WO2018202686A1 - Natural flavor base and process for its preparation - Google Patents

Natural flavor base and process for its preparation Download PDF

Info

Publication number
WO2018202686A1
WO2018202686A1 PCT/EP2018/061161 EP2018061161W WO2018202686A1 WO 2018202686 A1 WO2018202686 A1 WO 2018202686A1 EP 2018061161 W EP2018061161 W EP 2018061161W WO 2018202686 A1 WO2018202686 A1 WO 2018202686A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture medium
natural
process according
lysine
bacterial strain
Prior art date
Application number
PCT/EP2018/061161
Other languages
French (fr)
Inventor
Zhicui ZHANG
Ayrine Natalie CHIU
Josef Kerler
Muller JEROEN ANDRÉ
Helge Ulmer
Original Assignee
Nestec S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec S.A. filed Critical Nestec S.A.
Publication of WO2018202686A1 publication Critical patent/WO2018202686A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • A23L27/215Synthetic spices, flavouring agents or condiments containing amino acids heated in the presence of reducing sugars, e.g. Maillard's non-enzymatic browning
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/24Synthetic spices, flavouring agents or condiments prepared by fermentation

Definitions

  • the present invention relates to a process for preparing a natural flavor base and a flavor base obtainable by such process.
  • a further aspect of the invention is a method for providing a natural milky flavor note to a food product.
  • Additives such as purified amino acids, vitamins or flavor molecules are commonly used to enhance body and taste in flavour reactions and composition in food products.
  • the problem with using these additives is that they are not considered as being natural as they are typically obtained first by purification or chemical synthesis involving one or more non-natural processing steps such as elution from impurities with using chemical eluents, or chemical synthetic reactions.
  • An example would be methods for preparing L-cysteine by two steps (fermentation and chemical reduction). For this reason, it is desirable to have flavoring components prepared using natural processes such as fermentation only and omitting any chemical production steps.
  • WO 2009/040150 discloses a natural shelf-stable taste enhancing savoury base produced by fermentation using a microorganism of the genus Corynebacterium, Brevibacterium or Bacillus.
  • the savoury base comprises an amount between 10 and 80% by weight of naturally derived compounds such as glutamate, inosine monophosphate (IMP), and guanosine monophosphate (GMP); and further naturally derived compounds selected from the group consisting of organic acids, amino acids, peptides and aroma compounds; and a low fat content of the savoury base in the range of 0 to 15% by weight.
  • the disclosed savory base improves the umami taste in food products. However, it does not provide a top-flavor note by itself.
  • EP0357812 describes a process for improving the flavour of protein products derived from microorganisms which comprises culturing the microorganism in the presence of a flavour enhancing additive, heat treating the resulting ferment, and then drying of same in the absence of a centrifugation.
  • flavour enhancing additives added during the fermentation are animal by-products (beef extract, pork extract, or chicken extract) or fatty acids produced by adding a dairy product precursor and lipase.
  • the additive is used 0.5-5 wt. %.
  • the objective is to produce protein-rich food stuff and not an intermediate ingredient rich in precursors that can be used in subsequent flavour reactions.
  • Yeast extract as a natural source of amino acids may be added to food products, and/or used in thermal reaction flavor processes.
  • An example is provided in US 4,879,130.
  • yeast extract usually adds a typical yeasty note or off- flavor to such flavor bases and food products. This is usually not very liked by many consumers, particularly in Europe and the USA.
  • EP 1582101 Al describes a method for preparing a granular animal feed additive which comprises lysine.
  • the method includes: filtering, with a membrane filter, a fermentation broth obtained from a lysine producing microorganism cultured in a lysine producing condition to obtain a lysine-containing filtrate and a microorganism- containing sludge; drying the filtrate to obtain a concentrate with a total solid content of 48 to 52 wt%; granule-drying the concentrate at a temperature of 50 °C to 60°C to obtain granules; and coating the granules with a coating agent containing one or more selected from the group consisting of the sludge, a diluent or a free lysine as a lysine content adjustor, and a moisture prevention agent, to obtain lysine granules.
  • US 2008/299606 Al relates to process for the fermentative production of lysine, from milled cereal kernels.
  • the millbase comprises at least 50% by weight of the nonstarchy solid constituents present in the milled cereal kernels.
  • the millbase is liquefied enzymatically and optionally saccharified.
  • the millbase is mixed to a fermentation medium comprising a microorganism which is capable of overproducing the lysine under fermentation conditions. This document does not relate to the provision of flavoured compositions.
  • WO 2007/121100 A2 relates to compositions and methods designed to increase the nutritional value of the by-product of a fermentation reaction for the production of ethanol. This is achieved in particular by using microorganisms in a fermentation process that have been modified to increase production of an essential amino acid. This document does not address the provision of flavoured compositions.
  • flavour bases which are considered absolutely natural by consumers and which at the same time can also provide new and more complete and authentic flavour profiles and flavour top- notes.
  • the object of the present invention is to improve the state of the art and to provide a new process for preparing a natural flavour base which is considered all natural by consumers and which provides an improved and all natural flavour profile to food products.
  • a further object of the present invention is a method for providing a natural and authentic milky flavor note to a food, a beverage or a seasoning product.
  • the present invention provides in a first aspect a process for preparing a natural flavor base composition comprising the steps of: - culturing a bacterial strain in a culture medium to produce and accumulate L-lysine and/or a derivative thereof in the culture medium to a concentration of at least 1.0 wt% of the culture medium;
  • the invention relates to a natural flavor base obtainable by the process of the present invention.
  • a third aspect of the invention relates to the use of the present natural flavor base of the present invention for adding a milky, a nutty, a fruity, a prune and/or a caramel flavored note to a food product.
  • a still further aspect of the invention is a method for providing a natural milky, a natural nutty, a natural fruity, a natural prune and/or a natural caramel flavored flavor note to a food product comprising the step of adding the natural flavor base of the present invention into the recipe of a said food product.
  • a culture of a bacterial strain such as for example a Corynebacterium glutamicum, which is cultivated either in such a way that it overproduces L-lysine or conditioned in such a way that it overproduces L-lysine, can be directly used in a thermal reaction process to generate a savory flavor base which is perceived by consumers as all natural and which has surprisingly even an improved milky flavor profile in comparison to prior art savory flavor bases.
  • a bacterial culture can be taken as such, i.e. without separating the bacterial cells from the culture medium after the fermentation step, or alternatively, the bacterial cells can first be removed from the culture medium after fermentation by sedimentation, centrifugation and/or filtration.
  • the culture medium can then be concentrated in order to remove a substantial amount of the water present in the cultured medium.
  • a paste of concentrated cultured medium can be obtained having a residual moisture content of only ca. 5 to 40wt%.
  • a reducing sugar for example glucose
  • the mixture further processed by thermally reacting the mix at a temperature above 75°C, preferably above 85°C. This thermally induced chemical reaction is also known under the term Maillard reaction.
  • the reaction end-product can then be further concentrated, e.g. into a paste, or dried into a powder.
  • Figure 1 Sensory evaluation of the samples 1-4, labelled 1 to 4 respectively.
  • A stands for milky
  • B for nutty
  • C for caramel
  • D for maple syrup
  • E for fruity
  • F for prune.
  • the present invention relates to a process for preparing a natural flavor base composition comprising the steps of: - culturing a bacterial strain in a culture medium to produce and accumulate L-lysine and/or a derivative thereof in the culture medium to a concentration of at least 1.0 wt% of the culture medium;
  • natural of the present invention means “made by natural produce", i.e. the flavor base composition is made by fermentation and heat treatment only. Therefore, “natural” also means that the flavor base composition does not comprise and is not made with an addition of artificial chemical compounds such as synthetically produced and/or chemically purified molecules. Examples of such undesired molecules are flavoring compounds, colorants, antimicrobial compounds, vitamins, amino acids, organic acids, alcohols, and esters.
  • the "culturing a bacterial strain” is by fermentation. Typically, such fermentations are submerged and conducted in closed or open fermentation reactors.
  • the choice and composition of the culture medium depends on the choice of the bacterial strain selected for producing and accumulating L-lysine and/or a derivative thereof in said culture medium.
  • the skilled person familiar with the fermentation processes of a selected bacterial strain knows and can readily compose a culture medium which is appropriate for the respective culturing process.
  • the bacterial strain for the process of the present invention is belonging to a genus selected from Corynebacterium, Arthrobacter, Brevibacterium, Bacillus or Microbacterium.
  • the derivative of L-lysine is hydroxylysine.
  • the culturing of the bacterial strain produces and accumulates L-lysine and/or a derivative thereof to a concentration of at least 1.5 wt%, more preferably to at least 2.0 wt%, even more preferably to at least 2.5 wt% of the culture medium. Concentrations of L-lysine and/or a derivative thereof would more preferably be even above 3 wt%, 4 wt%, 5 wt% or even 10 wt% of the culture medium.
  • the process of the present invention further comprises a step of heat inactivation of the bacterial strain after the culturing step.
  • This heat inactivation is done after termination of the fermentation process, i.e. at the end of the growth phase of the bacterial cells in the culture medium, and results in an inactivation of the viability of the bacterial cells, including an inactivation of enzymes which have been released or are still contained within the bacterial cells.
  • Heat inactivation potentially prevents a degradation of the complex composition of the culture medium after the culturing step as to e.g. uncontrolled further growth and/or metabolism of the bacteria and/or uncontrolled further activity of certain enzymes.
  • the bacterial strains are separated from the culture medium after the culturing step, i.e. after the fermentation process. Separation of the bacterial strain from the culture medium can typically be obtained by sedimentation, centrifugation and/or filtration.
  • An advantage of this embodiment may be that further handling of the culture medium in the process of the present invention is easier in an industrial setting. Furthermore, the risk of the bacterial strains to potentially degrade the quality of the achieved culture medium once the fermentation process has been terminated is reduced.
  • the culture medium can be concentrated after the culturing step. This can be done with or without previous separation of the bacterial strain from the culture medium. Consequently, a concentrated culture medium according to this embodiment may or may not comprise bacterial cells.
  • concentrating the culture medium after the culturing step is by partial or total evaporation of water present in the culture medium.
  • the resulting concentrated culture medium is in the form of a paste. Such a paste may still have a water content of between 5-40wt%, preferably of between 15-35wt%.
  • One of the advantages of this embodiment is that it allows conducting the thermal chemical reaction step together with the reducing sugar in a more concentrated form. Efficiency and yield of such a chemical reaction will be substantially increased.
  • the reducing sugar added to the culture medium after termination of the culturing step is a 4, 5 or 6 carbon atoms comprising monosaccharide.
  • a disaccharide reducing sugar can be used as well.
  • the reducing sugar is selected from the group consisting of glucose, xylose, ribose, rhamnose, fructose, maltose, lactose, arabinose or a combination thereof.
  • the most preferred sugar is glucose.
  • the reducing sugar is added as a sweetening composition, such as malt extract or syrup.
  • the reducing sugar is added to the medium in an amount of 1:5 to 10:1 (w/w) ratio suganlysine, preferably in an amount of 1:1 to 5:1 (w/w) ratio suganlysine.
  • the ration suganlysine is to be understood as the (weight/weight) ratio of reducing sugar versus L-lysine and/or a derivative thereof. The inventors have found that the addition of reducing sugar to the culture medium after the culturing step within this range of ratio provides the best results as to the generation of a typical desired milky flavor profile in the following chemical thermal reaction process.
  • the process of the present invention comprises a step of thermally reacting the culture medium after the addition of the reducing sugar at a temperature from 75 - 170°C for at least 5 minutes, preferably at least 10 minutes.
  • This step is a chemical reaction step between different components present in the culture medium after the addition of the reducing sugar and which is thermally induced.
  • This thermal reaction step is also commonly known as Maillard reaction. It is during this thermal reaction step that different precursor molecules from the culture medium react chemically for example with the reducing sugar, resulting in new flavor and taste active molecules. It is finally the ensemble of the selected culture medium of the present invention together with the reducing sugar that provide the full new and improved flavor profile of this natural flavor base after the thermally induced reaction step.
  • the thermal reaction step of the process of the present invention is at a temperature from 85-150°C, more preferably from 95-130°C.
  • the culture medium after the addition of the reducing sugar and after the thermal reaction step, is dried to a powder. Drying can for example be achieved by spray drying or vacuum drying.
  • the obtained natural flavor base composition can be better integrated into non-liquid seasoning products such as e.g. seasoning powders or seasoning tablets.
  • a further aspect of the present invention is a natural flavor base obtainable by the process of the present invention.
  • this new natural flavor base has an improved milky flavor note and is therefore distinguishable from similar prior art flavor bases.
  • this new natural flavor base has further improved caramel, pop-corn, biscuit and buttery flavor notes as compared to respective reference flavor base products.
  • a still further aspect of the present invention is the use of the present natural flavor base for adding a milky, a nutty, a fruity, a prune and/or a caramel flavored note to a food product.
  • the food product is selected from the group consisting of culinary soups, noodles, bouillons, sauces, seasonings, ready-to-eat meal preparations, instant and ready-to-drink beverage preparations, cookies, cakes, snacks, dough products and wafers, ice-cream and frozen confectionery, chilled dairy products, milk-based powder compositions, dairy-based drinks, and dessert preparations.
  • the culinary soups, bouillons, sauces or seasonings products of the present invention are in the form of a powder, liquid, granulated product, tablet or paste.
  • the food product is a ready-to-eat meal preparation, a snack or a dough product, it is preferably frozen.
  • chilled dairy products include fermented milks, creme desserts, or dairy-based desserts.
  • a still further aspect of the present invention is a method for providing a natural milky, a natural caramel, a natural pop-corn, a natural biscuit and/or a natural buttery flavor note to a food product or a beverage product, comprising the step of adding the natural flavor base of the present invention into the recipe of said food product or beverage product.
  • the method is for providing a natural milky flavor note to a food or culinary seasoning product.
  • a cultured medium with a Corynebacterium was prepared as basically described in WO2009/040150. Thereby, a bacterial Corynebacterium glutomicum strain was grown in a culture medium comprising glucose as substrate for growth, at pH 6-7 and temperature 37°C for about 36 hours.
  • the bacterial strain was inactivated with a heat treatment and the bacterial cells separated from the fermentation medium by filtration.
  • the filtrate, presenting the cultured medium, was then concentrated into a powder by spray- drying.
  • the obtained cultured medium powder had an amino acid and natural organic acid composition as shown in Table 1.
  • the respective amounts are provided in %w/w of total culture medium after fermentation and filtration, but before concentration.
  • Table 1 Composition based on dry matter
  • a reference sannple with an equivalent amount of pure L-lysine in a buffered aqueous solution i.e. 3wt% solution at pH 6.5
  • 22.5wt% glucose was added to the L-lysine solution resulting in a glucose-lysine solution in water with a same glucose:lysine ratio of 3:1 as the culture medium mixture in Example 1.
  • This reference sample was then subjected to the same thermal heat reaction for 10 min to 115°C as the mixture in Example 1, and then cooled thereafter to room temperature. It will be referred to as sample 2.
  • Example 4 A further reference sample was prepared where the cultured medium with the Corynebacterium glutomicum strain of Example 1 was used without the addition of L- lysine.
  • the powdered culture medium after the spray-drying was dissolved in water to give a 25% (w/w) solution. Thereafter, 22.5wt% glucose was added to the solution.
  • the reconstituted cultured medium has a concentration of natural L-lysine of 0.02 wt%. Consequently, the culture medium with the added glucose has a glucose:lysine ratio of 9:0.
  • the mixture was then subjected to a thermal heat reaction for 10 min to 115°C, and cooled thereafter to room temperature. It will be referred to as sample 3.
  • Example 4 Example 4:
  • a further sample was prepared where the cultured medium with a Corynebacterium glutomicum naturally overproducing L-lysine was used. No additional L-lysine was added. A cultured medium comprising 3wt% L-lysine was obtained. The culture medium was spray-dried and thereafter dissolved in water to give a 25% (w/w) solution. Thereafter, 22.5wt% glucose was added to the solution. The powdered cultured medium had a concentration of natural L-lysine of 30 wt%. Consequently, the culture medium with the added glucose had a glucose:lysine ratio of 3:1. The mixture was then subjected to a thermal heat reaction for 10 min to 115°C, and cooled thereafter to room temperature. It will be referred to as sample 4.
  • Example 5 Example 5:
  • the samples 1 to 4 were subjected to a sensory evaluation by a six-member trained panel.
  • the obtained reacted mixtures were split into 12 tasting cups.
  • the panel members were asked to come up with flavour descriptors they associate with the samples tasting them.
  • the panel members agreed on six key descriptors for the samples (milky, butter, biscuit, pop-corn, caramel and sweet).
  • the panel members had to judge on the strength of the perceived flavour in the samples and marking it on a scale from 1-5 (1 for very low; 2 for low; 3 for medium; 4 for high; 5 for very high).
  • the average of all responses was calculated and is depicted in the Figure 1.
  • L-lysine in the context with a bacterial cultured broth provides a much stronger and typical top-note flavour profile when reacted with a reducing sugar, than when reacted in equal molar concentration with a same and also equal amount of a same reducing sugar in just water.
  • a culture medium from Corynebacterium sp. which has an increased amount of L-lysine can be obtained as disclosed in US 2008/299606.
  • a culture medium comprising a large amount of L-lysine can be obtained by culturing a Corynebacterium under the conditions as specified in Example 1 of EP 1582101 Al.
  • the culture medium with accumulated free L-lysine can be further processed first for example by a heat treatment.
  • a heat treatment can be for 1-5 min at a temperature of ca. 120°C.
  • the bacterial cells can be separated from the culture medium by a standard filtration step as known in the art, and further concentrated by evaporation of the water from the medium.
  • the culture medium is then present in the form of a thick paste with a water content ranging from 20-25wt%.
  • the paste can then be stored at 4°C until further processing.
  • the culture medium can be reconstituted again from the paste in water and glucose, as a reducing sugar, which can be added to the medium in an amount to result in a suganlysine ratio of for example 2:1 or 4:1.
  • the mixture can then be reacted under thermal conditions of 125°C for 25 min in a reaction vessel. Thereafter, the mixture is cooled down again to room temperature and dried into a powder via spray-drying, to result in a natural flavour base composition which can be used in food products.
  • Example 5 Sensory analysis as described above in Example 5 can be conducted on this flavour base for example with a trained tasting panel. Such sensory results will reveal significant stronger flavour development for at least the 5 descriptors mentioned above if compared to reference samples with only L-lysine, sugar and water, or with using standard bacterial culture medium without the elevated accumulation of L- lysine.

Abstract

The present invention relates to a process for preparing a natural flavor base and a flavor base obtainable by such process. A further aspect of the invention is a nnethod for providing a natural milky, a natural caramel, a natural pop-corn, a natural biscuit and/or a natural buttery flavor note to a food or beverage product.

Description

NATURAL FLAVOR BASE AND PROCESS FOR ITS PREPARATION TECHNICAL FIELD
The present invention relates to a process for preparing a natural flavor base and a flavor base obtainable by such process. A further aspect of the invention is a method for providing a natural milky flavor note to a food product.
BACKGROUND OF THE INVENTION
Additives such as purified amino acids, vitamins or flavor molecules are commonly used to enhance body and taste in flavour reactions and composition in food products. The problem with using these additives, however, is that they are not considered as being natural as they are typically obtained first by purification or chemical synthesis involving one or more non-natural processing steps such as elution from impurities with using chemical eluents, or chemical synthetic reactions.
Natural flavour standards in various countries, including Europe, determine flavours made of only natural components but prepared by performing chemical processes or adding further components as non-natural flavours. An example would be methods for preparing L-cysteine by two steps (fermentation and chemical reduction). For this reason, it is desirable to have flavoring components prepared using natural processes such as fermentation only and omitting any chemical production steps.
WO 2009/040150 discloses a natural shelf-stable taste enhancing savoury base produced by fermentation using a microorganism of the genus Corynebacterium, Brevibacterium or Bacillus. The savoury base comprises an amount between 10 and 80% by weight of naturally derived compounds such as glutamate, inosine monophosphate (IMP), and guanosine monophosphate (GMP); and further naturally derived compounds selected from the group consisting of organic acids, amino acids, peptides and aroma compounds; and a low fat content of the savoury base in the range of 0 to 15% by weight. The disclosed savory base improves the umami taste in food products. However, it does not provide a top-flavor note by itself.
EP0357812 describes a process for improving the flavour of protein products derived from microorganisms which comprises culturing the microorganism in the presence of a flavour enhancing additive, heat treating the resulting ferment, and then drying of same in the absence of a centrifugation. Examples of flavour enhancing additives added during the fermentation are animal by-products (beef extract, pork extract, or chicken extract) or fatty acids produced by adding a dairy product precursor and lipase. The additive is used 0.5-5 wt. %. In this case, the objective is to produce protein-rich food stuff and not an intermediate ingredient rich in precursors that can be used in subsequent flavour reactions.
Yeast extract as a natural source of amino acids may be added to food products, and/or used in thermal reaction flavor processes. An example is provided in US 4,879,130. However, the use of yeast extract usually adds a typical yeasty note or off- flavor to such flavor bases and food products. This is usually not very liked by many consumers, particularly in Europe and the USA.
EP 1582101 Al describes a method for preparing a granular animal feed additive which comprises lysine. The method includes: filtering, with a membrane filter, a fermentation broth obtained from a lysine producing microorganism cultured in a lysine producing condition to obtain a lysine-containing filtrate and a microorganism- containing sludge; drying the filtrate to obtain a concentrate with a total solid content of 48 to 52 wt%; granule-drying the concentrate at a temperature of 50 °C to 60°C to obtain granules; and coating the granules with a coating agent containing one or more selected from the group consisting of the sludge, a diluent or a free lysine as a lysine content adjustor, and a moisture prevention agent, to obtain lysine granules. In this case, the objective is to prepare an animal feed. This document is not concerned with the flavour profile of the lysine granules. In fact, in view of the mild treatment conditions and the low amount of sugar, this process does not provide a top-flavor note by itself. US 2008/299606 Al relates to process for the fermentative production of lysine, from milled cereal kernels. The millbase comprises at least 50% by weight of the nonstarchy solid constituents present in the milled cereal kernels. The millbase is liquefied enzymatically and optionally saccharified. The millbase is mixed to a fermentation medium comprising a microorganism which is capable of overproducing the lysine under fermentation conditions. This document does not relate to the provision of flavoured compositions.
WO 2007/121100 A2 relates to compositions and methods designed to increase the nutritional value of the by-product of a fermentation reaction for the production of ethanol. This is achieved in particular by using microorganisms in a fermentation process that have been modified to increase production of an essential amino acid. This document does not address the provision of flavoured compositions.
Hence, there is still a persisting need in the art and the food industry to provide new processes for preparing flavor base compositions which provide flavour bases which are considered absolutely natural by consumers and which at the same time can also provide new and more complete and authentic flavour profiles and flavour top- notes.
SUMMARY OF THE INVENTION
The object of the present invention is to improve the state of the art and to provide a new process for preparing a natural flavour base which is considered all natural by consumers and which provides an improved and all natural flavour profile to food products. A further object of the present invention is a method for providing a natural and authentic milky flavor note to a food, a beverage or a seasoning product.
The object of the present invention is achieved by the subject matter of the independent claims. The dependent claims further develop the idea of the present invention.
Accordingly, the present invention provides in a first aspect a process for preparing a natural flavor base composition comprising the steps of: - culturing a bacterial strain in a culture medium to produce and accumulate L-lysine and/or a derivative thereof in the culture medium to a concentration of at least 1.0 wt% of the culture medium;
- optionally separating the bacterial strain from the culture medium after the culturing step;
- optionally concentrating the culture medium after the culturing step;
- adding a reducing sugar to the culture medium after the culturing step;
- thermally reacting the culture medium after the addition of the reducing sugar at a temperature from 75 - 170°C for at least 5 minutes;
- optionally concentrating the medium after the thermal reaction step by evaporation or spray drying.
In a second aspect, the invention relates to a natural flavor base obtainable by the process of the present invention.
A third aspect of the invention relates to the use of the present natural flavor base of the present invention for adding a milky, a nutty, a fruity, a prune and/or a caramel flavored note to a food product.
A still further aspect of the invention is a method for providing a natural milky, a natural nutty, a natural fruity, a natural prune and/or a natural caramel flavored flavor note to a food product comprising the step of adding the natural flavor base of the present invention into the recipe of a said food product.
The inventors found that a culture of a bacterial strain, such as for example a Corynebacterium glutamicum, which is cultivated either in such a way that it overproduces L-lysine or conditioned in such a way that it overproduces L-lysine, can be directly used in a thermal reaction process to generate a savory flavor base which is perceived by consumers as all natural and which has surprisingly even an improved milky flavor profile in comparison to prior art savory flavor bases. For this new process, a bacterial culture can be taken as such, i.e. without separating the bacterial cells from the culture medium after the fermentation step, or alternatively, the bacterial cells can first be removed from the culture medium after fermentation by sedimentation, centrifugation and/or filtration. For ease of further processing, the culture medium can then be concentrated in order to remove a substantial amount of the water present in the cultured medium. Thus, for example a paste of concentrated cultured medium can be obtained having a residual moisture content of only ca. 5 to 40wt%. A reducing sugar, for example glucose, can then be added to the concentrated cultured medium and the mixture further processed by thermally reacting the mix at a temperature above 75°C, preferably above 85°C. This thermally induced chemical reaction is also known under the term Maillard reaction. Optionally, the reaction end-product can then be further concentrated, e.g. into a paste, or dried into a powder.
The inventors have surprisingly found that when using this process, natural flavor base compositions can be generated which have a significantly improved milky flavor note than prior art processes which make use of just regular non-conditioned bacterial fermentation media such as for example described in WO2009/040150, or by using isolated, purified L-lysine in Maillard reaction model systems. Evidence thereof is provided here below in the Examples section. Consequently, the present invention provides a new process which has the advantage of being absolute natural, i.e. without the use of and addition of isolated chemicals or molecules, of being relatively cheap and applicable industrially at a large scale, and which provides an even better milky flavor profile to the resulting flavor base composition.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1: Sensory evaluation of the samples 1-4, labelled 1 to 4 respectively. A stands for milky, B for nutty, C for caramel, D for maple syrup, E for fruity, and F for prune.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a process for preparing a natural flavor base composition comprising the steps of: - culturing a bacterial strain in a culture medium to produce and accumulate L-lysine and/or a derivative thereof in the culture medium to a concentration of at least 1.0 wt% of the culture medium;
- optionally separating the bacterial strain from the culture medium after the culturing step;
- optionally concentrating the culture medium after the culturing step;
- adding a reducing sugar to the culture medium after the culturing step;
- thermally reacting the culture medium after the addition of the reducing sugar at a temperature from 75 - 170°C for at least 5 minutes;
- optionally concentrating the medium after the thermal reaction step by evaporation or spray drying.
The term "natural" of the present invention means "made by natural produce", i.e. the flavor base composition is made by fermentation and heat treatment only. Therefore, "natural" also means that the flavor base composition does not comprise and is not made with an addition of artificial chemical compounds such as synthetically produced and/or chemically purified molecules. Examples of such undesired molecules are flavoring compounds, colorants, antimicrobial compounds, vitamins, amino acids, organic acids, alcohols, and esters.
The "culturing a bacterial strain" is by fermentation. Typically, such fermentations are submerged and conducted in closed or open fermentation reactors. The choice and composition of the culture medium depends on the choice of the bacterial strain selected for producing and accumulating L-lysine and/or a derivative thereof in said culture medium. Typically, the skilled person familiar with the fermentation processes of a selected bacterial strain knows and can readily compose a culture medium which is appropriate for the respective culturing process.
Preferably, the bacterial strain for the process of the present invention is belonging to a genus selected from Corynebacterium, Arthrobacter, Brevibacterium, Bacillus or Microbacterium. In one specific embodiment of the present invention, the derivative of L-lysine is hydroxylysine.
In a preferred embodiment, the culturing of the bacterial strain produces and accumulates L-lysine and/or a derivative thereof to a concentration of at least 1.5 wt%, more preferably to at least 2.0 wt%, even more preferably to at least 2.5 wt% of the culture medium. Concentrations of L-lysine and/or a derivative thereof would more preferably be even above 3 wt%, 4 wt%, 5 wt% or even 10 wt% of the culture medium.
In one embodiment, the process of the present invention further comprises a step of heat inactivation of the bacterial strain after the culturing step. This heat inactivation is done after termination of the fermentation process, i.e. at the end of the growth phase of the bacterial cells in the culture medium, and results in an inactivation of the viability of the bacterial cells, including an inactivation of enzymes which have been released or are still contained within the bacterial cells. Heat inactivation potentially prevents a degradation of the complex composition of the culture medium after the culturing step as to e.g. uncontrolled further growth and/or metabolism of the bacteria and/or uncontrolled further activity of certain enzymes.
In one further embodiment, the bacterial strains are separated from the culture medium after the culturing step, i.e. after the fermentation process. Separation of the bacterial strain from the culture medium can typically be obtained by sedimentation, centrifugation and/or filtration. An advantage of this embodiment may be that further handling of the culture medium in the process of the present invention is easier in an industrial setting. Furthermore, the risk of the bacterial strains to potentially degrade the quality of the achieved culture medium once the fermentation process has been terminated is reduced.
In a still further embodiment, the culture medium can be concentrated after the culturing step. This can be done with or without previous separation of the bacterial strain from the culture medium. Consequently, a concentrated culture medium according to this embodiment may or may not comprise bacterial cells. Preferably, concentrating the culture medium after the culturing step is by partial or total evaporation of water present in the culture medium. Preferably, the resulting concentrated culture medium is in the form of a paste. Such a paste may still have a water content of between 5-40wt%, preferably of between 15-35wt%. One of the advantages of this embodiment is that it allows conducting the thermal chemical reaction step together with the reducing sugar in a more concentrated form. Efficiency and yield of such a chemical reaction will be substantially increased.
In one embodiment of the present invention, the reducing sugar added to the culture medium after termination of the culturing step, is a 4, 5 or 6 carbon atoms comprising monosaccharide. Alternatively, a disaccharide reducing sugar can be used as well. Preferably, the reducing sugar is selected from the group consisting of glucose, xylose, ribose, rhamnose, fructose, maltose, lactose, arabinose or a combination thereof. The most preferred sugar is glucose. In an embodiment, the reducing sugar is added as a sweetening composition, such as malt extract or syrup.
In one embodiment of the present process, the reducing sugar is added to the medium in an amount of 1:5 to 10:1 (w/w) ratio suganlysine, preferably in an amount of 1:1 to 5:1 (w/w) ratio suganlysine. The ration suganlysine is to be understood as the (weight/weight) ratio of reducing sugar versus L-lysine and/or a derivative thereof. The inventors have found that the addition of reducing sugar to the culture medium after the culturing step within this range of ratio provides the best results as to the generation of a typical desired milky flavor profile in the following chemical thermal reaction process.
The process of the present invention comprises a step of thermally reacting the culture medium after the addition of the reducing sugar at a temperature from 75 - 170°C for at least 5 minutes, preferably at least 10 minutes. This step is a chemical reaction step between different components present in the culture medium after the addition of the reducing sugar and which is thermally induced. This thermal reaction step is also commonly known as Maillard reaction. It is during this thermal reaction step that different precursor molecules from the culture medium react chemically for example with the reducing sugar, resulting in new flavor and taste active molecules. It is finally the ensemble of the selected culture medium of the present invention together with the reducing sugar that provide the full new and improved flavor profile of this natural flavor base after the thermally induced reaction step.
Preferably, the thermal reaction step of the process of the present invention is at a temperature from 85-150°C, more preferably from 95-130°C.
In a further embodiment of the present invention, the culture medium, after the addition of the reducing sugar and after the thermal reaction step, is dried to a powder. Drying can for example be achieved by spray drying or vacuum drying. Advantageously then, the obtained natural flavor base composition can be better integrated into non-liquid seasoning products such as e.g. seasoning powders or seasoning tablets.
A further aspect of the present invention is a natural flavor base obtainable by the process of the present invention. As evidence is provided below, this new natural flavor base has an improved milky flavor note and is therefore distinguishable from similar prior art flavor bases. Particularly, it has been observed by the inventors that this new natural flavor base has further improved caramel, pop-corn, biscuit and buttery flavor notes as compared to respective reference flavor base products.
A still further aspect of the present invention is the use of the present natural flavor base for adding a milky, a nutty, a fruity, a prune and/or a caramel flavored note to a food product. Preferably, the food product is selected from the group consisting of culinary soups, noodles, bouillons, sauces, seasonings, ready-to-eat meal preparations, instant and ready-to-drink beverage preparations, cookies, cakes, snacks, dough products and wafers, ice-cream and frozen confectionery, chilled dairy products, milk-based powder compositions, dairy-based drinks, and dessert preparations. Preferably, the culinary soups, bouillons, sauces or seasonings products of the present invention are in the form of a powder, liquid, granulated product, tablet or paste. Furthermore, where the food product is a ready-to-eat meal preparation, a snack or a dough product, it is preferably frozen. For instance, chilled dairy products include fermented milks, creme desserts, or dairy-based desserts. A still further aspect of the present invention is a method for providing a natural milky, a natural caramel, a natural pop-corn, a natural biscuit and/or a natural buttery flavor note to a food product or a beverage product, comprising the step of adding the natural flavor base of the present invention into the recipe of said food product or beverage product. Preferably, the method is for providing a natural milky flavor note to a food or culinary seasoning product.
Those skilled in the art will understand that they can freely combine all features of the present invention disclosed herein. In particular, features described for the process for preparing the natural flavor base composition of the present invention can be combined with the flavor base obtainable by the process, the use of said flavor base and the method for use of said flavor base, and vice versa. Further, features described for different embodiments of the present invention may be combined.
Further advantages and features of the present invention are apparent from the figures and examples.
Example 1:
A cultured medium with a Corynebacterium was prepared as basically described in WO2009/040150. Thereby, a bacterial Corynebacterium glutomicum strain was grown in a culture medium comprising glucose as substrate for growth, at pH 6-7 and temperature 37°C for about 36 hours.
Thereafter, the bacterial strain was inactivated with a heat treatment and the bacterial cells separated from the fermentation medium by filtration. The filtrate, presenting the cultured medium, was then concentrated into a powder by spray- drying.
The obtained cultured medium powder had an amino acid and natural organic acid composition as shown in Table 1. The respective amounts are provided in %w/w of total culture medium after fermentation and filtration, but before concentration. Table 1: Composition based on dry matter
Figure imgf000013_0001
Technically pure L-lysine (from Sigma-Aldrich Pte Ltd, Singapore) was then added to the powdered cultured medium to achieve a total concentration of L-lysine of 30wt% (w/w based on dry matter) of the culture medium. The powder with the L- lysine was then dissolved in water to give a 25% (w/w) solution. Thereafter, 22.5wt% glucose was added to the solution, resulting in a reconstituted culture medium with added glucose having a glucose:lysine ratio of 3:1. The mixture was then subjected to a thermal heat reaction for 10 min to 115°C, and cooled thereafter to room temperature. It will be referred to as sample 1. Example 2:
A reference sannple with an equivalent amount of pure L-lysine in a buffered aqueous solution (i.e. 3wt% solution at pH 6.5) was prepared. 22.5wt% glucose was added to the L-lysine solution resulting in a glucose-lysine solution in water with a same glucose:lysine ratio of 3:1 as the culture medium mixture in Example 1. This reference sample was then subjected to the same thermal heat reaction for 10 min to 115°C as the mixture in Example 1, and then cooled thereafter to room temperature. It will be referred to as sample 2.
Example 3:
A further reference sample was prepared where the cultured medium with the Corynebacterium glutomicum strain of Example 1 was used without the addition of L- lysine. The powdered culture medium after the spray-drying was dissolved in water to give a 25% (w/w) solution. Thereafter, 22.5wt% glucose was added to the solution. The reconstituted cultured medium has a concentration of natural L-lysine of 0.02 wt%. Consequently, the culture medium with the added glucose has a glucose:lysine ratio of 9:0. The mixture was then subjected to a thermal heat reaction for 10 min to 115°C, and cooled thereafter to room temperature. It will be referred to as sample 3. Example 4:
A further sample was prepared where the cultured medium with a Corynebacterium glutomicum naturally overproducing L-lysine was used. No additional L-lysine was added. A cultured medium comprising 3wt% L-lysine was obtained. The culture medium was spray-dried and thereafter dissolved in water to give a 25% (w/w) solution. Thereafter, 22.5wt% glucose was added to the solution. The powdered cultured medium had a concentration of natural L-lysine of 30 wt%. Consequently, the culture medium with the added glucose had a glucose:lysine ratio of 3:1. The mixture was then subjected to a thermal heat reaction for 10 min to 115°C, and cooled thereafter to room temperature. It will be referred to as sample 4. Example 5:
The samples 1 to 4 were subjected to a sensory evaluation by a six-member trained panel. The obtained reacted mixtures were split into 12 tasting cups. In the first tasting round the panel members were asked to come up with flavour descriptors they associate with the samples tasting them. After that the panel members agreed on six key descriptors for the samples (milky, butter, biscuit, pop-corn, caramel and sweet). In a second tasting round the panel members had to judge on the strength of the perceived flavour in the samples and marking it on a scale from 1-5 (1 for very low; 2 for low; 3 for medium; 4 for high; 5 for very high). The average of all responses was calculated and is depicted in the Figure 1.
The sensory results clearly revealed a significantly stronger flavour development for 5 descriptors, namely milky, buttery, biscuit, pop-corn and caramel, for the two samples 1 and 4 containing the cultured medium together with the L-lysine. The solution with an equal amount of L-lysine in water (sample 2) as well as the reference cultured medium sample without L-lysine (sample 3) were clearly inferior in flavour development as to those 5 descriptors. As expected, sweet was the dominant descriptor for sample 3, where there was 9% of reducing sugar present in the reconstituted cultured medium and no L-lysine.
Consequently and surprisingly, L-lysine in the context with a bacterial cultured broth provides a much stronger and typical top-note flavour profile when reacted with a reducing sugar, than when reacted in equal molar concentration with a same and also equal amount of a same reducing sugar in just water.
Consequently, it can be concluded from the results presented in Figure 1 that a process comprising a culture medium comprising an elevated amount of natural L- lysine, produced and accumulated through cultivation of a bacterial strain, and thereafter thermally reacted in the presence of a reducing sugar, provides a natural flavour base which has strong and typical top-flavor notes related to e.g. milky, biscuit and pop-corn flavors. Example 6:
A culture medium from Corynebacterium sp. which has an increased amount of L-lysine can be obtained as disclosed in US 2008/299606. Alternatively, a culture medium comprising a large amount of L-lysine can be obtained by culturing a Corynebacterium under the conditions as specified in Example 1 of EP 1582101 Al.
The culture medium with accumulated free L-lysine can be further processed first for example by a heat treatment. Such a heat treatment can be for 1-5 min at a temperature of ca. 120°C.
Thereafter, the bacterial cells can be separated from the culture medium by a standard filtration step as known in the art, and further concentrated by evaporation of the water from the medium. The culture medium is then present in the form of a thick paste with a water content ranging from 20-25wt%. The paste can then be stored at 4°C until further processing.
The culture medium can be reconstituted again from the paste in water and glucose, as a reducing sugar, which can be added to the medium in an amount to result in a suganlysine ratio of for example 2:1 or 4:1. The mixture can then be reacted under thermal conditions of 125°C for 25 min in a reaction vessel. Thereafter, the mixture is cooled down again to room temperature and dried into a powder via spray-drying, to result in a natural flavour base composition which can be used in food products.
Sensory analysis as described above in Example 5 can be conducted on this flavour base for example with a trained tasting panel. Such sensory results will reveal significant stronger flavour development for at least the 5 descriptors mentioned above if compared to reference samples with only L-lysine, sugar and water, or with using standard bacterial culture medium without the elevated accumulation of L- lysine.

Claims

1. A process for preparing a natural flavor base composition comprising the steps of:
- culturing a bacterial strain in a culture medium to produce and accumulate L-lysine and/or a derivative thereof in the culture medium to a concentration of at least 1.0 wt% of the culture medium;
- optionally separating the bacterial strain from the culture medium after the culturing step;
- optionally concentrating the culture medium after the culturing step;
- adding a reducing sugar to the culture medium after the culturing step;
- thermally reacting the culture medium after the addition of the reducing sugar at a temperature from 75 - 170°C for at least 5 minutes;
- optionally concentrating the medium after the thermal reaction step by evaporation or spray drying;
wherein the reducing sugar is added to the medium in an amount of 1:5 to 10:1 (w/w) ratio suganlysine.
2. The process according to claim 1, wherein the bacterial strain is belonging to a genus selected from Corynebacterium, Arthrobacter, Brevibacterium, Bacillus or
Microbacterium.
3. The process according to claim 1 or 2, wherein the derivative of L-lysine is hydroxylysine.
4. The process according to one of the claims 1-3, wherein culturing the bacterial strain produces and accumulates L-lysine and/or a derivative thereof to a concentration of at least 1.5 wt%, preferably to at least 2.0 wt%, more preferably to at least 5 wt% of the culture medium.
5. The process according to one of the claims 1-4, further comprising a step of heat inactivation of the bacterial strain after the culturing step.
6. The process according to one of the claims 1-5, wherein the separation of the bacterial strain from the culture medium is obtained by sedimentation, centrifugation and/or filtration.
7. The process according to one of the claims 1-6, wherein concentrating the culture medium after the culturing step is by partial or total evaporation of water present in the culture medium.
8. The process according to one of the claims 1-7, wherein the reducing sugar is selected from the group consisting of glucose, xylose, ribose, rhamnose, fructose, maltose, lactose, arabinose or a combination thereof.
9. The process according to one of the claims 1-8, wherein the thermal reaction step is at a temperature from 85-150°C, preferably from 95-130°C.
10. The process according to one of the claims 1-9, wherein the medium after the thermal reaction step is dried to a powder.
11. A natural flavor base obtainable by the process according to one of the claims 1 to 10.
12. Use of the natural flavor base according to claim 11 for adding a milky, a nutty, a fruity, a prune and/or a caramel flavor note to a food product.
13. The use according to clainn 12, wherein the food product is selected from the group consisting of culinary soups, noodles, bouillons, sauces, seasonings, ready-to-eat meal preparations, instant and ready-to-drink beverage preparations, cookies, cakes, snacks, dough products and wafers, ice-cream and frozen confectionery, chilled dairy products, milk-based powder compositions, dairy-based drinks, and dessert preparations.
14. The use according to claim 13, wherein the culinary soups, bouillons, sauces or seasonings are in the form of a powder, liquid, granulated product, tablet or paste.
15. The use according to claim 14, wherein the ready-to-eat meal preparations, snacks or dough products are frozen.
16. A method for providing a natural milky, a natural nutty, a natural fruity, a natural prune and/or a natural caramel flavored flavor note to a food product or beverage product comprising the step of adding the natural flavor base of claim 11 into the recipe of said food product or beverage product.
PCT/EP2018/061161 2017-05-03 2018-05-02 Natural flavor base and process for its preparation WO2018202686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17169287.4 2017-05-03
EP17169287 2017-05-03

Publications (1)

Publication Number Publication Date
WO2018202686A1 true WO2018202686A1 (en) 2018-11-08

Family

ID=58692360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/061161 WO2018202686A1 (en) 2017-05-03 2018-05-02 Natural flavor base and process for its preparation

Country Status (1)

Country Link
WO (1) WO2018202686A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1126889A (en) * 1965-11-01 1968-09-11 Kyowa Hakko Kogyo Kk Meat flavour
US4879130A (en) 1987-04-06 1989-11-07 Nestec S.A Process for preparation of a flavoring agent
EP0357812A1 (en) 1988-09-05 1990-03-14 Phillips Petroleum Company Enhancing the flavor of protein products derived from microorganisms
EP1582101A1 (en) 2004-04-02 2005-10-05 CJ Corporation Process for making granular L-lysine feed supplement
WO2007121100A2 (en) 2006-04-13 2007-10-25 Ambrozea, Inc. Compositions and methods for producing fermentation products and residuals
US20080299606A1 (en) 2005-11-28 2008-12-04 Basf Se Fermentative Production of Organic Compounds
WO2009040150A1 (en) 2007-09-26 2009-04-02 Nestec S.A. A natural taste enhancing savoury base and a process for its preparation
WO2010094327A1 (en) * 2009-02-18 2010-08-26 Nestec S.A. Base, products containing the same, preparation methods and uses thereof
WO2015020292A1 (en) * 2013-08-07 2015-02-12 Cj Cheiljedang Corporation Method for preparing imp fermented broth or glutamic acid fermented broth as raw material for preparation of natural flavor
CN105029340A (en) * 2015-08-23 2015-11-11 王婧婧 Preparation method of corn-flavored essence
CN105077158A (en) * 2015-08-24 2015-11-25 王婧婧 Method for manufacturing cheese flavor milk essence bases

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1126889A (en) * 1965-11-01 1968-09-11 Kyowa Hakko Kogyo Kk Meat flavour
US4879130A (en) 1987-04-06 1989-11-07 Nestec S.A Process for preparation of a flavoring agent
EP0357812A1 (en) 1988-09-05 1990-03-14 Phillips Petroleum Company Enhancing the flavor of protein products derived from microorganisms
EP1582101A1 (en) 2004-04-02 2005-10-05 CJ Corporation Process for making granular L-lysine feed supplement
US20080299606A1 (en) 2005-11-28 2008-12-04 Basf Se Fermentative Production of Organic Compounds
WO2007121100A2 (en) 2006-04-13 2007-10-25 Ambrozea, Inc. Compositions and methods for producing fermentation products and residuals
WO2009040150A1 (en) 2007-09-26 2009-04-02 Nestec S.A. A natural taste enhancing savoury base and a process for its preparation
WO2010094327A1 (en) * 2009-02-18 2010-08-26 Nestec S.A. Base, products containing the same, preparation methods and uses thereof
WO2015020292A1 (en) * 2013-08-07 2015-02-12 Cj Cheiljedang Corporation Method for preparing imp fermented broth or glutamic acid fermented broth as raw material for preparation of natural flavor
CN105029340A (en) * 2015-08-23 2015-11-11 王婧婧 Preparation method of corn-flavored essence
CN105077158A (en) * 2015-08-24 2015-11-25 王婧婧 Method for manufacturing cheese flavor milk essence bases

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS ET AL: "Maillard-Reaktion", THIEME RÖMPP, 1 January 2003 (2003-01-01), pages 1 - 5, XP055385344, Retrieved from the Internet <URL:https://roempp.thieme.de/roempp4.0/do/data/RD-13-00227> [retrieved on 20170627] *
DATABASE WPI Week 201632, Derwent World Patents Index; AN 2015-810946, XP002771406 *
JENS SCHNEIDER ET AL: "Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum", JOURNAL OF BIOTECHNOLOGY, vol. 154, no. 2-3, 1 July 2011 (2011-07-01), pages 191 - 198, XP055126161, ISSN: 0168-1656, DOI: 10.1016/j.jbiotec.2010.07.009 *
KAM HUEY WONG ET AL: "Sensory aroma from Maillard reaction of individual and combinations of amino acids with glucose in acidic conditions", INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 43, no. 9, 4 September 2008 (2008-09-04), pages 1512 - 1519, XP008149180, ISSN: 0950-5423, DOI: 10.1111/J.1365-2621.2006.01445.X *

Similar Documents

Publication Publication Date Title
US20200077686A1 (en) Natural flavor base and process for its preparation
WO2018202686A1 (en) Natural flavor base and process for its preparation
AU2016345575B2 (en) Natural flavor base and process for its preparation
JP2019129795A (en) Flavor improver
WO2018202688A1 (en) Natural flavor base and process for its preparation
WO2018202683A1 (en) Natural flavor base and process for its preparation
US20190373931A1 (en) Natural flavor base and process for its preparation
US20190373930A1 (en) Natural flavor base and process for its preparation
US20190373933A1 (en) Natural flavor base and process for its preparation
US20190373932A1 (en) Natural flavor base and process for its preparation
EP4209580A1 (en) Method of producing flavor by mixed fermentation of heterologous microorganisms
US20230248035A1 (en) Taste-enhancing composition
KR20230108684A (en) Method for preparing flavor by mixed fermentation of heterologous microorganisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18719924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18719924

Country of ref document: EP

Kind code of ref document: A1