WO2018203509A1 - Power storage system and method for inspecting minute short-circuiting - Google Patents

Power storage system and method for inspecting minute short-circuiting Download PDF

Info

Publication number
WO2018203509A1
WO2018203509A1 PCT/JP2018/017016 JP2018017016W WO2018203509A1 WO 2018203509 A1 WO2018203509 A1 WO 2018203509A1 JP 2018017016 W JP2018017016 W JP 2018017016W WO 2018203509 A1 WO2018203509 A1 WO 2018203509A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage system
short circuit
soc
voltage
Prior art date
Application number
PCT/JP2018/017016
Other languages
French (fr)
Japanese (ja)
Inventor
朋重 井上
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2019515711A priority Critical patent/JP7314795B2/en
Publication of WO2018203509A1 publication Critical patent/WO2018203509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for inspecting a micro short circuit.
  • Patent Document 1 discloses a method for inspecting a micro short circuit during actual use of a battery. In this document, after charging a battery to a specified voltage VK, the presence or absence of a micro short circuit is inspected by paying attention to the voltage difference between cells when the specified elapsed time TK has elapsed.
  • the power storage element is in a no-current state during the inspection (in this specification, a state in which a weak current is supplied from the power storage element to the sensor unit or the management unit is also “ Included in “no current state”).
  • a state in which a weak current is supplied from the power storage element to the sensor unit or the management unit is also “ Included in “no current state”.
  • the power storage elements included in each power storage block do not enter a no-current state unless the entire power storage system is stopped. Therefore, it has been desired to accurately inspect a minute short circuit in the power storage element without bringing the entire power storage system into a no-current state.
  • An object of this invention is to test
  • the power storage system includes a plurality of power storage blocks connected in parallel to a common line by a parallel line, and each of the power storage blocks includes a plurality of power storage elements connected in series and a switch provided on the parallel line.
  • the power storage system further includes an inspection unit that disconnects the plurality of power storage elements of the power storage block from the common line by switching the switch from on to off, and detects a micro short circuit in the plurality of power storage elements.
  • a method for inspecting a micro short-circuit includes switching a switch provided on a parallel line connecting a plurality of power storage blocks in parallel to a common line from off to disconnecting a predetermined power storage block from the common line, and operating the power storage system. Inspecting minute short circuits in the plurality of power storage elements included in the disconnected power storage block.
  • FIG. 1 is a block diagram showing an electrical configuration of a UPS in Embodiment 1.
  • Block diagram showing electrical configuration of power storage system Circuit diagram of the discharge circuit Secondary battery SOC-OCV correlation graph Flow chart showing the flow of micro short circuit inspection process The graph which shows the SOC-OCV characteristic of the secondary battery in other embodiment
  • the power storage system includes a plurality of power storage blocks connected in parallel to a common line by a parallel line, and each of the power storage blocks includes a plurality of power storage elements connected in series and a switch provided on the parallel line.
  • the power storage system further includes an inspection unit that disconnects the plurality of power storage elements of the power storage block from the common line by switching the switch from on to off, and inspects the short circuit in the plurality of power storage elements. .
  • a micro short circuit tends to be difficult to detect in a short inspection. It takes a relatively long time (for example, several hours to several days) to detect a short-circuit by leaving the storage element in a non-current state.
  • a conventional typical power storage system detects that the performance of a certain power storage block clearly deviates from a normal value / assumed value during operation, and issues an alarm.
  • the conventional power storage system does not detect an early stage event such as a short circuit of the power storage element, and issues an alarm after the performance degradation of the power storage element or the power storage block becomes significant.
  • the power storage system may be forced to stop operating while the worker checks the power storage system. As a part of preventive maintenance for avoiding the operation stop of the power storage system, the influence on the operation of the power storage system can be reduced by detecting a micro short circuit in the power storage element at an early stage.
  • the inspection unit may inspect a minute short circuit of the storage element based on a voltage of the storage element after a predetermined time has elapsed since the switch was turned off. In the case where a micro short-circuit has occurred, the voltage of the power storage element decreases early when the power storage block is disconnected. Therefore, by monitoring the voltage of the power storage element after a predetermined time has elapsed, a minute short circuit of the power storage element can be accurately inspected.
  • the inspection unit may inspect a minute short circuit of the storage element based on a voltage difference between the storage element and a predetermined time. In this configuration, when there is no change in the environmental temperature or the like, or when the change is small, it is possible to accurately detect the voltage change caused by the micro short circuit, and therefore it is possible to accurately inspect the micro short circuit of the storage element.
  • the inspection unit compares the voltage difference of the power storage element before and after the lapse of the predetermined time with the average value of the voltage difference before and after the lapse of the predetermined time of all the power storage elements constituting the power storage block. It is good to inspect a micro short circuit. With this configuration, even when there is a change in the environmental temperature or the like, a minute short circuit of the power storage element can be accurately inspected.
  • the power storage element has a high change region in which the change amount of the OCV with respect to the change amount of the SOC is higher than a predetermined value in the SOC-OCV characteristics, and the inspection unit in the high change region after disconnecting the storage block to be inspected. Then, it is preferable to detect the voltage of the power storage element and inspect the minute short circuit based on the detected voltage. In the high change region, since the change amount of the OCV with respect to the change amount of the SOC is large, a minute short circuit of the power storage element can be accurately inspected.
  • a correction unit may be provided that corrects the SOC of the power storage element based on the voltage of the power storage element detected in the high change region.
  • the SOC can be corrected together with the inspection of the minute short circuit.
  • the SOC can be corrected with high accuracy.
  • the power storage block includes an equalization circuit provided corresponding to a plurality of power storage elements connected in series, and the inspection unit operates the equalization circuit in the high change region, and After equalizing the voltages of the power storage elements, the switch is turned off to disconnect the power storage block to be inspected.
  • the minute short circuit is detected in a state where the voltages of the respective storage elements are equalized, it is possible to suppress the inspection accuracy of the minute short circuit from being varied among the storage elements as compared with the case where the voltages are not uniform.
  • the power storage element may be a lithium ion secondary battery having a flat plateau region in SOC-OCV characteristics. In the plateau region, even if the SOC changes, the OCV hardly changes, so it is difficult to inspect the micro short-circuit with high accuracy.
  • the application of the present technology makes it possible to inspect the micro short-circuit with high accuracy.
  • FIG. 1 is a block diagram showing an electrical configuration of a UPS (uninterruptible power supply).
  • the UPS 10 includes a converter 20, an inverter 30, a charge control circuit 41, a diode 45, and a power storage system 50.
  • Converter 20 and inverter 30 are arranged on path 15.
  • Converter 20 converts alternating current into direct current
  • inverter 30 converts direct current into alternating current.
  • the charge control circuit 41 is a circuit that controls charging of the power storage system 50.
  • the power storage system 50 is connected to a path 15 that connects the converter 20 and the inverter 30 via a charge control circuit 41.
  • the diode 45 is connected to the path 15 in parallel with the charge control circuit 41.
  • UPS10 is a constant inverter power supply system.
  • the converter 20 converts AC to DC
  • the inverter 30 converts DC to AC
  • the converter 20 is stopped and power is supplied from the power storage system 50 to the load via the diode 45 and the inverter 30.
  • Charging the power storage system 50 is performed when the AC power supply is normal. Specifically, a charging current is supplied via the AC power source, the converter 20, and the charging control circuit 41 to charge the power storage system 50. When the remaining capacity of the power storage system 50 is small, the charge control circuit 41 performs constant current charge control of the power storage system 50, and performs constant voltage charge control so as to maintain a floating voltage when full charge occurs.
  • FIG. 2 is a block diagram showing the electrical configuration of the power storage system.
  • the power storage system 50 includes a plurality (three in the example of FIG. 2) of power storage blocks 60A to 60C and the integrated management unit 100.
  • the integrated management unit 100 may be a monitoring server.
  • the power storage blocks 60A to 60C are collectively referred to as “power storage block 60”.
  • the power storage blocks 60A to 60C are connected in parallel to the common line (common charge / discharge path) Lo connected to the charge control circuit 41 and the diode 45 via parallel lines La to Lc.
  • the storage blocks 60A to 60C include a plurality of secondary batteries (cells) 63 connected in series, switches 65A to 65C, current sensors 67A to 67C, a discharge circuit 71, sensor units 75A to 75C, and individual management. Parts 77A to 77C. In FIG. 2, only a part of the secondary battery 63 is shown, and actually six or more secondary batteries are connected in series.
  • the individual management units 77A to 77C correspond to the “inspection unit” of the present invention.
  • a plurality of power storage blocks 60A may be connected in series to the parallel line La to form a so-called bank.
  • a plurality of power storage blocks 60B and a plurality of power storage blocks 60C may be connected in series to the parallel line Lb and the parallel line Lc to form a bank.
  • the switches 65A to 65C may be provided only in the power storage block closest to the common line Lo (the power storage block on the most upstream side in the charging path of the parallel lines La to Lc).
  • the switches 65A to 65C are arranged on the parallel lines La to Lc. By switching the switches 65A to 65C from on to off, the power storage blocks 60A to 60C can be disconnected from the common line Lo. By switching the switches 65A to 65C from on to off, the plurality of secondary batteries 63 connected in series to each of the switches 65A to 65C can be disconnected from the charge / discharge path.
  • the switches 65A to 65C can be constituted by contact switches (mechanical switches) such as relays, or semiconductor switches such as FETs and transistors.
  • a discharge circuit (balancer) 71 is individually provided for each secondary battery 63. As shown in FIG. 3, the discharge circuit 71 includes a discharge resistor 72 and a discharge switch 73. When the discharge switch 73 is turned on, the secondary battery 63 is discharged via the discharge resistor 72. The discharge circuit 71 is provided to equalize the voltages of the plurality of secondary batteries 63 connected in series.
  • Sensor units 75A to 75C are provided for each of the plurality of secondary batteries 63.
  • the sensor units 75A to 75C have a voltage detection circuit and detect the voltage of the corresponding secondary battery 63.
  • Current sensors 67A to 67C detect currents flowing through the respective power storage blocks 60A to 60C or banks.
  • the individual management units 77A to 77C monitor the states of the power storage blocks 60A to 60C based on the outputs of the current sensors 67A to 67C and the outputs of the sensor units 75A to 75C.
  • the individual management units 77A to 77C perform processing for estimating the SOC of each secondary battery 63 constituting the power storage blocks 60A to 60C by a current integration method described later, and the voltage of each secondary battery 63 constituting the power storage blocks 60A to 60C. Perform processing to equalize.
  • the individual management units 77A to 77C perform a process for inspecting a minute short circuit of the secondary battery 63.
  • the individual management units 77A to 77C have a storage unit, and data necessary for executing the above-described processes is stored in advance.
  • the integrated management unit 100 is communicably connected to the individual management units 77A to 77C of the power storage blocks 60A to 60C.
  • the integrated management unit 100 monitors the entire power storage system 10 based on various data transmitted from the individual management units 77A to 77C of the power storage blocks 60A to 60C.
  • the secondary battery 63 may be an iron phosphate lithium ion battery using lithium iron phosphate (LiFePO 4 ) as a positive electrode active material and graphite as a negative electrode active material.
  • LiFePO 4 lithium iron phosphate
  • FIG. 4 is an SOC-OCV correlation graph with SOC [%] on the horizontal axis and OCV [V] on the vertical axis.
  • the SOC-OCV correlation graph is an example of the SOC-OCV characteristic of the present invention.
  • the SOC (state of charge) is a ratio of the remaining capacity Cr to the available capacity Ca of the secondary battery 63 as shown in (1) below.
  • the actual capacity Ca is a capacity capable of taking out the secondary battery 63 from a fully charged state, that is, a full charge capacity.
  • OCV open circuit voltage: open circuit voltage
  • OCV open circuit voltage
  • the open-circuit voltage of the secondary battery 63 can be detected by measuring the voltage of the secondary battery 63 in a state that can be regarded as no current or no current.
  • the secondary battery (for example, Linsan iron-based lithium ion battery) 63 has a plurality of regions in which the amount of change in OCV differs from the amount of change in SOC. More specifically, it has five change regions L1 to L5.
  • the change region L1 is located in the range of 8 [%] to less than 31 [%] in SOC.
  • the change region L2 is located in the range of 31 [%] to less than 62 [%] in SOC.
  • the change region L3 is in the range of 62 [%] to less than 68 [%] in terms of SOC.
  • the change region L4 is located in the range of 68 [%] to less than 97 [%] in terms of the SOC value.
  • the change region L5 is in a range of 97 [%] or more in SOC. An SOC of less than 8% is an area outside the use range.
  • the change region L2 is a plateau region in which the OCV change amount with respect to the SOC change amount is very small and the OCV is about 3.3 [V].
  • the change region L4 is also a substantially constant plateau region with an OCV of about 3.34 [V].
  • the plateau region is a region where the graph (curve) is flat, specifically, a region where the change amount of OCV with respect to the change amount of SOC is 2 [mV /%] or less.
  • the change area L5 is an area where the change amount of the OCV with respect to the change amount of the SOC is higher than the predetermined value X.
  • the predetermined value X is a numerical value determined by the relationship with the inspection accuracy of the micro short circuit (such as the current value of the micro short circuit to be detected), and is 35 [mV /%] as an example.
  • micro-short circuit Inspection method for minute short circuit
  • a micro short circuit can be inspected at the time of battery shipment, but may occur even after shipment due to lithium electrodeposition accompanying charging at a low temperature.
  • a method for inspecting a short circuit of the secondary battery 63 after the operation of the power storage system 50 is started will be described.
  • FIG. 5 is a flowchart showing the flow of the micro short circuit inspection process.
  • the micro short-circuit inspection process includes 12 steps S10 to S120, and is periodically executed every time a predetermined period elapses.
  • the switches 65A to 65C Prior to the start of the micro short-circuit inspection process, the switches 65A to 65C are all in the on state, and the power storage blocks 60A to 60C are connected to the common line Lo.
  • the integrated management unit 100 gives a command to the individual management unit 77A of the power storage block 60A that is the first inspection target.
  • the individual management unit 77A performs processing to determine whether the secondary battery 63 of the power storage block 60A is in the change region L5 (S10). This determination can be made based on the SOC value of the secondary battery 63.
  • the storage system 50 in the UPS 10 is controlled by the charge control circuit 41 so as to maintain full charge when the AC power supply is normal. Therefore, when the AC power supply is normal, it is usually determined that the secondary battery 63 is in the change region L5 in each of the power storage blocks 60A to 60C (S10: YES).
  • each of the power storage blocks 60A to 60C has a capacity higher than that of the fully charged state. It will be in a lowered state.
  • the integrated management unit 100 sends a command to the charge control circuit 41 after the AC power supply is restored.
  • the secondary batteries 63 of the respective power storage blocks 60A to 60C are charged so as to be included in the change region L5 (S20).
  • the integrated management unit 100 When the secondary battery 63 is determined to be in the change region L5 or when the above-described charging control is performed, the integrated management unit 100 performs a micro short circuit inspection on the individual management unit 77A of the first power storage block 60A. A command to do this is transmitted (S30).
  • the individual management unit 77A When the individual management unit 77A receives an execution command from the integrated management unit 100, the individual management unit 77A executes an equalization process for equalizing the voltage of the secondary battery 63 (S40). In the equalization process of the secondary battery 63, the secondary battery 63 having a high voltage is discharged by the discharge circuit 71 in accordance with the secondary battery having a low voltage.
  • the individual management unit 77A When the equalization processing is completed, the individual management unit 77A then sends an “OFF” switching command to the switch 65A. As a result, the switch 65A is switched from on to off, so that the storage block 60A to be inspected is disconnected from the common line Lo, is de-energized, and enters a no-current state (S50).
  • the individual management unit 77A sends a command to the sensor unit 75A, and executes a process of measuring the voltage of each secondary battery 63 constituting the power storage block 60A in the change region L5 (S60).
  • the individual management unit 77A When the predetermined time T has elapsed since the first voltage measurement (S70), the individual management unit 77A sends a command to the sensor unit 75A, and executes a process of measuring the voltage of each secondary battery 63 constituting the power storage block 60A. (S80).
  • the predetermined time T is 24 hours as an example.
  • the individual management unit 77A determines the presence or absence of a micro short circuit for each secondary battery 63 constituting the power storage block 60A (S90). Specifically, for each secondary battery 63, the voltage difference ⁇ V is calculated by comparing the voltages V1 and V2 before and after the elapse of the predetermined time T.
  • V1 is the voltage of each secondary battery 63 measured in S60
  • V2 is the voltage of each secondary battery 63 measured in S80.
  • ⁇ V is a voltage difference obtained by comparing the voltages V1 and V2 before and after the elapse of the predetermined time T for the same secondary battery 63.
  • the individual management unit 77A After calculating the voltage difference ⁇ T, the individual management unit 77A compares it with a threshold value. If the voltage difference ⁇ V is smaller than the threshold value, the individual management unit 77A determines that the voltage difference ⁇ V is not short-circuited. It is determined that The threshold is 10 mV as an example.
  • the capacity drop in 24 hours is 24 mAh.
  • the actual capacity of the cell is 2 Ah and 24 mAh is converted to SOC, it is about 1%.
  • the voltage change per 1% is 35 mV or more. Therefore, the voltage difference ⁇ V exceeds the threshold value 10 mV.
  • the threshold value 10 mV exceeds the threshold value 10 mV.
  • the individual management unit 77A determines that the battery is normal when all the secondary batteries 63 constituting the power storage block 60A are not short-circuited (S90: YES). When it is determined that the individual management unit 77A is normal, the individual management unit 77A sends an “ON” switching command to the switch 65A. As a result, the switch 65A is switched from OFF to ON, so that the power storage block 60A disconnected in S50 is connected again to the common line Lo (S100).
  • the individual management unit 77A After the switch 65A is switched, the individual management unit 77A notifies the integrated management unit 100 that the power storage block 60A is “normal”. Upon receiving the “normal” notification from the individual management unit 77A, the integrated management unit 100 determines whether the inspection has been completed for all the power storage blocks 60A to 60C (S110).
  • the process returns to S10, and an instruction is given from the integrated management unit 100 to the individual management unit 77B of the power storage block 60B that is the second inspection target, and the individual management unit 77B changes the secondary battery 63 of the power storage block 60B.
  • a process for determining whether the area is in the area L5 is performed.
  • the integrated management unit 100 instructs the individual management unit 77B of the second power storage block 60B to perform a micro short-circuit inspection. Is transmitted (S30).
  • the individual management unit 77B executes an equalization process for equalizing the voltage of the secondary battery 63 (S40).
  • the individual management unit 77B When the equalization processing is completed, the individual management unit 77B then sends a “OFF” switching command to the switch 65B. As a result, the switch 65B is switched from on to off, so that the storage block 60B to be inspected is disconnected from the common line Lo and enters a no-current state (S50). Thereafter, similarly to the case of the first power storage block 60A, the processing of S60 to S90 is executed, and the presence or absence of a micro short circuit is inspected for each secondary battery 63 constituting the power storage block 60B.
  • the storage blocks 60A to 60C to be inspected are separated one by one from the common line Lo and inspected for the presence of a micro short circuit. If there is no micro short circuit of the secondary battery 63 for each of the power storage blocks 60A to 60C, the inspection is finished for all the power storage blocks 60A to 60C, YES is determined in S110, and all the processes are finished.
  • the storage block 60 to be inspected is small from the individual management unit 77 that has detected the micro short circuit to the integrated management unit 100. You are notified that a short circuit has occurred. Upon receiving the notification, the integrated management unit 100 displays an error message such as prompting the replacement of the storage block 60 to be inspected (S120).
  • the change region L5 is a high change region in which the change amount of the OCV with respect to the change amount of the SOC is higher than the predetermined value X, and the change amount of the OCV with respect to the change amount of the SOC is large. I can do it.
  • the determination of the minute short circuit is performed on the same secondary battery 63 based on the voltage difference ⁇ V before and after the elapse of the predetermined time T. Since this method compares the voltages of the same secondary batteries 63, when there is no change in the environmental temperature or the like, or when the change is small, it is possible to accurately detect the voltage change caused by the minute short circuit. Therefore, a minute short circuit of the secondary battery 63 can be accurately inspected.
  • each secondary battery 63 When the storage block 60 is disconnected, the voltage of each secondary battery 63 is equalized, and a minute short circuit can be detected for each secondary battery 63 under the same conditions. Therefore, a minute short circuit of the secondary battery 63 can be accurately inspected. In addition, there is a merit that the voltage can be equalized together with the inspection of the minute short circuit.
  • Embodiment 2 of the present invention will be described.
  • the individual management units 77A to 77C always perform the process of estimating the SOC of each secondary battery 63 in each of the power storage blocks 60A to 60C.
  • the SOC can be estimated from the initial value of the SOC and the cumulative integrated value of the current I detected by the current sensors 67A to 67C (current integrating method).
  • the sign of the current is positive during charging and negative during discharging.
  • SOC SOCo + 100 ⁇ ⁇ Idt / Co (3)
  • SOCo is the initial value of SOC
  • I is the current
  • Co is the initial value of the full charge capacity.
  • the individual management unit 77A switches the switch 65A from on to off in S50 to disconnect the power storage block 60A from the common line Lo.
  • the individual management unit 77A sends a command to the sensor unit 75A, and executes a process of measuring the voltage of each secondary battery 63 constituting the power storage block 60A, that is, the OCV, in the change region L5.
  • the individual management unit 77A sends a command to the sensor unit 75A, and measures the voltage of each secondary battery 63 constituting the power storage block 60A, that is, OCV. Is executed (S80).
  • the individual management unit 77A refers to the SOC-OCV correlation graph shown in FIG. 4 to determine the SOC value of each secondary battery 63 by referring to the OCV measurement value of each secondary battery 63. Is estimated (OCV method). For example, when the measured value of OCV is “OCV1”, the SOC of the secondary battery can be estimated as “SOC1”.
  • the SOC obtained by the OCV method is used as an initial value, and the SOC is estimated by the current integration method.
  • the SOC can be corrected together with the inspection of the micro short circuit of the secondary battery 63.
  • the SOC since the SOC is corrected in a state where the power storage blocks 60A to 60C are disconnected, that is, in a no-current state, the SOC can be corrected with high accuracy.
  • the individual management units 77A to 77C correspond to the “correction unit” of the present invention.
  • the power storage system 50 is applied to the UPS.
  • the power storage system 50 is not limited to UPS, and may be applied to other uses such as a solar power generation system.
  • the predetermined value X is set to 35 [mV /%], and the minute short circuit is inspected in the change region L5.
  • the predetermined value X has a trade-off relationship with the inspection accuracy, and can be set as appropriate according to the required inspection accuracy.
  • the predetermined value X may be at least 10 [mV /%] or more, and in addition to the change region L5, the minute short circuit can be inspected also in the change region L3.
  • the greater the slope of the graph (the higher the amount of change in OCV with respect to the amount of change in SOC), the higher the inspection accuracy for micro shorts.
  • the optimum value of the predetermined value X is 100 [mV /%], and in the change region L5, the region where the change amount of the OCV with respect to the change amount of the SOC exceeds 100 [mV /%] (the region where the SOC is 98% or more) ) May be inspected for micro short circuits.
  • the iron phosphate-based lithium ion secondary battery 63 is exemplified.
  • the power storage element may be, for example, a ternary lithium ion secondary battery using a lithium-containing metal oxide containing Co, Mn, and Ni elements as a positive electrode active material and hard carbon as a negative electrode.
  • the storage element may be another secondary battery or a capacitor.
  • FIG. 6 is an SOC-OCV correlation graph of a ternary lithium ion secondary battery.
  • the SOC is 30% or less, and the change amount of the OCV with respect to the change amount of the SOC is approximately 10 [mV /%] or more. Therefore, it is preferable to perform a micro short circuit inspection in a range where the SOC is 30% or less.
  • a plurality of secondary battery cells 63 are connected in series.
  • the secondary battery 63 may be a single cell.
  • the voltage of each secondary battery 63 is measured before and after the predetermined time T elapses.
  • the voltage difference ⁇ V before and after the lapse of a predetermined time was obtained and compared with a threshold value to detect the presence or absence of a micro short circuit.
  • the voltage difference ⁇ V before and after the elapse of a predetermined time may be obtained for all the secondary batteries 63 constituting the power storage block 60 to be inspected, and the average value may be calculated.
  • the voltage difference ⁇ V before and after the predetermined time elapses is compared with the average value of the voltage differences ⁇ V of all the secondary batteries 63.
  • the voltage of each secondary battery 63 is measured before and after the predetermined time T elapses.
  • the voltage difference ⁇ V before and after the lapse of a predetermined time was obtained and compared with a threshold value to detect the presence or absence of a micro short circuit.
  • the voltage difference between the secondary batteries may be obtained and compared with a threshold value to detect the presence or absence of a micro short circuit.
  • the presence or absence of a micro short-circuit may be detected by comparing the voltage of each secondary battery 63 with a threshold value when a predetermined time T elapses after the switch 65 is switched.
  • the power storage blocks 60A to 60C to be inspected are separated one by one, and the power storage blocks 60A to 60C are inspected for micro short circuits.
  • the inspection of the micro short circuit may be performed without stopping the power storage system 50.
  • the two power storage blocks 60A and 60B are disconnected at the same time, and the micro short circuit is inspected. Electric power may be supplied.
  • the integrated management unit 100 sequentially sends a micro short circuit inspection execution command to the individual management units 77A to 77C, thereby separating the power storage blocks 60A to 60C from the common line Lo in order. A micro short circuit was inspected.
  • the integrated management unit 100 is not always necessary, and the individual management units 77A to 77C may communicate necessary information such as the inspection status and inspect the micro short circuit in order.
  • the charge control circuit 41 that controls the charging of the power storage system is provided.
  • the charging control circuit 41 may be replaced with a semiconductor switch or the like, and charging to the power storage system may be controlled by controlling on / off of the semiconductor switch.
  • UPS 50 Power storage system 60A to 60C Power storage block 65A to 65C Switch 71 Discharge circuit 77A to 77C Individual management unit (corresponding to “inspection unit” and “correction unit”) 100 Integrated Management Department Lo Common Line La ⁇ Lc Parallel Line

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power storage system 50 has a plurality of power storage blocks 60A-60C that are connected in parallel to a common line Lo through parallel lines La-Lc. Each of the power storage blocks 60A-60C is provided with a plurality of power storage elements 63 that are connected in series, and switches 65A-65C that are provided to the parallel lines La-Lc. The power storage system 50 is further provided with: inspection units 77A-77C that separate the power storage elements 63 of the power storage blocks 60A-60C from the common line Lo by switching the switches 65A-65C from on to off, and inspect minute short-circuiting in the power storage elements 63.

Description

蓄電システム及び微小短絡の検査方法Power storage system and micro short circuit inspection method
 本発明は、微小短絡を検査する技術に関する。 The present invention relates to a technique for inspecting a micro short circuit.
 正極と負極を仕切るセパレータの一部が破損して、正極と負極が電池内部で短絡(以下、微小短絡)する場合がある。微小短絡は電池の出荷時に検査されているが、低温での充電に伴うリチウム電析等により、出荷後でも発生する場合がある。そのため、電池の実使用中に微小短絡の発生を検査することが望まれていた。特許文献1は、電池の実使用中に微小短絡を検査する方法を開示する。この文献では、電池を規定電圧VKまで充電した後、規定経過時間TKが経過した時点におけるセル間の電圧差に着目して、微小短絡の有無を検査している。 A part of the separator separating the positive electrode and the negative electrode may be damaged, and the positive electrode and the negative electrode may be short-circuited inside the battery (hereinafter referred to as a micro short-circuit). The micro short-circuit is inspected at the time of shipment of the battery, but may occur even after shipment due to lithium electrodeposition accompanying charging at a low temperature. Therefore, it has been desired to inspect the occurrence of a micro short circuit during actual use of the battery. Patent Document 1 discloses a method for inspecting a micro short circuit during actual use of a battery. In this document, after charging a battery to a specified voltage VK, the presence or absence of a micro short circuit is inspected by paying attention to the voltage difference between cells when the specified elapsed time TK has elapsed.
特開2016-75567公報JP 2016-75567 A
 微小短絡の検査精度を向上するため、検査中、蓄電素子を無電流状態にすることが好ましい(本明細書においては、蓄電素子からセンサユニットや管理部に微弱な電流が供給される状態も「無電流状態」に含まれる)。しかしながら、並列接続された複数の蓄電ブロックを備える蓄電システムの実運用中は、蓄電システム全体を停止しない限り、各蓄電ブロックに含まれる蓄電素子が無電流状態にならない。そのため、蓄電システム全体を無電流状態にすることなく、蓄電素子における微小短絡を精度よく検査することが望まれていた。
 本発明は、蓄電システム全体を無電流状態にすることなく、蓄電素子における微小短絡を精度よく検査することを目的とする。
In order to improve the inspection accuracy of the micro short circuit, it is preferable that the power storage element is in a no-current state during the inspection (in this specification, a state in which a weak current is supplied from the power storage element to the sensor unit or the management unit is also “ Included in “no current state”). However, during actual operation of a power storage system including a plurality of power storage blocks connected in parallel, the power storage elements included in each power storage block do not enter a no-current state unless the entire power storage system is stopped. Therefore, it has been desired to accurately inspect a minute short circuit in the power storage element without bringing the entire power storage system into a no-current state.
An object of this invention is to test | inspect the micro short circuit in an electrical storage element accurately, without making the whole electrical storage system into a no-current state.
 蓄電システムは、並列線によって並列に共通線に接続された複数の蓄電ブロックを備え、前記蓄電ブロックのそれぞれは、直列に接続された複数の蓄電素子と、前記並列線に設けられたスイッチとを備え、前記蓄電システムは、前記スイッチをオンからオフに切り換えることにより、前記蓄電ブロックの複数の蓄電素子を前記共通線から切り離して、前記複数の蓄電素子における微小短絡を検出する検査部を更に備える。
 微小短絡の検査方法は、複数の蓄電ブロックを共通線に並列に接続する並列線に設けられたスイッチをオンからオフに切り換えて所定の蓄電ブロックを前記共通線から切り離すこと、前記蓄電システムの運用を継続しながら前記切り離した蓄電ブロックに含まれる複数の蓄電素子における微小短絡を検査すること、を備える。
The power storage system includes a plurality of power storage blocks connected in parallel to a common line by a parallel line, and each of the power storage blocks includes a plurality of power storage elements connected in series and a switch provided on the parallel line. The power storage system further includes an inspection unit that disconnects the plurality of power storage elements of the power storage block from the common line by switching the switch from on to off, and detects a micro short circuit in the plurality of power storage elements. .
A method for inspecting a micro short-circuit includes switching a switch provided on a parallel line connecting a plurality of power storage blocks in parallel to a common line from off to disconnecting a predetermined power storage block from the common line, and operating the power storage system. Inspecting minute short circuits in the plurality of power storage elements included in the disconnected power storage block.
 上記構成により、蓄電システム全体を無電流状態にすることなく、蓄電素子における微小短絡を精度よく検査することが出来る。 With the above configuration, it is possible to accurately inspect a minute short circuit in the power storage element without bringing the entire power storage system into a no-current state.
実施形態1におけるUPSの電気的構成を示すブロック図1 is a block diagram showing an electrical configuration of a UPS in Embodiment 1. 蓄電システムの電気的構成を示すブロック図Block diagram showing electrical configuration of power storage system 放電回路の回路図Circuit diagram of the discharge circuit 二次電池のSOC-OCVの相関グラフSecondary battery SOC-OCV correlation graph 微小短絡の検査処理の流れを示すフローチャートFlow chart showing the flow of micro short circuit inspection process 他の実施形態における二次電池のSOC-OCV特性を示すグラフThe graph which shows the SOC-OCV characteristic of the secondary battery in other embodiment
 蓄電システムは、並列線によって並列に共通線に接続された複数の蓄電ブロックを備え、前記蓄電ブロックのそれぞれは、直列に接続された複数の蓄電素子と、前記並列線に設けられたスイッチとを備え、前記蓄電システムは、前記スイッチをオンからオフに切り換えることにより、前記蓄電ブロックの複数の蓄電素子を前記共通線から切り離して、前記複数の蓄電素子における微小短絡を検査する検査部を更に備える。この構成では、蓄電システム全体を無電流状態にすることなく、蓄電素子における微小短絡を精度よく検査することが可能となる。
 従来、並列接続された複数の蓄電ブロックを有する蓄電システムの稼働中に、蓄電素子の微小短絡を検出するための検査は行われていない。微小短絡は、短時間の検査で検出することは困難な傾向がある。蓄電素子を無電流状態で放置して微小短絡を検出するには、比較的、長い時間(例えば、数時間~数日)を要する。従来の典型的な蓄電システムは、蓄電素子の微小短絡を検出する代わりに、稼働中に、ある蓄電ブロックの性能が正常値/想定値から明らかに逸脱したことを検出してアラームを発する。言い換えると、従来の蓄電システムは、蓄電素子の微小短絡というアーリーステージの事象は検出しておらず、蓄電素子や蓄電ブロックの性能低下が顕著になってからアラームを発している。アラームが発せられた後、作業員が蓄電システムを点検する間、蓄電システムは稼働停止を余儀なくされることがある。
 蓄電システムの稼働停止を避けるための予防保全の一環として、蓄電素子における微小短絡を早期に検出することで、蓄電システムの運用に与える影響を小さく出来る。
The power storage system includes a plurality of power storage blocks connected in parallel to a common line by a parallel line, and each of the power storage blocks includes a plurality of power storage elements connected in series and a switch provided on the parallel line. The power storage system further includes an inspection unit that disconnects the plurality of power storage elements of the power storage block from the common line by switching the switch from on to off, and inspects the short circuit in the plurality of power storage elements. . With this configuration, it is possible to accurately inspect a minute short circuit in the power storage element without bringing the entire power storage system into a no-current state.
Conventionally, an inspection for detecting a minute short circuit of a power storage element has not been performed during operation of a power storage system having a plurality of power storage blocks connected in parallel. A micro short circuit tends to be difficult to detect in a short inspection. It takes a relatively long time (for example, several hours to several days) to detect a short-circuit by leaving the storage element in a non-current state. Instead of detecting a minute short circuit of a power storage element, a conventional typical power storage system detects that the performance of a certain power storage block clearly deviates from a normal value / assumed value during operation, and issues an alarm. In other words, the conventional power storage system does not detect an early stage event such as a short circuit of the power storage element, and issues an alarm after the performance degradation of the power storage element or the power storage block becomes significant. After the alarm is issued, the power storage system may be forced to stop operating while the worker checks the power storage system.
As a part of preventive maintenance for avoiding the operation stop of the power storage system, the influence on the operation of the power storage system can be reduced by detecting a micro short circuit in the power storage element at an early stage.
 前記スイッチを1つずつオンからオフに切り換えることにより、検査対象の蓄電ブロックを1つずつ切り離して、前記蓄電素子の微小短絡を検査するとよい。この構成では、複数の蓄電ブロックを同時に切り離す場合に比べて、蓄電システムの容量低下・出力低下を抑えることが出来る。 It is preferable to inspect a minute short circuit of the power storage element by switching each of the switches from on to off one by one to separate the power storage blocks to be inspected one by one. With this configuration, it is possible to suppress a decrease in capacity and output of the power storage system as compared with a case where a plurality of power storage blocks are simultaneously disconnected.
 前記検査部は、前記スイッチをオフに切り換えてから所定時間経過後の前記蓄電素子の電圧に基づいて、蓄電素子の微小短絡を検査するとよい。微小短絡が発生している場合、蓄電ブロックを切り離すと、蓄電素子の電圧が早期に低下する。そのため、所定時間経過後の蓄電素子の電圧をモニタすることで、蓄電素子の微小短絡を精度よく検査することが出来る。 The inspection unit may inspect a minute short circuit of the storage element based on a voltage of the storage element after a predetermined time has elapsed since the switch was turned off. In the case where a micro short-circuit has occurred, the voltage of the power storage element decreases early when the power storage block is disconnected. Therefore, by monitoring the voltage of the power storage element after a predetermined time has elapsed, a minute short circuit of the power storage element can be accurately inspected.
 前記検査部は、前記蓄電素子の所定時間経過前後の電圧差に基づいて、蓄電素子の微小短絡を検査するとよい。この構成では、環境温度等に変化がない又は変化が小さい場合、微小短絡に起因する電圧変化を正確に検出することが出来るため、蓄電素子の微小短絡を精度よく検査することが出来る。 The inspection unit may inspect a minute short circuit of the storage element based on a voltage difference between the storage element and a predetermined time. In this configuration, when there is no change in the environmental temperature or the like, or when the change is small, it is possible to accurately detect the voltage change caused by the micro short circuit, and therefore it is possible to accurately inspect the micro short circuit of the storage element.
 前記検査部は、前記蓄電素子の前記所定時間経過前後の電圧差を、前記蓄電ブロックを構成する全蓄電素子の所定時間経過前後の電圧差の平均値と比較した結果に基づいて、蓄電素子の微小短絡を検査するとよい。この構成では、環境温度等に変化がある場合でも、蓄電素子の微小短絡を精度よく検査することが出来る。 The inspection unit compares the voltage difference of the power storage element before and after the lapse of the predetermined time with the average value of the voltage difference before and after the lapse of the predetermined time of all the power storage elements constituting the power storage block. It is good to inspect a micro short circuit. With this configuration, even when there is a change in the environmental temperature or the like, a minute short circuit of the power storage element can be accurately inspected.
 前記蓄電素子は、SOC-OCV特性においてSOCの変化量に対するOCVの変化量が所定値より高い高変化領域を有し、前記検査部は、検査対象の蓄電ブロックの切り離し後、前記高変化領域にて前記蓄電素子の電圧を検出し、検出した電圧に基づいて微小短絡を検査するとよい。高変化領域は、SOCの変化量に対するOCVの変化量が大きいので、蓄電素子の微小短絡を精度よく検査することが出来る。 The power storage element has a high change region in which the change amount of the OCV with respect to the change amount of the SOC is higher than a predetermined value in the SOC-OCV characteristics, and the inspection unit in the high change region after disconnecting the storage block to be inspected. Then, it is preferable to detect the voltage of the power storage element and inspect the minute short circuit based on the detected voltage. In the high change region, since the change amount of the OCV with respect to the change amount of the SOC is large, a minute short circuit of the power storage element can be accurately inspected.
 前記高変化領域にて検出した前記蓄電素子の電圧に基づいて、前記蓄電素子のSOCを補正する補正部を備えるとよい。この構成では、微小短絡の検査と合わせてSOCを補正することが出来る。高変化領域は、SOCの変化量に対するOCVの変化量が大きいことから、SOCを高精度に補正することが出来る。しかも、検査対象の蓄電ブロックだけが無電流状態になることから、蓄電システムの稼働中、任意の時期にSOCの補正が可能であるというメリットがある。 A correction unit may be provided that corrects the SOC of the power storage element based on the voltage of the power storage element detected in the high change region. In this configuration, the SOC can be corrected together with the inspection of the minute short circuit. In the high change region, since the change amount of the OCV with respect to the change amount of the SOC is large, the SOC can be corrected with high accuracy. In addition, since only the storage block to be inspected is in a no-current state, there is an advantage that the SOC can be corrected at any time during operation of the storage system.
 前記蓄電ブロックは、直列に接続された複数の蓄電素子に対応してそれぞれ設けられた均等化回路を含み、前記検査部は、前記高変化領域において前記均等化回路を動作させて、前記複数の蓄電素子の電圧を均等化してから、前記スイッチをオフに切り換えて検査対象となる蓄電ブロックを切り離すとよい。この構成では、微小短絡の検査と合わせて各蓄電素子の電圧を均等化することが出来る。しかも、各蓄電素子の電圧を均等化した状態で微小短絡の検出を行うことから、電圧が不均一な場合に比べて、微小短絡の検査精度が各蓄電素子間でばらつくことを抑制できる。 The power storage block includes an equalization circuit provided corresponding to a plurality of power storage elements connected in series, and the inspection unit operates the equalization circuit in the high change region, and After equalizing the voltages of the power storage elements, the switch is turned off to disconnect the power storage block to be inspected. In this configuration, it is possible to equalize the voltages of the respective storage elements in combination with the inspection of the minute short circuit. In addition, since the minute short circuit is detected in a state where the voltages of the respective storage elements are equalized, it is possible to suppress the inspection accuracy of the minute short circuit from being varied among the storage elements as compared with the case where the voltages are not uniform.
 前記蓄電素子は、SOC-OCV特性において平坦なプラトー領域を有するリチウムイオン二次電池であるとよい。プラトー領域ではSOCが変化してもOCVはほとんど変化しないため微小短絡を精度よく検査することが難しいが、本技術の適用により、微小短絡を精度よく検査することが出来る。 The power storage element may be a lithium ion secondary battery having a flat plateau region in SOC-OCV characteristics. In the plateau region, even if the SOC changes, the OCV hardly changes, so it is difficult to inspect the micro short-circuit with high accuracy. However, the application of the present technology makes it possible to inspect the micro short-circuit with high accuracy.
 <実施形態1>
 本発明の実施形態1を図1~図5によって説明する。
 1.UPS及び蓄電システムの構成
 図1は、UPS(無停電電源装置)の電気的構成を示すブロック図である。
 UPS10は、コンバータ20と、インバータ30と、充電制御回路41と、ダイオード45と、蓄電システム50を含んで構成されている。
 コンバータ20とインバータ30は経路15上に配置されている。コンバータ20は交流を直流に変換し、インバータ30は直流を交流に変換する。充電制御回路41は蓄電システム50への充電を制御する回路である。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS.
1. Configuration of UPS and Power Storage System FIG. 1 is a block diagram showing an electrical configuration of a UPS (uninterruptible power supply).
The UPS 10 includes a converter 20, an inverter 30, a charge control circuit 41, a diode 45, and a power storage system 50.
Converter 20 and inverter 30 are arranged on path 15. Converter 20 converts alternating current into direct current, and inverter 30 converts direct current into alternating current. The charge control circuit 41 is a circuit that controls charging of the power storage system 50.
 蓄電システム50は、充電制御回路41を介して、コンバータ20とインバータ30をつなぐ経路15に接続されている。ダイオード45は、充電制御回路41と並列に経路15に接続されている。 The power storage system 50 is connected to a path 15 that connects the converter 20 and the inverter 30 via a charge control circuit 41. The diode 45 is connected to the path 15 in parallel with the charge control circuit 41.
 UPS10は、常時インバータ給電方式である。交流電源が正常である場合、コンバータ20で交流を直流に変換し、インバータ30で直流を交流に変換し、負荷に対して電力を供給する。交流電源が異常な場合、コンバータ20を停止して、蓄電システム50からダイオード45、インバータ30を経由して負荷に電力を供給する。 UPS10 is a constant inverter power supply system. When the AC power supply is normal, the converter 20 converts AC to DC, the inverter 30 converts DC to AC, and supplies power to the load. When the AC power supply is abnormal, the converter 20 is stopped and power is supplied from the power storage system 50 to the load via the diode 45 and the inverter 30.
 蓄電システム50への充電は、交流電源が正常である場合に行われる。詳細には、交流電源、コンバータ20、充電制御回路41を経由して充電電流が供給され、蓄電システム50を充電する。充電制御回路41は、蓄電システム50の残容量が少ない場合、蓄電システム50を定電流充電制御し、満充電になると、浮動電圧を維持するように定電圧充電制御する。 Charging the power storage system 50 is performed when the AC power supply is normal. Specifically, a charging current is supplied via the AC power source, the converter 20, and the charging control circuit 41 to charge the power storage system 50. When the remaining capacity of the power storage system 50 is small, the charge control circuit 41 performs constant current charge control of the power storage system 50, and performs constant voltage charge control so as to maintain a floating voltage when full charge occurs.
 図2は蓄電システムの電気的構成を示すブロック図である。蓄電システム50は、複数(図2の例では3つ)の蓄電ブロック60A~60Cと、統合管理部100とを含む。統合管理部100は、監視サーバであってもよい。以下、蓄電ブロック60A~60Cを総称して「蓄電ブロック60」とする。 FIG. 2 is a block diagram showing the electrical configuration of the power storage system. The power storage system 50 includes a plurality (three in the example of FIG. 2) of power storage blocks 60A to 60C and the integrated management unit 100. The integrated management unit 100 may be a monitoring server. Hereinafter, the power storage blocks 60A to 60C are collectively referred to as “power storage block 60”.
 蓄電ブロック60A~60Cは、充電制御回路41やダイオード45に接続される共通線(共通の充放電経路)Loに対して、並列線La~Lcを介して並列に接続されている。蓄電ブロック60A~60Cは、直列に接続された複数の二次電池(セル)63と、スイッチ65A~65Cと、電流センサ67A~67Cと、放電回路71と、センサユニット75A~75Cと、個別管理部77A~77Cとを備える。図2では、二次電池63の一部だけを示しており、実際には、6つ以上の二次電池が直列に接続されている。個別管理部77A~77Cが本発明の「検査部」に相当する。
 図示しないが、並列線Laに、複数の蓄電ブロック60Aが直列に接続されて、いわゆるバンクを形成してもよい。同様に、並列線Lb及び並列線Lcにそれぞれ、複数の蓄電ブロック60B、複数の蓄電ブロック60Cが直列に接続されて、バンクを形成してもよい。バンクでは、共通線Loに最も近い蓄電ブロック(並列線La~Lcの充電経路における最も上流側の蓄電ブロック)にのみ、スイッチ65A~65Cが設けられてもよい。
The power storage blocks 60A to 60C are connected in parallel to the common line (common charge / discharge path) Lo connected to the charge control circuit 41 and the diode 45 via parallel lines La to Lc. The storage blocks 60A to 60C include a plurality of secondary batteries (cells) 63 connected in series, switches 65A to 65C, current sensors 67A to 67C, a discharge circuit 71, sensor units 75A to 75C, and individual management. Parts 77A to 77C. In FIG. 2, only a part of the secondary battery 63 is shown, and actually six or more secondary batteries are connected in series. The individual management units 77A to 77C correspond to the “inspection unit” of the present invention.
Although not shown, a plurality of power storage blocks 60A may be connected in series to the parallel line La to form a so-called bank. Similarly, a plurality of power storage blocks 60B and a plurality of power storage blocks 60C may be connected in series to the parallel line Lb and the parallel line Lc to form a bank. In the bank, the switches 65A to 65C may be provided only in the power storage block closest to the common line Lo (the power storage block on the most upstream side in the charging path of the parallel lines La to Lc).
 スイッチ65A~65Cは、並列線La~Lc上に配置されている。各スイッチ65A~65Cをオンからオフに切り換えることで、各蓄電ブロック60A~60Cを共通線Loから切り離すことが出来る。スイッチ65A~65Cをオンからオフに切り換えることで、スイッチ65A~65Cそれぞれに直列に接続された複数の二次電池63を充放電経路から切り離すことが出来る。スイッチ65A~65Cはリレーなどの有接点スイッチ(機械式スイッチ)や、FETやトランジスタなどの半導体スイッチにより構成することが出来る。 The switches 65A to 65C are arranged on the parallel lines La to Lc. By switching the switches 65A to 65C from on to off, the power storage blocks 60A to 60C can be disconnected from the common line Lo. By switching the switches 65A to 65C from on to off, the plurality of secondary batteries 63 connected in series to each of the switches 65A to 65C can be disconnected from the charge / discharge path. The switches 65A to 65C can be constituted by contact switches (mechanical switches) such as relays, or semiconductor switches such as FETs and transistors.
 放電回路(バランサー)71は、各二次電池63に対して個別に設けられている。放電回路71は、図3に示すように、放電抵抗72と放電スイッチ73とから構成されている。放電スイッチ73をオンすると、二次電池63は、放電抵抗72を介して放電する。放電回路71は、直列に接続された複数の二次電池63の電圧を均等化するために設けられている。 A discharge circuit (balancer) 71 is individually provided for each secondary battery 63. As shown in FIG. 3, the discharge circuit 71 includes a discharge resistor 72 and a discharge switch 73. When the discharge switch 73 is turned on, the secondary battery 63 is discharged via the discharge resistor 72. The discharge circuit 71 is provided to equalize the voltages of the plurality of secondary batteries 63 connected in series.
 センサユニット75A~75Cは、複数の二次電池63ごとに設けられている。センサユニット75A~75Cは、電圧検出回路を有しており、対応する各二次電池63の電圧を検出する。電流センサ67A~67Cは、各蓄電ブロック60A~60C又はバンクに流れる電流を検出する。 Sensor units 75A to 75C are provided for each of the plurality of secondary batteries 63. The sensor units 75A to 75C have a voltage detection circuit and detect the voltage of the corresponding secondary battery 63. Current sensors 67A to 67C detect currents flowing through the respective power storage blocks 60A to 60C or banks.
 個別管理部77A~77Cは、電流センサ67A~67Cの出力、各センサユニット75A~75Cの出力に基づいて、各蓄電ブロック60A~60Cの状態を監視する。個別管理部77A~77Cは、蓄電ブロック60A~60Cを構成する各二次電池63のSOCを後述する電流積算法により推定する処理や、蓄電ブロック60A~60Cを構成する各二次電池63の電圧を均等化する処理を行う。個別管理部77A~77Cは、二次電池63の微小短絡を検査する処理を行う。個別管理部77A~77Cは、記憶部を有しており、上記した各処理を実行するために必要となるデータが予め記憶されている。 The individual management units 77A to 77C monitor the states of the power storage blocks 60A to 60C based on the outputs of the current sensors 67A to 67C and the outputs of the sensor units 75A to 75C. The individual management units 77A to 77C perform processing for estimating the SOC of each secondary battery 63 constituting the power storage blocks 60A to 60C by a current integration method described later, and the voltage of each secondary battery 63 constituting the power storage blocks 60A to 60C. Perform processing to equalize. The individual management units 77A to 77C perform a process for inspecting a minute short circuit of the secondary battery 63. The individual management units 77A to 77C have a storage unit, and data necessary for executing the above-described processes is stored in advance.
 統合管理部100は、各蓄電ブロック60A~60Cの個別管理部77A~77Cと通信可能に接続されている。統合管理部100は、各蓄電ブロック60A~60Cの個別管理部77A~77Cから送信される各種データに基づいて、蓄電システム10全体を監視する。 The integrated management unit 100 is communicably connected to the individual management units 77A to 77C of the power storage blocks 60A to 60C. The integrated management unit 100 monitors the entire power storage system 10 based on various data transmitted from the individual management units 77A to 77C of the power storage blocks 60A to 60C.
 2.二次電池の特性
 二次電池63は、正極活物質にリン酸鉄リチウム(LiFePO4)、負極活物質にグラファイトを用いたリン酸鉄系のリチウムイオン電池であってもよい。
2. Characteristics of Secondary Battery The secondary battery 63 may be an iron phosphate lithium ion battery using lithium iron phosphate (LiFePO 4 ) as a positive electrode active material and graphite as a negative electrode active material.
 図4は横軸をSOC[%]、縦軸をOCV[V]とした、SOC-OCV相関グラフである。SOC-OCV相関グラフが、本発明のSOC-OCV特性の一例である。SOC(state of charge:充電状態)は、下記の(1)で示されるように、二次電池63の実容量(available capacity)Caに対する残存容量Crの比率である。実容量Caは、二次電池63を完全充電された状態から取り出し可能な容量、すなわち満充電容量である。 FIG. 4 is an SOC-OCV correlation graph with SOC [%] on the horizontal axis and OCV [V] on the vertical axis. The SOC-OCV correlation graph is an example of the SOC-OCV characteristic of the present invention. The SOC (state of charge) is a ratio of the remaining capacity Cr to the available capacity Ca of the secondary battery 63 as shown in (1) below. The actual capacity Ca is a capacity capable of taking out the secondary battery 63 from a fully charged state, that is, a full charge capacity.
 SOC=Cr/Ca×100・・・・・・・・(1) SOC = Cr / Ca × 100 (1)
 OCV(open circuit voltage:開放電圧)は、二次電池63の開放電圧である。二次電池63の開放電圧は、無電流又は無電流とみなせる状態において、二次電池63の電圧を計測することにより、検出できる。 OCV (open circuit voltage: open circuit voltage) is an open circuit voltage of the secondary battery 63. The open-circuit voltage of the secondary battery 63 can be detected by measuring the voltage of the secondary battery 63 in a state that can be regarded as no current or no current.
 二次電池(例えば、リンサン鉄系のリチウムイオン電池)63は、図4に示すように、SOCの変化量に対するOCVの変化量が異なる複数の領域を有している。より詳細には、5つの変化領域L1~L5を有している。 As shown in FIG. 4, the secondary battery (for example, Linsan iron-based lithium ion battery) 63 has a plurality of regions in which the amount of change in OCV differs from the amount of change in SOC. More specifically, it has five change regions L1 to L5.
 図4に示すように、変化領域L1はSOCで8[%]~31[%]未満の範囲に位置している。変化領域L2はSOCで31[%]~62[%]未満の範囲に位置している。変化領域L3はSOCで62[%]~68[%]未満の範囲にある。変化領域L4は、SOCの値で68[%]~97[%]未満の範囲に位置している。変化領域L5はSOCで97[%]以上の範囲である。SOCで8%未満は使用範囲外の領域である。 As shown in FIG. 4, the change region L1 is located in the range of 8 [%] to less than 31 [%] in SOC. The change region L2 is located in the range of 31 [%] to less than 62 [%] in SOC. The change region L3 is in the range of 62 [%] to less than 68 [%] in terms of SOC. The change region L4 is located in the range of 68 [%] to less than 97 [%] in terms of the SOC value. The change region L5 is in a range of 97 [%] or more in SOC. An SOC of less than 8% is an area outside the use range.
 変化領域L2は、SOCの変化量に対するOCVの変化量が非常に小さくOCVが約3.3[V]で略一定のプラトー領域となっている。変化領域L4も、OCVが約3.34[V]で略一定のプラトー領域となっている。プラトー領域とは、グラフ(曲線)が平坦な領域、具体的には、SOCの変化量に対するOCVの変化量が2[mV/%]以下の領域である。 The change region L2 is a plateau region in which the OCV change amount with respect to the SOC change amount is very small and the OCV is about 3.3 [V]. The change region L4 is also a substantially constant plateau region with an OCV of about 3.34 [V]. The plateau region is a region where the graph (curve) is flat, specifically, a region where the change amount of OCV with respect to the change amount of SOC is 2 [mV /%] or less.
 変化領域L5は、SOCの変化量に対するOCVの変化量が所定値Xよりも高い領域である。所定値Xは、微小短絡の検査精度(検出しようとする微小短絡の電流値等)との関係で決まる数値であり、一例として、35[mV/%]である。 The change area L5 is an area where the change amount of the OCV with respect to the change amount of the SOC is higher than the predetermined value X. The predetermined value X is a numerical value determined by the relationship with the inspection accuracy of the micro short circuit (such as the current value of the micro short circuit to be detected), and is 35 [mV /%] as an example.
 3.微小短絡の検査方法
 二次電池63の正極と負極を仕切るセパレータの一部が破損していると、正極と負極が電池内部で短絡(以下、微小短絡)する場合がある。微小短絡は電池出荷時に検査できるが、低温での充電に伴うリチウム電析等により、出荷後でも発生する場合がある。以下、蓄電システム50の稼働開始後における二次電池63の微小短絡の検査方法を説明する。
3. Inspection method for minute short circuit When a part of the separator that separates the positive electrode and the negative electrode of the secondary battery 63 is damaged, the positive electrode and the negative electrode may be short-circuited inside the battery (hereinafter, “micro-short circuit”). A micro short circuit can be inspected at the time of battery shipment, but may occur even after shipment due to lithium electrodeposition accompanying charging at a low temperature. Hereinafter, a method for inspecting a short circuit of the secondary battery 63 after the operation of the power storage system 50 is started will be described.
 図5は、微小短絡の検査処理の流れを示すフローチャートである。微小短絡の検査処理は、S10~S120の12ステップから構成されており、所定の期間が経過するごとに定期的に実行される。微小短絡の検査処理の開始前は、スイッチ65A~65Cは全てオン状態であり、各蓄電ブロック60A~60Cは共通線Loに接続されている。 FIG. 5 is a flowchart showing the flow of the micro short circuit inspection process. The micro short-circuit inspection process includes 12 steps S10 to S120, and is periodically executed every time a predetermined period elapses. Prior to the start of the micro short-circuit inspection process, the switches 65A to 65C are all in the on state, and the power storage blocks 60A to 60C are connected to the common line Lo.
 微小短絡の検査処理がスタートすると、統合管理部100から、1番目の検査対象である蓄電ブロック60Aの個別管理部77Aに指令が与えられる。個別管理部77Aは、蓄電ブロック60Aの二次電池63が、変化領域L5に有るか判定する処理を行う(S10)。この判定は、二次電池63のSOC値に基づいて、行うことが出来る。 When the micro short circuit inspection process starts, the integrated management unit 100 gives a command to the individual management unit 77A of the power storage block 60A that is the first inspection target. The individual management unit 77A performs processing to determine whether the secondary battery 63 of the power storage block 60A is in the change region L5 (S10). This determination can be made based on the SOC value of the secondary battery 63.
 UPS10における蓄電システム50は、交流電源が正常である場合、満充電を維持するように、充電制御回路41により充電制御されている。従って、交流電源が正常である場合、通常、各蓄電ブロック60A~60Cとも、二次電池63は、変化領域L5にあると判断される(S10:YES)。 The storage system 50 in the UPS 10 is controlled by the charge control circuit 41 so as to maintain full charge when the AC power supply is normal. Therefore, when the AC power supply is normal, it is usually determined that the secondary battery 63 is in the change region L5 in each of the power storage blocks 60A to 60C (S10: YES).
 一方、交流電源の異常時(例えば停電時)など蓄電システム50からダイオード45、インバータ30を介して負荷に電力を供給している場合、各蓄電ブロック60A~60Cは、満充電状態よりも容量が低下した状態となる。二次電池63が、他の変化領域L1~L4にある場合、統合管理部100は、交流電源の復旧後、充電制御回路41に指令を送る。指令により、各蓄電ブロック60A~60Cの二次電池63が、変化領域L5に含まれるように充電される(S20)。 On the other hand, when power is supplied from the power storage system 50 to the load via the diode 45 and the inverter 30, such as when the AC power supply is abnormal (for example, during a power failure), each of the power storage blocks 60A to 60C has a capacity higher than that of the fully charged state. It will be in a lowered state. When the secondary battery 63 is in another change region L1 to L4, the integrated management unit 100 sends a command to the charge control circuit 41 after the AC power supply is restored. In response to the command, the secondary batteries 63 of the respective power storage blocks 60A to 60C are charged so as to be included in the change region L5 (S20).
 二次電池63が、変化領域L5にあると判断した場合又は上記の充電制御を行った場合、統合管理部100から1番目の蓄電ブロック60Aの個別管理部77Aに対して微小短絡の検査を実行するための指令が送信される(S30)。 When the secondary battery 63 is determined to be in the change region L5 or when the above-described charging control is performed, the integrated management unit 100 performs a micro short circuit inspection on the individual management unit 77A of the first power storage block 60A. A command to do this is transmitted (S30).
 個別管理部77Aは、統合管理部100から実行指令を受けると、二次電池63の電圧を均等化する均等化処理を実行する(S40)。二次電池63の均等化処理では、電圧の高い二次電池63を、電圧の低い二次電池に合わせて、放電回路71により放電する。 When the individual management unit 77A receives an execution command from the integrated management unit 100, the individual management unit 77A executes an equalization process for equalizing the voltage of the secondary battery 63 (S40). In the equalization process of the secondary battery 63, the secondary battery 63 having a high voltage is discharged by the discharge circuit 71 in accordance with the secondary battery having a low voltage.
 均等化処理が終了すると、次に、個別管理部77Aは、スイッチ65Aに対して「オフ」の切換指令を送る。これにより、スイッチ65Aはオンからオフに切り換わるため、検査対象の蓄電ブロック60Aは、共通線Loから切り離されて通電が遮断され、無電流状態となる(S50)。 When the equalization processing is completed, the individual management unit 77A then sends an “OFF” switching command to the switch 65A. As a result, the switch 65A is switched from on to off, so that the storage block 60A to be inspected is disconnected from the common line Lo, is de-energized, and enters a no-current state (S50).
 次に個別管理部77Aは、センサユニット75Aに指令を送り、変化領域L5において、蓄電ブロック60Aを構成する各二次電池63の電圧を計測する処理を実行する(S60)。 Next, the individual management unit 77A sends a command to the sensor unit 75A, and executes a process of measuring the voltage of each secondary battery 63 constituting the power storage block 60A in the change region L5 (S60).
 1回目の電圧計測から所定時間Tが経過すると(S70)、個別管理部77Aは、センサユニット75Aに指令を送り、蓄電ブロック60Aを構成する各二次電池63の電圧を計測する処理を実行する(S80)。所定時間Tは、一例として24時間である。 When the predetermined time T has elapsed since the first voltage measurement (S70), the individual management unit 77A sends a command to the sensor unit 75A, and executes a process of measuring the voltage of each secondary battery 63 constituting the power storage block 60A. (S80). The predetermined time T is 24 hours as an example.
 その後、個別管理部77Aは、蓄電ブロック60Aを構成する各二次電池63について、微小短絡の有無を判定する(S90)。具体的には、各二次電池63について、所定時間Tの経過前後の電圧V1、V2を比較して、電圧差ΔVを算出する。 Thereafter, the individual management unit 77A determines the presence or absence of a micro short circuit for each secondary battery 63 constituting the power storage block 60A (S90). Specifically, for each secondary battery 63, the voltage difference ΔV is calculated by comparing the voltages V1 and V2 before and after the elapse of the predetermined time T.
 ΔV=V1-V2・・・・・(2)
 V1はS60で計測した各二次電池63の電圧、V2はS80で計測した各二次電池63の電圧である。ΔVは、同一の二次電池63について、所定時間Tの経過前後の電圧V1、V2を比較した電圧差である。
ΔV = V1-V2 (2)
V1 is the voltage of each secondary battery 63 measured in S60, and V2 is the voltage of each secondary battery 63 measured in S80. ΔV is a voltage difference obtained by comparing the voltages V1 and V2 before and after the elapse of the predetermined time T for the same secondary battery 63.
 個別管理部77Aは、電圧差ΔTを算出すると、それを閾値と比較し、電圧差ΔVが閾値より小さい場合、微小短絡していないと判定し、電圧差ΔVが閾値より大きい場合、微小短絡していると判定する。閾値は、一例として、10mVである。 After calculating the voltage difference ΔT, the individual management unit 77A compares it with a threshold value. If the voltage difference ΔV is smaller than the threshold value, the individual management unit 77A determines that the voltage difference ΔV is not short-circuited. It is determined that The threshold is 10 mV as an example.
 例えば、1mAhの微小短絡が発生していた場合、24時間での容量低下は24mAhである。セルの実容量を2Ahとして、24mAhを、SOCに換算すると、約1%である。変化領域L5では、1%あたりの電圧変化が35mV以上である。そのため、電圧差ΔVは、閾値10mVを上回る。このように、本例では、少なくとも、1mAhの微小短絡を検出することが出来る。 For example, when a 1 mAh micro short-circuit has occurred, the capacity drop in 24 hours is 24 mAh. When the actual capacity of the cell is 2 Ah and 24 mAh is converted to SOC, it is about 1%. In the change region L5, the voltage change per 1% is 35 mV or more. Therefore, the voltage difference ΔV exceeds the threshold value 10 mV. Thus, in this example, at least a 1 mAh minute short circuit can be detected.
 個別管理部77Aは、蓄電ブロック60Aを構成する全ての二次電池63が微小短絡していない場合、正常であると判定する(S90:YES)。個別管理部77Aは、正常と判定した場合、スイッチ65Aに対して「オン」の切換指令を送る。これにより、スイッチ65Aはオフからオンに切り換わるため、S50で切り離された蓄電ブロック60Aは、共通線Loに再び接続される(S100)。 The individual management unit 77A determines that the battery is normal when all the secondary batteries 63 constituting the power storage block 60A are not short-circuited (S90: YES). When it is determined that the individual management unit 77A is normal, the individual management unit 77A sends an “ON” switching command to the switch 65A. As a result, the switch 65A is switched from OFF to ON, so that the power storage block 60A disconnected in S50 is connected again to the common line Lo (S100).
 スイッチ65Aの切換後、個別管理部77Aから統合管理部100に対して、蓄電ブロック60Aは「正常」であることが通知される。統合管理部100は、個別管理部77Aから「正常」の通知を受けると、全蓄電ブロック60A~60Cについて、検査が終了したか判定する(S110)。 After the switch 65A is switched, the individual management unit 77A notifies the integrated management unit 100 that the power storage block 60A is “normal”. Upon receiving the “normal” notification from the individual management unit 77A, the integrated management unit 100 determines whether the inspection has been completed for all the power storage blocks 60A to 60C (S110).
 この段階では、1番目の蓄電ブロック60Aしか検査が終了しておらず、2番目の蓄電ブロック60B、3番目の蓄電ブロック60Cは未検査である。従って、S110ではNO判定される。 At this stage, only the first power storage block 60A has been inspected, and the second power storage block 60B and the third power storage block 60C have not been inspected. Therefore, NO is determined in S110.
 その後、処理はS10に戻り、統合管理部100から2番目の検査対象である蓄電ブロック60Bの個別管理部77Bに指令が与えられ、個別管理部77Bは、蓄電ブロック60Bの二次電池63が変化領域L5に有るか、判定する処理を行う。 Thereafter, the process returns to S10, and an instruction is given from the integrated management unit 100 to the individual management unit 77B of the power storage block 60B that is the second inspection target, and the individual management unit 77B changes the secondary battery 63 of the power storage block 60B. A process for determining whether the area is in the area L5 is performed.
 蓄電ブロック60Bの二次電池63が変化領域L5に有ると判断された場合、統合管理部100から2番目の蓄電ブロック60Bの個別管理部77Bに対して、微小短絡の検査を実行するための指令が送信される(S30)。 When it is determined that the secondary battery 63 of the power storage block 60B is in the change region L5, the integrated management unit 100 instructs the individual management unit 77B of the second power storage block 60B to perform a micro short-circuit inspection. Is transmitted (S30).
 個別管理部77Bは、統合管理部100から実行指令を受けると、二次電池63の電圧を均等化する均等化処理を実行する(S40)。 When the individual management unit 77B receives the execution command from the integrated management unit 100, the individual management unit 77B executes an equalization process for equalizing the voltage of the secondary battery 63 (S40).
 均等化処理が終了すると、次に、個別管理部77Bは、スイッチ65Bに「オフ」の切換指令を送る。これにより、スイッチ65Bはオンからオフに切り換わるため、検査対象の蓄電ブロック60Bは、共通線Loから切り離され、無電流状態となる(S50)。その後、1番目の蓄電ブロック60Aの場合と同様に、S60~S90の処理が実行され、蓄電ブロック60Bを構成する各二次電池63について微小短絡の有無が検査される。 When the equalization processing is completed, the individual management unit 77B then sends a “OFF” switching command to the switch 65B. As a result, the switch 65B is switched from on to off, so that the storage block 60B to be inspected is disconnected from the common line Lo and enters a no-current state (S50). Thereafter, similarly to the case of the first power storage block 60A, the processing of S60 to S90 is executed, and the presence or absence of a micro short circuit is inspected for each secondary battery 63 constituting the power storage block 60B.
 このように、検査対象となる蓄電ブロック60A~60Cを、共通線Loから1つずつ切り離して、微小短絡の有無が検査される。各蓄電ブロック60A~60Cについて二次電池63の微小短絡が無い場合、全ての蓄電ブロック60A~60Cについて検査が終了と、S110にてYES判定され、全処理は終了する。 Thus, the storage blocks 60A to 60C to be inspected are separated one by one from the common line Lo and inspected for the presence of a micro short circuit. If there is no micro short circuit of the secondary battery 63 for each of the power storage blocks 60A to 60C, the inspection is finished for all the power storage blocks 60A to 60C, YES is determined in S110, and all the processes are finished.
 一方、二次電池63の一部に微小短絡があると判定した場合(S90:N0)、微小短絡を検出した個別管理部77から統合管理部100に対して、検査対象の蓄電ブロック60は微小短絡している旨が通知される。通知を受けた統合管理部100は、検査対象の蓄電ブロック60の交換を促すなどのエラー表示を行う(S120)。 On the other hand, when it is determined that a part of the secondary battery 63 has a micro short circuit (S90: N0), the storage block 60 to be inspected is small from the individual management unit 77 that has detected the micro short circuit to the integrated management unit 100. You are notified that a short circuit has occurred. Upon receiving the notification, the integrated management unit 100 displays an error message such as prompting the replacement of the storage block 60 to be inspected (S120).
 4.効果説明
 検査対象の蓄電ブロック60を共通線Loから切り離すため、微小短絡に起因する電圧変化を正確に検出することが出来る。そのため、微小短絡を精度よく検査することが可能となる。しかも、検査対象の蓄電ブロック60のみ切り離すため、検査中も、他の蓄電ブロック60は共通線Loに接続されており、負荷に電力を供給できる。すなわち、本構成では、蓄電システム50全体を無電流状態にすることなく(UPS10を停止することなく)、二次電池63の微小短絡を精度よく検出できる。
4). Description of Effect Since the storage block 60 to be inspected is separated from the common line Lo, it is possible to accurately detect a voltage change caused by a minute short circuit. For this reason, it is possible to accurately inspect a minute short circuit. In addition, since only the power storage block 60 to be inspected is disconnected, the other power storage blocks 60 are connected to the common line Lo and can supply power to the load even during the inspection. That is, in this configuration, it is possible to accurately detect a minute short circuit of the secondary battery 63 without putting the entire power storage system 50 in a no-current state (without stopping the UPS 10).
 検査対象の蓄電ブロック60A~60Cの切り離し後、変化領域L5にて、二次電池63の電圧を検出し、検出した電圧に基づいて微小短絡を検査する。変化領域L5は、SOCの変化量に対するOCVの変化量が所定値Xより高い高変化領域であり、SOCの変化量に対するOCVの変化量が大きいので、二次電池63の微小短絡を精度よく検査することが出来る。 After the storage blocks 60A to 60C to be inspected are disconnected, the voltage of the secondary battery 63 is detected in the change region L5, and a micro short circuit is inspected based on the detected voltage. The change region L5 is a high change region in which the change amount of the OCV with respect to the change amount of the SOC is higher than the predetermined value X, and the change amount of the OCV with respect to the change amount of the SOC is large. I can do it.
 微小短絡の判定を、同一の二次電池63について、所定時間Tの経過前後の電圧差ΔVに基づいて行う。この方法は、同一の二次電池63の電圧を比較するため、環境温度等に変化がない又は変化が小さい場合、微小短絡に起因する電圧変化を正確に検出することが出来る。そのため、二次電池63の微小短絡を精度よく検査することが出来る。 The determination of the minute short circuit is performed on the same secondary battery 63 based on the voltage difference ΔV before and after the elapse of the predetermined time T. Since this method compares the voltages of the same secondary batteries 63, when there is no change in the environmental temperature or the like, or when the change is small, it is possible to accurately detect the voltage change caused by the minute short circuit. Therefore, a minute short circuit of the secondary battery 63 can be accurately inspected.
 蓄電ブロック60を切り離した時に、各二次電池63の電圧が均等化されており、各二次電池63について、同じ条件で、微小短絡を検出することが出来る。そのため、二次電池63の微小短絡を精度よく検査することが出来る。また、微小短絡の検査と合わせて電圧を均等化できるというメリットがある。 When the storage block 60 is disconnected, the voltage of each secondary battery 63 is equalized, and a minute short circuit can be detected for each secondary battery 63 under the same conditions. Therefore, a minute short circuit of the secondary battery 63 can be accurately inspected. In addition, there is a merit that the voltage can be equalized together with the inspection of the minute short circuit.
 <実施形態2>
 次に、本発明の実施形態2を説明する。
 個別管理部77A~77Cは、各蓄電ブロック60A~60Cにおいて、各二次電池63のSOCを推定する処理を常時行っている。SOCの推定は、下記の(3)式にて示すように、SOCの初期値と、電流センサ67A~67Cにより検出される電流Iの累積積算値とから推定出来る(電流積算法)。電流の符号を、充電時はプラス、放電はマイナスとする。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described.
The individual management units 77A to 77C always perform the process of estimating the SOC of each secondary battery 63 in each of the power storage blocks 60A to 60C. As shown in the following equation (3), the SOC can be estimated from the initial value of the SOC and the cumulative integrated value of the current I detected by the current sensors 67A to 67C (current integrating method). The sign of the current is positive during charging and negative during discharging.
 SOC=SOCo+100×∫Idt/Co・・・・・(3)
 SOCoは、SOCの初期値、Iは電流、Coは満充電容量の初期値である。
SOC = SOCo + 100 × ∫Idt / Co (3)
SOCo is the initial value of SOC, I is the current, and Co is the initial value of the full charge capacity.
 電流積算法においては、電流センサ67A~67Cの計測誤差が蓄積する。そこで、二次電池63の微小短絡を検査する時に、電流積算法によるSOCを補正する処理を行う。 In the current integration method, measurement errors of the current sensors 67A to 67C accumulate. Therefore, when inspecting the minute short circuit of the secondary battery 63, processing for correcting the SOC by the current integration method is performed.
 例えば、1番目の蓄電ブロック60Aについて、微小短絡の検査を行う場合、個別管理部77Aは、S50にて、スイッチ65Aをオンからオフに切り換えて、共通線Loから蓄電ブロック60Aを切り離す。 For example, when performing a micro short circuit inspection for the first power storage block 60A, the individual management unit 77A switches the switch 65A from on to off in S50 to disconnect the power storage block 60A from the common line Lo.
 次に、個別管理部77Aは、S60にて、センサユニット75Aに指令を送り、変化領域L5において、蓄電ブロック60Aを構成する各二次電池63の電圧、すなわちOCVを計測する処理を実行する。1回目の電圧計測から所定時間Tが経過すると(S70)、個別管理部77Aは、センサユニット75Aに指令を送り、蓄電ブロック60Aを構成する各二次電池63の電圧、すなわちOCVを計測する処理を実行する(S80)。 Next, in S60, the individual management unit 77A sends a command to the sensor unit 75A, and executes a process of measuring the voltage of each secondary battery 63 constituting the power storage block 60A, that is, the OCV, in the change region L5. When the predetermined time T elapses from the first voltage measurement (S70), the individual management unit 77A sends a command to the sensor unit 75A, and measures the voltage of each secondary battery 63 constituting the power storage block 60A, that is, OCV. Is executed (S80).
 個別管理部77Aは、S80にて2回目の電圧計測後、各二次電池63のOCVの計測値を、図4に示すSOC-OCV相関グラフに参照することにより、各二次電池63のSOCを推定する(OCV法)。例えば、OCVの計測値が「OCV1」の場合、二次電池のSOCは「SOC1」と推定できる。 After the second voltage measurement in S80, the individual management unit 77A refers to the SOC-OCV correlation graph shown in FIG. 4 to determine the SOC value of each secondary battery 63 by referring to the OCV measurement value of each secondary battery 63. Is estimated (OCV method). For example, when the measured value of OCV is “OCV1”, the SOC of the secondary battery can be estimated as “SOC1”.
 SOCの推定後は、OCV法で求めたSOCを初期値として、電流積算法でSOCを推定する。このようにすることで、電流積算法によるSOCを補正することが出来る。この方法では、二次電池63の微小短絡の検査と合わせてSOCを補正することが出来る。また、蓄電ブロック60A~60Cを切り離した状態、すなわち無電流状態でSOCを補正するので、SOCを高精度に補正できる。個別管理部77A~77Cは、本発明の「補正部」に相当する。 After the estimation of the SOC, the SOC obtained by the OCV method is used as an initial value, and the SOC is estimated by the current integration method. By doing in this way, SOC by the current integration method can be corrected. In this method, the SOC can be corrected together with the inspection of the micro short circuit of the secondary battery 63. In addition, since the SOC is corrected in a state where the power storage blocks 60A to 60C are disconnected, that is, in a no-current state, the SOC can be corrected with high accuracy. The individual management units 77A to 77C correspond to the “correction unit” of the present invention.
 <他の実施形態>
 本発明は上述した実施形態に限定されるものではない。
<Other embodiments>
The present invention is not limited to the embodiment described above.
 (1)実施形態1では、蓄電システム50をUPSに適用した。蓄電システム50は、UPSに限らず、太陽光発電システムなど、他の用途に適用してもよい。 (1) In the first embodiment, the power storage system 50 is applied to the UPS. The power storage system 50 is not limited to UPS, and may be applied to other uses such as a solar power generation system.
 (2)実施形態1では、所定値Xを35[mV/%]とし、変化領域L5内において、微小短絡の検査を行った。所定値Xは検査精度とトレードオフの関係にあり、要求される検査精度に応じて適宜設定することが出来る。所定値Xは、少なくとも10[mV/%]以上であればよく、変化領域L5に加え、変化領域L3内でも微小短絡の検査を行うことが出来る。 (2) In the first embodiment, the predetermined value X is set to 35 [mV /%], and the minute short circuit is inspected in the change region L5. The predetermined value X has a trade-off relationship with the inspection accuracy, and can be set as appropriate according to the required inspection accuracy. The predetermined value X may be at least 10 [mV /%] or more, and in addition to the change region L5, the minute short circuit can be inspected also in the change region L3.
 リン酸鉄系のリチウムイオン二次電池63は、図4に示すように、変化領域L5内においても、満充電(SOC=100%)に近くなるほど、グラフの傾きが急になっている。グラフの傾きが大きい(SOCの変化量に対するOCVの変化量が高い)程、微小短絡の検査精度は高まる。所定値Xの最適値は、100[mV/%]であり、変化領域L5のうち、SOCの変化量に対するOCVの変化量が100[mV/%]を超える領域(SOCで98%以上の領域)を対象として、微小短絡の検査を行ってもよい。 As shown in FIG. 4, the iron phosphate-based lithium ion secondary battery 63 has a steeper graph as it approaches the full charge (SOC = 100%) even in the change region L5. The greater the slope of the graph (the higher the amount of change in OCV with respect to the amount of change in SOC), the higher the inspection accuracy for micro shorts. The optimum value of the predetermined value X is 100 [mV /%], and in the change region L5, the region where the change amount of the OCV with respect to the change amount of the SOC exceeds 100 [mV /%] (the region where the SOC is 98% or more) ) May be inspected for micro short circuits.
 (3)実施形態1では、リン酸鉄系のリチウムイオン二次電池63を例示した。代替的に、蓄電素子は、例えば、正極活物質にCo,Mn,Niの元素を含有したリチウム含有金属酸化物、負極にハードカーボンを用いた三元系のリチウムイオン二次電池でもよい。蓄電素子は、他の二次電池やキャパシタでもよい。図6は、三元系のリチウムイオン二次電池のSOC-OCV相関グラフである。三元系のリチウムイオン二次電池は、SOCが30%以下の範囲で、SOCの変化量に対するOCVの変化量が概ね10[mV/%]以上である。従って、SOCが30%以下の範囲にて、微小短絡の検査を行うとよい。 (3) In Embodiment 1, the iron phosphate-based lithium ion secondary battery 63 is exemplified. Alternatively, the power storage element may be, for example, a ternary lithium ion secondary battery using a lithium-containing metal oxide containing Co, Mn, and Ni elements as a positive electrode active material and hard carbon as a negative electrode. The storage element may be another secondary battery or a capacitor. FIG. 6 is an SOC-OCV correlation graph of a ternary lithium ion secondary battery. In the ternary lithium ion secondary battery, the SOC is 30% or less, and the change amount of the OCV with respect to the change amount of the SOC is approximately 10 [mV /%] or more. Therefore, it is preferable to perform a micro short circuit inspection in a range where the SOC is 30% or less.
 (4)実施形態1では、複数の二次電池セル63を直列に接続した。代替的に、二次電池63は単セルでもよい。 (4) In the first embodiment, a plurality of secondary battery cells 63 are connected in series. Alternatively, the secondary battery 63 may be a single cell.
 (5)実施形態1では、スイッチ65の切り換え後、各二次電池63の電圧を、所定時間Tが経過する前後で計測した。同一の二次電池63について、所定時間経過前後の電圧差ΔVを求めて、閾値と比較することにより、微小短絡の有無を検出した。代替的に、検査対象となる蓄電ブロック60を構成する全二次電池63について、所定時間経過前後の電圧差ΔVを求めて、その平均値を算出してもよい。各二次電池63について、所定時間経過前後の電圧差ΔVを、全二次電池63の電圧差ΔVの平均値と比較する。比較した結果、閾値以上の電圧低下が発生している場合、微小短絡有りと判定し、電圧低下が発生していない場合、微小短絡無しと判定してもよい。この構成では、環境温度に変化がある場合でも、二次電池63の微小短絡を精度よく検査することが出来る。 (5) In the first embodiment, after the switch 65 is switched, the voltage of each secondary battery 63 is measured before and after the predetermined time T elapses. With respect to the same secondary battery 63, the voltage difference ΔV before and after the lapse of a predetermined time was obtained and compared with a threshold value to detect the presence or absence of a micro short circuit. Alternatively, the voltage difference ΔV before and after the elapse of a predetermined time may be obtained for all the secondary batteries 63 constituting the power storage block 60 to be inspected, and the average value may be calculated. For each secondary battery 63, the voltage difference ΔV before and after the predetermined time elapses is compared with the average value of the voltage differences ΔV of all the secondary batteries 63. As a result of comparison, if a voltage drop equal to or greater than the threshold value has occurred, it may be determined that there is a micro short circuit, and if no voltage drop has occurred, it may be determined that there is no micro short circuit. With this configuration, even when the environmental temperature changes, a minute short circuit of the secondary battery 63 can be accurately inspected.
 (6)実施形態1では、スイッチ65の切り換え後、各二次電池63の電圧を、所定時間Tが経過する前後で計測した。同一の二次電池63について、所定時間経過前後の電圧差ΔVを求めて、閾値と比較することにより、微小短絡の有無を検出した。代替的に、スイッチ65の切り換え後、所定時間Tが経過した時点において、各二次電池間での電圧差を求めて、閾値と比較することにより、微小短絡の有無を検出してもよい。スイッチ65の切り換え後、所定時間Tが経過した時点において、各二次電池63の電圧を閾値と比較することにより、微小短絡の有無を検出してもよい。 (6) In the first embodiment, after the switch 65 is switched, the voltage of each secondary battery 63 is measured before and after the predetermined time T elapses. With respect to the same secondary battery 63, the voltage difference ΔV before and after the lapse of a predetermined time was obtained and compared with a threshold value to detect the presence or absence of a micro short circuit. Alternatively, when the predetermined time T has elapsed after the switch 65 is switched, the voltage difference between the secondary batteries may be obtained and compared with a threshold value to detect the presence or absence of a micro short circuit. The presence or absence of a micro short-circuit may be detected by comparing the voltage of each secondary battery 63 with a threshold value when a predetermined time T elapses after the switch 65 is switched.
 (7)実施形態1では、検査対象の蓄電ブロック60A~60Cを1つずつ切り離して、蓄電ブロック60A~60Cについて微小短絡の検査を行った。微小短絡の検査は、蓄電システム50を停止させずに実行出来ればよく、例えば、2つの蓄電ブロック60A、60Bを同時に切り離して微小短絡の検査を行い、その間、蓄電ブロック60Cを接続状態として負荷に電力を供給してもよい。 (7) In the first embodiment, the power storage blocks 60A to 60C to be inspected are separated one by one, and the power storage blocks 60A to 60C are inspected for micro short circuits. The inspection of the micro short circuit may be performed without stopping the power storage system 50. For example, the two power storage blocks 60A and 60B are disconnected at the same time, and the micro short circuit is inspected. Electric power may be supplied.
 (8)実施形態1では、統合管理部100から各個別管理部77A~77Cに対して微小短絡の検査の実行指令を順に送ることにより、各蓄電ブロック60A~60Cを共通線Loから順に切り離して微小短絡の検査を行った。統合管理部100は必ずしも必要ではなく、各個別管理部77A~77C間で、検査状況など必要な情報を通信し合って、微小短絡の検査を順に行うようにしてもよい。 (8) In the first embodiment, the integrated management unit 100 sequentially sends a micro short circuit inspection execution command to the individual management units 77A to 77C, thereby separating the power storage blocks 60A to 60C from the common line Lo in order. A micro short circuit was inspected. The integrated management unit 100 is not always necessary, and the individual management units 77A to 77C may communicate necessary information such as the inspection status and inspect the micro short circuit in order.
 (9)実施形態1では、蓄電システムへの充電を制御する充電制御回路41を設けた。代替的に、充電制御回路41を半導体スイッチ等で代用し、半導体スイッチのオン、オフを制御することにより、蓄電システムへの充電を制御するようにしてもよい。 (9) In the first embodiment, the charge control circuit 41 that controls the charging of the power storage system is provided. Alternatively, the charging control circuit 41 may be replaced with a semiconductor switch or the like, and charging to the power storage system may be controlled by controlling on / off of the semiconductor switch.
 10 UPS
 50 蓄電システム
 60A~60C 蓄電ブロック
 65A~65C スイッチ
 71 放電回路
 77A~77C 個別管理部(「検査部」、「補正部」に相当)
 100 統合管理部
 Lo 共通線
 La~Lc 並列線
10 UPS
50 Power storage system 60A to 60C Power storage block 65A to 65C Switch 71 Discharge circuit 77A to 77C Individual management unit (corresponding to “inspection unit” and “correction unit”)
100 Integrated Management Department Lo Common Line La ~ Lc Parallel Line

Claims (10)

  1.  並列線によって並列に共通線に接続された複数の蓄電ブロックを備える蓄電システムであって、
     前記蓄電ブロックのそれぞれは、
     直列に接続された複数の蓄電素子と、
     前記並列線に設けられたスイッチとを備え、
     前記蓄電システムは、前記スイッチをオンからオフに切り換えることにより、前記蓄電ブロックの複数の蓄電素子を前記共通線から切り離して、前記複数の蓄電素子における微小短絡を検査する検査部を更に備える、蓄電システム。
    A power storage system comprising a plurality of power storage blocks connected in parallel by a parallel line to a common line,
    Each of the storage blocks
    A plurality of power storage elements connected in series;
    A switch provided on the parallel line,
    The power storage system further includes an inspection unit that disconnects the plurality of power storage elements of the power storage block from the common line by switching the switch from on to off, and inspects a micro short circuit in the plurality of power storage elements. system.
  2.  請求項1に記載の蓄電システムであって、
     前記スイッチを1つずつオンからオフに切り換えることにより、検査対象の蓄電ブロックを1つずつ切り離して、前記蓄電素子の微小短絡を検査する、蓄電システム。
    The power storage system according to claim 1,
    A power storage system that inspects a micro short-circuit of the power storage element by disconnecting the power storage blocks to be inspected one by one by switching the switches from on to off one by one.
  3.  請求項1又は請求項2に記載の蓄電システムであって、
     前記検査部は、前記スイッチをオフに切り換えてから所定時間経過後の前記蓄電素子の電圧に基づいて、蓄電素子の微小短絡を検査する、蓄電システム。
    The power storage system according to claim 1 or 2,
    The said test | inspection part test | inspects the micro short circuit of an electrical storage element based on the voltage of the said electrical storage element after predetermined time progress, after switching the said switch off.
  4.  請求項1ないし請求項3のいずれか一項に記載の蓄電システムであって、
     前記検査部は、前記蓄電素子の所定時間経過前後の電圧差に基づいて、蓄電素子の微小短絡を検査する、蓄電システム。
    The power storage system according to any one of claims 1 to 3,
    The said test | inspection part is an electrical storage system which test | inspects the micro short circuit of an electrical storage element based on the voltage difference before and behind predetermined time progress of the said electrical storage element.
  5.  請求項1ないし請求項3のいずれか一項に記載の蓄電システムであって、
     前記検査部は、前記蓄電素子の所定時間経過前後の電圧差を、前記蓄電ブロックを構成する全蓄電素子の所定時間経過前後の電圧差の平均値と比較した結果に基づいて、蓄電素子の微小短絡を検査する、蓄電システム。
    The power storage system according to any one of claims 1 to 3,
    The inspection unit compares the voltage difference of the power storage element before and after the elapse of a predetermined time with the average value of the voltage difference before and after the elapse of the predetermined time of all the power storage elements constituting the power storage block. A power storage system that checks for short circuits.
  6.  請求項1ないし請求項5のいずれか一項に記載の蓄電システムであって、
     前記蓄電素子は、SOC-OCV特性においてSOCの変化量に対するOCVの変化量が所定値より高い高変化領域を有し、
     前記検査部は、検査対象の蓄電ブロックの切り離し後、
     前記高変化領域にて前記蓄電素子の電圧を検出し、検出した電圧に基づいて微小短絡を検査する、蓄電システム。
    The power storage system according to any one of claims 1 to 5,
    The storage element has a high change region in which the change amount of the OCV with respect to the change amount of the SOC is higher than a predetermined value in the SOC-OCV characteristics,
    The inspection unit, after separating the storage block to be inspected,
    A power storage system that detects a voltage of the power storage element in the high change region and inspects a micro short circuit based on the detected voltage.
  7.  請求項6に記載の蓄電システムであって、
     前記高変化領域にて検出した前記蓄電素子の電圧に基づいて、前記蓄電素子のSOCを補正する補正部を更に備える、蓄電システム。
    The power storage system according to claim 6,
    A power storage system further comprising a correction unit that corrects the SOC of the power storage element based on the voltage of the power storage element detected in the high change region.
  8.  請求項6又は請求項7に記載の蓄電システムであって、
     前記蓄電ブロックは、
     直列に接続された複数の蓄電素子に対応してそれぞれ設けられた均等化回路を含み、
     前記検査部は、前記高変化領域において、前記均等化回路を動作させて、前記複数の蓄電素子の電圧を均等化してから、前記スイッチをオフに切り換えて検査対象となる蓄電ブロックを切り離す、蓄電システム。
    The power storage system according to claim 6 or 7,
    The power storage block is:
    Including an equalization circuit provided corresponding to each of a plurality of power storage elements connected in series,
    The inspection unit operates the equalization circuit in the high change region to equalize the voltages of the plurality of power storage elements, and then switches off the switch to disconnect a power storage block to be inspected. system.
  9.  請求項1~請求項8のいずれか一項に記載の蓄電システムであって、
     前記蓄電素子は、SOC-OCV特性において平坦なプラトー領域を有するリチウムイオン二次電池である、蓄電システム。
    The power storage system according to any one of claims 1 to 8,
    The power storage system, wherein the power storage element is a lithium ion secondary battery having a flat plateau region in SOC-OCV characteristics.
  10.  複数の蓄電ブロックを並列に接続する並列線に設けられたスイッチをオンからオフに切り換えて所定の蓄電ブロックを前記共通線から切り離すこと、
     前記蓄電システムの運用を継続しながら前記切り離した蓄電ブロックに含まれる複数の蓄電素子における微小短絡を検査すること、を備える微小短絡の検査方法。
    Switching a switch provided on a parallel line connecting a plurality of power storage blocks in parallel from on to off to disconnect a predetermined power storage block from the common line;
    A micro short-circuit inspection method comprising: inspecting micro short circuits in a plurality of power storage elements included in the separated power storage block while continuing operation of the power storage system.
PCT/JP2018/017016 2017-05-01 2018-04-26 Power storage system and method for inspecting minute short-circuiting WO2018203509A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515711A JP7314795B2 (en) 2017-05-01 2018-04-26 Storage system and inspection method for minute short circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-091145 2017-05-01
JP2017091145 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203509A1 true WO2018203509A1 (en) 2018-11-08

Family

ID=64016628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017016 WO2018203509A1 (en) 2017-05-01 2018-04-26 Power storage system and method for inspecting minute short-circuiting

Country Status (2)

Country Link
JP (1) JP7314795B2 (en)
WO (1) WO2018203509A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653204A (en) * 2019-10-10 2021-04-13 三星Sdi株式会社 Battery system and control method thereof
JP2022053841A (en) * 2020-09-25 2022-04-06 株式会社エヌエステイー Lithium-ion battery characteristic measurement method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283922A (en) * 2009-06-02 2010-12-16 Toyota Motor Corp Control apparatus for vehicle
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly
WO2016147311A1 (en) * 2015-03-17 2016-09-22 株式会社東芝 Storage-battery management device, method, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580123B2 (en) * 1998-03-20 2004-10-20 富士通株式会社 Battery device
JP4588614B2 (en) * 2005-10-31 2010-12-01 矢崎総業株式会社 Battery cell short detection method and apparatus
JP4658795B2 (en) * 2005-12-27 2011-03-23 プライムアースEvエナジー株式会社 Battery inspection device, voltage measuring instrument, and fixture
JP2009049005A (en) * 2007-07-26 2009-03-05 Panasonic Corp Device and method for battery internal short circuit detection, battery pack, and electronic device system
JP5773609B2 (en) * 2010-10-18 2015-09-02 株式会社Nttファシリティーズ Battery pack management apparatus, battery pack management method, and battery pack system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283922A (en) * 2009-06-02 2010-12-16 Toyota Motor Corp Control apparatus for vehicle
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly
WO2016147311A1 (en) * 2015-03-17 2016-09-22 株式会社東芝 Storage-battery management device, method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653204A (en) * 2019-10-10 2021-04-13 三星Sdi株式会社 Battery system and control method thereof
EP3806228A1 (en) * 2019-10-10 2021-04-14 Samsung SDI Co., Ltd. Battery system and control method thereof
EP3937293A1 (en) * 2019-10-10 2022-01-12 Samsung SDI Co., Ltd. Battery system and control method thereof
US11289925B2 (en) 2019-10-10 2022-03-29 Samsung Sdi Co., Ltd. Battery system including battery modules connected between system terminals and control method thereof
TWI776155B (en) * 2019-10-10 2022-09-01 南韓商三星Sdi股份有限公司 Battery system and control method thereof
JP2022053841A (en) * 2020-09-25 2022-04-06 株式会社エヌエステイー Lithium-ion battery characteristic measurement method and system
JP7217538B2 (en) 2020-09-25 2023-02-03 株式会社エヌエステイー METHOD AND SYSTEM FOR MEASURING CHARACTERISTICS OF LITHIUM-ION BATTERY

Also Published As

Publication number Publication date
JP7314795B2 (en) 2023-07-26
JPWO2018203509A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
CN106537718B (en) Battery management
US8653792B2 (en) Power storage system including a plurality of battery modules and on/off devices or voltage converters
JP5499200B2 (en) Degradation determination apparatus, deterioration determination method, and program
US11721847B1 (en) Estimation of self discharge rate as a measure of battery health
US10838013B2 (en) Management apparatus and power storage system
US11965936B2 (en) Battery diagnosis apparatus and method
CN112740504B (en) Detection of abnormal self-discharge of lithium ion battery cells and battery system
US9885760B2 (en) Battery apparatus and battery system
JP2015080334A (en) Power storage system
JP2008288192A (en) Abnormality detecting device, method, and program of battery device
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
JP6589368B2 (en) Power supply apparatus and diagnostic method for diagnosing abnormality of power supply apparatus
JP6733783B2 (en) Power supply device and diagnostic method for diagnosing abnormality of power supply device
KR101291287B1 (en) Equipped with a spare battery for the maintenance of UPS Systems
KR20200135046A (en) Cell balancing method and battery management system using the same
WO2018203509A1 (en) Power storage system and method for inspecting minute short-circuiting
KR20220117040A (en) Battery management system, battery pack, energy storage system, and battery management method
US20180069270A1 (en) Storage battery management device, method and computer program product
US20220376519A1 (en) Individual discharge system and method for battery racks
CN112083342B (en) Method and apparatus for monitoring battery
KR101927845B1 (en) Battery testing device and method thereof
US20240053411A1 (en) Storage battery management device and method for managing battery device
JP2022508101A (en) Battery management system
WO2023140278A1 (en) Deterioration determining device, and deterioration determining method
JP2003014828A (en) Capacitor and voltage detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794058

Country of ref document: EP

Kind code of ref document: A1