates a time and frequency domain where uplink transmission is possible in one slot.
  • 606 indicates a time and frequency domain required for changing RF from downward to upward within one slot.
  • 607 indicates an uplink sound reference signal.
  • the transmission OFDM symbol section of the uplink data may vary in OFDM symbol units according to the start OFDM symbol and the end OFDM symbol (or section length) of the uplink data.
  • 6 illustrates a time and frequency domain in which the downlink control channel 601, the uplink data channel 602, and the uplink sounding reference signal 607 are transmitted in the uplink center slot 611 of FIG. 6.
  • the uplink data channel 602 may start transmission in the uplink period 605.
  • the base station determines that the uplink region 605 of the terminal is in a certain slot. It is to be informed to the UE whether an OFDM sounding signal is transmitted in which OFDM symbol. As a result, the transmitted OFDM symbol interval of uplink data 602 may be transmitted only in some OFDM symbols in uplink interval 605.
  • 6 illustrates a time and frequency domain in which an uplink data channel 602 and an uplink control channel 603 are transmitted in the uplink-only slot 621 of FIG. 6.
  • the uplink data channel 602 may start transmission from the first OFDM symbol of the uplink period 605. Since the time and frequency domains of the uplink control channel 603 of the other terminals are not known, the uplink channel 602 of the uplink period 605 may not be known. In order not to collide with the time and frequency domain of 603, the base station should inform one terminal of which OFDM symbol can transmit the uplink data channel 602 within the uplink period 605 in one slot.
  • the number of transmission OFDM symbols of the uplink data channel, the uplink control channel, and the uplink sounding reference signals may vary due to PUSCH, PUCCH, and Sounding Reference Signal (SRS) transmission time and frequency domain of the UEs.
  • SRS Sounding Reference Signal
  • power control of uplink transmission in NR proposed by the present invention will be described.
  • the power control scheme used for the PUCCH, PUSCH, and SRS will be described using Equations 1, 2, and 3, respectively.
  • the transmission power control of the PUCCH is mainly described.
  • the embodiment of the present invention can be applied to the transmission power of the PUSCH or SRS without any limitation.
  • the UE transmits PUCCH, PUSCH, SRS, etc. by controlling the transmission power of uplink transmission.
  • the terminal may control the transmission power of the uplink control information of the PUCCH to a value calculated as in Equation 1 below.
  • the UE may control the transmission power of uplink data information of the PUSCH to a value calculated as shown in Equation 2 below.
  • the UE may control the transmit power of the uplink sounding reference signal of the SRS to a value calculated as shown in Equation 3 below.
  • Equation 1 i is an index of a slot, P CMAX , c (i) is a maximum transmit power of a terminal in one slot, and P O_PUCCH is a terminal-related initial configuration value and a cell-related initial configuration set by a base station.
  • the sum of the set values, PLc is a value for correcting the path loss between the base station and the terminal.
  • h (n CQI , n HARQ , n SR ) and ⁇ F_PUCCH (F) are set differently according to a format for uplink control information, that is, a PUCCH format and an amount of uplink control information. It is an argument.
  • the ⁇ F_PUCCH (F) is indicated by the base station to the terminal by higher layer signaling, and is set to one of a plurality of sets of integer values according to each format for uplink control information. And h (n CQI , n HARQ , n SR ) and ⁇ F_PUCCH (F) are complementary to each other, and ⁇ F_PUCCH (F when the transmission power set to h (n CQI , n HARQ , n SR ) is excessive or insufficient. ) To compensate. In this case, ⁇ F_PUCCH (F) sets a relative power value required for another PUCCH format based on the PUCCH format requiring the lowest power.
  • the absolute power value of PUCCH format A is set to 0 dB
  • the format or uplink control for other uplink control information is set to 0 dB.
  • the relative power value required depends on the amount and type of information. For example, when using PUCCH format A, the signal-to-noise ratio (SNR) required to obtain an error probability of 1% is -6 dB.
  • SNR signal-to-noise ratio
  • PUCCH format B an SNR required to obtain an error probability of 1% is used.
  • the h (n CQI , n HARQ , n SR ) represents a formula for controlling power differently based on the number of input bits according to a format for uplink control information, that is, various PUCCH formats defined in the NR system.
  • the M PUCCH, c (i) is a formula for reflecting a transmission frequency resource amount set for PUCCH transmission.
  • g (i) is the power value of slot i when applying the transmitted value ⁇ so that it can be dynamically changed by the PDCCH that can be transmitted in each slot, and g (i-) of g (i) of the previous slot.
  • the g (i) of the slot i may be set by accumulating the ⁇ value in 1) or the g (i) of the slot i may be set to an absolute value by ignoring the value in the previous slot and applying only the value indicated in the corresponding slot. have.
  • q 1 (i) for transmission power control of short PUCCH or long PUCCH by adding at least one of the above-described equations, and q 1 (i) should be considered basically for the uplink power control of PUCCH.
  • Equation (2) in, i is the index of the slot, P CMAX, c (i) is the maximum transmit power of the terminal in a slot, P O_PUSCH, c (j) is a terminal-related initial setting, which is set by the base station The sum of the value and the cell-related initial set value, ⁇ c (j) * PLc is a value for correcting the path loss between the base station and the terminal.
  • the M PUSCH, c (i) is for reflecting a transmission frequency resource amount scheduled for PUSCH transmission.
  • ⁇ TF, c (i) is for reflecting the modulation scheme and code rate by MCS, and f c (i) is a value ( ⁇ ) transmitted to be changed dynamically by the PDCCH that can be transmitted in every slot.
  • f c (i) of the previous slot may be set to f c (i) of the slot i value at a previous slot
  • Fc (i) of slot i may be set as an absolute value by ignoring ⁇ and applying only a value indicated in the corresponding slot.
  • i is the index of the slot
  • P CMAX is the maximum transmit power of the terminal in a slot
  • P SRS_OFFSET is the maximum transmit power of the terminal in a slot
  • P O_PUSCH is set by the base station
  • the sum of the terminal related initial setting value and the cell related initial setting value, ⁇ c (j) * PL c is a value for correcting the path loss between the base station and the terminal.
  • the M SRS, c is for reflecting a transmission frequency resource amount set for SRS transmission.
  • f c (i) is the power value of the slot i when the value ( ⁇ ) transmitted to be dynamically changed by the PDCCH that can be transmitted in each slot is f c (i) of the previous slot f c cumulative the ⁇ value in the (i-1) was also set to f c (i) in the slot i and ignores the value of the previous slot, the f c by applying only the value indicated in the corresponding slot slot i the absolute value ( i) can also be set.
  • a formula h (n) is input to q 1 (i), q 2 (i), and q 3 (i) to adjust the number of transmission symbols to adjust power according to the number of transmission symbols of PUCCH, PUSCH, and SRS, respectively. symbol ).
  • the power value according to h (n symbol ) not only the equation but also the transmit power value according to the number of transmitted OFDM symbols of PUCCH, PUSCH, and SRS may be defined as shown in the table.
  • the power values considering PUCCH, PUSCH and SRS transmission in all OFDM symbols in one slot are q 1 (i), q 2 (i), and q 3 (i), respectively
  • the power values in one OFDM symbol May be q 1 (i), q 2 (i), and q 3 (i) divided by the number of OFDM symbols.
  • Tables 2 and 3 show possible examples of the first and second embodiments, respectively. At this time, there is an advantage that the change in transmit power in one slot can be kept to a minimum.
  • a value ⁇ which is a TPC command, is applied to different values according to the number of PUCCH, PUSCH, and SRS transmitted OFDM symbols.
  • is multiplied by a coefficient k according to a set of the number of PUCCH transmission OFDM symbols to apply k * ⁇ instead of ⁇ .
  • k * ⁇ instead of ⁇ .
  • the UE may know that URLLC data is scheduled from a DCI size of a downlink control channel receiving a downlink data signal or a setting of a specific field or a separate RNTI for URLLC.
  • URLLC data is scheduled by setting a higher signal for URLLC or setting a transmission mode for URLLC.
  • an uplink control channel for downlink data scheduled by the downlink control channel is transmitted.
  • the terminal may know that URLLC uplink data transmission should be performed by mapping the packet IP or the port number of the upper terminal and specific logical channel ID mapping.
  • the UE adds a field for applying a power value according to power boosting to a table in which a TPC command field and a power value ⁇ to be applied are defined.
  • a table in which a TPC command field and a power value ⁇ to be applied are defined.
  • the power increase value according to the power boosting may be set by an upper signal or may be defined in the table below of the specification.
  • FIG. 7 is a diagram illustrating a base station and a terminal procedure for embodiments of the present invention.
  • the base station transmits uplink power control configuration information to the terminal.
  • the uplink power control configuration information includes information that needs to be set as a higher signal for power control when PUCCH, PUSCH, and SRS are transmitted in various OFDM symbol intervals or to satisfy reliability, and the UE is configured to the terminal through the higher signal.
  • the base station transmits an uplink power control command to the terminal.
  • the uplink power control command includes information necessary for power control when PUCCH, PUSCH, and SRS are transmitted in various OFDM symbol intervals or to satisfy reliability, as shown in the embodiment of FIG. Transmit to the terminal through the channel.
  • the base station receives from the terminal an uplink channel or an uplink signal set or indicated to control uplink power in step 711 or step 712.
  • the terminal receives uplink power control configuration information from the base station.
  • the uplink power control configuration information includes information that needs to be set as an upper signal for power control when PUCCH, PUSCH, and SRS are transmitted in various OFDM symbol intervals or to satisfy reliability, and from the base station through the higher signal, Can be received.
  • the terminal receives an uplink power control command according to the present invention from the base station.
  • the uplink power control command includes information necessary for power control when PUCCH, PUSCH, and SRS are transmitted in various OFDM symbol intervals or to satisfy reliability, as shown in the embodiment of FIG. Receive from the base station over the channel.
  • step 723 the UE transmits an uplink channel or an uplink signal which is set or indicated to control uplink power in step 711 or step 712 to the base station.
  • FIG. 8 is a diagram illustrating a base station apparatus according to the present invention.
  • the controller 801 controls transmission resources required for uplink power control setting according to the base station procedure according to FIG. 7 of the present invention and the uplink power control method according to FIG. 6 of the present invention, and thus the 5G control information transmitting apparatus 805. And 5G data is transmitted to the terminal through the 5G data transmission / reception apparatus 807, and the 5G data is transmitted and received through the 5G data transmission / reception apparatus 807 by the scheduler 803.
  • FIG. 9 is a diagram illustrating a terminal device according to the present invention.
  • 5G control information receiving apparatus 905 and 5G data transmitting / receiving apparatus 906 are used to configure uplink power control from a base station.
  • the controller 901 controls the power on the uplink through the 5G data transceiver 906 for the 5G data scheduled at the received resource location and transmits and receives with the 5G base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 발명은 무선 셀룰라 통신 시스템에서 상향 링크 전송의 전력 제어 방법을 개시한다.

Description

무선 셀룰라 통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치
본 발명은 무선 셀룰라 통신 시스템에서 상향 링크 전송의 전력 제어 방법 및 장치에 대한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
최근 LTE(Long Term Evolution) 및 LTE-Advanced의 발전에 따라 무선 셀룰라 통신 시스템에서 상향 링크 전송의 전력 제어 방법 및 장치가 필요하다.
본 발명은 상향링크 데이터 채널, 상향링크 제어 채널, 상향링크 사운딩 참조 신호와 같은 상향 링크 전송의 전송 구간이 OFDM 심볼 단위로 가변할 때 상향 커버리지를 유지하기 위해서, 혹은 초신뢰성을 요구 조건으로 하는 서비스에서 상향 전송의 신뢰성을 만족시키기 위해서, 단말이 단말의 최대 전송 전력 값 내에서 상기 상향 링크 전송들의 전력을 제어하기 위한 방법 및 그에 따른 장치를 제공한다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 단말의 방법은, 상향링크 전송에 사용될 심볼의 개수를 확인하는 단계, 심볼의 개수에 기초하여 상향링크 전송을 위한 전송 전력을 결정하는 단계, 및 심볼에서 전송 전력을 이용하여 기지국으로 상향링크 신호를 전송하는 단계를 포함한다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 단말은, 신호를 송신 및 수신하는 송수신부, 및 상향링크 전송에 사용될 심볼의 개수를 확인하고, 심볼의 개수에 기초하여 상향링크 전송을 위한 전송 전력을 결정하고, 심볼에서 전송 전력을 이용하여 기지국으로 상향링크 신호를 전송하도록 설정된 제어부를 포함한다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 기지국의 방법은, 상향링크 전송 전력에 관련된 정보를 단말로 전송하는 단계, 및 단말로부터 정보에 기초하여 결정된 전송 전력으로 전송되는 상향링크 신호를 수신하는 단계를 포함하고, 전송 전력은 상향링크 신호가 전송되는 심볼의 개수에 기초하여 결정된다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 기지국은, 신호를 송신 및 수신하는 송수신부, 및 상향링크 전송 전력에 관련된 정보를 단말로 전송하고, 단말로부터 정보에 기초하여 결정된 전송 전력으로 전송되는 상향링크 신호를 수신하도록 설정된 제어부를 포함하고, 전송 전력은 상향링크 신호가 전송되는 심볼의 개수에 기초하여 결정된다.
본 발명에 따르면, 상향링크 데이터 채널, 상향링크 제어 채널, 상향링크 사운딩 참조 신호와 같은 상향 링크 전송의 전송 구간이 OFDM 심볼 단위로 가변할 때 혹은 초신뢰성을 요구 조건으로 하는 서비스에서 상향링크 전송을 수행할 때, 단말이 단말의 최대 전송 전력 값 내에서 상기 상향 링크 전송들의 전력을 제어하기 위한 본 발명에서의 방법을 통해서 단말들이 상향링크 데이터 채널, 상향링크 제어 채널, 상향링크 사운딩 참조 신호들을 전송할 때 상향 커버리지를 유지하고, 상향 전송의 신뢰성을 만족 시킬 수 있다.
도 1은 LTE 시스템에서 시간-주파수영역의 기본 구조를 도시한 도면이다.
도 2는 5G 서비스들이 하나의 시스템에서 다중화되어 전송되는 예를 도시한 도면이다.
도 3은 본 발명이 적용되는 통신 시스템의 실시예를 도시하는 도면이다.
도 4는 제안하는 실시 예가 적용되는 통신 시스템에서 동작하는 단말과 기지국의 동작을 설명하는 도면이다.
도 5는 5G 시스템에서 PUCCH(physical uplink control channel) 전송을 도시하는 도면이다.
도 6은 5G 시스템에서 PUCCH, SRS(sounding reference signal), PUSCH(physical uplink shared channel) 전송 등 상향 링크 전송을 도시하는 도면이다.
도 7은 본 발명에서의 실시예들에 대한 기지국 및 단말 절차를 설명하는 도면이다.
도 8은 본 발명에 따른 기지국 장치를 도시한 도면이다.
도 9는 본 발명에 따른 단말 장치를 도시한 도면이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
이하 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 발명의 실시예들을 구체적으로 설명함에 있어서, OFDM 기반의 무선통신 시스템, 특히 3GPP EUTRA 표준을 주된 대상으로 할 것이지만, 본 발명의 주요한 요지는 유사한 기술적 배경 및 채널형태를 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 발명의 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
한편, 이동통신 시스템에서 새로운 5G 통신(또는 본 발명에서 NR(new radio) 통신이라 함.)과 기존의 LTE 통신이 같은 스펙트럼에서 공존시키는 것에 대한 연구가 진행 중에 있다.
본 발명은 무선통신 시스템에 관한 것으로, 보다 구체적으로 서로 다른 무선통신 시스템들이 한 개의 캐리어 주파수 혹은 다수의 캐리어 주파수들에서 공존하고, 서로 다른 통신 시스템 중 적어도 한 통신 시스템에서 데이터를 송수신할 수 있는 단말이 각 통신 시스템과 데이터를 송수신하는 방법 및 장치에 관한 것이다.
일반적으로 이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동 통신 시스템은 점차로 음성 뿐 아니라 데이터 서비스까지 영역을 확장하고 있으며, 현재에는 고속의 데이터 서비스를 제공할 수 있는 정도까지 발전하였다. 그러나 현재 서비스가 제공되고 있는 이동 통신 시스템에서는 자원의 부족 현상 및 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
이러한 요구에 부응하여 차세대 이동 통신 시스템으로 개발 중인 중 하나의 시스템으로써 3GPP(The 3rd Generation Partnership Project)에서 LTE(Long Term Evolution)에 대한 규격 작업이 진행 중이다. LTE는 최대 100 Mbps정도의 송신 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이다. 이를 위해 여러 가지 방안이 논의되고 있는데, 예를 들어 네트워크의 구조를 간단히 해서 통신로 상에 위치하는 노드의 수를 줄이는 방안이나, 무선 프로토콜들을 최대한 무선 채널에 근접시키는 방안 등이 있다.
LTE 시스템은 초기 전송에서 복호 실패가 발생된 경우, 물리 계층에서 해당 데이터를 재전송하는 HARQ (Hybrid Automatic Repeat reQuest) 방식을 채용하고 있다. HARQ 방식이란 수신기가 데이터를 정확하게 디코딩하지 못한 경우, 수신기가 송신기에게 디코딩 실패를 알리는 정보(NACK; Negative Acknowledgement)를 전송하여 송신기가 물리 계층에서 해당 데이터를 재전송할 수 있게 한다. 수신기는 송신기가 재전송한 데이터를 기존에 디코딩 실패한 데이터와 결합하여 데이터 수신성능을 높이게 된다. 또한, 수신기가 데이터를 정확하게 복호한 경우 송신기에게 디코딩 성공을 알리는 정보(ACK; Acknowledgement)를 전송하여 송신기가 새로운 데이터를 전송할 수 있도록 할 수 있다.
도 1은 LTE 시스템에서 하향링크에서 상기 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 1에서 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다. 시간영역에서의 최소 전송단위는 OFDM 심벌로서, Nsymb (102)개의 OFDM 심벌이 모여 하나의 슬롯(106)을 구성하고, 2개의 슬롯이 모여 하나의 서브프레임(105)을 구성한다. 상기 슬롯의 길이는 0.5ms 이고, 서브프레임의 길이는 1.0ms 이다. 그리고 라디오 프레임(114)은 10개의 서브프레임으로 구성되는 시간영역 단위이다. 주파수영역에서의 최소 전송단위는 서브캐리어로서, 전체 시스템 전송 대역 (Transmission bandwidth)의 대역폭은 총 NBW (104)개의 서브캐리어로 구성된다.
시간-주파수영역에서 자원의 기본 단위는 리소스 엘리먼트(112, Resource Element; RE)로서 OFDM 심벌 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 리소스 블록(108, Resource Block; RB 혹은 Physical Resource Block; PRB)은 시간영역에서 Nsymb (102)개의 연속된 OFDM 심벌과 주파수 영역에서 NRB (110)개의 연속된 서브캐리어로 정의된다. 따라서, 하나의 RB(108)는 Nsymb x NRB 개의 RE(112)로 구성된다. 일반적으로 데이터의 최소 전송단위는 상기 RB 단위이다. LTE 시스템에서 일반적으로 상기 Nsymb = 7, NRB=12 이고, NBW 및 NRB 는 시스템 전송 대역의 대역폭에 비례한다. 단말에게 스케쥴링되는 RB 개수에 비례하여 데이터 레이트가 증가하게 된다. LTE 시스템은 6개의 전송 대역폭을 정의하여 운영한다. 하향링크와 상향링크를 주파수로 구분하여 운영하는 FDD 시스템의 경우, 하향링크 전송 대역폭과 상향링크 전송 대역폭이 서로 다를 수 있다. 채널 대역폭은 시스템 전송 대역폭에 대응되는 RF(radio frequency) 대역폭을 나타낸다. 표 1은 LTE 시스템에 정의된 시스템 전송 대역폭과 채널 대역폭 (Channel bandwidth)의 대응관계를 나타낸다. 예를 들어, 10MHz 채널 대역폭을 갖는 LTE 시스템은 전송 대역폭이 50개의 RB로 구성된다.
표 1
Channel bandwidthBWchannel [MHz] 1.4 3 5 10 15 20
Transmission bandwidth configuration 6 15 25 50 75 100
하향링크 제어정보의 경우 상기 서브프레임 내의 최초 N 개의 OFDM 심벌 이내에 전송된다. 일반적으로 N = {1, 2, 3} 이다. 따라서 현재 서브프레임에 전송해야 할 제어정보의 양에 따라 상기 N 값이 서브프레임마다 가변하게 된다. 상기 제어정보로는 제어정보가 OFDM 심벌 몇 개에 걸쳐 전송되는지를 나타내는 제어채널 전송구간 지시자, 하향링크 데이터 혹은 상향링크 데이터에 대한 스케쥴링 정보, HARQ ACK/NACK 신호 등을 포함한다.
LTE 시스템에서 하향링크 데이터 혹은 상향링크 데이터에 대한 스케줄링 정보는 하향링크 제어정보(Downlink Control Information; DCI)를 통해 기지국으로부터 단말에게 전달된다. 상향링크 (uplink; UL) 는 단말이 기지국으로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻하고, 하향링크 (downlink; DL)는 기지국이 단말로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻한다. DCI 는 여러 가지 포맷을 정의하여, 상향링크 데이터에 대한 스케줄링 정보 (UL(uplink) grant) 인지 하향링크 데이터에 대한 스케줄링 정보 (DL(downlink) grant) 인지 여부, 제어정보의 크기가 작은 컴팩트 DCI 인지 여부, 다중안테나를 사용한 공간 다중화 (spatial multiplexing)을 적용하는지 여부, 전력제어 용 DCI 인지 여부 등에 따라 정해진 DCI 포맷을 적용하여 운용한다. 예컨대, 하향링크 데이터에 대한 스케줄링 제어정보(DL grant)인 DCI format 1 은 적어도 다음과 같은 제어정보들을 포함하도록 구성된다.
- 자원 할당 유형 0/1 플래그(Resource allocation type 0/1 flag): 리소스 할당 방식이 유형 0 인지 유형 1 인지 통지한다. 유형 0 은 비트맵 방식을 적용하여 RBG (resource block group) 단위로 리소스를 할당한다. LTE 시스템에서 스케줄링의 기본 단위는 시간 및 주파수 영역 리소스로 표현되는 RB(resource block)이고, RBG 는 복수개의 RB로 구성되어 유형 0 방식에서의 스케줄링의 기본 단위가 된다. 유형 1 은 RBG 내에서 특정 RB를 할당하도록 한다.
- 자원 블록 할당(Resource block assignment): 데이터 전송에 할당된 RB를 통지한다. 시스템 대역폭 및 리소스 할당 방식에 따라 표현하는 리소스가 결정된다.
- 변조 및 코딩 방식(Modulation and coding scheme; MCS): 데이터 전송에 사용된 변조방식과 전송하고자 하는 데이터인 transport block 의 크기를 통지한다.
- HARQ 프로세스 번호(HARQ process number): HARQ 의 프로세스 번호를 통지한다.
- 새로운 데이터 지시자(New data indicator): HARQ 초기전송인지 재전송인지를 통지한다.
- 중복 버전(Redundancy version): HARQ 의 중복 버전(redundancy version) 을 통지한다.
- PUCCH를 위한 전송 전력 제어 명령(TPC(Transmit Power Control) command for PUCCH(Physical Uplink Control CHannel): 상향링크 제어 채널인 PUCCH 에 대한 전송 전력 제어 명령을 통지한다.
상기 DCI는 채널코딩 및 변조과정을 거쳐 하향링크 물리제어채널인 PDCCH (Physical downlink control channel) 혹은 EPDCCH (Enhanced PDCCH)를 통해 전송된다.
일반적으로 상기 DCI는 각 단말에 대해 독립적으로 채널코딩된 후, 각각 독립적인 PDCCH로 구성되어 전송된다. 시간영역에서 PDCCH는 상기 제어채널 전송구간 동안 매핑되어 전송된다. PDCCH 의 주파수영역 매핑 위치는 각 단말의 식별자(ID) 에 의해 결정되고, 전체 시스템 전송 대역에 퍼뜨려진다.
하향링크 데이터는 하향링크 데이터 전송용 물리채널인 PDSCH (Physical Downlink Shared Channel) 를 통해 전송된다. PDSCH는 상기 제어채널 전송구간 이후부터 전송되는데, 주파수 영역에서의 구체적인 매핑 위치, 변조 방식 등의 스케줄링 정보는 상기 PDCCH 를 통해 전송되는 DCI가 알려준다.
상기 DCI 를 구성하는 제어정보 중에서 5 비트로 구성되는 MCS 를 통해서, 기지국은 단말에게 전송하고자 하는 PDSCH에 적용된 변조방식과 전송하고자 하는 데이터의 크기 (transport block size; TBS)를 통지한다. 상기 TBS 는 기지국이 전송하고자 하는 데이터 (transport block, TB)에 오류정정을 위한 채널코딩이 적용되기 이전의 크기에 해당한다.
LTE 시스템에서 지원하는 변조방식은 QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation), 64QAM 으로서, 각각의 변조오더(Modulation order) (Qm) 는 2, 4, 6 에 해당한다. 즉, QPSK 변조의 경우 심벌 당 2 비트, 16QAM 변조의 경우 심볼 당 4 비트, 64QAM 변조의 경우 심벌 당 6 비트를 전송할 수 있다.
3GPP LTE Rel-10에서 LTE Rel-8과 비교하여 더 높은 데이터 송신량을 지원하기 위하여 대역폭 확장 기술이 채택되었다. 대역폭 확장(Bandwidth extension) 또는 반송파 결합(Carrier Aggregation, CA)이라 불리는 상기 기술은 대역을 확장하여 한 대역에서 데이터를 송신하는 LTE Rel-8 단말에 비하여 확장한 대역만큼 데이터 송신량을 증가시킬 수 있다. 상기의 대역들 각각을 구성 반송파(Component Carrier, CC)라고 부르며, LTE Rel-8 단말은 하향과 상향에 대해서 각각 한 개의 구성 반송파를 가지도록 규정되어 있다. 또한 하향 구성 반송파와 SIB-2 연결되어 있는 상향 구성 반송파를 묶어서 셀(cell)이라고 부른다. 하향 구성 반송파와 상향 구성 반송파의 SIB-2 연결 관계는 시스템 신호 혹은 상위 신호로 송신된다. CA를 지원하는 단말은 다수의 서빙 셀(serving cell)을 통하여 하향 데이터를 수신할 수 있고, 상향 데이터를 송신할 수 있다.
Rel-10에서 기지국은 특정 단말에게 특정 서빙 셀에서 PDCCH(Physical Downlink Control Channel)를 보내기가 어려운 상황일 때 다른 서빙 셀에서 PDCCH를 송신하고 해당 PDCCH가 다른 서빙 셀의 PDSCH(Physical Downlink Shared Channel)나 PUSCH(Physical Uplink Shared Channel)를 지시한다는 것을 알려 주는 필드로써 반송파 지시 필드(Carrier Indicator Field, CIF)를 설정할 수 있다. CIF는 CA를 지원하는 단말에게 설정될 수 있다. CIF는 특정 서빙 셀에서 PDCCH 정보에 3비트를 추가하여 다른 서빙 셀을 지시할 수 있도록 결정되었으며, 교차 반송파 스케줄링(cross carrier scheduling)을 할 때만 CIF가 포함되며, CIF가 포함되지 않는 경우 교차 반송파 스케줄링을 수행하지 않는다. 상기 CIF가 하향링크 할당 정보(DL assignment)에 포함되어 있을 때, 상기 CIF는 DL assignment에 의해 스케줄링 되는 PDSCH가 송신될 서빙 셀을 가리키며, 상기 CIF가 상향링크 자원 살당 정보(UL grant)에 포함되어 있을 때, 상기 CIF는 UL grant에 의해 스케줄링 되는 PUSCH가 송신될 서빙 셀을 가리키도록 정의된다.
상기한 바와 같이, LTE-10에서는 대역폭 확장 기술인 반송파 결합(Carrier Aggregation, CA) 이 정의되어, 다수의 서빙 셀들이 단말에게 설정될 수 있다. 그리고 단말은 기지국의 데이터 스케쥴링을 위하여 상기 다수의 서빙 셀들에 대한 채널 정보를 주기적 또는 비주기적으로 기지국으로 송신한다. 기지국은 데이터를 각 반송파 별로 스케줄링하여 전송하고, 단말은 각 반송파 별로 전송된 데이터에 대한 A/N 피드백을 전송한다. LTE Rel-10에서는 최대 21비트의 A/N 피드백을 전송하도록 설계하였으며, A/N 피드백과 채널 정보의 전송이 한 서브프레임에서 겹치는 경우, A/N 피드백을 전송하고 채널 정보는 버리도록 설계하다. LTE Rel-11에서는 A/N 피드백과 함께 한 개 셀의 채널 정보를 다중화하여 최대 22비트의 A/N 피드백과 한 개 셀의 채널 정보가 PUCCH format 3의 전송 자원에서 PUCCH format 3에 전송되도록 설계하였다.
LTE-13에서는 최대 32개의 서빙 셀 설정 시나리오를 가정하게 되는데, 면허대역 뿐만 아니라 비면허대역(즉, unlicensed band)에서의 대역을 이용하여 서빙 셀의 수를 최대 32개까지 확장하는 개념을 완료하였다. 또한, LTE 주파수와 같은 면허 대역의 수가 제한되어 있는 것을 고려하여, 5GHz 대역과 같은 비 면허대역에서 LTE 서비스를 제공하는 것을 완료하였으며, 이것을 LAA(Licensed Assisted Access)라고 부른다. LAA에서는 LTE에서의 Carrier aggregation 기술을 적용하여, 면허 대역인 LTE 셀은 P셀, 비면허 대역인 LAA셀은 S셀로 운영하는 것을 지원하였다. 따라서, LTE에서처럼 S셀인 LAA 셀에서 발생하는 피드백은 P셀에서만 전송되어야 하며, LAA셀은 하향 서브프레임과 상향 서브프레임이 자유롭게 적용될 수 있다. 본 명세서에서 따로 기술하지 않는 경우, LTE는 LTE-A, LAA와 같은 LTE의 진화 기술을 모두 포함하여 일컫는 것으로 한다.
한편, LTE 이후의 통신 시스템으로서, 즉, 5세대 무선 셀룰러 통신시스템(본 명세서에서 이하 5G 또는 NR로 부르도록 한다.)은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원될 수 있다.
따라서, 5G는 증가된 모바일 광대역 통신 (eMBB: Enhanced Mobile BroadBand, 본 명세서에서는 이하 eMBB로 부르도록 한다), 대규모 기계형 통신 (mMTC: Massive Machine Type Communication, 본 명세서에서는 이하 mMTC로 부르도록 한다), 초신뢰저지연 통신 (URLLC: Ultra Reliable and Low Latency Communications, 본 명세서에서는 이하 URLLC로 부르도록 한다)와 같은 다양한 5G향 서비스들을 단말 최대전송속도 20Gbps, 단말 최대속도 500km/h, 최대지연시간 0.5ms, 단말접속밀도 1,000,000 단말/km2 등의 요구사항 들 중 각 5G향 서비스들을 위해 선택된 요구사항들을 만족시키기 위한 기술로 정의할 수 있다.
예를 들어, 5G에서 eMBB를 제공하기 위해 하나의 기지국 관점에서 하향링크에서는 20Gbps의 단말 최대전송속도, 상향링크에서는 10Gbps의 단말 최대전송속도를 제공할 수 있어야 한다. 동시에, 단말의 실제 체감할 수 있는 평균전송속도도 증가 시켜야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multiple-Input Multiple Output) 전송 기술을 포함하여 송수신 기술의 향상이 요구된다.
동시에, 5G에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소의 요구사항이 필요로 된다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC는 서비스의 특성상 단말이 건물의 지하나 셀이 커버하지 못하는 영역 등 음영지역에 위치할 가능성이 높으므로 eMBB에서 제공하는 커버리지 대비 더욱 넓은 커버리지를 요구한다. mMTC는 저가의 단말로 구성될 가능성이 높으며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구되게 된다.
마지막으로, URLLC의 경우, 특정한 목적으로 사용되는 셀룰러 기반 무선 통신으로서, 로봇 또는 기계 장치에 대한 원격 제어(remote control), 산업 자동화, 무인 비행장치, 원격 건강 제어, 비상 상황 알림 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC는 0.5 ms보다 작은 최대지연시간을 만족해야 하며, 동시에 10^-5 이하의 패킷 오류율을 제공해야 하는 요구사항을 갖는다. 따라서, URLLC를 위해 eMBB와 같은 5G 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다.
상기에서 전술한 5세대 무선 셀룰러 통신 시스템에서 고려되는 서비스들은 하나의 프레임워크(Framework)로 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다.
도 2는 5G에서 고려되는 서비스들이 하나의 시스템으로 전송되는 예를 도시하는 도면이다.
도 2에서 5G가 사용하는 주파수-시간 리소스(201)은 주파수 축(202)과 시간 축(203)으로 구성될 수 있다. 도 2에서는 5G가 하나의 프레임워크 안에서 eMBB(205), mMTC(206), URLLC(207)를 운영하는 것을 예시하였다. 또한 5G에서 추가적으로 고려될 수 있는 서비스로서, 셀룰러 기반에서 방송 서비스를 제공하기 위한 enhanced Mobile Broadcast/Multicast Service(eMBMS, 208)를 고려할 수 도 있다. eMBB(205), mMTC(206), URLLC(207), eMBMS(208) 등, 5G에서 고려되는 서비스들은 5G에서 운영하는 하나의 시스템 주파수 대역폭 내에서 시분할 다중화(Time-Division Multiplexing: TDM) 또는 주파수 분할 다중화(Frequency Division Multiplexing: FDM)을 통해 다중화되어 전송될 수 있으며, 또한 공간분할 다중화(Spatial Division Multiplexing)도 고려될 수 있다. eMBB(205)의 경우, 상기에서 전술한 증가된 데이터 전송 속도를 제공하기 위해 특정 임의의 시간에 최대의 주파수 대역폭을 점유하여 전송하는 것이 바람직하다. 따라서, eMBB(205)서비스의 경우 다른 서비스와 시스템 전송 대역폭(201) 내에서 TDM되어 전송되는 것이 바람직하나, 다른 서비스들의 필요에 따라 다른 서비스들과 시스템 전송 대역폭 내에서 FDM되어 전송되는 것도 바람직하다.
mMTC(206)의 경우, 다른 서비스들과 달리 넓은 커버리지를 확보하기 위해 증가된 전송 구간이 요구되며, 전송 구간 내에서 동일한 패킷을 반복 전송 함으로써 커버리지를 확보할 수 있다. 동시에 단말의 복잡도 및 단말 가격을 줄이기 위해 단말이 수신할 수 있는 전송 대역폭에 제한이 발생한다. 이와 같은 요구사항을 고려했을 때 mMTC(206)은 5G의 전송 시스템 대역폭(201)내에서 다른 서비스들과 FDM 되어 전송되는 것이 바람직하다.
URLLC(207)은 서비스가 요구하는 초지연 요구 사항을 만족시키기 위해 다른 서비스들과 비교했을 때 짧은 전송 시간 구간(Transmit Time Interval: TTI)를 갖는 것이 바람직하다. 동시에, 초신뢰 요구사항을 만족하기 위해서는 낮은 부호화율(coding rate)을 가져야 하므로, 주파수 측에서 넓은 대역폭을 갖는 것이 바람직하다. 이와 같은 URLLC(207)의 요구사항을 고려했을 때, URLLC(207)은 5G의 전송 시스템 대역폭(201)내에서 다른 서비스들과 TDM되는 것이 바람직하다.
상기에서 전술한 각 서비스들은 각 서비스 들이 요구하는 요구사항을 만족시키기 위해 서로 다른 송수신 기법 및 송수신 파라메터를 가질 수 있다. 예를 들어 각각의 서비스는 각 서비스 요구사항에 따라 다른 Numerology를 가질 수 있다. 여기서 Numerology는 직교 다중 주파수 다중화 (Orthogonal Frequency Division Multiplexing: OFDM) 또는 직교 다중 주파수 다중 접속(Orthogonal Frequency Division Multiple Access: OFDMA) 기반의 통신 시스템에서 순환 전치(Cyclic Prefix: CP) 길이, 서브캐리어 간격(Subcarrier spacing), OFDM 심볼의 길이, 전송 구간 길이(TTI) 등을 포함한다. 상기의 서비스간에 서로 다른 Numerology를 갖는 예로서, eMBMS(208)은 다른 서비스에 비해 긴 CP 길이를 가질 수 있다. eMBMS는 방송 기반의 상위 트래픽을 전송하므로, 모든 셀에서 동일한 데이터를 전송할 수 있다. 이 때 단말 입장에서 복수개의 셀에서 수신되는 신호가 CP 길이 이내로 도달한다면, 단말은 이 신호들을 모두 수신하여 복호할 수 있기 때문에 단일 주파수 네트워크 (Single Frequency Network: SFN) 다이버시티 이득을 얻을 수 있으며, 따라서 셀 경계에 위치한 단말도 커버리지 제약 없이 방송 정보를 수신할 수 있는 장점이 있다. 하지만 5G에서 eMBMS를 지원하는데 있어 CP 길이가 다른 서비스에 비해 상대적으로 길 경우에는 CP 오버헤드에 의한 낭비가 발생하므로, 동시에 다른 서비스에 비해 긴 OFDM 심볼 길이가 요구되며, 이는 동시에 다른 서비스에 비해 더욱 좁은 서브캐리어 간격을 요구하게 된다.
또한, 5G에서 서비스간에 다른 Numerology가 사용되는 예로서, URLLC의 경우, 다른 서비스에 비해 작은 TTI가 요구됨에 따라 더욱 짧은 OFDM 심볼 길이가 요구될 수 있으며, 동시에 더욱 넓은 서브캐리어 간격을 요구할 수 있다.
한편, 5G에서 향후에 5G phase 2 혹은 beyond 5G를 위한 서비스 및 기술들을 5G 운영 주파수에 다중화하는 경우에도 이전 5G 기술들의 운영에 아무런 backward compatibility 문제가 없도록 5G phase 2 혹은 beyond 5G 기술 및 서비스들을 제공할 수 있도록 해야 하는 요구 조건이 있다. 상기 요구 조건은 향후 호환성(forward compatibility)이라고 하며, 향후 호환성을 만족시키기 위한 기술들이 초기 5G를 설계할 때 고려되어야 한다. 초기 LTE 표준화 단계에서는 향후 호환성에 대한 고려가 미비했기 때문에, LTE 프레임워크 내에서 새로운 서비스를 제공하는 데 있어 제약 사항이 발생할 수 있다. 예를 들어, LTE release-13에서 적용되었던 eMTC(enhanced Machine Type Communication)의 경우, 단말의 복잡도 절감을 통해 단말의 가격을 줄이기 위해 서빙 셀(Serving Cell)이 제공하는 시스템 전송대역폭(System Bandwidth)에 관계없이 1.4MHz에 해당하는 주파수에서만 통신이 가능하다. 따라서 eMTC를 지원하는 단말은 기존의 시스템 전송대역폭의 전 대역에서 전송되는 물리 하향링크 제어 채널(Physical Downlink Control Channel: PDCCH)를 수신할 수 없으므로, PDCCH가 전송되는 시간 구간(Time interval)에서는 신호를 수신할 수 없는 제약 사항이 발생되었다. 따라서, 5G 통신시스템 이후의 고려되는 서비스가 5G 통신시스템과 효율적으로 공존하면서 동작하도록 5G 통신시스템이 설계되어야 한다. 5G 통신시스템에서 향후 호환성을 위해서는 향후 고려되어야 하는 서비스들이 5G 통신시스템에서 지원하는 시간-주파수 자원 영역에서 자유롭게 전송될 수 있도록, 리소스 자원을 자유롭게 할당하고 전송할 수 있어야 한다. 따라서, 5G 통신시스템에서 향후 호환성을 지원할 수 있도록 적어도 상위 신호를 통하여 5G 단말이 reserved resource의 할당에 대한 지시를 수신하도록 지원된다.
5G에서 한 TTI는 한 슬롯(slot)으로 정의될 수 있으며, 14개의 OFDM 심볼 혹은 7개의 OFDM 심볼로 구성될 수 있다. 따라서, 15kHz의 subcarrier spacing의 경우 한 슬롯은 1ms 혹은 0.5ms 의 길이를 갖게 된다. 또한 5G에서 긴급 전송 및 비면허대역에의 전송을 위해 한 TTI가 한 미니 슬롯(mini-slot) 혹은 서브 슬롯(sub-slot)으로 정의될 수 있으며, 한 미니 슬롯은 1로부터 (슬롯의 OFDM 심볼 개수)-1의 OFDM 심볼 수를 가질 수 있다. 가령 한 슬롯의 길이가 14 OFDM 심볼인 경우 미니 슬롯의 길이는 1부터 13개의 OFDM 심볼까지 중에 결정될 수 있다. 혹은 슬롯과 미니슬롯이라는 용어를 따로 정의하는 대신, 슬롯만으로 한 TTI를 정의할 수도 있다. 따라서 한 슬롯이라는 것은 단말마다 다르게 설정될 수 있으며, 한 슬롯은 1로부터 "슬롯의 OFDM 심볼 개수")의 OFDM 심볼 수를 가질 수 있다. 상기 슬롯 혹은 미니슬롯의 길이는 규격에 정의되거나 상위 신호 혹은 시스템 정보에 의해 전송되어 단말이 수신할 수 있다. 슬롯 혹은 미니 슬롯은 다양한 전송 포맷을 가지도록 정의될 수 있고, 다음의 포맷으로 분류될 수 있다.
- 하향 전용 슬롯(DL only slot or full DL slot): 하향 전용 슬롯은 하향 구간만으로 이루어지며, 하향 전송만이 지원된다.
- 하향 중심 슬롯(DL centric slot): 하향 중심 슬롯은 하향 구간, GP, 상향 구간으로 이루어지며, 하향 구간의 OFDM 심볼 개수가 상향 구간의 OFDM 심볼 개수보다 많다.
- 상향 중심 슬롯(UL centric slot): 상향 중심 슬롯은 하향 구간, GP, 상향 구간으로 이루어지며, 하향 구간의 OFDM 심볼 개수가 상향 구간의 OFDM 심볼 개수보다 적다.
- 상향 전용 슬롯(UL only slot or full UL slot): 상향 전용 슬롯은 상향 구간만으로 이루어지며, 상향 전송만이 지원된다.
상기에서는 슬롯 포맷만을 분류 하였으나, 미니슬롯도 같은 분류 방식으로 구분될 수 있다. 즉, 하향 전용 미니 슬롯, 하향 중심 미니 슬롯, 상향 중심 미니 슬롯, 상향 전용 미니 슬롯 등으로 구분될 수 있다.
상기의 슬롯이나 미니 슬롯의 포맷에 따라 상향 링크 전송의 전송 구간(혹은 전송 시작 심볼과 끝 심볼)이 달라질 수 있다. 또한 reserved resource가 한 슬롯 안에 설정되는 경우에도 상향 링크 전송의 전송 구간이 달라질 수 있다. 또한, 전송 지연을 최소화 하기 위한 짧은 전송 구간을 가지는 상향 제어 채널(이하 본 발명에서는 short PUCCH라고 한다.)과 충분한 셀 커버리지를 얻기 위하여 긴 전송구간을 가지는 상향 제어 채널(이하 본 발명에서는 long PUCCH라고 한다.)이 한 슬롯 혹은 다수의 슬롯 내에서 혼재하고, SRS와 같은 상향 링크 사운딩 신호가 전송되는 등 한 슬롯 혹은 다수의 슬롯에서 상향 제어 채널을 다중화되는 것을 고려해야 한다. 따라서, 상향링크 데이터 채널, 상향링크 제어 채널, 상향링크 사운딩 참조 신호와 같은 상향 링크 전송의 전송 구간이 OFDM 심볼 단위로 가변할 때 상향 커버리지를 유지하기 위해서 단말의 최대 전송 전력 값 내에서 상기 상향 링크 전송들의 전력을 제어하기 위한 방안이 필요로 된다. 또한, 초신뢰성을 요구 조건으로 하는 서비스에서 상향 전송의 신뢰성을 만족시키기 위해서 단말의 최대 전송 전력 값 내에서 상기 상향 링크 전송들의 전력을 제어하기 위한 방법이 필요로 된다.
본 발명에서는 기지국과 단말의 상기 슬롯이나 미니 슬롯에서의 상향 링크 전송의 상향 커버리지를 유지하고, 상향 전송의 신뢰성을 만족시키기 위하여 OFDM 심볼 개수 혹은 신뢰성을 고려하여 단말의 최대 전송 전력 값 내에서 상기 상향 링크 전송들의 전력을 제어하기 위한 방안을 제공하도록 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
또한, 본 발명의 실시 예들을 구체적으로 설명함에 있어서, LTE와 5G 시스템을 주된 대상으로 할 것이지만, 본 발명의 주요한 요지는 유사한 기술적 배경 및 채널형태를 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 발명의 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
하기에서 상기의 5G 셀에서 데이터의 송수신을 수행하는 5G 시스템에 대하여 설명할 것이다.
도 3은 본 발명이 적용되는 통신 시스템의 실시예를 도시하는 도면이다. 상기 도면들은 5G 시스템이 운영되는 형태를 도시한 도면이며, 본 발명에서 제안하는 방안들은 도 3의 시스템에 적용이 가능하다.
도 3을 참조하여 설명하면, 도 3은 네트워크에서 하나의 기지국(301)에 5G 셀(302)이 운영되는 경우를 도시한 것이다. 단말(303)은 5G 송수신 모듈을 갖고 있는 5G capable 단말이다. 단말(303)은 5G 셀(302)에서 전송되는 동기 신호를 통해 동기를 획득하고, 시스템 정보를 수신한 이후, 기지국(301)과 5G 셀(302)을 통해 데이터를 송수신한다. 이 경우 5G 셀(302)의 duplex 방식에 대한 제한은 없다. 상향링크 제어전송은 5G 셀이 P셀인 경우 5G 셀(302)을 통해서 전송된다. 상기 5c의 시스템에서 5G 셀은 복수개의 서빙셀을 구비할 수 있으며, 모두 합쳐 32개의 서빙 셀을 지원할 수 있다. 상기 네트워크에서 상기 기지국(301)은 5G 송수신 모듈(시스템)을 구비한 것으로 가정하며, 상기 기지국(301)은 5G 시스템을 실시간으로 관장하여 운영하는 것이 가능하다.
다음으로 기지국이(301)이 5G 자원을 설정하고, 5G capable 단말(303)과 상기 5G를 위한 자원에서 데이터를 송수신 하는 절차를 도 4에서 설명하도록 한다.
단계 411에서 기지국(301)은 5G capable 단말(303)에게 5G를 위한 동기 및 시스템 정보, 상위 설정 정보를 전송한다. 상기 5G를 위한 동기 신호는 다른 numerology를 사용하는 eMBB, mMTC, URLLC를 위해 별개의 동기 신호가 전송될 수 있으며, 하나의 numerology를 사용하여 특정 5G 자원에 공통 동기 신호가 전송될 수도 있다. 상기의 시스템 정보는 하나의 numerology를 사용하여 특정 5G 자원에 공통 시스템 신호가 전송될 수 있고, 다른 numerology를 사용하는 eMBB, mMTC, URLLC를 위해 별개의 시스템 정보가 전송될 수 있다. 상기 시스템 정보 및 상위 설정 정보는 데이터 송수신을 슬롯으로 할지 미니 슬롯으로 할지에 대한 설정 정보를 포함하며, 슬롯 혹은 미니 슬롯의 OFDM 심볼 개수 및 numerology를 포함할 수 있다. 또한 상기 시스템 정보 및 상위 설정 정보는 단말에게 하향 공통 제어 채널 수신이 설정되는 경우 상기 하향 공통 제어 채널 수신에 관련한 설정 정보를 포함할 수 있다. 또한 단말이 상향링크 전송 등의 전력 제어를 할 때, 전력 제어에 관련한 설정 정보를 포함할 수 있다.
단계 412에서 기지국(301)은 5G 자원에서 5G 서비스를 위한 데이터를 5G capable 단말(303)과 송수신한다.
단말과 데이터를 송수신 할 때 데이터를 스케줄링 하는데 필요한 하향 제어 채널을 전송하며, 상기 하향 제어 채널에 단말이 상향 링크 전력을 제어하는 필요한 명령을 포함할 수 있다.
다음으로 5G capable 단말(303)이 기지국이(301)으로부터 5G 자원을 설정 받고, 상기 5G 자원에서 데이터를 송수신 하는 절차를 설명하도록 한다.
단계 421에서 5G capable 단말(303)은 기지국(301)이 전송한 5G를 위한 동기신호로부터 동기를 획득하고, 기지국(301)이 전송한 시스템 정보와 상위 설정 정보를 수신한다. 상기 5G를 위한 동기 신호는 다른 numerology를 사용하는 eMBB, mMTC, URLLC를 위해 별개의 동기 신호가 전송될 수 있으며, 하나의 numerology를 사용하여 특정 5G 자원에 공통 동기 신호가 전송될 수도 있다. 상기의 시스템 정보는 하나의 numerology를 사용하여 특정 5G 자원에 공통 시스템 신호가 전송될 수 있고, 다른 numerology를 사용하는 eMBB, mMTC, URLLC를 위해 별개의 시스템 정보가 전송될 수 있다. 상기 시스템 정보 및 상위 설정 정보는 데이터 송수신을 슬롯으로 할지 미니 슬롯으로 할지에 대한 설정 정보를 포함하며, 슬롯 혹은 미니 슬롯의 OFDM 심볼 개수 및 numerology를 포함할 수 있다. 또한 상기 시스템 정보 및 상위 설정 정보는 단말에게 하향 공통 제어 채널 수신이 설정되는 경우 상기 하향 공통 제어 채널 수신에 관련한 설정 정보를 포함할 수 있다. 또한 단말이 상향링크 전송 등의 전력 제어를 할 때, 전력 제어에 관련한 설정 정보를 포함할 수 있다.
단계 422에서 5G capable 단말(303)은 5G 자원에서 5G 서비스를 위한 데이터를 기지국(301)과 송수신한다. 기지국과 데이터를 송수신 할 때 단말은 데이터의 스케줄링 정보를 포함하는 하향 제어 채널을 수신하여 복호를 시도하며, 상기 하향 제어 채널에 단말이 상향 링크 전력을 제어하는 필요한 명령을 포함할 수 있다.
도 5는 5G 시스템에서 PUCCH 전송을 도시하는 도면이다.
도 5에서 상기 Long PUCCH와 Short PUCCH가 주파수 영역에서 다중화(FDM, 500) 혹은 시간 영역에서 다중화(TDM, 501) 되는 모습을 도시하고 있다. 도 5를 기반으로 한 슬롯 내의 다양한 OFDM 심볼에 걸쳐서 long PUCCH와 short PUCCH가 전송되는 것을 설명하도록 한다. 먼저 도 5에서 long PUCCH와 short PUCCH가 다중화되는 슬롯 구조를 설명하도록 한다. 520 및 521은 5G 의 전송 기본 단위인 슬롯 (서브프레임 혹은 전송 시간 구간(TTI), 등 여러 명칭이 사용될 수 있다. 본 발명에서는 기본 전송 단위를 슬롯으로 명명한다.) 안에서 상향링크가 주로 사용되는, 즉 상향 중심 슬롯(UL centric slot)을 보여주고 있다. 상기 상향 중심 슬롯에서는 상향링크로 사용되는 OFDM 심볼의 개수가 대부분인 경우로, 전체 OFDM 심볼이 상향링크 전송으로 사용되는 경우도 가능하며, 혹은 앞 위의 몇 개의 OFDM 심볼이 하향링크 전송으로 사용되는 것도 가능하며, 하향링크와 상향링크가 하나의 슬롯 안에 동시에 존재하게 되는 경우는 둘 사이에 전송갭이 존재할 수 있다. 도 5에서는 하나의 슬롯 안에 첫번째 OFDM 심볼은 하향링크 전송, 예를 들어 하향링크 제어 채널 전송(502)으로 사용되며, 세번째 OFDM 심볼부터 상향링크 전송으로 활용되고 있다. 두번째 OFDM 심볼은 전송갭으로 활용된다. 상향링크 전송에서는 상향링크 데이터채널 전송과 상향링크 제어채널 전송이 가능하다.
다음으로 long PUCCH(503)에 대해서 설명하도록 한다. 긴 전송기간의 제어 채널은 셀 커버리지를 크게 하기 위한 목적으로 사용되기 때문에 OFDM 전송 보다는 단반송파 전송인 DFT-S-OFDM 방식으로 전송될 수 있다. 따라서 이때는 연속된 부반송파만을 사용하여 전송되어야 하고, 또한 주파수 다이버시티 효과를 얻을 수 있도록 하기 위하여 508과 509와 같이 떨어진 위치에서 긴 전송구간의 상향링크 제어 채널을 구성한다. 시간 측면에서 long PUCCH를 전송하기 위한 OFDM 심볼 개수는 4부터 14까지 지원한다. 주파수 측면에서 떨어지는 거리(505)는 단말이 지원하는 대역폭 보다는 작아야 하며, 슬롯의 앞부분에서는 508과 같이 PRB-1을 활용하여 전송하고, 슬롯의 뒷부분에서는 509와 같이 PRB-2을 활용하여 전송한다. 상기에서 PRB는 물리 자원 블록으로 주파수측에서 최소 전송 단위를 의미하며, 12개의 부반송파 등으로 정의할 수 있다. 따라서 PRB-1과 PRB-2의 주파수 측 거리는 단말의 최대 지원 대역폭보다는 작아야 하며, 단말의 최대 지원 대역폭은 시스템이 지원하는 대역폭(506)보다 같거나 작을 수 있다. 상기 주파수 자원 PRB-1과 PRB-2는 상위 신호에 의해 단말에게 설정될 수 있으며, 상위 신호에 의해 주파수 자원이 비트 필드에 맵핑되고, 어떤 주파수 자원이 사용될 지가 하향 제어 채널에 포함된 비트 필드에 의해 단말에게 지시될 수 있다. 또한 508의 슬롯 앞부분에서 전송되는 제어채널과 509의 슬롯 뒷부분에서 전송되는 제어채널은 각각 510의 상향링크 제어 정보(UCI)와 단말 기준 신호(511)로 구성되며, 두 신호는 시간적으로 구분되어 다른 OFDM 심볼에서 전송되는 것을 가정한다.
다음으로 short PUCCH(518)에 대해서 설명하도록 한다. Short PUCCH는 하향링크 중심 슬롯과 상향링크 중심 슬롯 모두에서 전송될 수 있으며, 일반적으로 슬롯의 마지막 심볼, 혹은 뒷 부분에 있는 OFDM 심볼(가령 맨 마지막 OFDM 심볼 혹은 끝에서 두번째 OFDM 심볼, 혹은 맨 마지막 2 OFDM 심볼)에서 전송된다. 물론 슬롯 내에 임의의 위치에서 Short PUCCH가 전송되는 것도 가능하다. 그리고 Short PUCCH은 하나의 OFDM 심볼, 혹은 복수개의 OFDM 심볼을 이용하여 전송될 수 있다. 도 5에서 Short PUCCH는 슬롯의 마지막 심볼(518)에서 전송된다. Short PUCCH을 위한 무선 자원은 주파수 측에서 PRB 단위로 할당되는데, 할당되는 PRB들은 연속된 복수개의 PRB가 할당될 수도 있고, 주파수 대역에서 떨어져 있는 복수개의 PRB가 할당될 수도 있다. 그리고 할당되는 PRB는 단말이 지원하는 주파수 대역(507)보다는 같거나 작은 대역 안에 포함되어 있어야 한다. 상기 할당되는 주파수 자원인 복수개의 PRB는 상위 신호에 의해 단말에게 설정될 수 있으며, 상위 신호에 의해 주파수 자원이 비트 필드에 맵핑되고, 어떤 주파수 자원이 사용될 지가 하향 제어 채널에 포함된 비트 필드에 의해 단말에게 지시될 수 있다. 그리고 하나의 PRB 내에서 상향링크 제어정보(530)와 복조 기준 신호(531)는 주파수 대역에서 다중화가 되어야 하는데, 512에서와 같이 매 두 개의 심볼당 하나의 부반송파에 복조 기준 신호를 전송하는 방법, 혹은 513에서와 같이 매 세 개의 심볼당 하나의 부반송파에 복조 기준 신호를 전송하는 방법, 혹은 514에서와 같이 매 네 개의 심볼당 하나의 부반송파에 복조 기준 신호를 전송하는 방법 등이 존재할 수 있다.
도 5를 기반으로 PUCCH 전송이 다양한 OFDM 심볼에서 전송되는 예들을 설명하였다.
다음으로 도 6을 기반으로 PUSCH 및 SRS, 혹은 PUCCH 전송이 다양한 OFDM 심볼에서 전송되는 예를 설명하도록 한다.
도 6에서 601은 하향 제어 채널을 나타내며, 단말 공통 제어 채널일 수도 있고, 단말 전용 제어 채널일 수도 있다. 단말 공통 제어 채널은 슬롯 혹은 미니 슬롯의 포맷 정보 등의 단말들에게 공통적으로 지시될 수 있는 정보들을 포함한다. 단말 전용 제어 채널은 상하향 데이터 스케줄링을 위한 데이터 전송 주파수 위치 정보와 같은 단말 전용 정보들을 포함한다.
도 6에서 602는 상향 데이터 채널을 나타내며, 데이터 채널 내에는 상향 데이터와 함께 상향 데이터 송수신에 필요한 RS가 포함된다.
도 6에서 603는 상향 제어 채널을 나타내며, 제어 채널 내에는 상향 제어 정보와 함께 상향 제어 정보 송수신에 필요한 RS가 포함된다.
도 6에서 604은 한 슬롯 내에서 하향 전송이 가능한 시간 및 주파수 영역을 가리킨다.
도 6에서 605는 한 슬롯 내에서 상향 전송이 가능한 시간 및 주파수 영역을 가리킨다.
도 6에서 606는 한 슬롯 내에서 하향에서 상향으로의 RF 변경을 위해 필요한 시간 및 주파수 영역을 가리킨다.
도 6에서 607은 상향 사운드 참조 신호를 나타낸다.
먼저 한 슬롯 구간(608)의 상향 중심 슬롯(611)에서 상향 데이터의 시작 OFDM 심볼과 끝 OFDM 심볼(혹은 구간 길이)에 따라 상향 데이터의 전송 OFDM 심볼 구간은 OFDM 심볼 단위로 가변할 수 있다. 도 6의 상향 중심 슬롯(611)에서 하향 제어 채널(601)과 상향 데이터 채널(602), 상향 사운딩 참조 신호(607)이 전송되는 시간 및 주파수 영역을 도시하고 있다. 상향 데이터 채널(602)는 상향 구간(605)에서 전송을 시작할 수 있으며, 다른 단말들의 상향 사운딩 참조 신호(607)와의 전송 충돌을 방지하기 위하여, 기지국은 단말이 어떤 슬롯 내의 상향 구간(605)내에서 어떤 OFDM 심볼에서 상향 사운딩 참조 신호가 전송되는지 여부를 단말에게 알려주어야 한다. 결과로써, 상향 데이터(602)의 전송 OFDM 심볼 구간은 상향 구간(605)내의 일부의 OFDM 심볼들에서만 전송될 수 있다.
다음으로 한 슬롯 구간(608)의 상향 전용 슬롯(621)에서 상향 데이터의 전송 OFDM 심볼 구간이 가변하는 상황에 대해 설명하도록 한다. 도 6의 상향 전용 슬롯(621)에서 상향 데이터 채널(602)과 상향 제어 채널(603)이 전송되는 시간 및 주파수 영역을 도시하고 있다. 상향 데이터 채널(602)는 상향 구간(605)의 첫 OFDM 심볼부터 전송을 시작할 수 있으며, 다른 단말들의 상향 제어 채널(603)의 시간 및 주파수 영역을 알 수 없기 때문에, 다른 단말들의 상향 제어 채널(603)의 시간 및 주파수 영역과 충돌이 나지 않도록 기지국은 단말이 한 슬롯 내의 상향 구간(605)내에서 어떤 OFDM 심볼까지 상향 데이터 채널(602)를 전송할 수 있는지를 한 단말에게 알려 줘야 한다.
도 6에서 설명한 바와 같이 단말들의 PUSCH, PUCCH, SRS(Sounding Reference Signal) 전송 시간 및 주파수 영역으로 인해서 상향 데이터 채널, 상향 제어 채널, 상향 사운딩 참조 신호들의 전송 OFDM 심볼 수는 가변할 수 있다.
도 5와 도 6에서 설명한 바와 같이 상향 링크 전송 구간이 OFDM 심볼 단위로 가변할 때, 본 발명에서 전송 OFDM 심볼 개수를 기반으로 상향 링크 전송의 전력 제어를 수행하는 방안을 설명하도록 한다. 또한 초신뢰성을 요구 조건으로 하는 URLLC와 같은 서비스의 상향 전송을 수행하는 경우 요구되는 신뢰성을 만족시키기 위하여 상향 링크 전송의 전력 제어를 수행하는 방안을 추가적으로 설명하도록 한다.
먼저 본 발명에서 제안하는 NR에서의 상향링크 전송의 전력제어에 대해서 설명하도록 한다. 특히 수학식 1, 수학식 2, 수학식 3을 이용하여 PUCCH, PUSCH, SRS를 위하여 사용되는 전력 제어 방안에 대해서 각각 설명하도록 한다. 밑에서는 주로 PUCCH의 전송 전력 제어에 대해서 설명하지만, PUSCH나 SRS의 전송 전력에 대해서도 본 발명에서 제시하는 실시예의 적용이 아무 제한없이 가능하다.
NR 시스템에서 단말은 상향 링크 전송의 전송 전력을 제어하여 PUCCH, PUSCH, SRS등을 전송한다. 이 때 단말은 하기 <수학식 1>과 같이 산출되는 값으로 PUCCH의 상향 링크 제어 정보의 전송 전력을 제어할 수 있다.
[수학식 1]
Figure PCTKR2018004752-appb-I000001
Figure PCTKR2018004752-appb-I000002
Figure PCTKR2018004752-appb-I000003
Figure PCTKR2018004752-appb-I000004
단말은 하기 [수학식 2]과 같이 산출되는 값으로 PUSCH의 상향 링크 데이터 정보의 전송 전력을 제어할 수 있다.
[수학식 2]
Figure PCTKR2018004752-appb-I000005
Figure PCTKR2018004752-appb-I000006
Figure PCTKR2018004752-appb-I000007
단말은 하기 [수학식 3]과 같이 산출되는 값으로 SRS의 상향 링크 사운딩 참조 신호의 전송 전력을 제어할 수 있다.
[수학식 3]
Figure PCTKR2018004752-appb-I000008
Figure PCTKR2018004752-appb-I000009
Figure PCTKR2018004752-appb-I000010
상기 [수학식 1]에서, i는 슬롯의 인덱스이며, PCMAX,c(i)는 한 슬롯에서 단말기의 최대 전송 전력이며, PO_PUCCH는 기지국에 의해 설정되는 단말기 관련 초기 설정값과 셀 관련 초기 설정값의 합이며, PLc은 기지국과 단말기 사이의 경로 손실을 보정하기 위한 값이다. 아울러, 상기 [수학식 1]에서 h(nCQI,nHARQ,nSR)와 ΔF_PUCCH(F)는 상향 링크 제어 정보를 위한 포맷, 즉 PUCCH 포맷과 상향 링크 제어 정보의 양에 따라 다르게 설정되는 인자이다. 상기 ΔF_PUCCH(F)는 상위 시그날링(higher layer signaling)에 의해 기지국에서 단말기에 지시되며, 상향 링크 제어 정보를 위한 각 포맷에 따라 다수개의 정수값의 집합들 중에서 한 값으로 설정된다. 그리고 h(nCQI,nHARQ,nSR)와 ΔF_PUCCH(F)는 서로 상호 보완적이며, h(nCQI,nHARQ,nSR)로 설정된 전송 전력이 과도하거나 모자라는 경우 ΔF_PUCCH(F)로 보상할 수 있다. 이때 상기 ΔF_PUCCH(F)는 가장 적은 값의 전력을 필요로 하는 PUCCH format을 기준으로 다른 PUCCH format을 위해 필요로 되는 상대적인 전력 값을 설정한다. 즉 NR에서 long PUCCH 포맷을 위해 PUCCH format A, PUCCH format B, PUCCH format C를 정의한다고 가정하는 경우 PUCCH format A의 절대적인 전력 값을 0dB로 정해 놓고, 다른 상향 링크 제어 정보를 위한 포맷 혹은 상향 링크 제어 정보의 양과 종류에 따라 필요로 되는 상대적인 전력 값을 부여한다. 가령 PUCCH format A를 사용하는 경우 1%의 오류 확률을 얻기 위해 필요로 되는 SNR(Signal to Noise Ratio)이 -6dB이고, PUCCH format B를 사용하는 경우 1%의 오류 확률을 얻기 위해 필요로 되는 SNR이 1dB라 하면, ΔF_PUCCH(F)에서 상기 PUCCH format A를 위해 0dB를 설정하고, 상기 PUCCH format B를 위해 7dB를 설정한다. 이 때 상기의 PUCCH format A에서 1%의 오류 확률을 얻기 위해 원래 필요로 되었던 -6dB라는 값은 PO_PUCCH에 반영이 되어 있음을 주지한다.
상기 h(nCQI,nHARQ,nSR)는 NR 시스템에서 상향 링크 제어 정보를 위한 포맷, 즉 정의되는 다양한 PUCCH format각각에 따라 입력 비트수를 기반으로 다르게 전력이 제어되게 하기 위한 수식을 나타낸다.
상기 MPUCCH,c(i)는 PUCCH 전송을 위해 설정되는 전송 주파수 자원량을 반영하기 위한 수식이다.
g(i)는 매 슬롯에서 전송될 수 있는 PDCCH에 의해 동적으로 변화시킬 수 있도록 전송되는 값(δ)을 적용했을 때의 슬롯 i의 전력값으로써 이전 슬롯의 g(i)인 g(i-1)에 상기 δ 값을 누적시켜 슬롯 i의 g(i)를 설정할 수도 있고 이전 슬롯에서의 값을 무시하고 해당 슬롯에서 지시된 값만을 적용하여 절대값으로 슬롯 i의 g(i)를 설정할 수도 있다.
위에서 설명한 수식들을 적어도 1개 이상 합산하여 short PUCCH 혹은 long PUCCH의 전송 전력 제어를 위한 q1(i)을 구성하는 것이 가능하며, q1(i)은 PUCCH의 상향 전력 제어를 위해 기본적으로 고려되어야 하는 수식들이다.
상기 [수학식 2]에서, i는 슬롯의 인덱스이며, PCMAX,c(i)는 한 슬롯에서 단말기의 최대 전송 전력이며, PO_PUSCH,c(j)는 기지국에 의해 설정되는 단말기 관련 초기 설정값과 셀 관련 초기 설정값의 합이며, αc(j)*PLc 은 기지국과 단말기 사이의 경로 손실을 보정하기 위한 값이다. 상기 MPUSCH,c(i)는 PUSCH 전송을 위해 스케줄링되는 전송 주파수 자원량을 반영하기 위한 것이다. ΔTF,c(i)는 MCS의 의한 변조 방식 및 부호율을 반영하기 위한 것이며, fc(i)는 매 슬롯에서 전송될 수 있는 PDCCH에 의해 동적으로 변화시킬 수 있도록 전송되는 값(δ)을 적용했을 때의 슬롯 i의 전력값으로써 이전 슬롯의 fc(i)인 fc(i-1)에 상기 δ 값을 누적시켜 슬롯 i의 fc(i)를 설정할 수도 있고 이전 슬롯에서의 값을 무시하고 해당 슬롯에서 지시된 값만을 적용하여 절대값으로 슬롯 i의 fc(i)를 설정할 수도 있다.
상기 [수학식 3]에서, i는 슬롯의 인덱스이며, PCMAX,c(i)는 한 슬롯에서 단말기의 최대 전송 전력이며, PSRS_OFFSET,c 과 PO_PUSCH,c(j)는 기지국에 의해 설정되는 단말기 관련 초기 설정값과 셀 관련 초기 설정값의 합이며, αc(j)*PLc 은 기지국과 단말기 사이의 경로 손실을 보정하기 위한 값이다. 상기 MSRS,c는 SRS 전송을 위해 설정되는 전송 주파수 자원량을 반영하기 위한 것이다. fc(i)는 매 슬롯에서 전송될 수 있는 PDCCH에 의해 동적으로 변화시킬 수 있도록 전송되는 값(δ)을 적용했을 때의 슬롯 i의 전력값으로써 이전 슬롯의 fc(i)인 fc(i-1)에 상기 δ 값을 누적시켜 슬롯 i의 fc(i)를 설정할 수도 있고 이전 슬롯에서의 값을 무시하고 해당 슬롯에서 지시된 값만을 적용하여 절대값으로 슬롯 i의 fc(i)를 설정할 수도 있다.
다음으로 PUCCH, PUSCH, SRS의 전송 심볼수에 따른 전력 조절을 하기 위한 방안을 설명하도록 한다. 첫번째 실시예로써 q1(i), q2(i), q3(i)에 각각 PUCCH, PUSCH, SRS의 전송 심볼수에 따른 전력을 조절하기 위해 전송 심볼수를 입력으로 하는 수식 h(nsymbol)을 추가하는 것이다. h(nsymbol)에 따른 전력 값을 결정하기 위해서 수식 뿐만 아니라 PUCCH, PUSCH, SRS의 전송 OFDM 심볼 수에 따른 전송 전력 값을 표와 같이 정의하는 것도 가능하다.
두번째 실시예로써 q1(i), q2(i), q3(i)에 각각 PUCCH, PUSCH, SRS의 전송 심볼수에 따른 전력을 조절하기 위해 q1(i), q2(i), q3(i)을 linear value로 변환한 t1(i), t2(i), t3(i)에 전송 심볼수에 따른 계수 w1, w2, w3를 각각 곱하는 것이다.
한 슬롯에서의 모든 OFDM 심볼들에서 PUCCH, PUSCH, SRS전송을 고려한 전력 값이 각각 q1(i), q2(i), q3(i)라 가정할 때, 1 OFDM 심볼에서의 전력 값은 q1(i), q2(i), q3(i)를 모든 OFDM 심볼개수로 나눈 값일 수 있다. [표 2]와 [표 3]에서 각각 첫번째 실시예와 두번째 실시예의 가능한 예시를 보여준다. 이 때 한 슬롯에서의 전송 전력의 변화를 최소한으로 유지할 수 있는 장점이 있다.
표 2
n_symbol h(n_symbol)
1 A (=0)
2 B
3 C
... ...
14 D (=
Figure PCTKR2018004752-appb-I000011
)
표 3
n_symbol w
1 A' (=1/14)
2 B'
3 C'
... ...
14 D' (=1)
이와 반대로 한 슬롯에서의 전송 전력에 따른 상향 커버리지를 유지하기 위해서 1 또는 2 OFDM 심볼에서의 PUCCH, PUSCH, SRS 전송시에도 각각 한 슬롯에서의 전송 전력을 유지하도록 전송 전력을 증가시키는 방안을 고려할 수 있다. [표 4]와 [표 5]에서 각각 첫번째 실시예와 두번째 실시예의 가능한 예시를 보여준다.
표 4
n_symbol h(n_symbol)
1 A (=
Figure PCTKR2018004752-appb-I000012
)
2 B
3 C
... ...
14 D (=0)
표 5
n_symbol w
1 A' (=1)
2 B'
3 C'
... ...
14 D' (=1/14)
세번째 실시예로써 TPC command인 값인 δ를 PUCCH, PUSCH, SRS 전송 OFDM 심볼수에 따라 다른 값을 적용하는 것이다. 가령, δ에 PUCCH 전송 OFDM 심볼 수의 집합에 따라 계수 k를 곱하여 k*δ를 δ 대신 적용한다. 예로써, 7 < nsymbol ≤ 14과 1 < nsymbol ≤ 7에 대해서 다른 k를 적용하는 것이 가능하다. 또는 [표 6]과 같이 표로써 PUCCH 전송 OFDM 심볼 수에 따라 다른 TPC command를 적용하는 것이 가능하다. 예로써, 7 < nsymbol ≤ 14에 대해서 Set A를 적용하고 1 < nsymbol ≤ 7에 대해서 Set B를 적용하는 것이 가능하다.
표 6
TPC command field in DCI δ
Set A [dB] Set B [dB]
0 -1 -1
1 0 0
2 1 2
3 3 6
다음으로 초신뢰성을 요구 조건으로 하는 URLLC와 같은 서비스의 PUCCH 전송을 수행하는 경우 전력 조절을 하기 위한 방안을 설명하도록 한다. 단말은 하향 데이터 신호를 스케줄링 받는 하향 제어 채널의 DCI 사이즈 또는 특정 필드의 셋팅 또는 URLLC를 위한 별개의 RNTI로부터 URLLC 데이터가 스케줄링된다는 것을 알 수 있다. 혹은 URLLC를 위한 상위 신호의 설정이나 URLLC를 위한 전송 모드의 설정에 의해 URLLC 데이터가 스케줄링 된다는 것을 알 수 있다. 따라서, 상기 하향 제어 채널에 의해 스케줄링 되는 하향 데이터에 대한 상향 제어 채널이 전송되는 것을 알 수 있다. 혹은 단말은 단말의 상위의 패킷 IP나 포트 번호의 맵핑, 특정 logical channel ID 맵핑에 의해 URLLC 상향 데이터 전송이 수행되어야 하는 것을 알 수 있다. 혹은 단말이 특정 상향 자원에서 상향 링크를 전송하도록 스케줄링 받거나 설정된 경우, 상기 상향 링크가 URLLC를 위한 것이라고 판단할 수 있다. 단말은 네번째 실시예로써 TPC command필드와 적용할 전력 값인 δ를 정의해 놓은 표에 power boosting에 따른 전력 값을 적용하기 위한 필드를 추가하는 것이다. 가령, [표 7]과 같이 표로써 power boosting이 필요한 경우에 따른 필드를 추가하고 기지국이 상기 필드의 적용을 지시하여 단말이 상기 필드에 따른 지시를 수신한 경우 상기 필드를 적용하는 것이 가능하다. Power boosting 에 따른 전력 증가 값은 상위 신호에 의해 설정될 수도 있고, 규격의 아래 표에 정의될 수 있다.
표 7
TPC command field in DCI δ[dB]
0 -1
1 0
2 1
3 "Power Boosting"
도 7은 본 발명에서의 실시예들에 대한 기지국 및 단말 절차를 설명하는 도면이다.
먼저 기지국 절차를 설명하도록 한다.
단계 711에서 기지국은 단말에게 상향 전력 제어 설정 정보를 전송한다. 상기 상향 전력 제어 설정 정보는 PUCCH, PUSCH, SRS가 다양한 OFDM 심볼 구간에서 전송되는 경우 혹은 신뢰성을 만족하기 위한 경우 전력 제어를 하기 위해 상위 신호로 설정이 필요한 정보를 포함하며, 상위 신호를 통하여 단말에게 전송할 수 있다.
단계 712에서 기지국은 단말에게 본 발명에 따른 상향 전력 제어 명령을 전송한다. 상기 상향 전력 제어 명령은 도 6에의 실시예에서 제시한 바와 같이 PUCCH, PUSCH, SRS가 다양한 OFDM 심볼 구간에서 전송되는 경우 혹은 신뢰성을 만족하기 위한 경우 전력 제어를 하기 위해 필요한 정보를 포함하며, 하향 제어 채널을 통해 단말에게 전송한다.
단계 713에서 기지국은 단계 711 혹은 단계 712에서 상향 링크 전력을 제어하도록 설정하거나 지시한 상향 링크 채널이나 상향 링크 신호를 단말로부터 수신한다.
다음으로 단말 절차를 설명하도록 한다.
단계 721에서 단말은 기지국으로부터 상향 전력 제어 설정 정보를 수신한다. 상기 상향 전력 제어 설정 정보는 PUCCH, PUSCH, SRS가 다양한 OFDM 심볼 구간에서 전송되는 경우 혹은 신뢰성을 만족하기 위한 경우 전력 제어를 하기 위해 상위 신호로 설정이 필요한 정보를 포함하며, 상위 신호를 통하여 기지국으로부터 수신할 수 있다.
단계 722에서 단말은 기지국으로부터 본 발명에 따른 상향 전력 제어 명령을 수신한다. 상기 상향 전력 제어 명령은 도 6에의 실시예에서 제시한 바와 같이 PUCCH, PUSCH, SRS가 다양한 OFDM 심볼 구간에서 전송되는 경우 혹은 신뢰성을 만족하기 위한 경우 전력 제어를 하기 위해 필요한 정보를 포함하며, 하향 제어 채널을 통해 기지국으로부터 수신한다.
단계 723에서 단말은 단계 711 혹은 단계 712에서 상향 링크 전력을 제어하도록 설정하거나 지시한 상향 링크 채널이나 상향 링크 신호를 기지국으로 전송한다.
다음으로 도 8은 본 발명에 따른 기지국 장치를 도시한 도면이다.
제어기 (801)는 본 발명의 도 7에 따른 기지국 절차와 본 발명의 도 6에 따른 상향 링크 전력 제어 방법에 따라 상향 링크 전력 제어 설정에 필요한 전송 자원을 제어하여, 5G 제어 정보 전송 장치(805) 및 5G 데이터 송수신 장치(807)를 통해 단말에 전송하고, 스케줄러(803)에서 5G 데이터를 스케줄링하여 5G 데이터 송수신 장치(807)을 통해 5G 단말과 5G 데이터를 송수신한다.
다음으로 도 9는 본 발명에 따른 단말 장치를 도시한 도면이다.
본 발명의 도 7에 따른 단말 절차와 본 발명의 도 6에 따른 상향 링크 전력 제어 방법에 따라 5G 제어 정보 수신 장치(905) 및 5G 데이터 송수신 장치(906)를 통해 기지국으로부터 상향 링크 전력 제어 설정에 필요한 정보와 전력 제어 명령을 수신하고, 제어기 (901)는 수신된 자원 위치에서 스케줄링 된 5G 데이터에 대해 5G 데이터 송수신 장치(906)을 통해 상향 링크에 대한 전력을 제어하여 5G 기지국과 송수신한다.
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 방법에 있어서,
    상향링크 전송에 사용될 심볼의 개수를 확인하는 단계;
    상기 심볼의 개수에 기초하여 상기 상향링크 전송을 위한 전송 전력을 결정하는 단계; 및
    상기 심볼에서 상기 전송 전력을 이용하여 기지국으로 상향링크 신호를 전송하는 단계를 포함하는, 방법.
  2. 제1항에 있어서,
    상기 결정하는 단계는, 상기 전송 전력을 결정하는 과정에 상기 심볼의 개수를 입력으로 하는 파라미터를 추가하거나, 상기 전송 전력을 선형 값으로 변환한 후 상기 심볼의 개수를 고려한 계수를 적용하거나, 상기 전송 전력을 결정하기 위한 제어 명령에 의해 결정되는 값을 상기 심볼의 개수에 따라 다르게 적용하는 것인, 방법.
  3. 제2항에 있어서,
    상기 파라미터 및 상기 계수는, 하나의 슬롯 내에서 전송 전력의 변화를 최소화하도록 상기 심볼의 개수가 클수록 큰 값으로 결정되거나, 하나의 슬롯 내에서 전송 전력에 따른 상향링크 커버리지를 유지하기 위해서 상기 심볼의 개수가 작을수록 큰 값으로 결정되는 것인, 방법.
  4. 제1항에 있어서,
    상기 상향링크 신호는 상향링크 데이터, 상향링크 제어 정보 및 상향링크 기준 신호 중 적어도 하나를 포함하는 것인, 방법.
  5. 무선 통신 시스템에서 단말에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    상향링크 전송에 사용될 심볼의 개수를 확인하고, 상기 심볼의 개수에 기초하여 상기 상향링크 전송을 위한 전송 전력을 결정하고, 상기 심볼에서 상기 전송 전력을 이용하여 기지국으로 상향링크 신호를 전송하도록 설정된 제어부를 포함하는, 단말.
  6. 제5항에 있어서,
    상기 제어부는, 상기 전송 전력을 결정하는 과정에 상기 심볼의 개수를 입력으로 하는 파라미터를 추가하거나, 상기 전송 전력을 선형 값으로 변환한 후 상기 심볼의 개수를 고려한 계수를 적용하거나, 상기 전송 전력을 결정하기 위한 제어 명령에 의해 결정되는 값을 상기 심볼의 개수에 따라 다르게 적용하는 것인, 단말.
  7. 제6항에 있어서,
    상기 파라미터 및 상기 계수는, 하나의 슬롯 내에서 전송 전력의 변화를 최소화하도록 상기 심볼의 개수가 클수록 큰 값으로 결정되거나, 하나의 슬롯 내에서 전송 전력에 따른 상향링크 커버리지를 유지하기 위해서 상기 심볼의 개수가 작을수록 큰 값으로 결정되는 것인, 단말.
  8. 제5항에 있어서,
    상기 상향링크 신호는 상향링크 데이터, 상향링크 제어 정보 및 상향링크 기준 신호 중 적어도 하나를 포함하는 것인, 단말.
  9. 무선 통신 시스템에서 기지국의 방법에 있어서,
    상향링크 전송 전력에 관련된 정보를 단말로 전송하는 단계; 및
    상기 단말로부터 상기 정보에 기초하여 결정된 전송 전력으로 전송되는 상향링크 신호를 수신하는 단계를 포함하고,
    상기 전송 전력은 상기 상향링크 신호가 전송되는 심볼의 개수에 기초하여 결정되는 것인, 방법.
  10. 제9항에 있어서,
    상기 전송 전력은,
    상기 심볼의 개수를 입력으로 하는 파라미터를 추가하거나, 상기 전송 전력을 선형 값으로 변환한 후 상기 심볼의 개수를 고려한 계수를 적용하거나, 상기 전송 전력을 결정하기 위한 제어 명령에 의해 결정되는 값을 상기 심볼의 개수에 따라 다르게 적용함으로써 결정되는 것인, 방법.
  11. 제10항에 있어서,
    상기 파라미터 및 상기 계수는, 하나의 슬롯 내에서 전송 전력의 변화를 최소화하도록 상기 심볼의 개수가 클수록 큰 값으로 결정되거나, 하나의 슬롯 내에서 전송 전력에 따른 상향링크 커버리지를 유지하기 위해서 상기 심볼의 개수가 작을수록 큰 값으로 결정되며,
    상기 상향링크 신호는 상향링크 데이터, 상향링크 제어 정보 및 상향링크 기준 신호 중 적어도 하나를 포함하는 것인, 방법.
  12. 무선 통신 시스템에서 기지국에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    상향링크 전송 전력에 관련된 정보를 단말로 전송하고, 상기 단말로부터 상기 정보에 기초하여 결정된 전송 전력으로 전송되는 상향링크 신호를 수신하도록 설정된 제어부를 포함하고,
    상기 전송 전력은 상기 상향링크 신호가 전송되는 심볼의 개수에 기초하여 결정되는 것인, 기지국.
  13. 제12항에 있어서,
    상기 전송 전력은,
    상기 심볼의 개수를 입력으로 하는 파라미터를 추가하거나, 상기 전송 전력을 선형 값으로 변환한 후 상기 심볼의 개수를 고려한 계수를 적용하거나, 상기 전송 전력을 결정하기 위한 제어 명령에 의해 결정되는 값을 상기 심볼의 개수에 따라 다르게 적용함으로써 결정되는 것인, 기지국.
  14. 제13항에 있어서,
    상기 파라미터 및 상기 계수는, 하나의 슬롯 내에서 전송 전력의 변화를 최소화하도록 상기 심볼의 개수가 클수록 큰 값으로 결정되거나, 하나의 슬롯 내에서 전송 전력에 따른 상향링크 커버리지를 유지하기 위해서 상기 심볼의 개수가 작을수록 큰 값으로 결정되는 것인, 기지국.
  15. 제12항에 있어서,
    상기 상향링크 신호는 상향링크 데이터, 상향링크 제어 정보 및 상향링크 기준 신호 중 적어도 하나를 포함하는 것인, 기지국.
PCT/KR2018/004752 2017-05-02 2018-04-24 무선 셀룰라 통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치 WO2018203610A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP21207597.2A EP3975627B1 (en) 2017-05-02 2018-04-24 Uplink transmission power control method and device in wireless cellular communication system
US16/603,673 US11317358B2 (en) 2017-05-02 2018-04-24 Uplink transmission power control method and device in wireless cellular communication system
EP18794329.5A EP3592046B1 (en) 2017-05-02 2018-04-24 Uplink transmission power control in wireless cellular communication system
CN202310729283.2A CN116782353A (zh) 2017-05-02 2018-04-24 无线蜂窝通信系统中上行链路传输功率控制方法和设备
AU2018263683A AU2018263683B2 (en) 2017-05-02 2018-04-24 Uplink transmission power control method and device in wireless cellular communication system
CN201880029299.XA CN110603859B (zh) 2017-05-02 2018-04-24 无线蜂窝通信系统中上行链路传输功率控制方法和设备
EP24155276.9A EP4340471A3 (en) 2017-05-02 2018-04-24 Uplink transmission power control method and device in wireless cellular communication system
US16/596,254 US11224020B2 (en) 2017-05-02 2019-10-08 Uplink transmission power control method and device in wireless cellular communication system
US17/571,994 US11553441B2 (en) 2017-05-02 2022-01-10 Uplink transmission power control method and device in wireless cellular communication system
US18/093,180 US11956735B2 (en) 2017-05-02 2023-01-04 Uplink transmission power control method and device in wireless cellular communication system
US18/425,086 US20240172129A1 (en) 2017-05-02 2024-01-29 Uplink transmission power control method and device in wireless cellular communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0056413 2017-05-02
KR1020170056413A KR102367153B1 (ko) 2017-05-02 2017-05-02 무선 셀룰라 통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/603,673 A-371-Of-International US11317358B2 (en) 2017-05-02 2018-04-24 Uplink transmission power control method and device in wireless cellular communication system
US16/596,254 Continuation US11224020B2 (en) 2017-05-02 2019-10-08 Uplink transmission power control method and device in wireless cellular communication system
US17/571,994 Continuation US11553441B2 (en) 2017-05-02 2022-01-10 Uplink transmission power control method and device in wireless cellular communication system

Publications (1)

Publication Number Publication Date
WO2018203610A1 true WO2018203610A1 (ko) 2018-11-08

Family

ID=64016497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004752 WO2018203610A1 (ko) 2017-05-02 2018-04-24 무선 셀룰라 통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치

Country Status (6)

Country Link
US (5) US11317358B2 (ko)
EP (3) EP3592046B1 (ko)
KR (2) KR102367153B1 (ko)
CN (2) CN110603859B (ko)
AU (1) AU2018263683B2 (ko)
WO (1) WO2018203610A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020180463A1 (en) * 2019-03-01 2020-09-10 Commscope Technologies Llc Transmit power control in a c-ran
US11399346B2 (en) 2018-05-11 2022-07-26 Samsung Electronics Co., Ltd Method and apparatus for controlling uplink transmission power by terminal for dual connectivity in wireless communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109534A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Uplink control information reporting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090084769A (ko) * 2008-02-01 2009-08-05 삼성전자주식회사 통신 시스템에서 기준 신호 송/수신 장치 및 방법
KR100943895B1 (ko) * 2002-12-31 2010-02-24 엘지전자 주식회사 물리전송채널 체인
KR20110099727A (ko) * 2008-12-08 2011-09-08 노키아 지멘스 네트웍스 오와이 셀룰러 통신 시스템에서의 업링크 제어 시그널링
US20120014320A1 (en) * 2010-07-16 2012-01-19 Samsung Electronics Co., Ltd. Method and system for multiplexing acknowledgement signals and sounding reference signals
US20140126386A1 (en) * 2012-11-02 2014-05-08 Martin Beale Method and Apparatus for Communicating in an Increased Coverage Area to a Wireless Communication Unit

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7974253B2 (en) * 2005-03-08 2011-07-05 Qualcomm Incorporated Methods and apparatus for implementing and using a rate indicator
US9001791B2 (en) * 2008-01-31 2015-04-07 Telefonaktiebolaget L M Ericsson (Publ) Detection of time division duplex downlink/uplink configuration
KR101521001B1 (ko) * 2010-01-08 2015-05-15 인터디지탈 패튼 홀딩스, 인크 다중 반송파의 채널 상태 정보 전송 방법
KR20110122033A (ko) * 2010-05-03 2011-11-09 주식회사 팬택 다중 요소반송파 시스템에서 제어정보의 전송장치 및 방법
US9179426B2 (en) * 2010-05-07 2015-11-03 Qualcomm Incorporated Modulation and coding scheme adjustment for uplink channel power control in advanced telecommunication networks
KR20120035817A (ko) 2010-10-05 2012-04-16 삼성전자주식회사 이동통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치
KR101784008B1 (ko) 2010-11-05 2017-10-11 엘지전자 주식회사 중계국을 포함하는 무선 통신 시스템에서 대역폭 요청 채널 할당 방법 및 장치
ES2663837T3 (es) * 2011-09-21 2018-04-17 Lg Electronics Inc. Dispositivo terminal de control de potencia de transmisión de señal de enlace ascendente, y procedimiento para el mismo
KR101690396B1 (ko) 2012-01-27 2016-12-27 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2014010987A1 (ko) * 2012-07-12 2014-01-16 엘지전자 주식회사 무선 통신 시스템에서 전송 전력 제어 방법 및 장치
WO2014170229A1 (en) 2013-04-15 2014-10-23 Sony Corporation Telecommunications apparatus and methods
WO2016163738A1 (ko) * 2015-04-06 2016-10-13 엘지전자 주식회사 무선 통신 시스템에서 공유 자원 기반의 신호 송수신 방법 및 이를 위한 장치
CN106162888B (zh) 2015-04-10 2022-11-08 夏普株式会社 载波聚合中的pucch资源配置方法及其设备
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
US10020923B2 (en) * 2015-07-30 2018-07-10 Lg Electronics Inc. Method of transmitting and receiving downlink signal in unlicensed band in wireless communication system and apparatus therefor
CA2999587C (en) * 2015-09-25 2023-07-25 Huawei Technologies Co., Ltd. Power control method and apparatus for uplink control channel
WO2017135682A1 (ko) 2016-02-02 2017-08-10 엘지전자 주식회사 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
JP2019057746A (ja) 2016-02-04 2019-04-11 シャープ株式会社 端末装置および通信方法
US10944608B2 (en) 2016-03-02 2021-03-09 Lg Electronics Inc. Method for transmitting and receiving control channel in wireless communication system and device for supporting same
TW201735699A (zh) 2016-03-10 2017-10-01 Idac控股公司 無線系統中訊號結構之確定
US10750533B2 (en) 2016-04-01 2020-08-18 Lg Electronics Inc. Method for transmitting or receiving uplink control information in wireless communication system, and device therefor
US11764914B2 (en) * 2016-05-09 2023-09-19 Qualcomm Incorporated Numerology dependent signal transmission
CN108289325B (zh) * 2017-01-09 2022-03-01 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
US11284357B2 (en) * 2017-02-02 2022-03-22 Apple Inc. Power headroom reporting for shortened transmission time intervals
CN108400950B (zh) * 2017-02-06 2022-10-11 中兴通讯股份有限公司 上行控制的接收、发送方法、装置、基站及用户设备
CN111447665B (zh) * 2017-03-03 2022-08-26 南通朗恒通信技术有限公司 一种被用于功率调整的用户设备、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943895B1 (ko) * 2002-12-31 2010-02-24 엘지전자 주식회사 물리전송채널 체인
KR20090084769A (ko) * 2008-02-01 2009-08-05 삼성전자주식회사 통신 시스템에서 기준 신호 송/수신 장치 및 방법
KR20110099727A (ko) * 2008-12-08 2011-09-08 노키아 지멘스 네트웍스 오와이 셀룰러 통신 시스템에서의 업링크 제어 시그널링
US20120014320A1 (en) * 2010-07-16 2012-01-19 Samsung Electronics Co., Ltd. Method and system for multiplexing acknowledgement signals and sounding reference signals
US20140126386A1 (en) * 2012-11-02 2014-05-08 Martin Beale Method and Apparatus for Communicating in an Increased Coverage Area to a Wireless Communication Unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399346B2 (en) 2018-05-11 2022-07-26 Samsung Electronics Co., Ltd Method and apparatus for controlling uplink transmission power by terminal for dual connectivity in wireless communication system
WO2020180463A1 (en) * 2019-03-01 2020-09-10 Commscope Technologies Llc Transmit power control in a c-ran
US11019574B2 (en) 2019-03-01 2021-05-25 Commscope Technologies Llc Transmit power control in a C-RAN

Also Published As

Publication number Publication date
KR102438117B1 (ko) 2022-08-30
EP3592046B1 (en) 2022-01-05
US20200120617A1 (en) 2020-04-16
US20220132442A1 (en) 2022-04-28
CN110603859A (zh) 2019-12-20
AU2018263683A1 (en) 2019-09-05
EP3975627A1 (en) 2022-03-30
US11317358B2 (en) 2022-04-26
EP4340471A3 (en) 2024-05-22
KR20220029607A (ko) 2022-03-08
US11224020B2 (en) 2022-01-11
US20200037259A1 (en) 2020-01-30
US11956735B2 (en) 2024-04-09
EP3592046A1 (en) 2020-01-08
US20240172129A1 (en) 2024-05-23
KR20180122202A (ko) 2018-11-12
EP4340471A2 (en) 2024-03-20
US20230145786A1 (en) 2023-05-11
CN110603859B (zh) 2023-05-12
AU2018263683B2 (en) 2022-07-21
EP3592046A4 (en) 2020-04-01
US11553441B2 (en) 2023-01-10
KR102367153B1 (ko) 2022-02-24
EP3975627B1 (en) 2024-02-28
CN116782353A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2018203657A1 (ko) 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
WO2018021768A1 (en) Method and apparatus for managing hybrid automatic repeat request process in mobile communication system
CN111247857B (zh) 在无线通信系统中发送或接收信号的方法及其设备
WO2019160319A1 (en) Method and apparatus for transmitting or receiving data and control information in wireless communication system
WO2016204456A1 (ko) 무선 셀룰라 통신 시스템에서 협대역을 이용한 신호 전송을 위한 송수신 방법 및 장치
WO2018199551A1 (ko) 상향링크 이동통신 시스템을 위한 자원 할당 및 프리코딩 방법 및 장치
WO2018124702A1 (ko) 무선통신 시스템에서 상향링크 제어정보 송수신 방법 및 장치
WO2017078425A1 (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
WO2019216588A1 (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
WO2018203618A1 (ko) 무선 셀룰러 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2021020865A1 (en) Scheduling for services with multiple priority types
WO2018203701A1 (en) A method and apparatus for indicating resources for uplink control channel in a mobile communication system
WO2018174639A1 (ko) 무선 통신 시스템에서 제어 및 데이터 채널 전송 시간 설정 방법 및 장치
WO2018084521A1 (ko) 무선 셀룰라 통신 시스템에서 제어신호 검출 방법 및 장치
WO2021025543A1 (en) Method and apparatus for performing dual connectivity for ues in wireless communication system
US11553441B2 (en) Uplink transmission power control method and device in wireless cellular communication system
WO2018084600A1 (ko) 이동 통신 시스템에서 다양한 서비스 지원을 위한 방법 및 장치
WO2017074162A1 (ko) 무선 통신 시스템에서 단말의 데이터 복호 방법 및 장치
EP3850903A1 (en) Method and apparatus for determining of transmission resources for uplink channels of use for dual connectivity in wireless communication system
US11399346B2 (en) Method and apparatus for controlling uplink transmission power by terminal for dual connectivity in wireless communication system
WO2020009463A1 (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널 설정 방법 및 장치
WO2018199643A1 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
WO2020222562A1 (en) Method and apparatus for determining of transmission resources for uplink channels of use for dual connectivity in wireless communication system
WO2019216612A1 (ko) 무선 통신 시스템에서 이중 접속을 위한 단말의 상향 전송 전력 제어 방법 및 장치
WO2020189968A1 (ko) 무선 통신 시스템에서 이중 접속을 위한 단말의 상향링크 채널 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018263683

Country of ref document: AU

Date of ref document: 20180424

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018794329

Country of ref document: EP

Effective date: 20191002

NENP Non-entry into the national phase

Ref country code: DE