WO2018203604A1 - 통신 시스템에서 채널 상태 피드백 방법 및 장치 - Google Patents

통신 시스템에서 채널 상태 피드백 방법 및 장치 Download PDF

Info

Publication number
WO2018203604A1
WO2018203604A1 PCT/KR2018/004267 KR2018004267W WO2018203604A1 WO 2018203604 A1 WO2018203604 A1 WO 2018203604A1 KR 2018004267 W KR2018004267 W KR 2018004267W WO 2018203604 A1 WO2018203604 A1 WO 2018203604A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
csi report
configuration information
base station
reports
Prior art date
Application number
PCT/KR2018/004267
Other languages
English (en)
French (fr)
Inventor
치이난
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP23191490.4A priority Critical patent/EP4250611A3/en
Priority to EP18794328.7A priority patent/EP3609100A4/en
Priority to CN201880029656.2A priority patent/CN110582963B/zh
Priority to US16/611,205 priority patent/US11005636B2/en
Publication of WO2018203604A1 publication Critical patent/WO2018203604A1/ko
Priority to US17/228,679 priority patent/US11496274B2/en
Priority to US18/046,643 priority patent/US11902212B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to a method and apparatus for signaling and receiving Channel State Information (CSI) feedback in Coordinated MultiPoint (CoMP) systems.
  • CSI Channel State Information
  • Non-coherent joint transmission as one of coordinated multipoint (CoMP) transmissions has a problem with CSI feedback.
  • Multiple CSI reports generally require performing efficient radio resource allocation in coordinating base stations due to multiple interference hypotheses. In other words, there are some other interference hypotheses that must be reported back to the cooperating BSs to ensure efficient resource management.
  • JT joint transmission
  • data for one user equipment may be transmitted from multiple transmission / reception points (TRPs) on the same time-frequency resource.
  • TRPs transmission / reception points
  • the transmission may be performed by a coherent joint transmission method or a non-coherent joint transmission (NCJT) method.
  • Non-coherent joint transmission refers to the case where data of multiple layers is transmitted to one UE independently from other transmission points via multiple input multiple output (MIMO) transmission.
  • MIMO multiple input multiple output
  • Embodiments of the present disclosure may address the shortcomings of the prior art described or not described herein.
  • Embodiments of the present disclosure can solve problems related to the size of data required to fully provide channel state information to cooperating BSs.
  • Embodiments of the present disclosure identify a correlation between CSI reports, and provide a method and apparatus for efficiently compressing CSI feedback signaling overhead using the identified correlation.
  • a method for transmitting a channel state information (CSI) by a user terminal (UE) in a communication system comprising: receiving configuration information related to a plurality of CSI reports from a base station, and a plurality of measurement resources based on the configuration information Identifying that a plurality of CSI reports corresponding to the plurality of CSI reports are set; when the plurality of CSI reports are set, generating a first CSI report corresponding to the first measurement resource and a second CSI report corresponding to the second measurement resource; And transmitting the first CSI report and the second CSI report to the base station.
  • CSI channel state information
  • An apparatus of a user terminal (UE) for transmitting channel state information (CSI) in a communication system comprising: a transceiver for receiving configuration information related to a plurality of CSI reports from a base station, and a plurality of measurement resources based on the configuration information Identify whether a plurality of CSI reports corresponding to the CSI reports are set, generate a first CSI report corresponding to the first measurement resource, and a second CSI report corresponding to the second measurement resource when the plurality of CSI reports are set, And a processor controlling the transceiver to transmit the first CSI report and the second CSI report to the base station.
  • a transceiver for receiving configuration information related to a plurality of CSI reports from a base station, and a plurality of measurement resources based on the configuration information Identify whether a plurality of CSI reports corresponding to the CSI reports are set, generate a first CSI report corresponding to the first measurement resource, and a second CSI report corresponding to the second measurement resource when the plurality of
  • a method of receiving a channel state information (CSI) from a user terminal (UE) by a base station (BS) in a communication system comprising: setting information related to a plurality of CSI reports corresponding to a plurality of measurement resources to the user terminal; Transmitting, from the user terminal, a first CSI report corresponding to a first measurement resource and a second CSI report corresponding to a second measurement resource, based on the configuration information; And processing the second CSI report.
  • CSI channel state information
  • An apparatus of a base station (BS) that receives channel state information (CSI) from a user terminal (UE) in a communication system, comprising: setting information related to a plurality of CSI reports corresponding to a plurality of measurement resources to the user terminal A transceiver for transmitting from the user terminal a first CSI report corresponding to a first measurement resource and a second CSI report corresponding to a second measurement resource based on the configuration information, the first CSI report and the A processor that processes the second CSI report.
  • BS base station
  • CSI channel state information
  • 1A and 1B show network configurations operating in Coherent Joint Transmission and Non-Coherent Joint Transmission settings, respectively;
  • 3A and 3B illustrate a method according to one embodiment of the present disclosure
  • 4A and 4B illustrate a method according to one embodiment of the present disclosure.
  • FIG. 5 is a block diagram illustrating a configuration of a user terminal according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a block diagram illustrating a configuration of a base station according to an embodiment of the present disclosure.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • the term ' ⁇ part' used in the present embodiment refers to software or a hardware component such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and the term ' ⁇ part' refers to a certain role. Perform them.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • the main subject will be a wireless communication system based on a specific radio access technology, but the main subject of the present invention is to provide other communication systems and services having a similar technical background.
  • NCJT non-coherent joint transmission
  • BSs base stations
  • embodiments of the present disclosure may be extended in any CoMP mode, and even in a non-CoMP mode if multiple CSI reports need to be derived and fed back.
  • 1A and 1B show network configurations operating in a coherent joint transmission scheme and a non-coherent joint transmission scheme.
  • TP A and TP B 102,104 may transmit radio signals for user terminal 106 using the same antenna ports and / or the same radio resources, for example, demodulation reference signal (DMRS) ports 7,8. Can be.
  • DMRS demodulation reference signal
  • Each TP 102, 104 may be, for example, a base station (BS) or Node B (NB) or enhanced Node B (eNB).
  • BS base station
  • NB Node B
  • eNB enhanced Node B
  • Coherent joint transmissions by the TPs 102, 104 may be coordinated by the network entity 108.
  • the network entity 108 may be implemented, for example, as a CoMP server.
  • data for a user terminal (UE) 116 is independently from multiple transmission points (here two TPs, TP A 112 and TP B 114 are shown). Is sent. TP A and TP B 112,114 transmit radio signals for user terminal 116 using independent antenna ports and / or independent radio resources, for example DMRS port 7 and DMRS port 8, respectively, from each other. can do. Each TP 112, 114 may be a base station or Node B or enhanced Node B, for example. Non-coherent joint transmissions by the TPs 112, 114 may be coordinated by the network entity 118.
  • the network entity 118 may be implemented, for example, as a CoMP server.
  • FIG. 2 illustrates signal and interference hypotheses (or network cooperative methods) that may be used to derive CSI.
  • G 1 and G 2 each represent a time-frequency resource corresponding to two TPs, namely TP A (also referred to as TRP A) and TP B (also referred to as TRP B). Indicates.
  • MCS modulation and coding scheme
  • the signal and interference hypotheses 1-5 shown can be used to derive CSI that can be used for scheduling decisions.
  • the UE measures at least one of the hypotheses 1 to 5 and derives the CSI based on the measurement result. At least one CSI report including the derived CSI may be sent to the serving TP or to all or at least two cooperating TPs.
  • TP A transmits a signal for UE1 on G 1
  • TP B transmits a signal (which may be the same) for UE1 on G 2
  • TP A transmits a signal from G 1 for UE1 and G 2 is blank. Blanked G 2 may be used for interference measurements.
  • TP B transmits a signal for UE1 over G 2 and G 1 is blank. Blanked G 1 may be used for interference measurements.
  • TP A transmits a signal for UE1 at G 1 and may act as an interference to the signal for UE2 transmitted by TP B at G 2 .
  • TP B transmits a signal for UE2 at G 2 and may act as an interference to the signal for UE1 transmitted by TP A at G 1 .
  • the base station may configure NCJT to be used for UE1, which is the first UE in one subframe, but to enable dynamic point selection (DPS) for UE1 in another subframe. Can be.
  • the base station may schedule UE2 as well as UE1, as well as UE2.
  • CSI feedback must be flexibly designed for further enhancements to CoMP (feCoMP).
  • CSI-RS channel state information-reference signal
  • CSI-IM CSI-interference measurement
  • Embodiments of the present disclosure may relate to CSI framework and CSI acquisition in CoMP for both 3GPP Long Term Evolution (LTE) and New Radio (NR).
  • LTE Long Term Evolution
  • NR New Radio
  • Precoding and resource allocation of cooperative TRPs involved in CoMP are based on CSI obtained from the UE and feedback by the UE.
  • the UE uses one or multiple CSI based on multiple signal and interference hypotheses (or network cooperative methods), for example as shown in FIG.
  • RRC radio resource control
  • Full set report UE reports CSIs corresponding to all hypotheses respectively;
  • Subset Report The network (eg, the upper layer of the base station) dynamically triggers which CSI report or subset of CSI report to be fed back.
  • Embodiments of the present disclosure provide an information element (IE) that includes a list of measurement objects that define settings of a CSI-RS based on radio resource management (RRM) measurements from a base station to a user terminal. And transmitting.
  • IE information element
  • RRM radio resource management
  • the CSI reports can be fed back separately in an independent manner, which results in significant feedback signaling overhead. May occur.
  • the interference experienced by UE1 when decoding the data stream from TRP A can be expressed as Equation 1 below.
  • I Hi is the interference received by UE1 in hypothesis i
  • I TRP21 is the interference from TRP B to UE1 when TRP B transmits to UE1
  • I TRP_12 is all other TRPs except TRP A and TRP B Interference from
  • N is thermal noise.
  • Equation 2 the interference experienced by UE1 is expressed by Equation 2 below.
  • Equation 3 For hypothesis 4 that TRP A transmits to UE1, but TRP B transmits to UE2, the interference experienced by UE1 can be given by Equation 3 below.
  • I TRP22 is interference from TRP B to UE1 when TRP B transmits to UE2.
  • the interference levels of the hypotheses are not independent of each other, but correlate in the concept that they have a common term I TRP_12 , which correlates to corresponding CSI reports as well. You can find it.
  • This correlation between CSI reports can be used to reduce the feedback overhead.
  • One way to achieve a reduction in feedback overhead is to feed back at least two CSI reports that are correlated together as a comprehensive CSI report.
  • one full CSI report and an 'offset' CSI report may be reported by the UE to the serving TP.
  • the full CSI report is called a primary CSI report
  • the 'offset' CSI report is called a secondary CSI report.
  • Each CSI report may include at least one of a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator according to a configuration by the network. have.
  • the CQI indicates the modulation and coding scheme (MCS) for the required block error rate (BLER) of the channel.
  • MCS modulation and coding scheme
  • BLER block error rate
  • the PMI indicates a precoding matrix that indicates how individual data streams (eg layers) are mapped to antenna ports.
  • RI indicates the number of transmitted layers and the number of different signal streams.
  • UE1 may determine the full CQI value obtained for hypothesis 2 (primary CSI report) and hypothesis 4 based on the identified correlation between the two hypotheses (hypothesis 2 and hypothesis 4). An 'offset' CQI value (secondary CSI report) may be transmitted.
  • UE1 is the CQI value of CQI 2
  • the TRP B is 'offset' between, CQI between the hypotheses 2 and H4 generated by the additional interference to UE1 from TRP B when transmitted to UE2 ⁇ CQI for hypothesis 2
  • Send a CSI report to include The CSI report may be transmitted to TRP A, which is a serving base station, or transmitted to both TRP A and TRP B.
  • TRPs may receive the CSI report and obtain CQI4 using CQI 2 + ⁇ CQI included in the received CSI report, where CQI 4 is the CQI for Hypothesis 4.
  • CQI 4 is the CQI for Hypothesis 4.
  • each TRP may use the correlation between CSI reports corresponding to the identified correlation between the two hypotheses (hypothesis 2 and hypothesis 4) shared between UE1. Since the range of ⁇ CQI may be much smaller than the range of values expected for CQI 2 , fewer bits are needed to indicate ⁇ CQI . Thus, the amount of feedback bits for CSI reporting can be reduced.
  • the CQI calculation may be performed in the quantization step of converting consecutive CQI values into a limited number of bins so that the feedback overhead is limited.
  • a more efficient way of utilizing the correlation between CSI reports is Slepian-Wolf coding (SWC).
  • Slepian-Wolf coding is well known and has been chosen because its implementation is relatively simple.
  • coding schemes such as Wyner-Ziv coding, which utilizes the correlation between primary CSI reporting and secondary CSI reporting, may be used instead.
  • SWC can be illustrated with a simple example: Assume that X and Y are equal-probability binary triplets with X, Y ⁇ ⁇ 0, 1 ⁇ 3 at most at one location. The entropy of X and Y is equal to three bits. When X and Y are encoded separately, six bits are needed.
  • CQI CQI feedback
  • R in is the total number of bits needed for CQI feedback
  • H (CQIi) is the entropy of the CQI value for hypothesis i.
  • Equation 5 the number of bits required for CQI feedback is expressed by Equation 5 below.
  • R sw is the total number of bits needed for CQI feedback when Slepian-Wolf coding is used
  • CQI j ) is the conditional entropy of CQI i conditioned in CQI j.
  • the entropy has the following characteristics.
  • R sw ⁇ R in which means that fewer bits are needed for CQI feedback when Slepian-Wolf coding is used.
  • 3A and 3B are flowcharts illustrating a CSI feedback procedure of a user terminal according to an embodiment of the present disclosure.
  • the user terminal receives configuration information related to at least one CSI report from a base station (or at least two base stations related to CoMP transmission of the user terminal).
  • the configuration information may be related to a specific transmission mode, for example, an NCJT mode or a CoMP mode.
  • the user terminal may also receive configuration information indicating enable of a specific transmission mode, for example, an NCJT mode.
  • Each configuration information may be delivered by, for example, higher layer signaling or downlink control information.
  • step S310 a determination is made whether a plurality of CSI reports are set by the configuration information. If the single CSI report is set, in step S330 the user terminal generates a single CSI report based on the configuration information and proceeds to step S340. If a plurality of CSI reports are set, in step S3320 the user terminal generates a plurality of CSI reports based on the configuration information and proceeds to step S340.
  • step S340 the generated single CSI report or a plurality of CSI reports are transmitted from the user terminal to the base station (s) based on the configuration information.
  • the base station may receive the single or multiple CSI report (s) to schedule transmission to the user terminal.
  • the base station may determine the CSI for each measurement resource configured for the user terminal by using the correlation between the CSI reports.
  • step S320 of FIG. 3A illustrates the detailed steps of step S320 of FIG. 3A according to an embodiment of the present disclosure.
  • the plurality of CSI reports for the plurality of measurement resources set for the user terminal in step S322 may be divided into two groups, for example, a first group to which compression is not applied (at least one primary CSI report). ) And a second group (at least one secondary CSI report) to which compression is applied.
  • step S324 the user terminal compresses the second CSI report (the secondary CSI report).
  • the compression is performed using the correlation between the primary CSI report and the secondary CSI report, and using correlated coding schemes, for example Slepian-Wolf coding.
  • the user terminal generates a comprehensive CSI report including the primary CSI report and the compressed secondary CSI report, and the comprehensive CSI report is transmitted from the user terminal to the base station in step S340.
  • the comprehensive CSI report provided from the user terminal to the base station may include at least one primary CSI report and at least one secondary CSI report based on the configuration from the base station.
  • at least one primary CSI report may be provided in an uncompressed format.
  • at least one secondary CSI report may be compressed.
  • One or more secondary CSI reports may be derived based on correlation with one or more primary CSI reports.
  • a single primary CSI report can be used as the basis for a plurality of secondary CSI reports.
  • the plurality of primary CSI reports may be used as the basis for a single secondary CSI report, or the plurality of primary CSI reports may operate as a basis for the plurality of secondary CSI reports.
  • the base station Upon receiving the comprehensive CSI report from the user terminal, the base station decompresses / deduces at least one secondary CSI report included in the comprehensive CSI report and extracts at least one of information included therein, for example, CQI, PMI, and RI. .
  • 4A and 4B are flowcharts illustrating a CSI feedback reception procedure of a base station according to an embodiment of the present disclosure.
  • the base station transmits configuration information related to at least one CSI report set for the user terminal to the user terminal.
  • the configuration information may be related to a specific transmission mode, for example, an NCJT mode or a CoMP mode.
  • the base station may transmit configuration information indicating that a specific transmission mode, for example, an NCJT mode, is possible to the user terminal.
  • Each configuration information may be transmitted to the user terminal by at least two base stations related to CoMP transmission of the user terminal.
  • Each configuration information may be delivered by, for example, higher layer signaling or downlink control information.
  • step S410 the base station identifies whether a plurality of CSI reports are set for the user terminal by the configuration information. If a single CSI report is set, in step S430, the base station receives and derives a single CSI report from the user terminal based on the configuration information. If a plurality of CSI reports are set, in step S420 the base station receives and derives a plurality of CSI reports transmitted from the user terminal based on the configuration information. As an embodiment, the base station may determine the CSI for each measurement resource set for the user terminal by using the correlation between the plurality of CSI reports.
  • FIG. 4B illustrates the detailed steps of step 420 of FIG. 4A, in accordance with an embodiment of the present disclosure.
  • the base station receives a comprehensive CSI report including at least one primary CSI report and at least one secondary CSI report from a user terminal.
  • the base station decompresses / deduces the at least one secondary CSI report (s) to calculate all necessary CSI information.
  • FIG. 5 is a block diagram illustrating a configuration of a user terminal according to an exemplary embodiment of the present disclosure.
  • the user terminal may include a transceiver 510, at least one processor 520, and a memory 530.
  • the transceiver 510 may exchange radio signals with one or more base stations (or TP or TRP).
  • the processor 520 is configured to operate according to at least one or at least two combinations of the embodiments of the present disclosure described above. As an example, the processor 520 obtains configuration information received from the base station according to the embodiments of FIGS. 3A and 3B and reports a single CSI based on the configuration information for the enabled operation mode (eg, NCJT mode). Alternatively, a plurality of CSI reports are generated and transmitted to the base station.
  • the memory 530 may store parameters, data, program codes, and the like necessary for the operation of the processor 520.
  • FIG. 6 is a block diagram illustrating a configuration of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 610, at least one processor 620, and a memory 630.
  • the transceiver 610 may exchange radio signals with a user terminal.
  • the processor 620 is configured to operate according to at least one or at least two combinations of the embodiments of the present disclosure described above.
  • the processor 620 may transmit setting information for the user terminal to the user terminal according to the embodiments of FIGS. 4A and 4B and based on the setting information for the enabled operation mode (eg, NCJT mode).
  • the memory 630 may store parameters, data, program codes, and the like necessary for the operation of the processor 620.
  • Embodiments of the present disclosure can reduce the amount of channel state feedback information that needs to be conveyed from the user terminal to the base station (s), especially when operating in NCJT mode, which may require a significant amount of feedback information. .
  • a computer readable recording medium is any data storage device capable of storing data that can be read by a computer system.
  • Examples of computer readable recording media include read only memory (ROM), random access memory (RAM), and compact disk-read only memory.
  • ROM read only memory
  • RAM random access memory
  • CD-ROMs compact disk-read only memory
  • memory CD-ROMs, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission over the Internet) It may include.
  • Computer readable recording media can also be distributed over network coupled computer systems so that computer readable code is stored and executed in a distributed fashion.
  • functional programs, code, and code segments for achieving various embodiments of the present disclosure may be readily interpreted by those skilled in the art to which embodiments of the present disclosure apply.
  • Such software may be, for example, volatile or nonvolatile storage devices such as storage devices such as ROM, whether erasable or rewritable, or memories such as, for example, RAM, memory chips, devices or integrated circuits, or For example, it may be stored in a storage medium that is optically or magnetically readable, such as a compact disk (CD), a DVD, a magnetic disk, or a magnetic tape, and may be read by a machine (eg, a computer).
  • a machine eg, a computer
  • a method according to various embodiments of the present disclosure may be implemented by a computer or a portable terminal including a control unit and a memory, the memory for storing a program or programs including instructions for implementing the embodiments of the present disclosure. It will be appreciated that this is an example of a suitable machine-readable storage medium.
  • the present disclosure includes a program comprising code for implementing the apparatus or method described in the claims herein and a storage medium readable by a machine (such as a computer) storing such a program.
  • a program may be transferred electronically through any medium, such as a communication signal transmitted over a wired or wireless connection, and the present disclosure includes equivalents thereof as appropriate.
  • an apparatus may receive and store a program from a program providing apparatus connected by wire or wirelessly.
  • the program providing apparatus may include a program including instructions for causing the program processing apparatus to perform a preset content protection method, a memory for storing information necessary for the content protection method, and the like, and for performing wired or wireless communication with the graphic processing apparatus. It may include a communication unit and a control unit for automatically transmitting the program or the corresponding program to the transmission and reception device request.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Theoretical Computer Science (AREA)

Abstract

통신 시스템에서 사용자 단말기(UE)의 채널 상태 정보(CSI)를 피드백하는 방법 및 장치를 개시한다. 상기 방법은, 복수의 CSI 보고들에 관련된 설정 정보를 기지국으로부터 수신하는 단계와, 상기 설정 정보에 근거하여 복수의 측정 자원들에 대응하는 복수의 CSI 보고들이 설정됨을 식별하는 단계와, 복수의 CSI 보고가 설정된 경우, 제1 측정 자원에 대응하는 제1 CSI 보고와, 제2 측정 자원에 대응하는 제2 CSI 보고를 생성하는 단계와, 상기 제1 CSI 보고 및 상기 제2 CSI 보고를 상기 기지국으로 송신하는 단계를 포함한다.

Description

통신 시스템에서 채널 상태 피드백 방법 및 장치
본 개시는 협력 멀티 포인트(Coordinated MultiPoint: CoMP) 시스템들에서 채널 상태 정보(Channel State Information: CSI) 피드백을 시그널링하고 수신하는 방법 및 장치에 관련된다.
협력 멀티 포인트(Coordinated MultiPoint: CoMP) 전송의 하나로서 논-코히어런트 조인트 송신(non-coherent joint transmission: NCJT)은 CSI 피드백에 관한 과제를 가진다. 다수의 CSI 보고들은 일반적으로 다수의 간섭 가설들(interference hypotheses)로 인해 협력 BS들(coordinating base stations)에서 효율적인 무선 자원 할당을 수행하는 것을 필요로 한다. 다시 말하면, 몇몇 다른 간섭 가설들이 존재하고, 이는 효율적인 자원 관리를 보장하기 위해 상기 협력 BS들에게 다시 보고되어야만 한다.
조인트 송신(joint transmission: JT) 방식에 대해, 하나의 사용자 단말기(User Equipment: UE)에 대한 데이터는 동일한 시간-주파수 자원에서 다수의 송/수신 포인트(transmission/reception point: TRP)들로부터 송신될 수 있고, 여기서 상기 송신은 코이런트 조인트 송신(coherent joint transmission) 방식 혹은 논-코히어런트 조인트 송신(non-coherent joint transmission: NCJT) 방식으로 수행될 수 있다. 논-코히어런트 조인트 송신은 다수의 계층들의 데이터가 MIMO(multiple input multiple output) 송신을 통해 다른 송신 포인트들로부터 독립적으로 하나의 UE에게 송신되는 경우를 나타낸다.
본 개시의 실시예들은, 본 명세서에 설명된 혹은 설명되지 않은 종래 기술의 단점들을 해결할 수 있다.
본 개시의 실시예들은 협력 BS들에 채널 상태 정보를 완전하게 제공하는데 필요로 되는 데이터의 크기와 관련된 문제점들을 해결할 수 있다.
본 개시의 실시예들은 CSI 보고들 간의 상관 관계(correlation)를 식별하고, 상기 식별된 상관 관계를 활용하여 CSI 피드백 시그널링 오버헤드를 효율적으로 압축하는 방법 및 장치를 제공한다.
본 개시에 따르면, 첨부된 청구항들에 기재된 장치 및 방법이 제공된다. 본 개시의 다른 특징들은 종속항들 및 하기와 같은 상세한 설명으로부터 명백해질 것이다.
본 개시의 일 실시예에 따른 방법은; 통신 시스템에서 사용자 단말기(UE)가 채널 상태 정보(CSI)를 전송하는 방법에 있어서, 복수의 CSI 보고들에 관련된 설정 정보를 기지국으로부터 수신하는 단계와, 상기 설정 정보에 근거하여 복수의 측정 자원들에 대응하는 복수의 CSI 보고들이 설정됨을 식별하는 단계와, 복수의 CSI 보고가 설정된 경우, 제1 측정 자원에 대응하는 제1 CSI 보고와, 제2 측정 자원에 대응하는 제2 CSI 보고를 생성하는 단계와 상기 제1 CSI 보고 및 상기 제2 CSI 보고를 상기 기지국으로 송신하는 단계를 포함한다.
본 개시의 일 실시예에 따른 장치는; 통신 시스템에서 채널 상태 정보(CSI)를 전송하는 사용자 단말기(UE)의 장치에 있어서, 복수의 CSI 보고들에 관련된 설정 정보를 기지국으로부터 수신하는 송수신기와, 상기 설정 정보에 근거하여 복수의 측정 자원들에 대응하는 복수의 CSI 보고들이 설정되는지를 식별하고, 복수의 CSI 보고가 설정된 경우, 제1 측정 자원에 대응하는 제1 CSI 보고와, 제2 측정 자원에 대응하는 제2 CSI 보고를 생성하고, 상기 제1 CSI 보고 및 상기 제2 CSI 보고를 상기 기지국으로 송신하도록 상기 송수신기를 제어하는 프로세서를 포함한다.
본 개시의 일 실시예에 따른 방법은; 통신 시스템에서 기지국(BS)이 사용자 단말기(UE)로부터의 채널 상태 정보(CSI)를 수신하는 방법에 있어서, 복수의 측정 자원들에 대응하는 복수의 CSI 보고들에 관련된 설정 정보를 상기 사용자 단말에게 송신하는 단계와, 상기 설정 정보에 근거하여, 제1 측정 자원에 대응하는 제1 CSI 보고와 제2 측정 자원에 대응하는 제2 CSI 보고를 상기 사용자 단말기로부터 수신하는 단계와, 상기 제1 CSI 보고 및 상기 제2 CSI 보고를 처리하는 단계를 포함한다.
본 개시의 일 실시예에 따른 장치는; 통신 시스템에서 사용자 단말기(UE)로부터의 채널 상태 정보(CSI)를 수신하는 기지국(BS)의 장치에 있어서, 복수의 측정 자원들에 대응하는 복수의 CSI 보고들에 관련된 설정 정보를 상기 사용자 단말에게 송신하고, 상기 설정 정보에 근거하여, 제1 측정 자원에 대응하는 제1 CSI 보고와 제2 측정 자원에 대응하는 제2 CSI 보고를 상기 사용자 단말기로부터 수신하는 송수신기와, 상기 제1 CSI 보고 및 상기 제2 CSI 보고를 처리하는 프로세서를 포함한다.
본 개시를 보다 잘 이해하고, 또한 본 개시의 실시예들이 어떻게 효율적으로 수행될 수 있는지를 나타내기 위해, 그 일 예로서, 첨부와 같은 도면들이 참조될 것이다:
도 1a 및 도 1b는 각각 코히어런트 조인트 송신(Coherent Joint Transmission) 및 논-코히어런트 조인트 송신(Non-Coherent Joint Transmission) 설정들에서 동작하는 네트워크 구성들을 도시하고 있다;
도 2는 다른 네트워크 협력 방법들에 상응하는 신호 및 간섭 가설들을 도시하고 있다;
도 3a 및 도 3b는 본 개시의 일 실시예에 따른 방법을 도시하고 있다;
도 4a 및 도 4b는 본 개시의 일 실시예에 따른 방법을 도시하고 있다.
도 5는 본 개시의 일 실시예에 따른 사용자 단말기의 구성을 나타낸 블록도이다.
도 6은 본 개시의 일 실시예에 따른 기지국의 구성을 나타낸 블록도이다.
이하, 본 개시의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시예를 설명함에 있어서 본 개시의 실시예들이 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시의 개시가 완전하도록 하고, 본 개시의 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시의 청구하고자 하는 범위는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
본 개시의 실시예들을 구체적으로 설명함에 있어서, 특정 무선 액세스 기술을 기반으로 하는 무선통신 시스템을 주된 대상으로 할 것이지만, 본 명세서에서 청구하고자 하는 주요한 요지는 유사한 기술적 배경을 가지는 여타의 통신 시스템 및 서비스에도 본 명세서에 개시된 범위를 크게 벗어나지 아니하는 범위에서 적용 가능하며, 이는 당해 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
본 개시에서는 대표적으로 논-코히어런트 조인트 송신(non-coherent joint transmission: NCJT) 모드에 관련된 실시예들이 설명되며, NCJT 모드에서는 다수의 데이터 스트림들이 다수의 기지국(base station: BS)들로부터 동일한 사용자에게 송신될 수 있다. 그러나 본 개시의 실시예들은 어떤 CoMP 모드로라도, 그리고 논- CoMP(non-CoMP) 모드라고 할지라도 다수의 CSI 보고들이 도출(derive)되고 피드백될 필요가 있을 경우 확장될 수 있다.
도 1a 및 도 1b는 코히어런트 조인트 송신 방식 및 논-코히어런트 조인트 송신 방식에서 동작하는 네트워크 구성들을 도시한 것이다.
도 1a를 참조하면, 사용자 단말기(UE)(106)를 위한 데이터는 다수의 송신 포인트들(transmission points)(여기에서는 2개의 TP들, 즉 TP A (102)와 TP B(104)가 도시됨)로부터 송신된다. TP A 및 TP B(102,104)는 동일한 안테나 포트들 및/또는 동일한 무선 자원들, 예를 들어 DMRS(demodulation reference signal) 포트들 7,8을 사용하여 사용자 단말기(106)를 위한 무선 신호를 송신할 수 있다. 각 TP(102,104)는 예를 들어 기지국(base station (BS) or Node B (NB) or enhanced Node B (eNB))이 될 수 있다. TP들(102,104)에 의한 코히어런트 조인트 송신은 네트워크 개체(108)에 의해 코디네이트(coordinate)될 수 있다. 상기 네트워크 개체(108)은 예를 들어 CoMP 서버로서 구현될 수 있다.
도 1b를 참조하면, 사용자 단말기(UE)(116)를 위한 데이터는 다수의 송신 포인트들(여기에서는 2개의 TP들, 즉 TP A (112)와 TP B(114)가 도시됨)로부터 독립적으로 송신된다. TP A 및 TP B(112,114)는 서로 간에 독립적인 안테나 포트들 및/또는 독립적인 무선 자원들, 예를 들어 DMRS 포트 7과 DMRS 포트 8을 각각 사용하여 사용자 단말기(116)를 위한 무선 신호를 송신할 수 있다. 각 TP(112,114)는 예를 들어 기지국(base station or Node B or enhanced Node B)이 될 수 있다. TP들(112,114)에 의한 논-코히어런트 조인트 송신은 네트워크 개체(118)에 의해 코디네이트될 수 있다. 상기 네트워크 개체(118)은 예를 들어 CoMP 서버로서 구현될 수 있다.
도 2는 CSI를 도출하는데 사용될 수 있는 신호 및 간섭 가설들 (혹은 네트워크 협력 방법들)을 도시한 것이다.
도 2를 참조하면, G1 및 G2는 각각 2개의 TP들, 즉 TP A (혹은 TRP A라고도 칭할 수 있음) 및 TP B (혹은 TRP B라고도 칭할 수 있음)에 상응하는 시간-주파수 자원을 나타낸다. 스케쥴링 결정을 기반으로 할 때, 각 TP에 의한 전송에 적용되는 변조 및 코딩 방식(modulation and coding scheme: MCS)은 각 가설에 따른 서로 다른 간섭 타입들을 고려하여 선택되어야만 한다. 도시된 신호 및 간섭 가설들 1 내지 5는 스케쥴링 결정을 위해 사용될 수 있는 CSI를 도출하기 위해 사용될 수 있다. UE는 상기 가설들 1 내지 5 중 적어도 하나를 측정하고 측정 결과에 기반하여 CSI를 도출한다. 상기 도출된 CSI를 포함하는 적어도 하나의 CSI 보고는 서빙 TP에게로 전송되거나 혹은 모든 혹은 적어도 2개의 협력 TP들에게로 전송될 수 있다.
가설 1에서, TP A는 G1을 통해 UE1을 위한 신호를 송신하며, TP B는 G2를 통해 UE1을 위한 (동일할 수 있는) 신호를 송신한다. 가설 2에서 TP A는 G1에서 UE1을 위한 신호를 송신하며 G2는 블랭크된다. 블랭크된 G2는 간섭 측정을 위해 사용될 수 있다. 가설 3에서 TP B는 G2를 통해 UE1을 위한 신호를 송신하며 G1은 블랭크된다. 블랭크된 G1은 간섭 측정을 위해 사용될 수 있다. 가설 4에서 TP A는 G1에서 UE1을 위한 신호를 송신하며, G2에서 TP B에 의해 송신되는 UE2를 위한 신호에 대해 간섭으로 작용할 수 있다. 가설 5에서 TP B는 G2에서 UE2를 위한 신호를 송신하며, G1에서 TP A에 의해 송신되는 UE1을 위한 신호에 대해 간섭으로 작용할 수 있다.
일 예로, 기지국은 한 개의 서브프레임에서 제1 UE인 UE1에 대해 NCJT를 사용하도록 설정(configure)할 수 있지만, 다른 서브프레임에서 UE1에 대해서 다이나믹 포인트 선택(dynamic point selection: DPS)을 사용하도록 설정할 수 있다. 또 다른 서브프레임에서, 기지국은 UE1뿐만 아니라 제2 UE인 UE2를 함께 스케쥴할 수 있다. 이런 다양한 간섭 시나리오들에 대처하기 위해, CSI 피드백은 CoMP에 대한 추가적인 향상(further enhancements to CoMP: feCoMP)을 위해 유연하게 설계되어야만 한다. NCJT를 가능하게 하기 위한 UE의 피드백을 위해서, 복수의 CSI-RS(channel state information - reference signal) 자원들 및 복수의 CSI-IM(CSI - interference measurement) 자원들이 사용될 수 있다. 하기에 CSI-RS 자원들 및 CSI-IM 자원들을 예시하였다.
- TP A의 채널을 추정하는데 사용되는 제1 CSI-RS 자원;
- TP B의 채널을 추정하는데 사용되는 제2 CSI-RS 자원;
- 간섭 타입들 1, 2 및 3에 상응하는 간섭을 추정하는데 사용되는 제1 CSI-IM 자원;
- 간섭 타입 4에 상응하는 간섭을 추정하는데 사용되는 제2 CSI-IM 자원;
- 간섭 타입 5에 상응하는 간섭을 추정하는데 사용되는 제3 CSI-IM 자원.
본 개시의 실시예들은 3GPP 롱 텀 에볼루션(Long Term Evolution: LTE) 및 신규 무선(New Radio: NR) 둘 다에 대해 CoMP에서의 CSI 프레임워크(framework) 및 CSI 획득에 관련될 수 있다.
CoMP에 관여하는 협력 TRP들의 프리코딩(precoding) 및 자원 할당은 UE로부터 획득된 CSI 및 UE에 의한 피드백을 기반으로 한다. 복수의 TRP들로부터의 논-코히어런트 전송의 경우 상기 UE는 예를 들어 도 2에 도시한 바와 같은 복수의 신호 및 간섭 가설들(혹은 네트워크 협력 방법들)을 기반으로 하나 혹은 다수의 CSI를 보고하도록, 예를 들어 RRC(radio resource control)와 같은 상위계층 시그널링에 의해 설정될 수 있다.
UE의 CSI 보고를 위한 하기와 같은 옵션들이 존재할 수 있다:
1. 풀 셋(full set) 보고: UE는 모든 가설들에 각각 상응하는 CSI들을 보고한다;
2. 서브셋(subset) 보고: 네트워크(일 예로 기지국의 상위계층)는 어떤 CSI 보고 혹은 어떤 CSI 보고의 서브셋이 피드백될 것인지를 동적으로 트리거(trigger)한다.
상기 두 개의 옵션들에서, 다수의 CSI 보고들이 필요로 되며, 따라서 피드백 오버헤드가 크다. 후술되는 실시예들 중 적어도 하나를 통해, 특히 심각한 시그널링 오버헤드를 초래하는, 많은(예를 들어 도 2의 가설들에 대응하는 5개의) CSI 보고들을 피드백할 필요가 있는 제1 옵션에 대한 시그널링 오버헤드가 감소될 수 있다.
본 개시의 실시예들은 기지국으로부터 사용자 단말기로, 무선 자원 관리(radio resource management: RRM) 측정들을 기반으로 CSI-RS의 설정들을 정의하는 측정 대상들의 리스트를 포함하는 정보 엘리먼트(information element: IE)를 송신하는 것을 포함할 수 있다.
CSI 보고가 네트워크에 의해 트리거되고, UE가 복수의 CSI 보고들을 보고할 필요가 있을 때(제1 옵션), 상기 CSI 보고들은 독립적인 방식으로 별도로 피드백될 수 있으며, 이로 인해 심각한 피드백 시그널링 오버헤드가 발생할 수 있다. 2개의 TRP들이 동일한 신호를 UE1로 송신하는 가설 1에 대해, TRP A로부터의 데이터 스트림을 디코딩할 때 UE1이 경험하는 간섭은 다음 <수학식 1>과 같이 표현될 수 있다.
Figure PCTKR2018004267-appb-M000001
여기서, IHi 는 가설 i 에서 UE1에 의해 수신되는 간섭이고, ITRP21는 TRP B가 UE1으로 송신할 때 TRP B로부터 UE1으로의 간섭이고, ITRP_12는 TRP A 및 TRP B를 제외한 다른 모든 TRP들로부터의 간섭이고, N은 열 잡음이다.
TRP A만 UE1로 송신하고, TRP B는 사일런트(silent) 상태인 가설 B에 대해, UE1이 경험하는 간섭은 다음 <수학식 2>과 같다.
Figure PCTKR2018004267-appb-M000002
TRP A는 UE1로 송신하지만, TRP B는 UE2로 송신하는 가설 4에 대해, UE1이 경험하는 간섭은 다음 <수학식 3>과 같이 주어질 수 있다.
Figure PCTKR2018004267-appb-M000003
여기서, ITRP22는 TRP B가 UE2로 송신할 때 TRP B로부터 UE1로의 간섭이다.
상기와 같은 <수학식 1 내지 3>으로부터, 상기 가설들의 간섭 레벨들이 서로에 대해서는 독립적이지 않으나, 공통 텀(term) ITRP_12를 가진다는 개념에서는 상관되며, 이는 상응하는 CSI 보고들 역시 상관된다는 것을 발견할 수 있다.
CSI 보고들간의 이런 상관 관계는 피드백 오버헤드를 감소시키기 위해 사용될 수 있다.
피드백 오버헤드의 감소를 성취하기 위한 한 가지 방식은 상호간에 연관되는 적어도 2개의 CSI 보고를 함께 포괄(comprehensive) CSI 보고로서 피드백하는 것이다. 일 예로서 한 개의 풀(full) CSI 보고와 '오프셋(offset)' CSI 보고가 UE에 의해 서빙 TP에게 보고될 수 있다. 상기 풀 CSI 보고는 프라이머리 CSI 보고로 칭해지며, 상기 '오프셋' CSI 보고는 세컨더리 CSI 보고로 칭해진다. 각 CSI 보고는 네트워크에 의한 설정(configuration)에 따라, 채널 품질 지시자(channel quality indicator: CQI), 프리코딩 행렬 지시자(precoding matrix indicator: PMI), 랭크 지시자(rank indicator) 중 적어도 하나를 포함할 수 있다.
CQI는 채널의 요구되는 블록 에러율(block error rate: BLER)을 위한 변조 및 코딩 방식(MCS)을 지시한다. PMI는 개별적인 데이터 스트림들(예를 들어 레이어들)이 안테나 포트들에 매핑되는 방식을 나타내는 프리코딩 행렬을 지시한다. RI는 전송되는 레이어들의 개수 및 서로 다른 신호 스트림들의 개수를 지시한다.
다음은 CQI를 일 예로 사용하는 실시예를 설명한다. 가설 2에 대해서, 간섭은 다른 TRP들로부터만 존재하고, 가설 4에 대해서, 간섭은 다른 TRP들 및 TRP B로부터 존재한다. 2개의 CSI 보고들이 필요한 경우, UE1은 상기 2개의 가설들(가설 2 및 가설 4)간의 식별된 상관 관계를 기반으로 가설 2에 대해 획득한 풀 CQI 값(프라이머리 CSI 보고)과 가설 4에 대한 '오프셋' CQI 값(세컨더리 CSI 보고)를 전송할 수 있다.
즉, UE1은 가설 2에 대한 CQI 값인 CQI2 와, TRP B가 UE2로 송신할 때 TRP B로부터 UE1로의 추가적인 간섭에 의해 발생되는, 가설 2와 가설 4간의 CQI들 간 '오프셋'인 ΔCQI를 포함하는 CSI 보고를 전송한다. 상기 CSI 보고는 서빙 기지국인 TRP A로 전송되거나, 혹은 TRP A와 TRP B의 모두에게로 전송될 수 있다.
TRP들은 상기 CSI 보고를 수신하고, 상기 수신된 CSI 보고에 포함된 CQI2 + ΔCQI 를 사용하여 CQI4를 획득할 수 있으며, CQI4는 가설 4에 대한 CQI이다. CQI4를 획득하기 위해 각 TRP는 UE1과의 사이에 공유된 상기 2개의 가설들(가설 2 및 가설 4)간의 식별된 상관 관계에 대응하는 CSI 보고들 간의 상관 관계를 이용할 수 있다. ΔCQI 의 범위가 CQI2에 대해 기대되는 값들의 범위보다 훨씬 작을 수 있기 때문에, ΔCQI를 지시하기 위해서는 보다 적은 비트들이 필요로 된다. 따라서, CSI 보고를 위한 피드백 비트들의 양은 감소될 수 있다.
CQI 계산은 연속적인 CQI 값들을 제한된 개수의 빈(bin)들로 변환하는 양자화 단계에서 수행됨으로써 피드백 오버헤드가 제한되도록 할 수 있다. CSI 보고들 간의 상관 관계를 활용하는 보다 효율적인 방식은 Slepian-Wolf 코딩(Slepian-Wolf coding: SWC)이다. Slepian-Wolf 코딩은 잘 알려져 있으며, 또한 그 구현이 비교적 간단하기 때문에 선택되어 왔다. 당업자는 다른 코딩 방식들, 일 예로 프라이머리 CSI 보고 및 세컨더리 CSI 보고 간의 상관 관계를 활용하는 Wyner-Ziv 코딩이 대신 사용될 수 있다는 것을 인식할 수 있을 것이다.
SWC는 다음과 같은 간단한 예제로 설명될 수 있다. X 와 Y 가 한 위치에서 최대한 다른 X, Y ∈ {0, 1}3를 가지는 동일 확률의 이진 트리플릿(equiprobable binary triplet)들이라고 가정하기로 한다. 상기 X 와 Y 의 엔트로피(entropy)들은 3개의 비트들과 동일하다. X 와 Y 가 별도로 인코딩될 때, 6개의 비트들이 필요로 된다.
Y가 알려져 있을 경우, 동일한 확률로 X 의 오직 4개의 선택들이 유용하다. 일 예로, Y = 000일 때, X ∈ {000, 100, 010, 001}이다. 따라서, X 를 지시하기 위해서는 오직 2개의 추가 비트들이 필요로 된다. 상기 조건부 엔트로피(conditional entropy) H(X|Y)는 2개의 비트들과 동일하다. X 와 Y의 조인트 인코딩(joint encoding)에 대해서, Y를 전달하기 위해서는 3개의 비트들이 필요하고, Y와 연관되는 X 의 4개의 가능한 선택들을 인덱스하기 위해서 2개의 추가적인 비트들이 필요로 되며, 따라서 H(Y)+H(X)=6개의 비트들 대신, 총 H(X,Y)=H(Y)+H(X|Y) =5개의 비트들이면 충분하다.
동일한 원칙이 CSI 피드백, 일 예로 CQI 피드백에 적용될 수 있다. CQI 계산이 양자화 절차로 취급될 때, CQI 피드백을 전달하기 위한 비트들의 최소 개수는 다음 <수학식 4>와 같이 H(CQI)인 CQI의 엔트로피로 표현될 수 있다.
Figure PCTKR2018004267-appb-M000004
여기서, Rin 은 CQI 피드백을 위해 필요한 비트들의 총 개수이며, H(CQIi)는 가설 i에 대한 CQI 값의 엔트로피이다.
Slepian-Wolf 코딩이 사용될 경우, CQI 피드백을 위해 필요한 비트들의 개수는 다음 <수학식 5>와 같다.
Figure PCTKR2018004267-appb-M000005
여기서, Rsw는 Slepian-Wolf 코딩이 사용될 때 CQI 피드백을 위해 필요한 비트들의 총 개수이며, H(CQIi|CQIj)는 CQI j에서 조건화되는 CQI i의 조건부 엔트로피이다. 상기 엔트로피는 다음과 같은 특성을 가진다.
Figure PCTKR2018004267-appb-M000006
Figure PCTKR2018004267-appb-I000001
따라서, Rsw ≤ Rin이며, 이는 Slepian-Wolf 코딩이 사용될 때 더 적은 개수의 비트들이 CQI 피드백을 위해 필요하다는 것을 의미한다.
도 3a 및 도 3b는 본 개시의 일 실시예에 따른 사용자 단말기의 CSI 피드백 절차를 도시한 흐름도이다.
도 3a를 참조하면, 단계 S300에서 사용자 단말기는 적어도 하나의 CSI 보고와 관련되는 설정 정보를 기지국(혹은 사용자 단말기의 CoMP 전송에 관련되는 적어도 2개의 기지국들)로부터 수신한다. 일 예로서 상기 설정 정보는 특정 전송 모드, 일 예로서 NCJT 모드 혹은 CoMP 모드에 관련될 수 있다. 또한 사용자 단말기는 특정 전송 모드, 일 예로서 NCJT 모드의 이네이블(enable)을 지시하는 설정 정보를 수신할 수 있다. 각 설정 정보는 일 예로서 상위계층 시그널링 혹은 하향링크 제어 정보에 의해 전달될 수 있다.
단계 S310에서, 복수의 CSI 보고들이 상기 설정 정보에 의해 설정되는지 여부에 대한 결정이 이루어진다. 단일 CSI 보고가 설정된 경우라면, 단계 S330에서 사용자 단말기는 상기 설정 정보에 근거하여 단일 CSI 보고를 생성하고 단계 S340으로 진행한다. 복수의 CSI 보고들이 설정된 경우라면, 단계 S3320에서 사용자 단말기는, 상기 설정 정보에 근거하여 복수의 CSI 보고들을 생성하고 단계 S340으로 진행한다.
단계 S340에서 상기 생성된 단일 CSI 보고 혹은 복수의 CSI 보고들이 상기 설정 정보에 근거하여 사용자 단말기로부터 기지국(들)으로 전송된다. 기지국은 상기 단일 혹은 복수의 CSI 보고(들)을 수신하여 사용자 단말기로의 전송을 스케쥴링할 수 있다. 일 실시예로서 상기 복수의 CSI 보고들이 수신된 경우, 기지국은 상기 CSI 보고들 간의 상관 관계를 활용하여, 사용자 단말기에 대해 설정된 각 측정 자원에 대한 CSI를 결정할 수 있다.
도 3b는 본 개시의 일 실시예에 따른 도 3a의 단계 S320의 세부 단계들을 도시한다.
도 3b를 참조하면, 단계 S322에서 사용자 단말기에 대해 설정된 복수의 측정 자원들에 대한 복수의 CSI 보고들은 2개의 그룹들, 예를 들어 압축이 적용되지 않는 제1 그룹(적어도 하나의 프라이머리 CSI 보고) 및 압축이 적용되는 제2 그룹(적어도 하나의 세컨더리 CSI 보고)으로 구분될 수 있다.
단계 S324에서, 사용자 단말기는 제2 그룹의 상CSI 보고 (상기 세컨더리 CSI 보고)을 압축한다. 상기 압축은 상기 프라이머리 CSI 보고 및 상기 세컨더리 CSI 보고 간의 상관 관계를 활용하고, 상관되는 코딩 방식들, 일 예로 Slepian-Wolf 코딩을 사용하여 수행된다. 사용자 단말기는 상기 프라이머리 CSI 보고 및 상기 압축된 세컨더리 CSI 보고를 포함하는 포괄 CSI 보고를 생성하며, 상기 포괄 CSI 보고는 단계 S340에서 사용자 단말기로부터 기지국으로 송신된다.
사용자 단말기로부터 기지국으로 제공되는 포괄 CSI 보고는 기지국으로부터의 설정을 기반으로, 적어도 하나의 프라이머리 CSI 보고 및 적어도 하나의 세컨더리 CSI 보고를 포함할 수 있다. 일 실시예로서 적어도 하나의 프라이머리 CSI 보고는 비압축 포맷으로 제공될 수 있다. 일 실시예로서 적어도 하나의 세컨더리 CSI 보고는 압축될 수 있다.
하나 혹은 그 이상의 세컨더리 CSI 보고들은 하나 혹은 그 이상의 프라이머리 CSI 보고들과의 상관 관계를 기반으로 도출될 수 있다. 일 실시예로서, 단일 프라이머리 CSI 보고가 복수의 세컨더리 CSI 보고들에 대한 기저(basis)로 사용될 수 있다. 일 실시예로서, 복수의 프라이머리 CSI 보고들이 단일 세컨더리 CSI 보고에 대한 기저로 사용되거나, 혹은 복수의 프라이머리 CSI 보고들이 복수의 세컨더리 CSI 보고들에 대한 기저로 동작할 수 있다.
사용자 단말기로부터 포괄 CSI 보고를 수신하면, 기지국은 포괄 CSI 보고에 포함된 적어도 하나의 세컨더리 CSI 보고를 압축 해제/도출하여 그에 포함되어 있는 정보, 예를 들어 CQI, PMI, RI 중 적어도 하나를 추출한다.
도 4a 및 도 4b는 본 개시의 일 실시예에 따른 기지국의 CSI 피드백 수신 절차를 도시한 흐름도이다.
도 4a를 참조하면, 단계 S400에서 기지국은 사용자 단말기를 위해 설정된 적어도 하나의 CSI 보고와 관련되는 설정 정보를 사용자 단말기에게 전송한다. 일 예로서 상기 설정 정보는 특정 전송 모드, 일 예로서 NCJT 모드 혹은 CoMP 모드에 관련될 수 있다. 또한 기지국은 특정 전송 모드, 일 예로서 NCJT 모드가 가능함을 지시하는 설정 정보를 사용자 단말기에게 전송할 수 있다. 각 설정 정보는 사용자 단말기의 CoMP 전송에 관련되는 적어도 2개의 기지국들에 의해 사용자 단말기로 전송될 수 있다. 각 설정 정보는 일 예로서 상위계층 시그널링 혹은 하향링크 제어 정보에 의해 전달될 수 있다.
단계 S410에서 기지국은 사용자 단말기에 대해 복수의 CSI 보고들이 상기 설정 정보에 의해 설정되는지 여부를 식별한다. 단일 CSI 보고가 설정된 경우라면, 단계 S430에서 기지국은 상기 설정 정보에 근거하여 사용자 단말기로부터 단일 CSI 보고를 수신하고 도출한다. 복수의 CSI 보고들이 설정된 경우라면, 단계 S420에서 기지국은 상기 설정 정보에 근거하여 사용자 단말기로부터 전송된 복수의 CSI 보고들을 수신하고 도출한다. 일 실시예로서 기지국은 상기 복수의 CSI 보고들 간의 상관 관계를 활용하여, 사용자 단말기에 대해 설정된 각 측정 자원에 대한 CSI를 결정할 수 있다.
도 4b는 본 개시의 일 실시예에 따른 도 4a의 단계 420의 세부 단계들을 도시한다.
도 4b를 참조하면, 단계 S422에서, 기지국은 사용자 단말기로부터 적어도 하나의 프라이머리 CSI 보고 및 적어도 하나의 세컨더리 CSI 보고를 모두 포함하는 포괄 CSI 보고를 수신한다. 단계 S424에서, 기지국은 상기 적어도 하나의 세컨더리 CSI 보고(들)를 압축 해제/도출하여 필요로 되는 모든 CSI 정보를 산출한다.
도 5는 본 개시의 일 실시예에 따른 사용자 단말기의 구성을 나타낸 블록도이다.
도 5를 참조하면, 사용자 단말기는 송수신기(510)와 적어도 하나의 프로세서(520) 및 메모리(530)를 포함하여 구성될 수 있다. 송수신기(510)는 하나 혹은 그 이상의 기지국(혹은 TP 혹은 TRP)과 무선 신호를 교환할 수 있다. 프로세서(520)는 앞서 설명한 본 개시의 실시예들 중 적어도 하나 혹은 적어도 2개의 조합에 따라 동작하도록 구성된다. 일 예로 프로세서(520)는 도 3a 및 도 3b의 실시예에 따라 기지국으로부터 수신된 설정 정보를 획득하고, 이네이블된 동작 모드(예를 들어 NCJT 모드)에 대해 상기 설정 정보에 기반하여 단일 CSI 보고 혹은 복수의 CSI 보고들을 생성하고 기지국으로 전송한다. 메모리(530)는 프로세서(520)의 동작에 필요한 파라미터와 데이터 및 프로그램 코드 등을 저장할 수 있다.
도 6은 본 개시의 일 실시예에 따른 기지국의 구성을 나타낸 블록도이다.
도 6을 참조하면, 기지국은 송수신기(610)와 적어도 하나의 프로세서(620) 및 메모리(630)를 포함하여 구성될 수 있다. 송수신기(610)는 사용자 단말기와 무선 신호를 교환할 수 있다. 프로세서(620)는 앞서 설명한 본 개시의 실시예들 중 적어도 하나 혹은 적어도 2개의 조합에 따라 동작하도록 구성된다. 일 예로 프로세서(620)는 도 4a 및 도 4b의 실시예에 따라 사용자 단말기를 위한 설정 정보를 사용자 단말기에게 전송하고, 이네이블된 동작 모드(예를 들어 NCJT 모드)에 대해 상기 설정 정보에 기반하여 단일 CSI 보고 혹은 복수의 CSI 보고들을 사용자 단말기로부터 수신한다. 메모리(630)는 프로세서(620)의 동작에 필요한 파라미터와 데이터 및 프로그램 코드 등을 저장할 수 있다.
본 개시의 실시예들은, 특히 상당한 양의 피드백 정보를 필요로 할 수 있는 NCJT 모드에서 동작할 때, 사용자 단말기로부터 기지국(들)로 전달될 필요가 있는 채널 상태 피드백 정보의 양을 감소시킬 수 있다.
본 개시의 다양한 실시예들은 특정 관점에서 컴퓨터 리드 가능 기록 매체(computer readable recording medium)에서 컴퓨터 리드 가능 코드(computer readable code)로서 구현될 수 있다. 컴퓨터 리드 가능 기록 매체는 컴퓨터 시스템에 의해 리드될 수 있는 데이터를 저장할 수 있는 임의의 데이터 저장 디바이스이다. 컴퓨터 리드 가능 기록 매체의 예들은 읽기 전용 메모리(read only memory: ROM: ROM)와, 랜덤-접속 메모리(random access memory: RAM: ‘RAM)와, 컴팩트 디스크- 리드 온리 메모리(compact disk-read only memory: CD-ROM)들과, 마그네틱 테이프(magnetic tape)들과, 플로피 디스크(floppy disk)들과, 광 데이터 저장 디바이스들, 및 캐리어 웨이브(carrier wave)들(인터넷을 통한 데이터 송신 등)을 포함할 수 있다. 컴퓨터 리드 가능 기록 매체는 또한 네트워크 연결된 컴퓨터 시스템들을 통해 분산될 수 있고, 따라서 컴퓨터 리드 가능 코드는 분산 방식으로 저장 및 실행된다. 또한, 본 개시의 다양한 실시예들을 성취하기 위한 기능적 프로그램들, 코드, 및 코드 세그먼트(segment)들은 본 개시의 실시예들이 적용되는 분야에서 숙련된 프로그래머들에 의해 쉽게 해석될 수 있다.
또한 본 개시의 다양한 실시예들에 따른 장치 및 방법은 하드웨어, 소프트웨어 또는 하드웨어 및 소프트웨어의 조합의 형태로 실현 가능하다는 것을 알 수 있을 것이다. 이러한 소프트웨어는 예를 들어, 삭제 가능 또는 재기록 가능 여부와 상관없이, ROM 등의 저장 장치와 같은 휘발성 또는 비휘발성 저장 장치, 또는 예를 들어, RAM, 메모리 칩, 장치 또는 집적 회로와 같은 메모리, 또는 예를 들어 콤팩트 디스크(compact disk: CD), DVD, 자기 디스크 또는 자기 테이프 등과 같은 광학 또는 자기적으로 기록 가능함과 동시에 기계(예를 들어, 컴퓨터)로 읽을 수 있는 저장 매체에 저장될 수 있다. 본 개시의 다양한 실시예들에 따른 방법은 제어부 및 메모리를 포함하는 컴퓨터 또는 휴대 단말에 의해 구현될 수 있고, 이러한 메모리는 본 개시의 실시예들을 구현하는 명령들을 포함하는 프로그램 또는 프로그램들을 저장하기에 적합한 기계로 읽을 수 있는 저장 매체의 한 예임을 알 수 있을 것이다.
따라서, 본 개시는 본 명세서의 청구항에 기재된 장치 또는 방법을 구현하기 위한 코드를 포함하는 프로그램 및 이러한 프로그램을 저장하는 기계(컴퓨터 등)로 읽을 수 있는 저장 매체를 포함한다. 또한, 이러한 프로그램은 유선 또는 무선 연결을 통해 전달되는 통신 신호와 같은 임의의 매체를 통해 전자적으로 이송될 수 있고, 본 개시는 이와 균등한 것을 적절하게 포함한다.
또한 본 개시의 다양한 실시예들에 따른 장치는 유선 또는 무선으로 연결되는 프로그램 제공 장치로부터 프로그램을 수신하여 저장할 수 있다. 프로그램 제공 장치는 프로그램 처리 장치가 기 설정된 컨텐츠 보호 방법을 수행하도록 하는 지시들을 포함하는 프로그램, 컨텐츠 보호 방법에 필요한 정보 등을 저장하기 위한 메모리와, 그래픽 처리 장치와의 유선 또는 무선 통신을 수행하기 위한 통신부와, 그래픽 처리 장치의 요청 또는 자동으로 해당 프로그램을 송수신 장치로 전송하는 제어부를 포함할 수 있다.
본 명세서와 도면에 개시된 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고, 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 또한 앞서 설명된 본 개시에 따른 실시예들은 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 개시의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.

Claims (14)

  1. 통신 시스템에서 사용자 단말기(User Equipment: UE)가 채널 상태 정보(channel state information: CSI)를 전송하는 방법에 있어서,
    복수의 CSI 보고들에 관련된 설정 정보를 기지국으로부터 수신하는 단계;
    상기 설정 정보에 근거하여 복수의 측정 자원들에 대응하는 복수의 CSI 보고들이 설정됨을 식별하는 단계;
    복수의 CSI 보고가 설정된 경우, 제1 측정 자원에 대응하는 제1 CSI 보고와, 제2 측정 자원에 대응하는 제2 CSI 보고를 생성하는 단계;
    및상기 제1 CSI 보고 및 상기 제2 CSI 보고를 상기 기지국으로 송신하는 단계를 포함함을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 제1 CSI 보고는, 압축되지 않은 CSI를 포함하며, 상기 제2 CSI 보고는 압축된 CSI를 포함함을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 제2 CSI 보고는, 상기 제1 CSI 보고와 상기 제2 CSI 보고 간의 상관 관계를 이용하여 생성됨을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 제2 CSI 보고는 Slepian-Wolf 코딩에 의해 압축된 CSI를 포함함을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 복수의 CSI 보고들에 관련된 설정 정보는, 적어도 2개의 기지국들에 의한 협력 멀티 포인트(CoMP) 전송에 대해 적용됨을 특징으로 하는 방법.
  6. 통신 시스템에서 채널 상태 정보(channel state information: CSI)를 전송하는 사용자 단말기(User Equipment: UE)의 장치에 있어서,
    복수의 CSI 보고들에 관련된 설정 정보를 기지국으로부터 수신하는 송수신기; 및
    상기 설정 정보에 근거하여 복수의 측정 자원들에 대응하는 복수의 CSI 보고들이 설정되는지를 식별하고, 복수의 CSI 보고가 설정된 경우, 제1 측정 자원에 대응하는 제1 CSI 보고와, 제2 측정 자원에 대응하는 제2 CSI 보고를 생성하고, 상기 제1 CSI 보고 및 상기 제2 CSI 보고를 상기 기지국으로 송신하도록 상기 송수신기를 제어하는 프로세서를 포함함을 특징으로 하는 장치.
  7. 제6항에 있어서, 제2항 내지 제5항 중 어느 한 항의 방법을 수행하도록 구성됨을 특징으로 하는 장치.
  8. 통신 시스템에서 기지국(Base Station: BS)이 사용자 단말기(User Equipment: UE)로부터의 채널 상태 정보(channel state information: CSI)를 수신하는 방법에 있어서,
    복수의 측정 자원들에 대응하는 복수의 CSI 보고들에 관련된 설정 정보를 상기 사용자 단말에게 송신하는 단계;
    상기 설정 정보에 근거하여, 제1 측정 자원에 대응하는 제1 CSI 보고와 제2 측정 자원에 대응하는 제2 CSI 보고를 상기 사용자 단말기로부터 수신하는 단계; 및
    상기 제1 CSI 보고 및 상기 제2 CSI 보고를 처리하는 단계를 포함함을 특징으로 하는 방법.
  9. 제8항에 있어서, 상기 제1 CSI 보고는, 압축되지 않은 CSI를 포함하며, 상기 제2 CSI 보고는 압축된 CSI를 포함함을 특징으로 하는 방법.
  10. 제8항에 있어서, 상기 제2 CSI 보고는, 상기 제1 CSI 보고와 상기 제2 CSI 보고 간의 상관 관계를 이용하여 생성됨을 특징으로 하는 방법.
  11. 제8항에 있어서, 상기 제2 CSI 보고는 Slepian-Wolf 코딩에 의해 압축된 CSI를 포함함을 특징으로 하는 방법.
  12. 제8항에 있어서, 상기 복수의 CSI 보고들에 관련된 설정 정보는, 적어도 2개의 기지국들에 의한 협력 멀티 포인트(CoMP) 전송에 대해 적용됨을 특징으로 하는 방법.
  13. 통신 시스템에서 사용자 단말기(User Equipment: UE)로부터의 채널 상태 정보(channel state information: CSI)를 수신하는 기지국(Base Station: BS)의 장치에 있어서,
    복수의 측정 자원들에 대응하는 복수의 CSI 보고들에 관련된 설정 정보를 상기 사용자 단말에게 송신하고, 상기 설정 정보에 근거하여, 제1 측정 자원에 대응하는 제1 CSI 보고와 제2 측정 자원에 대응하는 제2 CSI 보고를 상기 사용자 단말기로부터 수신하는 송수신기; 및
    상기 제1 CSI 보고 및 상기 제2 CSI 보고를 처리하는 프로세서를 포함함을 특징으로 하는 장치.
  14. 제13항에 있어서, 제9항 내지 제12항 중 어느 한 항의 방법을 수행하도록 구성됨을 특징으로 하는 장치.
PCT/KR2018/004267 2017-05-05 2018-04-12 통신 시스템에서 채널 상태 피드백 방법 및 장치 WO2018203604A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP23191490.4A EP4250611A3 (en) 2017-05-05 2018-04-12 Channel state feedback method and apparatus in communication system
EP18794328.7A EP3609100A4 (en) 2017-05-05 2018-04-12 APPARATUS AND METHOD FOR CHANNEL STATE FEEDBACK IN A COMMUNICATION SYSTEM
CN201880029656.2A CN110582963B (zh) 2017-05-05 2018-04-12 通信系统中的信道状态反馈方法和装置
US16/611,205 US11005636B2 (en) 2017-05-05 2018-04-12 Channel state feedback method and apparatus in communication system
US17/228,679 US11496274B2 (en) 2017-05-05 2021-04-12 Channel state feedback method and apparatus in communication system
US18/046,643 US11902212B2 (en) 2017-05-05 2022-10-14 Channel state feedback method and apparatus in communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1707176.2 2017-05-05
GB1707176.2A GB2562098B (en) 2017-05-05 2017-05-05 Improvements in and relating to channel state feedback in a telecommunication system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/611,205 A-371-Of-International US11005636B2 (en) 2017-05-05 2018-04-12 Channel state feedback method and apparatus in communication system
US17/228,679 Continuation US11496274B2 (en) 2017-05-05 2021-04-12 Channel state feedback method and apparatus in communication system

Publications (1)

Publication Number Publication Date
WO2018203604A1 true WO2018203604A1 (ko) 2018-11-08

Family

ID=59065525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004267 WO2018203604A1 (ko) 2017-05-05 2018-04-12 통신 시스템에서 채널 상태 피드백 방법 및 장치

Country Status (6)

Country Link
US (3) US11005636B2 (ko)
EP (2) EP4250611A3 (ko)
KR (1) KR102600459B1 (ko)
CN (1) CN110582963B (ko)
GB (1) GB2562098B (ko)
WO (1) WO2018203604A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059162A1 (en) * 2019-09-24 2021-04-01 Nokia Technologies Oy Methods and apparatuses for channel state information configuration and reporting for multi-transmission reception point operation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562098B (en) * 2017-05-05 2022-02-02 Samsung Electronics Co Ltd Improvements in and relating to channel state feedback in a telecommunication system
CN108039903B (zh) 2017-09-11 2021-06-01 华为技术有限公司 一种通信方法及设备
RU2765207C1 (ru) * 2018-02-09 2022-01-26 Хуавэй Текнолоджиз Ко., Лтд. Способ связи, а также система и устройство связи
EP4066393A4 (en) * 2019-11-26 2022-11-23 Telefonaktiebolaget Lm Ericsson (Publ) COMMUNICATING MEASUREMENT RESULTS IN A COORDINATED MULTIPOINT SYSTEM
KR102618957B1 (ko) * 2020-02-12 2023-12-27 애플 인크. 다수의 코드북들을 이용한 동시 채널 상태 정보(csi) 능력 보고
CN115053468A (zh) * 2020-02-14 2022-09-13 高通股份有限公司 用于多层通信的多个信道状态信息报告的相关性
US20240063869A1 (en) * 2021-04-01 2024-02-22 Qualcomm Incorporated Linked reporting occasions of channel state information report settings for non-coherent joint transmission
EP4367793A1 (en) * 2021-07-07 2024-05-15 Telefonaktiebolaget LM Ericsson (publ) Classification of csi compression quality
WO2023065150A1 (en) * 2021-10-20 2023-04-27 Nokia Shanghai Bell Co., Ltd. Channel state based beamforming enhancement
WO2023206396A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Channel state information hypotheses for single transmitter receiver point (trp) and multiple trp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060200724A1 (en) * 2005-03-01 2006-09-07 Stankovic Vladimir M Multi-source data encoding, transmission and decoding using Slepian-Wolf codes based on channel code partitioning
US20130010889A1 (en) * 2010-10-11 2013-01-10 Vishakan Ponnampalam MIMO Channel Matrix Feedback in OFDM Systems
US20130322376A1 (en) * 2012-06-04 2013-12-05 Interdigital Patent Holdings, Inc. Communicating channel state information (csi) of multiple transmission points
US20130336244A1 (en) * 2012-06-15 2013-12-19 Industrial Technology Research Institute Method of Handling CSI Report and Related Communication Device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898540B1 (en) * 2005-08-04 2015-10-07 Optis Wireless Technology, LLC Mobile station device
US8014455B2 (en) * 2006-03-27 2011-09-06 Qualcomm Incorporated Feedback of differentially encoded channel state information for multiple-input multiple-output (MIMO) and subband scheduling in a wireless communication system
US8243756B2 (en) * 2007-07-12 2012-08-14 Nokia Corporation Methods, computer program products and apparatus providing improved quantization
US8243649B2 (en) * 2008-11-26 2012-08-14 Mitsubishi Electric Research Laboratories, Inc. Method for transmitting packets in relay networks
US8369429B2 (en) * 2009-03-18 2013-02-05 Lg Electronics Inc. Method and apparatus for transmitting precoding matrix index in a wireless communication system using CoMP scheme
US20100278058A1 (en) * 2009-05-04 2010-11-04 Qualcomm Incorporated Method and apparatus for facilitating multicarrier differential channel quality indicator (cqi) feedback
US8427978B2 (en) * 2009-07-16 2013-04-23 Futurewei Technologies, Inc. System and method for information feedback in a wireless communications system with coordinated multiple point transmission
US8315221B2 (en) * 2010-06-18 2012-11-20 Sharp Laboratories Of America, Inc. Reducing feedback overhead for multiple component carriers
US9119203B2 (en) * 2010-06-22 2015-08-25 Lg Electronics Inc. Method and apparatus for transmitting channel state information
US9337954B2 (en) * 2010-07-28 2016-05-10 Qualcomm Incorporated Protocol for channel state information feedback
JP5265657B2 (ja) 2010-12-27 2013-08-14 シャープ株式会社 基地局装置、端末装置、通信システムおよび通信方法
US9585044B2 (en) * 2011-06-29 2017-02-28 Lg Electronics Inc. Channel state information transmitting method and user equipment, and channel state information receiving method and base station
KR20130016701A (ko) * 2011-08-08 2013-02-18 주식회사 팬택 채널 상태 정보의 송수신 방법 및 장치
US8953699B2 (en) * 2011-11-07 2015-02-10 Google Technology Holdings LLC Method and apparatus for CSI feedback for joint processing schemes in an orthogonal frequency division multiplexing communication system with coordinated multi-point transmission
JP6158834B2 (ja) * 2012-01-11 2017-07-05 エルジー エレクトロニクス インコーポレイティド 無線接続システムにおけるチャネル状態情報の送受信方法及びそのための装置
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
CN103312392B (zh) * 2012-03-13 2018-12-21 夏普株式会社 信道状态信息反馈方法和用户设备
US9537638B2 (en) * 2012-05-11 2017-01-03 Qualcomm Incorporated Method and apparatus for performing coordinated multipoint feedback under multiple channel and interference assumptions
EP2850763B1 (en) * 2012-05-18 2017-09-13 Telefonica S.A. A method and a system for csi reporting in lte networks according to the mobility of the user equipment
EP2677671B1 (en) * 2012-06-18 2019-06-05 Samsung Electronics Co., Ltd Aperiodic and periodic csi feedback modes for coordinated multi-point transmission
CN104038319B (zh) * 2013-03-04 2018-12-21 夏普株式会社 多发射点合作系统的信道状态信息反馈与用户设备
US10834716B2 (en) * 2016-07-28 2020-11-10 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
CN108282212B (zh) * 2017-01-06 2022-06-14 华为技术有限公司 一种信道状态信息处理的方法、装置和系统
CN108289004B (zh) * 2017-01-09 2021-11-26 华为技术有限公司 一种信道状态信息测量上报的配置方法及相关设备
US20200015203A1 (en) * 2017-04-21 2020-01-09 Intel IP Corporation Method and apparatus for numerology configuration in non-coherent joint transmission
GB2562098B (en) * 2017-05-05 2022-02-02 Samsung Electronics Co Ltd Improvements in and relating to channel state feedback in a telecommunication system
CN108039903B (zh) * 2017-09-11 2021-06-01 华为技术有限公司 一种通信方法及设备
US10849187B2 (en) * 2018-12-14 2020-11-24 Asustek Computer Inc. Method and apparatus of beam indication in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060200724A1 (en) * 2005-03-01 2006-09-07 Stankovic Vladimir M Multi-source data encoding, transmission and decoding using Slepian-Wolf codes based on channel code partitioning
US20130010889A1 (en) * 2010-10-11 2013-01-10 Vishakan Ponnampalam MIMO Channel Matrix Feedback in OFDM Systems
US20130322376A1 (en) * 2012-06-04 2013-12-05 Interdigital Patent Holdings, Inc. Communicating channel state information (csi) of multiple transmission points
US20130336244A1 (en) * 2012-06-15 2013-12-19 Industrial Technology Research Institute Method of Handling CSI Report and Related Communication Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Frequency parametrization for Type II CSI feedback", RL-1705927, 3GPP TSG RAN WG1 #88BIS, 25 March 2017 (2017-03-25), Spokane, USA, pages 1 - 2, XP051252258 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059162A1 (en) * 2019-09-24 2021-04-01 Nokia Technologies Oy Methods and apparatuses for channel state information configuration and reporting for multi-transmission reception point operation
US11979213B2 (en) 2019-09-24 2024-05-07 Nokia Technologies Oy Methods and apparatuses for channel state information configuration and reporting for multi-transmission reception point operation

Also Published As

Publication number Publication date
GB2562098A (en) 2018-11-07
US11496274B2 (en) 2022-11-08
US20210234662A1 (en) 2021-07-29
EP4250611A2 (en) 2023-09-27
KR102600459B1 (ko) 2023-11-10
EP3609100A4 (en) 2020-04-01
CN110582963A (zh) 2019-12-17
US20200169374A1 (en) 2020-05-28
US11902212B2 (en) 2024-02-13
EP3609100A1 (en) 2020-02-12
KR20180122936A (ko) 2018-11-14
GB2562098B (en) 2022-02-02
GB201707176D0 (en) 2017-06-21
CN110582963B (zh) 2022-06-10
US11005636B2 (en) 2021-05-11
EP4250611A3 (en) 2024-01-10
US20230112717A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2018203604A1 (ko) 통신 시스템에서 채널 상태 피드백 방법 및 장치
WO2011099714A2 (en) Multiple input multiple output communication method and system for exchanging coordinated rank information for neighbor cell
WO2013043015A1 (en) Method and apparatus for transmitting and receiving feedback for cooperative communication system
WO2013070023A1 (en) Reference signal for time and/or frequency tracking in a wireless network
WO2009154271A1 (ja) リソース割り当て方法、特定方法、基地局、移動局、及びプログラム
CN102651662B (zh) 信息传输的方法和装置
WO2016195278A1 (ko) 광대역 서비스를 제공하는 무선통신 시스템에서 스케쥴링 방법 및 장치
WO2016039586A1 (ko) 무선 통신 시스템에서 기준 신호를 송수신하는 기법
WO2017078475A1 (ko) 통신 시스템에서 기준신호를 송신하는 방법 및 장치
WO2020048181A1 (zh) 多传输点trp数据处理的方法、基站、终端及存储介质
WO2018036451A1 (zh) 无线资源分配信息的配置方法及装置
WO2016117875A1 (ko) 무선 통신 시스템에서 협력 전송을 위한 제어 정보 송신 장치 및 방법
WO2017026863A1 (ko) 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
EP4046301A1 (en) Method and apparatus to decode packets to compute log likelihood ratio in wireless network
JP2021507599A (ja) 電子機器、無線通信方法及びコンピュータ読み取り可能な記録媒体
WO2017188769A2 (ko) 다수의 배열 안테나를 사용하는 이동통신 시스템에서 기준 신호 설정 및 전송을 위한 방법 및 장치
JP5818912B2 (ja) 直交カバーリング・コードに基づいて多地点協調データを送信する方法
WO2013103202A1 (ko) Crs 기반 협력 통신을 위한 송수신 방법 및 장치
WO2018202201A1 (zh) 资源分配方法及装置
WO2019066625A1 (en) METHOD AND APPARATUS FOR TRANSMITTING A REFERENCE SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
US10972245B2 (en) Method and device for transmitting measurement pilot signal
CN111416695B (zh) 一种数据传输方法、终端和网络侧设备
CN110932821B (zh) 一种控制信息传输方法、装置、设备及存储介质
CN113810998A (zh) 信号传输方法、终端和网络侧设备
EP3673606A1 (en) A method and apparatus for transmitting reference signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794328

Country of ref document: EP

Effective date: 20191104