WO2018202118A1 - 传输上行控制信息的方法和装置 - Google Patents

传输上行控制信息的方法和装置 Download PDF

Info

Publication number
WO2018202118A1
WO2018202118A1 PCT/CN2018/085570 CN2018085570W WO2018202118A1 WO 2018202118 A1 WO2018202118 A1 WO 2018202118A1 CN 2018085570 W CN2018085570 W CN 2018085570W WO 2018202118 A1 WO2018202118 A1 WO 2018202118A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
resource
terminal device
frequency
Prior art date
Application number
PCT/CN2018/085570
Other languages
English (en)
French (fr)
Inventor
吴作敏
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710686579.5A external-priority patent/CN108809545B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18795158.7A priority Critical patent/EP3618483A4/en
Publication of WO2018202118A1 publication Critical patent/WO2018202118A1/zh
Priority to US16/673,377 priority patent/US11134482B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting uplink control information.
  • a communication technology based on an unlicensed spectrum resource in which a network device allocates a frequency domain resource for uplink transmission from a license-free spectrum resource to a terminal device (hereinafter, for ease of understanding, it is recorded as : Frequency Domain Resource #1), the bandwidth of the frequency domain resource #1 is 20 MHz (Mega Hertz, MHz).
  • the bandwidth that the terminal device can detect in the process of detecting (or competing or monitoring) the unlicensed frequency domain resource is 20Mhz. Therefore, the terminal device can perform full bandwidth detection on the frequency domain resource #1 by one detection. If the terminal device detects that resources in the entire bandwidth range of the frequency domain resource #1 can be used, the terminal device passes the frequency domain resource. #1 performs uplink transmission with the network device, for example, transmitting uplink control information.
  • the bandwidth of the unlicensed spectrum resource that the communication system can use is gradually increased, and the network device allocates the license-free spectrum resource to the terminal device (for example, the above-mentioned frequency domain resource #1)
  • the bandwidth may also increase, that is, the bandwidth of the frequency domain resource #1 is greater than 20 MHz.
  • the bandwidth of the frequency domain resource #1 may reach 80 MHz.
  • the terminal device needs to detect the frequency domain resource #1 greater than 20 MHz, and in the case where resources in the entire bandwidth range of the frequency domain resource #1 are detected to be used. Only then can the frequency domain resource #1 be used for wireless communication, for example, to transmit uplink control information. Since the terminal device needs to be available in the entire bandwidth range of the frequency domain resource #1, the frequency domain resource #1 can be used for communication, and therefore, the terminal device competes for the frequency domain resource #1 probability. Therefore, the possibility that the terminal device can perform wireless communication using the frequency domain resource #1 is also small, thereby reducing communication efficiency, increasing service transmission delay, and seriously affecting the user experience.
  • the present application provides a method and apparatus for transmitting uplink control information, which can improve communication efficiency, reduce service transmission delay, and improve user experience.
  • a method for transmitting uplink control information is provided, which is applied to a communication system including a network device and a terminal device, wherein a system frequency domain resource used by the communication system is divided into N sub-bands, N ⁇ 2, the system frequency The domain resource is a frequency domain resource that is used according to the contention mechanism, and the method includes: the terminal device receives, from the network device, scheduling information, where the scheduling information is used to indicate that the network device allocates at least one uplink channel for the terminal device.
  • the terminal device detects the M sub-bands to determine, from the first time-frequency resource, the second time that the terminal device can use a frequency resource, where the second time-frequency resource occupies K sub-bands of the M sub-bands in the frequency domain, M>K ⁇ 1; the terminal device sends the second time-frequency resource The first upstream channel.
  • a method for transmitting uplink control information by dividing a system frequency domain resource used based on a contention mechanism into a plurality of sub-bands, and after determining, by the terminal device, the first frequency domain resource allocated by the network device, Before performing the uplink transmission, detecting the at least two sub-bands included in the first frequency domain resource, enabling the terminal device to determine, from the at least two sub-bands, the second frequency domain resource that the terminal device can use, and passing the second
  • the uplink frequency domain resource performs the uplink channel transmission, that is, the terminal device does not need to use the first frequency in the case that the resources in the entire bandwidth range of the first frequency domain resource are used, compared to the prior art.
  • the domain resource performs wireless communication, thereby improving the possibility that the terminal device can use the first frequency domain resource (specifically, part of the sub-band in the first frequency domain resource) to perform wireless communication, thereby improving communication efficiency and reducing Small business transmission delays improve the user experience.
  • the terminal device sends the first uplink channel by using the second time-frequency resource, where the terminal device sends the channel-encoded data or information by using the second time-frequency resource, the channel-coded data. Or information, carried on the first uplink channel.
  • the terminal device sends the uplink channel by using the second time-frequency resource, where the terminal device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource; the terminal device passes the The third time-frequency resource sends the uplink control information, where the reference information is used to indicate at least one of the following values: a size value of the first time-frequency resource, a value of the M, a size value of the second time-frequency resource, and the The value of K, the first reference value, and the first reference value is specified by the communication system, or the first reference value is previously indicated by the network device.
  • the first reference value includes a size value of the fourth time-frequency resource, where the fourth time-frequency resource is a time-frequency resource occupied by the first uplink channel among the L sub-bands of the M sub-bands, where M> L ⁇ 1, wherein the value of L is specified by the communication system, or the value of L is previously indicated by the network device.
  • the first time-frequency resource includes a fifth time-frequency resource for carrying uplink control information
  • the terminal device sends the uplink channel by using the second time-frequency resource, where: the terminal device is from the second time
  • the third time-frequency resource is determined by the terminal resource; the terminal device sends the uplink control information by using the third time-frequency resource; wherein, the difference between the size of the third time-frequency resource and the size of the fifth time-frequency resource Within the preset range.
  • the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the terminal device determines the third time-frequency resource from the second time-frequency resource according to the reference information, where the terminal device determines, according to the reference information and the first coefficient, the second time-frequency resource. And a third time-frequency resource, where the first coefficient is used to determine a size of a time-frequency resource that carries uplink control information.
  • the first time-frequency resource includes a fifth time-frequency resource for carrying uplink control information, where the size of the fifth time-frequency resource is determined according to the size of the first time-frequency resource and the first coefficient, and The determining, by the terminal device, the third time-frequency resource from the second time-frequency resource, the determining, by the terminal device, determining, according to the size of the first time-frequency resource and the first coefficient, from the second time-frequency resource Three time-frequency resources.
  • the method further includes: the terminal device acquiring the first mapping relationship information, where the first mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and the first coefficient is included a mapping relationship between the plurality of coefficients; the terminal device uses, as the first coefficient, a coefficient corresponding to the value indicated by the reference information according to the first mapping relationship information.
  • the terminal device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource, including: the terminal device, according to the reference information and the preset first upper limit value, from the second time And determining, by the frequency resource, a third time-frequency resource, where the size of the third time-frequency resource is less than or equal to the first upper limit.
  • the method further includes: acquiring, by the terminal device, the second mapping relationship information, where the second mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and including the first upper limit value a mapping relationship between the plurality of upper limit values; the terminal device uses the upper limit value corresponding to the value indicated by the reference information as the first upper limit value according to the second mapping relationship information.
  • the method further includes: the terminal device acquiring a plurality of parameter groups, each parameter group including a parameter value and a coefficient, wherein a difference between a product of the reference value and the coefficient included in any two parameter groups is The first device determines the first coefficient according to the parameter value indicated by the reference information, wherein the parameter value indicated by the reference information and the first coefficient belong to the same parameter group.
  • the terminal device receives scheduling information from the network device, where the terminal device receives P scheduling information from the network device, where the P scheduling information is in one-to-one correspondence with P uplink channels, and each scheduling information is used for Instructing the time-frequency resource of the corresponding uplink channel, the sub-band occupied by the time-frequency resource indicated by any two of the P scheduling information is at least partially different, P ⁇ 2, and the terminal device performs the M sub-band
  • the detecting includes: detecting, by the terminal device, the sub-band to which the time-frequency resource indicated by each scheduling information of the P scheduling information belongs; wherein the second time-frequency resource includes Q of the P scheduling information The frequency domain resource indicated by the scheduling information, 1 ⁇ Q ⁇ P.
  • the frequency domain resources indicated by the P scheduling information have a nested structure.
  • the frequency domain resources corresponding to the P uplink channels have a nested structure.
  • the frequency domain resources indicated by any two of the P scheduling information do not overlap.
  • the frequency domain resources corresponding to any two uplink channels of the P uplink channels do not overlap.
  • the frequency domain resources indicated by the P scheduling information include at least one pair of frequency domain resource pairs having overlapping portions in the frequency domain.
  • the P uplink channels include at least one pair of uplink channel pairs having overlapping portions in the frequency domain.
  • the method further includes: the terminal device sends the third indication information to the network device, where the third indication information is used to indicate that the second time-frequency resource includes a time-frequency resource indicated by the Q scheduling information.
  • the third indication information has scheduling information corresponding to the sub-band occupied by the second time-frequency resource.
  • the method further includes: the terminal device sends the first indication information to the network device, where the first indication information is used to indicate the second time-frequency resource, or the first indication information is used to indicate the second time The sub-band occupied by the frequency resource in the frequency domain.
  • the network device can determine the second time-frequency resource by sending the indication information of the second time-frequency resource to the network device, so that the network device can avoid the second time-frequency resource in the first time-frequency resource.
  • the uplink information (including the uplink data or the uplink control information) sent by the terminal device is detected on the resource, thereby reducing the processing load of the network device.
  • the second frequency domain resource corresponds to the plurality of time-frequency resource units RE
  • the terminal device sends the first indication information to the network device, where the terminal device passes the at least one RE of the multiple REs to The network device sends the first indication information.
  • the second time-frequency resource includes at least one first symbol for carrying the reference signal
  • the terminal device determines the third time-frequency resource from the second time-frequency resource, including: the terminal device according to the The location of the at least one first symbol determines the location of the symbol corresponding to the third time-frequency resource.
  • the method further includes: the terminal device sends the second indication information to the network device, where the second indication information is used to indicate the third time-frequency resource, or the third indication information is used to indicate the third time The sub-band occupied by the frequency resource in the frequency domain.
  • the network device can determine the third time-frequency resource by receiving the indication information of the third time-frequency resource to the network device, and receive the uplink control information on the third time-frequency resource, so that the network device can be avoided.
  • the uplink control information sent by the terminal device is detected on the resources other than the third time-frequency resource in the first time-frequency resource (or the second time-frequency resource), thereby reducing the processing load of the network device.
  • the second frequency domain resource corresponds to multiple REs
  • the terminal device sends the second indication information to the network device, where the terminal device sends the network device to the network device by using at least one of the multiple REs.
  • the second indication information is not limited to multiple REs
  • the uplink control information includes at least one of the following: hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • a method for transmitting uplink control information is provided, which is applied to a communication system including a network device and a terminal device, where the system frequency domain resource used by the communication system is divided into N sub-bands, N ⁇ 2, the system frequency The domain resource is a frequency domain resource that is used by the contention mechanism, and the method includes: the network device sends, to the terminal device, scheduling information, where the scheduling information is used to indicate that the network device allocates at least one uplink channel for the terminal device.
  • the first time-frequency resource in the time-frequency resource is used to carry one of the at least one uplink channel, where the first uplink channel includes at least uplink control information, and the first time-frequency
  • the resource occupies M sub-bands of the N sub-bands in the frequency domain, M ⁇ 2; the network device receives the first uplink channel from the terminal device by using a second time-frequency resource, where the second time-frequency resource is in the frequency
  • the domain occupies K sub-bands of the M sub-bands, M>K ⁇ 1.
  • a method for transmitting uplink control information by dividing a system frequency domain resource used based on a contention mechanism into a plurality of sub-bands, and after determining, by the terminal device, the first frequency domain resource allocated by the network device, Before performing the uplink transmission, detecting the at least two sub-bands included in the first frequency domain resource, enabling the terminal device to determine, from the at least two sub-bands, the second frequency domain resource that the terminal device can use, and passing the second
  • the uplink frequency domain resource performs the uplink channel transmission, that is, the terminal device does not need to use the first frequency in the case that the resources in the entire bandwidth range of the first frequency domain resource are used, compared to the prior art.
  • the domain resource performs wireless communication, thereby improving the possibility that the terminal device can use the first frequency domain resource (specifically, part of the sub-band in the first frequency domain resource) to perform wireless communication, thereby improving communication efficiency and reducing Small business transmission delays improve the user experience.
  • the network device receives the first uplink channel from the terminal device by using the second time-frequency resource, where the network device receives the channel-encoded data or information from the terminal device by using the second time-frequency resource, where The channel-encoded data or information is carried on the first uplink channel.
  • the network device receives the first uplink channel from the terminal device by using the second time-frequency resource, where the network device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource;
  • the network device receives the uplink control information from the terminal device by using the third time-frequency resource, where the reference information is used to indicate at least one of the following values: a size value of the first time-frequency resource, a value of the M, and the The size value of the second time frequency resource, the value of the K, the first reference value, and the first reference value is specified by the communication system, or the first reference value is set by the network device.
  • the first reference value includes a size value of the fourth time-frequency resource, where the first reference value includes a size value of the fourth time-frequency resource, where the fourth time-frequency resource is L sub-bands in the M sub-bands
  • the first time-frequency resource includes a fifth time-frequency resource for carrying uplink control information
  • the network device receives the first uplink channel from the terminal device by using a second time-frequency resource, including: the network device Determining, by the second time-frequency resource, the third time-frequency resource; the network device receiving the uplink control information from the terminal device by using the third time-frequency resource; wherein, the size of the third time-frequency resource and the fifth The difference between the sizes of time-frequency resources is within a preset range.
  • the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the network device determines the third time-frequency resource from the second time-frequency resource according to the reference information, where the network device determines, according to the reference information and the first coefficient, the second time-frequency resource. And a third time-frequency resource, where the first coefficient is used to determine a size of a time-frequency resource that carries uplink control information.
  • the first time-frequency resource includes a fifth time-frequency resource for carrying uplink control information, where the size of the fifth time-frequency resource is determined according to the size of the first time-frequency resource and the first coefficient, and Determining, by the network device, the third time-frequency resource from the second time-frequency resource, the network device determining, according to the size of the first time-frequency resource and the first coefficient, from the second time-frequency resource Three time-frequency resources.
  • the method further includes: acquiring, by the network device, first mapping relationship information, where the first mapping relationship information is used to indicate a plurality of values including a value indicated by the reference information, and including the first coefficient a mapping relationship between the plurality of coefficients; the network device uses, as the first coefficient, a coefficient corresponding to the value indicated by the reference information according to the first mapping relationship information.
  • the network device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource, where the network device: according to the reference information and the preset first upper limit value, from the second time And determining, by the frequency resource, a third time-frequency resource, where the size of the third time-frequency resource is less than or equal to the first upper limit.
  • the method further includes: acquiring, by the network device, second mapping relationship information, where the second mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and including the first upper limit value a mapping relationship between the plurality of upper limit values; the network device uses the upper limit value corresponding to the value indicated by the reference information as the first upper limit value according to the second mapping relationship information.
  • the method further includes: the network device acquiring a plurality of parameter groups, each parameter group including a parameter value and a coefficient, wherein a difference between a product of the reference value and the coefficient included in any two parameter groups is The network device determines the first coefficient according to the parameter value indicated by the reference information, where the parameter value indicated by the reference information and the first coefficient belong to the same parameter group.
  • the network device sends scheduling information to the terminal device, where the network device sends P scheduling information to the terminal device, where the P scheduling information is in one-to-one correspondence with P uplink channels, and each scheduling information is used for Instructing the time-frequency resource of the corresponding uplink channel, the sub-band occupied by the time-frequency resource indicated by any two of the P scheduling information is at least partially different, P ⁇ 2, and the terminal device performs the M sub-band
  • the detecting includes: detecting, by the terminal device, the sub-band to which the time-frequency resource indicated by each scheduling information of the P scheduling information belongs; wherein the second time-frequency resource includes Q of the P scheduling information The frequency domain resource indicated by the scheduling information, 1 ⁇ Q ⁇ P.
  • the frequency domain resources indicated by the P scheduling information have a nested structure.
  • the frequency domain resources corresponding to the P uplink channels have a nested structure.
  • the frequency domain resources indicated by any two of the P scheduling information do not overlap.
  • the frequency domain resources corresponding to any two uplink channels of the P uplink channels do not overlap.
  • the frequency domain resources indicated by the P scheduling information include at least one pair of frequency domain resource pairs having overlapping portions in the frequency domain.
  • the P uplink channels include at least one pair of uplink channel pairs having overlapping portions in the frequency domain.
  • the method further includes: receiving, by the network device, third indication information, where the third indication information is used to indicate that the second time-frequency resource includes a time-frequency resource indicated by the Q scheduling information.
  • the third indication information has scheduling information corresponding to the sub-band occupied by the second time-frequency resource.
  • the method further includes: receiving, by the network device, first indication information, where the first indication information is used to indicate the second time-frequency resource, or the first indication information is used to indicate the second time The sub-band occupied by the frequency resource in the frequency domain.
  • the network device can determine the second time-frequency resource by sending the indication information of the second time-frequency resource to the network device, so that the network device can avoid the second time-frequency resource in the first time-frequency resource.
  • the uplink information (including the uplink data or the uplink control information) sent by the terminal device is detected on the resource, thereby reducing the processing load of the network device.
  • the second frequency domain resource corresponds to the multiple time-frequency resource unit RE
  • the network device receives the first indication information from the terminal device, where the network device receives, by using at least one of the multiple REs, the network device The terminal device sends the first indication information.
  • the second time-frequency resource includes at least one first symbol for carrying the reference signal
  • the network device determines the third time-frequency resource from the second time-frequency resource, including: the network device according to the The location of the at least one first symbol determines the location of the symbol corresponding to the third time-frequency resource.
  • the method further includes: receiving, by the network device, the second indication information, where the second indication information is used to indicate the third time-frequency resource, or the third indication information is used to indicate the third time The sub-band occupied by the frequency resource in the frequency domain.
  • the network device can determine the third time-frequency resource by receiving the indication information of the third time-frequency resource to the network device, and receive the uplink control information on the third time-frequency resource, so that the network device can be avoided.
  • the uplink control information sent by the terminal device is detected on the resources other than the third time-frequency resource in the first time-frequency resource (or the second time-frequency resource), thereby reducing the processing load of the network device.
  • the second frequency domain resource corresponds to multiple REs
  • the network device receives the second indication information from the terminal device, where the network device receives, by the at least one RE of the multiple REs, the terminal device The second indication information.
  • the uplink control information includes at least one of the following: hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • a third aspect provides a method for transmitting uplink control information, where the method includes: the terminal device generates a coded uplink data packet, where the uplink data packet belongs to an uplink channel, and the uplink channel is a candidate in the first time transmission interval TTI. On the time-frequency resource, the candidate time-frequency resource is the first time-frequency resource or the second time-frequency resource, and the second time-domain starting point of the second time-frequency resource is later than the first time-domain of the first time-frequency resource. a starting point; the terminal device detects the carrier where the candidate time-frequency resource is located, and the terminal device sends the uplink channel on the candidate time-frequency resource according to the result of the detection, where the uplink channel includes uplink control information and the coded Upstream packet.
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and a carrier corresponding to the candidate time-frequency resource is required before the terminal device needs to perform uplink transmission.
  • the terminal device can determine, from the first time-frequency resource or the second time-frequency resource, candidate time-frequency resources that can be used by the terminal device, and perform uplink channel transmission by using the candidate time-frequency resource, that is, Compared with the technology, the terminal device does not need to perform wireless communication by using the candidate time-frequency resource when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the capability of the terminal device to use the candidate.
  • the possibility of time-frequency resources for wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the terminal device sends the uplink channel on the candidate time-frequency resource according to the result of the detecting, including: determining, by the terminal device, the carrier where the candidate time-frequency resource is located before the start of the first time domain In the case of the transmission state, the terminal device transmits the uplink channel on the first time-frequency resource.
  • the terminal device sends the uplink channel on the first time-frequency resource, where the terminal device determines, according to the size value of the first time-frequency resource and the first coefficient, from the first time-frequency resource.
  • the third time-frequency resource the terminal device sends the uplink control information by using the third time-frequency resource.
  • the transmitting including: determining, by the terminal device, the carrier where the candidate time-frequency resource is not in the transmittable before the terminal device starts in the first time domain a state, and the terminal device determines that the carrier where the candidate time-frequency resource is in a transmittable state before the start of the second time domain, the terminal device sends the uplink channel on the second time-frequency resource.
  • the terminal device sends the uplink channel on the second time-frequency resource, where the terminal device determines, according to the size value of the second time-frequency resource and the second coefficient, from the second time-frequency resource. a fourth time-frequency resource; or the terminal device determines, according to the size value of the first time-frequency resource and the first coefficient, the fourth time-frequency resource from the second time-frequency resource; the terminal device sends the fourth time-frequency resource The uplink control information.
  • the second coefficient is greater than the first coefficient.
  • the difference between the size of the product of the size value of the second time-frequency resource and the second coefficient and the size of the product of the size value of the first time-frequency resource and the first coefficient is within a preset range.
  • the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the resource occupied by the second time-frequency resource in the time domain is a subset of the resources occupied by the first time-frequency resource in the time domain, and the resource occupied by the first time-frequency resource in the frequency domain is The size and the resources occupied by the second time-frequency resource in the frequency domain are equal in size.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the first time-frequency resource includes the second time-frequency resource.
  • the second time-frequency resource is a time-frequency resource in the first time-frequency resource that is located after the start of the second time domain.
  • the uplink control information is mapped from the second time-frequency resource, where the second time-frequency resource is a part of the first time-frequency resource.
  • the “uplink control information is mapped from the second time-frequency resource” means that, according to the second time-frequency resource, a part of the continuous bit stream generated by the uplink control information after coding is sequentially mapped. Or all.
  • the “uplink control information is mapped from the second time-frequency resource” means that, according to the second time-frequency resource, the part of the modulation symbol generated after the coding and modulation of the uplink control information is sequentially mapped. Or all.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the terminal device determines that the candidate time-frequency resource is the first time-frequency resource according to the result of the channel detection, and the terminal device starts mapping the uplink control information from the second time-frequency resource in the first time-frequency resource, where the terminal device The second time-frequency resource starts to send the uplink control information.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the terminal device determines that the candidate time-frequency resource is the second time-frequency resource according to the result of the channel detection, and the terminal device starts to map the uplink control information from the second time-frequency resource, where the terminal device sends the second time-frequency resource.
  • the uplink control information is the uplink control information.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the terminal device only maps the uplink control information on the second time-frequency resource.
  • the uplink control information is sent preferentially on the second time-frequency resource, that is:
  • the terminal device maps (or transmits) the uplink control on the second time-frequency resource.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the terminal device maps (or transmits) the uplink control on the second time-frequency resource. The first part of the message and discard the second part of the upstream control information.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the terminal device prohibits sending the uplink control information on the time-frequency resource other than the second time-frequency resource in the first time-frequency resource.
  • the foregoing “the first part of the uplink control information” may be the data that is formed by the continuous bit stream that is outputted after the uplink control information is encoded, and the “second part of the uplink control information” may refer to the uplink control information after the coding.
  • the output consists of a continuous bit stream of data.
  • the size of the first part of the uplink control information may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the uplink control information.
  • the size of the foregoing “second part of the uplink control information” may refer to the remaining of the size of the fourth time-frequency resource that is allocated by the network device for carrying the uplink control information, and the size of the first part is subtracted. Part of the size.
  • the end portion of the foregoing “first portion of the uplink control information” and the initial portion of the “second portion of the uplink control information” are consecutive bit streams.
  • the first TTI includes two time slots, and the first time-frequency resource is a time-frequency resource on a first time slot in the first TTI, where the second time-frequency resource is in the first TTI. Time-frequency resources on the second time slot.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the first time-frequency resource or the second time-frequency resource to send the uplink channel according to the result of the detection,
  • the uplink channel includes uplink control information and uplink data packets.
  • a feasible manner is that the encoded uplink data packet and the uplink control information generated by the terminal device are matched with the first time-frequency resource, and when the result of the detection is that the first time-frequency resource is available, The terminal device sends the encoded uplink data packet and the uplink control information from the first time-frequency resource; when the result of the detection is that the second time-frequency resource is available, the terminal device uses the second time-frequency resource The transmission of the encoded uplink data packet and uplink control information is started. It should be noted that the terminal device groups the data packet and the uplink control information that need to be mapped on the first time-frequency resource in advance, and therefore, when the detection result is that the first time-frequency resource is unavailable, the second time-frequency resource is available.
  • the terminal device cannot regenerate another encoded uplink data packet and uplink control information that matches the second time-frequency resource, and therefore, the terminal device discards the first generated time and the first time.
  • the part of the encoded uplink data packet and the uplink control information that cannot be matched with the second time-frequency resource, that is, the coded uplink data packet and the uplink control information are punctured and the second time-frequency resource Matching, and transmitting the coded uplink data packet and the punctured portion of the uplink control information on the second time-frequency resource.
  • the uplink control information is transmitted only once. Therefore, when the detection result is that the second time-frequency resource is available, based on the above embodiment, the transmission performance of the uplink control information cannot be ensured.
  • the terminal device preferentially transmits the uplink control information on the second time-frequency resource, and the terminal device determines whether the candidate time-frequency resource that can be used for the uplink channel transmission is the first time-frequency resource or the second time-frequency according to the channel detection result.
  • the resources can ensure that the uplink control information carried on the second time-frequency resource is sent, so that the performance of the uplink control information can be guaranteed.
  • the first time-frequency resource includes the second time-frequency resource, or the time period corresponding to the second time-frequency resource belongs to the TTI corresponding to the first time-frequency resource, and therefore the first time-frequency
  • the second time-frequency resource is also generally available.
  • the resource in the first time-frequency resource that is located before the second time-frequency resource in the time domain is not necessarily available.
  • the possibility that the terminal device competes with the second time-frequency resource is greater than the possibility that the terminal device competes with the complete first time-frequency resource.
  • the uplink control information is preferentially mapped on the second time-frequency resource, Improve the reliability of transmission of uplink control information.
  • the encoded uplink data packet is sent from the second time-frequency resource, where the second time-frequency resource is a part of the first time-frequency resource.
  • the "encoded uplink data packet is transmitted from the second time-frequency resource” means that the portion of the continuous bit stream generated by the uplink data packet after encoding is sequentially mapped from the second time-frequency resource. Or all.
  • the encoded uplink data packet is sent from the second time-frequency resource, and is:
  • the terminal device determines that the candidate time-frequency resource is the first time-frequency resource according to the result of the channel detection, and the terminal device maps the first part of the encoded uplink data packet to the second time in the first time-frequency resource. On the frequency resource, the terminal device maps the second part of the encoded uplink data packet to the resource of the first time-frequency resource except the second time-frequency resource, where the terminal device is in the first time The encoded uplink data packet is sent on the frequency resource.
  • the encoded uplink data packet is sent from the second time-frequency resource, and is:
  • the terminal device determines that the candidate time-frequency resource is the second time-frequency resource according to the result of the channel detection, and the terminal device maps the first part of the encoded uplink data packet to the second time-frequency resource, where the terminal device is Transmitting the first part of the encoded uplink data packet on the second time-frequency resource.
  • first part in the encoded uplink data packet may refer to data consisting of consecutive bit streams outputted in the encoded uplink data packet
  • second part in the encoded uplink data packet may refer to data consisting of successive bit streams outputted in the encoded upstream packet.
  • the end portion of the “first portion in the encoded uplink data packet” and the beginning portion of the “second portion in the encoded uplink data packet” are consecutive bit streams.
  • the size of the “first part in the encoded uplink data packet” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the encoded uplink data packet.
  • the size of the foregoing “second part in the encoded uplink data packet” may refer to subtracting the size of the first part from the size of the resource allocated by the network device for carrying the encoded uplink data packet. The size of the remainder except the one.
  • the “first part in the encoded uplink data packet” is a system bit encoded by the uplink data packet.
  • some bits of the encoded uplink data packet carrying the most important information are more likely to compete for the second time-frequency resource than the terminal device competes for the first time. Since the time-frequency resource is possible, by transmitting the data located at the front end of the encoded uplink packet on the second time-frequency resource, the transmission reliability of the more important information can be improved, and the communication performance can be improved.
  • the system bit may refer to a bit other than the check bit formed after the uplink data is encoded.
  • the system bit can be a bit corresponding to the original data.
  • a fourth aspect provides a method for transmitting uplink control information, where the method includes: the network device sends scheduling information to the terminal device, where the scheduling information is used to indicate that the terminal device transmits an uplink channel in a first time transmission interval TTI, where the uplink The channel includes at least uplink control information, where the uplink channel is carried in a candidate time-frequency resource in the first TTI, where the candidate time-frequency resource is a first time-frequency resource or a second time-frequency resource, where the second time-frequency resource is The second time domain starting point is later than the first time domain starting point of the first time-frequency resource; the network device receives the uplink channel sent by the terminal device by using the candidate time-frequency resource.
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and a carrier corresponding to the candidate time-frequency resource is required before the terminal device needs to perform uplink transmission.
  • the terminal device can determine, from the first time-frequency resource or the second time-frequency resource, candidate time-frequency resources that can be used by the terminal device, and perform uplink channel transmission by using the candidate time-frequency resource, that is, Compared with the technology, the terminal device does not need to perform wireless communication by using the candidate time-frequency resource when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the capability of the terminal device to use the candidate.
  • the possibility of time-frequency resources for wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the receiving, by the network device, the uplink channel sent by the terminal device by using the candidate time-frequency resource including: determining, by the terminal device, that the carrier where the candidate time-frequency resource is in a transmittable state before the terminal device starts in the first time domain And the network device receives the uplink channel on the first time-frequency resource.
  • the network device receives the uplink channel sent by the terminal device by using the candidate time-frequency resource, where the terminal device determines, according to the size value of the first time-frequency resource and the first coefficient, from the first time-frequency resource.
  • the third time-frequency resource the network device receives the uplink control information by using the third time-frequency resource.
  • the receiving, by the network device, the uplink channel sent by the terminal device by using the candidate time-frequency resource including: determining, by the terminal device, that the carrier where the candidate time-frequency resource is not in a transmittable state before the terminal device starts in the first time domain, And the determining, by the terminal device, that the carrier where the candidate time-frequency resource is in a transmittable state before the start of the second time domain, the network device receiving the uplink channel on the second time-frequency resource.
  • the network device receives the uplink channel sent by the terminal device by using the candidate time-frequency resource, where the terminal device determines, according to the size value of the second time-frequency resource and the second coefficient, from the second time-frequency resource. a fourth time-frequency resource; or the terminal device determines, according to the size value of the first time-frequency resource and the first coefficient, the fourth time-frequency resource from the second time-frequency resource; and the network device passes the fourth time-frequency resource Receiving the uplink control information.
  • the second coefficient is greater than the first coefficient.
  • the difference between the size of the product of the size value of the second time-frequency resource and the second coefficient and the size of the product of the size value of the first time-frequency resource and the first coefficient is within a preset range.
  • the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the resource occupied by the second time-frequency resource in the time domain is a subset of the resources occupied by the first time-frequency resource in the time domain, and the resource occupied by the first time-frequency resource in the frequency domain is The size and the resources occupied by the second time-frequency resource in the frequency domain are equal in size.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the first time-frequency resource includes the second time-frequency resource.
  • the second time-frequency resource is a time-frequency resource in the first time-frequency resource that is located after the start of the second time domain.
  • the uplink control information is mapped from the second time-frequency resource, where the second time-frequency resource is a part of the first time-frequency resource.
  • the uplink control information is mapped from the second time-frequency resource means that part or all of the continuous bit stream generated by the uplink control information after encoding is sequentially mapped from the second time-frequency resource.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the uplink control information maps the uplink control information from the second time-frequency resource in the first time-frequency resource, and transmits the uplink control information on the second time-frequency resource.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the uplink control information is mapped from the second time-frequency resource and transmitted on the second time-frequency resource.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • the uplink control information on the second time-frequency resource can meet the performance requirement of the uplink control information transmission, the uplink control information is mapped (or transmitted) only on the second time-frequency resource.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • mapping the first part of the uplink control information on the second time-frequency resource, and in the The second part of the uplink control information is mapped to the time-frequency resource except the second time-frequency resource.
  • mapping of the uplink control information from the second time-frequency resource refers to:
  • mapping the first part of the uplink control information on the second time-frequency resource maps the first part of the uplink control information on the second time-frequency resource, and discarding the uplink control The second part of the message.
  • mapping where the uplink control information is mapped from the second time-frequency resource, is:
  • the uplink control information is prohibited from being mapped on the time-frequency resource except the second time-frequency resource in the first time-frequency resource.
  • the foregoing “the first part of the uplink control information” may be the data that is formed by the continuous bit stream that is outputted after the uplink control information is encoded, and the “second part of the uplink control information” may be referred to after the uplink control information is encoded.
  • the output consists of a continuous bit stream of data.
  • the size of the first part of the uplink control information may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the uplink control information.
  • the size of the foregoing “second part of the uplink control information” may refer to the remaining of the size of the fourth time-frequency resource that is allocated by the network device for carrying the uplink control information, and the size of the first part is subtracted. Part of the size.
  • the end portion of the foregoing “first portion of the uplink control information” and the initial portion of the “second portion of the uplink control information” are consecutive bit streams.
  • the first TTI includes two time slots, and the first time-frequency resource is a time-frequency resource on a first time slot in the first TTI, where the second time-frequency resource is in the first TTI. Time-frequency resources on the second time slot.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the first time-frequency resource or the second time-frequency resource to send the uplink channel according to the result of the detection,
  • the uplink channel includes uplink control information and uplink data packets.
  • a feasible manner is that the encoded uplink data packet and the uplink control information generated by the terminal device are matched with the first time-frequency resource, and when the result of the detection is that the first time-frequency resource is available, The terminal device sends the encoded uplink data packet and the uplink control information from the first time-frequency resource; when the result of the detection is that the second time-frequency resource is available, the terminal device uses the second time-frequency resource The transmission of the encoded uplink data packet and uplink control information is started. It should be noted that the terminal device groups the data packet and the uplink control information that need to be mapped on the first time-frequency resource in advance, and therefore, when the detection result is that the first time-frequency resource is unavailable, the second time-frequency resource is available.
  • the terminal device cannot regenerate another encoded uplink data packet and uplink control information that matches the second time-frequency resource, and therefore, the terminal device discards the first generated time and the first time.
  • the part of the encoded uplink data packet and the uplink control information that cannot be matched with the second time-frequency resource, that is, the coded uplink data packet and the uplink control information are punctured and the second time-frequency resource Matching, and transmitting the coded uplink data packet and the punctured portion of the uplink control information on the second time-frequency resource.
  • the uplink control information is transmitted only once. Therefore, when the detection result is that the second time-frequency resource is available, based on the above embodiment, the transmission performance of the uplink control information cannot be ensured.
  • the terminal device preferentially transmits the uplink control information on the second time-frequency resource, and the terminal device determines whether the candidate time-frequency resource that can be used for the uplink channel transmission is the first time-frequency resource or the second time-frequency according to the channel detection result.
  • the resources can ensure that the uplink control information carried on the second time-frequency resource is sent, so that the performance of the uplink control information can be guaranteed.
  • the first time-frequency resource includes the second time-frequency resource, or the time period corresponding to the second time-frequency resource belongs to the TTI corresponding to the first time-frequency resource, and therefore the first time-frequency
  • the second time-frequency resource is also generally available.
  • the resource in the first time-frequency resource that is located before the second time-frequency resource in the time domain is not necessarily available.
  • the possibility that the terminal device competes with the second time-frequency resource is greater than the possibility that the terminal device competes with the complete first time-frequency resource.
  • the uplink control information is preferentially mapped on the second time-frequency resource, Improve the reliability of transmission of uplink control information.
  • the encoded uplink data packet is mapped from the second time-frequency resource, where the second time-frequency resource is a part of the first time-frequency resource.
  • the coded uplink data packet is mapped from the second time-frequency resource, and is:
  • the first part of the encoded uplink data packet is mapped to the second time-frequency resource in the first time-frequency resource, and the encoded uplink data is used.
  • the second part of the packet is mapped to the resource of the first time-frequency resource except the second time-frequency resource.
  • the coded uplink data packet is mapped from the second time-frequency resource, and is:
  • the candidate time-frequency resource is the second time-frequency resource
  • the first part of the encoded uplink data packet is mapped to the second time-frequency resource.
  • first part in the encoded uplink data packet may refer to data consisting of consecutive bit streams outputted in the encoded uplink data packet
  • second part in the encoded uplink data packet may refer to data consisting of successive bit streams outputted in the encoded upstream packet.
  • the end portion of the “first portion in the encoded uplink data packet” and the beginning portion of the “second portion in the encoded uplink data packet” are consecutive bit streams.
  • the size of the “first part in the encoded uplink data packet” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the encoded uplink data packet.
  • the size of the foregoing “second part in the encoded uplink data packet” may refer to subtracting the size of the first part from the size of the resource allocated by the network device for carrying the encoded uplink data packet. The size of the remainder except the one.
  • the “first part in the encoded uplink data packet” is a system bit encoded by the uplink data packet.
  • a part of the bits of the encoded uplink data packet carrying the most important information may be more likely to compete for the second time-frequency resource than the terminal device competes to the first. Since the time-frequency resource is possible, by transmitting the data located at the front end of the encoded uplink packet on the second time-frequency resource, the transmission reliability of the more important information can be improved, and the communication performance can be improved.
  • the system bit may refer to a bit other than the check bit formed after the uplink data is encoded.
  • the system bit can be a bit corresponding to the original data.
  • a fifth aspect provides a method for transmitting uplink control information, which is applied to a communication system including a network device and a terminal device, wherein the frequency domain resource used by the communication system is a frequency domain resource used based on a contention mechanism, and the transmission used by the communication system
  • the time interval TTI includes at least two time domain starting points
  • the method includes: the terminal device receiving scheduling information from the network device, where the scheduling information is used to indicate that the network device allocates at least one uplink channel for the terminal device a frequency resource, where a first uplink channel of the at least one uplink channel is carried in a first frequency domain resource, and the first uplink channel is carried in a first TTI, where the first uplink channel includes at least uplink control information;
  • the terminal device detects the first frequency domain resource, and determines, according to the result of the detection, a first time domain starting point from at least two time domain starting points included in the first TTI, where the first frequency domain resource
  • the second frequency domain resource is in a state that can be used by the
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and the first frequency domain indicated by the network device is indicated before the terminal device needs to perform uplink transmission.
  • the detecting of the resource enables the terminal device to determine the second frequency domain resource that the terminal device can use from the first frequency domain resource, and can enable the terminal device to determine the terminal device from the at least two time domain starting points included in the first TTI. a first time domain starting point of the second frequency domain resource that can be used, so that the terminal device can perform uplink channel transmission by using the second frequency domain resource from the first time domain starting point, that is, compared with the prior art.
  • the terminal device can use the candidate time-frequency resource for wireless communication when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the capability of the terminal device to use the candidate time-frequency resource.
  • the possibility of wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the scheduling information is specifically used to indicate the first time-frequency resource that is used to carry the first uplink channel, and the terminal device detects the first frequency domain resource, where the terminal device includes the first frequency domain resource.
  • the terminal device detects the first frequency domain resource, where the terminal device includes the first frequency domain resource.
  • the terminal device sends the first uplink channel by using the second frequency domain resource from the first time domain starting point, including: the terminal device according to the reference information, And determining, by the second time-frequency resource, the third time-frequency resource; the terminal device sends the uplink control information by using the third time-frequency resource; wherein the reference information is used to indicate at least one of the following values: the first time-frequency a size value of the resource, a size value of the first frequency domain resource, a size value of the second time-frequency resource,
  • the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the terminal device determines the third time-frequency resource from the second time-frequency resource according to the reference information, where the terminal device determines, according to the reference information and the first coefficient, the second time-frequency resource. And a third time-frequency resource, where the first coefficient is used to determine a size of a time-frequency resource that carries uplink control information.
  • the method further includes: the terminal device acquiring the first mapping relationship information, where the first mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and the first coefficient is included a mapping relationship between the plurality of coefficients; the terminal device uses, as the first coefficient, a coefficient corresponding to the value indicated by the reference information according to the first mapping relationship information.
  • the terminal device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource, including: the terminal device, according to the reference information and the preset first upper limit value, from the second time And determining, by the frequency resource, a third time-frequency resource, where the size of the third time-frequency resource is less than or equal to the first upper limit.
  • the method further includes: acquiring, by the terminal device, the second mapping relationship information, where the second mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and including the first upper limit value a mapping relationship between the plurality of upper limit values; the terminal device uses the upper limit value corresponding to the value indicated by the reference information as the first upper limit value according to the second mapping relationship information.
  • the frequency domain resource used by the communication system is divided into N sub-bands, N ⁇ 2, the first frequency domain resource occupies M sub-bands of the N sub-bands, M ⁇ 2, and the second frequency domain resource
  • the K sub-bands of the M sub-bands are occupied in the frequency domain, M>K ⁇ 1.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the first TTI includes a start time domain start point and a back end time domain start point, where the front end time domain start point is located in the time domain before the back end time domain start point, and
  • the second frequency domain resource When the second frequency domain resource is in a state that can be used by the terminal device after the front end time domain start point and the back end time domain start point,
  • the terminal device sends the first uplink channel by using the second frequency domain resource from the first time domain starting point, including:
  • the terminal device starts transmitting the uplink control information from the second frequency domain resource after the start of the back end time domain.
  • the terminal device starts sending the uplink control information from the second frequency domain resource after the start of the back end time domain, including:
  • the terminal device sends the uplink control information only on the second frequency domain resource after the start of the back-end time domain;
  • the terminal device sends (or maps) the second frequency domain resource after the start of the back-end time domain. And transmitting, by the mapping, the second part of the uplink control information, on the first part of the uplink control information; or
  • the terminal device sends the second frequency domain resource after the start of the second time domain of the back-end time-frequency resource ( Or mapping the first part of the uplink control information and discarding the second part of the uplink control information; or
  • the terminal device prohibits sending the uplink control information on the second frequency domain resource after the start of the front end time domain.
  • the foregoing “the first part of the uplink control information” may be the data that is formed by the continuous bit stream that is outputted after the uplink control information is encoded, and the “second part of the uplink control information” may refer to the uplink control information after the coding.
  • the output consists of a continuous bit stream of data.
  • the first part of the uplink control information may be the part of the uplink control information that can be carried on the second frequency domain resource after the start of the back-end time domain, and the second part of the uplink control information may refer to The remaining portion of the uplink control information except the first portion.
  • the location of the first part in the uplink control information is before the second part.
  • the end portion of the foregoing “first portion of the uplink control information” and the initial portion of the “second portion of the uplink control information” are consecutive bit streams.
  • the first TTI includes two time slots, where the front end time domain start point is a starting point of a first time slot in the first TTI, and the back end time frequency resource is a second one in the first TTI The starting point on each time slot.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the resource after the start of the back-end time domain or the resource after the start of the front-end time domain according to the result of the detection. Send the upstream channel.
  • a feasible manner is that the encoded uplink data packet generated by the terminal device matches the resource after the start of the front-end time domain, and when the result of the detection is that the resource after the start of the front-end time domain is available, The terminal device starts to send the uplink data packet and the uplink control information from the resource after the start of the front-end time domain; when the result of the detection is that the resource after the start of the back-end time domain is available, after the start of the back-end time domain The resource starts to send the uplink data packet and the uplink control information.
  • the terminal device pre-packages the data packets and the uplink control information on the resources that need to be mapped after the start of the front-end time domain and the resource after the start of the back-end time domain, so when When the result of the detection is available, the resources after the start of the back-end time domain are available (or the resources after the start of the front-end time domain are unavailable), the terminal device cannot regenerate the encoded back-end time domain starting point due to the capability limitation.
  • the subsequent resource matches another uplink data packet and uplink control information.
  • the terminal device discards the pre-generated portion of the uplink data packet or the uplink control information that cannot match the resource after the back end of the back-end time domain (ie, The uplink data packet and the uplink control information on the resource after the start of the front-end time domain need to be mapped, that is, the uplink data packet is punctured and matched with the resource after the back-end time domain starting point, and the back-end time domain starting point is The portion of the upstream packet that is punctured is transmitted on the subsequent resource. Further, since the uplink control information is transmitted only once, the resource after the start of the back-end time domain is available when the result is detected. Based on the above embodiment, the transmission performance of the uplink control information cannot be ensured.
  • the terminal device determines that the candidate time-frequency resource available for the uplink channel transmission is the resource after the start of the front-end time domain according to the channel detection result.
  • the resource after the start of the back-end time domain the uplink control information carried on the uplink channel can be sent, so that the performance of the uplink control information can be guaranteed.
  • the first time-frequency resource and the second time-frequency resource belong to the same TTI, when the first time-frequency resource is available, the second time-frequency resource is generally available, but when the second When the time-frequency resource is available, the first time-frequency resource is not necessarily available. Therefore, the possibility that the terminal device competes for the second time-frequency resource is greater than the possibility that the terminal device competes with the first time-frequency resource.
  • the uplink control information is preferentially mapped on the second time-frequency resource, so that the reliability of the uplink control information transmission can be improved.
  • the first TTI includes a start time domain start point and a back end time domain start point, where the front end time domain start point is located in the time domain before the back end time domain start point, and
  • the terminal device sends the first uplink channel by using the second frequency domain resource from the first time domain starting point, including:
  • the terminal device When the second frequency domain resource is in a state that can be used by the terminal device after the front end time domain start point and the back end time domain start point, the terminal device sends the second frequency domain resource after the back end time domain start point. And (or mapping) the first portion of the encoded uplink packet, the second portion of the encoded uplink packet is transmitted (or mapped) on the second frequency domain resource after the start of the front end time domain.
  • first part in the encoded uplink data packet may refer to data consisting of consecutive bit streams outputted in the encoded uplink data packet, where the “coded uplink data packet” may refer to data consisting of successive bit streams outputted in the encoded upstream data packet.
  • the end portion of the “first portion in the encoded uplink data packet” and the beginning portion of the “second portion in the encoded uplink data packet” are consecutive bit streams.
  • the size of the “first part in the encoded uplink data packet” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the encoded uplink data packet.
  • the size of the foregoing “second part in the encoded uplink data packet” may refer to subtracting the size of the first part from the size of the resource allocated by the network device for carrying the encoded uplink data packet. The size of the remainder except the one.
  • the “first part in the encoded uplink data packet” is a system bit encoded by the uplink data packet.
  • the second frequency domain resource after the start of the front end time domain refers to the second frequency domain resource in the time domain between the start time of the front end time domain and the start time of the back end time domain.
  • some bits of the uplink data packet in the front end carry more important information (for example, system bits, etc.), because the possibility that the terminal device competes for resources after the start of the back-end time domain is greater than when the terminal device competes for the front-end.
  • the possibility of resources after the start of the domain Therefore, by transmitting the first data located at the front end of the uplink packet on the resource after the start of the back-end time domain, the transmission reliability of the more important information can be improved, thereby improving communication performance. .
  • a sixth aspect provides a method for transmitting uplink control information, which is applied to a communication system including a network device and a terminal device, wherein the frequency domain resource used by the communication system is a frequency domain resource used based on a contention mechanism, and the transmission used by the communication system
  • the time interval TTI includes at least two time domain starting points
  • the method includes: the network device sending scheduling information to the terminal device, where the scheduling information is used to indicate that the network device allocates at least one uplink channel for the terminal device a frequency resource, where a first uplink channel of the at least one uplink channel is carried in a first frequency domain resource, and the first uplink channel is carried in a first TTI, where the first uplink channel includes at least uplink control information;
  • the network device receives the first uplink channel from the terminal device by using the second frequency domain resource, where the first time domain starting point is that the terminal device detects the first frequency domain resource.
  • the second frequency domain resource in the first frequency domain resource is from the first time domain After the point is in a state capable of being used by the terminal device, the second portion of the frequency domain resource is the first resource in the frequency domain or all of the resources.
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and the first frequency domain indicated by the network device is indicated before the terminal device needs to perform uplink transmission.
  • the detecting of the resource enables the terminal device to determine the second frequency domain resource that the terminal device can use from the first frequency domain resource, and can enable the terminal device to determine the terminal device from the at least two time domain starting points included in the first TTI. a first time domain starting point of the second frequency domain resource that can be used, so that the terminal device can perform uplink channel transmission by using the second frequency domain resource from the first time domain starting point, that is, compared with the prior art.
  • the terminal device can use the candidate time-frequency resource for wireless communication when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the capability of the terminal device to use the candidate time-frequency resource.
  • the possibility of wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the scheduling information is specifically used to indicate a first time-frequency resource that is used to carry the first uplink channel, where the starting point of the second time-frequency resource in the time domain is the first time domain starting point, and the second time-frequency The resource occupies the second frequency domain resource in the frequency domain, where the second time-frequency resource is a time-frequency resource that can be used by the terminal device in the first time-frequency resource; and the network device starts from the first time domain.
  • the receiving, by the network device, the first uplink channel from the terminal device includes: determining, by the network device, a third time-frequency resource from the second time-frequency resource according to the reference information; and receiving, by the network device, the third time-frequency resource
  • the uplink control information where the reference information is used to indicate at least one of the following values: a size value of the first time-frequency resource, a size value of the first frequency domain resource, a size value of the second time-frequency resource, and the The size value of the second frequency domain resource, the first reference value, and the first reference value is specified by the communication system, or the first reference value is previously indicated by the network device.
  • the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is smaller than that in the first resource.
  • the size of the time-frequency resource that carries the uplink control information is determined based on the size of the second time-frequency resource (or the time-frequency resource
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the determining, by the network device, the third time-frequency resource from the second time-frequency resource according to the reference information including: determining, by the network device, the second time-frequency resource according to the reference information and the first coefficient And a third time-frequency resource, where the first coefficient is used to determine a size of a time-frequency resource that carries uplink control information.
  • the method further includes: acquiring, by the network device, first mapping relationship information, where the first mapping relationship information is used to indicate a plurality of values including a value indicated by the reference information, and including the first coefficient a mapping relationship between the plurality of coefficients; the network device uses, as the first coefficient, a coefficient corresponding to the value indicated by the reference information according to the first mapping relationship information.
  • the network device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource, where the network device: according to the reference information and the preset first upper limit value, from the second time And determining, by the frequency resource, a third time-frequency resource, where the size of the third time-frequency resource is less than or equal to the first upper limit.
  • the method further includes: acquiring, by the network device, second mapping relationship information, where the second mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and including the first upper limit value a mapping relationship between the plurality of upper limit values; the network device uses the upper limit value corresponding to the value indicated by the reference information as the first upper limit value according to the second mapping relationship information.
  • the frequency domain resource used by the communication system is divided into N sub-bands, N ⁇ 2, the first frequency domain resource occupies M sub-bands of the N sub-bands, M ⁇ 2, and the second frequency domain resource
  • the K sub-bands of the M sub-bands are occupied in the frequency domain, M>K ⁇ 1.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the first TTI includes a start time domain start point and a back end time domain start point, where the front end time domain start point is located in the time domain before the back end time domain start point, and
  • the second frequency domain resource When the second frequency domain resource is in a state that can be used by the terminal device after the front end time domain start point and the back end time domain start point,
  • the network device receives the first uplink channel from the terminal device by using the second frequency domain resource from the first time domain starting point, including:
  • the network device receives the uplink control information from the second frequency domain resource after the start of the back end time domain.
  • the network device accepts the uplink control information from the second frequency domain resource after the start of the back end time domain, including:
  • the network device receives the uplink control information only on the second frequency domain resource after the start of the back-end time domain;
  • the network device receives the first part of the uplink control information on the second frequency domain resource after the start of the back-end time domain And receiving the second portion of the uplink control information on the second frequency domain resource after the start of the front end time domain;
  • the network device receives the second frequency domain resource after the start of the second time domain of the back-end time-frequency resource.
  • the first part of the uplink control information or
  • the network device prohibits receiving the uplink control information on the second frequency domain resource after the start of the front end time domain.
  • the “first part of the uplink control information” may be the data consisting of the continuous bit stream outputted after the uplink control information is encoded, and the “second part of the uplink control information” may be outputted after the uplink control information is encoded. Data consisting of consecutive bit streams.
  • the size of the “first part of the uplink control information” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the uplink control information.
  • the size of the foregoing “second part of the uplink control information” may refer to the remaining of the size of the fourth time-frequency resource that is allocated by the network device for carrying the uplink control information, and the size of the first part is subtracted. Part of the size.
  • the end portion of the foregoing “first portion of the uplink control information” and the initial portion of the “second portion of the uplink control information” are consecutive bit streams.
  • the location of the first part in the uplink control information is before the second part.
  • the first TTI includes two time slots, where the front end time domain start point is a starting point of a first time slot in the first TTI, and the back end time frequency resource is a second one in the first TTI The starting point on each time slot.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the resource after the start of the back-end time domain or the resource after the start of the front-end time domain according to the result of the detection. Send the upstream channel.
  • a feasible manner is that the encoded uplink data packet generated by the terminal device matches the resource after the start of the front-end time domain, and when the result of the detection is that the resource after the start of the front-end time domain is available, The terminal device starts to send the uplink data packet and the uplink control information from the resource after the start of the front-end time domain; when the result of the detection is that the resource after the start of the back-end time domain is available, after the start of the back-end time domain The resource starts to send the uplink data packet and the uplink control information.
  • the terminal device pre-packages the data packets and the uplink control information on the resources that need to be mapped after the start of the front-end time domain and the resource after the start of the back-end time domain, so when When the result of the detection is available, the resources after the start of the back-end time domain are available (or the resources after the start of the front-end time domain are unavailable), the terminal device cannot regenerate the encoded back-end time domain starting point due to the capability limitation.
  • the subsequent resource matches another uplink data packet and uplink control information.
  • the terminal device discards the pre-generated portion of the uplink data packet or the uplink control information that cannot match the resource after the back end of the back-end time domain (ie, The uplink data packet and the uplink control information on the resource after the start of the front-end time domain need to be mapped, that is, the uplink data packet is punctured and matched with the resource after the back-end time domain starting point, and the back-end time domain starting point is The portion of the upstream packet that is punctured is transmitted on the subsequent resource. Further, since the uplink control information is transmitted only once, the resource after the start of the back-end time domain is available when the result is detected. Based on the above embodiment, the transmission performance of the uplink control information cannot be ensured.
  • the terminal device determines that the candidate time-frequency resource available for the uplink channel transmission is the resource after the start of the front-end time domain according to the channel detection result.
  • the resource after the start of the back-end time domain the uplink control information carried on the uplink channel can be sent, so that the performance of the uplink control information can be guaranteed.
  • the first TTI includes a start time domain start point and a back end time domain start point, where the front end time domain start point is located in the time domain before the back end time domain start point, and
  • the network device receives the first uplink channel from the terminal device by using the second frequency domain resource from the first time domain starting point, including:
  • the network device When the second frequency domain resource is in a state that can be used by the terminal device after the front end time domain start point and the back end time domain start point, the network device receives on the second frequency domain resource after the back end time domain start point.
  • the first part of the uplink data packet receives the second part of the uplink data packet on the second frequency domain resource after the start of the front end time domain, where the location of the first data in the uplink data packet is located Before the second data.
  • first part in the encoded uplink data packet may refer to data consisting of consecutive bit streams outputted in the encoded uplink data packet
  • second part in the encoded uplink data packet may refer to data consisting of successive bit streams outputted in the encoded upstream packet.
  • the end portion of the “first portion in the encoded uplink data packet” and the beginning portion of the “second portion in the encoded uplink data packet” are consecutive bit streams.
  • the size of the “first part in the encoded uplink data packet” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the encoded uplink data packet.
  • the size of the foregoing “second part in the encoded uplink data packet” may refer to subtracting the size of the first part from the size of the resource allocated by the network device for carrying the encoded uplink data packet. The size of the remainder except the one.
  • the “first part in the encoded uplink data packet” is a system bit encoded by the uplink data packet.
  • some bits of the uplink data packet in the front end carry more important information (for example, system bits, etc.), because the possibility that the terminal device competes for resources after the start of the back-end time domain is greater than when the terminal device competes for the front-end.
  • the possibility of resources after the start of the domain Therefore, by transmitting the first data located at the front end of the uplink packet on the resource after the start of the back-end time domain, the transmission reliability of the more important information can be improved, thereby improving communication performance. .
  • a seventh aspect provides a method for transmitting uplink control information, which is applied to a communication system including a network device and a terminal device, wherein the time-frequency resource used by the communication system is a time-frequency resource used based on a contention mechanism, and the communication system uses multiple Each TTI in the transmission time interval TTI includes at least two time domain starting points, and the method includes: the terminal device receives scheduling information from the network device, where the scheduling information is used to indicate that the network device allocates for the terminal device a time-frequency resource carrying at least one uplink channel, where a first uplink channel of the at least one uplink channel is carried in a candidate time-frequency resource, where the first uplink channel includes at least uplink control information, and the candidate time-frequency resource is in time Corresponding to the first TTI, the candidate time-frequency resource includes at least two time-frequency resources, and the at least two time-frequency resources are in one-to-one correspondence with at least two time domain starting points included in the first TTI; Detecting a time-frequency resource, and
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and the terminal device performs a candidate time-frequency indicated by the network device before the uplink transmission is required.
  • the detecting, the terminal device can determine, from the at least two time-frequency resources that are different from the starting point of the candidate time-frequency, the target time-frequency resource that can be used by the terminal device, and perform the uplink channel transmission by using the target time-frequency resource, that is, Compared with the prior art, the terminal device does not need to perform wireless communication by using the candidate time-frequency resource when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the terminal device.
  • the possibility of using the candidate time-frequency resource for wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the candidate time-frequency resource includes at least two time-frequency resources having an embedded structure in the time domain.
  • the terminal device sends the first uplink channel by using the target time-frequency resource, where the terminal device determines, according to the reference information, a third time-frequency resource from the target time-frequency resource; the terminal device passes the third time
  • the time-frequency resource sends the uplink control information, where the reference information is used to indicate at least one of the following values: a size value of the candidate time-frequency resource, and a preset time in the at least two time-frequency resources included in the candidate time-frequency resource a size value of the frequency resource, a size value of the target time-frequency resource, a first reference value, and the first reference value is specified by the communication system, or the first reference value is previously indicated by the network device
  • the preset time-frequency resource is specified by the communication system, or the preset time-frequency resource is instructed by the network device in advance.
  • the size of the time-frequency resource used to carry the uplink control information in the target time-frequency resource is determined based on the size of the target time-frequency resource (or the time-frequency resource used to carry the uplink data in the target time-frequency resource), When the target time-frequency resource is part of the candidate time-frequency resource, the size of the time-frequency resource used to carry the uplink control information in the target time-frequency resource is smaller than the time used to carry the uplink control information in the candidate resource. The size of the frequency resource.
  • the size of the third time-frequency resource used for carrying the uplink control information in the target time-frequency resource is determined based on the size of the candidate time-frequency resource, that is, the target
  • the difference between the size of the time-frequency resource and the time-frequency resource of the candidate time-frequency resource for carrying the uplink control information is within a preset range, that is, compared to the prior art, the uplink control information is used to carry the uplink control information.
  • the size of the time-frequency resource is increased to ensure the reliability of the transmission of the uplink control information.
  • the terminal device determines, according to the reference information, the third time-frequency resource from the target time-frequency resource, where the terminal device determines, according to the reference information and the first coefficient, the third time from the target time-frequency resource.
  • the time-frequency resource, wherein the first coefficient is used to determine a size of a time-frequency resource that carries uplink control information.
  • the method further includes: the terminal device acquiring the first mapping relationship information, where the first mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and the first coefficient is included a mapping relationship between the plurality of coefficients; the terminal device uses, as the first coefficient, a coefficient corresponding to the value indicated by the reference information according to the first mapping relationship information.
  • the terminal device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource, including: the terminal device, according to the reference information and the preset first upper limit value, from the second time And determining, by the frequency resource, a third time-frequency resource, where the size of the third time-frequency resource is less than or equal to the first upper limit.
  • the method further includes: acquiring, by the terminal device, the second mapping relationship information, where the second mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and including the first upper limit value a mapping relationship between the plurality of upper limit values; the terminal device uses the upper limit value corresponding to the value indicated by the reference information as the first upper limit value according to the second mapping relationship information.
  • the frequency domain resource used by the communication system is divided into N sub-bands, N ⁇ 2, and the candidate time-frequency resource occupies M sub-bands of the N sub-bands, M ⁇ 2, and the target time-frequency resource is in frequency.
  • the domain occupies K sub-bands of the M sub-bands, M>K ⁇ 1.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the first TTI includes two time domain starting points
  • the candidate time-frequency resource includes a first time-frequency resource corresponding to a first one of the two time-domain starting points, and the two time-domains The second time-frequency resource corresponding to the second time domain starting point in the starting point.
  • the terminal device sends the first uplink channel by using the target time-frequency resource, including:
  • the terminal device maps the uplink control information from the second time-frequency resource.
  • the terminal device starts mapping the uplink control information from the second time-frequency resource, including:
  • the terminal device only maps the uplink control information on the second time-frequency resource;
  • the terminal device maps the first part of the uplink control information on the second time-frequency resource, and maps the uplink on the first time-frequency resource.
  • the second part of the control information or
  • the terminal device maps the first part of the uplink control information on the second time-frequency resource, and discards the second part of the uplink control information;
  • the terminal device prohibits mapping the uplink control information on the first time-frequency resource.
  • the "the second time-frequency resource is in an available state" may be determined to be in a transmittable state after the carrier of the candidate time-frequency resource is from the start of the second time domain.
  • the “first part of the uplink control information” may be data that is formed by the continuous bit stream that is outputted after the uplink control information is encoded, and the “second part of the uplink control information” may be used after the uplink control information is encoded.
  • the size of the “first part of the uplink control information” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the uplink control information.
  • the size of the foregoing “second part of the uplink control information” may refer to the remaining of the size of the fourth time-frequency resource that is allocated by the network device for carrying the uplink control information, and the size of the first part is subtracted. Part of the size.
  • the end portion of the foregoing “first portion of the uplink control information” and the initial portion of the “second portion of the uplink control information” are consecutive bit streams.
  • the location of the first part in the uplink control information is before the second part.
  • the first TTI includes two time slots, where the first time domain start point is a start point on a first time slot in the first TTI, and the second time domain start point is a first time in the first TTI The starting point on two time slots.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the first time-frequency resource or the second time-frequency resource to send the uplink channel according to the result of the detection.
  • a feasible manner is that the encoded uplink data packet generated by the terminal device matches the first time-frequency resource, and when the result of the detection is that the first time-frequency resource is available, the terminal device The uplink data packet and the uplink control information are sent from the first time-frequency resource.
  • the second time-frequency resource is available as a result of the detection, the uplink data packet and the uplink control information are sent from the second time-frequency resource.
  • the terminal device pre-packages the data packet and the uplink control information that need to be mapped on the first time-frequency resource and the second time-frequency resource, and therefore, when detecting the result, the second When the time-frequency resource is available (or the first time-frequency resource is unavailable), the terminal device cannot regenerate the encoded another uplink data packet and the uplink control information that matches the second time-frequency resource due to the capability limitation.
  • the terminal device discards the pre-generated part of the uplink data packet or the uplink control information that cannot match the second time-frequency resource (that is, the uplink data packet and the uplink control information that need to be mapped on the first time-frequency resource) And puncturing the uplink data packet with the second time-frequency resource, and transmitting the punctured portion of the uplink data packet on the second time-frequency resource.
  • the uplink control information is transmitted only once. Therefore, when the detection result is used, the second time-frequency resource is available. Based on the above embodiment, the transmission performance of the uplink control information cannot be ensured.
  • the terminal device preferentially transmits the uplink control information on the second time-frequency resource, and the terminal device determines whether the candidate time-frequency resource that can be used for the uplink channel transmission is the first time-frequency resource or the second time-frequency according to the channel detection result.
  • the uplink control information carried on the uplink channel can be transmitted, so that the performance of the uplink control information can be guaranteed.
  • the first time-frequency resource and the second time-frequency resource belong to the same TTI, when the first time-frequency resource is available, the second time-frequency resource is generally available, but when the second When the time-frequency resource is available, the first time-frequency resource is not necessarily available. Therefore, the possibility that the terminal device competes for the second time-frequency resource is greater than the possibility that the terminal device competes with the first time-frequency resource.
  • the uplink control information is preferentially mapped on the second time-frequency resource, so that the reliability of the uplink control information transmission can be improved.
  • the terminal device sends the first uplink channel by using the target time-frequency resource, including:
  • the terminal device When the first time-frequency resource and the second time-frequency resource are in an available state, the terminal device sends (or maps) the first part of the uplink data packet on the second time-frequency resource, where the first part The second portion of the upstream packet is transmitted (or mapped) on a time-frequency resource.
  • first part in the encoded uplink data packet may refer to data consisting of consecutive bit streams outputted in the encoded uplink data packet
  • second part in the encoded uplink data packet may refer to data consisting of successive bit streams outputted in the encoded upstream packet.
  • the end portion of the “first portion in the encoded uplink data packet” and the beginning portion of the “second portion in the encoded uplink data packet” are consecutive bit streams.
  • the size of the “first part in the encoded uplink data packet” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the encoded uplink data packet.
  • the size of the foregoing “second part in the encoded uplink data packet” may refer to subtracting the size of the first part from the size of the resource allocated by the network device for carrying the encoded uplink data packet. The size of the remainder except the one.
  • the “first part in the encoded uplink data packet” is a system bit encoded by the uplink data packet.
  • some bits of the uplink data packet carrying the most important information are more likely to compete for the second time-frequency resource than the terminal device competes with the first time-frequency resource. Therefore, by transmitting the first data located at the front end of the uplink packet on the second time-frequency resource, the transmission reliability of the more important information can be improved, and communication performance can be improved.
  • the eighth aspect provides a method for transmitting uplink control information, which is applied to a communication system including a network device and a terminal device.
  • the time-frequency resource used by the communication system is a time-frequency resource used based on a contention mechanism, and the communication system uses multiple
  • Each TTI in the transmission time interval TTI includes at least two time domain starting points
  • the method includes: the network device sending scheduling information to the terminal device, where the scheduling information is used to indicate that the network device allocates for the terminal device a time-frequency resource carrying at least one uplink channel, where a first uplink channel of the at least one uplink channel is carried in a candidate time-frequency resource, where the first uplink channel includes at least uplink control information, and the candidate time-frequency resource is in time
  • the candidate time-frequency resource includes at least two time-frequency resources, and the at least two time-frequency resources are in one-to-one correspondence with at least two time domain starting points included in the first TTI;
  • the frequency resource receives the first uplink channel, and the target time-
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and the terminal device performs a candidate time-frequency indicated by the network device before the uplink transmission is required.
  • the detecting, the terminal device can determine, from the at least two time-frequency resources that are different from the starting point of the candidate time-frequency, the target time-frequency resource that can be used by the terminal device, and perform the uplink channel transmission by using the target time-frequency resource, that is, Compared with the prior art, the terminal device does not need to perform wireless communication by using the candidate time-frequency resource when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the terminal device.
  • the possibility of using the candidate time-frequency resource for wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the candidate time-frequency resource includes at least two time-frequency resources having an embedded structure in the time domain.
  • the network device receives the first uplink channel by using a target time-frequency resource: the network device determines, according to the reference information, a third time-frequency resource from the target time-frequency resource; and the network device passes the third time-frequency resource Receiving the uplink control information, where the reference information is used to indicate at least one of: a size value of the candidate time-frequency resource, and a preset time-frequency resource of the at least two time-frequency resources included in the candidate time-frequency resource a size value, a size value of the target time-frequency resource, a first reference value, and the first reference value is specified by the communication system, or the first reference value is previously indicated by the network device, the pre- The time-frequency resource is specified by the communication system, or the preset time-frequency resource is previously indicated by the network device.
  • the size of the time-frequency resource used to carry the uplink control information in the target time-frequency resource is determined based on the size of the target time-frequency resource (or the time-frequency resource used to carry the uplink data in the target time-frequency resource), When the target time-frequency resource is part of the candidate time-frequency resource, the size of the time-frequency resource used to carry the uplink control information in the target time-frequency resource is smaller than the time used to carry the uplink control information in the candidate resource. The size of the frequency resource.
  • the size of the third time-frequency resource used for carrying the uplink control information in the target time-frequency resource is determined based on the size of the candidate time-frequency resource, that is, the target
  • the difference between the size of the time-frequency resource and the time-frequency resource of the candidate time-frequency resource for carrying the uplink control information is within a preset range, that is, compared to the prior art, the uplink control information is used to carry the uplink control information.
  • the size of the time-frequency resource is increased to ensure the reliability of the transmission of the uplink control information.
  • the network device determines the third time-frequency resource from the target time-frequency resource according to the reference information, where the network device determines, according to the reference information and the first coefficient, the third time from the target time-frequency resource.
  • the time-frequency resource, wherein the first coefficient is used to determine a size of a time-frequency resource that carries uplink control information.
  • the method further includes: acquiring, by the network device, first mapping relationship information, where the first mapping relationship information is used to indicate a plurality of values including a value indicated by the reference information, and including the first coefficient a mapping relationship between the plurality of coefficients; the network device uses, as the first coefficient, a coefficient corresponding to the value indicated by the reference information according to the first mapping relationship information.
  • the network device determines, according to the reference information, the third time-frequency resource from the second time-frequency resource, where the network device: according to the reference information and the preset first upper limit value, from the second time And determining, by the frequency resource, a third time-frequency resource, where the size of the third time-frequency resource is less than or equal to the first upper limit.
  • the method further includes: acquiring, by the network device, second mapping relationship information, where the second mapping relationship information is used to indicate a plurality of values including the value indicated by the reference information, and including the first upper limit value a mapping relationship between the plurality of upper limit values; the network device uses the upper limit value corresponding to the value indicated by the reference information as the first upper limit value according to the second mapping relationship information.
  • the frequency domain resource used by the communication system is divided into N sub-bands, N ⁇ 2, and the candidate time-frequency resource occupies M sub-bands of the N sub-bands, M ⁇ 2, and the target time-frequency resource is in frequency.
  • the domain occupies K sub-bands of the M sub-bands, M>K ⁇ 1.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, downlink channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the first TTI includes two time domain starting points
  • the candidate time-frequency resource includes a first time-frequency resource corresponding to a first one of the two time-domain starting points, and the two time-domains The second time-frequency resource corresponding to the second time domain starting point in the starting point.
  • the network device receives the first uplink channel by using the target time-frequency resource, including:
  • the network device starts acquiring the uplink control information from the second time-frequency resource.
  • the acquiring, by the network device, the uplink control information from the second time-frequency resource includes:
  • the network device receives the uplink control information only on the second time-frequency resource;
  • the network device When the second time-frequency resource is in an available state, if the second time-frequency resource cannot meet the transmission requirement of the uplink control information, the network device receives (or maps) the second time-frequency resource. Upstream control information, the first part of the information, and receiving the second part of the uplink control information on the first time-frequency resource; or
  • the network device receives the first part of the uplink control information on the second time-frequency resource.
  • the network device prohibits receiving the uplink control information on the first time-frequency resource.
  • the "the second time-frequency resource is in an available state" may be determined to be in a transmittable state after the carrier of the candidate time-frequency resource is from the start of the second time domain.
  • the “first part of the uplink control information” may be the data consisting of the continuous bit stream outputted after the uplink control information is encoded, and the “second part of the uplink control information” may be outputted after the uplink control information is encoded. Data consisting of consecutive bit streams.
  • the size of the “first part of the uplink control information” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the uplink control information.
  • the size of the foregoing “second part of the uplink control information” may refer to the remaining of the size of the fourth time-frequency resource that is allocated by the network device for carrying the uplink control information, and the size of the first part is subtracted. Part of the size.
  • the end portion of the foregoing “first portion of the uplink control information” and the initial portion of the “second portion of the uplink control information” are consecutive bit streams.
  • the location of the first part in the uplink control information is before the second part.
  • the first TTI includes two time slots, where the first time domain start point is a start point on a first time slot in the first TTI, and the second time domain start point is a first time in the first TTI The starting point on two time slots.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the first time-frequency resource or the second time-frequency resource to send the uplink channel according to the result of the detection.
  • a feasible manner is that the encoded uplink data packet generated by the terminal device matches the first time-frequency resource, and when the result of the detection is that the first time-frequency resource is available, the terminal device The uplink data packet and the uplink control information are sent from the first time-frequency resource.
  • the second time-frequency resource is available as a result of the detection, the uplink data packet and the uplink control information are sent from the second time-frequency resource.
  • the terminal device pre-packages the data packet and the uplink control information that need to be mapped on the first time-frequency resource and the second time-frequency resource, and therefore, when detecting the result, the second When the time-frequency resource is available (or the first time-frequency resource is unavailable), the terminal device cannot regenerate the encoded another uplink data packet and the uplink control information that matches the second time-frequency resource due to the capability limitation.
  • the terminal device discards the pre-generated part of the uplink data packet or the uplink control information that cannot match the second time-frequency resource (that is, the uplink data packet and the uplink control information that need to be mapped on the first time-frequency resource) And puncturing the uplink data packet with the second time-frequency resource, and transmitting the punctured portion of the uplink data packet on the second time-frequency resource.
  • the uplink control information is transmitted only once. Therefore, when the detection result is used, the second time-frequency resource is available. Based on the above embodiment, the transmission performance of the uplink control information cannot be ensured.
  • the terminal device preferentially transmits the uplink control information on the second time-frequency resource, and the terminal device determines whether the candidate time-frequency resource that can be used for the uplink channel transmission is the first time-frequency resource or the second time-frequency according to the channel detection result.
  • the uplink control information carried on the uplink channel can be transmitted, so that the performance of the uplink control information can be guaranteed.
  • the first time-frequency resource and the second time-frequency resource belong to the same TTI, when the first time-frequency resource is available, the second time-frequency resource is generally available, but when the second When the time-frequency resource is available, the first time-frequency resource is not necessarily available. Therefore, the possibility that the terminal device competes for the second time-frequency resource is greater than the possibility that the terminal device competes with the first time-frequency resource.
  • the uplink control information is preferentially mapped on the second time-frequency resource, so that the reliability of the uplink control information transmission can be improved.
  • the network device receives the first uplink channel by using the target time-frequency resource, including:
  • the network device After the first time-frequency resource and the second time-frequency resource are in an available state, the network device receives the first part of the uplink data packet on the second time-frequency resource, and receives the first time-frequency resource. The second part of the upstream packet.
  • first part in the encoded uplink data packet may refer to data consisting of consecutive bit streams outputted in the encoded uplink data packet
  • second part in the encoded uplink data packet may refer to data consisting of successive bit streams outputted in the encoded upstream packet.
  • the end portion of the “first portion in the encoded uplink data packet” and the beginning portion of the “second portion in the encoded uplink data packet” are consecutive bit streams.
  • the size of the “first part in the encoded uplink data packet” may be the same as the size of the resource on the second time-frequency resource that can be used to transmit the encoded uplink data packet.
  • the size of the foregoing “second part in the encoded uplink data packet” may refer to subtracting the size of the first part from the size of the resource allocated by the network device for carrying the encoded uplink data packet. The size of the remainder except the one.
  • the “first part in the encoded uplink data packet” is a system bit encoded by the uplink data packet.
  • some bits of the uplink data packet carrying the most important information are more likely to compete for the second time-frequency resource than the terminal device competes with the first time-frequency resource. Therefore, by transmitting the first data located at the front end of the uplink packet on the second time-frequency resource, the transmission reliability of the more important information can be improved, and communication performance can be improved.
  • an apparatus for transmitting uplink control information comprising means for performing the steps of any of the first to eighth aspects above and embodiments thereof.
  • an apparatus for transmitting uplink control information comprising: a memory and a processor, the memory being for storing a computer program, the processor for calling and running the computer program from the memory, such that the device performs the first Aspects to any of the eighth aspects and methods of the embodiments thereof.
  • a computer program product comprising: computer program code, when the computer program code is communicated by a communication device (eg, a network device or a terminal device), a processing unit or a transceiver, The processor, when executed, causes the communication device to perform the method of any of the first to eighth aspects above and embodiments thereof.
  • a communication device eg, a network device or a terminal device
  • the processor when executed, causes the communication device to perform the method of any of the first to eighth aspects above and embodiments thereof.
  • a computer readable storage medium storing a program causing a communication device (eg, a network device or a terminal device) to perform the above-described first to eighth aspects Any of the aspects and methods thereof.
  • a communication device eg, a network device or a terminal device
  • each sub-band includes a plurality of sub-carriers.
  • the bandwidth of each sub-band is determined based on a bandwidth that the network device or the terminal device can detect during one detection (or contention) process.
  • the bandwidth of each sub-band is less than or equal to the bandwidth that the network device or the terminal device can detect during one detection (or competition).
  • the bandwidth of each sub-band is 20 MHz.
  • the method for transmitting the uplink control information enables the terminal device to compete with the multiple time-frequency resources scheduled by the network device, and enables the terminal device to perform uplink channel transmission by using the time-frequency resources that are competitive, that is, Compared with the prior art, the terminal device can use the first frequency domain resource for wireless communication without all the time-frequency resources allocated by the network device competing successfully, thereby improving communication efficiency and reducing service transmission. Delayed, improved user experience.
  • FIG. 1 is a schematic diagram showing an example of a communication system to which a method and an apparatus for transmitting uplink control information according to an embodiment of the present application are applied.
  • FIG. 2 is a schematic interaction diagram of an example of a process of transmitting uplink control information according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an example of a pattern of time-frequency resources carrying uplink control information according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another example of a pattern of time-frequency resources carrying uplink control information according to an embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of another example of a process of transmitting uplink control information according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a pattern of time-frequency resources carrying uplink control information according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a pattern of time-frequency resources carrying uplink control information according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a pattern of time-frequency resources carrying uplink control information according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a pattern of time-frequency resources carrying uplink control information according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram showing an example of an apparatus for transmitting uplink control information according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of another example of an apparatus for transmitting uplink control information according to an embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • Embodiments of the present application describe various embodiments in connection with a network device and a terminal device, where:
  • a terminal device may also be called a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PDA handheld device with wireless communication capabilities
  • computing device or other processing device connected to a wireless modem
  • in-vehicle device wearable device
  • next-generation communication system for example, fifth-generation communication (fifth- Generation, 5G)
  • 5G fifth-generation communication
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (AP) in the WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, It may be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a future 5G network.
  • AP access point
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • Network equipment or network equipment in a future evolved PLMN network may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (AP) in the WLAN, a base station (Base
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • a cell corresponding to a cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (Pico cell), femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the method and apparatus provided by the embodiments of the present application may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method provided by the embodiment of the present application is not particularly limited as long as the program of the code of the method provided by the embodiment of the present application can be run by using the program according to the present application.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • the communication system 100 includes a network device 102, which may include one antenna or multiple antennas such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the network device can transmit signals to all of the terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmit antenna of network device 102 may also utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the associated coverage area, as compared to the manner in which the network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity, Mobile devices in neighboring cells are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • the frequency domain resources for wireless communication in the embodiments of the present application are described in detail below.
  • the frequency domain resource used by the network device and the terminal device for wireless communication is a frequency domain resource used based on a contention mechanism.
  • the network device and/or the terminal device can detect whether a frequency domain resource having a certain bandwidth (eg, 20 MHz) is currently in an idle state, or whether the frequency domain resource is used by another device.
  • a frequency domain resource having a certain bandwidth eg, 20 MHz
  • the network device and/or the terminal device may use the frequency domain resource for communication, for example, performing uplink transmission or downlink transmission.
  • the network device and/or the terminal device cannot use the frequency domain resource.
  • the frequency domain resources used by the communication system 100 may also be licensed spectrum resources, that is,
  • the communication system 100 of the embodiment of the present application is a communication system capable of using a licensed frequency band, and each communication device (network device and/or terminal device) within the system 100 can use the frequency domain resources of the licensed frequency band in a competitive manner.
  • Licensed frequency domain resources may also be referred to as “licensed spectrum resources” or “licensed carrier”, which refers to frequency domain resources that need to be approved by national or local wireless committees. Different systems such as LTE systems and WiFi systems, or different. Systems included in the carrier may not share licensed frequency domain resources.
  • the licensed spectrum resources may be delineated by the government's Radio Management Committee and have dedicated-purpose spectrum resources, such as those used by mobile operators, civil aviation, railways, and police-specific spectrum resources. Due to policy exclusivity, the quality of licensed spectrum resources is guaranteed. Generally, it can be guaranteed, and it is relatively easy to perform scheduling control.
  • the frequency domain resource used by the communication system 100 may be an unlicensed frequency domain resource.
  • Unlicensed frequency domain resources may also be referred to as “unlicensed spectrum resources” or “unlicensed carrier”, which means that each communication device can share resources on the unlicensed band.
  • the “shared resources on the unlicensed band” may mean that the use of a specific spectrum only specifies the limits of the transmit power and out-of-band leakage to ensure that basic coexistence is satisfied between multiple devices sharing the band. It is required that the operator can use the unlicensed band resources to achieve the purpose of network capacity offloading, but it is required to comply with the regulatory requirements of the unlicensed band resources in different regions and different spectrums.
  • each communication device can adopt a contention mode or a monitoring mode, for example, a frequency domain resource used in a manner specified by Listening Before Talk (“LBT").
  • LBT Listening Before Talk
  • the unlicensed spectrum resource may be a spectrum resource delineated by relevant government departments, but does not limit the radio technology, the operating enterprise and the service life, and does not guarantee the service quality of the frequency band.
  • Communication equipment using unlicensed spectrum resources only needs to meet the requirements of transmitting power, out-of-band leakage and other indicators, and can be used free of charge. Common applications are free of licensed spectrum resources.
  • the unlicensed spectrum resource may include a frequency band near 5 GHz (Giga Hertz, GHz), a frequency band near 2.4 GHz, a frequency band near 3.5 GHz, and a frequency band near 60 GHz. .
  • the communication system 100 may be a Licensed-Assisted Access Using LTE (LAA-LTE) technology using an unlicensed carrier, or may be employed to support the communication system in a license-free manner.
  • LAA-LTE Licensed-Assisted Access Using LTE
  • technologies for independent deployment of frequency bands such as Standalone LTE over unlicensed spectrum, or LTE Advanced in Unlicensed Spectrums (LTE-U) technology, that is, the communication system 100 can independently deploy the LTE system to license-free.
  • the frequency band, and thus the communication using the LTE air interface protocol on the unlicensed band does not include licensed bands.
  • the LTE system deployed in the unlicensed band can utilize technologies such as centralized scheduling, interference coordination, and hybrid automatic repeat reQuest (HARQ). Compared with access technologies such as Wi-Fi, the technology has better technology. Great, you can achieve higher spectral efficiency, provide greater coverage and a better user experience.
  • HARQ hybrid automatic repeat reQuest
  • the communication system 100 may employ, for example, Licensed-Assisted Access (LAA), Dual Connectivity (DC), and license-free access ( Standalone) technology.
  • LAA includes the configuration and structure of Carrier Aggregation (CA) in the existing LTE system, and configures carriers (licensed carriers) on the carrier licensed frequency band to perform communication on the unlicensed frequency bands.
  • the carrier (unlicensed carrier) is communicated with the licensed carrier as an auxiliary carrier. That is, the LTE device can use the licensed carrier as the primary component carrier (PCC) or the primary cell (PCell) in the CA mode, and use the unlicensed carrier as the secondary component carrier (SCC). Or secondary cell (Secondary Cell, SCell).
  • PCC primary component carrier
  • PCell secondary component carrier
  • SCell secondary cell
  • the dual connectivity DC technology includes a technology that uses a licensed carrier and an unlicensed carrier in a non-CA or non-ideal backhaul manner, or a technology that uses a plurality of unlicensed carriers in a non-CA manner.
  • LTE devices can also be deployed directly on unlicensed carriers through independent deployment.
  • an access network device such as a base station or a cell, may determine the transmission duration and/or uplink information of the downlink information after preempting the unlicensed spectrum resource according to the downlink traffic load and/or the uplink traffic load, or other considerations.
  • the length of the transmission Further, the access network device can flexibly adjust the number of time units (ie, downlink time units) including downlink information, and the number of time units (including uplink time units) including uplink information, after preempting the unlicensed spectrum resources.
  • TxOP Transmission Opportunity
  • the transmission opportunity may also be referred to as a transmission burst (Transmission Burst)
  • a TxOP may include a downlink burst transmission.
  • Downlink Transmission Burst Downlink Transmission Burst
  • UL Transmission Burst Uplink Transmission Burst
  • the downlink burst transmission (which may also be referred to as “downlink burst data transmission” or “downlink burst information transmission”) may include: an access network device (for example, an eNB) or a cell under the access network device (Cell) After the preemption of the unlicensed band resources, the information transmission (or data transmission) using the unlicensed band resources is not required to pass through a competition mechanism (for example, LBT).
  • the length of a downlink burst transmission is not greater than the maximum time that the access network device (or the cell) can continuously transmit through the contention mechanism on the unlicensed band resource, and the maximum time may also be referred to as a maximum channel. Occupied time (MCOT, Maximum Channel Occupied Time).
  • the length of the MCOT can be related to regional regulatory constraints. For example, in Japan, MCOT can be equal to 4ms; in Europe, MCOT can be equal to 8ms, or 10ms, or 13ms. Alternatively, the length of the MCOT may also be related to the competition mechanism used by the listening device (for example, the access network device or the terminal device). Generally, the shorter the listening time, the shorter the MCOT. Or, the length of the MCOT can also be related to the level of service transmitted. In the embodiment of the present application, the MCOT may also be determined by other factors, and is not specifically limited.
  • “using information transmission by using the unlicensed band resource in a manner that does not need to pass through a contention mechanism” may include, after the access network device or the cell seizes the unlicensed band resource, During the time when the information is actually transmitted on the unlicensed band resource or within the MCOT, it is not necessary to evaluate whether the unlicensed band resource is available through a competition mechanism. For example, taking the downlink burst transmission included in the first TxOP as an example, starting from the second subframe in the downlink burst transmission, the base station does not need to evaluate whether the unlicensed band resource is available through a contention mechanism.
  • the unlicensed spectrum resource needs to be determined to be available. Once the downlink burst starts to be transmitted, the availability of the unlicensed spectrum resource may not be re-evaluated until the downlink burst data transmission. End.
  • "using information transmission by using the unlicensed band resource in a manner that does not need to pass the competition mechanism” may further include: after the access network device or the cell preempts the unlicensed band resource, actually on the unlicensed band resource During the time of sending the information or within the MCOT, the competition mechanism may be adopted without considering coexistence with the different systems, but the competition mechanism may be considered in consideration of coexistence with the same system.
  • the competition mechanism adopted for coexistence with the system The method may include including, after the preemption of the unlicensed band resource, a time unit (or an idle time unit) in the time when the information is sent or the MCOT, in which the base station or the cell may stop the information transmission.
  • the base station or the cell may perform channel sounding to re-evaluate whether the unlicensed spectrum resource is available, or may not perform channel sensing in a specific time unit.
  • the access network device can stop transmitting information for a period of time at any time position.
  • the non-LTE system can be regarded as a different system, such as a WLAN system, or a system using WiFi technology; the LTE system can be regarded as the same system, whether it is an LTE system belonging to the same operator or a different operator.
  • the LTE system can be regarded as the same system.
  • the LTE system includes a network device and/or a terminal device.
  • uplink burst transmission may include: after the terminal device preempts the unlicensed band resource, it does not need to compete again.
  • the mechanism eg, LBT
  • the length of the uplink burst transmission may not be greater than the MCOT on the unlicensed band resource, or the length of the uplink burst transmission may be otherwise limited.
  • the uplink burst transmission may include information transmission of a single user, and may also include information transmission of multiple users. From the access network device side, the uplink burst transmission may be an uplink information transmission included in the TxOP.
  • the uplink burst transmission further includes: after the access network device preempts the unlicensed band resource, based on a specific time delay within a time range in which the access network device does not need to use the unlicensed band to transmit information through a competition mechanism ( For example, based on a 4 ms time delay, information transmission by the terminal device from the first uplink subframe that can be scheduled to the last uplink subframe that can be scheduled, for example, from the first uplink subframe to the last one.
  • the time range between uplink subframes is the time range corresponding to the uplink burst transmission. In this embodiment, the length of time that the uplink subframe that can be scheduled for uplink information transmission may be less than 1 ms.
  • the length of a TxOP may not be greater than the maximum transmission time allowed by the downlink burst transmission, or not greater than the maximum transmission time allowed for the uplink burst transmission, or not greater than the downlink burst transmission permission.
  • the maximum transmission time length and the maximum time length allowed for uplink burst transmission, or the length of one burst transmission may be no more than the MCOT on the unlicensed band resource. For example, for a given device, whether it is an access network device or a terminal device, or other devices, after preempting the unlicensed band resources, the maximum length of time that data can be transmitted through the contention mechanism is 8 ms (corresponding to the above).
  • the mentioned MCOT that is, a TxOP even includes both the DL transmission burst and the UL transmission burst, and the maximum transmission time length of one TxOP (or Transmission Burst) is also 8 ms.
  • the uplink burst transmission may employ a competition mechanism that facilitates the terminal device to preempt (or compete) the unlicensed band resources.
  • the information transmission of the LTE system on the unlicensed band has no fixed frame structure, and may include at least one of the following: different downlink burst transmissions may have different durations, and different uplink burst transmissions may have different durations.
  • the length of the downlink burst transmission included in the TxOP (which may be adjacent or non-adjacent) may be different.
  • the length of the uplink burst transmission included in different TxOPs may be different, and the duration of different TxOPs may be different.
  • the duration of the downlink burst transmission includes a length of time from a start time of the downlink burst to an end time of the downlink burst; the duration of the uplink burst transmission includes: The length of time between the start time and the end time of the upstream burst.
  • burst transmission is simply referred to as “burst”
  • uplink burst transmission is simply referred to as “uplink burst”
  • downlink burst is simply referred to as “downlink burst”.
  • one burst transmission may include one or more time units.
  • the plurality of time units in the burst transmission may be continuous or non-contiguous (for example, some adjacent time units are separated by time intervals), The application is not specifically limited.
  • each time unit has the same length of time.
  • each time unit in a burst transmission may be a complete time unit.
  • the complete time unit means that the time length for downlink information transmission or uplink information transmission in the time unit is equal to the length of time of the time unit.
  • each time unit in a downlink burst transmission may be a complete time unit, that is, each time unit in the downlink burst transmission is used for the same length of time for downlink information transmission; for example, in an uplink burst transmission.
  • Each time unit is a complete time unit, that is, each time unit in the uplink burst transmission has the same length of time for uplink information transmission.
  • At least two of the plurality of consecutive time units included in each burst transmission have different lengths of time.
  • part of the time unit in one burst transmission may be an incomplete time unit.
  • the first time unit in a downlink burst transmission may be an incomplete time unit. It can be understood that the length of time for downlink information transmission in the first time unit may be smaller than the length of the first time unit.
  • the time unit is represented by a subframe, and the time for the downlink information transmission in the first subframe of a downlink burst transmission may be less than 1 ms; or the last time unit in a downlink burst transmission may be incomplete.
  • the time unit can be understood as the length of time for the downlink information transmission in the last time unit can be less than the length of the last time unit.
  • the time unit is represented by a subframe, and the last subframe in a downlink burst transmission may be used for downlink information transmission for less than 1 ms; or the first time unit and the last time unit in one downlink burst transmission. All are incomplete time units.
  • the first time unit in an uplink burst transmission may be an incomplete time unit. It may be understood that the length of time used for uplink information transmission in the first time unit may be less than the length of the first time unit. .
  • the time unit is represented by a subframe, and the time for the uplink information transmission in the first subframe of an uplink burst transmission may be less than 1 ms; or the last time unit in an uplink burst transmission may be incomplete.
  • the time unit can be understood as the length of time for the uplink information transmission in the last time unit can be less than the length of the last time unit.
  • the time unit is represented by a subframe, and the last subframe in an uplink burst transmission may be used for uplink information transmission for less than 1 ms; or the first time unit and the last time unit in an uplink burst transmission. All are incomplete time units.
  • adjacent burst transmissions may be separated from each other by a time interval. For example, since the access network device may need to re-evaluate whether the unlicensed spectrum resources are available after a downlink burst ends, Thus adjacent burst transmissions may be separated from each other by one or more time units.
  • a time unit in a burst transmission may be used to transmit data of one terminal device, and may also be used to transmit data of multiple terminal devices, which is not specifically limited, for example, the same access network.
  • a plurality of terminal devices served by the device may receive data sent by the access network device through a time unit in a burst transmission by using frequency division multiplexing or time division multiplexing or space division multiplexing.
  • multiple terminal devices served by the same access network device may send data to the access network device through a time unit in a burst transmission by using frequency division multiplexing, time division multiplexing, or space division multiplexing. .
  • each burst transmission may be pre-divided (or statically or semi-statically configured), that is, the high-level management equipment of each burst transmission communication system divides and notifies each access network device
  • the division manner of each burst transmission may be specified by a communication protocol, or the division manner of each burst transmission may be pre-stored in each access network device by means of a factory setting or an administrator setting.
  • each access network device can use the unlicensed spectrum resource in a time division multiplexing manner, and the specific time range of the corresponding time can be divided by the high-level management device, within the time range of the divided use. It is also necessary to use the unlicensed spectrum resource through channel evaluation.
  • each burst transmission may also be autonomously determined (or dynamically changed) by each access network device, that is, each access network device may determine a usable time unit in a competitive manner. And contiguous one or more time units are transmitted as one or more bursts, for example, the access network device can configure the plurality of competing time units in the same burst transmission.
  • the network device Before performing the downlink transmission, the network device needs to confirm whether the frequency domain resources scheduled by the network device (for example, the resources on the unlicensed frequency band scheduled by the network device) are available by using, for example, LBT, and as to where the LBT is specifically performed.
  • LBT Low-power Bluetooth
  • the terminal device Before performing the uplink transmission, the terminal device needs to confirm whether the frequency domain resource scheduled by the network device (for example, the resource on the unlicensed frequency band scheduled by the network device) is available, for example, by LBT, etc., as to where the LBT is specifically performed.
  • the application is not subject to specific restrictions.
  • each time unit in a burst transmission may be a time unit including the same number of symbols.
  • the length of each time unit in a burst transmission is one subframe.
  • each time unit in a burst transmission has a length of 2 symbols.
  • At least two of the plurality of consecutive time units included in each burst transmission have different lengths of time.
  • At least two time units in each time unit in one burst transmission include different number of symbols.
  • the time length of a time unit other than the first time unit and/or the last time unit in a burst transmission is 1 ms (ie, 1 subframe).
  • the length of the first time unit in a burst transmission may be less than 1 ms; or, the length of the last time unit in a burst transmission may be less than 1 ms; or the first one in a burst transmission
  • the time unit and the last time unit are both less than 1 ms in length. It should be noted that the length of time of the first time unit and the last time unit may be the same or different.
  • the time length of a time unit in a burst transmission may be any positive integer number of symbols less than 8, for example, a burst transmission includes 6 time units, and each time unit corresponds to a length of 3 symbols. 2 symbols, 2 symbols, 2 symbols, 2 symbols, 3 symbols.
  • the time unit in a burst transmission may be used to transmit data of one terminal device, and may also be used to transmit data of multiple terminal devices, which is not specifically limited in the embodiment of the present application, for example, the same connection.
  • the plurality of terminal devices served by the network access device may receive the time unit sent by the access network device by means of frequency division multiplexing or time division multiplexing or space division multiplexing or code division multiplexing. data.
  • a plurality of terminal devices served by the same access network device may use a time unit in a burst transmission by means of frequency division multiplexing or time division multiplexing or space division multiplexing or code division multiplexing.
  • the network access device sends data.
  • each burst transmission may be pre-divided (or statically or semi-statically configured), that is, the high-level management equipment of each burst transmission communication system divides and notifies each access network device
  • the division manner of each burst transmission may be specified by a communication protocol, or the division manner of each burst transmission may be pre-stored in each access network device by means of a factory setting or an administrator setting.
  • each access network device can use the unlicensed spectrum resource in a time division multiplexing manner, and the specific time range of the corresponding time can be divided by the high-level management device, within the time range of the divided use. It is also necessary to use the unlicensed spectrum resource through channel evaluation.
  • each burst transmission may also be autonomously determined (or dynamically changed) by each access network device, that is, each access network device may determine a usable time unit in a competitive manner. And contiguous one or more time units are transmitted as one or more bursts, for example, the access network device can configure the plurality of competing time units in the same burst transmission.
  • the network device may provide only one or more license-free cells (or may also be referred to as an unlicensed carrier), or the network device may provide only one or more licenses.
  • the cell or may also be referred to as a licensed carrier
  • the network device may provide both an unlicensed cell and a licensed cell, which is not specifically limited herein.
  • each communication device for example, a network device or a terminal device in the communication system 100 may use a resource (for example, a frequency domain resource) to communicate based on a schedule-free transmission scheme, or may use a resource based on a scheduling manner (
  • the frequency domain resource is used for communication, and the embodiment of the present application is not particularly limited.
  • the scheduling mode and the scheduling-free mode are described below.
  • the transmission of data may be performed based on scheduling of the network device.
  • the period of the scheduling may be, for example, a Transmission Time Interval (TTI) or a Short Transmission Time Interval (sTTI).
  • TTI Transmission Time Interval
  • sTTI Short Transmission Time Interval
  • the specific scheduling procedure is that the base station sends a control channel, for example, a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH) or a physical downlink control channel for scheduling sTTI transmission.
  • a control channel for example, a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH) or a physical downlink control channel for scheduling sTTI transmission.
  • sTTI Physical Downlink Control Channel, sPDCCH the control channel may be configured to use a Downlink Control Information (DCI) format for scheduling a Physical Downlink Shared Channel (PDSCH) or a Physical Uplink Shared Channel. (Physical Uplink Shared Channel, PUSCH) scheduling information, where the scheduling information includes control information such as resource allocation information, modulation and coding mode, etc.
  • the terminal device detects the control channel and performs downlink according to the detected scheduling information carried in the control channel.
  • the scheduling information carried in the control channel may indicate the downlink data channel reception or uplink number with a TTI length of 1 ms or a TTI length of less than 1 ms. Channel transmission.
  • a schedule-free transmission scheme can be used.
  • the transmission of data may also be unscheduled.
  • Unscheduled transmission English can be expressed as Grant Free.
  • the schedule-free transmission here can be for uplink data transmission or downlink data transmission.
  • the unscheduled transmission can be understood as any meaning of the following meanings, or multiple meanings, or a combination of some of the various technical features or other similar meanings:
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected transmission.
  • the resource sends uplink data; the network device detects uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and the selected one is used.
  • the transmission resource sends uplink data.
  • the unscheduled transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when the uplink data transmission request is required, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unscheduled transmission may refer to a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device, where the dynamic scheduling may refer to that the network device indicates the transmission resource by signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be a transmission resource of one or more transmission time units after the time when the terminal device receives the signaling.
  • a transmission time unit can refer to a minimum time unit of one transmission, such as a TTI.
  • the unscheduled transmission may refer to: the terminal device performs uplink data transmission without requiring network device scheduling.
  • the scheduling may be performed by the terminal device sending an uplink scheduling request to the network device, and after receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates an uplink transmission resource allocated to the terminal device.
  • the unscheduled transmission may be a competitive transmission mode. Specifically, multiple terminals may simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance without performing scheduling by the base station.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the basic time unit of the unscheduled transmission may be one TTI (for example, including the above sTTI).
  • the unscheduled transmission may include downlink data channel reception or uplink data channel transmission with a TTI length of 1 ms or a TTI length of less than 1 ms.
  • the system frequency domain resource used by the communication system 100 may be the resource with the specified bandwidth in the licensed frequency domain resource or the unlicensed frequency domain resource.
  • the system frequency domain resource may be a piece of spectrum resource having a bandwidth of, for example, 80 MHz in the licensed frequency domain resource or the unlicensed frequency domain resource. It should be understood that the size of the system frequency domain resources enumerated above is merely exemplary, and the application is not limited thereto.
  • the frequency domain resources of the system may all be licensed frequency domain resources, or the frequency domain resources of the system may all be unlicensed frequency domain resources, or some resources in the frequency domain resources of the system may be In order to permit the frequency domain resource, another part of the resource in the system frequency domain resource may be an unlicensed frequency domain resource, which is not specifically limited in this application.
  • the system frequency domain resource may be divided into multiple sub-bands.
  • each sub-band can include one or more sub-carriers.
  • the bandwidth of multiple sub-bands in the frequency domain resource of the system may be the same.
  • the bandwidth of each sub-band may be, for example, 20 MHz.
  • the size of the sub-bands enumerated above is only an exemplary description, and the present application is not limited thereto, and the size of each whole sub-bandwidth may be arbitrarily adjusted according to actual needs.
  • the bandwidth of some of the sub-bands in the system frequency domain resource may be different.
  • the bandwidth of some (one or more) sub-bands in the system frequency domain resource may be, for example, 20 MHz, in the system frequency domain resource.
  • the bandwidth of the other sub-band(s) may be, for example, 10 MHz. It should be understood that the size of the sub-bands enumerated above is only an exemplary description, and the present application is not limited thereto, and the size of each sub-bandwidth may be arbitrarily adjusted according to actual needs.
  • the size of the sub-bandwidth may be based on a unit used when the terminal device detects (or competes) the resource (or the terminal device detects or detects during a detection or competition process). The size of the competing object is determined.
  • the relationship between the ⁇ and ⁇ may satisfy: ⁇ ⁇ ⁇ .
  • the size of each sub-band may be determined by the network device and notified to the terminal device by signaling or the like.
  • the size of each sub-band may also be specified by a communication system or a communication protocol, and the present application is not particularly limited.
  • each TTI in the communication system may include X (at least two) time domain starting points, X ⁇ 2.
  • the number of time domain start points included in each TTI may be the same as the number of time slots included in each TTI.
  • the network device or the terminal device may use the start point of any one of the time slots in one TTI (or any time domain start point of the TTI) as the start of transmission using the TTI. time.
  • each TTI includes only one time domain starting point, that is, the starting point of the first time slot in the TTI, that is, if the network device or the terminal device cannot be in one TTI (hereinafter, for ease of understanding and explanation, It is noted that the time domain starting point of TTI#1) can confirm that it can compete to the TTI#1 (specifically, the frequency domain resource based on the competition mechanism on TTI#1), then the network device can not use the TTI by the terminal device. #1.
  • time domain starting point #1 Specifically, the frequency domain resource used based on the contention mechanism on TTI #1
  • the network device can start from the time domain starting point #1 and use the TTI#1 (specifically, it is on TTI#1) Communication is based on frequency domain resources used by the competition mechanism.
  • the following describes the transmission object, that is, the uplink control information, in the embodiment of the present application.
  • the uplink control information may include, but is not limited to, one or more of the following information:
  • the uplink control information may include feedback information for downlink data.
  • the downlink data may be transmitted by using a feedback technique, which may include, for example, a Hybrid Automatic Repeat Request (HARQ) technology.
  • a feedback technique which may include, for example, a Hybrid Automatic Repeat Request (HARQ) technology.
  • HARQ Hybrid Automatic Repeat Request
  • the HARQ technology is a technology formed by combining Forward Error Correction (FEC) and Automatic Repeat Request (ARQ).
  • the receiving end after receiving data from the transmitting end, the receiving end can determine whether the data is accurately decoded. If the decoding is not possible, the receiving end may feed back the negative-acknowledge (NACK) information to the transmitting end, so that the transmitting end may determine that the receiving end does not accurately receive the data based on the NACK information, so that the retransmission process may be performed; If the decoding can be accurately performed, the receiving end can feed back Acknowledge (ACK) information to the transmitting end, so that the transmitting end can determine that the receiving end accurately receives the data based on the ACK information, so that the data transmission can be determined to be completed.
  • NACK negative-acknowledge
  • ACK Acknowledge
  • the ACK information when the receiving end decodes successfully, the ACK information can be fed back to the transmitting end, and when the decoding fails, the NACK information can be fed back to the transmitting end.
  • the uplink control information may include ACK information or NACK information in the HARQ technology.
  • the feedback information may further include DTX (Discontinuous Transmission) information, where the DTX information may be used to indicate that the terminal device does not receive downlink data.
  • DTX Continuous Transmission
  • the CQI may be used to reflect the channel quality of the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the channel quality of the PDSCH may be represented by 0-15. 0 indicates the worst channel quality and 15 indicates the best channel quality.
  • the terminal device may send CQI information to the network device on a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH).
  • the network device may determine the radio channel condition of the current PDSCH or the PUSCH according to the CQI information, and then complete the scheduling for the PDSCH.
  • the network device may determine the adaptive modulation and modulation (Adaptive Modulation and Coding, based on the CQI information).
  • AMC Modulation and Coding Scheme
  • rate or amount of data for uplink or downlink transmission may be used to determine the adaptive modulation and modulation.
  • the RI information may be used to indicate the effective data layer number of the PDSCH, or the RI information may be used to indicate the number of code words (CW) that the terminal device can currently support.
  • the PMI information may be used to indicate an index of the codebook set. That is, in the multi-antenna technique, for example, the Multiple-Input Multiple-Output (MIMO) technique, precoding based on the precoding matrix is performed in the baseband processing of the PDSCH physical layer.
  • MIMO Multiple-Input Multiple-Output
  • the terminal device can indicate the precoding matrix through the PMI information, thereby improving the signal quality of the PDSCH.
  • the foregoing uplink control information may also be referred to as feedback information.
  • sending the uplink channel may refer to transmitting data or information carried on the uplink channel, where the data or information may refer to data or information after channel coding.
  • the method 200 for transmitting uplink control information in the embodiment of the present application is described in detail below with reference to FIG. 2 .
  • FIG. 2 is a diagram schematically showing an example of uplink control information #A (ie, an example of uplink control information) between terminal device #A (that is, an example of a terminal device) and network device #A (that is, an example of a network device), for example, The process of one or more of feedback information, CQI information, RI information, or PMI information.
  • uplink control information #A ie, an example of uplink control information
  • terminal device #A that is, an example of a terminal device
  • network device #A that is, an example of a network device
  • network device #A may allocate time-frequency resources for transmitting uplink transmission (for example, transmitting uplink control information) to terminal device #A from the above-mentioned system time-frequency resources.
  • the time-frequency resource #A (that is, an example of the first time-frequency resource) of the plurality of time-frequency resources is allocated by the network device #A for carrying the uplink channel #A.
  • the network device #A may schedule multiple uplink channels including the uplink channel #A for the terminal device #A, or the network device #A may be the terminal device #A.
  • a plurality of time-frequency resources including the time-frequency resource #A are allocated, wherein each time-frequency resource can carry one uplink channel.
  • the method and the process for determining the time-frequency resource #A by the network device may be the same as the prior art. Here, in order to avoid redundancy, detailed description thereof is omitted.
  • the network device #A may indicate that the terminal device #A can perform uplink transmission by using the time-frequency resource #A by using the scheduling information #A (that is, an example of scheduling information, for example, downlink control information).
  • the scheduling information #A that is, an example of scheduling information, for example, downlink control information.
  • the usage manner of the time-frequency resource #A may be a scheduling-based manner or a scheduling-free manner, and the present application is not particularly limited.
  • the time-frequency resource #A can be the network device #A after determining that the terminal device #A needs to perform uplink transmission (for example, transmitting uplink control information).
  • the terminal device #A is assigned, and the scheduling information #A may be that the network device #A transmits to the terminal device #A after determining that the terminal device #A needs to perform uplink transmission.
  • the time-frequency resource #A can be used in a scheduling-free manner
  • the time-frequency resource #A can be the network device #A in determining that the terminal device #A needs to perform uplink transmission (for example, transmitting uplink control information). It is previously allocated for the terminal device #A, and the scheduling information #A may be transmitted to the terminal device #A before the network device #A determines that the terminal device #A needs to perform uplink transmission.
  • the scheduling information #A may indicate the size of the time-frequency resource #A, for example, the scheduling information #A may indicate the size of the time-frequency resource #A, for example, the The scheduling information #A may indicate the number of time-frequency resource blocks (RBs) included in the time-frequency resource #A.
  • RBs time-frequency resource blocks
  • the scheduling information #A may indicate The size (or bandwidth) of the frequency domain resource corresponding to the frequency resource #A, for example, the scheduling information #A may indicate the number of subcarriers included in the time frequency resource #A; or the scheduling information #A may indicate the time frequency The size of the time domain resource corresponding to the resource #A, for example, the scheduling information #A may indicate the number of symbols included in the time-frequency resource #A.
  • the scheduling information #A may also indicate the location of the frequency domain resource corresponding to the time-frequency resource #A in the frequency domain.
  • the scheduling information #A may indicate the time-frequency resource.
  • the location of the frequency domain resource corresponding to #A in the system bandwidth that is, the frequency domain resource corresponding to the system time-frequency resource).
  • the scheduling information #A may also indicate the location of the time domain resource corresponding to the time-frequency resource #A in the time domain.
  • the scheduling information #A may further indicate a modulation and coding scheme (MCS) used by the terminal device when performing uplink transmission using the frequency domain resource #A, For ease of understanding and explanation, it is recorded as: MCS#A.
  • MCS modulation and coding scheme
  • scheduling information #A function (or the indicated content) enumerated above is only an exemplary description, and is not specifically limited in this application.
  • the scheduling information #A function may be used to indicate uplink transmission in the prior art.
  • the function of the related parameter (for example, the downlink control information or the resource scheduling information) is similar.
  • the scheduling information #A may also be the information used in the prior art to indicate the related parameters used by the terminal device for uplink transmission. .
  • the time-frequency resource #A occupies at least two (ie, M) sub-bands in the frequency domain, or the RBs included in the time-frequency resource #A are located in the frequency domain at least two sub-bands. Or, the subcarriers included in the time-frequency resource #A are located in at least two sub-bands in the frequency domain.
  • the time-frequency resource #A occupies at least two (ie, M) sub-bands in the frequency domain may refer to: a frequency-domain resource distribution corresponding to the time-frequency resource #A. In M subbands.
  • multiple frequency domain resources may be included in each sub-band.
  • the time-frequency resource #A may include multiple frequency domain resources.
  • the plurality of frequency domain resources in the time-frequency resource #A are composed of frequency domain resources on each of the M sub-bands.
  • time-frequency resource #A may include some of the frequency domain resources in each of the M sub-bands.
  • the time-frequency resource #A may include all frequency domain resources in each of the M sub-bands.
  • the frequency domain resource included in the sub-band m in the M sub-bands included in the time-frequency resource #A may be part of the frequency-domain resource in the sub-band m, m ⁇ [1, M].
  • the frequency domain resource included in the sub-band m in the M sub-bands included in the time-frequency resource #A may be all frequency-domain resources in the sub-band m, m ⁇ [1, M].
  • the time-frequency resource #A occupies at least two sub-bands, which may mean that the time-frequency resource #A occupies all resources in at least two sub-bands.
  • the time-frequency resource #A occupying at least two sub-bands may also mean that the time-frequency resource #A occupies a part of resources in at least two sub-bands.
  • the size (or the number of sub-bands belonging to) and the location of the time-frequency resource #A may be indicated by one scheduling information #A.
  • the size (or the number of sub-bands belonging to) and the location of the time-frequency resource #A may be indicated by P (at least two) scheduling information #A.
  • the time-frequency resource indicated by each of the P pieces of scheduling information #A constitutes the time-frequency resource #A, or the time indicated by each of the P pieces of scheduling information #A
  • the sub-band occupied by (or in) the frequency resource constitutes a sub-band for which the time-frequency resource #A occupies (or belongs to).
  • the time-frequency resources indicated by any two of the P pieces of scheduling information #A may not overlap each other in the frequency domain, that is, the time-frequency resource #A is in the frequency.
  • the domain may be divided into P parts, and each information in the P scheduling information #A indicates one of the P parts.
  • the time-frequency resources indicated by the M scheduling information #A may have a nested structure in the frequency domain.
  • one of the P scheduling information #A may indicate a time-frequency resource. All of A (or all sub-bands occupied by time-frequency resource #A), another information in the P scheduling information #A may indicate a part of time-frequency resource #A (or, time-frequency resource # Part of the sub-band occupied by A).
  • the scheduling information #A i in the P scheduling information #A is the time-frequency resource i
  • the scheduling information #A i may also indicate that the time-frequency resource is The transmission parameter used by the time-frequency resource i to transmit data, where i ⁇ [1,P].
  • the transmission parameters may include, but are not limited to:
  • a modulation coding method used when data is transmitted by time-frequency resource i a transmission block size used when data is transmitted through time-frequency resource i, a modulation order used when data is transmitted through time-frequency resource i, and a time-frequency resource is used.
  • the code rate used when i transmits data, the redundancy version (RV) used when data is transmitted through the time-frequency resource i, the retransmission process used when data is transmitted through the time-frequency resource i, and the like.
  • the bandwidth of the time-frequency resource #A in the frequency domain is 80 MHz
  • the time-frequency resource #A includes four (ie, an example of M) sub-band (hereinafter, For ease of understanding and explanation, it is described as: subband #1 to subband #4), and the bandwidth of each subband is 20 MHz.
  • the time-frequency resource #A may include time-frequency resources for carrying uplink data (hereinafter, for easy understanding and differentiation, time-frequency resources for carrying uplink data are recorded as: time-frequency resource #E
  • the time-frequency resource #A may include time-frequency resources for carrying uplink control information (hereinafter, for ease of understanding and differentiation, time-frequency resources for carrying uplink control information are recorded as: time-frequency resource #D) .
  • the size of the time-frequency resource #D may have a corresponding relationship with the size of the time-frequency resource #E, or the time-frequency resource #D
  • the size may be determined according to the size of the time-frequency resource #E, or the size of the time-frequency resource #D may be transmitted according to the code rate of the data transmitted on the time-frequency resource #E and the time-frequency resource #D.
  • the code rate of the feedback information is determined, or the size of the time-frequency resource #D may be determined by a function that takes the size of the time-frequency resource #E as a variable.
  • the size of the time-frequency resource #D may have a corresponding relationship with the size of the time-frequency resource #A, or the time-frequency resource.
  • the size of the #D may be determined according to the size of the time-frequency resource #A, or the size of the time-frequency resource #D may be based on the code rate of the data transmitted on the time-frequency resource #A and the time-frequency resource #A.
  • the code rate of the transmitted feedback information is determined, or the size of the time-frequency resource #D may be determined by a function that takes the size of the time-frequency resource #A as a variable.
  • the size of the time-frequency resource #D (for example, the size of the channel resource occupied by the feedback information, or the number of modulation symbols of the feedback information) may be a code rate transmitted by the uplink data and a pre-configured by the upper layer.
  • a parameter that is, an example of the first coefficient, hereinafter, referred to as a coefficient ⁇ for ease of understanding and differentiation), wherein the coefficient ⁇ can be used to indicate the bit rate of the uplink control information and the bit rate of the uplink data. The ratio between the two.
  • the time-frequency resource #D may be the sum of resources that carry each type of information included in the uplink control information, or The time-frequency resource #D may be a resource that carries any type of information included in the uplink control information, or the time-frequency resource #D may be a resource that carries any of a variety of information included in the uplink control information.
  • the size of the time-frequency resource #D may be in a mapping relationship with the code rate and the parameter ⁇ of the uplink data transmission.
  • the mapping relationship may be: the size of the time-frequency resource #D may be It is determined according to the function of the code rate of the above line data transmission, and the parameter ⁇ can be a constant in the function.
  • the mapping relationship may be: a mapping relationship representation may be preset, where the mapping relationship entry may record multiple resource size values and multiple code rates (or combinations of code rates and parameters ⁇ ) One-to-one mapping relationship.
  • the size of the time-frequency resource #D may be determined based on Equation 1 below.
  • Equation 1 the scope of protection of this application. Therefore, the scope of protection of the present application should be determined by the scope of the claims.
  • Q' represents the size of the time-frequency resource #D (or the number of REs after the feedback information is encoded and modulated), and O represents the original number of bits of the feedback information.
  • Indicates the uplink channel (or uplink data) for example, the number of valid information bits of the PUSCH (for example, the sum of the original bits and the Cyclic Redundancy Check (CRC) bits),
  • Indicates a frequency domain resource allocated to the uplink channel (or uplink data) for example, a PUSCH (for example, a frequency domain resource corresponding to the time-frequency resource #A, for example, the number of sub-carriers corresponding to the time-frequency resource #A)
  • Indicates a time domain symbol assigned to the uplink channel (or uplink data) for example, a PUSCH (for example, a time domain resource corresponding to the time-frequency resource #A, for example, the number of symbols corresponding to the time-frequency resource #A), that is, Indicates the size of the total time-frequency resource (
  • the size or number of frequency domain resources (e.g., subcarriers) used by the terminal device #A for carrying the uplink channel may be represented.
  • versus The value and / or meaning can be the same, for example, versus Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the first transmission; or versus Indicates a frequency domain resource to which a transport block corresponding to uplink data is allocated at the time of current transmission.
  • versus The value and / or meaning can also be different, for example, a frequency domain resource that is allocated when the transport block corresponding to the uplink data is allocated in the first transmission, Indicates a frequency domain resource to which a transport block corresponding to uplink data is allocated at the time of current transmission.
  • the feedback is The ratio between the bit rate of the information and the bit rate of the uplink data may be That is, in the embodiment of the present application, the size of the time-frequency resource #D may be versus The smaller one.
  • the manner in which the terminal device #A enumerated above determines the size of the time-frequency resource #D is merely exemplary.
  • the present application is not limited thereto, and other time-frequency resources that can be allocated based on the network device are used.
  • the method for estimating the size of the time-frequency resource used for carrying the uplink control information falls within the scope of protection of the present application.
  • the terminal device #A can determine the frequency domain resource #A for performing uplink transmission (for example, uplink control information and/or uplink data). Specifically, the terminal device #A can determine the frequency domain resource # The size (or bandwidth) and location of A, and the number and location of subbands included in the frequency domain resource #A.
  • the terminal device #A may detect the time-frequency resource #A (specifically, the sub-band included in the time-frequency resource #A, for example, the sub-band #1 to sub-band #4) (or , contention or monitoring), to determine the sub-bands that the terminal device #A can use in the sub-band #1 to sub-band #4.
  • the "detection” may include a Clear Channel Assessment (CCA), or the “detection” may include an LBT.
  • the terminal device #A may perform detection in units of sub-bands, that is, in the embodiment of the present application, the terminal device #A may detect whether one sub-band is detected in one detection process. Available.
  • the terminal device #A may detect whether a plurality of (at least two) sub-bands are available in one detection process.
  • the terminal device #A may detect whether all sub-bands included in the time-frequency resource #A are available in one detection process.
  • the terminal device #A may perform the above detection (or competition or monitoring) based on the CCA mode or the LBT mode, and the process may be similar to the prior art, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • the terminal device #A can determine from the time-frequency resource #A (specifically, the sub-band included in the time-frequency resource #A, for example, the sub-band #1 to sub-band #4)
  • the time-frequency resource used by the terminal device #A that is, an example of the second time-frequency resource, hereinafter, referred to as time-frequency resource #B for ease of understanding and explanation), wherein the time-frequency resource #B is in the frequency domain
  • the above may correspond to at least one (ie, K) sub-bands that can be used by the terminal device #A in the sub-band #1 to sub-band #4, and hereinafter, for ease of understanding and distinction, it is referred to as sub-band #A
  • the sub-band #A may include one (ie, an example of K) sub-band, and may include a plurality of (ie, another example of K) sub-band, which is not particularly limited in the present application.
  • the time-frequency resource #A may be one of the P scheduling information #A.
  • Information ie, an example of Q scheduling information
  • the time-frequency resource #A may be used by P scheduling information #A.
  • the multiple pieces of information ie, another example of the Q pieces of scheduling information
  • the time-frequency resource #A may be composed of Q parts, and the Q parts may have a one-to-one correspondence with the Q pieces of scheduling information, each Partially indicated by the corresponding scheduling information.
  • the terminal device #A may determine, from the time-frequency resource #B, a time-frequency resource for carrying the uplink control information #A (that is, an example of the third time-frequency resource, hereinafter, for ease of understanding and distinction, : Time-frequency resource #C).
  • the terminal device #A may determine the size of the time-frequency resource #C by using any one of the following methods.
  • the terminal device #A may be based on the time-frequency resource (ie, time-frequency resource #A) allocated by the network device to the terminal device #A for carrying the uplink channel by using the scheduling information #A.
  • the size (for example, the product of the time-frequency resource #A in the frequency domain and the size of the time-frequency resource #A in the time domain), and the terminal device #A determines the time-frequency resource #D based on the time-frequency resource #A
  • the coefficient ⁇ is used, the time-frequency resource #C is determined.
  • the terminal device #A may be based on the time-frequency resource allocated by the network device to the terminal device #A for carrying uplink data by using the scheduling information #A (ie, the time-frequency resource # The size of E) (for example, the product of the time-frequency resource #E in the frequency domain and the size of the time-frequency resource #E in the time domain), and the terminal device #A determines the time-frequency resource based on the time-frequency resource #E
  • the coefficient ⁇ used in #D determines the time-frequency resource #C.
  • the size of the time-frequency resource #C may be in a mapping relationship with the code rate of the uplink data transmission (or the size of the time-frequency resource #A) and the parameter ⁇ .
  • the mapping relationship may be It is to be noted that the size of the time-frequency resource #C may be determined according to a function of a code rate of the above-mentioned line data transmission (or the size of the time-frequency resource #A) as a variable, and the parameter ⁇ may be a constant in the function.
  • the mapping relationship may be: a mapping relationship representation may be preset, where the mapping relationship entry may record multiple resource size values and multiple code rates (or combinations of code rates and parameters ⁇ ) One-to-one mapping relationship.
  • the terminal device #A may determine the time-frequency resource #C based on the above formula 1.
  • the terminal device #A can determine the size of the time-frequency resource #C based on each parameter used in the above formula 1 (or, for determining the time-frequency resource #D).
  • the bandwidth of the time-frequency resource (or the number of sub-bands included) for the uplink transmission that the terminal device can actually use is narrower than the bandwidth of the time-frequency resource for the uplink transmission scheduled by the network device.
  • the size of the time-frequency resource actually occupied by the terminal device #A is not used, and the time-frequency resource #A (or the time-frequency resource #E indicated in the scheduling information #A is used. The size of the ) ensures the reliability of the transmission of the uplink control information.
  • the size or number of frequency domain resources (e.g., subcarriers) used by the terminal device #A for carrying the uplink channel may be represented.
  • versus The value and / or meaning can be the same, for example, versus Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the first transmission; or versus Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the current transmission; or versus Indicates that the transport block corresponding to the uplink data is actually used to carry the frequency domain resources of the uplink channel at the time of the current transmission.
  • the value and / or meaning can also be different, for example, a frequency domain resource that is allocated when the transport block corresponding to the uplink data is allocated in the first transmission, Indicates that the transport block corresponding to the uplink data is actually used to carry the frequency domain resources of the uplink channel at the time of the current transmission.
  • the method for determining the time-frequency resource #C of the terminal device #A enumerated above is merely an exemplary description, and the present application is not particularly limited, for example, in the above formula 1.
  • Value can also be a fixed value, and, the The value may be predetermined by the network device and indicated to the terminal device #A, or The value can also be specified by the communication system, or, Indicates the time domain resource that the transport block corresponding to the uplink data is allocated at the time of the first transmission.
  • Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the first transmission or It is also possible to indicate the number of sub-bands occupied by the above-mentioned time-frequency resource #A (for example, the above-mentioned number M), or The value may also be a value determined based on the number of sub-bands occupied by the time-frequency resource #A (for example, the above-described number M), for example, It can be a function value of a function whose value is M.
  • the value of the value may be the number of REs allocated by the transport block corresponding to the uplink data at the time of the first transmission, or
  • the value can be the value specified by the communication system, or,
  • the value may also be a value determined by the network device, and the network device may notify the terminal device #A by, for example, RRC signaling. Value.
  • the frequency domain resource of the PUSCH for example, the frequency domain resource corresponding to the time-frequency resource #A.
  • a partial symbol in a time domain symbol (for example, a time domain resource corresponding to the time-frequency resource #A) assigned to the uplink data (or PUSCH).
  • a partial time-frequency resource in a total time-frequency resource (for example, the above-mentioned time-frequency resource #A) allocated to the uplink data (or PUSCH).
  • the formula 1 listed above is only an example of the mapping relationship between the time-frequency resource #C and the time-frequency resource #A.
  • the embodiment of the present application is not limited thereto.
  • the time-frequency is The size of resource #C can also be ignored.
  • the limitation of the parameter, for example, the size of the time-frequency resource #C can also be determined according to the following formula 2.
  • the value of the value is a value specified by the communication system, or the value of the L may also be a value determined by the network device, and the network device may notify the terminal device #A of the value of L by, for example, RRC signaling.
  • the location of the L subbands in the M subbands is specified by the communication system, or the location of the L subbands in the M subbands may also be a value determined by the network device, and the network device may pass, for example, RRC.
  • the terminal device #A is signaled to the position of the L sub-bands in the M sub-bands.
  • a mapping relationship between a plurality of parameter groups and a plurality of coefficients may be saved in the terminal device #A, where each parameter group includes a value of a time-frequency resource size (for example, a number of REs) and The value of a coefficient.
  • the value of the time-frequency resource size included in the parameter group #A (for example, the number of REs included in the parameter group #A) is a1, and the value of the time-frequency resource size included in the parameter group #A is a2, and the parameter group #B is set.
  • the value of the time-frequency resource size included (for example, the number of REs included in the parameter group #B) is b1, and the value of the time-frequency resource size included in the parameter group #B is b2, then:
  • Z can be a preset value.
  • the value of the size of the time-frequency resource #E and the value of the coefficient ⁇ may belong to the same parameter group.
  • the value of the size of the time-frequency resource #A and the value of the coefficient ⁇ may belong to the same parameter group.
  • the terminal device #A can determine the parameter group to which the value of the size of the time-frequency resource #B belongs (hereinafter, referred to as parameter group #1 for ease of understanding and distinction).
  • the terminal device #A can determine the time-frequency resource used to carry the uplink data in the time-frequency resource #B (that is, the size of the sixth time-frequency resource, hereinafter, for ease of understanding and differentiation, it is recorded as: time-frequency resource #F
  • the parameter group #1 may be a parameter group to which the value of the time-frequency resource #F belongs.
  • the terminal device #A can determine the coefficient in the parameter group #1 (i.e., an example of the second coefficient, hereinafter, referred to as a coefficient ⁇ ' for ease of understanding and distinction).
  • the terminal device #A can determine the size of the time-frequency resource #C based on the size of the time-frequency resource #F and the coefficient ⁇ '.
  • the maximum value of the time-frequency resource #D (ie, the resource allocated to the feedback information (ie, the uplink control information)).
  • It may represent the size or number of frequency domain resources (eg, subcarriers) used by the terminal device #A to carry the uplink channel, for example, With The values are the same.
  • the method for determining the time-frequency resource #C of the terminal device #A enumerated above is merely an exemplary description, and the present application is not particularly limited, for example, the above.
  • Value can also be a fixed value, and, the The value may be predetermined by the network device and indicated to the terminal device #A, or The value can also be specified by the communication system.
  • the number of sub-bands occupied by the time-frequency resource #B (for example, the above-mentioned quantity K), or
  • the value may also be a value determined based on the number of sub-bands occupied by the time-frequency resource #B (for example, the above-described number K), for example, It can be a function value of a function whose value is K.
  • the value can be the value specified by the communication system, or, The value may also be a value determined by the network device, and the network device may notify the terminal device #A by, for example, RRC signaling. Value.
  • a part of resources in a frequency domain resource (for example, a frequency domain resource corresponding to the time-frequency resource #B) that the terminal device competes for.
  • a partial symbol in a time domain symbol (for example, a time domain resource corresponding to the time-frequency resource #B) that the terminal device competes for.
  • the terminal device As an example and not a limitation, And indicating a size value of a time-frequency resource occupying L sub-bands in the K word frequency band in a total time-frequency resource (for example, the time-frequency resource #B) that the terminal device competes for, wherein the value of the L is a communication system specification.
  • the value of the L, or the value of the L may also be a value determined by the network device, and the network device may notify the terminal device #A of the value of L by, for example, RRC signaling.
  • the location of the L subbands in the M subbands is specified by the communication system, or the location of the L subbands in the M subbands may also be a value determined by the network device, and the network device may pass, for example, RRC.
  • the terminal device #A is signaled to the position of the L sub-bands in the M sub-bands.
  • a mapping relationship between multiple parameter groups and multiple threshold values may be saved in the terminal device #A, where each parameter group includes a time-frequency resource size (for example, RE The number and the threshold.
  • the terminal device #A may use the threshold value in the parameter group to which the value of the size of the time-frequency resource #B belongs as the above formula Value.
  • the terminal device #A may be based on the size of the time-frequency resource #D (for example, the number of REs included in the time-frequency resource #D, or the time-frequency resource #D can Determining the size of the time-frequency resource #C (for example, the number of REs included in the time-frequency resource #C, or the number of modulation symbols that the time-frequency resource #C can carry), so that The difference between the size of the time-frequency resource #C and the size of the time-frequency resource #D is within a preset range.
  • the size of the time-frequency resource #C is X, and the size of the time-frequency resource #D is Y.
  • the W may be a preset value.
  • the value of the W may be specified by the communication system, or the value of the W may be determined by the network device and passed, for example, by radio resource control (Radio Resource). Control, RRC) signaling is pre-indicated to the terminal device.
  • Radio Resource Radio Resource
  • the bandwidth of the time-frequency resource (or the number of sub-bands included) for the uplink transmission that the terminal device can actually use is narrower than the bandwidth of the time-frequency resource for the uplink transmission scheduled by the network device.
  • a time-frequency resource for example, a time-frequency resource
  • a size of a time-frequency resource ie, time-frequency resource #C
  • uplink control information for example, HARQ feedback information
  • the size of the resource #D) is the same or approximately the same, and the demodulation performance of the uplink control information can be ensured.
  • the terminal device #A may determine, according to the foregoing scheduling information #A sent by the network device, a code rate of the uplink data scheduled by the scheduling information #A (ie, code rate #A), and the terminal.
  • the device can determine the time-frequency resource #C according to the code rate #A and the coefficient ⁇ .
  • the coefficient ⁇ may be a parameter of a high-level configuration, or the coefficient ⁇ is indicated by the network device through physical layer signaling, or the coefficient ⁇ is specified by the communication system.
  • the coefficient ⁇ can be used to indicate a ratio between a code rate of the uplink control information and a code rate of the uplink data.
  • the terminal device #A can determine the size of the time-frequency resource #C for carrying the uplink control information #A.
  • the terminal device #A may further determine the time-frequency resource #C from the time-frequency resource #B according to the size of the time-frequency resource #C determined as described above (specifically, the time-frequency resource # The specific location of the RE included in C.
  • the terminal device #A may be based on the position of the symbol for carrying the reference signal in the time-frequency resource #B (hereinafter, referred to as symbol #1 for ease of understanding and explanation).
  • symbol #1 for ease of understanding and explanation
  • symbol #2 for ease of understanding and explanation
  • the terminal device #A may use a symbol adjacent to the symbol #1 as the symbol #2.
  • the terminal device can also
  • the offset between the symbols #1 is less than or equal to the sign of the preset threshold K (hereinafter, referred to as symbol #3 for ease of understanding and explanation) as the symbol #2.
  • the terminal device may use consecutive K+1 symbols adjacent to symbol #1 as symbol #2.
  • the terminal device #A may preferentially use the time-frequency resource at the lower frequency position in the time-frequency resource B as the time-frequency resource #C.
  • FIG. 3 shows a pattern of time-frequency resources (ie, time-frequency resources #D) for carrying uplink control information in time-frequency resource #A allocated by network device #A to terminal device #A, and for carrying uplinks.
  • a pattern of the time-frequency resource of the data ie, the time-frequency resource #E
  • FIG. 3 shows the time-frequency resource for carrying the uplink control information in the time-frequency resource #B that the terminal device #A actually competes with ( That is, the pattern of the time-frequency resource #C) and the pattern of the time-frequency resource (ie, the time-frequency resource #F) for carrying the uplink data.
  • the positional relationship of the symbol of the time-frequency resource #C with respect to the symbol of the reference signal may correspond to the positional relationship of the symbol of the time-frequency resource #D with respect to the symbol of the reference signal.
  • the frequency domain position of the time-frequency resource #C in the time-frequency resource #B corresponds to the frequency domain position of the time-frequency resource #D in the time-frequency resource #A, for example, when the time-frequency resource C is located in the frequency domain.
  • Frequency resource #B is a lower frequency location.
  • the size of the time-frequency resource #C and the size of the time-frequency resource #D may be the same.
  • the number of subbands occupied by the time-frequency resource #C may be the same as the number of subbands occupied by the time-frequency resource #D
  • the number of symbols occupied by the time-frequency resource #C may be the symbol occupied by the time-frequency resource #D. The number is the same.
  • the location of the time-frequency resource #C listed in FIG. 3 in the time-frequency resource #B is merely exemplary, and the present application is not limited thereto.
  • the number of subbands occupied by the time-frequency resource #C may be smaller than the number of sub-bands occupied by the time-frequency resource #D.
  • the symbol occupied by the time-frequency resource #C may be larger than the symbol occupied by the time-frequency resource #D.
  • the terminal device #A can perform uplink transmission by the time-frequency resource #B and the network device #A, that is, the terminal device #A can transmit the uplink control information #A to the network device #A through the time-frequency resource #C.
  • the terminal device #A may also transmit uplink data to the network device #A through the time-frequency resource #F (hereinafter, for ease of understanding and explanation, denoted as: data #A), wherein the data # A may be all data in the uplink data transmitted by the terminal device #A through the time-frequency resource #A, or the data #A may be part of the data in the uplink data transmitted by the terminal device #A through the time-frequency resource #A,
  • data #A may be all data in the uplink data transmitted by the terminal device #A through the time-frequency resource #A
  • This application is not specifically limited.
  • the mapping relationship table may be further stored in the terminal device #A, where the mapping relationship table may be used to indicate a mapping relationship between multiple parameter groups and multiple transport block sizes (Transport Block Sizes, TBSs). Where each parameter group includes an RB number value and an MCS value.
  • TBSs Transport Block Sizes
  • the scheduling information can also be used to indicate the number of RBs #A and MCS#A, whereby the terminal device #A can search for the number of RBs from the mapping relationship table based on the number of RBs #A and MCS#A# A and TBS corresponding to the parameter group to which MCS#A belongs (hereinafter, referred to as TBS#A for ease of understanding and explanation).
  • the TBS #A may be a TBS allocated to the terminal device #A by the network device #A for uplink transmission.
  • the terminal device #A can transmit the data #A and the uplink control information #A to the network device #A via the time-frequency resource #B based on the TBS #A and MCS #A.
  • the process may be similar to the method and process for transmitting data based on the TBS and the MCS by the prior art communication device (network device or terminal device).
  • network device or terminal device network device or terminal device.
  • detailed description thereof is omitted.
  • the terminal device #A can transmit the data #A to the network device #A via the time-frequency resource #B based on the TBS #A and the re-determined MCS (hereinafter, referred to as MCS #A' for ease of understanding and differentiation). And uplink control information #A.
  • the number of RBs included in the time-frequency resource #B (hereinafter, referred to as RB number #A' for ease of understanding and explanation) is smaller than the number of RBs included in the time-frequency resource #A (ie, RB number #A), that is, the number of resources that can be used in the uplink transmission process of the terminal device #A is reduced, and therefore, the terminal device #A can increase the modulation order for the uplink transmission (ie, using MCS#A'
  • modulation order #A' The modulation order, hereinafter, for ease of understanding and explanation, is recorded as modulation order #A'), so that the bit rate used by terminal device #A for uplink transmission by time-frequency resources #B and MCS#A' is lower than The bit rate used by the terminal device #A for uplink transmission by time-frequency resources #B and MCS#A.
  • the terminal device #A can also transmit the indication information of the modulation order #A' to the network device #A, whereby the network device #A can determine the modulation order #A' and based on the modulation order # A' and the TBS#A, parsing the signal received through the sub-band #A to obtain the data #A, wherein the process can be based on the TBS and the modulation stage with the prior art communication device (network device or terminal device)
  • the method and process of parsing a pair of signals to obtain data are similar, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #A may also determine the number of RBs included in the time-frequency resource #B.
  • RB number #A' it is recorded as: RB number #A'.
  • the terminal device #A can search for the TBS corresponding to the parameter group to which the RB number #A' and MCS#A belong based on the MCS #A and the number of RBs #A' (hereinafter, for ease of understanding and Description, recorded as TBS#A').
  • the terminal device #A can perform uplink transmission by using the time-frequency resource #B and the network device #A based on the TBS #A'.
  • the terminal device #A may also transmit the indication information of the TBS #A' to the network device #A, so that the network device #A can determine the TBS #A', and based on the TBS #A', the passer The signal received by the frequency band #A is parsed to obtain the data #A, wherein the process can be similar to the method and process for the prior art communication device (network device or terminal device) to parse the signal based on the TBS to acquire the data, here In order to avoid redundancy, a detailed description thereof will be omitted.
  • the modulation order used may be the above-mentioned modulation order #A, or may be determined based on TBS#A'.
  • the modulation order of the modulation order #A is different, and the present application is not particularly limited.
  • the terminal device #A may transmit the uplink control information #A through the time-frequency resource #C and the network device #A based on the following manner 1 or mode 2.
  • the terminal device #A may send the information #1 to the network device #A (that is, an example of the indication information of the third time-frequency resource).
  • the information #1 may be used to indicate the number of sub-bands corresponding to the time-frequency resource #C, and the information #1 may be used to indicate the position of the sub-band corresponding to the time-frequency resource #C.
  • the network device #A can determine, based on the information #1, the sub-band in which the uplink control information (ie, the uplink control information #A) transmitted by the terminal device #A is carried in the frequency domain resource #A.
  • the network device #A can receive the uplink control information transmitted by the terminal device #A only in the sub-band indicated by the information #1, and can reduce the processing load of the network device.
  • the method and process for the network device #A to receive the control information through the resource may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #A may send the information #1 to the network device #A through the time-frequency resource #B (for example, the time-frequency resource #C).
  • the time-frequency resource #B for example, the time-frequency resource #C.
  • the terminal device #A can send both the information #1 and the uplink control information #A to the network device #A through the time-frequency resource #B.
  • sending with the channel may mean that, in the embodiment of the present application, the time-frequency resource #B (for example, the time-frequency resource #C) may correspond to a plurality of time-frequency resource units (Resouce Element, RE), and the terminal device #A can transmit the uplink control information #A to a part of the plurality of REs, and the terminal device #A can transmit the information #1 to another part of the plurality of REs.
  • the time-frequency resource #B for example, the time-frequency resource #C
  • RE time-frequency resource units
  • the resources used by the terminal device #A to be sent to the network device #A to the information #1 are only exemplified, and the present application is not particularly limited.
  • the communication system may also be configured with Reserving resources, the reserved resources are forbidden for data transmission, or the reserved resources may be used only for signaling transmission of the network device and the terminal device, so that the terminal device #A can pass through the reserved resources. Some or all of the resources send information #1 to network device #A.
  • the terminal device #A can transmit the uplink control information #A and the reference signal #A through the time-frequency resource #B.
  • each subband in the time-frequency resource #B carries a reference signal #A.
  • the network device #A can determine the frequency domain resource of the uplink control information #A) transmitted by the terminal device #A in the frequency domain resource #A by detecting the reference signal #A, that is, the time-frequency resource #B Subbands included.
  • the network device #A can analyze the information transmitted by the terminal device #A only on the sub-band included in the time-frequency resource #B, and can reduce the processing load of the network device.
  • the method and process for the network device #A to parse data based on the reference signal may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #A may determine information for indicating the time-frequency resource #C in the P scheduling information #A (hereinafter, For convenience of understanding, it is recorded as: information #A_1), and the terminal device #A can report the indication information of the information #A_1 (ie, an example of the third indication information) to the network device #A, so that the network device #A can
  • the indication information of the information #A_1 determines that the terminal device #A transmits the uplink control information using the time-frequency resource indicated by the information #A_1 (or the sub-band to which the time-frequency resource indicated by the information #A_1 belongs).
  • the terminal device #A may also send the information #2 to the network device #A (that is, an example of the indication information of the second time-frequency resource), by way of example and not limitation, implemented in the present application.
  • the information #2 can be used to indicate the number of sub-bands corresponding to the time-frequency resource #B, and the information #2 can be used to indicate the position of the sub-band corresponding to the time-frequency resource #B.
  • the network device #A can determine, based on the information #2, the sub-band in which the uplink information (for example, the uplink control information and/or the uplink data) transmitted by the terminal device #A is carried in the frequency domain resource #A.
  • the uplink information for example, the uplink control information and/or the uplink data
  • the network device #A can receive the uplink information transmitted by the terminal device #A only in the sub-band indicated by the information #2, and can reduce the processing load of the network device.
  • the method and process for the network device #A to receive information through the resource may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #A may send the information #2 to the network device #A through the time-frequency resource #B.
  • the terminal device #A can send both the information #2 and the uplink information to the network device #A through the time-frequency resource #B.
  • spatial transmission may refer to that, in the embodiment of the present application, the time-frequency resource #B may correspond to multiple time-frequency resource units RE, and the terminal device #A may send uplinks to a part of multiple REs. Information, and, the terminal device #A can transmit the information #2 by giving another part of the plurality of REs.
  • the resources used by the terminal device #A to be sent to the network device #A to the information #2 are only exemplified, and the present application is not particularly limited.
  • the communication system may also be provided with Reserving resources, the reserved resources are forbidden for data transmission, or the reserved resources may be used only for signaling transmission of the network device and the terminal device, so that the terminal device #A can pass through the reserved resources.
  • Some or all of the resources send information #2 to network device #A.
  • a method for transmitting uplink control information by dividing a system frequency domain resource used based on a contention mechanism into a plurality of sub-bands, and after determining, by the terminal device, the first frequency domain resource allocated by the network device, Before performing the uplink transmission, detecting the at least two sub-bands included in the first frequency domain resource, enabling the terminal device to determine, from the at least two sub-bands, the second frequency domain resource that the terminal device can use, and passing the second
  • the uplink frequency domain resource performs the uplink data transmission, that is, the terminal device does not need to use the first frequency domain in the case that the resources in the entire bandwidth range of the first frequency domain resource are used, compared to the prior art.
  • the resource performs wireless communication, thereby improving the possibility that the terminal device can perform wireless communication using the first frequency domain resource (specifically, a partial sub-band in the first frequency domain resource), thereby improving communication efficiency and reducing
  • the service transmission delay improves the user experience.
  • the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Determining, therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is smaller than the first resource in the prior art. The size of the time-frequency resource used to carry the uplink control information.
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the time-frequency resource #B may correspond to at least one TTI (hereinafter, for convenience of understanding and explanation, it is recorded as: TTI#A).
  • the TTI #A may include at least two time domain starting points.
  • the time domain starting point #A and the time domain starting point #B are recorded.
  • the starting point of the time-frequency resource #B in the time domain may be located at the time domain starting point #A, or the starting point of the time-frequency resource #B in the time domain may be located at the time domain starting point #B. .
  • the location of the time-frequency resource #C in the time domain may be located between the time domain starting point #A and the time domain starting point #B, or the time-frequency resource #C is in the time domain.
  • the location can be located after the time domain starting point #B.
  • the method 300 for transmitting uplink control information in the embodiment of the present application is described in detail below with reference to FIG.
  • FIG. 5 is a diagram schematically showing an example of uplink control information #B (ie, an example of uplink control information) between terminal device #B (that is, an example of a terminal device) and network device #B (that is, an example of a network device), for example, The process of one or more of feedback information, CQI information, RI information, or PMI information.
  • uplink control information #B ie, an example of uplink control information
  • terminal device #B that is, an example of a terminal device
  • network device #B that is, an example of a network device
  • network device #B may allocate time-frequency resource #1 for transmitting uplink transmission (eg, transmitting uplink control information) to terminal device #B from the above-mentioned system time-frequency resources.
  • time-frequency resource #1 for transmitting uplink transmission (eg, transmitting uplink control information) to terminal device #B from the above-mentioned system time-frequency resources.
  • the time-frequency resource #1 may correspond to at least one TTI in the time domain (hereinafter, for ease of understanding and explanation, it is recorded as: TTI#1)
  • the method and the process for determining the time-frequency resource #1 by the network device may be the same as the prior art. Here, in order to avoid redundancy, detailed description thereof is omitted.
  • the network device #B can indicate that the terminal device #B can perform uplink transmission by using the time-frequency resource #1 by using the scheduling information #B (that is, an example of scheduling information, for example, downlink control information).
  • the scheduling information #B that is, an example of scheduling information, for example, downlink control information.
  • the usage manner of the time-frequency resource #1 may be a scheduling-based manner or a scheduling-free manner, and the present application is not particularly limited.
  • the time-frequency resource #1 when the time-frequency resource #1 can be used in a scheduling manner, the time-frequency resource #1 can be the network device #B after determining that the terminal device #B needs to perform uplink transmission (for example, transmitting uplink control information).
  • the terminal device #B is allocated, and the scheduling information #B may be that the network device #B transmits to the terminal device #B after determining that the terminal device #B needs to perform uplink transmission.
  • the time-frequency resource #1 when the time-frequency resource #1 can be used in a scheduling-free manner, the time-frequency resource #1 can be the network device #B in determining that the terminal device #B needs to perform uplink transmission (for example, transmitting uplink control information). It is previously allocated for the terminal device #B, and the scheduling information #B may be transmitted to the terminal device #B before the network device #B determines that the terminal device #B needs to perform uplink transmission.
  • uplink transmission for example, transmitting uplink control information
  • the scheduling information #B may indicate the size of the time-frequency resource #1.
  • the scheduling information #B may indicate the size of the time-frequency resource #1, for example, the The scheduling information #B may indicate the number of RBs included in the time-frequency resource #1. For ease of understanding and explanation, it is recorded as: RB number #1; or, the scheduling information #B may indicate the frequency domain resource corresponding to the time-frequency resource #1.
  • the size (or bandwidth), for example, the scheduling information #B may indicate the number of subcarriers included in the time-frequency resource #1; or the scheduling information #B may indicate the time domain resource corresponding to the time-frequency resource #1
  • the size, for example, the scheduling information #B may indicate the number of symbols included in the time-frequency resource #1.
  • the scheduling information #B may indicate the TTI corresponding to the time-frequency resource #1.
  • the scheduling information #B may also be the location of the frequency domain resource corresponding to the time-frequency resource #1 in the frequency domain.
  • the scheduling information #B may also be the location of the time domain resource corresponding to the time-frequency resource #1 in the time domain.
  • the scheduling information #B may also indicate a modulation and coding scheme (MCS) used by the terminal device when performing uplink transmission using the frequency domain resource #1.
  • MCS modulation and coding scheme
  • scheduling information #B function (or the indicated content) enumerated above is only an exemplary description, and the present application is not particularly limited.
  • the scheduling information #B function may be used to indicate uplink transmission in the prior art.
  • the function of the related parameter for example, the downlink control information or the resource scheduling information
  • the scheduling information #B may also be the information used in the prior art to indicate the relevant parameters used by the terminal device for uplink transmission. .
  • the TTI #1 includes at least two time domain starting points (hereinafter, for convenience of understanding and explanation, the time domain starting point # ⁇ and the time domain starting point # ⁇ are recorded).
  • the time-frequency resource #1 includes at least two (ie, M) sub-bands in the frequency domain.
  • the TTI #1 includes two candidate time-frequency resources, and the two candidate time-frequency resources are time-frequency resource #1 or time-frequency resource #2, wherein the time-frequency resource #1 The time domain starting point is the time domain starting point # ⁇ , and the time domain starting point of the time-frequency resource #2 is the time domain starting point # ⁇ , and the time domain starting point # ⁇ of the time-frequency resource #2 is later than the time-frequency resource #1 The time domain starting point # ⁇ .
  • the time-frequency resource #2 is a part of the resources in the time-frequency resource #1.
  • the time domain start point # ⁇ is located in the TTI #1, for example, the time domain start point # ⁇ is the time corresponding to the start boundary of the symbol #0, and the start of the distance symbol #0 in the symbol #0
  • the time length of the boundary is the time of the preset value #1 (for example, 25 microseconds (us))
  • the time length of the start boundary of the distance symbol #0 in the symbol #0 is the preset value #2 (for example, 25us and timing)
  • the scheduling information #B may also indicate the location of the time domain starting point # ⁇ of the terminal device.
  • the time domain starting point # ⁇ is located in the TTI #1, for example, the time domain starting point # ⁇ is the time corresponding to the starting boundary of the symbol #7.
  • the time-frequency resource #1 includes one sub-band in the frequency domain.
  • the size (or the number of sub-bands belonging to) and the location of the frequency domain resource #1 may be indicated by one scheduling information #B.
  • the size (or the number of sub-bands belonging to) and the location of the frequency domain resource #1 may be indicated by P (at least two) scheduling information #B.
  • the frequency domain resource indicated by each scheduling information #B in the P scheduling information #B constitutes the frequency domain resource #1, or the frequency indicated by each of the P scheduling information #B.
  • the sub-band to which the domain resource belongs (or corresponds to) constitutes a sub-band to which the above-mentioned frequency domain resource #1 belongs (or corresponds).
  • the frequency domain resources indicated by any two of the P pieces of scheduling information #B may not overlap each other, that is, the frequency domain resource #1 may be divided into P pieces.
  • each of the P pieces of scheduling information #B indicates one of the P parts.
  • the frequency domain resources indicated by the M scheduling information #B may have a nested structure.
  • one piece of information of the P scheduling information #B may indicate all of the frequency domain resources #1 ( In other words, all the sub-bands to which the frequency domain resource #1 belongs, the other information of the P scheduling information #B may indicate a part of the frequency domain resource #1 (or, the frequency domain resource #B belongs to Partial subband).
  • the scheduling information #B i in the P scheduling information #B is the time-frequency resource i
  • the scheduling information #B i may also indicate that the time-frequency resource is The transmission parameter used by the time-frequency resource i to transmit data, where i ⁇ [1,P].
  • the transmission parameters may include, but are not limited to:
  • a modulation coding method used when data is transmitted by time-frequency resource i a transmission block size used when data is transmitted through time-frequency resource i, a modulation order used when data is transmitted through time-frequency resource i, and a time-frequency resource is used.
  • the code rate used when i transmits data, the RV used when data is transmitted through the time-frequency resource i, the retransmission process used when data is transmitted through the time-frequency resource i, and the like.
  • the time-frequency resource #1 may include a time-frequency resource for carrying uplink data (hereinafter, for ease of understanding and differentiation, it is recorded as: time-frequency resource #5), and the time-frequency resource # 1 may include time-frequency resources for carrying uplink control information (hereinafter, for ease of understanding and differentiation, it is recorded as: time-frequency resource #4).
  • the method and process for determining, by the network device or the terminal device, the time-frequency resource #4 for carrying the uplink control information may be multiplexed with the uplink data information and the uplink control information in the prior art.
  • the method and the process for determining, by the network device or the terminal device, the time-frequency resource for carrying the uplink control information are the same when transmitting on the uplink shared channel PUSCH; or the network device or the terminal device determines the time-frequency resource for carrying the uplink control information.
  • the method and process of 4 may be the same as the method and process for the network device or the terminal device to determine the time-frequency resource for carrying the uplink control information when the uplink control information is multiplexed on the uplink shared channel PUSCH in the prior art.
  • the time-frequency resource #4 is part or all of the resources in the time-frequency resource #1.
  • the time-frequency resource #4 is part or all of the resources in the time-frequency resource #2.
  • the time-frequency resource #4 is part or all of the resources in the time-frequency resource #1, and the time-frequency resource #4 is part of the time-frequency resource #2 or All resources.
  • the method for determining, by the network device or the terminal device, the time-frequency resource #4 for carrying the uplink control information may be multiplexed with the uplink data information and the uplink control information in the prior art.
  • the method for determining, by the network device or the terminal device, the time-frequency resource size for carrying the uplink control information is the same or similar when the uplink shared channel is transmitted on the PUSCH; or the network device or the terminal device determines the time-frequency resource for carrying the uplink control information.
  • the method of 4 sizes may be the same as or similar to the method for determining, by the network device or the terminal device, the time-frequency resource size for carrying the uplink control information when the uplink control information is multiplexed on the uplink shared channel PUSCH in the prior art.
  • the uplink control information and the uplink data information are multiplexed and transmitted.
  • the method for the network device or the terminal device to determine the size of the time-frequency resource for carrying the uplink control information may be different.
  • the size of the time-frequency resource #4 may have a corresponding relationship with the size of the time-frequency resource #1, or the size of the time-frequency resource #4 may be based on
  • the size of the time-frequency resource #1 is determined, or the size of the time-frequency resource #4 may be a code according to the code rate of the data transmitted on the time-frequency resource #1 and the uplink control information transmitted on the time-frequency resource #1.
  • the rate determined, or the size of the time-frequency resource #4 may be determined by a function that takes the size of the time-frequency resource #1 as a variable.
  • the uplink control information includes at least one of hybrid automatic retransmission HARQ feedback information, channel quality indication information CQI, rank indication information RI, and precoding matrix indication information PMI.
  • the CQI information and the PMI information may be jointly encoded or independently encoded.
  • the uplink control information when the uplink control information includes CQI information and/or PMI information, and the uplink control information further includes at least one of hybrid automatic retransmission HARQ feedback information and RI information.
  • the size of the time-frequency resource used for transmitting the HARQ feedback information or the RI information may be the code rate according to the CQI information and/or the PMI information transmitted on the time-frequency resource #1 and the HARQ feedback information transmitted on the time-frequency resource #1. Or the code rate of the RI information is determined.
  • the size of the time-frequency resource #4 may have a corresponding relationship with the size of the time-frequency resource #5, or the time-frequency resource #4
  • the size may be determined according to the size of the time-frequency resource #5, or the size of the time-frequency resource #4 may be transmitted according to the code rate of the data transmitted on the time-frequency resource #5 and the time-frequency resource #4.
  • the code rate of the feedback information is determined, or the size of the time-frequency resource #4 may be determined by a function that takes the size of the time-frequency resource #5 as a variable.
  • the size of the time-frequency resource #4 may have a corresponding relationship with the size of the time-frequency resource #1, or the time-frequency resource.
  • the size of #4 may be determined according to the size of the time-frequency resource #1, or the size of the time-frequency resource #4 may be based on the code rate of the data transmitted on the time-frequency resource #1 and the time-frequency resource #1.
  • the code rate of the transmitted feedback information is determined, or the size of the time-frequency resource #4 may be determined by a function that takes the size of the time-frequency resource #1 as a variable.
  • the size of the time-frequency resource #4 (or the size of the channel resource occupied by the feedback information, or the number of modulation symbols of the feedback information) may be a code rate transmitted by the uplink data and configured by the upper layer.
  • the preset parameter that is, an example of the first coefficient, hereinafter, referred to as a coefficient ⁇ for ease of understanding and differentiation), wherein the coefficient ⁇ can be used to indicate the bit rate of the uplink control information and the bit rate of the uplink data.
  • the size of the time-frequency resource #4 can be determined based on the formula A.
  • Q' represents the size of the time-frequency resource #4 (or the number of symbols after the feedback information is encoded and modulated), and O represents the original number of bits of the feedback information.
  • Indicates the number of valid information bits of the uplink data (or PUSCH) for example, the sum of the original bits and the Cyclic Redundancy Check (CRC) bits
  • Indicates a frequency domain resource allocated to the uplink data (or PUSCH) for example, a frequency domain resource corresponding to the time-frequency resource #1, for example, the number of sub-carriers corresponding to the time-frequency resource #1
  • Indicates a time domain symbol assigned to the uplink data (or PUSCH) for example, a time domain resource corresponding to the time-frequency resource #1, for example, the number of symbols corresponding to the time-frequency resource #1
  • Indicates the size of the total time-frequency resource for example, the above-mentioned time-frequency resource #1 allocated to the uplink data (or PUSCH) (for
  • the size or number of frequency domain resources (eg, subcarriers) used by the terminal device #B to carry the uplink channel may be represented.
  • versus The value and / or meaning can be the same, for example, versus Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the first transmission; or versus Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the current transmission; or versus Indicates that the transport block corresponding to the uplink data is actually used to carry the frequency domain resources of the uplink channel at the time of the current transmission.
  • the value and / or meaning can also be different, for example, a frequency domain resource that is allocated when the transport block corresponding to the uplink data is allocated in the first transmission, Indicates that the transport block corresponding to the uplink data is actually used to carry the frequency domain resources of the uplink channel at the time of the current transmission.
  • the code rate and the uplink of the feedback information are The ratio between the data rate can be That is, in the embodiment of the present application, the size of the time-frequency resource #4 may be versus The smaller one.
  • the manner in which the terminal device #B enumerated above determines the size of the time-frequency resource #4 is merely exemplary.
  • the present application is not limited thereto, and other time-frequency resources that can be allocated based on the network device are used.
  • the method for estimating the size of the time-frequency resource used for carrying the uplink control information falls within the scope of protection of the present application.
  • the terminal device #B can determine the resources occupied by the time-frequency resource #1 for performing uplink transmission (for example, uplink control information and/or uplink data) in the frequency domain (remember, frequency domain resource #1 Specifically, the terminal device #B can determine the size (or bandwidth) and location of the frequency domain resource #1, and the number and location of the sub-bands included in the frequency domain resource #1.
  • the terminal device #B may determine a resource occupied by the time-frequency resource #1 for performing uplink transmission (for example, uplink control information and/or uplink data) in the time domain, for example, the TTI#1, specifically Said that terminal device #B can determine the location of the TTI #1 in the time domain.
  • uplink transmission for example, uplink control information and/or uplink data
  • the terminal device #B may generate the encoded data packet, and the data packet may include the encoded uplink data. And, before S310 or S310, the terminal device #B can generate uplink control information.
  • the terminal device #B may detect the time-frequency resource #1 (specifically, the sub-band included in the frequency-domain resource #1, for example, the sub-band #1 to sub-band #4) (or , contention or monitoring) to determine the sub-bands that the terminal device #B can use in the sub-band #1 to sub-band #4.
  • the "detection” may include a Clear Channel Assessment (CCA), or the “detection” may include an LBT.
  • CCA Clear Channel Assessment
  • the terminal device #B may perform detection in units of sub-bands, that is, in the embodiment of the present application, the terminal device #B may detect whether one sub-band is detected in one detection process. Available.
  • the terminal device #B may detect whether a plurality of (at least two) sub-bands are available in one detection process.
  • the terminal device #B may detect whether all sub-bands included in the time-frequency resource #1 are available in one detection process.
  • the terminal device #B may perform the foregoing detection (or competition or monitoring) based on the CCA mode or the LBT mode, and the process may be similar to the prior art, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • the terminal device #B can determine from the time-frequency resource #1 (specifically, the sub-band included in the time-frequency resource #1, for example, the sub-band #1 to sub-band #4)
  • the time-frequency resource used by the terminal device #B (hereinafter, for convenience of understanding and explanation, is referred to as time-frequency resource #2), wherein the time-frequency resource #2 can correspond to the above-mentioned sub-band #1 to sub- in the frequency domain.
  • the time-frequency resource #1 may be one of P scheduling information #B.
  • Information ie, an example of Q scheduling information
  • the time-frequency resource #1 when the frequency domain resources indicated by any two of the P scheduling information #B may not overlap each other, the time-frequency resource #1 may be used by P scheduling information #B.
  • the multiple pieces of information ie, another example of the Q pieces of scheduling information
  • the time domain starting point of the time-frequency resource #2 may be: a distance before the time domain starting point of the time-frequency resource that the terminal device #B competes in the time domain starting point of the TTI #1.
  • the time domain starting point of the time-frequency resource #2 may be located at any one of the time domain starting points of the TTI #1.
  • the time-frequency resource #2 may be a time-frequency resource in slot #1 in TTI #1.
  • the terminal device #B may be the candidate time-frequency resource (specifically, the two candidate time domain starting points included in the TTI #1, for example, the time domain starting point # ⁇ and the time domain)
  • the start point # ⁇ performs detection (or competition or monitoring), and determines the time domain start point # ⁇ or the time domain start point # ⁇ according to the detection result, thereby determining candidate time-frequency resources that the terminal device #B can use ( For example, time-frequency resource #1 or time-frequency resource #2).
  • the "detection” may include a Clear Channel Assessment (CCA), or the "detection” may include an LBT.
  • CCA Clear Channel Assessment
  • LBT LBT
  • the terminal device #B determines, according to the result of the detection, the candidate time-frequency resources that can be used, including: determining, by the terminal device #B, the carrier where the candidate time-frequency resource is in a transmittable state before the time domain start point # ⁇ In this case, the terminal device determines that the time-frequency resource #1 can be used.
  • the terminal device #B determines, according to the result of the detection, the candidate time-frequency resources that can be used, including: the terminal device #B determines, before the time domain start point # ⁇ , that the carrier where the candidate time-frequency resource is located is not in a transmittable state. And the terminal device #B determines that the carrier of the candidate time-frequency resource is in a transmittable state before the time domain start point # ⁇ , the terminal device determines that the time-frequency resource #2 can be used.
  • the terminal device #B can determine the time-frequency resource for carrying the uplink control information #B from the time-frequency resource #2 (hereinafter, for convenience of understanding and distinction, it is referred to as time-frequency resource #3).
  • the terminal device #B may determine the size of the time-frequency resource #3 by using any one of the following methods.
  • the terminal device #B may be allocated to the time-frequency resource (for example, the time-frequency resource #1 or the time-frequency resource for the uplink channel allocated by the network device by using the scheduling information #B to the terminal device #B.
  • the size of the time-frequency resource #5) and the terminal device #B determine the time-frequency resource #3 based on the coefficient ⁇ used when the time-frequency resource #1 (or the time-frequency resource #5) determines the time-frequency resource #4.
  • the terminal device #B may determine the time-frequency resource #3 based on the above formula A.
  • the terminal device #B can determine the size of the time-frequency resource #3 based on the parameters used in the above formula A (or, for determining the time-frequency resource #4).
  • the bandwidth of the time-frequency resource (or the number of sub-bands included) for the uplink transmission that the terminal device can actually use is narrower than the bandwidth of the time-frequency resource for the uplink transmission scheduled by the network device.
  • the size of the time-frequency resource to which the terminal device #B actually competes is not used, and the size of the time-frequency resource #E indicated in the scheduling information #B can be used to ensure the uplink control. The reliability of the transmission of information.
  • the formula of the resource #3 does not use the size of the time-frequency resource that the terminal device #B actually competes with, and the reliability of the transmission of the uplink control information can be ensured by using the size of the time-frequency resource #1 indicated in the scheduling information #B.
  • the size or number of frequency domain resources (eg, subcarriers) used by the terminal device #B to carry the uplink channel may be represented.
  • versus The value and / or meaning can be the same, for example, versus Indicates a frequency domain resource to which a transport block corresponding to the uplink data is allocated at the time of the first transmission; or versus Indicates a frequency domain resource to which a transport block corresponding to uplink data is allocated at the time of current transmission.
  • versus The value and / or meaning can also be different, for example, a frequency domain resource that is allocated when the transport block corresponding to the uplink data is allocated in the first transmission, Indicates a frequency domain resource to which a transport block corresponding to uplink data is allocated at the time of current transmission.
  • the method of determining the time-frequency resource #3 by the terminal device #B enumerated above is merely an exemplary description, and the present application is not particularly limited, for example, in the above formula A.
  • Value can also be a fixed value, and, the The value may be predetermined by the network device and indicated to the terminal device #B, or The value can also be specified by the communication system, or, Indicates the time domain resource that the transport block corresponding to the uplink data is allocated at the time of the first transmission.
  • the number of sub-bands occupied by the time-frequency resource #1 (or time-frequency resource #5) (for example, the above-mentioned quantity M) may be expressed, or The value may also be a value determined based on the number of sub-bands (for example, the above-described number M) occupied by the above-described time-frequency resource #1 (or time-frequency resource #5), for example, It can be a function value of a function whose value is M.
  • the value of the value may be the number of REs allocated by the transport block corresponding to the uplink data at the time of the first transmission, or
  • the value can be the value specified by the communication system, or
  • the value of the network device may also be a value determined by the network device, and the network device may notify the terminal device #B by, for example, RRC signaling. Value.
  • a part of resources in a frequency domain resource (for example, a frequency domain resource corresponding to the time-frequency resource #1) allocated to the uplink data (or PUSCH).
  • a partial symbol in a time domain symbol (for example, a time domain resource corresponding to the time-frequency resource #1 described above) assigned to the uplink data (or PUSCH).
  • a partial time-frequency resource in a total time-frequency resource (for example, the above-mentioned time-frequency resource #1) allocated to the uplink data (or PUSCH).
  • the value of the value is a value specified by the communication system, or the value of the L may also be a value determined by the network device, and the network device may notify the terminal device #B of the value of L by, for example, RRC signaling.
  • the location of the L subbands in the M subbands is specified by the communication system, or the location of the L subbands in the M subbands may also be a value determined by the network device, and the network device may pass, for example, RRC.
  • the terminal device #B is signaled to the position of the L sub-bands in the M sub-bands.
  • the formula A listed above is only an example of the mapping relationship between the time-frequency resource #3 and the time-frequency resource #1.
  • the embodiment of the present application is not limited thereto.
  • the time-frequency is The size of resource #3 is also not available.
  • the limitation of the parameter, for example, the size of the time-frequency resource #3 can also be determined according to the following formula B.
  • mapping relationship between multiple parameter groups and multiple coefficients may be saved in the terminal device #B, where each parameter group includes a value of a time-frequency resource size (or RE number). And the value of a coefficient.
  • the value of the time-frequency resource size included in the parameter group #A (for example, the number of REs included in the parameter group #A) is a1, and the value of the time-frequency resource size included in the parameter group #A is a2, and the parameter group #B is set.
  • the value of the time-frequency resource size included (for example, the number of REs included in the parameter group #B) is b1, and the value of the time-frequency resource size included in the parameter group #B is b2, then:
  • Z can be a preset value.
  • the value of the size of the time-frequency resource #5 and the value of the coefficient ⁇ may belong to the same parameter group.
  • the terminal device #B can determine the parameter group to which the value of the size of the time-frequency resource #2 belongs (hereinafter, referred to as parameter group #1 for ease of understanding and distinction).
  • the value of the size of the time-frequency resource #1 and the value of the coefficient ⁇ may belong to the same parameter group.
  • the terminal device #B can determine the time-frequency resource used to carry the uplink data in the time-frequency resource #2 (that is, the size of the sixth time-frequency resource, and below, for ease of understanding and differentiation, it is recorded as: time-frequency resource #6
  • the parameter group #1 may be a parameter group to which the value of the size of the time-frequency resource #6 belongs.
  • the terminal device #B can determine the coefficient in the parameter group #1 (i.e., an example of the second coefficient, hereinafter, referred to as a coefficient ⁇ ' for ease of understanding and differentiation).
  • the terminal device #B can determine the size of the time-frequency resource #3 based on the size and coefficient ⁇ ' of the time-frequency resource #2 (or time-frequency resource #6).
  • time-frequency resource #4 ie, the resource allocated to the feedback information (ie, the uplink control information)
  • the method for determining the time-frequency resource #3 by the terminal device #B enumerated above is merely an exemplary description, and the present application is not particularly limited, for example, the above.
  • Value can also be a fixed value, and, the The value may be predetermined by the network device and indicated to the terminal device #B, or The value can also be specified by the communication system.
  • the number of sub-bands occupied by the time-frequency resource #2 (for example, the above-mentioned number M), or
  • the value may also be a value determined based on the number of sub-bands occupied by the time-frequency resource #2 (for example, the above-described number M), for example, It can be a function value of a function whose value is M.
  • the value can be the value specified by the communication system, or,
  • the value of the network device may also be a value determined by the network device, and the network device may notify the terminal device #B by, for example, RRC signaling. Value.
  • a part of resources in a frequency domain resource (for example, a frequency domain resource corresponding to the time-frequency resource #1) allocated to the uplink data (or PUSCH).
  • a partial symbol in a time domain symbol (for example, a time domain resource corresponding to the time-frequency resource #1 described above) assigned to the uplink data (or PUSCH).
  • a partial time-frequency resource in a total time-frequency resource (for example, the above-mentioned time-frequency resource #2) allocated to the uplink data (or PUSCH).
  • the value of the value is a value specified by the communication system, or the value of the L may also be a value determined by the network device, and the network device may notify the terminal device #B of the value of L by, for example, RRC signaling.
  • the location of the L subbands in the M subbands is specified by the communication system, or the location of the L subbands in the M subbands may also be a value determined by the network device, and the network device may pass, for example, RRC.
  • the terminal device #B is signaled to the position of the L sub-bands in the M sub-bands.
  • a mapping relationship between multiple parameter groups and multiple threshold values may be saved in the terminal device #B, where each parameter group includes a time-frequency resource size (for example, RE The number and the threshold.
  • the terminal device #B may use the threshold value in the parameter group to which the value of the size of the time-frequency resource #2 belongs, as in the above formula Value.
  • the terminal device #B may be based on the size of the time-frequency resource #4 (for example, the number of REs included in the time-frequency resource #4, or the number of modulation symbols that the time-frequency resource #4 can carry. And determining the size of the time-frequency resource #3 (for example, the number of REs included in the time-frequency resource #3, or the number of modulation symbols that the time-frequency resource #3 can carry), so that the time-frequency resource #3 The difference between the size and the size of the time-frequency resource #4 is within a preset range.
  • the size of the time-frequency resource #3 is X, and the size of the time-frequency resource #4 is Y.
  • the W may be a preset value.
  • the value of the W may be specified by the communication system, or the value of the W may be determined by the network device and passed, for example, by radio resource control (Radio Resource). Control, RRC) signaling is pre-indicated to the terminal device.
  • Radio Resource Radio Resource
  • the bandwidth of the time-frequency resource (or the number of sub-bands included) for the uplink transmission that the terminal device can actually use is narrower than the bandwidth of the time-frequency resource for the uplink transmission scheduled by the network device.
  • a time-frequency resource for example, a time-frequency resource
  • for carrying uplink control information scheduled by the network device by using a size of a time-frequency resource ie, time-frequency resource #3
  • uplink control information for example, HARQ feedback information
  • the terminal device #B may determine, according to the scheduling information #B sent by the network device, a code rate (recorded as code rate #1) of the uplink data scheduled by the scheduling information #B, and The terminal device can determine the time-frequency resource #3 according to the code rate #1 and the coefficient ⁇ .
  • the coefficient ⁇ may be a parameter of a high-level configuration, or the coefficient ⁇ is indicated by the network device through physical layer signaling, or the coefficient ⁇ is specified by the communication system.
  • the coefficient ⁇ can be used to indicate a ratio between a code rate of the uplink control information and a code rate of the uplink data.
  • the terminal device #B can determine the size of the time-frequency resource #3 for carrying the uplink control information #B.
  • the terminal device #B may further determine the time-frequency resource #3 from the time-frequency resource #2 according to the size of the time-frequency resource #3 determined as described above (specifically, the time-frequency resource # 3 includes the specific location of the RE).
  • the terminal device #B may be based on the position of the symbol for carrying the reference signal in the time-frequency resource #2 (hereinafter, referred to as symbol #1 for ease of understanding and explanation).
  • symbol #1 for ease of understanding and explanation
  • symbol #2 for ease of understanding and explanation
  • the terminal device #B may use a symbol adjacent to the symbol #1 as the symbol #2.
  • the terminal device can also
  • the offset between the symbols #1 is less than or equal to the sign of the preset threshold K (hereinafter, referred to as symbol #3 for ease of understanding and explanation) as the symbol #2.
  • the terminal device may use consecutive K+1 symbols adjacent to symbol #1 as symbol #2.
  • the terminal device #B may preferably use the time-frequency resource at the lower frequency position in the time-frequency resource B as the time-frequency resource #3.
  • FIG. 6 shows a pattern of time-frequency resources (ie, time-frequency resource #4) for carrying uplink control information in the time-frequency resource #1 allocated by the network device #B to the terminal device #B; and FIG. 6 shows A pattern of time-frequency resources (ie, time-frequency resource #3) for carrying uplink control information in the time-frequency resource #2 that the terminal device #B actually competes with.
  • the size of the time-frequency resource #3 and the size of the time-frequency resource #4 may be the same.
  • the positional relationship of the symbol of the time-frequency resource #3 with respect to the symbol of the reference signal may correspond to the positional relationship of the symbol of the time-frequency resource #4 with respect to the symbol of the reference signal.
  • the frequency domain position of the time-frequency resource #3 in the time-frequency resource #2 corresponds to the frequency domain position of the time-frequency resource #4 in the time-frequency resource #1, for example, when the time-frequency resource 3 is located in the frequency domain.
  • the frequency of the frequency resource #2 is lower.
  • sub-band to which the terminal device shown in FIG. 6 competes is merely an exemplary description, and the present application is not particularly limited.
  • the terminal device #B can perform uplink transmission by using the time-frequency resource #1 and the network device #B, that is, the terminal device #B can send the uplink control information #B to the network device #B through the time-frequency resource #4; or
  • the terminal device #B may perform uplink transmission by using the time-frequency resource #2 and the network device #B, that is, the terminal device #B may transmit the uplink control information #B to the network device #B through the time-frequency resource #3.
  • the terminal device #B sends the uplink channel on the candidate time-frequency resource according to the detection result, where the terminal device #B determines that the carrier of the time-frequency resource #1 is in the time domain start point # ⁇ .
  • the terminal device #B transmits the uplink control information by the time-frequency resource #4 in the time-frequency resource #1; the terminal device #B determines the candidate before the time domain start point # ⁇
  • the carrier where the time-frequency resource is located is not in the transmittable state, and the terminal device #B determines that the carrier where the candidate time-frequency resource is in the transmittable state before the time domain start point # ⁇
  • the terminal device #B passes The time-frequency resource #3 in the time-frequency resource #2 transmits the uplink control information.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the time-frequency resource #1 or the time-frequency resource #2 to send the uplink channel according to the result of the detection.
  • the encoded uplink data packet generated by the terminal device matches the time-frequency resource #1.
  • the terminal device is on the time-frequency resource #1. Transmitting the uplink data packet; when the result of the detection is the time-frequency resource #2, the terminal device cannot regenerate the encoded another uplink data packet that matches the time-frequency resource #2 due to the capability limitation.
  • the terminal device discards the part of the uplink data packet that cannot match the time-frequency resource #2, that is, the uplink data packet is punctured and matches the time-frequency resource #2, and is on the time-frequency resource #2. Transmitting the portion of the upstream packet that is punctured.
  • the uplink control information is transmitted only once, and the transport block corresponding to the uplink data can be transmitted multiple times.
  • the uplink channel includes uplink control information and uplink data information, the uplink data transmission performance can be guaranteed by retransmission. Therefore, in an uplink transmission, if the uplink control information is included, the transmission performance of the uplink control information needs to be preferentially guaranteed.
  • the size of the time-frequency resource #3 (for example, the number of occupied REs) is smaller than the size of the time-frequency resource #4.
  • the size of the time-frequency resource #3 (for example, the number of occupied REs) is the same as the size of the time-frequency resource #4.
  • the time-frequency resource #3 is part or all of the resources in the time-frequency resource #2, wherein the time-frequency resource #2 is a part of resources in the time-frequency resource #1. That is, the terminal device maps the uplink control information to the time-frequency resource #2, and when the terminal device transmits the uplink channel using the time-frequency resource #1, the time-frequency resource on the time-frequency resource #2 in the time-frequency resource #1 is passed. #3 Sends uplink control information.
  • the time-frequency resource #3 and the time-frequency resource #4 are in the same location in the TTI #1, wherein the time-frequency resource #2 is a part of the resources in the time-frequency resource #1. That is, the terminal device maps the uplink control information to the time-frequency resource #2, and the uplink control information can be transmitted regardless of whether the terminal device transmits the uplink channel by using the time-frequency resource #1 or the time-frequency resource #2. Further, when the terminal device maps the uplink control information to the time-frequency resource #2, it may be similar to the mapping of the uplink control information in the prior art, and details are not described herein again.
  • one TTI may include multiple (for example, two) time slots, and may specify that uplink control information is mapped from a preset time slot in the TTI, where the preset time is
  • the slot may be at least one slot other than the first slot in the TTI, for example, the preset slot may be the last slot in the TTI.
  • the "initiating the mapping of the uplink control information from the preset time slot in the TTI” may refer to the case where the size of the resource used for carrying the control information in the preset time slot can satisfy the transmission requirement of the uplink control information.
  • the uplink control information is transmitted only in the preset time slot.
  • the "initiating the mapping of the uplink control information from the preset time slot in the TTI” may mean that the size of the resource used to carry the control information in the preset time slot cannot meet the transmission requirement of the uplink control information.
  • a part of the uplink control information (for example, a portion of the preset time slot that can be carried as much as possible) can be carried in the preset time slot, and the remaining part is carried in other time slots.
  • the other time slot can be the first time slot in the TTI.
  • the "initiating the mapping of the uplink control information from the preset time slot in the TTI” may mean that the size of the resource used to carry the control information in the preset time slot cannot meet the transmission requirement of the uplink control information.
  • a part of the uplink control information (for example, a portion of the uplink control information that can be carried in the preset time slot) can be carried in the preset time slot, and the remaining part is discarded.
  • a part of the uplink control information may be a part of the bit stream output after the uplink control information is encoded (for example, starting from a first bit in the bit stream output after the uplink control information is encoded) Bits).
  • the “initiating mapping of uplink control information from a preset time slot in the TTI” may mean that the first time slot of the TTI is prohibited from being used for carrying control information.
  • the time-frequency resource #3 is part or all of the resources in the time-frequency resource #4, and the time-frequency resource #4 includes some or all of the resources in the time-frequency resource #2, wherein the time-frequency resource #2 is the time-frequency Some resources in resource #1.
  • the size of the resource used for transmitting the uplink control information may be constant, and therefore, the uplink control information may be available on the time-frequency resource #2.
  • the transmitted resource is smaller than the resource available for uplink control information transmission in time-frequency resource #1.
  • the terminal device may first map the uplink control information to the time-frequency resource #2, and then map the remaining uplink control information to the time-frequency resource other than the time-frequency resource #2 in the time-frequency resource #1.
  • Figure 8 or Figure 9 As shown in Figure 8 or Figure 9.
  • FIG. 7 shows that the network device #B is allocated to the time-frequency resource #1 of the terminal device #B for carrying uplink control information (for example, RI or CQI/PMI). a pattern of time-frequency resources (ie, time-frequency resource #4); and, FIG. 7 shows time-frequency resource #1 or time-frequency resource #2 actually competing by terminal device #B for carrying uplink control A pattern of time-frequency resources of information (ie, time-frequency resource #4 or time-frequency resource #3).
  • the size of the time-frequency resource #3 and the size of the time-frequency resource #4 may be the same.
  • the positions of the time-frequency resource #3 and the time-frequency resource #4 in TTI #1 are also the same.
  • the time-frequency resource #1 may correspond to multiple (for example, two) time slots, wherein, for example, the communication system or the communication protocol may specify, from the second of the two time slots.
  • the time slot starts to map the uplink control information, that is, whether the first time slot of the two time slots can be competed by the terminal device, the terminal device starts to map the uplink control information from the second time slot, specifically
  • the size of the resource for carrying the control information on the second time slot may be fixed, and the terminal device carries the uplink control information only on the resource for carrying the control information on the second time slot. Said to be part or all of the uplink control information).
  • the terminal device determines whether the candidate time-frequency resource available for PUSCH transmission is time-frequency resource #1 or time-frequency resource #2 according to the channel detection result, is carried on
  • the uplink control information on the PUSCH can be sent, so that the performance of the uplink control information can be guaranteed.
  • FIG. 8 shows that the network device #B is allocated to the time-frequency resource #1 of the terminal device #B for carrying uplink control information (for example, RI or CQI/PMI). a pattern of time-frequency resources (ie, time-frequency resource #4); and, FIG. 8 shows time-frequency resource #1 or time-frequency resource #2 actually competing by terminal device #B for carrying uplink control A pattern of time-frequency resources of information (ie, time-frequency resource #4 or time-frequency resource #3).
  • the size of the time-frequency resource #3 is smaller than the size of the time-frequency resource #4.
  • the time-frequency resource #3 is a partial resource in the time-frequency resource #4, wherein the time-frequency resource #4 includes some resources in the time-frequency resource #2, and the time-frequency resource #2 is the time-frequency. Some resources in resource #1.
  • the uplink control information is mapped from the time-frequency resource #2.
  • the resources occupied by the CQI/PMI information (for example, the resources occupied by the CQI/PMI information may be determined according to the size of the time-frequency resource #1) are smaller than the resources used to transmit the CQI/PMI information on the time-frequency resource #2.
  • the terminal device #B maps the CQI/PMI to the time-frequency resource #2.
  • the terminal device #B sets the first part of the RI. Map to time-frequency resource #2 and map the second part of the RI on the resources available for RI mapping in time-frequency resource #1.
  • the first part of the RI refers to the data consisting of the continuous bit stream outputted after the RI encoding
  • the second part of the RI refers to the data consisting of the continuous bit stream output after the RI encoding, the end part of the first part of the RI and the RI
  • the beginning of the second part is a continuous bit stream.
  • the time-frequency resource #1 may correspond to multiple (for example, two) time slots, wherein, for example, the communication system or the communication protocol may specify, from the second of the two time slots.
  • the time slot starts to map the uplink control information, that is, the terminal device maps the uplink control information from the second time slot, regardless of whether the first time slot of the two time slots can be competed by the terminal device, where The size of the resource for carrying the control information on the second time slot is fixed.
  • the terminal The device may carry the transmission uplink control information that cannot pass the second time slot in the resource of the first time slot.
  • FIG. 9 shows that the network device #B is allocated to the time-frequency resource #1 of the terminal device #B for carrying uplink control information (for example, RI or CQI/PMI). a pattern of time-frequency resources (ie, time-frequency resource #4); and, FIG. 9 shows time-frequency resource #1 or time-frequency resource #2 actually competing by terminal device #B for carrying uplink control A pattern of time-frequency resources of information (ie, time-frequency resource #4 or time-frequency resource #3).
  • the size of the time-frequency resource #3 is smaller than the size of the time-frequency resource #4.
  • time-frequency resource #3 is a partial resource in time-frequency resource #4, wherein time-frequency resource #4 includes all resources in time-frequency resource #2, and time-frequency resource #2 is time-frequency. Some resources in resource #1.
  • the uplink control information is mapped from the time-frequency resource #2.
  • the resource occupied by the RI information for example, the resource occupied by the RI information can be determined according to the size of the time-frequency resource #1
  • the terminal device #B Map the RI to time-frequency resource #2.
  • the terminal device# B maps the first part of the CQI/PMI to the time-frequency resource #2 and maps the second part of the CQI/PMI on the resources available for CQI/PMI mapping in the time-frequency resource #1.
  • the first part of the CQI/PMI refers to data consisting of successive bit streams outputted after CQI/PMI coding
  • the second part of CQI/PMI refers to data consisting of consecutive bit streams output after CQI/PMI coding
  • CQI The end portion of the first part of the /PMI and the beginning of the second part of the CQI/PMI are consecutive bit streams.
  • the time-frequency resource #1 may correspond to multiple (for example, two) time slots, wherein, for example, the communication system or the communication protocol may specify, from the second of the two time slots.
  • the time slot is optimally mapped to the uplink control information, that is, the terminal device maps the uplink control information from the second time slot, regardless of whether the first time slot of the two time slots can be competed by the terminal device, where The size of the resource for carrying the control information on the second time slot is fixed.
  • the terminal device may carry the transmission uplink control information that cannot pass the second time slot in the resource of the first time slot.
  • the terminal device #B determines, according to the result of the detection, that the uplink channel is sent on the time-frequency resource #1, and includes: the modulation determined by the terminal device #B according to the MCS #1 and the time-frequency resource #1 indicated by the scheduling information #B.
  • the orders M#1 and TBS#1 transmit the uplink channel on the time-frequency resource #1.
  • the terminal device #B determines, according to the result of the detection, that the uplink channel is sent on the time-frequency resource #2, and includes: the modulation determined by the terminal device #B according to the MCS #1 and the time-frequency resource #1 indicated by the scheduling information #B.
  • the orders M#1 and TBS#1 transmit the uplink channel on the time-frequency resource #2.
  • the step of determining the available time-frequency resources according to the channel result and the sequence of the step of the terminal device starting to map the uplink control information from the second time-frequency resource are not limited, and may be The steps of determining the available resources and then performing the resource mapping are performed; or the steps of the resource mapping may be performed first, and then the steps of determining the available resources may be performed; or the above two steps may also be performed simultaneously.
  • the terminal device #B may also transmit uplink data to the network device #B through the time-frequency resource #6 (hereinafter, for ease of understanding and explanation, it is referred to as: data #A), wherein the data # A may be all data in the uplink data transmitted by the terminal device #B through the time-frequency resource #1, or the data #A may be part of the data in the uplink data transmitted by the terminal device #B through the time-frequency resource #1,
  • data #A may be all data in the uplink data transmitted by the terminal device #B through the time-frequency resource #1
  • This application is not specifically limited.
  • the mapping relationship table may be further stored in the terminal device #B, where the mapping relationship table may be used to indicate a mapping relationship between multiple parameter groups and multiple transport block sizes (Transport Block Sizes, TBSs). Where each parameter group includes an RB number value and an MCS value.
  • TBSs Transport Block Sizes
  • the scheduling information can also be used to indicate the number of RBs #A and MCS#A, so that the terminal device #B can search for the number of RBs from the mapping relationship table based on the number of RBs #A and MCS#A# A and TBS corresponding to the parameter group to which MCS#A belongs (hereinafter, referred to as TBS#A for ease of understanding and explanation).
  • the TBS #A may be a TBS allocated to the terminal device #B by the network device #B for uplink transmission.
  • the terminal device #B can transmit the data #A and the uplink control information #B to the network device #B via the time-frequency resource #2 based on the TBS#A and MCS#A.
  • the process may be similar to the method and process for transmitting data based on the TBS and the MCS by the prior art communication device (network device or terminal device).
  • network device or terminal device network device or terminal device.
  • detailed description thereof is omitted.
  • the terminal device #B may transmit the data #A to the network device #B via the time-frequency resource #2 based on the TBS #A and the re-determined MCS (hereinafter, referred to as MCS #A' for ease of understanding and differentiation). And uplink control information #B.
  • the number of RBs included in the time-frequency resource #2 (hereinafter, referred to as RB number #A' for ease of understanding and explanation) is smaller than the number of RBs included in the time-frequency resource #1 (ie, RB number #A), that is, the number of resources that can be used in the uplink transmission process of the terminal device #B is reduced, and therefore, the terminal device #B can increase the modulation order for the uplink transmission (ie, using MCS#A'
  • modulation order #A' The modulation order, hereinafter, for ease of understanding and explanation, is recorded as modulation order #A'), so that the bit rate used by the terminal device #B for uplink transmission by time-frequency resources #2 and MCS#A' is lower than The bit rate used by the terminal device #B for uplink transmission by time-frequency resource #2 and MCS#A.
  • the terminal device #B can also transmit the indication information of the modulation order #A' to the network device #B, so that the network device #B can determine the modulation order #A' and based on the modulation order # A' and the TBS#A, parsing the signal received through the sub-band #A to obtain the data #A, wherein the process can be based on the TBS and the modulation stage with the prior art communication device (network device or terminal device)
  • the method and process of parsing a pair of signals to obtain data are similar, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #B may also determine the number of RBs included in the time-frequency resource #2.
  • RB number #A' it is recorded as: RB number #A'.
  • the terminal device #B can search for the TBS corresponding to the parameter group to which the RB number #A' and MCS#A belong based on the MCS #A and the number of RBs #A' (hereinafter, for ease of understanding and Description, recorded as TBS#A').
  • the terminal device #B can perform uplink transmission by using the time-frequency resource #2 and the network device #B based on the TBS#A'.
  • the terminal device #B may also transmit the indication information of the TBS #A' to the network device #B, so that the network device #B can determine the TBS #A', and based on the TBS#A', the passer The signal received by the frequency band #A is parsed to obtain the data #A, wherein the process can be similar to the method and process for the prior art communication device (network device or terminal device) to parse the signal based on the TBS to acquire the data, here In order to avoid redundancy, a detailed description thereof will be omitted.
  • the modulation order used may be the above-mentioned modulation order #A, or may be determined based on TBS#A'.
  • the modulation order of the modulation order #A is different, and the present application is not particularly limited.
  • the terminal device #B may transmit the uplink control information #B through the time-frequency resource #3 and the network device #B based on the following manner 1 or mode 2.
  • the terminal device #B may send the information #1 to the network device #B (that is, an example of the indication information of the third time-frequency resource).
  • the information #1 may be used to indicate the number of sub-bands corresponding to the time-frequency resource #3, and the information #1 may be used to indicate the position of the sub-band corresponding to the time-frequency resource #3.
  • the network device #B can determine, based on the information #1, the sub-band in which the uplink control information (ie, the uplink control information #B) transmitted by the terminal device #B is carried in the frequency domain resource #A.
  • the network device #B can receive the uplink control information transmitted by the terminal device #B only in the sub-band indicated by the information #1, and can reduce the processing load of the network device.
  • the method and process for the network device #B to receive the control information through the resource may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #B may send the information #1 to the network device #B through the time-frequency resource #2 (for example, time-frequency resource #3).
  • the terminal device #B can send both the information #1 and the uplink control information #B to the network device #B through the time-frequency resource #2.
  • sending with the channel may refer to, in the embodiment of the present application, the time-frequency resource #2 (for example, the time-frequency resource #3) may correspond to multiple time-frequency resource units (Resouce Element, RE), and the terminal device #B can transmit the uplink control information #B to a part of the plurality of REs, and the terminal device #B can transmit the information #1 to another part of the plurality of REs.
  • the time-frequency resource #2 for example, the time-frequency resource #3
  • RE time-frequency resource units
  • the resources used by the terminal device #B to be sent to the network device #B to the information #1 are only exemplified, and the present application is not particularly limited.
  • the communication system may also be configured with Reserving resources, the reserved resources are forbidden for data transmission, or the reserved resources may be used only for signaling transmission of the network device and the terminal device, so that the terminal device #B can pass through the reserved resources. Some or all of the resources send information #1 to network device #B.
  • the terminal device #B can transmit the uplink control information #B and the reference signal #A through the time-frequency resource #2.
  • each subband in time-frequency resource #2 carries a reference signal #A.
  • the network device #B can determine the frequency domain resource of the uplink control information #B) transmitted by the terminal device #B in the frequency domain resource #A by detecting the reference signal #A, that is, the time-frequency resource #2 Subbands included.
  • the network device #B can analyze the information transmitted by the terminal device #B only on the sub-band included in the time-frequency resource #2, and can reduce the processing load of the network device.
  • the method and process for the network device #B to parse data based on the reference signal may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #B may determine information for indicating the time-frequency resource #3 in the P scheduling information #B (hereinafter, For easy understanding, it is recorded as: information #A_1), and the terminal device #B can report the indication information of the information #A_1 (ie, an example of the third indication information) to the network device #B, so that the network device #B can
  • the indication information of the information #A_1 determines that the terminal device #B transmits the uplink control information using the time-frequency resource indicated by the information #A_1 (or the sub-band to which the time-frequency resource indicated by the information #A_1 belongs).
  • the terminal device #B may also send the information #2 to the network device #B (ie, an example of the indication information of the second time-frequency resource), as an example and not a limitation, implemented in the present application.
  • the information #2 can be used to indicate the number of sub-bands corresponding to the time-frequency resource #2, and the information #2 can be used to indicate the position of the sub-band corresponding to the time-frequency resource #2.
  • the network device #B can determine, based on the information #2, the sub-band in which the uplink information (for example, the uplink control information and/or the uplink data) transmitted by the terminal device #B is carried in the frequency domain resource #A.
  • the uplink information for example, the uplink control information and/or the uplink data
  • the network device #B can receive the uplink information transmitted by the terminal device #B only in the sub-band indicated by the information #2, and can reduce the processing load of the network device.
  • the method and process for the network device #B to receive information through the resource may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device #B may send the information #2 to the network device #B through the time-frequency resource #2.
  • the terminal device #B can send both the information #2 and the uplink information to the network device #B through the time-frequency resource #2.
  • sending with the channel may refer to that, in the embodiment of the present application, the time-frequency resource #2 may correspond to multiple time-frequency resource units RE, and the terminal device #B may send uplinks to a part of the plurality of REs. Information, and, the terminal device #B can transmit the information #2 to another part of the plurality of REs.
  • the resources used by the terminal device #B to be sent to the network device #B to the information #2 are merely exemplary.
  • the application is not specifically limited.
  • the communication system may also be configured with Reserving resources, the reserved resources are forbidden for data transmission, or the reserved resources may be used only for signaling transmission of the network device and the terminal device, so that the terminal device #B can pass through the reserved resources. Some or all of the resources send information #2 to network device #B.
  • the terminal device #B sends the uplink channel on the candidate time-frequency resource according to the detection result, where the terminal device #B determines that the carrier of the time-frequency resource #1 is in the time domain start point # ⁇ .
  • the terminal device #B transmits the uplink data packet by the time-frequency resource #5 in the time-frequency resource #1; the terminal device #B determines the candidate before the time domain start point # ⁇
  • the carrier where the time-frequency resource is located is not in the transmittable state, and the terminal device #B determines that the carrier where the candidate time-frequency resource is in the transmittable state before the time domain start point # ⁇
  • the terminal device #B passes The time-frequency resource #6 in the time-frequency resource #2 transmits the uplink data packet.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the time-frequency resource #1 or the time-frequency resource #2 to send the uplink channel according to the result of the detection.
  • the encoded uplink data packet generated by the terminal device matches the time-frequency resource #1.
  • the terminal device is on the time-frequency resource #1. Transmitting the uplink data packet; when the result of the detection is the time-frequency resource #2, the terminal device cannot regenerate the encoded another uplink data packet that matches the time-frequency resource #2 due to the capability limitation.
  • the terminal device discards the part of the uplink data packet that cannot match the time-frequency resource #2, that is, the uplink data packet is punctured and matches the time-frequency resource #2, and is on the time-frequency resource #2. Transmitting the portion of the upstream packet that is punctured.
  • multiple bits of the upstream packet at the front end are used to carry more important information (eg, system bits).
  • the system bit may refer to a bit other than the check bit in the uplink data packet.
  • the bit located at the front end of the uplink data packet is mapped to the time-frequency resource #1 located at the front end in the time domain, and the bit located at the back end of the uplink data packet is mapped to the time at the back end in the time domain.
  • the frequency resource #2 when the terminal device transmits the uplink channel by using the time-frequency resource #2 (or the terminal device does not compete for the time-frequency resource #1), the above-mentioned more important system bits may be discarded.
  • the terminal device may start to map the uplink data packet from the time-frequency resource #2, that is, the terminal device may set a part of the uplink data packet at the front end (for example, from the uplink data packet.
  • the multiple bits starting at the first bit are mapped to time-frequency resource #2 (specifically, time-frequency resource #6 in time-frequency resource #2), and the partial bits located in the back-end packet in the upstream packet are mapped at Time-frequency resource #1 (specifically, time-frequency resource #5 in time-frequency resource #1).
  • the size of the time-frequency resource #6 (for example, the number of occupied REs) is smaller than the size of the time-frequency resource #5.
  • the size of the time-frequency resource #6 (for example, the number of occupied REs) is the same as the size of the time-frequency resource #5.
  • the time-frequency resource #6 is part or all of the resources in the time-frequency resource #2, wherein the time-frequency resource #2 is a part of resources in the time-frequency resource #1.
  • the terminal device may start mapping the uplink data packet from the time-frequency resource #2, where the terminal device maps a part of the uplink data packet located at the front end to the time-frequency resource #2 in the time-frequency resource #1, and the terminal The device maps a part of the uplink data packet located at the back end to the time-frequency resource except the time-frequency resource #2 in the time-frequency resource #1.
  • the time-frequency resource #6 and the time-frequency resource #5 are in the same location in the TTI #1, wherein the time-frequency resource #2 is a part of the resources in the time-frequency resource #1.
  • the terminal device maps the uplink data packet from the time-frequency resource #2, and the terminal device can ensure the transmission of the more important system bits in the uplink data packet regardless of whether the terminal device uses the time-frequency resource #1 or the time-frequency resource #2 to transmit the uplink channel. Further, when the terminal device maps the uplink data packet to the time-frequency resource #2, it may be similar to the mapping of the uplink data packet in the prior art, and details are not described herein again.
  • one TTI may include multiple (for example, two) time slots, and may specify that data #X in the uplink data packet is mapped from a preset time slot in the TTI (for example, The portion corresponding to the system bit in the uplink data packet, where the preset time slot may be a time slot other than the first time slot in the TTI, for example, the preset time slot may be the last one of the TTIs. Gap.
  • the time-frequency resource #1 may correspond to multiple (for example, two) time slots, wherein, for example, the communication system or the communication protocol may specify, from the second of the two time slots.
  • the time slot starts to map a plurality of bits (for example, system bits) located at the front end in the uplink data packet, that is, regardless of whether the first time slot of the two time slots can be competed by the terminal device, the terminal device
  • the second time slot begins to map a plurality of bits (eg, system bits) at the front end in the upstream data packet.
  • the terminal device #B determines, according to the result of the detection, that the uplink channel is sent on the time-frequency resource #1, and includes: the modulation determined by the terminal device #B according to the MCS #1 and the time-frequency resource #1 indicated by the scheduling information #B.
  • the orders M#1 and TBS#1 transmit uplink packets on the time-frequency resource #1.
  • the terminal device #B determines, according to the result of the detection, that the uplink channel is sent on the time-frequency resource #2, and includes: the modulation determined by the terminal device #B according to the MCS #1 and the time-frequency resource #1 indicated by the scheduling information #B.
  • the orders M#1 and TBS#1 transmit uplink packets on the time-frequency resource #2.
  • a method for transmitting uplink control information by dividing a system frequency domain resource used based on a contention mechanism into one or more sub-bands, and after determining, by the terminal device, the first frequency domain resource allocated by the network device, If the first frequency domain resource includes at least two sub-bands, detecting at least two sub-bands included in the first frequency-domain resource before performing uplink transmission, enabling the terminal device to determine the terminal from the at least two sub-bands
  • the second frequency domain resource that can be used by the device, and the uplink data transmission is performed by using the second uplink frequency domain resource, that is, the terminal device does not need to determine the entire bandwidth of the first frequency domain resource in comparison with the prior art.
  • the first frequency domain resource can be used for wireless communication, thereby enabling the terminal device to use the first frequency domain resource (specifically, part of the sub-band in the first frequency domain resource).
  • the possibility of wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the size of the time-frequency resource used for carrying the uplink control information in the second time-frequency resource is based on the size of the second time-frequency resource (or the time-frequency resource used to carry the uplink data in the second time-frequency resource) Determining, therefore, when the second time-frequency resource is part of the first time-frequency resource, the size of the time-frequency resource used to carry the uplink control information in the second time-frequency resource is smaller than the first resource in the prior art. The size of the time-frequency resource used to carry the uplink control information.
  • the size of the third time-frequency resource used for carrying the uplink control information in the second time-frequency resource is determined based on the size of the first time-frequency resource, that is, The difference between the size of the third time-frequency resource and the time-frequency resource used for carrying the uplink control information in the first time-frequency resource is within a preset range, that is, the bearer in the embodiment of the present application is compared to the prior art.
  • the size of the time-frequency resource of the uplink control information is increased, and the reliability of the transmission of the uplink control information can be ensured.
  • the terminal device detects the carrier where the candidate time-frequency resource is located, and selects the first time-frequency resource or the second time-frequency resource to send the uplink channel according to the result of the detection.
  • the encoded uplink data packet generated by the terminal device matches the first time-frequency resource.
  • the terminal device is on the first time-frequency resource. Transmitting the uplink data packet; when the result of the detection is the second time-frequency resource, the terminal device cannot regenerate the encoded another uplink data packet that matches the second time-frequency resource due to the capability limitation.
  • the terminal device discards the portion of the uplink data packet that cannot be matched with the second time-frequency resource, that is, the uplink data packet is punctured and matched with the second time-frequency resource, and is on the second time-frequency resource. Transmitting the portion of the upstream packet that is punctured.
  • the uplink control information is transmitted only once, and the transport block corresponding to the uplink data can be transmitted multiple times.
  • the uplink channel includes uplink control information and uplink data information, the uplink data transmission performance can be guaranteed by retransmission. Therefore, in an uplink transmission, if the uplink control information is included, the transmission performance of the uplink control information needs to be preferentially guaranteed.
  • the terminal device determines whether the candidate time-frequency resource that can be used for uplink channel transmission is the first time-frequency resource or the second time-frequency resource, according to the channel detection result,
  • the uplink control information carried on the uplink channel can be sent, so that the performance of the uplink control information can be guaranteed.
  • the time-frequency resource #2 may correspond to at least one TTI (hereinafter, for ease of understanding and description, it is recorded as: TTI#1)
  • TTI #1 may include at least two time domain starting points.
  • the location of the time-frequency resource #3 in the time domain may be located between two time domain start points, or the location of the time-frequency resource #3 in the time domain may be located in the TTI.
  • #1 includes at least two of the time domain starting points after the last time domain starting point.
  • the TTI #1 corresponding to the time-frequency resource #1 allocated by the network device #B to the terminal device #B may include at least two time-frequency resources that can be used by the terminal device #B. (ie, the first time-frequency resource and the second time-frequency resource), and the time domain start of the first time-frequency resource is different from the time-domain start of the second time-frequency resource, and the time domain of the second time-frequency resource The starting point is later than the time domain starting point of the first time-frequency resource.
  • the terminal device #B can detect the carrier where the time-frequency resource #1 is located (for example, LBT detection), to determine that the terminal device #B is in the first time-frequency resource and the second time-frequency resource.
  • Time-frequency resources ie, candidate time-frequency resources that can be used in TTI#1.
  • the terminal device #B can transmit the uplink channel on the candidate time-frequency resource.
  • a plurality of time domain starting points are set in a TTI used based on a contention mechanism, and a carrier corresponding to the candidate time-frequency resource is required before the terminal device needs to perform uplink transmission.
  • the terminal device can determine, from the first time-frequency resource or the second time-frequency resource, candidate time-frequency resources that can be used by the terminal device, and perform uplink channel transmission by using the candidate time-frequency resource, that is, Compared with the technology, the terminal device does not need to perform wireless communication by using the candidate time-frequency resource when determining that the time domain starting point of the candidate time-frequency resource is located at the starting point of one subframe, thereby improving the capability of the terminal device to use the candidate.
  • the possibility of time-frequency resources for wireless communication improves communication efficiency, reduces service transmission delay, and improves user experience.
  • the terminal device #A and the terminal device #B may be the same terminal device, or may be different terminal devices, and the present application is not particularly limited, that is, one terminal device may perform the foregoing method 200 and The actions of both parties of the terminal device described in 300.
  • the foregoing network device #A and the network device #B may be the same network device, or may be different network devices, and the present application is not particularly limited, that is, one network device may perform the foregoing method 200 and The actions of both parties of the network device described in 300.
  • FIG. 10 is a schematic block diagram of an apparatus 400 for transmitting uplink control information according to an embodiment of the present application.
  • the apparatus 400 for transmitting uplink control information may correspond to (for example, may be configured or itself) a terminal device described in the foregoing method 100. (e.g., terminal device #A) or a terminal device (e.g., terminal device #B) in method 200 above, and each module or unit in device 400 transmitting uplink control information is used to perform terminal device in method 100 or 200, respectively.
  • the detailed description of each of the operations or processes performed is omitted here to avoid redundancy.
  • the apparatus 400 may include a processor and a transceiver, and the processor and the transceiver are communicatively coupled.
  • the device further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transceiver unit in the device 400 shown in FIG. 10 can correspond to the transceiver
  • the processing unit in the device 400 shown in FIG. 10 can correspond to the processor
  • FIG. 11 is a schematic block diagram of an apparatus 500 for transmitting uplink control information according to an embodiment of the present application.
  • the apparatus 500 for transmitting uplink control information may correspond to (for example, may be configured or itself) a network device described in the foregoing method 100. (e.g., network device #A) or the network device (e.g., network device #B) described in method 200 above, and each module or unit in device 500 transmitting uplink control information is used to perform method 100 or method 200, respectively. Detailed descriptions of the operations or processes performed by the network device are omitted here to avoid redundancy.
  • the apparatus 500 may include a processor and a transceiver, and the processor and the transceiver are communicatively coupled.
  • the device further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transceiver unit in the apparatus 500 shown in FIG. 11 can correspond to the transceiver
  • the processing unit in the apparatus 700 shown in FIG. 11 can correspond to the processor
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be applied to this application.
  • the implementation of the embodiments constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present application, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the various embodiments of the embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请提供了一种传输上行控制信息的方法和装置,该方法包括:终端设备生成编码后的上行数据包,该上行数据包属于上行信道,该上行信道承载于第一时间传输间隔TTI中的候选时频资源上,其中,该候选时频资源为第一时频资源或第二时频资源,该第二时频资源的第二时域起点晚于该第一时频资源的第一时域起点;该终端设备对该候选时频资源的所在载波进行检测,该终端设备根据该检测的结果,在该候选时频资源上发送该上行信道,该上行信道中包括上行控制信息和该编码后的上行数据包,从而,能够提高通信效率、减小业务传输时延,改善用户体验。

Description

传输上行控制信息的方法和装置
本申请要求于2017年05月04日提交中国专利局、申请号为201710309047.X、申请名称为“传输上行控制信息的方法和装置”以及于2017年08月11日提交中国专利局、申请号为201710686579.5、申请名称为“传输上行控制信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及传输上行控制信息的方法和装置。
背景技术
随着通信技术的发展和普及,终端设备的数量大幅增长,目前通信系统能够提供的许可频谱资源已经难以满足需求,在大量终端设备共用同一许可频谱资源的情况下,可能导致通信出现拥塞,严重影响了通信的可靠性和用户体验。
为了解决上述问题,出现了基于免许可频谱资源的通信技术,在该技术中,网络设备从免许可频谱资源中为终端设备分配用于上行传输的频域资源(以下,为了便于理解,记作:频域资源#1),该频域资源#1的带宽为20兆赫兹(Mega Hertz,MHz)。
并且,在本申请实施例中,该终端设备在一次对免许可频域资源的检测(或者说,竞争或监听)的过程中能够检测的带宽为20Mhz。从而,终端设备能够通过一次检测完成对频域资源#1进行全带宽检测,如果终端设备检测到该频域资源#1的全部带宽范围内的资源均可使用,则该终端设备通过频域资源#1与网络设备进行上行传输,例如,传输上行控制信息。
随着上述基于免许可频谱资源的通信技术的发展,通信系统能够使用的免许可频谱资源的带宽逐渐增大,网络设备分配给终端设备的免许可频谱资源(例如,上述频域资源#1)的带宽也可能增大,即,该频域资源#1的带宽大于20MH,例如,该频域资源#1的带宽可达80MHz。
此情况下,基于上述现有技术,终端设备需要对该大于20MHz的频域资源#1进行检测,并且该在检测到该频域资源#1的全部带宽范围内的资源均被使用的情况下,才能够使用频域资源#1进行无线通信,例如,传输上行控制信息。由于终端设备需要在该频域资源#1的全部带宽范围内的资源均可用的情况下,才能够使用该频域资源#1进行通信,因此,该终端设备竞争到该频域资源#1概率较低,进而,终端设备能够使用该频域资源#1进行无线通信的可能性也较小,从而,降低了通信效率、增大了业务传输时延,严重影响用户体验。
发明内容
本申请提供一种传输上行控制信息的方法和装置,能够提高通信效率、减小业务传输 时延,改善用户体验。
第一方面,提供了一种传输上行控制信息的方法,应用于包括网络设备和终端设备的通信系统,该通信系统使用的系统频域资源被划分为N个子频带,N≥2,该系统频域资源为基于竞争机制使用的频域资源,该方法包括:该终端设备从该网络设备接收调度信息,该调度信息用于指示该网络设备为该终端设备分配的用于承载至少一个上行信道的时频资源,其中,该时频资源中的第一时频资源用于承载该至少一个上行信道中的一个第一上行信道,该第一上行信道中至少包括上行控制信息,该第一时频资源在频域上占用该N个子频带中的M个子频带,M≥2;该终端设备对该M个子频带进行检测,以从该第一时频资源中确定该终端设备能够使用的第二时频资源,该第二时频资源在频域上占用该M个子频带中的K个子频带,M>K≥1;该终端设备通过该第二时频资源发送该第一上行信道。
根据本申请实施例的传输上行控制信息的方法,通过将基于竞争机制使用的系统频域资源划分为多个子频带,并且,当终端设备在确定网络设备分配的第一频域资源之后,在需要进行上行传输之前,对该第一频域资源包括的至少两个子频带进行检测,能够使终端设备从该至少两个子频带中确定该终端设备能够使用的第二频域资源,并通过该第二上行频域资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定该第一频域资源的全部带宽范围内的资源均被使用的情况下,才能够使用第一频域资源进行无线通信,从而,能够提高终端设备能够使用该第一频域资源(具体的说,是第一频域资源中的部分子频带)进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该终端设备通过该第二时频资源发送该第一上行信道,包括:该终端设备通过该第二时频资源发送经过信道编码后的数据或信息,该经过信道编码后的数据或信息,承载于该第一上行信道。
可选地,该终端设备通过该第二时频资源发送该上行信道,包括:该终端设备根据参考信息,从该第二时频资源中,确定第三时频资源;该终端设备通过该第三时频资源发送该上行控制信息;其中,该参考信息用于指示以下至少一种数值:该第一时频资源的大小值、该M的值、该第二时频资源的大小值、该K的值、第一参考数值,并且,该第一参考数值是由该通信系统规定的,或,该第一参考数值是由该网络设备预先指示的。
可选地,该第一参考数值包括第四时频资源的大小值,该第四时频资源是该M个子频带中的L个子频带中由该第一上行信道占用的时频资源,M>L≥1,其中,该L的值是由该通信系统规定的,或,该L的值是由该网络设备预先指示的。
可选地,该第一时频资源包括用于承载上行控制信息的第五时频资源,以及该终端设备通过该第二时频资源发送该上行信道,包括:该终端设备从该第二时频资源中,确定第三时频资源;该终端设备通过该第三时频资源发送该上行控制信息;其中,该第三时频资源的大小与该第五时频资源的大小之间的差异在预设范围内。
该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信 息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该终端设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该终端设备根据参考信息和第一系数,从该第二时频资源中,确定第三时频资源,其中,该第一系数用于确定承载上行控制信息的时频资源的大小。
可选地,该第一时频资源包括用于承载上行控制信息的第五时频资源,该第五时频资源的大小是根据该第一时频资源的大小和第一系数确定的,以及该终端设备从该第二时频资源中,确定第三时频资源,包括:该终端设备根据该第一时频资源的大小和该第一系数,从该第二时频资源中,确定第三时频资源。
可选地,该方法还包括:该终端设备获取第一映射关系信息,该第一映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一系数在内的多个系数之间的映射关系;该终端设备根据该第一映射关系信息,将该参考信息指示的数值对应的系数,作为该第一系数。
可选地,该终端设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该终端设备根据参考信息和预设的第一上限值,从该第二时频资源中,确定第三时频资源,其中,该第三时频资源的大小小于或等于该第一上限值。
可选地,该方法还包括:该终端设备获取映第二映射关系信息,该第二映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一上限值在内的多个上限值之间的映射关系;该终端设备根据该第二映射关系信息,将该参考信息指示的数值对应的上限值,作为该第一上限值。
可选地,该方法还包括:该终端设备获取多个参数组,每个参数组包括一个参数值和一个系数,其中,任意两个参数组包括的参考数值与系数的乘积之间的差异在该预设范围内;该终端设备根据该参考信息指示的参数值,确定该第一系数,其中,该参考信息指示的参数值和该第一系数属于同一参数组。
可选地,该终端设备从该网络设备接收调度信息,包括:该终端设备从该网络设备接收P个调度信息,该P个调度信息与P个上行信道一一对应,每个调度信息用于指示所对应的上行信道的时频资源,P个调度信息中的任意两个调度信息指示的时频资源所占用的子频带至少部分不同,P≥2,以及该终端设备对该M个子频带进行检测,包括:该终端设备对该P个调度信息中的每个调度信息指示的时频资源所属于的子频带进行检测;其中,该第二时频资源包括该P个调度信息中的Q个调度信息指示的频域资源,1≤Q<P。
可选地,该P个调度信息指示的频域资源具有嵌套结构。
可选地,该P个上行信道对应的频域资源具有嵌套结构。
可选地,该P个调度信息中的任意两个调度信息指示的频域资源不重叠。
可选地,该P个上行信道中的任意两个上行信道对应的频域资源不重叠。
可选地,该P个调度信息指示的频域资源中至少包括一对在频域上具有重叠部分的频域资源对。
可选地,该P个上行信道中至少包括一对在频域上具有重叠部分的上行信道对。
可选地,该方法还包括:该终端设备向该网络设备发送第三指示信息,该第三指示信息用于指示该第二时频资源包括该Q个调度信息指示的时频资源。
可选地,该第三指示信息具有用于指示该第二时频资源所占用的子频带所对应的调度信息。
可选地,该方法还包括:该终端设备向该网络设备发送第一指示信息,该第一指示信息用于指示该第二时频资源,或该第一指示信息用于指示该第二时频资源在频域上占用的子频带。
通过使终端设备向网络设备发送该第二时频资源的指示信息,能够使网络设备确定该第二时频资源,从而能够避免网络设备在第一时频资源中除第二时频资源以外的资源上检测该终端设备发送的上行信息(包括上行数据或上行控制信息),进而能够减小网络设备的处理负担。
可选地,该第二频域资源对应多个时频资源单元RE,以及该终端设备向该网络设备发送第一指示信息,包括:该终端设备通过该多个RE中的至少一个RE,向该网络设备发送该第一指示信息。
可选地,该第二时频资源包括用于承载参考信号的至少一个第一符号,以及该终端设备从该第二时频资源中,确定第三时频资源,包括:该终端设备根据该至少一个第一符号的位置,确定该第三时频资源对应的符号的位置。
可选地,该方法还包括:该终端设备向该网络设备发送第二指示信息,该第二指示信息用于指示该第三时频资源,或该第三指示信息用于指示该第三时频资源在频域上占用的子频带。
通过使终端设备向网络设备发送该第三时频资源的指示信息,能够使网络设备确定该第三时频资源,并在该第三时频资源上接收该上行控制信息,从而能够避免网络设备在第一时频资源(或第二时频资源)中除第三时频资源以外的资源上检测该终端设备发送的上行控制信息,进而能够减小网络设备的处理负担。
可选地,该第二频域资源对应多个RE,以及该终端设备向该网络设备发送第二指示信息,包括:该终端设备通过该多个RE中的至少一个RE,向该网络设备发送该第二指示信息。
可选地,该上行控制信息包括以下至少一种信息:混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI、预编码矩阵指示信息PMI。
第二方面,提供了一种传输上行控制信息的方法,应用于包括网络设备和终端设备的通信系统,该通信系统使用的系统频域资源被划分为N个子频带,N≥2,该系统频域资源为基于竞争机制使用的频域资源,该方法包括:该网络设备向该终端设备发送调度信息,该调度信息用于指示该网络设备为该终端设备分配的用于承载至少一个上行信道的时频资源,其中,该时频资源中的第一时频资源用于承载该至少一个上行信道中的一个第一上行信道,该第一上行信道中至少包括上行控制信息,该第一时频资源在频域上占用该N个子频带中的M个子频带,M≥2;该网络设备通过第二时频资源从该终端设备接收该第一上行信道,其中,该第二时频资源在频域上占用该M个子频带中的K个子频带,M>K≥1。
根据本申请实施例的传输上行控制信息的方法,通过将基于竞争机制使用的系统频域资源划分为多个子频带,并且,当终端设备在确定网络设备分配的第一频域资源之后,在 需要进行上行传输之前,对该第一频域资源包括的至少两个子频带进行检测,能够使终端设备从该至少两个子频带中确定该终端设备能够使用的第二频域资源,并通过该第二上行频域资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定该第一频域资源的全部带宽范围内的资源均被使用的情况下,才能够使用第一频域资源进行无线通信,从而,能够提高终端设备能够使用该第一频域资源(具体的说,是第一频域资源中的部分子频带)进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该网络设备通过第二时频资源从该终端设备接收该第一上行信道,包括:该网络设备通过第二时频资源从该终端设备接收经过信道编码后的数据或信息,该经过信道编码后的数据或信息,承载于该第一上行信道。
可选地,该网络设备通过第二时频资源从该终端设备接收该第一上行信道,包括:该网络设备根据参考信息,从该第二时频资源中,确定第三时频资源;该网络设备通过该第三时频资源从该终端设备接收该上行控制信息;其中,该参考信息用于指示以下至少一种数值:该第一时频资源的大小值、该M的值、该第二时频资源的大小值、该K的值、第一参考数值,并且,该第一参考数值是由该通信系统规定的,或,该第一参考数值是由该网络设备设置的。
可选地,该第一参考数值包括第四时频资源的大小值,该第一参考数值包括第四时频资源的大小值,该第四时频资源是该M个子频带中的L个子频带中由该第一上行信道占用的时频资源,M>L≥1,其中,该L的值是由该通信系统规定的,或,该L的值是由该网络设备设置的。
可选地,该第一时频资源包括用于承载上行控制信息的第五时频资源,以及该网络设备通过第二时频资源从该终端设备接收该第一上行信道,包括:该网络设备从该第二时频资源中,确定第三时频资源;该网络设备通过该第三时频资源从该终端设备接收该上行控制信息;其中,该第三时频资源的大小与该第五时频资源的大小之间的差异在预设范围内。
该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该网络设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该网络设备根据参考信息和第一系数,从该第二时频资源中,确定第三时频资源,其中,该第一系数用于确定承载上行控制信息的时频资源的大小。
可选地,该第一时频资源包括用于承载上行控制信息的第五时频资源,该第五时频资源的大小是根据该第一时频资源的大小和第一系数确定的,以及该网络设备从该第二时频资源中,确定第三时频资源,包括:该网络设备根据该第一时频资源的大小和该第一系数, 从该第二时频资源中,确定第三时频资源。
可选地,该方法还包括:该网络设备获取第一映射关系信息,该第一映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一系数在内的多个系数之间的映射关系;该网络设备根据该第一映射关系信息,将该参考信息指示的数值对应的系数,作为该第一系数。
可选地,该网络设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该网络设备根据参考信息和预设的第一上限值,从该第二时频资源中,确定第三时频资源,其中,该第三时频资源的大小小于或等于该第一上限值。
可选地,该方法还包括:该网络设备获取映第二映射关系信息,该第二映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一上限值在内的多个上限值之间的映射关系;该网络设备根据该第二映射关系信息,将该参考信息指示的数值对应的上限值,作为该第一上限值。
可选地,该方法还包括:该网络设备获取多个参数组,每个参数组包括一个参数值和一个系数,其中,任意两个参数组包括的参考数值与系数的乘积之间的差异在该预设范围内;该网络设备根据该参考信息指示的参数值,确定该第一系数,其中,该参考信息指示的参数值和该第一系数属于同一参数组。
可选地,该网络设备向该终端设备发送调度信息,包括:该网络设备向该终端设备发送P个调度信息,该P个调度信息与P个上行信道一一对应,每个调度信息用于指示所对应的上行信道的时频资源,P个调度信息中的任意两个调度信息指示的时频资源所占用的子频带至少部分不同,P≥2,以及该终端设备对该M个子频带进行检测,包括:该终端设备对该P个调度信息中的每个调度信息指示的时频资源所属于的子频带进行检测;其中,该第二时频资源包括该P个调度信息中的Q个调度信息指示的频域资源,1≤Q<P。
可选地,该P个调度信息指示的频域资源具有嵌套结构。
可选地,该P个上行信道对应的频域资源具有嵌套结构。
可选地,该P个调度信息中的任意两个调度信息指示的频域资源不重叠。
可选地,该P个上行信道中的任意两个上行信道对应的频域资源不重叠。
可选地,该P个调度信息指示的频域资源中至少包括一对在频域上具有重叠部分的频域资源对。
可选地,该P个上行信道中至少包括一对在频域上具有重叠部分的上行信道对。
可选地,该方法还包括:该网络设备从该终端设备接收第三指示信息,该第三指示信息用于指示该第二时频资源包括该Q个调度信息指示的时频资源。
可选地,该第三指示信息具有用于指示该第二时频资源所占用的子频带所对应的调度信息。
可选地,该方法还包括:该网络设备从该终端设备接收第一指示信息,该第一指示信息用于指示该第二时频资源,或该第一指示信息用于指示该第二时频资源在频域上占用的子频带。
通过使终端设备向网络设备发送该第二时频资源的指示信息,能够使网络设备确定该第二时频资源,从而能够避免网络设备在第一时频资源中除第二时频资源以外的资源上检测该终端设备发送的上行信息(包括上行数据或上行控制信息),进而能够减小网络设备 的处理负担。
可选地,该第二频域资源对应多个时频资源单元RE,以及该网络设备从该终端设备接收第一指示信息,包括:该网络设备通过该多个RE中的至少一个RE,接收该终端设备发送该第一指示信息。
可选地,该第二时频资源包括用于承载参考信号的至少一个第一符号,以及该网络设备从该第二时频资源中,确定第三时频资源,包括:该网络设备根据该至少一个第一符号的位置,确定该第三时频资源对应的符号的位置。
可选地,该方法还包括:该网络设备从该终端设备接收第二指示信息,该第二指示信息用于指示该第三时频资源,或该第三指示信息用于指示该第三时频资源在频域上占用的子频带。
通过使终端设备向网络设备发送该第三时频资源的指示信息,能够使网络设备确定该第三时频资源,并在该第三时频资源上接收该上行控制信息,从而能够避免网络设备在第一时频资源(或第二时频资源)中除第三时频资源以外的资源上检测该终端设备发送的上行控制信息,进而能够减小网络设备的处理负担。
可选地,该第二频域资源对应多个RE,以及该网络设备从该终端设备接收第二指示信息,包括:该网络设备通过该多个RE中的至少一个RE,从该终端设备接收该第二指示信息。
可选地,该上行控制信息包括以下至少一种信息:混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI、预编码矩阵指示信息PMI。
第三方面,提供一种传输上行控制信息的方法,该方法包括:终端设备生成编码后的上行数据包,该上行数据包属于上行信道,该上行信道承载于第一时间传输间隔TTI中的候选时频资源上,其中,该候选时频资源为第一时频资源或第二时频资源,该第二时频资源的第二时域起点晚于该第一时频资源的第一时域起点;该终端设备对该候选时频资源的所在载波进行检测,该终端设备根据该检测的结果,在该候选时频资源上发送该上行信道,该上行信道中包括上行控制信息和该编码后的上行数据包。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对候选时频资源所对应的载波进行检测,能够使终端设备从第一时频资源或第二时频资源中确定该终端设备能够使用的候选时频资源,并通过该候选时频资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该终端设备根据该检测的结果,在该候选时频资源上发送该上行信道,包括:在该终端设备在该第一时域起点之前确定该候选时频资源的所在载波处于可发送状态的情况下,该终端设备在该第一时频资源上发送该上行信道。
可选地,该终端设备在该第一时频资源上发送该上行信道,包括:该终端设备根据第一时频资源的大小值和第一系数,从该第一时频资源中,确定第三时频资源;该终端设备通过该第三时频资源发送该上行控制信息。
可选地,该根据该检测的结果,在该候选时频资源上发送该上行信道,包括:在该终 端设备在该第一时域起点之前确定该候选时频资源的所在载波未处于可发送状态,且该终端设备在该第二时域起点之前确定该候选时频资源的所在载波处于可发送状态的情况下,该终端设备在该第二时频资源上发送该上行信道。
可选地,该终端设备在该第二时频资源上发送该上行信道,包括:该终端设备根据第二时频资源的大小值和第二系数,从该第二时频资源中,确定第四时频资源;或该终端设备根据第一时频资源的大小值和第一系数,从该第二时频资源中,确定第四时频资源;该终端设备通过该第四时频资源发送该上行控制信息。
可选地,该第二系数大于该第一系数。
可选地,该第二时频资源的大小值和第二系数的乘积的大小与该第一时频资源的大小值和第一系数的乘积的大小的差异在预设范围内。
该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该第二时频资源在时域上占用的资源为该第一时频资源在时域上占用的资源的子集,且该第一时频资源在频域上占用的资源的大小和该第二时频资源在频域上占用的资源的大小相等。
可选地,该上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
可选地,该第一时频资源包括该第二时频资源。
可选地,该第二时频资源是该第一时频资源中位于第二时域起点之后的时频资源。
可选地,该上行控制信息是从所述第二时频资源开始映射的,其中,所述第二时频资源是所述第一时频资源中的部分资源。
可选地,“该上行控制信息是从所述第二时频资源开始映射的”是指,从所述第二时频资源开始依次映射该上行控制信息在编码后生成的连续比特流的部分或全部。
可选地,“该上行控制信息是从所述第二时频资源开始映射的”是指,从所述第二时频资源开始依次映射该上行控制信息在编码调制后生成的调制符号的部分或全部。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
该终端设备根据信道检测的结果确定该候选时频资源为第一时频资源,该终端设备从该第一时频资源中的该第二时频资源开始映射该上行控制信息,该终端设备从第二时频资源开始发送该上行控制信息。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
该终端设备根据信道检测的结果确定该候选时频资源为第二时频资源,该终端设备从第二时频资源开始映射该上行控制信息上,该终端设备在该第二时频资源上发送该上行控 制信息。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果该第二时频资源上用于传输上行控制信息的资源能够满足该上行控制信息传输的性能要求,则该终端设备仅在该第二时频资源上映射该上行控制信息。
可选地,该上行控制信息是优先在所述第二时频资源上发送的是指:
如果该第二时频资源上用于传输上行控制信息的资源不能够满足该上行控制信息传输的性能要求,则该终端设备在该第二时频资源上映射(或者说,发送)该上行控制信息的第一部分,并在该第一时频资源中除该第二时频资源以外的时频资源上映射(或者说,发送)上行控制信息的第二部分。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果该第二时频资源上用于传输上行控制信息的资源不能够满足该上行控制信息传输的性能要求,则该终端设备在该第二时频资源上映射(或者说,发送)该上行控制信息的第一部分,并丢弃上行控制信息的第二部分。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
该终端设备禁止在所述第一时频资源中除该第二时频资源以外的时频资源上发送该上行控制信息。
可选地,上述“上行控制信息的第一部分”可以指上行控制信息编码后在先输出的连续比特流组成的数据,上述“上行控制信息的第二部分”可以指上行控制信息编码后在后输出的连续比特流组成的数据。
其中,“上行控制信息的第一部分”的大小可以与第二时频资源上最大限度可用于传输上行控制信息的资源的大小相同。
可选地,上述“上行控制信息的第二部分”的大小可以是指从网络设备分配的用于承载该上行控制信息的第四时频资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“上行控制信息的第一部分”的结束部分与上述“上行控制信息的第二部分”的起始部分为连续的比特流。
可选地,该第一TTI包括两个时隙,该第一时频资源是该第一TTI中的第一个时隙上的时频资源,该第二时频资源是该第一TTI中的第二个时隙上的时频资源。
根据本申请实施例的传输上行控制信息的方法,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择第一时频资源或第二时频资源发送上行信道,该上行信道中包括上行控制信息和上行数据包。在这个过程中,一种可行的方式是,该终端设备生成的编码后的上行数据包和上行控制信息与该第一时频资源匹配,当该检测的结果是该第一时频资源可用时,该终端设备从该第一时频资源开始发送该编码后的上行数据包和上行控制信息;当该检测的结果是该第二时频资源可用时,该终端设备从该第二时频资源开始发送该编码后的上行数据包和上行控制信息。需要说明的是,终端设备会提前对需要映射在第一时频资源上的数据包和上行控制信息进行组包,因此,当检测结果是第一时频资源不可用但第二时频资源可用时,由于处理能力所限,该终端设备不能重新生成与该第二时频资源匹配的另一个编码后的上行数据包和上行控制信息,因此,该终端设备将丢弃提前生成的与第一时频资源匹配的编码后的上行数据包和上行控制信息中不能与该第二 时频资源匹配的部分,即对该编码后的上行数据包和上行控制信息打孔后与该第二时频资源匹配,并在该第二时频资源上传输该编码后的上行数据包和上行控制信息打孔后的部分。并且,通常上行控制信息只进行一次传输,因此,当检测结果是第二时频资源可用时,基于上述实施方式,无法确保上行控制信息的传输性能。
与此相对,通过使终端设备优先在第二时频资源上发送上行控制信息,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是第一时频资源还是第二时频资源,均可以保证承载于第二时频资源上的上行控制信息得到发送,从而能够保证上行控制信息的性能。
即,在本申请实施例中,由于第一时频资源包括第二时频资源,或者说,第二时频资源所对应的时段属于第一时频资源对应的TTI,因此当第一时频资源可用时,第二时频资源通常也可用,但是,当第二时频资源可用时,第一时频资源中在时域上位于该第二时频资源之前的资源不一定可用,因此,终端设备竞争到第二时频资源的可能性大于终端设备竞争到完整的第一时频资源的可能性,通过上述实施方式,即,将上行控制信息优先映射在第二时频资源上,能够提高上行控制信息的传输的可靠性。
可选地,编码后的上行数据包是从所述第二时频资源开始发送的,其中,所述第二时频资源是所述第一时频资源中的部分资源。
这里,“编码后的上行数据包是从所述第二时频资源开始发送的”是指,从所述第二时频资源开始依次映射该上行数据包在编码后生成的连续比特流的部分或全部。
可选地,编码后的上行数据包是从所述第二时频资源开始发送的是指:
该终端设备根据信道检测的结果确定该候选时频资源为第一时频资源,该终端设备将该编码后的上行数据包中的第一部分映射到该第一时频资源中的该第二时频资源上,该终端设备在将该编码后的上行数据包中的第二部分映射到该第一时频资源中除该第二时频资源外的资源上,该终端设备在该第一时频资源上发送该编码后的上行数据包。
可选地,编码后的上行数据包是从所述第二时频资源开始发送的是指:
该终端设备根据信道检测的结果确定该候选时频资源为第二时频资源,该终端设备将该编码后的上行数据包中的第一部分映射到该第二时频资源上,该终端设备在该第二时频资源上发送该编码后的上行数据包中的第一部分。
可选地,上述“编码后的上行数据包中的第一部分”可以指编码后的上行数据包中在先输出的连续比特流组成的数据,上述“编码后的上行数据包中的第二部分”可以指编码后的上行数据包中在后输出的连续比特流组成的数据。
可选地,上述“编码后的上行数据包中的第一部分”的结束部分与上述“编码后的上行数据包中的第二部分”的起始部分为连续的比特流。
可选地,上述“编码后的上行数据包中的第一部分”的大小可以与第二时频资源上最大限度可用于传输编码后的上行数据包的资源的大小相同。
可选地,上述“编码后的上行数据包中的第二部分”的大小可以是指从网络设备分配的用于承载该编码后的上行数据包的资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“编码后的上行数据包中的第一部分”为上行数据包编码后的系统比特。
通常,编码后的上行数据包的位于前端的部分比特中会携带有较为重要的信息(例如, 系统比特等),由于终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,因此通过在第二时频资源上发送位于编码后的上行数据包前端的数据,能够提高该较为重要的信息的传输可靠性,从而,能够提高通信性能。
其中,该系统比特可以是指上行数据经过编码后形成的除校验比特以外的比特。或者说,该系统比特可以是对应原始数据的比特。
第四方面,提供一种传输上行控制信息的方法,该方法包括:网络设备向终端设备发送调度信息,该调度信息用于指示该终端设备在第一时间传输间隔TTI内传输上行信道,该上行信道至少包括上行控制信息,该上行信道承载于该第一TTI中的候选时频资源,其中,该候选时频资源为第一时频资源或第二时频资源,该第二时频资源的第二时域起点晚于该第一时频资源的第一时域起点;该网络设备通过该候选时频资源接收终端设备发送的上行信道。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对候选时频资源所对应的载波进行检测,能够使终端设备从第一时频资源或第二时频资源中确定该终端设备能够使用的候选时频资源,并通过该候选时频资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该网络设备通过该候选时频资源接收终端设备发送的上行信道,包括:在该终端设备在该第一时域起点之前确定该候选时频资源的所在载波处于可发送状态的情况下,该网络设备在该第一时频资源上接收该上行信道。
可选地,该网络设备通过该候选时频资源接收终端设备发送的上行信道,包括:该终端设备根据第一时频资源的大小值和第一系数,从该第一时频资源中,确定第三时频资源;该网络设备通过该第三时频资源接收该上行控制信息。
可选地,该网络设备通过该候选时频资源接收终端设备发送的上行信道,包括:在该终端设备在该第一时域起点之前确定该候选时频资源的所在载波未处于可发送状态,且该终端设备在该第二时域起点之前确定该候选时频资源的所在载波处于可发送状态的情况下,该网络设备在该第二时频资源上接收该上行信道。
可选地,该网络设备通过该候选时频资源接收终端设备发送的上行信道,包括:该终端设备根据第二时频资源的大小值和第二系数,从该第二时频资源中,确定第四时频资源;或该终端设备根据第一时频资源的大小值和第一系数,从该第二时频资源中,确定第四时频资源;该网络设备通过该第四时频资源接收该上行控制信息。
可选地,该第二系数大于该第一系数。
可选地,该第二时频资源的大小值和第二系数的乘积的大小与该第一时频资源的大小值和第一系数的乘积的大小的差异在预设范围内。
该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相 对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该第二时频资源在时域上占用的资源为该第一时频资源在时域上占用的资源的子集,且该第一时频资源在频域上占用的资源的大小和该第二时频资源在频域上占用的资源的大小相等。
可选地,该上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
可选地,该第一时频资源包括该第二时频资源。
可选地,该第二时频资源是该第一时频资源中位于第二时域起点之后的时频资源。
可选地,该上行控制信息是从所述第二时频资源开始映射的,其中,所述第二时频资源是所述第一时频资源中的部分资源。
这里,“该上行控制信息是从所述第二时频资源开始映射的”是指,从所述第二时频资源开始依次映射该上行控制信息在编码后生成的连续比特流的部分或全部。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果候选时频资源为第一时频资源,则该上行控制信息从该第一时频资源中的该第二时频资源开始映射该上行控制信息,并在该第二时频资源上传输。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果该候选时频资源为第二时频资源,则该上行控制信息从该第二时频资源开始映射上,并在该第二时频资源上传输。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果该第二时频资源上用于传输上行控制信息的资源能够满足该上行控制信息传输的性能要求,则仅在该第二时频资源上映射(或者说,传输)该上行控制信息。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果该第二时频资源上用于传输上行控制信息的资源不能够满足该上行控制信息传输的性能要求,则在该第二时频资源上映射该上行控制信息的第一部分,并在该第一时频资源中除该第二时频资源以外的时频资源上映射上行控制信息的第二部分。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指:
如果该第二时频资源上用于传输上行控制信息的资源不能够满足该上行控制信息传输的性能要求,则在该第二时频资源上映射该上行控制信息的第一部分,并丢弃上行控制信息的第二部分。
可选地,该上行控制信息是从所述第二时频资源开始映射的是指::
禁止在所述第一时频资源中除该第二时频资源以外的时频资源上映射该上行控制信息。
可选地,上述“上行控制信息的第一部分”可以指上行控制信息编码后在先输出的连续比特流组成的数据,上述“上行控制信息的第二部分”可以指上行控制信息编码后在后输出的连续比特流组成的数据。
其中,“上行控制信息的第一部分”的大小可以与第二时频资源上最大限度可用于传输上行控制信息的资源的大小相同。
可选地,上述“上行控制信息的第二部分”的大小可以是指从网络设备分配的用于承载该上行控制信息的第四时频资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“上行控制信息的第一部分”的结束部分与上述“上行控制信息的第二部分”的起始部分为连续的比特流。
可选地,该第一TTI包括两个时隙,该第一时频资源是该第一TTI中的第一个时隙上的时频资源,该第二时频资源是该第一TTI中的第二个时隙上的时频资源。
根据本申请实施例的传输上行控制信息的方法,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择第一时频资源或第二时频资源发送上行信道,该上行信道中包括上行控制信息和上行数据包。在这个过程中,一种可行的方式是,该终端设备生成的编码后的上行数据包和上行控制信息与该第一时频资源匹配,当该检测的结果是该第一时频资源可用时,该终端设备从该第一时频资源开始发送该编码后的上行数据包和上行控制信息;当该检测的结果是该第二时频资源可用时,该终端设备从该第二时频资源开始发送该编码后的上行数据包和上行控制信息。需要说明的是,终端设备会提前对需要映射在第一时频资源上的数据包和上行控制信息进行组包,因此,当检测结果是第一时频资源不可用但第二时频资源可用时,由于处理能力所限,该终端设备不能重新生成与该第二时频资源匹配的另一个编码后的上行数据包和上行控制信息,因此,该终端设备将丢弃提前生成的与第一时频资源匹配的编码后的上行数据包和上行控制信息中不能与该第二时频资源匹配的部分,即对该编码后的上行数据包和上行控制信息打孔后与该第二时频资源匹配,并在该第二时频资源上传输该编码后的上行数据包和上行控制信息打孔后的部分。并且,通常上行控制信息只进行一次传输,因此,当检测结果是第二时频资源可用时,基于上述实施方式,无法确保上行控制信息的传输性能。
与此相对,通过使终端设备优先在第二时频资源上发送上行控制信息,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是第一时频资源还是第二时频资源,均可以保证承载于第二时频资源上的上行控制信息得到发送,从而能够保证上行控制信息的性能。
即,在本申请实施例中,由于第一时频资源包括第二时频资源,或者说,第二时频资源所对应的时段属于第一时频资源对应的TTI,因此当第一时频资源可用时,第二时频资源通常也可用,但是,当第二时频资源可用时,第一时频资源中在时域上位于该第二时频资源之前的资源不一定可用,因此,终端设备竞争到第二时频资源的可能性大于终端设备竞争到完整的第一时频资源的可能性,通过上述实施方式,即,将上行控制信息优先映射在第二时频资源上,能够提高上行控制信息的传输的可靠性。
可选地,编码后的上行数据包是从所述第二时频资源开始映射的,其中,所述第二时频资源是所述第一时频资源中的部分资源。
可选地,编码后的上行数据包是从所述第二时频资源开始映射的是指:
如果该候选时频资源为第一时频资源,则该编码后的上行数据包中的第一部分被映射到该第一时频资源中的该第二时频资源上,该编码后的上行数据包中的第二部分被映射到 该第一时频资源中除该第二时频资源外的资源上。
可选地,编码后的上行数据包是从所述第二时频资源开始映射的是指:
如果该候选时频资源为第二时频资源,则该编码后的上行数据包中的第一部分被映射到该第二时频资源上。
可选地,上述“编码后的上行数据包中的第一部分”可以指编码后的上行数据包中在先输出的连续比特流组成的数据,上述“编码后的上行数据包中的第二部分”可以指编码后的上行数据包中在后输出的连续比特流组成的数据。
可选地,上述“编码后的上行数据包中的第一部分”的结束部分与上述“编码后的上行数据包中的第二部分”的起始部分为连续的比特流。
可选地,上述“编码后的上行数据包中的第一部分”的大小可以与第二时频资源上最大限度可用于传输编码后的上行数据包的资源的大小相同。
可选地,上述“编码后的上行数据包中的第二部分”的大小可以是指从网络设备分配的用于承载该编码后的上行数据包的资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“编码后的上行数据包中的第一部分”为上行数据包编码后的系统比特。
通常,编码后的上行数据包的位于前端的部分比特中会携带有较为重要的信息(例如,系统比特等),由于终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,因此通过在第二时频资源上发送位于编码后的上行数据包前端的数据,能够提高该较为重要的信息的传输可靠性,从而,能够提高通信性能。
其中,该系统比特可以是指上行数据经过编码后形成的除校验比特以外的比特。或者说,该系统比特可以是对应原始数据的比特。
第五方面,提供一种传输上行控制信息的方法,应用于包括网络设备和终端设备的通信系统,该通信系统使用的频域资源为基于竞争机制使用的频域资源,该通信系统使用的传输时间间隔TTI包括至少两个时域起点,该方法包括:该终端设备从该网络设备接收调度信息,该调度信息用于指示该网络设备为该终端设备分配的用于承载至少一个上行信道的时频资源,其中,该至少一个上行信道中的一个第一上行信道承载于第一频域资源,且该第一上行信道承载于第一TTI,该第一上行信道中至少包括上行控制信息;该终端设备对该第一频域资源进行检测,并根据该检测的结果,从第一TTI包括的至少两个时域起点中,确定第一时域起点,其中,该第一频域资源中的第二频域资源自该第一时域起点之后处于能够被该终端设备使用的状态,其中,该第二频域资源是该第一频域资源中的部分或全部资源;该终端设备自该第一时域起点,通过该第二频域资源发送该第一上行信道。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对网络设备指示的第一频域资源进行检测,能够使终端设备从第一频域资源中确定该终端设备能够使用的第二频域资源,并且,能够使终端设备从第一TTI包括的至少两个时域起点中确定终端设备能够使用的该第二频域资源的第一时域起点,从而,终端设备能够自该第一时域起点,通过该第二频域资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通 信效率、减小了业务传输时延,改善了用户体验。
可选地,该调度信息具体用于指示用于承载第一上行信道的第一时频资源,该终端设备对该第一频域资源进行检测,包括:该终端设备对该第一频域资源进行检测,以从该第一时频资源中确定该终端设备能够使用的第二时频资源,其中,该第二时频资源在时域上的起点为该第一时域起点,该第二时频资源在频域上占用该第二频域资源;以及该终端设备自该第一时域起点,通过该第二频域资源发送该第一上行信道,包括:该终端设备根据参考信息,从该第二时频资源中确定第三时频资源;该终端设备通过该第三时频资源发送该上行控制信息;其中,该参考信息用于指示以下至少一种数值:该第一时频资源的大小值、该第一频域资源的大小值、该第二时频资源的大小值、该第二频域资源的大小值、第一参考数值,并且,该第一参考数值是由该通信系统规定的,或,该第一参考数值是由该网络设备预先指示的。
该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该终端设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该终端设备根据参考信息和第一系数,从该第二时频资源中,确定第三时频资源,其中,该第一系数用于确定承载上行控制信息的时频资源的大小。
可选地,该方法还包括:该终端设备获取第一映射关系信息,该第一映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一系数在内的多个系数之间的映射关系;该终端设备根据该第一映射关系信息,将该参考信息指示的数值对应的系数,作为该第一系数。
可选地,该终端设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该终端设备根据参考信息和预设的第一上限值,从该第二时频资源中,确定第三时频资源,其中,该第三时频资源的大小小于或等于该第一上限值。
可选地,该方法还包括:该终端设备获取映第二映射关系信息,该第二映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一上限值在内的多个上限值之间的映射关系;该终端设备根据该第二映射关系信息,将该参考信息指示的数值对应的上限值,作为该第一上限值。
可选地,该通信系统使用的频域资源被划分为N个子频带,N≥2,该第一频域资源占用该N个子频带中的M个子频带,M≥2,该第二频域资源在频域上占用该M个子频带中的K个子频带,M>K≥1。
可选地,该上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
可选地,该第一TTI包括在前端时域起点和后端时域起点,其中,前端时域起点在时域上位于后端时域起点之前,以及
当该第二频域资源该前端时域起点和后端时域起点之后均处于能够被该终端设备使用的状态时,
该终端设备自该第一时域起点,通过该第二频域资源发送该第一上行信道,包括:
该终端设备从在后端时域起点之后的第二频域资源开始发送该上行控制信息。
可选地,该终端设备从在后端时域起点之后的第二频域资源开始发送该上行控制信息,包括:
如果该后端时域起点之后的第二频域资源能够满足该上行控制信息的传输要求,则该终端设备仅在该后端时域起点之后的第二频域资源上发送该上行控制信息;或
如果后端时域起点之后的第二频域资源不能够满足该上行控制信息的传输要求,则该终端设备在后端时域起点之后的第二频域资源上发送(或者说,映射)该上行控制信息的第一部分,并在前端时域起点之后的第二频域资源上发送(或者说,映射)上行控制信息的第二部分;或
如果后端时域起点之后的第二频域资源不能够满足该上行控制信息的传输要求,则该终端设备在该后端时频资源第二时域起点之后的第二频域资源上发送(或者说,映射)该上行控制信息的第一部分,并丢弃上行控制信息第二部分;或
该终端设备禁止在前端时域起点之后的第二频域资源上发送该上行控制信息。
可选地,上述“上行控制信息的第一部分”可以指上行控制信息编码后在先输出的连续比特流组成的数据,上述“上行控制信息的第二部分”可以指上行控制信息编码后在后输出的连续比特流组成的数据。
其中,“上行控制信息的第一部分”可以是指后端时域起点之后的第二频域资源上最大限度所能够承载的上行控制信息的部分,“上行控制信息的第二部分”可以是指该上行控制信息中除该第一部分以外的剩余部分。
可选地,该第一部分在该上行控制信息中的位置位于该第二部分之前。
可选地,上述“上行控制信息的第一部分”的结束部分与上述“上行控制信息的第二部分”的起始部分为连续的比特流。
可选地,该第一TTI包括两个时隙,该前端时域起点是该第一TTI中的第一个时隙的起始点,该后端时频资源是该第一TTI中的第二个时隙上的起始点。
根据本申请实施例的传输上行控制信息的方法,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择后端时域起点之后的资源或前端时域起点之后的资源发送上行信道。在这个过程中,一种可行的方式是,该终端设备生成的编码后的上行数据包与该前端时域起点之后的资源匹配,当该检测的结果是该前端时域起点之后的资源可用时,该终端设备自该前端时域起点之后的资源开始发送该上行数据包和上行控制信息;当该检测的结果是该后端时域起点之后的资源可用时,自该后端时域起点之后的资源开始发送该上行数据包和上行控制信息。需要说明的是,为了降低通信时延,终端设备会预先对需要映射在前端时域起点之后的资源和后端时域起点之后的资源上的数据包和上行控制信息进行组包,因此,当检测结果时后端时域起点之后的资源可用(或者说,前后端时域起点之后的资源不可用)时,由于能力所限,该终端设备不能重新生成编码后的与该后 端时域起点之后的资源匹配的另一个上行数据包和上行控制信息,因此,该终端设备将丢弃预先生成的不能与该后端时域起点之后的资源匹配的上行数据包或上行控制信息的部分(即,需要映射在前端时域起点之后的资源上的上行数据包和上行控制信息),即对该上行数据包打孔后与该后端时域起点之后的资源匹配,并在该后端时域起点之后的资源上传输该上行数据包打孔后的部分。并且,通常上行控制信息只进行一次传输,因此,当检测结果时后端时域起点之后的资源可用,基于上述实施方式,无法确保上行控制信息的传输性能。
与此相对,通过使终端设备优先在后端时域起点之后的资源上发送上行控制信息,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是前端时域起点之后的资源还是后端时域起点之后的资源,承载于该上行信道上的上行控制信息均可以得到发送,从而能够保证上行控制信息的性能。
即,在本申请实施例中,由于第一时频资源与第二时频资源同属于一个TTI,因此当第一时频资源可用时,第二时频资源通常也可用,但是,当第二时频资源可用时,第一时频资源不一定可用,因此,终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,通过上述事实方式,即,将上行控制信息优先映射在第二时频资源上,能够提高上行控制信息的传输的可靠性。
可选地,该第一TTI包括在前端时域起点和后端时域起点,其中,前端时域起点在时域上位于后端时域起点之前,以及
该终端设备自该第一时域起点,通过该第二频域资源发送该第一上行信道,包括:
当该第二频域资源该前端时域起点和后端时域起点之后均处于能够被该终端设备使用的状态时,该终端设备在该后端时域起点之后的第二频域资源上发送(或者说,映射)编码后的上行数据包中的第一部分,在该前端时域起点之后的第二频域资源上发送(或者说,映射)编码后的上行数据包中的第二部分。
其中,可选地,上述“编码后的上行数据包中的第一部分”可以指编码后的上行数据包中在先输出的连续比特流组成的数据,上述“编码后的上行数据包中的第二部分”可以指编码后的上行数据包中在后输出的连续比特流组成的数据。
可选地,上述“编码后的上行数据包中的第一部分”的结束部分与上述“编码后的上行数据包中的第二部分”的起始部分为连续的比特流。
可选地,上述“编码后的上行数据包中的第一部分”的大小可以与第二时频资源上最大限度可用于传输编码后的上行数据包的资源的大小相同。
可选地,上述“编码后的上行数据包中的第二部分”的大小可以是指从网络设备分配的用于承载该编码后的上行数据包的资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“编码后的上行数据包中的第一部分”为上行数据包编码后的系统比特。
其中,该前端时域起点之后的第二频域资源是指位于前端时域起点和后端时域起点之间的时域上的第二频域资源。
通常,上行数据包的位于前端的部分比特中会携带有较为重要的信息(例如,系统比特等),由于终端设备竞争到后端时域起点之后的资源的可能性大于终端设备竞争到前端时域起点之后的资源的可能性,因此通过在后端时域起点之后的资源上发送位于上行数据 包前端的第一数据,能够提高该较为重要的信息的传输可靠性,从而,能够提高通信性能。
第六方面,提供一种传输上行控制信息的方法,应用于包括网络设备和终端设备的通信系统,该通信系统使用的频域资源为基于竞争机制使用的频域资源,该通信系统使用的传输时间间隔TTI包括至少两个时域起点,该方法包括:该网络设备向该终端设备发送调度信息,该调度信息用于指示该网络设备为该终端设备分配的用于承载至少一个上行信道的时频资源,其中,该至少一个上行信道中的一个第一上行信道承载于第一频域资源,且该第一上行信道承载于第一TTI,该第一上行信道中至少包括上行控制信息;该网络设备自第一时域起点,通过该第二频域资源从该终端设备接收该第一上行信道,其中,该第一时域起点是该终端设备对该第一频域资源进行检测后从第一TTI包括的至少两个时域起点中确定的,该第一频域资源中的第二频域资源自该第一时域起点之后处于能够被该终端设备使用的状态,该第二频域资源是该第一频域资源中的部分或全部资源。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对网络设备指示的第一频域资源进行检测,能够使终端设备从第一频域资源中确定该终端设备能够使用的第二频域资源,并且,能够使终端设备从第一TTI包括的至少两个时域起点中确定终端设备能够使用的该第二频域资源的第一时域起点,从而,终端设备能够自该第一时域起点,通过该第二频域资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该调度信息具体用于指示用于承载第一上行信道的第一时频资源,该第二时频资源在时域上的起点为该第一时域起点,该第二时频资源在频域上占用该第二频域资源,该第二时频资源是该第一时频资源中该终端设备能够使用的时频资源;以及该网络设备自第一时域起点,通过该第二频域资源从该终端设备接收该第一上行信道包括:该网络设备根据参考信息,从该第二时频资源中确定第三时频资源;该网络设备通过该第三时频资源接收该上行控制信息;其中,该参考信息用于指示以下至少一种数值:该第一时频资源的大小值、该第一频域资源的大小值、该第二时频资源的大小值、该第二频域资源的大小值、第一参考数值,并且,该第一参考数值是由该通信系统规定的,或,该第一参考数值是由该网络设备预先指示的。
该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该网络设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括: 该网络设备根据参考信息和第一系数,从该第二时频资源中,确定第三时频资源,其中,该第一系数用于确定承载上行控制信息的时频资源的大小。
可选地,该方法还包括:该网络设备获取第一映射关系信息,该第一映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一系数在内的多个系数之间的映射关系;该网络设备根据该第一映射关系信息,将该参考信息指示的数值对应的系数,作为该第一系数。
可选地,该网络设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该网络设备根据参考信息和预设的第一上限值,从该第二时频资源中,确定第三时频资源,其中,该第三时频资源的大小小于或等于该第一上限值。
可选地,该方法还包括:该网络设备获取映第二映射关系信息,该第二映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一上限值在内的多个上限值之间的映射关系;该网络设备根据该第二映射关系信息,将该参考信息指示的数值对应的上限值,作为该第一上限值。
可选地,该通信系统使用的频域资源被划分为N个子频带,N≥2,该第一频域资源占用该N个子频带中的M个子频带,M≥2,该第二频域资源在频域上占用该M个子频带中的K个子频带,M>K≥1。
可选地,该上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
可选地,该第一TTI包括在前端时域起点和后端时域起点,其中,前端时域起点在时域上位于后端时域起点之前,以及
当该第二频域资源该前端时域起点和后端时域起点之后均处于能够被该终端设备使用的状态时,
该网络设备自第一时域起点,通过该第二频域资源从该终端设备接收该第一上行信道,包括:
该网络设备从在后端时域起点之后的第二频域资源开始接收该上行控制信息。
可选地,该网络设备从在后端时域起点之后的第二频域资源开始接受该上行控制信息,包括:
如果该后端时域起点之后的第二频域资源能够满足该上行控制信息的传输要求,则该网络设备仅在该后端时域起点之后的第二频域资源上接收该上行控制信息;或
如果后端时域起点之后的第二频域资源不能够满足该上行控制信息的传输要求,则该网络设备在后端时域起点之后的第二频域资源上接收该上行控制信息的第一部分,并在前端时域起点之后的第二频域资源上接收上行控制信息的第二部分;或
如果后端时域起点之后的第二频域资源不能够满足该上行控制信息的传输要求,则该网络设备在该后端时频资源第二时域起点之后的第二频域资源上接收该上行控制信息的第一部分;或
该网络设备禁止在前端时域起点之后的第二频域资源上接收该上行控制信息。
其中,上述“上行控制信息的第一部分”可以指上行控制信息编码后在先输出的连续比特流组成的数据,上述“上行控制信息的第二部分”可以指上行控制信息编码后在后输出的连续比特流组成的数据。
可选地,上述“上行控制信息的第一部分”的大小可以与第二时频资源上最大限度可用于传输上行控制信息的资源的大小相同。
可选地,上述“上行控制信息的第二部分”的大小可以是指从网络设备分配的用于承载该上行控制信息的第四时频资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“上行控制信息的第一部分”的结束部分与上述“上行控制信息的第二部分”的起始部分为连续的比特流。
可选地,该第一部分在该上行控制信息中的位置位于该第二部分之前。
可选地,该第一TTI包括两个时隙,该前端时域起点是该第一TTI中的第一个时隙的起始点,该后端时频资源是该第一TTI中的第二个时隙上的起始点。
根据本申请实施例的传输上行控制信息的方法,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择后端时域起点之后的资源或前端时域起点之后的资源发送上行信道。在这个过程中,一种可行的方式是,该终端设备生成的编码后的上行数据包与该前端时域起点之后的资源匹配,当该检测的结果是该前端时域起点之后的资源可用时,该终端设备自该前端时域起点之后的资源开始发送该上行数据包和上行控制信息;当该检测的结果是该后端时域起点之后的资源可用时,自该后端时域起点之后的资源开始发送该上行数据包和上行控制信息。需要说明的是,为了降低通信时延,终端设备会预先对需要映射在前端时域起点之后的资源和后端时域起点之后的资源上的数据包和上行控制信息进行组包,因此,当检测结果时后端时域起点之后的资源可用(或者说,前后端时域起点之后的资源不可用)时,由于能力所限,该终端设备不能重新生成编码后的与该后端时域起点之后的资源匹配的另一个上行数据包和上行控制信息,因此,该终端设备将丢弃预先生成的不能与该后端时域起点之后的资源匹配的上行数据包或上行控制信息的部分(即,需要映射在前端时域起点之后的资源上的上行数据包和上行控制信息),即对该上行数据包打孔后与该后端时域起点之后的资源匹配,并在该后端时域起点之后的资源上传输该上行数据包打孔后的部分。并且,通常上行控制信息只进行一次传输,因此,当检测结果时后端时域起点之后的资源可用,基于上述实施方式,无法确保上行控制信息的传输性能。
与此相对,通过使终端设备优先在后端时域起点之后的资源上发送上行控制信息,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是前端时域起点之后的资源还是后端时域起点之后的资源,承载于该上行信道上的上行控制信息均可以得到发送,从而能够保证上行控制信息的性能。
可选地,该第一TTI包括在前端时域起点和后端时域起点,其中,前端时域起点在时域上位于后端时域起点之前,以及
该网络设备自第一时域起点,通过该第二频域资源从该终端设备接收该第一上行信道,包括:
当该第二频域资源该前端时域起点和后端时域起点之后均处于能够被该终端设备使用的状态时,该网络设备在该后端时域起点之后的第二频域资源上接收该上行数据包中的第一部分,在该前端时域起点之后的第二频域资源上接收该上行数据包中的第二部分,其中,该第一数据在该上行数据包中的位置位于该第二数据之前。
可选地,上述“编码后的上行数据包中的第一部分”可以指编码后的上行数据包中在先输出的连续比特流组成的数据,上述“编码后的上行数据包中的第二部分”可以指编码后的上行数据包中在后输出的连续比特流组成的数据。
可选地,上述“编码后的上行数据包中的第一部分”的结束部分与上述“编码后的上行数据包中的第二部分”的起始部分为连续的比特流。
可选地,上述“编码后的上行数据包中的第一部分”的大小可以与第二时频资源上最大限度可用于传输编码后的上行数据包的资源的大小相同。
可选地,上述“编码后的上行数据包中的第二部分”的大小可以是指从网络设备分配的用于承载该编码后的上行数据包的资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“编码后的上行数据包中的第一部分”为上行数据包编码后的系统比特。
通常,上行数据包的位于前端的部分比特中会携带有较为重要的信息(例如,系统比特等),由于终端设备竞争到后端时域起点之后的资源的可能性大于终端设备竞争到前端时域起点之后的资源的可能性,因此通过在后端时域起点之后的资源上发送位于上行数据包前端的第一数据,能够提高该较为重要的信息的传输可靠性,从而,能够提高通信性能。
第七方面,提供一种传输上行控制信息的方法,应用于包括网络设备和终端设备的通信系统,该通信系统使用的时频资源为基于竞争机制使用的时频资源,该通信系统使用的多个传输时间间隔TTI中的每个TTI包括至少两个时域起点,该方法包括:该终端设备从该网络设备接收调度信息,该调度信息用于指示该网络设备为该终端设备分配的用于承载至少一个上行信道的时频资源,其中,该至少一个上行信道中的一个第一上行信道承载于候选时频资源,该第一上行信道中至少包括上行控制信息,该候选时频资源在时域上对应第一TTI,该候选时频资源包括至少两个时频资源,该至少两个时频资源与该第一TTI包括的至少两个时域起点一一对应;该终端设备对该候选时频资源进行检测,并根据检测的结果,从该候选时频资源包括的至少两个时频资源中,确定目标时频资源,该目标时频资源是该终端设备能够使用的时频资源;该终端设备通过该目标时频资源发送该第一上行信道。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对网络设备指示的候选时频进行检测,能够使终端设备从候选时频包括的起始点相异的至少两个时频资源中确定该终端设备能够使用的目标时频资源,并通过该目标时频资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该候选时频资源包括至少两个时频资源在时域上具有套嵌结构。
可选地,该终端设备通过该目标时频资源发送该第一上行信道,包括:该终端设备根据参考信息,从该目标时频资源中确定第三时频资源;该终端设备通过该第三时频资源发送该上行控制信息;其中,该参考信息用于指示以下至少一种数值:该候选时频资源的大小值、该候选时频资源包括的至少两个时频资源中的预设时频资源的大小值、该目标时频 资源的大小值、第一参考数值,并且,该第一参考数值是由该通信系统规定的,或,该第一参考数值是由该网络设备预先指示的,该预设时频资源是由该通信系统规定的,或,该预设时频资源是由该网络设备预先指示的。
该目标时频资源中用于承载上行控制信息的时频资源的大小是基于该目标时频资源的大小(或者,该目标时频资源中用于承载上行数据的时频资源)确定的,因此,当目标时频资源是候选时频资源的一部分时,现有技术中,该目标时频资源中用于承载上行控制信息的时频资源的大小小于候选资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,目标时频资源中用于承载上行控制信息的第三时频资源的大小是基于候选时频资源的大小确定的,即,目标时频资源的大小与候选时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该终端设备根据参考信息,从该目标时频资源中,确定第三时频资源,包括:该终端设备根据参考信息和第一系数,从该目标时频资源中,确定第三时频资源,其中,该第一系数用于确定承载上行控制信息的时频资源的大小。
可选地,该方法还包括:该终端设备获取第一映射关系信息,该第一映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一系数在内的多个系数之间的映射关系;该终端设备根据该第一映射关系信息,将该参考信息指示的数值对应的系数,作为该第一系数。
可选地,该终端设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该终端设备根据参考信息和预设的第一上限值,从该第二时频资源中,确定第三时频资源,其中,该第三时频资源的大小小于或等于该第一上限值。
可选地,该方法还包括:该终端设备获取映第二映射关系信息,该第二映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一上限值在内的多个上限值之间的映射关系;该终端设备根据该第二映射关系信息,将该参考信息指示的数值对应的上限值,作为该第一上限值。
可选地,该通信系统使用的频域资源被划分为N个子频带,N≥2,该候选时频资源占用该N个子频带中的M个子频带,M≥2,该目标时频资源在频域上占用该M个子频带中的K个子频带,M>K≥1。
可选地,该上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
可选地,该第一TTI包括两个时域起点,候选时频资源包括与该两个时域起点中的第一个时域起点对应的第一时频资源,以及与该两个时域起点中的第二个时域起点对应的第二时频资源。
可选地,该终端设备通过该目标时频资源发送该第一上行信道,包括:
该终端设备从所述第二时频资源开始映射该上行控制信息。
可选地,该终端设备从所述第二时频资源开始映射该上行控制信息,包括:
如果该第二时频资源能够满足该上行控制信息的传输要求,则该终端设备仅在该第二时频资源上映射该上行控制信息;或
如果该第二时频资源不能够满足该上行控制信息的传输要求,则该终端设备在该第二时频资源上映射该上行控制信息的第一部分,并在该第一时频资源上映射上行控制信息的第二部分;或
如果该第二时频资源不能够满足该上行控制信息的传输要求,则该终端设备在该第二时频资源上映射该上行控制信息的第一部分,并丢弃上行控制信息第二部分;或
该终端设备禁止在所述第一时频资源上映射该上行控制信息。
其中,“该第二时频资源处于可用状态”可以是指在该候选时频资源的所在载波自该第二时域起点后确定处于可发送状态。
其中,可选地,上述“上行控制信息的第一部分”可以指上行控制信息编码后在先输出的连续比特流组成的数据,上述“上行控制信息的第二部分”可以指上行控制信息编码后在后输出的连续比特流组成的数据。
可选地,上述“上行控制信息的第一部分”的大小可以与第二时频资源上最大限度可用于传输上行控制信息的资源的大小相同。
可选地,上述“上行控制信息的第二部分”的大小可以是指从网络设备分配的用于承载该上行控制信息的第四时频资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“上行控制信息的第一部分”的结束部分与上述“上行控制信息的第二部分”的起始部分为连续的比特流。
可选地,该第一部分在该上行控制信息中的位置位于该第二部分之前。
可选地,该第一TTI包括两个时隙,该第一时域起点是该第一TTI中的第一个时隙上的起点,该第二时域起点是该第一TTI中的第二个时隙上的起点。
根据本申请实施例的传输上行控制信息的方法,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择第一时频资源或第二时频资源发送上行信道。在这个过程中,一种可行的方式是,该终端设备生成的编码后的上行数据包与该第一时频资源匹配,当该检测的结果是该第一时频资源可用时,该终端设备自该第一时频资源开始发送该上行数据包和上行控制信息;当该检测的结果是该第二时频资源可用时,自该第二时频资源开始发送该上行数据包和上行控制信息。需要说明的是,为了降低通信时延,终端设备会预先对需要映射在第一时频资源和第二时频资源上的数据包和上行控制信息进行组包,因此,当检测结果时第二时频资源可用(或者说,第一时频资源不可用)时,由于能力所限,该终端设备不能重新生成编码后的与该第二时频资源匹配的另一个上行数据包和上行控制信息,因此,该终端设备将丢弃预先生成的不能与该第二时频资源匹配的上行数据包或上行控制信息的部分(即,需要映射在第一时频资源上的上行数据包和上行控制信息),即对该上行数据包打孔后与该第二时频资源匹配,并在该第二时频资源上传输该上行数据包打孔后的部分。并且,通常上行控制信息只进行一次传输,因此,当检测结果时第二时频资源可用,基于上述实施方式,无法确保上行控制信息的传输性能。
与此相对,通过使终端设备优先在第二时频资源上发送上行控制信息,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是第一时频资源还是第二时频资源,承载于该上行信道上的上行控制信息均可以得到发送,从而能够保证上行控制信息的性能。
即,在本申请实施例中,由于第一时频资源与第二时频资源同属于一个TTI,因此当第一时频资源可用时,第二时频资源通常也可用,但是,当第二时频资源可用时,第一时频资源不一定可用,因此,终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,通过上述事实方式,即,将上行控制信息优先映射在第二时频资源上,能够提高上行控制信息的传输的可靠性。
可选地,该终端设备通过该目标时频资源发送该第一上行信道,包括:
在该第一时频资源和该第二时频资源均处于可用状态下,该终端设备在该第二时频资源上发送(或者说,映射)该上行数据包中的第一部分,在该第一时频资源上发送(或者说,映射)该上行数据包中的第二部分。
可选地,上述“编码后的上行数据包中的第一部分”可以指编码后的上行数据包中在先输出的连续比特流组成的数据,上述“编码后的上行数据包中的第二部分”可以指编码后的上行数据包中在后输出的连续比特流组成的数据。
可选地,上述“编码后的上行数据包中的第一部分”的结束部分与上述“编码后的上行数据包中的第二部分”的起始部分为连续的比特流。
可选地,上述“编码后的上行数据包中的第一部分”的大小可以与第二时频资源上最大限度可用于传输编码后的上行数据包的资源的大小相同。
可选地,上述“编码后的上行数据包中的第二部分”的大小可以是指从网络设备分配的用于承载该编码后的上行数据包的资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“编码后的上行数据包中的第一部分”为上行数据包编码后的系统比特。
通常,上行数据包的位于前端的部分比特中会携带有较为重要的信息(例如,系统比特等),由于终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,因此通过在第二时频资源上发送位于上行数据包前端的第一数据,能够提高该较为重要的信息的传输可靠性,从而,能够提高通信性能。
第八方面,提供一种传输上行控制信息的方法,应用于包括网络设备和终端设备的通信系统,该通信系统使用的时频资源为基于竞争机制使用的时频资源,该通信系统使用的多个传输时间间隔TTI中的每个TTI包括至少两个时域起点,该方法包括:该网络设备向该终端设备发送调度信息,该调度信息用于指示该网络设备为该终端设备分配的用于承载至少一个上行信道的时频资源,其中,该至少一个上行信道中的一个第一上行信道承载于候选时频资源,该第一上行信道中至少包括上行控制信息,该候选时频资源在时域上对应第一TTI,该候选时频资源包括至少两个时频资源,该至少两个时频资源与该第一TTI包括的至少两个时域起点一一对应;该网络设备通过目标时频资源接收该第一上行信道,该目标时频资源是该终端设备对该候选时频资源进行检测后从该候选时频资源包括的至少两个时频资源中确定的,该目标时频资源是该终端设备能够使用的时频资源。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对网络设备指示的候选时频进行检测,能够使终端设备从候选时频包括的起始点相异的至少两个时频资源中确定该终端设备能够使用的目标时频资源,并通过该目标时频资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的 情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
可选地,该候选时频资源包括至少两个时频资源在时域上具有套嵌结构。
可选地,该网络设备通过目标时频资源接收该第一上行信道:该网络设备根据参考信息,从该目标时频资源中确定第三时频资源;该网络设备通过该第三时频资源接收该上行控制信息;其中,该参考信息用于指示以下至少一种数值:该候选时频资源的大小值、该候选时频资源包括的至少两个时频资源中的预设时频资源的大小值、该目标时频资源的大小值、第一参考数值,并且,该第一参考数值是由该通信系统规定的,或,该第一参考数值是由该网络设备预先指示的,该预设时频资源是由该通信系统规定的,或,该预设时频资源是由该网络设备预先指示的。
该目标时频资源中用于承载上行控制信息的时频资源的大小是基于该目标时频资源的大小(或者,该目标时频资源中用于承载上行数据的时频资源)确定的,因此,当目标时频资源是候选时频资源的一部分时,现有技术中,该目标时频资源中用于承载上行控制信息的时频资源的大小小于候选资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,目标时频资源中用于承载上行控制信息的第三时频资源的大小是基于候选时频资源的大小确定的,即,目标时频资源的大小与候选时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
可选地,该网络设备根据参考信息,从该目标时频资源中,确定第三时频资源,包括:该网络设备根据参考信息和第一系数,从该目标时频资源中,确定第三时频资源,其中,该第一系数用于确定承载上行控制信息的时频资源的大小。
可选地,该方法还包括:该网络设备获取第一映射关系信息,该第一映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一系数在内的多个系数之间的映射关系;该网络设备根据该第一映射关系信息,将该参考信息指示的数值对应的系数,作为该第一系数。
可选地,该网络设备根据参考信息,从该第二时频资源中,确定第三时频资源,包括:该网络设备根据参考信息和预设的第一上限值,从该第二时频资源中,确定第三时频资源,其中,该第三时频资源的大小小于或等于该第一上限值。
可选地,该方法还包括:该网络设备获取映第二映射关系信息,该第二映射关系信息用于指示包括该参考信息指示的数值在内的多个数值与包括该第一上限值在内的多个上限值之间的映射关系;该网络设备根据该第二映射关系信息,将该参考信息指示的数值对应的上限值,作为该第一上限值。
可选地,该通信系统使用的频域资源被划分为N个子频带,N≥2,该候选时频资源占用该N个子频带中的M个子频带,M≥2,该目标时频资源在频域上占用该M个子频带中的K个子频带,M>K≥1。
可选地,该上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
可选地,该第一TTI包括两个时域起点,候选时频资源包括与该两个时域起点中的第一个时域起点对应的第一时频资源,以及与该两个时域起点中的第二个时域起点对应的第二时频资源。
可选地,该网络设备通过该目标时频资源接收该第一上行信道,包括:
该网络设备从所述第二时频资源上开始获取该上行控制信息。
可选地,该网络设备从所述第二时频资源开始获取该上行控制信息,包括:
在该第二时频资源处于可用状态下,如果该第二时频资源能够满足该上行控制信息的传输要求,则该网络设备仅在该第二时频资源上接收该上行控制信息;或
在该第二时频资源处于可用状态下,如果该第二时频资源不能够满足该上行控制信息的传输要求,则该网络设备在该第二时频资源上接收(或者说,映射)该上行控制信息的第一部分,并在该第一时频资源上接收上行控制信息的第二部分;或
在该第二时频资源处于可用状态下,如果该第二时频资源不能够满足该上行控制信息的传输要求,则该网络设备在该第二时频资源上接收该上行控制信息的第一部分;或
该网络设备禁止在所述第一时频资源上接收该上行控制信息。
其中,“该第二时频资源处于可用状态”可以是指在该候选时频资源的所在载波自该第二时域起点后确定处于可发送状态。
其中,上述“上行控制信息的第一部分”可以指上行控制信息编码后在先输出的连续比特流组成的数据,上述“上行控制信息的第二部分”可以指上行控制信息编码后在后输出的连续比特流组成的数据。
可选地,上述“上行控制信息的第一部分”的大小可以与第二时频资源上最大限度可用于传输上行控制信息的资源的大小相同。
可选地,上述“上行控制信息的第二部分”的大小可以是指从网络设备分配的用于承载该上行控制信息的第四时频资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“上行控制信息的第一部分”的结束部分与上述“上行控制信息的第二部分”的起始部分为连续的比特流。
可选地,该第一部分在该上行控制信息中的位置位于该第二部分之前。
可选地,该第一TTI包括两个时隙,该第一时域起点是该第一TTI中的第一个时隙上的起点,该第二时域起点是该第一TTI中的第二个时隙上的起点。
根据本申请实施例的传输上行控制信息的方法,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择第一时频资源或第二时频资源发送上行信道。在这个过程中,一种可行的方式是,该终端设备生成的编码后的上行数据包与该第一时频资源匹配,当该检测的结果是该第一时频资源可用时,该终端设备自该第一时频资源开始发送该上行数据包和上行控制信息;当该检测的结果是该第二时频资源可用时,自该第二时频资源开始发送该上行数据包和上行控制信息。需要说明的是,为了降低通信时延,终端设备会预先对需要映射在第一时频资源和第二时频资源上的数据包和上行控制信息进行组包,因此,当检测结果时第二时频资源可用(或者说,第一时频资源不可用)时,由于能力所限,该终端设备不能重新生成编码后的与该第二时频资源匹配的另一个上行数据包和上行控制信息,因此,该终端设备将丢弃预先生成的不能与该第二时频资源匹配的上行数 据包或上行控制信息的部分(即,需要映射在第一时频资源上的上行数据包和上行控制信息),即对该上行数据包打孔后与该第二时频资源匹配,并在该第二时频资源上传输该上行数据包打孔后的部分。并且,通常上行控制信息只进行一次传输,因此,当检测结果时第二时频资源可用,基于上述实施方式,无法确保上行控制信息的传输性能。
与此相对,通过使终端设备优先在第二时频资源上发送上行控制信息,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是第一时频资源还是第二时频资源,承载于该上行信道上的上行控制信息均可以得到发送,从而能够保证上行控制信息的性能。
即,在本申请实施例中,由于第一时频资源与第二时频资源同属于一个TTI,因此当第一时频资源可用时,第二时频资源通常也可用,但是,当第二时频资源可用时,第一时频资源不一定可用,因此,终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,通过上述事实方式,即,将上行控制信息优先映射在第二时频资源上,能够提高上行控制信息的传输的可靠性。
可选地,该网络设备通过该目标时频资源接收该第一上行信道,包括:
在该第一时频资源和该第二时频资源均处于可用状态下,该网络设备在该第二时频资源上接收该上行数据包中的第一部分,在该第一时频资源上接收该上行数据包中的第二部分。
可选地,上述“编码后的上行数据包中的第一部分”可以指编码后的上行数据包中在先输出的连续比特流组成的数据,上述“编码后的上行数据包中的第二部分”可以指编码后的上行数据包中在后输出的连续比特流组成的数据。
可选地,上述“编码后的上行数据包中的第一部分”的结束部分与上述“编码后的上行数据包中的第二部分”的起始部分为连续的比特流。
可选地,上述“编码后的上行数据包中的第一部分”的大小可以与第二时频资源上最大限度可用于传输编码后的上行数据包的资源的大小相同。
可选地,上述“编码后的上行数据包中的第二部分”的大小可以是指从网络设备分配的用于承载该编码后的上行数据包的资源的大小中减去该第一部分的大小以外的剩余部分的大小。
可选地,上述“编码后的上行数据包中的第一部分”为上行数据包编码后的系统比特。
通常,上行数据包的位于前端的部分比特中会携带有较为重要的信息(例如,系统比特等),由于终端设备竞争到第二时频资源的可能性大于终端设备竞争到第一时频资源的可能性,因此通过在第二时频资源上发送位于上行数据包前端的第一数据,能够提高该较为重要的信息的传输可靠性,从而,能够提高通信性能。
第九方面,提供了一种传输上行控制信息的装置,包括用于执行上述第一方面至第八方面中的任一方面及其实施方式中的各步骤的单元。
第十方面,提供了一种传输上行控制信息的设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该设备执行上述第一方面至第八方面中的任一方面及其实施方式中的方法。
第十一方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或 收发器、处理器运行时,使得通信设备执行上述第一方面至第八方面中的任一方面及其实施方式中的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得通信设备(例如,网络设备或终端设备)执行上述第一方面至第八方面中的任一方面及其实施方式中的方法。
结合上述第各方面及其上述实现方式,在另一种实现方式中,每个子频带包括多个子载波。
结合上述第各方面及其上述实现方式,在另一种实现方式中,每个子频带的带宽是基于网络设备或终端设备在一次检测(或竞争)过程中能够检测的带宽确定的。
结合上述第各方面及其上述实现方式,在另一种实现方式中,每个子频带的带宽小于或等于网络设备或终端设备在一次检测(或竞争)过程中能够检测的带宽。
结合上述第各方面及其上述实现方式,在另一种实现方式中,每个子频带的带宽为20MHz。
根据本申请实施例的传输上行控制信息的方法,能够使终端设备对网络设备调度的多个时频资源进行竞争,并使该终端设备通过竞争到的时频资源进行上行信道的传输,即,较现有技术相比,终端设备无需在网络设备分配的时频资源全部竞争成功的情况下,才能够使用第一频域资源进行无线通信,从而,能够提通信效率、减小了业务传输时延,改善了用户体验。
附图说明
图1是适用本申请实施例的传输上行控制信息的方法和装置的通信系统的一例的示意性图。
图2是本申请实施例的上行控制信息的传输过程的一例示意性交互图。
图3是本申请实施例的承载上行控制信息时频资源的图案的一例的示意图。
图4是本申请实施例的承载上行控制信息时频资源的图案的另一例的示意图。
图5是本申请实施例的上行控制信息的传输过程的另一例的示意性交互图。
图6是本申请实施例的承载上行控制信息时频资源的图案的示意图。
图7是本申请实施例的承载上行控制信息时频资源的图案的示意图。
图8是本申请实施例的承载上行控制信息时频资源的图案的示意图。
图9是本申请实施例的承载上行控制信息时频资源的图案的示意图。
图10是本申请实施例的传输上行控制信息的装置的一例的示意性框图。
图11是本申请实施例的传输上行控制信息的装置的另一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程 和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或下一代通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:
终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
本申请实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例的无线通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设 备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面,对本申请实施例的用于无线通信的频域资源进行详细说明。
在本申请实施例中,网络设备和终端设备用于无线通信(例如,上行传输或下行传输)的频域资源是基于竞争机制使用的频域资源。
例如,网络设备和/或终端设备可以检测具有某一带宽(如,20MHz)的频域资源当前是否处于空闲状态,或者说,该频域资源是否被其他设备使用。
若该频域资源处于空闲状态,或者说,该频域资源未被其他设备使用,则网络设备和/或终端设备可以使用该频域资源进行通信,例如,进行上行传输或下行传输等。
若该频域资源不处于空闲状态,或者说,该频域资源已被其他设备使用,则网络设备和/或终端设备无法使用该频域资源。
需要说明的是,在本申请实施例中,上述竞争机制的具体方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
作为示例而非限定,在本申请实施例中,该通信系统100所使用的频域资源(或者说, 网络设备和终端设备基于竞争机制使用的频域资源)也可以是许可频谱资源,即,本申请实施例的通信系统100是能够使用许可频段的通信系统,并且,系统100内的各通信设备(网络设备和/或终端设备)可以采用竞争方式使用该许可频段的频域资源。
“许可频域资源”也可以称为“许可频谱资源”或“许可载波”,是指需要国家或者地方无线委员会审批才可以使用的频域资源,不同系统例如LTE系统与WiFi系统,或者,不同运营商包括的系统不可以共享使用许可频域资源。
许可频谱资源可以是由政府的无线电管理委员会划定,有专用用途的频谱资源,例如移动运营商使用、民航、铁路、警察专用的频谱资源,由于在政策上的排他性,许可频谱资源的业务质量一般可以得到保证,在进行调度控制时也相对容易。
或者,在本申请实施例中,该通信系统100所使用的频域资源(或者说,网络设备和终端设备基于竞争机制使用的频域资源)可以是免许可频域资源。
“免许可频域资源”也可以称为“免许可频谱资源”或“免许可载波”,是指各个通信设备可以共享使用免许可频段上的资源。其中,“共享免许可频段上的资源”可以是指:对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证共同使用该频段的多个设备之间满足基本的共存要求,运营商利用免许可频段资源可以达到网络容量分流的目的,但是需要遵从不同的地域和不同的频谱对免许可频段资源的法规要求。这些要求通常是为保护雷达等公共系统,以及保证多系统尽可能互相之间不造成有害影响、公平共存而制定的,包括发射功率限制、带外泄露指标、室内外使用限制,以及有的地域还有一些附加的共存策略等。例如,各通信设备能够采用竞争方式或者监听方式,例如,先听后说(Listen Before Talk,简称“LBT”)规定的方式使用的频域资源。
免许可频谱资源可以是由政府相关部门划定的频谱资源,但不对无线电技术、运营企业和使用年限进行限定,同时也不保证该频段的业务质量。应用免许可频谱资源的通信设备只需要满足发射功率、带外泄露等指标的要求,即可免费使用。常见的应用免许可频谱资源进行通。
作为示例而非限定,在本申请实施例中,该免许可频谱资源可以包括5千兆赫兹(Giga Hertz,GHz)附近的频段,2.4GHz附近的频段,3.5GHz附近的频段,60GHz附近的频段。
作为示例而非限定,例如,该通信系统100可以是使用免授权载波的辅助授权接入长期演进系统(Licensed-Assisted Access Using LTE,LAA-LTE)技术,也可以采用支持该通信系统在免许可频段独立部署的技术,例如Standalone LTE over unlicensed spectrum,或者,也可以采用免授权载波上的(LTE Advanced in Unlicensed Spectrums,LTE-U)技术,即,通信系统100可以将LTE系统独立部署到免许可频段,进而在免许可频段上采用LTE空口协议完成通信,该系统不包括许可频段。部署在免许可频段的LTE系统可以利用集中调度、干扰协调、混合自适应请求重传(Hybrid Automatic Repeat reQuest,HARQ)等技术,相比Wi-Fi等接入技术,该技术具有更好的鲁棒性,可以获得更高的频谱效率,提供更大的覆盖范围以及更好的用户体验。
并且,作为示例而非限定,在本申请实施例中,通信系统100可以采用例如,许可辅助接入(Licensed-Assisted Access,LAA)、双连接(Dual Connectivity,DC)、免许可辅助接入(Standalone)技术等。其中,LAA包括利用现有LTE系统中的载波聚合(Carrier Aggregation,CA)的配置和结构,以配置运营商许可频段上的载波(许可载波)进行通 信为基础,配置多个免许可频段上的载波(免许可载波)并以许可载波为辅助利用免许可载波进行通信。也就是说,LTE设备可以通过CA的方式,将许可载波作为主成员载波(Primary Component Carrier,PCC)或主小区(Primary Cell,PCell),将免许可载波作为辅成员载波(Secondary Component Carrier,SCC)或辅小区(Secondary Cell,SCell)。双连接DC技术包括将许可载波和免许可载波,通过非CA或者非理想回程(backhaul)的方式联合使用的技术,或者,也包括将多个免许可载波通过非CA的方式联合使用的技术。LTE设备还可以通过独立部署的方式,直接部署在免许可载波上。
另外,需要说明的是,免许可频段上LTE系统的信息传输可以没有固定的帧结构。概括来说,接入网设备例如基站或小区可以根据下行业务负载和/或上行业务负载,或者其他考虑因素,决定在抢占到免许可频谱资源之后,确定下行信息的传输时长和/或上行信息的传输时长。进一步地,接入网设备在抢占到免许可频谱资源之后,可以灵活调整包括下行信息的时间单元(即下行时间单元)的个数、包括上行信息的时间单元(即上行时间单元)的个数、每个下行时间单元中包括的下行信息的传输时长、每个上行时间单元中包括的上行信息的传输时长。
并且,免许可频段上LTE系统的帧结构中引入了传输机会(Transmission Opportunity,TxOP)的概念,其中,传输机会也可以称为突发传输(Transmission Burst),一个TxOP内可以包括下行突发传输(Downlink Transmission Burst,DL Transmission Burst)和/或上行突发传输(Uplink Transmission Burst,UL Transmission Burst)。
其中,下行突发传输(也可以称为:“下行突发数据传输”,或“下行突发信息传输”)可以包括:接入网设备(例如eNB)或接入网设备下的小区(Cell)在抢占到免许可频段资源之后,以不需要再通过竞争机制(例如,LBT)的方式利用该免许可频段资源进行的信息传输(或者说,数据传输)。一个下行突发传输的时间长度不大于该接入网设备(或该小区)在该免许可频段资源上不需要再通过竞争机制而可以连续传输的最大时间,该最大时间也可以称为最大信道占用时间(MCOT,Maximum Channel Occupied Time)。MCOT的长度可以与地域法规约束有关,例如,在日本,MCOT可以等于4ms;在欧洲,MCOT可以等于8ms,或者10ms,或者13ms。或者,MCOT的长度也可以与侦听设备(例如接入网设备或终端设备)采用的竞争机制有关,一般而言,侦听时间越短,MCOT就越短。再或者,MCOT的长度还可以与传输的业务等级有关。在本申请实施例中,MCOT还可以由其他因素决定,不做具体限定。
需要说明的是,在上述描述中,“以不需要再通过竞争机制的方式利用该免许可频段资源进行的信息传输”可以包括,接入网设备或小区在抢占到免许可频段资源之后,在该免许可频段资源上实际发送信息的时间内或在MCOT内,不需要再通过竞争机制评估该免许可频段资源是否可用。例如,以第一个TxOP中包括的下行突发传输为例,从该下行突发传输中的第二个子帧开始,该基站不需要再通过竞争机制评估该免许可频段资源是否可用。换句话说,在该下行突发数据传输之前,需要先确定该免许可频谱资源可用,一旦该下行突发开始传输,可以不重新评测该免许可频谱资源的可用性,直至该下行突发数据传输结束。
或者,“以不需要再通过竞争机制的方式利用该免许可频段资源进行的信息传输”还可以包括,接入网设备或小区在抢占到免许可频段资源之后,在该免许可频段资源上实际发 送信息的时间内或在MCOT内,可以不需要考虑与异系统的共存而采用竞争机制,但是可以考虑与同系统的共存而采用竞争机制,这里,为了同系统的共存而采用的竞争机制,可以包括在抢占到免许可频段资源之后,在发送信息的时间或MCOT内,可以包括特定的时间单元(或称空闲的时间单元),在此特定的时间单元内,基站或小区可以停止信息传输(或可以停止发送信息),在此特定的时间单元内,基站或小区可以进行信道侦听来重新评测该免许可频谱资源是否可用,也可以不进行信道侦听而在特定的时间单元内,继续在发送信息的时间或MCOT内发送信息。例如,从该下行突发传输开始到结束的时间范围内,接入网设备可以在任意时间位置停止发送信息一段时间。这里,对于LTE系统而言,非LTE系统可以看为异系统,例如WLAN系统,或者采用WiFi技术的系统;LTE系统可以看为同系统,无论是属于相同运营商的LTE系统还是属于不同运营商的LTE系统,都可以看为同系统。这里,LTE系统包括网络设备和/或终端设备。
类似地,上行突发传输(也可以称为:“上行突发数据传输”,或“上行突发信息传输”)可以包括:终端设备在抢占到免许可频段资源之后,以不需要再通过竞争机制(例如,LBT)的方式利用该免许可频段资源进行的信息传输。对于单个终端设备而言,其上行突发传输的时间长度可以不大于在该免许可频段资源上的MCOT,或者,对上行突发传输的时间长度也可以有其他限定。上行突发传输可以包括单个用户的信息传输,也可以包括多个用户的信息传输。从接入网设备侧,上行突发传输可以是TxOP内包括的上行信息传输。
并且,对于终端设备侧的“以不需要再通过竞争机制的方式利用该免许可频段资源进行的信息传输”的理解,和接入网设备侧相同,在此不做赘述。
其中,对于终端设备而言,同系统还可以理解为与该终端设备具有相同服务小区或服务接入网设备的终端设备。上行突发传输还包括,接入网设备在抢占到免许可频段资源之后,在该接入网设备不需要通过竞争机制利用该免许可频段进行信息传输的时间范围内,基于特定的时间延迟(例如基于4ms的时间延迟),从可以调度到的第一个上行子帧到可以调度到的最后一个上行子帧之间终端设备进行的信息传输,例如,从第一个上行子帧到最后一个上行子帧之间的时间范围,为该上行突发传输对应的时间范围。在本申请实施例中,可以调度到的上行子帧用于上行信息传输的时间长度可以小于1ms。
在本申请实施例中,一个TxOP的时间长度可以不大于下行突发传输可以允许的最大传输时间长度,或者不大于上行突发传输可以允许的最大传输时间长度,或者不大于下行突发传输允许的最大传输时间长度与上行突发传输允许的最大时间长度之和,或者,一个突发传输的时间长度可以不大于该免许可频段资源上的MCOT。例如,对于一个给定设备,无论是接入网设备或者终端设备,或者是其他设备,在抢占到免许可频段资源之后,不需要再通过竞争机制可以传输数据的最大时间长度为8ms(对应上面提到的MCOT),即,一个TxOP即使同时包括DL transmission burst和UL transmission burst,一个TxOP(或者说,Transmission Burst)的最大传输时间长度也是8ms。从而,上行突发传输可以采用一些容易使终端设备抢占到(或者说,竞争到)免许可频段资源的竞争机制。
如前所述,免许可频段上LTE系统的信息传输没有固定的帧结构,可以包括以下至少一项:不同的下行突发传输的时长可以不同,不同的上行突发传输的时长可以不同,不同的TxOP(可以是相邻的,也可以是不相邻的)包括的下行突发传输的时长可以不同,不同的TxOP包括的上行突发传输的时长可以不同,不同的TxOP的时长可以不同。在本 申请实施例中,下行突发传输的时长包括,从下行突发的起始时刻到该下行突发的结束时刻之间的时间长度;上行突发传输的时长包括,从上行突发的起始时刻到该上行突发的结束时刻之间的时间长度。
以下,为了便于理解和说明,将突发传输简称为“突发”,将上行突发传输简称为“上行突发”,将下行突发传输简称为“下行突发”。
在本申请实施例中,一个突发传输(上行突发传输或下行突发传输)可以包括一个或多个时间单元。
并且,当一个突发传输包括多个时间单元时,该突发传输中的多个时间单元可以是连续也可以是非连续的(例如,某些相邻的时间单元之间隔有时间间隔),本申请并未特别限定。
可选地,每个突发传输包括的多个连续的时间单元中,各时间单元的时间长度相同。
即,在本申请实施例中,一个突发传输中的各时间单元可以均为完整的时间单元。完整的时间单元是指,该时间单元中用于下行信息传输或者上行信息传输的时间长度等于该时间单元的时间长度。
例如,一个下行突发传输中的各时间单元可以均为完整的时间单元,即,下行突发传输中的各时间单元用于下行信息传输的时间长度相同;又例如,一个上行突发传输中的各时间单元均为完整的时间单元,即,上行突发传输中的各时间单元用于上行信息传输的时间长度相同。
或者,可选地,每个突发传输包括的多个连续的时间单元中,至少两个时间单元的时间长度不相同。
即,在本申请实施例中,一个突发传输中的部分时间单元可以为不完整的时间单元。
例如,一个下行突发传输中的第一个时间单元可以为不完整的时间单元,可以理解为,第一个时间单元中用于下行信息传输的时间长度可以小于第一个时间单元的长度。例如时间单元用子帧表示,那么一个下行突发传输中的第一个子帧中用于下行信息传输的时间可以小于1ms;或者,一个下行突发传输中的最后一个时间单元可以为不完整的时间单元,可以理解为,最后一个时间单元中用于下行信息传输的时间长度可以小于最后一个时间单元的长度。例如时间单元用子帧表示,那么一个下行突发传输中的最后一个子帧用于下行信息传输的时间可以小于1ms;或者,一个下行突发传输中的第一个时间单元和最后一个时间单元均为不完整的时间单元。
又例如,一个上行突发传输中的第一个时间单元可以为不完整的时间单元,可以理解为,第一个时间单元中用于上行信息传输的时间长度可以小于第一个时间单元的长度。例如时间单元用子帧表示,那么一个上行突发传输中的第一个子帧中用于上行信息传输的时间可以小于1ms;或者,一个上行突发传输中的最后一个时间单元可以为不完整的时间单元,可以理解为,最后一个时间单元中用于上行信息传输的时间长度可以小于最后一个时间单元的长度。例如时间单元用子帧表示,那么一个上行突发传输中的最后一个子帧用于上行信息传输的时间可以小于1ms;或者,一个上行突发传输中的第一个时间单元和最后一个时间单元均为不完整的时间单元。
另外,在本申请实施例中,相邻的突发传输彼此之间可以隔有时间间隔,例如,由于接入网设备在一个下行突发结束之后,可能需要重新评估免许可频谱资源是否可用,因此 相邻的突发传输彼此之间可以隔有一个或多个时间单元。
在本申请实施例中,一个突发传输中的时间单元可以用于传输一个终端设备的数据,也可以用于传输多个终端设备的数据,本申请并未特别限定,例如,同一接入网设备所服务的多个终端设备可以采用频分复用或时分复用或空分复用等方式通过一个突发传输中的时间单元,接收该接入网设备发送的数据。又例如,同一接入网设备所服务的多个终端设备可以采用频分复用或时分复用或空分复用等方式通过一个突发传输中的时间单元,向该接入网设备发送数据。
在本申请实施例中,各突发传输可以是预先划分的(或者说,静态或半静态配置的),即,各突发传输通信系统的高层管理设备划分并通知各接入网设备的,或者,各突发传输的划分方式也可以由通信协议规定的,或者,各突发传输的划分方式通过出厂设置或管理员设置等方式预先存储在各接入网设备中。例如,对于相同的免许可频谱资源,各接入网设备可以通过时分复用的方式,使用该免许可频谱资源,具体对应的时间使用范围可以通过高层管理设备划分,在划分的时间使用范围内,也需要通过信道评测使用该免许可频谱资源。
或者,在本申请实施例中,各突发传输也可以是各接入网设备自主确定的(或者说,动态变化的),即,各接入网设备可以采用竞争方式确定可使用的时间单元,并将所竞争到的一个或多个时间单元作为一个或多个突发传输,例如,接入网设备可以将竞争到的多个时间单元配置在同一突发传输中。
网络设备在进行下行传输之前,需要先通过例如,LBT等方式确认网络设备调度的频域资源(例如,网络设备调度的免许可频段上的资源)是否可用,至于具体在什么位置进行LBT,本申请不做具体限定。
终端设备在进行上行传输之前,需要先通过例如,LBT等方式确认网络设备调度的频域资源(例如,网络设备调度的免许可频段上的资源)是否可用,至于具体在什么位置进行LBT,本申请不做具体限定。
在本申请实施例中,一个突发传输中的各时间单元可以均为包括相同符号个数的时间单元。
例如,一个突发传输中的各时间单元的长度均为一个子帧。
又例如,一个突发传输中的各时间单元的长度均为2个符号。
或者,可选地,每个突发传输包括的多个连续的时间单元中,至少两个时间单元的时间长度不相同。
即,在本申请实施例中,一个突发传输中的各时间单元中至少有两个时间单元包括不同的符号个数。
例如,一个突发传输中的除第一个时间单元和/或最后一个时间单元外的时间单元的时间长度为1ms(即1个子帧)。并且,一个突发传输中的第一个时间单元的时间长度可以小于1ms;或者,一个突发传输中的最后一个时间单元的时间长度可以小于1ms;或者,一个突发传输中的第一个时间单元和最后一个时间单元的时间长度均小于1ms。需要说明的是,上述第一个时间单元和最后一个时间单元的时间长度可以相同,也可以不同。
又例如,一个突发传输中的一个时间单元的时间长度可以为小于8的任意正整数个符号,例如一个突发传输中包括6个时间单元,每个时间单元对应的时间长度为3个符号、 2个符号、2个符号、2个符号、2个符号、3个符号。
在本申请实施例中,一个突发传输中的时间单元可以用于传输一个终端设备的数据,也可以用于传输多个终端设备的数据,本申请实施例并未特别限定,例如,同一接入网设备所服务的多个终端设备可以采用频分复用或时分复用或空分复用或码分复用等方式通过一个突发传输中的时间单元,接收该接入网设备发送的数据。又例如,同一接入网设备所服务的多个终端设备可以采用频分复用或时分复用或空分复用或码分复用等方式通过一个突发传输中的时间单元,向该接入网设备发送数据。
在本申请实施例中,各突发传输可以是预先划分的(或者说,静态或半静态配置的),即,各突发传输通信系统的高层管理设备划分并通知各接入网设备的,或者,各突发传输的划分方式也可以由通信协议规定的,或者,各突发传输的划分方式通过出厂设置或管理员设置等方式预先存储在各接入网设备中。例如,对于相同的免许可频谱资源,各接入网设备可以通过时分复用的方式,使用该免许可频谱资源,具体对应的时间使用范围可以通过高层管理设备划分,在划分的时间使用范围内,也需要通过信道评测使用该免许可频谱资源。
或者,在本申请实施例中,各突发传输也可以是各接入网设备自主确定的(或者说,动态变化的),即,各接入网设备可以采用竞争方式确定可使用的时间单元,并将所竞争到的一个或多个时间单元作为一个或多个突发传输,例如,接入网设备可以将竞争到的多个时间单元配置在同一突发传输中。
另外,在本申请实施例的某些实施例中,网络设备可以仅提供一个或多个免许可小区(或者,也可以称为免许可载波),或者,网络设备可以仅提供一个或多个许可小区(或者,也可以称为许可载波),或者,网络设备可以提供免许可小区和许可小区双方,本申请并未特别限定。
下面,对本申请实施例的数据传输方式进行说明。
在本申请实施例中,通信系统100中的各通信设备(例如,网络设备或终端设备)可以基于免调度传输方案使用资源(例如,频域资源)进行通信,也可以基于调度方式使用资源(例如,频域资源)进行通信,本申请实施例并未特别限定。下面,分别对调度方式和免调度方式进行说明。
A.调度方式
具体体的说,在本申请实施例中,数据的传输(例如,上行传输或下行传输)可以是基于网络设备的调度来进行。作为示例而非限定,该调度的周期可以是,例如,传输时间间隔(Transmission Time Interval,TTI)或短传输时间间隔(short Transmission Time Interval,sTTI)。
具体的调度流程是基站发送控制信道,例如,物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)或用于调度sTTI传输的物理下行控制信道(sTTI Physical Downlink Control Channel,sPDCCH),该控制信道可以承载使用不同的下行控制信息(Downlink Control Information,DCI)格式的用于调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH”)的调度信息,该调度信息包括比如资源分配信息,调制编码方式等控制信息。终端设备检测 控制信道,并根据检测出的控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。当引入sTTI技术后,控制信道中承载的调度信息可以指示TTI长度为1ms或TTI长度小于1ms的下行数据信道接收或上行数据信道发送。
B.免调度方式
具体的说,为了解决未来网络大量的MTC类业务,以及满足低时延、高可靠的业务传输,可以使用免调度传输方案。在本申请实施例中,数据的传输也可以是免调度的。免调度传输英文可以表示为Grant Free。这里的免调度传输可以针对的是上行数据传输或下行数据传输。免调度传输可以理解为如下含义的任意一种含义,或,多种含义,或者多种含义中的部分技术特征的组合或其他类似含义:
免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
免调度传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
免调度传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是终端设备接收所述的信令的时刻以后的一个或多个传输时间单元的传输资源。一个传输时间单元可以是指一次传输的最小时间单元,比如TTI。
免调度传输可以指:终端设备在不需要网络设备调度的情况下进行上行数据传输。所述调度可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行许可,其中所述上行许可指示分配给终端设备的上行传输资源。
免调度传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行调度。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
作为示例而非限定,在本申请实施例中,免调度传输的基本时间单元可以是一个TTI(例如,包括上述sTTI)。当引入sTTI技术后,免调度传输可以包括在TTI长度为1ms或TTI长度小于1ms的下行数据信道接收或上行数据信道发送。
在本申请实施例中,通信系统100所使用的系统频域资源可以是上述许可频域资源或免许可频域资源中具有规定带宽的资源。作为示例而非限定,该系统频域资源可以是上述 许可频域资源或免许可频域资源中带宽为例如80MHz的一段频谱资源。应理解,以上列举的系统频域资源的大小仅为示例性说明,本申请并未限定于此。
在本申请实施例中,该系统频域资源可以全部为许可频域资源,或者,该系统频域资源也可以全部为免许可频域资源,再或者,该系统频域资源中的部分资源可以为许可频域资源,该系统频域资源中的另一部分资源可以为免许可频域资源,本申请并未特别限定。
并且,作为示例而非限定,在本申请实施例中,该系统频域资源可以被划分为多个子频带。并且,作为示例而非限定,每个子频带可以包括一个或多个子载波。
在本申请实施例中,该系统频域资源中的多个子频带的带宽可以相同。作为示例而非限定,例如,每个子频带的带宽可以为例如20MHz。应理解,以上列举的子频带的大小仅为示例性说明,本申请并未限定于此,可以根据实际需要任意调每个整子带宽的大小。
或者,该系统频域资源中的中的部分子频带的带宽可以不相同,例如,系统频域资源中的某些(一个或多个)子频带的带宽可以为例如20MHz,系统频域资源中的另一些(一个或多个)子频带的带宽可以为例如10MHz。应理解,以上列举的子频带的大小仅为示例性说明,本申请并未限定于此,可以根据实际需要任意调整每个子带宽的大小。
作为示例而非限定,在本申请实施例中,子带宽的大小可以基于终端设备对资源进行检测(或者说,竞争)时使用的单位(或者说,终端设备在一次检测或竞争过程中检测或竞争的对象的大小)确定。
例如,在本申请实施例中,设该终端设备对资源进行检测(或者说,竞争)时使用的单位为α,该子带宽的大小为β,则该α和β之间的关系可以满足:β≤α。
并且,在本申请实施例中,每个子频带的大小可以是由网络设备确定并通过信令等通知终端设备。或者,在本申请实施例中,每个子频带的大小也可以是由通信系统或通信协议规定,本申请并未特别限定。
作为示例而非限定,在本申请实施例中,通信系统中的每个TTI可以包括X个(至少两个)时域起点,X≥2。
并且,作为示例而非限定,例如,每个TTI包括的时域起点的数量可以与每个TTI包括的时隙的数量相同。
具体的说,在本申请实施例中,网络设备或终端设备可以将一个TTI中的任意一个时隙的起点(或者说,该TTI的任意一个时域起点)作为使用该TTI进行传输的起始时刻。
在现有技术中,每个TTI仅包括一个时域起点,即,TTI中的第一个时隙的起点,即,如果网络设备或终端设备无法在一个TTI(以下,为了便于理解和说明,记作:TTI#1)的时域起点之前确认能够竞争到该TTI#1(具体地说,是TTI#1上的基于竞争机制使用的频域资源),则网络设备获终端设备无法使用TTI#1。
与此相对,在本申请实施例中,如果网络设备或终端设备在TTI#1的一个时域起点(以下,为了便于理解和说明,记作:时域起点#1)之前竞争到TTI#1(具体地说,是TTI#1上的基于竞争机制使用的频域资源),则网络设备可以自该时域起点#1开始,使用该TTI#1(具体地说,是TTI#1上的基于竞争机制使用的频域资源)进行通信。
下面,对本申请实施例的传输对象,即,上行控制信息,进行示例性说明。
作为示例而非限定,在本申请实施例中上行控制信息可以包括但不限于以下一种或多种信息:
1.HARQ反馈信息
在本申请实施例中,该上行控制信息可以包括针对下行数据的反馈信息。
具体的说,在本申请实施例中,下行数据的传输可以采用反馈技术,作为示例而非限定,该反馈技术可以包括例如,混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)技术。
其中,HARQ技术是一种将前向纠错编码(Forward Error Correction,FEC)和自动重传请求(Automatic Repeat Request,ARQ)相结合而形成的技术。
例如,在HARQ技术中,接收端在从发送端接收到数据后,可以确定该数据是否准确译码。如果不能准确译码,则接收端可以向发送端反馈非确认(Negative-acknowledge,NACK)信息,从而,发送端可以基于NACK信息,确定接收端没有准确接收到数据,从而可以进行重传处理;如果能够准确译码,则接收端可以向发送端反馈确认(Acknowledge,ACK)信息,从而,发送端可以基于ACK信息,确定接收端准确接收到数据,从而可以确定完成了数据传输。
即,在本申请实施例中,当接收端解码成功是可以向发送端反馈ACK信息,在解码失败时可以向发送端反馈NACK信息
作为示例而非限定,在本申请实施例中,上行控制信息可以包括HARQ技术中的ACK信息或NACK信息。
应理解,以上列举的反馈信息包括的内容仅为示例性说明,本申请并未限定于此,其他能够指示终端设备对下行数据的接收情况的信息,均落入本申请的保护范围内,例如,该反馈信息还可以包括非连续传输(DTX,Discontinuous Transmission)信息,该DTX信息可以用于指示终端设备未接收到下行数据。
2.信道质量指示(Channel Quality Indicator,CQI)信息
在本申请实施例中,CQI可以用来反映物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的信道质量。作为示例而非限定,在本申请实施例中,可以用0~15来表示PDSCH的信道质量。0表示信道质量最差,15表示信道质量最好。
在本申请实施例中,终端设备可以在物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上向网络设备发送CQI信息。网络设备可以CQI信息根据,确定当前PDSCH或PUSCH的无线信道条件,进而完成针对PDSCH的调度,例如,在本申请实施例中,网络设备可以基于CQI信息确定自适应编码调制(Adaptive Modulation and Coding,AMC)、调制与编码策略(Modulation and Coding Scheme,MCS)、上行传输或下行传输的码率或数据量等。
3.秩指示(Rank Indication,RI)信息
在本申请实施例中,RI信息可以用于指示PDSCH的有效的数据层数,或者说,RI信息可以用于指示终端设备当前可以支持的码字(Code Word,CW)数。
4.预编码矩阵指示(Precoding Matrix Indicator,PMI)信息
在本申请实施例中,PMI信息可以用于指示码本集合的索引(index)。即,在使用多天线技术,例如,多输入多输出(Multiple-Input Multiple-Output,MIMO)技术中,在PDSCH物理层的基带处理中,会进行基于预编码矩阵的预编码处理(precoding)。终端设备可以通过PMI信息指示预编码矩阵,从而,能够提高PDSCH的信号质量。
需要说明的是,在本申请实施例中,上述上行控制信息也可以被称为反馈信息。
在本申请实施例中,发送上行信道可以是指发送上行信道上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。
下面,结合图2,对本申请实施例的传输上行控制信息的方法200进行详细说明。
图2示意性示出了终端设备#A(即,终端设备的一例)与网络设备#A(即,网络设备的一例)之间传输上行控制信息#A(即,上行控制信息的一例,例如,反馈信息、CQI信息、RI信息或PMI信息中的一种或多种)的过程。
如图2所示,在S210,网络设备#A可以从上述系统时频资源中为终端设备#A分配用于传输上行传输(例如,传输上行控制信息)的时频资源。
其中,该时频资源可以为多个,该多个时频资源中的时频资源#A(即,第一时频资源的一例)是网络设备#A分配的用于承载上行信道#A的时频资源,其中,该上行信道#A包括该上行控制信息#A。
需要说明的是,在本申请实施例中,网络设备#A可以为终端设备#A调度包括该上行信道#A在内的多个上行信道,或者说,网络设备#A可以为终端设备#A分配包括该时频资源#A在内的多个时频资源,其中,每个时频资源上可以承载一个上行信道。以下,为了便于理解和说明,不失一般性,以基于该时频资源#A进行的处理过程为例,进行说明。
其中,网络设备确定该时频资源#A的方法和过程可以与现有技术相同,这里,为了避免赘述,省略其详细说明。
并且,在本申请实施例中,网络设备#A可以通过调度信息#A(即,调度信息的一例,例如,下行控制信息)指示终端设备#A可以通过该时频资源#A进行上行传输。
在本申请实施例中,该时频资源#A的使用方式可以是基于调度的方式,也可以是基于免调度的方式,本申请并未特别限定。
例如,当时频资源#A的使用方式可以是基于调度的方式时,该时频资源#A可以是网络设备#A在确定终端设备#A需要进行上行传输(例如,传输上行控制信息)之后为该终端设备#A分配的,并且,该调度信息#A可以是网络设备#A在确定终端设备#A需要进行上行传输之后发送给该终端设备#A的。
再例如,当时频资源#A的使用方式可以是基于免调度的方式时,该时频资源#A可以是网络设备#A在确定终端设备#A需要进行上行传输(例如,传输上行控制信息)之前为该终端设备#A分配的,并且,该调度信息#A可以是网络设备#A在确定终端设备#A需要进行上行传输之前发送给该终端设备#A的。
作为示例而非限定,在本申请实施例中,该调度信息#A可以指示上述时频资源#A的大小,例如,该调度信息#A可以指示上述时频资源#A的大小,例如,该调度信息#A可以指示时频资源#A包括的时频资源块(Resource Block,RB)的数量,为了便于理解和说明,记作:RB数量#A;或者,该调度信息#A可以指示时频资源#A对应的频域资源的大小(或者说,带宽),例如,该调度信息#A可以指示时频资源#A包括的子载波的数量;或者,该调度信息#A可以指示时频资源#A对应的时域资源的大小,例如,该调度信息#A可以指示时频资源#A包括的符号的数量。
作为示例而非限定,在本申请实施例中,该调度信息#A还可以指示时频资源#A对应的频域资源在频域上的位置,例如,该调度信息#A可以指示时频资源#A对应的频域资源 在系统带宽(即,系统时频资源对应的频域资源)中的位置。
作为示例而非限定,在本申请实施例中,该调度信息#A还可以指示时频资源#A对应的时域资源在时域上的位置。
作为示例而非限定,在本申请实施例中,该调度信息#A还可以指示终端设备在使用该频域资源#A进行上行传输时使用的调制与编码策略(Modulation and Coding Scheme,MCS),为了便于理解和说明,记作:MCS#A。
应理解,以上列举的该调度信息#A功能(或者说,指示的内容)仅为示例性说明,本申请并未特别限定,该调度信息#A功能可以与现有技术中用于指示上行传输的相关参数的信息(例如,下行控制信息或资源调度信息)的功能相似,例如,该调度信息#A也可以是现有技术中用于指示终端设备进行上行传输时所使用的相关参数的信息。
在本申请实施例中,该时频资源#A在频域上占用至少两个(即,M个)子频带,或者说,时频资源#A包括的RB在频域上位于至少两个子频带,或者说,时频资源#A包括的子载波在频域上位于至少两个子频带。
需要说明的是,本申请实施例中,“该时频资源#A在频域上占用至少两个(即,M个)子频带”可以是指:时频资源#A对应的频域资源分布在M个子频带中。
具体的说,在本申请实施例中,每个子频带上可以包括多个频域资源。
并且,在本申请实施例中,该时频资源#A可以包括多个频域资源。
其中,该时频资源#A中的多个频域资源由该M个子频带中的每个子频带上的频域资源构成。
例如,时频资源#A可以包括该M个子频带中的每个子频带中的部分频域资源。
或者,该时频资源#A可以包括该M个子频带中的每个子频带中的全部频域资源。
或者说,时频资源#A包括的位于该M个子频带中的子频带m上的频域资源,可以是该子频带m中的部分频域资源,m∈[1,M]。
或者,时频资源#A包括的位于该M个子频带中的子频带m上的频域资源,可以是该子频带m中的全部频域资源,m∈[1,M]。
即,在本申请实施例中,该时频资源#A占用至少两个子频带可以是指时频资源#A占用至少两个子频带中的全部资源。或者,该时频资源#A占用至少两个子频带也可以是指时频资源#A占用至少两个子频带中的部分资源。
作为示例而非限定,在本申请实施例中,可以通过一个调度信息#A指示该时频资源#A的大小(或者说,属于的子频带的数量)和位置。
或者,在本申请实施例中,可以通过P个(至少两个)调度信息#A指示该时频资源#A的大小(或者说,属于的子频带的数量)和位置。
此情况下,该P个调度信息#A中的每个调度信息#A指示的时频资源构成上述时频资源#A,或者说,该P个调度信息#A中的每个信息指示的时频资源所占用(或者说,属于)的子频带构成上述时频资源#A所占用于(或者说,属于)的子频带。
作为示例而非限定,在本申请实施例中,该P个调度信息#A中的任意两个信息指示的时频资源在频域是可以不互相重叠,即,上述时频资源#A在频域上可以被划分为P个部分,P个调度信息#A中的每个信息指示该P个部分中的一个部分。
或者,在本申请实施例中,该M个调度信息#A指示的时频资源在频域上可以具有嵌 套结构,例如,该P个调度信息#A中的一个信息可以指示时频资源#A的全部(或者说,时频资源#A所占用的全部子频带),该P个调度信息#A中的另一个信息可以指示时频资源#A的部分部(或者说,时频资源#A所占用的部分子频带)。
需要说明的是,在本申请实施例中,设该P个调度信息#A中的调度信息#A i指示的时频资源为时频资源i,则该调度信息#A i还可以指示在通过时频资源i传输数据时使用的传输参数,其中,i∈[1,P]。
作为示例而非限定,该传输参数可以包括但不限于:
在通过时频资源i传输数据时使用的调制编码方式、在通过时频资源i传输数据时使用的传输块大小、在通过时频资源i传输数据时使用的调制阶数、在通过时频资源i传输数据时使用的码率、在通过时频资源i传输数据时使用的冗余版本(Redundancy version,RV)、在通过时频资源i传输数据时使用的重传进程等。
不失一般性,以下,为了便于理解和说明,设该时频资源#A在频域上的带宽为80MHz,该时频资源#A包括4个(即,M的一例)子频带(以下,为了便于理解和说明,记做:子频带#1~子频带#4),每个子频带的带宽为20MHz。
在本申请实施例中,该时频资源#A可以包括用于承载上行数据的时频资源(以下,为了便于理解和区分,用于承载上行数据的时频资源记做:时频资源#E),并且,该时频资源#A可以包括用于承载上行控制信息的时频资源(以下,为了便于理解和区分,用于承载上行控制信息的时频资源记做:时频资源#D)。
作为示例而非限定,例如,当该上行控制信息包括反馈信息时,该时频资源#D的大小与时频资源#E的大小之间可以具有对应关系,或者说,该时频资源#D的大小可以是根据时频资源#E的大小确定的,或者说,该时频资源#D的大小可以是根据时频资源#E上传输的数据的码率和时频资源#D上传输的反馈信息的码率确定的,或者说,该时频资源#D的大小可以是由以时频资源#E的大小作为变量的函数确定的。
或者,作为示例而非限定,例如,当该上行控制信息包括反馈信息时,该时频资源#D的大小与时频资源#A的大小之间可以具有对应关系,或者说,该时频资源#D的大小可以是根据时频资源#A的大小确定的,或者说,该时频资源#D的大小可以是根据时频资源#A上传输的数据的码率和时频资源#A上传输的反馈信息的码率确定的,或者说,该时频资源#D的大小可以是由以时频资源#A的大小作为变量的函数确定的。
在本申请实施例中,时频资源#D的大小(例如,反馈信息占用的信道资源的大小,或反馈信息的调制符号的个数)可以是由上行数据传输的码率和高层配置的预设参数(即,第一系数的一例,以下,为了便于理解和区分,记做:系数β)来确定的,其中,系数β可以用于指示上行控制信息的码率与上行数据的码率之间的比例。
应理解,以上列举的作为时频资源#D的资源仅为示例性说明,本申请并未特别限定,该时频资源#D可以是承载上行控制信息所包括每种信息的资源的总和,或者,该时频资源#D可以是承载上行控制信息所包括任意一种信息的资源,或者,该时频资源#D可以是承载上行控制信息所包括任意多种信息的资源。
在本申请实施例中,该时频资源#D的大小可以与上述上行数据传输的码率和参数β具有映射关系,例如,该映射关系可以是指:该时频资源#D的大小可以是根据以上行数据传输的码率为变量的函数确定的,并且该参数β可以是函数中的一个常量。再例如,该 映射关系可以是指:可以预先设定映射关系表象,其中,该映射关系表项可以记录多种资源大小值与多种码率(或者,码率与参数β的组合)之间的一一映射关系。
作为示例而非限定,时频资源#D的大小可以基于以下公式1确定。在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Figure PCTCN2018085570-appb-000001
在上述公式1中,Q′表示时频资源#D的大小(或者说,反馈信息编码调制后的RE个数),O表示反馈信息的原始bit数,
Figure PCTCN2018085570-appb-000002
表示上行信道(或上行数据),例如,PUSCH的有效信息比特数(例如,原始比特与循环冗余校验(Cyclic Redundancy Check,CRC)比特之和),
Figure PCTCN2018085570-appb-000003
表示分配给上行信道(或上行数据),例如,PUSCH的频域资源(例如,上述时频资源#A对应的频域资源,例如,时频资源#A对应的子载波数量),
Figure PCTCN2018085570-appb-000004
表示分配给上行信道(或上行数据),例如,PUSCH的时域符号(例如,上述时频资源#A对应的时域资源,例如,时频资源#A对应的符号个数),即
Figure PCTCN2018085570-appb-000005
表示分配给上行信道(或上行数据),例如,PUSCH的总的时频资源(例如,上述时频资源#A)的大小(例如,时频资源#A对应的RE个数),
Figure PCTCN2018085570-appb-000006
表示时频资源#D(即,分配给反馈信息(即,上行控制信息)的资源)的最大值,
Figure PCTCN2018085570-appb-000007
表示上述系数β。
作为示例而非限定,
Figure PCTCN2018085570-appb-000008
可以表示终端设备#A实际使用的用于承载上行信道的频域资源(例如,子载波)的大小或数量。
需要说明的是,
Figure PCTCN2018085570-appb-000009
Figure PCTCN2018085570-appb-000010
的取值和/或含义可以相同,例如,
Figure PCTCN2018085570-appb-000011
Figure PCTCN2018085570-appb-000012
表示上行数据对应的传输块在第一次传输时被分配的频域资源;或者,
Figure PCTCN2018085570-appb-000013
Figure PCTCN2018085570-appb-000014
表示上行数据对应的传输块在当前传输时被分配的频域资源。
Figure PCTCN2018085570-appb-000015
Figure PCTCN2018085570-appb-000016
的取值和/或含义也可以不同,例如,
Figure PCTCN2018085570-appb-000017
表示上行数据对应的传输块在第一次传输时被分配的频域资源,
Figure PCTCN2018085570-appb-000018
表示上行数据对应的传输块在当前传输时被分配的频域资源。
由于上行控制信息和上行数据复用同一时频资源(例如,上述时频资源#A或时频资源#E)进行传输时使用的调制阶数相同,因此,从上述公式1可以看出,反馈信息的码率 与上行数据码率之间的比例可以为
Figure PCTCN2018085570-appb-000019
即,在本申请实施例中,时频资源#D的大小可以是
Figure PCTCN2018085570-appb-000020
Figure PCTCN2018085570-appb-000021
中较小的一方。
应理解,以上列举的终端设备#A确定时频资源#D的大小的方式仅为示例性说明,本申请并未限定于此,其他能够基于网络设备分配的时频资源,从该时频资源中估计用于承载上行控制信息的时频资源的大小的方法均落入本申请别的保护范围内。
从而,在S210,终端设备#A可以确定用于进行上行传输(例如,上行控制信息和/或上行数据)的频域资源#A,具体的说,终端设备#A可以确定该频域资源#A的大小(或者说,带宽)和位置,以及该频域资源#A包括的子频带的数量和位置。
在S220,终端设备#A可以对该时频资源#A(具体的说,是该时频资源#A包括的子频带,例如,上述子频带#1~子频带#4)进行检测(或者说,竞争或监听),以确定该子频带#1~子频带#4中该终端设备#A能够使用的子频带。作为示例而非限定,该“检测”可以包括信道空闲评测(Clear Channel Assessment,CCA),或者,该“检测”可以包括LBT。
需要说明的是,在本申请实施例中,终端设备#A可以以子频带为单位,进行检测,即,在本申请实施例中,终端设备#A可以在一次检测过程中检测一个子频带是否可用。
或者,在本申请实施例中,终端设备#A可以在一次检测过程中检测多个(至少两个)子频带是否可用。
或者,在本申请实施例中,终端设备#A可以在一次检测过程中检测时频资源#A包括的全部子频带是否可用。
作为示例而非限定,在本申请实施例中,终端设备#A可以基于CCA方式或LBT方式,进行上述检测(或者说,竞争或监听),并且,该过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
从而,在S220,终端设备#A能够从时频资源#A(具体的说,是该时频资源#A包括的子频带,例如,上述子频带#1~子频带#4)中,确定能够被该终端设备#A使用的时频资源(即,第二时频资源的一例,以下,为了便于理解和说明,记作:时频资源#B),其中,时频资源#B在频域上可以对应上述子频带#1~子频带#4中该终端设备#A能够使用的至少一个(即,K个)子频带,以下,为了便于理解和区分,记作:子频带#A,并且,该子频带#A可以包括一个(即,K的一例)子频带,也可以包括多个(即,K的另一例)子频带,本申请并未特别限定。
作为示例而非限定,例如,在本申请实施例中,当P个调度信息#A指示的频域资源具有嵌套结构时,该时频资源#A可以由P个调度信息#A中的一个信息(即,Q个调度信息的一例)指示。
再例如,在本申请实施例中,当该P个调度信息#A中的任意两个信息指示的频域资源可以不互相重叠时,该时频资源#A可以由P个调度信息#A中的多个信息(即,Q个调度信息的另一例)指示,例如,该时频资源#A可以由Q个部分组成,该Q个部分与Q个调度信息可以具有一一对应关系,每个部分由所对应的调度信息指示。
在S230,终端设备#A可以从该时频资源#B中确定用于承载上行控制信息#A的时频资源(即,第三时频资源的一例,以下,为了便于理解和区分,记作:时频资源#C)。
下面,对该时频资源#C的确定方法和过程进行详细说明。
作为示例而非限定,在本申请实施例中,终端设备#A可以采用以下任意一种方法确定该时频资源#C的大小。
方法1
可选地,在本申请实施例中,终端设备#A可以基于网络设备通过上述调度信息#A分配给终端设备#A的用于承载上行信道的时频资源(即,时频资源#A)的大小(例如,时频资源#A在频域上的大小与时频资源#A在时域上的大小的乘积),以及终端设备#A基于该时频资源#A确定时频资源#D时使用的系数β,确定时频资源#C。
或者,可选地,在本申请实施例中,终端设备#A可以基于网络设备通过上述调度信息#A分配给终端设备#A的用于承载上行数据的时频资源(即,时频资源#E)的大小(例如,时频资源#E在频域上的大小与时频资源#E在时域上的大小的乘积),以及终端设备#A基于该时频资源#E确定时频资源#D时使用的系数β,确定时频资源#C。
在本申请实施例中,该时频资源#C的大小可以与上述上行数据传输的码率(或者说,时频资源#A的大小)和参数β具有映射关系,例如,该映射关系可以是指:该时频资源#C的大小可以是根据以上行数据传输的码率(或者说,时频资源#A的大小)为变量的函数确定的,并且该参数β可以是函数中的一个常量。再例如,该映射关系可以是指:可以预先设定映射关系表象,其中,该映射关系表项可以记录多种资源大小值与多种码率(或者,码率与参数β的组合)之间的一一映射关系。
作为示例而非限定,终端设备#A可以基于上述公式1确定时频资源#C。
具体的说,终端设备#A可以基于上述公式1中使用的(或者说,用于确定时频资源#D)的各参数,确定时频资源#C的大小。
即,在本申请实施例中,设时频资源#C的大小为Q,则:
Figure PCTCN2018085570-appb-000022
从而,在终端设备实际能够使用的用于上行传输的时频资源的宽带(或者说,包括的子频带的数量)较网络设备调度的用于上行传输的时频资源的带宽变窄的情况下,在用于确定时频资源#C的公式中不使用终端设备#A实际竞争到的时频资源的大小,而使用调度信息#A中指示的时频资源#A(或时频资源#E)的大小,能够确保上行控制信息的传输的可靠性。
作为示例而非限定,
Figure PCTCN2018085570-appb-000023
可以表示终端设备#A实际使用的用于承载上行信道的频域资源(例如,子载波)的大小或数量。
需要说明的是,
Figure PCTCN2018085570-appb-000024
Figure PCTCN2018085570-appb-000025
的取值和/或含义可以相同,例如,
Figure PCTCN2018085570-appb-000026
Figure PCTCN2018085570-appb-000027
表示上行数据对应的传输块在第一次传输时被分配的频域资源;或者,
Figure PCTCN2018085570-appb-000028
Figure PCTCN2018085570-appb-000029
表示上行数据对应的传输块在当前传输时被分配的频域资源;或者,
Figure PCTCN2018085570-appb-000030
Figure PCTCN2018085570-appb-000031
表示上行数据对应的传输块在当前传输时实际用于承载上行信道的频域资源。
Figure PCTCN2018085570-appb-000032
Figure PCTCN2018085570-appb-000033
的取值和/或含义也可以不同,例如,
Figure PCTCN2018085570-appb-000034
表示上行数据对应的传输块在第一次传输时被分配的频域资源,
Figure PCTCN2018085570-appb-000035
表示上行数据对应的传输块在当前传输时实际用于承载上行信道的频域资源。
应理解,以上列举的终端设备#A确定时频资源#C的方法仅为示例性说明,本申请并未特别限定,例如,上述公式1中的
Figure PCTCN2018085570-appb-000036
的值也可以为固定值,并且,该
Figure PCTCN2018085570-appb-000037
的值可以是由网络设备预先确定并指示给终端设备#A的,或者,该
Figure PCTCN2018085570-appb-000038
的值也可以是由通信系统规定的,或者,
Figure PCTCN2018085570-appb-000039
表示上行数据对应的传输块在第一次传输时被分配的时域资源。
再例如,
Figure PCTCN2018085570-appb-000040
表示上行数据对应的传输块在第一次传输时被分配的频域资源,或者,
Figure PCTCN2018085570-appb-000041
也可以表示上述时频资源#A所占用的子频带的数量(例如,上述数量M),或者,
Figure PCTCN2018085570-appb-000042
的值也可以是基于上述时频资源#A所占用的子频带的数量(例如,上述数量M)确定的值,例如,
Figure PCTCN2018085570-appb-000043
可以是以M的值为变量的函数的函数值。
再例如,
Figure PCTCN2018085570-appb-000044
的值可以是上行数据对应的传输块在第一次传输时被分配的RE个数,或者,
Figure PCTCN2018085570-appb-000045
的值可以是通信系统规定的值,或者,
Figure PCTCN2018085570-appb-000046
的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#A该
Figure PCTCN2018085570-appb-000047
的值。
再例如,
Figure PCTCN2018085570-appb-000048
表示分配给上行信道(或者说,上行数据),例如PUSCH的频域资源(例如,上述时频资源#A对应的频域资源)中的部分资源。
再例如,
Figure PCTCN2018085570-appb-000049
表示分配给上行数据(或者说,PUSCH)的时域符号(例如,上述时频资源#A对应的时域资源)中的部分符号。
即,在本申请实施例中,
Figure PCTCN2018085570-appb-000050
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#A)中的部分时频资源。
应理解,以上列举的公式1仅为时频资源#C与时频资源#A的大小的映射关系的一例,本申请实施例并未限定于此,例如,在本申请实施例中,时频资源#C的大小也可以不受
Figure PCTCN2018085570-appb-000051
参数的限制,例如,时频资源#C的大小也可以根据以下公式2确定。
Figure PCTCN2018085570-appb-000052
其中,公式2和公式1中相同的符号或字符表示的含义可以相同,这里,为了避免赘述,省略其详细说明。
作为示例而非限定,该
Figure PCTCN2018085570-appb-000053
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#A)中占用M个字频带中的L个子频带的时频资源的大小值,其中,该L的值是通信系统规定的值,或者,该L的值也可以是网 络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#A该L的值。并且,该L个子频带在该M个子频带中的位置是通信系统规定的,或者该L个子频带在该M个子频带中的位置也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#A该L个子频带在该M个子频带中的位置。
方法2
在本申请实施例中,在终端设备#A中可以保存多个参数组与多个系数之间的映射关系,其中每个参数组包括一个时频资源大小(例如,RE个数)的值和一个系数的值。
其中,对于任意两个参数组,设该两个参数组为参数组#A和参数组#B,则该参数组#A和参数组#B之间存在以下关系:
设参数组#A包括的时频资源大小的值(例如,参数组#A包括的RE个数)为a1,设参数组#A包括的时频资源大小的值为a2,设参数组#B包括的时频资源大小的值(例如,参数组#B包括的RE个数)为b1,设参数组#B包括的时频资源大小的值为b2,则:
a1×a2≈b1×b2;或
|a1×a2-b1×b2|=Z,Z可以为预设值。
在本申请实施例中,上述时频资源#E的大小的值与系数β的值可以属于同一参数组。
或者,上述时频资源#A的大小的值与系数β的值可以属于同一参数组。
并且,在本申请实施例中,终端设备#A可以确定时频资源#B的大小的值所属于的参数组(以下,为了便于理解和区分,记作参数组#1)。
或者,终端设备#A可以确定时频资源#B中用于承载上行数据的时频资源(即,第六时频资源的大小,以下,为了便于理解和区分,记作:时频资源#F),此情况下,上述参数组#1也可以为该时频资源#F的大小的值所属于的参数组。
从而,终端设备#A可以确定参数组#1中的系数(即,第二系数的一例,以下,为了便于理解和区分,记作,系数β’)。
进而,终端设备#A可以基于该时频资源#F的大小和系数β’,确定时频资源#C的大小。
即,在本申请实施例中,设时频资源#C的大小为Q,则:
Figure PCTCN2018085570-appb-000054
其中,
Figure PCTCN2018085570-appb-000055
表示终端设备竞争到的时频资源中用于承载上行数据(或者说,PUSCH)的频域资源(例如,时频资源#B对应的频域资源,例如,子载波)的大小或数量,
Figure PCTCN2018085570-appb-000056
表示终端设备竞争到的时频资源中用于上行数据(或者说,PUSCH)的时域资源(例如,时频资源#B对应的时域资源,例如符号)的大小或数量,即
Figure PCTCN2018085570-appb-000057
表示终端设备竞争到的时频资源中承载上行数据(或者说,PUSCH)的总的时频资源(例如,时频资源#B,或者说,时频资源#B对应的RE)的大小或数量,
Figure PCTCN2018085570-appb-000058
表示上述系数β’。
Figure PCTCN2018085570-appb-000059
表示时频资源#D(即,分配给反馈信息(即,上行控制信息)的资源)的 最大值。
作为示例而非限定,
Figure PCTCN2018085570-appb-000060
可以表示终端设备#A实际使用的用于承载上行信道的频域资源(例如,子载波)的大小或数量,例如,
Figure PCTCN2018085570-appb-000061
可以与
Figure PCTCN2018085570-appb-000062
的值相同。
应理解,以上列举的终端设备#A确定时频资源#C的方法仅为示例性说明,本申请并未特别限定,例如,上述
Figure PCTCN2018085570-appb-000063
的值也可以为固定值,并且,该
Figure PCTCN2018085570-appb-000064
的值可以是由网络设备预先确定并指示给终端设备#A的,或者,该
Figure PCTCN2018085570-appb-000065
的值也可以是由通信系统规定的。
再例如,
Figure PCTCN2018085570-appb-000066
也可以表示上述时频资源#B所占用的子频带的数量(例如,上述数量K),或者,
Figure PCTCN2018085570-appb-000067
的值也可以是基于上述时频资源#B所占用的子频带的数量(例如,上述数量K)确定的值,例如,
Figure PCTCN2018085570-appb-000068
可以是以K的值为变量的函数的函数值。
再例如,
Figure PCTCN2018085570-appb-000069
的值可以是通信系统规定的值,或者,
Figure PCTCN2018085570-appb-000070
的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#A该
Figure PCTCN2018085570-appb-000071
的值。
再例如,
Figure PCTCN2018085570-appb-000072
表示终端设备竞争到的频域资源(例如,上述时频资源#B对应的频域资源)中的部分资源。
再例如,
Figure PCTCN2018085570-appb-000073
表示终端设备竞争到的时域符号(例如,上述时频资源#B对应的时域资源)中的部分符号。
即,在本申请实施例中,
Figure PCTCN2018085570-appb-000074
表示终端设备竞争到的总的时频资源(例如,上述时频资源#B)中的部分时频资源。
作为示例而非限定,该
Figure PCTCN2018085570-appb-000075
表示终端设备竞争到的总的时频资源(例如,上述时频资源#B)中占用K个字频带中的L个子频带的时频资源的大小值,其中,该L的值是通信系统规定的值,或者,该L的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#A该L的值。并且,该L个子频带在该M个子频带中的位置是通信系统规定的,或者该L个子频带在该M个子频带中的位置也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#A该L个子频带在该M个子频带中的位置。
可选地,在本申请实施例中,在终端设备#A中可以保存多个参数组与多个门限值之间的映射关系,其中每个参数组包括一个时频资源大小(例如,RE个数)的值和一个门限。
从而,终端设备#A可以将于上述时频资源#B的大小的值所属于的参数组中的门限值作为上述公式中的
Figure PCTCN2018085570-appb-000076
的值。
作为示例而非限定,在本申请实施例中,终端设备#A可以根据上述时频资源#D的大小(例如,时频资源#D包括的RE的数量,或者说,时频资源#D能够承载的调制符号的数量),确定该时频资源#C的大小(例如,时频资源#C包括的RE的数量,或者说,时频资源#C能够承载的调制符号的数量),以使该时频资源#C的大小与时频资源#D的大小之间的差异在预设的范围内。
设该时频资源#C的大小为X,设时频资源#D的大小为Y,则,在本申请实施例中, 例如,X>Y;
或者,X=Y;
或者,0<Y-X≤W。
其中,W可以为预设值,例如,在本申请实施例中,该W的值可以是通信系统规定的,或者,该W的值可以是网络设备确定并通过例如,无线资源控制(Radio Resource Control,RRC)信令预先指示给终端设备的。
或者,W可以为根据X(或Y)以及预设的比例值Z确定的,即,W=Y·Z,该Z的值可以是通信系统规定的,或者,该Z的值可以是网络设备确定并通过例如,RRC信令预先指示给终端设备的。
从而,在终端设备实际能够使用的用于上行传输的时频资源的宽带(或者说,包括的子频带的数量)较网络设备调度的用于上行传输的时频资源的带宽变窄的情况下,通过使用于承载上行控制信息(例如,HARQ反馈信息)的时频资源(即,时频资源#C)的大小与网络设备调度的用于承载上行控制信息的时频资源(例如,时频资源#D)的大小相同或近似相同,能够确保上行控制信息的解调性能。
方法3
可选地,在本申请实施例中,终端设备#A可以基于网络设备发送的上述调度信息#A,确定调度信息#A调度的上行数据的码率(即,码率#A),以及终端设备可以根据码率#A和系数β,确定时频资源#C。
其中,系数β可以是高层配置的参数,或者,系数β是网络设备通过物理层信令指示的,或者,系数β是通信系统规定的。
其中,系数β可以用于指示上行控制信息的码率与上行数据的码率之间的比例。
由此,在S230,终端设备#A能够确定用于承载上行控制信息#A的时频资源#C的大小。
并且,在S230,终端设备#A还可以根据如上所述确定的时频资源#C的大小,从上述时频资源#B中,确定时频资源#C(具体的说,是时频资源#C包括的RE)的具体位置。
作为示例而非限定,在本申请实施例中,终端设备#A可以基于时频资源#B中用于承载参考信号的符号(以下,为了便于理解和说明,记作符号#1)的位置,确定时频资源#C对应的符号(以下,为了便于理解和说明,记作符号#2)。
例如,在本申请实施例中,终端设备#A可以将与符号#1相邻的符号,作为符号#2。
并且,当与符号#1相邻的符号上的RE的总数小于如上所述确定的时频资源#C的大小(即,时频资源#C包括的RE数量)时,终端设备还可以将与符号#1之间的偏移量小于或等于预设的阈值K的符号(以下,为了便于理解和说明,记作符号#3),作为符号#2。
例如,终端设备可以将与符号#1相邻的连续的K+1个符号作为符号#2。
并且,作为示例而非限定,在本申请实施例中,终端设备#A可以优先从时频资源B中频率较低的位置上的时频资源作为使时频资源#C。
图3示出了网络设备#A分配给终端设备#A的时频资源#A中,用于承载上行控制信息的时频资源(即,时频资源#D)的图案,和用于承载上行数据的时频资源(即,时频资源#E)的图案;并且,图3示出了终端设备#A实际竞争到的时频资源#B中,用于承载上行控制信息的时频资源(即,时频资源#C)的图案,和用于承载上行数据的时频资源(即, 时频资源#F)的图案。
如图3所示,时频资源#C的符号相对于参考信号的符号的位置关系可以与时频资源#D的符号相对于参考信号的符号的位置关系相对应。并且,时频资源#C在时频资源#B中的频域位置与时频资源#D在时频资源#A中的频域位置相对应,例如,时频资源C在频域上位于时频资源#B的频率较低的位置。
并且,如图3所示,时频资源#C的大小与时频资源#D的大小可以相同。例如,时频资源#C占用的子频带的数量与时频资源#D占用的子频带的数量可以相同,并且,时频资源#C占用的符号的数量可以与时频资源#D占用的符号的数量相同。
应理解,图3中列举的时频资源#C在时频资源#B中的位置仅为示例性说明,本申请并未限定于此,例如,如图4所示,在本申请实施例子中,时频资源#C占用的子频带的数量可能小于时频资源#D占用的子频带的数量,此情况下,时频资源#C占有的符号可以大于时频资源#D占用的符号。
应理解,图3和图4中示出的终端设备竞争到的子频带仅为示例性说明,本申请并未特别限定。
在S240,终端设备#A可以通过时频资源#B与网络设备#A进行上行传输,即,终端设备#A可以通过时频资源#C向网络设备#A发送上行控制信息#A。
并且,作为示例而非限定,终端设备#A还可以通过时频资源#F向网络设备#A发送上行数据(以下,为了便于理解和说明,记作:数据#A),其中,该数据#A可以是终端设备#A计划通过时频资源#A传输的上行数据中的全部数据,或者该数据#A可以是终端设备#A计划通过时频资源#A传输的上行数据中的部分数据,本申请并未特别限定。
在本申请实施例中,在终端设备#A中还可以存储映射关系表,该映射关系表可以用于指示多个参数组和多个传输块大小(Transport Block Size,TBS)之间的映射关系,其中,每个参数组包括一个RB数量值和一个MCS值。
并且,如上所述,调度信息还可以用于指示RB数量#A和MCS#A,从而,终端设备#A可以基于该RB数量#A和MCS#A,从映射关系表中查找与RB数量#A和MCS#A所属于的参数组对应的TBS(以下,为了便于理解和说明,记作TBS#A)。
即,该TBS#A可以是网络设备#A分配给终端设备#A的用于进行上行传输的TBS。
例如,终端设备#A可以基于该TBS#A和MCS#A,通过时频资源#B向网络设备#A发送数据#A和上行控制信息#A。其中,该过程可以与现有技术通信设备(网络设备或终端设备)基于TBS和MCS传输数据的方法和过程相似,这里,为了避免赘述,省略其详细说明。
再例如,终端设备#A可以基于该TBS#A和重新确定的MCS(以下,为了便于理解和区分,记作MCS#A’),通过时频资源#B向网络设备#A发送数据#A和上行控制信息#A。
即,在本申请实施例中,时频资源#B包括的RB数量(以下,为了便于理解和说明,记作:RB数量#A’)小于时频资源#A包括的RB的数量(即,RB数量#A),即,终端设备#A上行传输过程中所能够使用的资源的数量减小,因此,终端设备#A可以提高针对上行传输的调制阶数(即,使用MCS#A’对应的调制阶数,以下,为了便于理解和说明,记作调制阶数#A’),以使终端设备#A通过时频资源#B和MCS#A’进行上行传输时使用 的码率低于终端设备#A通过时频资源#B和MCS#A进行上行传输时使用的码率。
此情况下,终端设备#A还可以向网络设备#A发送该调制阶数#A’的指示信息,从而,网络设备#A能够确定该调制阶数#A’,并基于该调制阶数#A’和该TBS#A,对通过子频带#A接收到的信号进行解析,以获取数据#A,其中,该过程可以与现有技术通信设备(网络设备或终端设备)基于TBS和调制阶数对信号进行解析以获取数据的方法和过程相似,这里,为了避免赘述,省略其详细说明。
可选地,在本申请实施例中,终端设备#A还可以确定时频资源#B包括的RB数量,以下,为了便于理解和说明,记作:RB数量#A’。
并且,终端设备#A可以基于该MCS#A和RB数量#A’,从映射关系表中查找与RB数量#A’和MCS#A所属于的参数组对应的TBS(以下,为了便于理解和说明,记作TBS#A’)。
从而,在本申请实施例中,终端设备#A可以基于该TBS#A’,通过时频资源#B与网络设备#A进行上行传输。
此情况下,终端设备#A还可以向网络设备#A发送该TBS#A’的指示信息,从而,网络设备#A能够确定该TBS#A’,并基于该TBS#A’,对通过子频带#A接收到的信号进行解析,以获取数据#A,其中,该过程可以与现有技术通信设备(网络设备或终端设备)基于TBS对信号进行解析以获取数据的方法和过程相似,这里,为了避免赘述,省略其详细说明。
需要说明的是,在本申请实施例中,在使用TBS#A’传输数据#A时,所使用的调制阶数可以是上述调制阶数#A,也可以是基于TBS#A’确定的与该调制阶数#A相异的调制阶数,本申请并未特别限定。
作为示例而非限定,终端设备#A可以基于以下方式1或方式2,通过时频资源#C与网络设备#A传输上行控制信息#A。
方式1
在本申请实施例中,终端设备#A可以向网络设备#A发送信息#1(即,第三时频资源的指示信息的一例),作为示例而非限定,在本申请实施例中,该信息#1可以用于指示时频资源#C对应的子频带的数量,该信息#1可以用于指示时频资源#C对应的子频带的位置。
从而,网络设备#A能够基于该信息#1,确定频域资源#A中承载有该终端设备#A发送的上行控制信息(即,上行控制信息#A)的子频带。
进而,网络设备#A可以仅在信息#1指示的子频带上接收终端设备#A发送的上行控制信息,能够减小网络设备的处理负担。这里,网络设备#A通过资源接收控制信息的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
作为示例而非限定,在本申请实施例中,该终端设备#A可以通过时频资源#B(例如,时频资源#C)向网络设备#A发送信息#1。
或者说,在本申请实施例中,该终端设备#A可以通过时频资源#B向网络设备#A随路发送信息#1和上行控制信息#A双方。
其中,上述“随路发送”可以是指,在本申请实施例中,时频资源#B(例如,时频资源#C)可以对应多个时频资源单元(Resouce Element,RE),终端设备#A可以通过给多 个RE中的一部分RE发送上行控制信息#A,并且,终端设备#A可以通过给多个RE中的另一部分RE发送信息#1。
应理解,以上列举的终端设备#A向网络设备#A发送信息#1使用的资源仅为示例性说明,本申请并未特别限定,例如,在本申请实施例中,通信系统还可以设置有预留资源,该预留资源被禁止用于数据传输,或者说,该预留资源可以仅用于网络设备和终端设备的信令传输,从而,终端设备#A可以通过该预留资源中的部分或全部资源向网络设备#A发送信息#1。
方式2
终端设备#A可以通过该时频资源#B发送上行控制信息#A和参考信号#A。例如,时频资源#B中的每个子带上均承载有参考信号#A。
从而,网络设备#A能够通过检测该参考信号#A,确定该频域资源#A中承载有该终端设备#A发送的上行控制信息#A)的频域资源,即,时频资源#B包括的子频带。
进而,网络设备#A可以仅在时频资源#B包括的子频带上解析终端设备#A发送的信息,能够减小网络设备的处理负担。这里,网络设备#A基于参考信号解析数据的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
方式3
当该时频资源#A由P个(至少两个)调度信息#A指示时,终端设备#A可以确定该P个调度信息#A中用于指示时频资源#C的信息(以下,为了便于理解,记作:信息#A_1),并且,终端设备#A可以向网络设备#A上报该信息#A_1的指示信息(即,第三指示信息的一例),从而,网络设备#A能够根据该信息#A_1的指示信息,确定终端设备#A使用该信息#A_1指示的时频资源(或者说,该信息#A_1指示的时频资源属于的子频带)传输上行控制信息。
类似地,在本申请实施例中,终端设备#A还可以向网络设备#A发送信息#2(即,第二时频资源的指示信息的一例),作为示例而非限定,在本申请实施例中,该信息#2可以用于指示时频资源#B对应的子频带的数量,该信息#2可以用于指示时频资源#B对应的子频带的位置。
从而,网络设备#A能够基于该信息#2,确定频域资源#A中承载有该终端设备#A发送的上行信息(例如,上行控制信息和/或上行数据)的子频带。
进而,网络设备#A可以仅在信息#2指示的子频带上接收终端设备#A发送的上行信息,能够减小网络设备的处理负担。这里,网络设备#A通过资源接收信息的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
作为示例而非限定,在本申请实施例中,该终端设备#A可以通过时频资源#B向网络设备#A发送信息#2。
或者说,在本申请实施例中,该终端设备#A可以通过时频资源#B向网络设备#A随路发送信息#2和上行信息双方。
其中,上述“随路发送”可以是指,在本申请实施例中,时频资源#B可以对应多个时频资源单元RE,终端设备#A可以通过给多个RE中的一部分RE发送上行信息,并且,终端设备#A可以通过给多个RE中的另一部分RE发送信息#2。
应理解,以上列举的终端设备#A向网络设备#A发送信息#2使用的资源仅为示例性 说明,本申请并未特别限定,例如,在本申请实施例中,通信系统还可以设置有预留资源,该预留资源被禁止用于数据传输,或者说,该预留资源可以仅用于网络设备和终端设备的信令传输,从而,终端设备#A可以通过该预留资源中的部分或全部资源向网络设备#A发送信息#2。
根据本申请实施例的传输上行控制信息的方法,通过将基于竞争机制使用的系统频域资源划分为多个子频带,并且,当终端设备在确定网络设备分配的第一频域资源之后,在需要进行上行传输之前,对该第一频域资源包括的至少两个子频带进行检测,能够使终端设备从该至少两个子频带中确定该终端设备能够使用的第二频域资源,并通过该第二上行频域资源进行上行数据传输,即,较现有技术相比,终端设备无需在确定该第一频域资源的全部带宽范围内的资源均被使用的情况下,才能够使用第一频域资源进行无线通信,从而,能够提高终端设备能够使用该第一频域资源(具体的说,是第一频域资源中的部分子频带)进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
并且,该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
另外,在本申请实施例中,该时频资源#B可以对应至少一个TTI(以下,为了便于理解和说明,记做:TTI#A)。
在本申请实施例中,TTI#A可以包括至少两个时域起点,以下,为了便于理解和说明,记做时域起点#A和时域起点#B。
在本申请实施例中,该时频资源#B在时域上的起点可以位于该时域起点#A,或者,该时频资源#B在时域上的起点可以位于该时域起点#B。
并且,在本申请实施例中,该时频资源#C在时域上的位置可以位于时域起点#A和时域起点#B之间,或者,该时频资源#C在时域上的位置可以位于时域起点#B之后。
下面,结合图5对本申请实施例的传输上行控制信息的方法300进行详细说明。
图5示意性示出了终端设备#B(即,终端设备的一例)与网络设备#B(即,网络设备的一例)之间传输上行控制信息#B(即,上行控制信息的一例,例如,反馈信息、CQI信息、RI信息或PMI信息中的一种或多种)的过程。
如图5所示,在310,网络设备#B可以从上述系统时频资源中为终端设备#B分配用于传输上行传输(例如,传输上行控制信息)的时频资源#1。
作为示例而非限定,该时频资源#1在时域上可以对应至少一个TTI,(以下,为了便于理解和说明,记做:TTI#1)
其中,网络设备确定该时频资源#1的方法和过程可以与现有技术相同,这里,为了 避免赘述,省略其详细说明。
并且,在本申请实施例中,网络设备#B可以通过调度信息#B(即,调度信息的一例,例如,下行控制信息)指示终端设备#B可以通过该时频资源#1进行上行传输。
在本申请实施例中,该时频资源#1的使用方式可以是基于调度的方式,也可以是基于免调度的方式,本申请并未特别限定。
例如,当时频资源#1的使用方式可以是基于调度的方式时,该时频资源#1可以是网络设备#B在确定终端设备#B需要进行上行传输(例如,传输上行控制信息)之后为该终端设备#B分配的,并且,该调度信息#B可以是网络设备#B在确定终端设备#B需要进行上行传输之后发送给该终端设备#B的。
再例如,当时频资源#1的使用方式可以是基于免调度的方式时,该时频资源#1可以是网络设备#B在确定终端设备#B需要进行上行传输(例如,传输上行控制信息)之前为该终端设备#B分配的,并且,该调度信息#B可以是网络设备#B在确定终端设备#B需要进行上行传输之前发送给该终端设备#B的。
作为示例而非限定,在本申请实施例中,该调度信息#B可以指示上述时频资源#1的大小,例如,该调度信息#B可以指示上述时频资源#1的大小,例如,该调度信息#B可以指示时频资源#1包括的RB的数量,为了便于理解和说明,记作:RB数量#1;或者,该调度信息#B可以指示时频资源#1对应的频域资源的大小(或者说,带宽),例如,该调度信息#B可以指示时频资源#1包括的子载波的数量;或者,该调度信息#B可以指示时频资源#1对应的时域资源的大小,例如,该调度信息#B可以指示时频资源#1包括的符号的数量。或者,该调度信息#B可以指示时频资源#1对应的TTI。
作为示例而非限定,在本申请实施例中,该调度信息#B还可以时频资源#1对应的频域资源在频域上的位置。
作为示例而非限定,在本申请实施例中,该调度信息#B还可以时频资源#1对应的时域资源在时域上的位置。
作为示例而非限定,在本申请实施例中,该调度信息#B还可以指示终端设备在使用该频域资源#1进行上行传输时使用的调制与编码策略(Modulation and Coding Scheme,MCS),为了便于理解和说明,记作:MCS#1。
应理解,以上列举的该调度信息#B功能(或者说,指示的内容)仅为示例性说明,本申请并未特别限定,该调度信息#B功能可以与现有技术中用于指示上行传输的相关参数的信息(例如,下行控制信息或资源调度信息)的功能相似,例如,该调度信息#B也可以是现有技术中用于指示终端设备进行上行传输时所使用的相关参数的信息。
在本申请实施例中,该TTI#1包括至少两个时域起始点(以下,为了便于理解和说明,记做时域起始点#α和时域起始点#β)。
可选地,在本申请实施例中,该时频资源#1在频域上包括至少两个(即,M个)子频带。
即,在本申请实施例中,该TTI#1包括两个候选时频资源,该两个候选时频资源为时频资源#1或时频资源#2,其中,该时频资源#1的时域起点为时域起始点#α,该时频资源#2的时域起点为时域起始点#β,该时频资源#2的时域起始点#β晚于该时频资源#1的时域起始点#α。
可选地,该时频资源#2为该时频资源#1中的部分资源。
作为示例而非限定,时域起始点#α位于该TTI#1中,例如,时域起始点#α为符号#0的起始边界对应的时刻、符号#0中距离符号#0的起始边界的时间长度为预设值#1(例如,25微秒(us))的时刻、符号#0中距离符号#0的起始边界的时间长度为预设值#2(例如,25us与定时提前量(timing advance,TA)的长度之和)的时刻以及符号#1的起始边界对应的时刻等四种情况中的一种。可选地,该调度信息#B还可以指示终端设备的时域起始点#α的位置。
作为示例而非限定,时域起始点#β位于该TTI#1中,例如,时域起始点#β为符号#7的起始边界对应的时刻。
可选地,在本申请实施例中,该时频资源#1在频域上包括一个子频带。
作为示例而非限定,在本申请实施例中,可以通过一个调度信息#B指示该频域资源#1的大小(或者说,属于的子频带的数量)和位置。
或者,在本申请实施例中,可以通过P个(至少两个)调度信息#B指示该频域资源#1的大小(或者说,属于的子频带的数量)和位置。
此情况下,该P个调度信息#B中的每个调度信息#B指示的频域资源构成上述频域资源#1,或者说,该P个调度信息#B中的每个信息指示的频域资源所属于(或者说,对应)的子频带构成上述频域资源#1所属于(或者说,对应)的子频带。
作为示例而非限定,在本申请实施例中,该P个调度信息#B中的任意两个信息指示的频域资源可以不互相重叠,即,上述频域资源#1可以被划分为P个部分,P个调度信息#B中的每个信息指示该P个部分中的一个部分。
或者,在本申请实施例中,该M个调度信息#B指示的频域资源可以具有嵌套结构,例如,该P个调度信息#B种的一个信息可以指示频域资源#1的全部(或者说,频域资源#1所属于的全部子频带),该P个调度信息#B种的另一个信息可以指示频域资源#1的部分部(或者说,频域资源#B所属于的部分子频带)。
需要说明的是,在本申请实施例中,设该P个调度信息#B中的调度信息#B i指示的时频资源为时频资源i,则该调度信息#B i还可以指示在通过时频资源i传输数据时使用的传输参数,其中,i∈[1,P]。
作为示例而非限定,该传输参数可以包括但不限于:
在通过时频资源i传输数据时使用的调制编码方式、在通过时频资源i传输数据时使用的传输块大小、在通过时频资源i传输数据时使用的调制阶数、在通过时频资源i传输数据时使用的码率、在通过时频资源i传输数据时使用的RV、在通过时频资源i传输数据时使用的重传进程等。
在本申请实施例中,该时频资源#1可以包括用于承载上行数据的时频资源(以下,为了便于理解和区分,记做:时频资源#5),并且,该时频资源#1可以包括用于承载上行控制信息的时频资源(以下,为了便于理解和区分,记做:时频资源#4)。
可选地,在本申请实施例中,网络设备或终端设备确定用于承载上行控制信息的该时频资源#4的方法和过程可以与现有技术中当上行数据信息和上行控制信息复用在上行共享信道PUSCH上传输时网络设备或终端设备确定用于承载上行控制信息的时频资源的方法和过程相同;或者,网络设备或终端设备确定用于承载上行控制信息的该时频资源#4 的方法和过程可以与现有技术中仅有上行控制信息复用在上行共享信道PUSCH上传输时网络设备或终端设备确定用于承载上行控制信息的时频资源的方法和过程相同。
可选地,在本申请实施例中,该时频资源#4为该时频资源#1中的部分或全部资源。
可选地,在本申请实施例中,该时频资源#4为该时频资源#2中的部分或全部资源。
可选地,在本申请实施例中,该时频资源#4为该时频资源#1中的部分或全部资源,并且,该时频资源#4为该时频资源#2中的部分或全部资源。
可选地,在本申请实施例中,网络设备或终端设备确定用于承载上行控制信息的该时频资源#4大小的方法可以与现有技术中当上行数据信息和上行控制信息复用在上行共享信道PUSCH上传输时网络设备或终端设备确定用于承载上行控制信息的时频资源大小的方法相同或相似;或者,网络设备或终端设备确定用于承载上行控制信息的该时频资源#4大小的方法可以与现有技术中仅有上行控制信息复用在上行共享信道PUSCH上传输时网络设备或终端设备确定用于承载上行控制信息的时频资源大小的方法相同或相似。
需要说明的是,在现有技术中,当不同的上行控制信息在使用PUSCH进行传输时,或者,当使用PUSCH传输的上行控制信息的传输方式不同(上行控制信息和上行数据信息复用传输,或上行控制信息单独传输)时,网络设备或终端设备确定用于承载该上行控制信息的时频资源的大小的方法可以不同。
作为示例而非限定,在本申请实施例中,该时频资源#4的大小与时频资源#1的大小之间可以具有对应关系,或者说,该时频资源#4的大小可以是根据时频资源#1的大小确定的,或者说,该时频资源#4的大小可以是根据时频资源#1上传输的数据的码率和时频资源#1上传输的上行控制信息的码率确定的,或者说,该时频资源#4的大小可以是由以时频资源#1的大小作为变量的函数确定的。其中,该上行控制信息包括混合自动重传HARQ反馈信息、信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一种。可选的,CQI信息和PMI信息可以联合编码,也可以独立编码。
作为示例而非限定,在本申请实施例中,当该上行控制信息包括CQI信息和/或PMI信息,且该上行控制信息还包括混合自动重传HARQ反馈信息和RI信息中的至少一种时,用于传输HARQ反馈信息或RI信息的时频资源的大小可以是根据时频资源#1上传输的CQI信息和/或PMI信息的码率和时频资源#1上传输的该HARQ反馈信息或该RI信息的码率确定的。
作为示例而非限定,例如,当该上行控制信息包括反馈信息时,该时频资源#4的大小与时频资源#5的大小之间可以具有对应关系,或者说,该时频资源#4的大小可以是根据时频资源#5的大小确定的,或者说,该时频资源#4的大小可以是根据时频资源#5上传输的数据的码率和时频资源#4上传输的反馈信息的码率确定的,或者说,该时频资源#4的大小可以是由以时频资源#5的大小作为变量的函数确定的。
或者,作为示例而非限定,例如,当该上行控制信息包括反馈信息时,该时频资源#4的大小与时频资源#1的大小之间可以具有对应关系,或者说,该时频资源#4的大小可以是根据时频资源#1的大小确定的,或者说,该时频资源#4的大小可以是根据时频资源#1上传输的数据的码率和时频资源#1上传输的反馈信息的码率确定的,或者说,该时频资源#4的大小可以是由以时频资源#1的大小作为变量的函数确定的。
在本申请实施例中,时频资源#4的大小(或者说,反馈信息占用的信道资源的大小, 或反馈信息的调制符号的个数)可以是由上行数据传输的码率和高层配置的预设参数(即,第一系数的一例,以下,为了便于理解和区分,记做:系数β)来确定的,其中,系数β可以用于指示上行控制信息的码率与上行数据的码率之间的比例。
作为示例而非限定,时频资源#4的大小可以基于公式A确定。
Figure PCTCN2018085570-appb-000077
在上述公式A中,Q′表示时频资源#4的大小(或者说,反馈信息编码调制后的符号个数),O表示反馈信息的原始bit数,
Figure PCTCN2018085570-appb-000078
表示上行数据(或者说,PUSCH)的有效信息比特数(例如,原始比特与循环冗余校验(Cyclic Redundancy Check,CRC)比特之和),
Figure PCTCN2018085570-appb-000079
表示分配给上行数据(或者说,PUSCH)的频域资源(例如,上述时频资源#1对应的频域资源,例如,时频资源#1对应的子载波的数量),
Figure PCTCN2018085570-appb-000080
表示分配给上行数据(或者说,PUSCH)的时域符号(例如,上述时频资源#1对应的时域资源,例如,时频资源#1对应的符号的数量),即
Figure PCTCN2018085570-appb-000081
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#1)的大小(例如,时频资源#1对应的RE个数),
Figure PCTCN2018085570-appb-000082
表示时频资源#4(即,分配给反馈信息(即,上行控制信息)的资源)的最大值,
Figure PCTCN2018085570-appb-000083
表示上述系数β。
作为示例而非限定,
Figure PCTCN2018085570-appb-000084
可以表示终端设备#B实际使用的用于承载上行信道的频域资源(例如,子载波)的大小或数量。
需要说明的是,
Figure PCTCN2018085570-appb-000085
Figure PCTCN2018085570-appb-000086
的取值和/或含义可以相同,例如,
Figure PCTCN2018085570-appb-000087
Figure PCTCN2018085570-appb-000088
表示上行数据对应的传输块在第一次传输时被分配的频域资源;或者,
Figure PCTCN2018085570-appb-000089
Figure PCTCN2018085570-appb-000090
表示上行数据对应的传输块在当前传输时被分配的频域资源;或者,
Figure PCTCN2018085570-appb-000091
Figure PCTCN2018085570-appb-000092
表示上行数据对应的传输块在当前传输时实际用于承载上行信道的频域资源。
Figure PCTCN2018085570-appb-000093
Figure PCTCN2018085570-appb-000094
的取值和/或含义也可以不同,例如,
Figure PCTCN2018085570-appb-000095
表示上行数据对应的传输块在第一次传输时被分配的频域资源,
Figure PCTCN2018085570-appb-000096
表示上行数据对应的传输块在当前传输时实际用于承载上行信道的频域资源。
由于上行控制信息和上行数据复用同一时频资源(例如,上述时频资源#1)进行传输时使用的调制阶数相同,因此,从上述公式A可以看出,反馈信息的码率与上行数据码 率之间的比例可以为
Figure PCTCN2018085570-appb-000097
即,在本申请实施例中,时频资源#4的大小可以是
Figure PCTCN2018085570-appb-000098
Figure PCTCN2018085570-appb-000099
中较小的一方。
应理解,以上列举的终端设备#B确定时频资源#4的大小的方式仅为示例性说明,本申请并未限定于此,其他能够基于网络设备分配的时频资源,从该时频资源中估计用于承载上行控制信息的时频资源的大小的方法均落入本申请别的保护范围内。
从而,在S310,终端设备#B可以确定用于进行上行传输(例如,上行控制信息和/或上行数据)的时频资源#1在频域上占用的资源(记做,频域资源#1),具体的说,终端设备#B可以确定该频域资源#1的大小(或者说,带宽)和位置,以及该频域资源#1包括的子频带的数量和位置。
并且,在S310,终端设备#B可以确定用于进行上行传输(例如,上行控制信息和/或上行数据)的时频资源#1在时域上占用的资源,例如,该TTI#1,具体的说,终端设备#B可以确定该TTI#1在时域上位置。
并且,在S310或S310之前,终端设备#B可以生成编码后的数据包,该数据包可以包括编码后的上行数据。并且,在S310或S310之前,终端设备#B可以生成上行控制信息。
在S320,终端设备#B可以对该时频资源#1(具体的说,是该频域资源#1包括的子频带,例如,上述子频带#1~子频带#4)进行检测(或者说,竞争或监听),以确定该子频带#1~子频带#4中该终端设备#B能够使用的子频带。作为示例而非限定,该“检测”可以包括信道空闲评测(Clear Channel Assessment,CCA),或者,该“检测”可以包括LBT。
需要说明的是,在本申请实施例中,终端设备#B可以以子频带为单位,进行检测,即,在本申请实施例中,终端设备#B可以在一次检测过程中检测一个子频带是否可用。
或者,在本申请实施例中,终端设备#B可以在一次检测过程中检测多个(至少两个)子频带是否可用。
或者,在本申请实施例中,终端设备#B可以在一次检测过程中检测时频资源#1包括的全部子频带是否可用。
作为示例而非限定,在本申请实施例中,终端设备#B可以基于CCA方式或LBT方式,进行上述检测(或者说,竞争或监听),并且,该过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
从而,在S320,终端设备#B能够从时频资源#1(具体的说,是该时频资源#1包括的子频带,例如,上述子频带#1~子频带#4)中,确定能够被该终端设备#B使用的时频资源(以下,为了便于理解和说明,记作:时频资源#2),其中,时频资源#2在频域上可以对应上述子频带#1~子频带#4中该终端设备#B能够使用的至少一个(即,K个)子频带,以下,为了便于理解和区分,记作:子频带#A,并且,该子频带#A可以包括一个(即,K的一例)子频带,也可以包括多个(即,K的另一例)子频带,本申请并未特别限定。
作为示例而非限定,例如,在本申请实施例中,当P个调度信息#B指示的频域资源 具有嵌套结构时,该时频资源#1可以由P个调度信息#B中的一个信息(即,Q个调度信息的一例)指示。
再例如,在本申请实施例中,当该P个调度信息#B中的任意两个信息指示的频域资源可以不互相重叠时,该时频资源#1可以由P个调度信息#B中的多个信息(即,Q个调度信息的另一例)指示,例如,该时频资源#1可以由Q个部分组成,该Q个部分与Q个调度信息可以具有一一对应关系,每个部分由所对应的调度信息指示。
在本申请实施例中,该时频资源#2的时域起点可以是指:在TTI#1的时域起点中、位于终端设备#B竞争到的时频资源的时域起点之前的、距离终端设备#B竞争到的时频资源的时域起点最近的时域起点。
并且,在本申请实施例中,该时频资源#2的时域起点可以位于该TTI#1的任意一个时域起点上。
例如,如图6示,该时频资源#2可以是TTI#1中的时隙#1中的时频资源。
可选地,在S320,终端设备#B可以对该候选时频资源(具体的说,是该TTI#1包括的两个候选时域起点,例如,上述时域起始点#α和时域起始点#β)进行检测(或者说,竞争或监听),并根据检测结果确定该时域起始点#α或时域起始点#β,从而确定该终端设备#B能够使用的候选时频资源(例如,时频资源#1或时频资源#2)。作为示例而非限定,该“检测”可以包括信道空闲评测(Clear Channel Assessment,CCA),或者,该“检测”可以包括LBT。
可选地,终端设备#B根据检测的结果,确定能够使用的候选时频资源,包括:终端设备#B在时域起始点#α之前确定该候选时频资源的所在载波处于可发送状态的情况下,该终端设备确定能够使用时频资源#1。
可选地,终端设备#B根据检测的结果,确定能够使用的候选时频资源,包括:终端设备#B在时域起始点#α之前确定该候选时频资源的所在载波未处于可发送状态,并且终端设备#B在时域起始点#β之前确定该候选时频资源的所在载波处于可发送状态的情况下,该终端设备确定能够使用时频资源#2。
在S330,终端设备#B可以从该时频资源#2中确定用于承载上行控制信息#B的时频资源(以下,为了便于理解和区分,记作:时频资源#3)。
下面,对该时频资源#3的确定方法和过程进行详细说明。
作为示例而非限定,在本申请实施例中,终端设备#B可以采用以下任意一种方法确定时频资源#3的大小。
方法A
可选地,在本申请实施例中,终端设备#B可以基于网络设备通过上述调度信息#B分配给终端设备#B的用于承载上行信道的时频资源(例如,时频资源#1或时频资源#5)的大小,以及终端设备#B基于该时频资源#1(或时频资源#5)确定时频资源#4时使用的系数β,确定时频资源#3。
作为示例而非限定,终端设备#B可以基于上述公式A确定时频资源#3。
具体的说,终端设备#B可以基于上述公式A中使用的(或者说,用于确定时频资源#4)的各参数,确定时频资源#3的大小。
即,在本申请实施例中,设时频资源#3的大小为Q,则:
Figure PCTCN2018085570-appb-000100
从而,在终端设备实际能够使用的用于上行传输的时频资源的宽带(或者说,包括的子频带的数量)较网络设备调度的用于上行传输的时频资源的带宽变窄的情况下,在用于确定时频资源#3的公式中不使用终端设备#B实际竞争到的时频资源的大小,而使用调度信息#B中指示的时频资源#E的大小,能够确保上行控制信息的传输的可靠性。
或者,在终端设备实际能够使用的用于上行传输的时频资源的符号个数较网络设备调度的用于上行传输的时频资源的符号个数减小的情况下,在用于确定时频资源#3的公式中不使用终端设备#B实际竞争到的时频资源的大小,而使用调度信息#B中指示的时频资源#1的大小,能够确保上行控制信息的传输的可靠性。
作为示例而非限定,
Figure PCTCN2018085570-appb-000101
可以表示终端设备#B实际使用的用于承载上行信道的频域资源(例如,子载波)的大小或数量。
需要说明的是,
Figure PCTCN2018085570-appb-000102
Figure PCTCN2018085570-appb-000103
的取值和/或含义可以相同,例如,
Figure PCTCN2018085570-appb-000104
Figure PCTCN2018085570-appb-000105
表示上行数据对应的传输块在第一次传输时被分配的频域资源;或者,
Figure PCTCN2018085570-appb-000106
Figure PCTCN2018085570-appb-000107
表示上行数据对应的传输块在当前传输时被分配的频域资源。
Figure PCTCN2018085570-appb-000108
Figure PCTCN2018085570-appb-000109
的取值和/或含义也可以不同,例如,
Figure PCTCN2018085570-appb-000110
表示上行数据对应的传输块在第一次传输时被分配的频域资源,
Figure PCTCN2018085570-appb-000111
表示上行数据对应的传输块在当前传输时被分配的频域资源。
应理解,以上列举的终端设备#B确定时频资源#3的方法仅为示例性说明,本申请并未特别限定,例如,上述公式A中的
Figure PCTCN2018085570-appb-000112
的值也可以为固定值,并且,该
Figure PCTCN2018085570-appb-000113
的值可以是由网络设备预先确定并指示给终端设备#B的,或者,该
Figure PCTCN2018085570-appb-000114
的值也可以是由通信系统规定的,或者,
Figure PCTCN2018085570-appb-000115
表示上行数据对应的传输块在第一次传输时被分配的时域资源。
再例如,
Figure PCTCN2018085570-appb-000116
表示上行数据对应的传输块在第一次传输时被分配的频域资源,或者,
Figure PCTCN2018085570-appb-000117
也可以表示上述时频资源#1(或时频资源#5)所占用的子频带的数量(例如,上述数量M),或者,
Figure PCTCN2018085570-appb-000118
的值也可以是基于上述时频资源#1(或时频资源#5)所占用的子频带的数量(例如,上述数量M)确定的值,例如,
Figure PCTCN2018085570-appb-000119
可以是以M的值为变量的函数的函数值。
再例如,
Figure PCTCN2018085570-appb-000120
的值可以是上行数据对应的传输块在第一次传输时被分配的RE个数,或者,
Figure PCTCN2018085570-appb-000121
的值可以是通信系统规定的值,或者,
Figure PCTCN2018085570-appb-000122
的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#B该
Figure PCTCN2018085570-appb-000123
的值。
再例如,
Figure PCTCN2018085570-appb-000124
表示分配给上行数据(或者说,PUSCH)的频域资源(例如, 上述时频资源#1对应的频域资源)中的部分资源。
再例如,
Figure PCTCN2018085570-appb-000125
表示分配给上行数据(或者说,PUSCH)的时域符号(例如,上述时频资源#1对应的时域资源)中的部分符号。
即,在本申请实施例中,
Figure PCTCN2018085570-appb-000126
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#1)中的部分时频资源。
作为示例而非限定,该
Figure PCTCN2018085570-appb-000127
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#1)中占用M个字频带中的L个子频带的时频资源的大小值,其中,该L的值是通信系统规定的值,或者,该L的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#B该L的值。并且,该L个子频带在该M个子频带中的位置是通信系统规定的,或者该L个子频带在该M个子频带中的位置也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#B该L个子频带在该M个子频带中的位置。
应理解,以上列举的公式A仅为时频资源#3与时频资源#1的大小的映射关系的一例,本申请实施例并未限定于此,例如,在本申请实施例中,时频资源#3的大小也可以不受
Figure PCTCN2018085570-appb-000128
参数的限制,例如,时频资源#3的大小也可以根据以下公式B确定。
Figure PCTCN2018085570-appb-000129
其中,公式2和公式1中相同的符号或字符表示的含义可以相同,这里,为了避免赘述,省略其详细说明。
方法B
在本申请实施例中,在终端设备#B中可以保存多个参数组与多个系数之间的映射关系,其中每个参数组包括一个时频资源大小(或者说,RE个数)的值和一个系数的值。
其中,对于任意两个参数组,设该两个参数组为参数组#A和参数组#B,则该参数组#A和参数组#B之间存在以下关系:
设参数组#A包括的时频资源大小的值(例如,参数组#A包括的RE个数)为a1,设参数组#A包括的时频资源大小的值为a2,设参数组#B包括的时频资源大小的值(例如,参数组#B包括的RE个数)为b1,设参数组#B包括的时频资源大小的值为b2,则:
a1×a2≈b1×b2;或
|a1×a2-b1×b2|=Z,Z可以为预设值。
在本申请实施例中,上述时频资源#5的大小的值与系数β的值可以属于同一参数组。
并且,在本申请实施例中,终端设备#B可以确定时频资源#2的大小的值所属于的参数组(以下,为了便于理解和区分,记作参数组#1)。
或者,上述时频资源#1的大小的值与系数β的值可以属于同一参数组。
或者,终端设备#B可以确定时频资源#2中用于承载上行数据的时频资源(即,第六时频资源的大小,以下,为了便于理解和区分,记作:时频资源#6),并且,该参数组#1可以为该时频资源#6的大小的值所属于的参数组。
从而,终端设备#B可以确定参数组#1中的系数(即,第二系数的一例,以下,为了 便于理解和区分,记作,系数β’)。
进而,终端设备#B可以基于该时频资源#2(或时频资源#6)的大小和系数β’,确定时频资源#3的大小。
即,在本申请实施例中,设时频资源#3的大小为Q,则:
Figure PCTCN2018085570-appb-000130
其中,
Figure PCTCN2018085570-appb-000131
表示终端设备竞争到的时频资源中用于承载上行数据(或者说,PUSCH)的频域资源(例如,时频资源#2对应的频域资源,例如,子载波)的大小或数量,
Figure PCTCN2018085570-appb-000132
表示终端设备竞争到的时频资源中用于上行数据(或者说,PUSCH)的时域资源(例如,时频资源#2对应的时域资源,例如符号)的大小或数量,即
Figure PCTCN2018085570-appb-000133
表示终端设备竞争到的时频资源中承载上行数据(或者说,PUSCH)的总的时频资源(例如,时频资源#2,或者说,时频资源#2对应的RE)的大小或数量,
Figure PCTCN2018085570-appb-000134
表示上述系数β’。
Figure PCTCN2018085570-appb-000135
表示时频资源#4(即,分配给反馈信息(即,上行控制信息)的资源)的最大值。
应理解,以上列举的终端设备#B确定时频资源#3的方法仅为示例性说明,本申请并未特别限定,例如,上述
Figure PCTCN2018085570-appb-000136
的值也可以为固定值,并且,该
Figure PCTCN2018085570-appb-000137
的值可以是由网络设备预先确定并指示给终端设备#B的,或者,该
Figure PCTCN2018085570-appb-000138
的值也可以是由通信系统规定的。
再例如,
Figure PCTCN2018085570-appb-000139
也可以表示上述时频资源#2所占用的子频带的数量(例如,上述数量M),或者,
Figure PCTCN2018085570-appb-000140
的值也可以是基于上述时频资源#2所占用的子频带的数量(例如,上述数量M)确定的值,例如,
Figure PCTCN2018085570-appb-000141
可以是以M的值为变量的函数的函数值。
再例如,
Figure PCTCN2018085570-appb-000142
的值可以是通信系统规定的值,或者,
Figure PCTCN2018085570-appb-000143
的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#B该
Figure PCTCN2018085570-appb-000144
的值。
再例如,
Figure PCTCN2018085570-appb-000145
表示分配给上行数据(或者说,PUSCH)的频域资源(例如,上述时频资源#1对应的频域资源)中的部分资源。
再例如,
Figure PCTCN2018085570-appb-000146
表示分配给上行数据(或者说,PUSCH)的时域符号(例如,上述时频资源#1对应的时域资源)中的部分符号。
即,在本申请实施例中,
Figure PCTCN2018085570-appb-000147
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#2)中的部分时频资源。
作为示例而非限定,该
Figure PCTCN2018085570-appb-000148
表示分配给上行数据(或者说,PUSCH)的总的时频资源(例如,上述时频资源#2)中占用M个字频带中的L个子频带的时频资源的大小值,其中,该L的值是通信系统规定的值,或者,该L的值也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#B该L的值。并且,该L个子频带在该M个子频带中的位置是通信系统规定的,或者该L个子频带在该 M个子频带中的位置也可以是网络设备确定的值,并且,网络设备可以通过例如RRC信令通知终端设备#B该L个子频带在该M个子频带中的位置。
可选地,在本申请实施例中,在终端设备#B中可以保存多个参数组与多个门限值之间的映射关系,其中每个参数组包括一个时频资源大小(例如,RE个数)的值和一个门限。
从而,终端设备#B可以将于上述时频资源#2的大小的值所属于的参数组中的门限值作为上述公式中的
Figure PCTCN2018085570-appb-000149
的值。
在本申请实施例中,终端设备#B可以根据上述时频资源#4的大小(例如,时频资源#4包括的RE的数量,或者说,时频资源#4能够承载的调制符号的数量),确定该时频资源#3的大小(例如,时频资源#3包括的RE的数量,或者说,时频资源#3能够承载的调制符号的数量),以使该时频资源#3的大小与时频资源#4的大小之间的差异在预设的范围内。
设该时频资源#3的大小为X,设时频资源#4的大小为Y,则,在本申请实施例中,例如,X>Y;
或者,X=Y;
或者,0<Y-X≤W。
其中,W可以为预设值,例如,在本申请实施例中,该W的值可以是通信系统规定的,或者,该W的值可以是网络设备确定并通过例如,无线资源控制(Radio Resource Control,RRC)信令预先指示给终端设备的。
或者,W可以为根据X(或Y)以及预设的比例值Z确定的,即,W=Y·Z,该Z的值可以是通信系统规定的,或者,该Z的值可以是网络设备确定并通过例如,RRC信令预先指示给终端设备的。
从而,在终端设备实际能够使用的用于上行传输的时频资源的宽带(或者说,包括的子频带的数量)较网络设备调度的用于上行传输的时频资源的带宽变窄的情况下,通过使用于承载上行控制信息(例如,HARQ反馈信息)的时频资源(即,时频资源#3)的大小与网络设备调度的用于承载上行控制信息的时频资源(例如,时频资源#4)的大小相同或近似相同,能够确保上行控制信息的解调性能。
方法C
可选地,在本申请实施例中,终端设备#B可以基于网络设备发送的上述调度信息#B,确定调度信息#B调度的上行数据的码率(记作,码率#1),以及终端设备可以根据码率#1和系数β,确定时频资源#3。
其中,系数β可以是高层配置的参数,或者,系数β是网络设备通过物理层信令指示的,或者,系数β是通信系统规定的。
其中,系数β可以用于指示上行控制信息的码率与上行数据的码率之间的比例。
由此,在S330,终端设备#B能够确定用于承载上行控制信息#B的时频资源#3的大小。
并且,在S330,终端设备#B还可以根据如上所述确定的时频资源#3的大小,从上述时频资源#2中,确定时频资源#3(具体的说,是时频资源#3包括的RE)的具体位置。
作为示例而非限定,在本申请实施例中,终端设备#B可以基于时频资源#2中用于承载参考信号的符号(以下,为了便于理解和说明,记作符号#1)的位置,确定时频资源#3对应的符号(以下,为了便于理解和说明,记作符号#2)。
例如,在本申请实施例中,终端设备#B可以将与符号#1相邻的符号,作为符号#2。
并且,当与符号#1相邻的符号上的RE的总数小于如上所述确定的时频资源#3的大小(即,时频资源#3包括的RE数量)时,终端设备还可以将与符号#1之间的偏移量小于或等于预设的阈值K的符号(以下,为了便于理解和说明,记作符号#3),作为符号#2。
例如,终端设备可以将与符号#1相邻的连续的K+1个符号作为符号#2。
并且,作为示例而非限定,在本申请实施例中,终端设备#B可以优选从时频资源B中频率较低的位置上的时频资源作为使时频资源#3。
图6示出了网络设备#B分配给终端设备#B的时频资源#1中,用于承载上行控制信息的时频资源(即,时频资源#4)的图案;并且,图6示出了终端设备#B实际竞争到的时频资源#2中,用于承载上行控制信息的时频资源(即,时频资源#3)的图案。如图5所示,时频资源#3的大小与时频资源#4的大小可以相同。并且,如图6所示,时频资源#3的符号相对于参考信号的符号的位置关系可以与时频资源#4的符号相对于参考信号的符号的位置关系相对应。并且,时频资源#3在时频资源#2中的频域位置与时频资源#4在时频资源#1中的频域位置相对应,例如,时频资源3在频域上位于时频资源#2的频率较低的位置。
应理解,图6中示出的终端设备竞争到的子频带仅为示例性说明,本申请并未特别限定。
在S340,终端设备#B可以通过时频资源#1与网络设备#B进行上行传输,即,终端设备#B可以通过时频资源#4向网络设备#B发送上行控制信息#B;或者,
或者,在S340,终端设备#B可以通过时频资源#2与网络设备#B进行上行传输,即,终端设备#B可以通过时频资源#3向网络设备#B发送上行控制信息#B。
可选地,终端设备#B根据检测的结果,在候选时频资源上发送该上行信道,包括:该终端设备#B在时域起始点#α之前确定该时频资源#1的所在载波处于可发送状态的情况下,该终端设备#B通过该时频资源#1中的该时频资源#4发送该上行控制信息;该终端设备#B在该时域起始点#α之前确定该候选时频资源的所在载波未处于可发送状态,且该终端设备#B在该时域起始点#β之前确定该候选时频资源的所在载波处于可发送状态的情况下,该终端设备#B通过该时频资源#2中的该时频资源#3发送该上行控制信息。
可以理解的是,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择时频资源#1或时频资源#2发送上行信道。在这个过程中,该终端设备生成的编码后的上行数据包与该时频资源#1匹配,当该检测的结果是该时频资源#1时,该终端设备在该时频资源#1上发送该上行数据包;当该检测的结果是该时频资源#2时,由于能力所限,该终端设备不能重新生成编码后的与该时频资源#2匹配的另一个上行数据包,因此,该终端设备将丢弃该上行数据包中不能与该时频资源#2匹配的部分,即对该上行数据包打孔后与该时频资源#2匹配,并在该时频资源#2上传输该上行数据包打孔后的部分。通常情况下,上行控制信息只进行一次传输,上行数据对应的传输块可以进行多次传输,当上行信道中包括上行控制信息和上行数据信息时,上行数据的传输性能可以通过重传来 保证,因此,在一次上行传输中,如果包括上行控制信息,需要优先保证上行控制信息的传输性能。
可选地,该时频资源#3的大小(例如,占用的RE数)小于该时频资源#4的大小。
可选地,该时频资源#3的大小(例如,占用的RE数)和该时频资源#4的大小相同。
可选地,该时频资源#3为该时频资源#2中的部分或全部资源,其中,时频资源#2为时频资源#1中的部分资源。即,终端设备将上行控制信息映射到时频资源#2上,当终端设备使用时频资源#1发送该上行信道时,通过时频资源#1中的时频资源#2上的时频资源#3发送上行控制信息。
可选地,时频资源#3和时频资源#4在TTI#1中的位置相同,其中,时频资源#2为时频资源#1中的部分资源。即,终端设备将上行控制信息映射到时频资源#2上,无论终端设备使用时频资源#1还是时频资源#2发送该上行信道,都可以保证上行控制信息的发送。进一步可选地,终端设备将上行控制信息映射到时频资源#2上时,可以和现有技术中的上行控制信息的映射类似,此处不再赘述。
例如,在本申请实施例中,一个TTI可以包括多个(例如,两个)时隙,并且,可以规定,自该TTI中的预设时隙开始映射上行控制信息,其中,该预设时隙可以是该TTI中除首个时隙以外的至少一个时隙,例如,该预设时隙可以是TTI中的最后一个时隙。
其中,该“自该TTI中的预设时隙开始映射上行控制信息”可以是指,当该预设时隙中用于承载控制信息的资源的大小能够满足该上行控制信息的传输需求的情况下,仅在该预设时隙中传输上行控制信息。
或者,该“自该TTI中的预设时隙开始映射上行控制信息”可以是指,当该预设时隙中用于承载控制信息的资源的大小不能够满足该上行控制信息的传输需求的情况下,可以在该预设时隙中承载该上行控制信息的一部分(例如,该预设时隙中最大限度所能够承载的上行控制信息的部分),并将剩余部分承载于其他时隙,例如,该其他时隙可以是TTI中的首个时隙。
或者,该“自该TTI中的预设时隙开始映射上行控制信息”可以是指,当该预设时隙中用于承载控制信息的资源的大小不能够满足该上行控制信息的传输需求的情况下,可以在该预设时隙中承载该上行控制信息的一部分(例如,该预设时隙中最大限度所能够承载的上行控制信息的部分),并将剩余部分丢弃。
可选地,该上行控制信息的一部分可以是该上行控制信息编码后输出的比特流中位于前端的部分(例如,自该上行控制信息编码后输出的比特流中的第一个比特开始的多个比特)。
或者,该“自该TTI中的预设时隙开始映射上行控制信息”可以是指TTI的首个时隙被禁止用于承载控制信息。
可选地,时频资源#3为时频资源#4中的部分或全部资源,时频资源#4包括时频资源#2中的部分或全部资源,其中,时频资源#2为时频资源#1中的部分资源。应理解,在用于传输上行信道的时频资源缩减的情况下,用于传输上行控制信息的资源的大小可以是不变的,因此,可能会出现时频资源#2上可用于上行控制信息传输的资源小于时频资源#1中可用于上行控制信息传输的资源的情况。在这种情况下,终端设备可以将上行控制信息先映射在时频资源#2上,然后再将剩余的上行控制信息映射在时频资源#1中除时频 资源#2以外的时频资源上,如图8或图9所示。
作为示例而非限定,在本申请实施例中,图7示出了网络设备#B分配给终端设备#B的时频资源#1中,用于承载上行控制信息(例如,RI或CQI/PMI)的时频资源(即,时频资源#4)的图案;并且,图7示出了终端设备#B实际竞争到的时频资源#1或时频资源#2中,用于承载上行控制信息的时频资源(即,时频资源#4或时频资源#3)的图案。如图7所示,时频资源#3的大小与时频资源#4的大小可以相同。并且,如图7所示,时频资源#3和时频资源#4在TTI#1中的位置也相同。
即,在本申请实施例中,该时频资源#1可以对应多个(例如两个)时隙,其中,例如,通信系统或通信协议可以规定,从该两个时隙中的第2个时隙开始映射上行控制信息,即,无论该两个时隙中的第1个时隙是否能够被终端设备竞争到,终端设备均从该第2个时隙开始映射上行控制信息,具体地说,该第2个时隙上的用于承载控制信息的资源的大小可以是固定的,并且终端设备仅在该第2个时隙上的用于承载控制信息的资源上承载上行控制信息(具体地说,是上行控制信息的部分或全部)。
根据图7所示的确定用于上行控制信息传输的资源的方法,无论终端设备根据信道检测结果确定可用于PUSCH发送的候选时频资源是时频资源#1还是时频资源#2,承载于该PUSCH上的上行控制信息均可以得到发送,从而可以保证上行控制信息的性能。
作为示例而非限定,在本申请实施例中,图8示出了网络设备#B分配给终端设备#B的时频资源#1中,用于承载上行控制信息(例如,RI或CQI/PMI)的时频资源(即,时频资源#4)的图案;并且,图8示出了终端设备#B实际竞争到的时频资源#1或时频资源#2中,用于承载上行控制信息的时频资源(即,时频资源#4或时频资源#3)的图案。如图8所示,时频资源#3的大小小于时频资源#4的大小。并且,如图8所示,时频资源#3为时频资源#4中的部分资源,其中,时频资源#4包括时频资源#2中的部分资源,时频资源#2为时频资源#1中的部分资源。
在具体的映射过程中,上行控制信息是从在时频资源#2开始映射的。如图所示,当CQI/PMI信息占用的资源(例如,可以根据时频资源#1的大小确定CQI/PMI信息占用的资源)小于时频资源#2上用于传输CQI/PMI信息的资源时,终端设备#B将CQI/PMI映射到时频资源#2上。当RI信息占用的资源(例如,可以根据时频资源#1的大小确定RI信息占用的资源)大于时频资源#2上用于传输RI信息的资源时,终端设备#B将RI的第一部分映射到时频资源#2上,并在时频资源#1中可用于RI映射的资源上映射RI的第二部分。其中,RI的第一部分指RI编码后在先输出的连续比特流组成的数据,RI的第二部分指RI编码后在后输出的连续比特流组成的数据,RI的第一部分的结束部分与RI的第二部分的起始部分为连续的比特流。
即,在本申请实施例中,该时频资源#1可以对应多个(例如两个)时隙,其中,例如,通信系统或通信协议可以规定,从该两个时隙中的第2个时隙开始映射上行控制信息,即,无论该两个时隙中的第1个时隙是否能够被终端设备竞争到,终端设备均从该第2个时隙开始映射上行控制信息,其中,由于该第2个时隙上的用于承载控制信息的资源的大小是固定的,当该第2个时隙上的用于承载控制信息的资源的大小不能满足上行控制信息的传输需求时,终端设备可以将无法通过第2个时隙的传输上行控制信息承载在第1个时隙的资源中。
作为示例而非限定,在本申请实施例中,图9示出了网络设备#B分配给终端设备#B的时频资源#1中,用于承载上行控制信息(例如,RI或CQI/PMI)的时频资源(即,时频资源#4)的图案;并且,图9示出了终端设备#B实际竞争到的时频资源#1或时频资源#2中,用于承载上行控制信息的时频资源(即,时频资源#4或时频资源#3)的图案。如图9所示,时频资源#3的大小小于时频资源#4的大小。并且,如图9所示,时频资源#3为时频资源#4中的部分资源,其中,时频资源#4包括时频资源#2中的全部资源,时频资源#2为时频资源#1中的部分资源。
在具体的映射过程中,上行控制信息是从时频资源#2开始映射的。如图所示,当RI信息占用的资源(例如,可以根据时频资源#1的大小确定RI信息占用的资源)小于时频资源#2上用于传输RI信息的资源时,终端设备#B将RI映射到时频资源#2上。当CQI/PMI信息占用的资源(例如,可以根据时频资源#1的大小确定CQI/PMI信息占用的资源)大于时频资源#2上用于传输CQI/PMI信息的资源时,终端设备#B将CQI/PMI的第一部分映射到时频资源#2上,并在时频资源#1中可用于CQI/PMI映射的资源上映射CQI/PMI的第二部分。其中,CQI/PMI的第一部分指CQI/PMI编码后在先输出的连续比特流组成的数据,CQI/PMI的第二部分指CQI/PMI编码后在后输出的连续比特流组成的数据,CQI/PMI的第一部分的结束部分与CQI/PMI的第二部分的起始部分为连续的比特流。
即,在本申请实施例中,该时频资源#1可以对应多个(例如两个)时隙,其中,例如,通信系统或通信协议可以规定,从该两个时隙中的第2个时隙优开始映射上行控制信息,即,无论该两个时隙中的第1个时隙是否能够被终端设备竞争到,终端设备均从该第2个时隙开始映射上行控制信息,其中,由于该第2个时隙上的用于承载控制信息的资源的大小是固定的,当该第2个时隙上的用于承载控制信息的资源的大小不能满足上行控制信息的传输需求时,终端设备可以将无法通过第2个时隙的传输上行控制信息承载在第1个时隙的资源中。
可选地,终端设备#B根据检测的结果,确定在时频资源#1上发送上行信道,包括:终端设备#B根据调度信息#B指示的MCS#1和时频资源#1确定的调制阶数M#1和TBS#1,在时频资源#1上发送上行信道。
可选地,终端设备#B根据检测的结果,确定在时频资源#2上发送上行信道,包括:终端设备#B根据调度信息#B指示的MCS#1和时频资源#1确定的调制阶数M#1和TBS#1,在时频资源#2上发送上行信道。
需要说明的是,在本申请实施例中,终端设备根据信道结果确定可用的时频资源的步骤和终端设备从第二时频资源开始映射上行控制信息上的步骤的先后顺序并不限定,可以是先执行确定可用资源的步骤,再进行资源映射的步骤;或者,可以先进行资源映射的步骤,再进行确定可用资源的步骤;或者,上述两个步骤也可以同时进行。
并且,作为示例而非限定,终端设备#B还可以通过时频资源#6向网络设备#B发送上行数据(以下,为了便于理解和说明,记作:数据#A),其中,该数据#A可以是终端设备#B计划通过时频资源#1传输的上行数据中的全部数据,或者该数据#A可以是终端设备#B计划通过时频资源#1传输的上行数据中的部分数据,本申请并未特别限定。
在本申请实施例中,在终端设备#B中还可以存储映射关系表,该映射关系表可以用于指示多个参数组和多个传输块大小(Transport Block Size,TBS)之间的映射关系,其 中,每个参数组包括一个RB数量值和一个MCS值。
并且,如上所述,调度信息还可以用于指示RB数量#A和MCS#A,从而,终端设备#B可以基于该RB数量#A和MCS#A,从映射关系表中查找与RB数量#A和MCS#A所属于的参数组对应的TBS(以下,为了便于理解和说明,记作TBS#A)。
即,该TBS#A可以是网络设备#B分配给终端设备#B的用于进行上行传输的TBS。
例如,终端设备#B可以基于该TBS#A和MCS#A,通过时频资源#2向网络设备#B发送数据#A和上行控制信息#B。其中,该过程可以与现有技术通信设备(网络设备或终端设备)基于TBS和MCS传输数据的方法和过程相似,这里,为了避免赘述,省略其详细说明。
再例如,终端设备#B可以基于该TBS#A和重新确定的MCS(以下,为了便于理解和区分,记作MCS#A’),通过时频资源#2向网络设备#B发送数据#A和上行控制信息#B。
即,在本申请实施例中,时频资源#2包括的RB数量(以下,为了便于理解和说明,记作:RB数量#A’)小于时频资源#1包括的RB的数量(即,RB数量#A),即,终端设备#B上行传输过程中所能够使用的资源的数量减小,因此,终端设备#B可以提高针对上行传输的调制阶数(即,使用MCS#A’对应的调制阶数,以下,为了便于理解和说明,记作调制阶数#A’),以使终端设备#B通过时频资源#2和MCS#A’进行上行传输时使用的码率低于终端设备#B通过时频资源#2和MCS#A进行上行传输时使用的码率。
此情况下,终端设备#B还可以向网络设备#B发送该调制阶数#A’的指示信息,从而,网络设备#B能够确定该调制阶数#A’,并基于该调制阶数#A’和该TBS#A,对通过子频带#A接收到的信号进行解析,以获取数据#A,其中,该过程可以与现有技术通信设备(网络设备或终端设备)基于TBS和调制阶数对信号进行解析以获取数据的方法和过程相似,这里,为了避免赘述,省略其详细说明。
可选地,在本申请实施例中,终端设备#B还可以确定时频资源#2包括的RB数量,以下,为了便于理解和说明,记作:RB数量#A’。
并且,终端设备#B可以基于该MCS#A和RB数量#A’,从映射关系表中查找与RB数量#A’和MCS#A所属于的参数组对应的TBS(以下,为了便于理解和说明,记作TBS#A’)。
从而,在本申请实施例中,终端设备#B可以基于该TBS#A’,通过时频资源#2与网络设备#B进行上行传输。
此情况下,终端设备#B还可以向网络设备#B发送该TBS#A’的指示信息,从而,网络设备#B能够确定该TBS#A’,并基于该TBS#A’,对通过子频带#A接收到的信号进行解析,以获取数据#A,其中,该过程可以与现有技术通信设备(网络设备或终端设备)基于TBS对信号进行解析以获取数据的方法和过程相似,这里,为了避免赘述,省略其详细说明。
需要说明的是,在本申请实施例中,在使用TBS#A’传输数据#A时,所使用的调制阶数可以是上述调制阶数#A,也可以是基于TBS#A’确定的与该调制阶数#A相异的调制阶数,本申请并未特别限定。
作为示例而非限定,终端设备#B可以基于以下方式1或方式2,通过时频资源#3与网络设备#B传输上行控制信息#B。
方式1
在本申请实施例中,终端设备#B可以向网络设备#B发送信息#1(即,第三时频资源的指示信息的一例),作为示例而非限定,在本申请实施例中,该信息#1可以用于指示时频资源#3对应的子频带的数量,该信息#1可以用于指示时频资源#3对应的子频带的位置。
从而,网络设备#B能够基于该信息#1,确定频域资源#A中承载有该终端设备#B发送的上行控制信息(即,上行控制信息#B)的子频带。
进而,网络设备#B可以仅在信息#1指示的子频带上接收终端设备#B发送的上行控制信息,能够减小网络设备的处理负担。这里,网络设备#B通过资源接收控制信息的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
作为示例而非限定,在本申请实施例中,该终端设备#B可以通过时频资源#2(例如,时频资源#3)向网络设备#B发送信息#1。
或者说,在本申请实施例中,该终端设备#B可以通过时频资源#2向网络设备#B随路发送信息#1和上行控制信息#B双方。
其中,上述“随路发送”可以是指,在本申请实施例中,时频资源#2(例如,时频资源#3)可以对应多个时频资源单元(Resouce Element,RE),终端设备#B可以通过给多个RE中的一部分RE发送上行控制信息#B,并且,终端设备#B可以通过给多个RE中的另一部分RE发送信息#1。
应理解,以上列举的终端设备#B向网络设备#B发送信息#1使用的资源仅为示例性说明,本申请并未特别限定,例如,在本申请实施例中,通信系统还可以设置有预留资源,该预留资源被禁止用于数据传输,或者说,该预留资源可以仅用于网络设备和终端设备的信令传输,从而,终端设备#B可以通过该预留资源中的部分或全部资源向网络设备#B发送信息#1。
方式2
终端设备#B可以通过该时频资源#2发送上行控制信息#B和参考信号#A。例如,时频资源#2中的每个子带上均承载有参考信号#A。
从而,网络设备#B能够通过检测该参考信号#A,确定该频域资源#A中承载有该终端设备#B发送的上行控制信息#B)的频域资源,即,时频资源#2包括的子频带。
进而,网络设备#B可以仅在时频资源#2包括的子频带上解析终端设备#B发送的信息,能够减小网络设备的处理负担。这里,网络设备#B基于参考信号解析数据的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
方式C
当该时频资源#1由P个(至少两个)调度信息#B指示时,终端设备#B可以确定该P个调度信息#B中用于指示时频资源#3的信息(以下,为了便于理解,记作:信息#A_1),并且,终端设备#B可以向网络设备#B上报该信息#A_1的指示信息(即,第三指示信息的一例),从而,网络设备#B能够根据该信息#A_1的指示信息,确定终端设备#B使用该信息#A_1指示的时频资源(或者说,该信息#A_1指示的时频资源属于的子频带)传输上行控制信息。
类似地,在本申请实施例中,终端设备#B还可以向网络设备#B发送信息#2(即, 第二时频资源的指示信息的一例),作为示例而非限定,在本申请实施例中,该信息#2可以用于指示时频资源#2对应的子频带的数量,该信息#2可以用于指示时频资源#2对应的子频带的位置。
从而,网络设备#B能够基于该信息#2,确定频域资源#A中承载有该终端设备#B发送的上行信息(例如,上行控制信息和/或上行数据)的子频带。
进而,网络设备#B可以仅在信息#2指示的子频带上接收终端设备#B发送的上行信息,能够减小网络设备的处理负担。这里,网络设备#B通过资源接收信息的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
作为示例而非限定,在本申请实施例中,该终端设备#B可以通过时频资源#2向网络设备#B发送信息#2。
或者说,在本申请实施例中,该终端设备#B可以通过时频资源#2向网络设备#B随路发送信息#2和上行信息双方。
其中,上述“随路发送”可以是指,在本申请实施例中,时频资源#2可以对应多个时频资源单元RE,终端设备#B可以通过给多个RE中的一部分RE发送上行信息,并且,终端设备#B可以通过给多个RE中的另一部分RE发送信息#2。
应理解,以上列举的终端设备#B向网络设备#B发送信息#2使用的资源仅为示例性说明,本申请并未特别限定,例如,在本申请实施例中,通信系统还可以设置有预留资源,该预留资源被禁止用于数据传输,或者说,该预留资源可以仅用于网络设备和终端设备的信令传输,从而,终端设备#B可以通过该预留资源中的部分或全部资源向网络设备#B发送信息#2。
可选地,终端设备#B根据检测的结果,在候选时频资源上发送该上行信道,包括:该终端设备#B在时域起始点#α之前确定该时频资源#1的所在载波处于可发送状态的情况下,该终端设备#B通过该时频资源#1中的该时频资源#5发送该上行数据包;该终端设备#B在该时域起始点#α之前确定该候选时频资源的所在载波未处于可发送状态,且该终端设备#B在该时域起始点#β之前确定该候选时频资源的所在载波处于可发送状态的情况下,该终端设备#B通过该时频资源#2中的该时频资源#6发送该上行数据包。
可以理解的是,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择时频资源#1或时频资源#2发送上行信道。在这个过程中,该终端设备生成的编码后的上行数据包与该时频资源#1匹配,当该检测的结果是该时频资源#1时,该终端设备在该时频资源#1上发送该上行数据包;当该检测的结果是该时频资源#2时,由于能力所限,该终端设备不能重新生成编码后的与该时频资源#2匹配的另一个上行数据包,因此,该终端设备将丢弃该上行数据包中不能与该时频资源#2匹配的部分,即对该上行数据包打孔后与该时频资源#2匹配,并在该时频资源#2上传输该上行数据包打孔后的部分。
通常情况下,上行数据包的位于前端的多个比特位用于承载较为重要的信息(例如,系统比特)。其中,该系统比特可以是指该上行数据包中除校验比特以外的比特。
即,如果预先组包时,按照上行数据包中位于前端的比特映射至在时域上位于前端的时频资源#1,上行数据包中位于后端的比特映射至在时域上位于后端的时频资源#2,则当终端设备采用时频资源#2发送上行信道(或者说,终端设备未竞争到时频资源#1)时,上述较为重要的系统比特可能被丢弃。
鉴于上述情况,在本申请实施例中,终端设备可以从时频资源#2开始映射上行数据包上,即,终端设备可以将上行数据包中位于前端的部分比特(例如,自上行数据包的第一个比特开始的多个比特)映射在时频资源#2(具体地说,是时频资源#2中的时频资源#6),并将上行数据包中位于后端的部分比特映射在时频资源#1(具体地说,是时频资源#1中的时频资源#5)。
可选地,该时频资源#6的大小(例如,占用的RE数)小于该时频资源#5的大小。
可选地,该时频资源#6的大小(例如,占用的RE数)和该时频资源#5的大小相同。
可选地,该时频资源#6为该时频资源#2中的部分或全部资源,其中,时频资源#2为时频资源#1中的部分资源。
可选地,终端设备可以从时频资源#2开始映射上行数据包,包括:终端设备将上行数据包中位于前端的部分比特映射到时频资源#1中的时频资源#2上,终端设备将上行数据包中位于后端的部分比特映射到时频资源#1中除时频资源#2外的时频资源上。
可选地,时频资源#6和时频资源#5在TTI#1中的位置相同,其中,时频资源#2为时频资源#1中的部分资源。
终端设备从时频资源#2开始映射上行数据包,无论终端设备使用时频资源#1还是时频资源#2发送该上行信道,都可以保证上行数据包中的较为重要的系统比特的发送。进一步可选地,终端设备将上行数据包映射到时频资源#2上时,可以和现有技术中的上行数据包的映射类似,此处不再赘述。
例如,在本申请实施例中,一个TTI可以包括多个(例如,两个)时隙,并且,可以规定,从该TTI中的预设时隙开始映射上行数据包中的数据#X(例如,上行数据包中系统比特对应的部分),其中,该预设时隙可以是该TTI中除首个时隙以外的一个时隙,例如,该预设时隙可以是TTI中的最后一个时隙。
即,在本申请实施例中,该时频资源#1可以对应多个(例如两个)时隙,其中,例如,通信系统或通信协议可以规定,从该两个时隙中的第2个时隙开始映射上行数据包中的位于前端的多个比特(例如,系统比特),即,无论该两个时隙中的第1个时隙是否能够被终端设备竞争到,终端设备均从该第2个时隙开始映射上行数据包中的位于前端的多个比特(例如,系统比特)。
可选地,终端设备#B根据检测的结果,确定在时频资源#1上发送上行信道,包括:终端设备#B根据调度信息#B指示的MCS#1和时频资源#1确定的调制阶数M#1和TBS#1,在时频资源#1上发送上行数据包。
可选地,终端设备#B根据检测的结果,确定在时频资源#2上发送上行信道,包括:终端设备#B根据调度信息#B指示的MCS#1和时频资源#1确定的调制阶数M#1和TBS#1,在时频资源#2上发送上行数据包。
根据本申请实施例的传输上行控制信息的方法,通过将基于竞争机制使用的系统频域资源划分为一个或多个子频带,并且,当终端设备在确定网络设备分配的第一频域资源之后,如果该第一频域资源包括至少两个子频带,在需要进行上行传输之前,对该第一频域资源包括的至少两个子频带进行检测,能够使终端设备从该至少两个子频带中确定该终端设备能够使用的第二频域资源,并通过该第二上行频域资源进行上行数据传输,即,较现有技术相比,终端设备无需在确定该第一频域资源的全部带宽范围内的资源均被使用的 情况下,才能够使用第一频域资源进行无线通信,从而,能够提高终端设备能够使用该第一频域资源(具体的说,是第一频域资源中的部分子频带)进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
并且,该第二时频资源中用于承载上行控制信息的时频资源的大小是基于该第二时频资源的大小(或者,该第二时频资源中用于承载上行数据的时频资源)确定的,因此,当第二时频资源是第一时频资源的一部分时,现有技术中,该第二时频资源中用于承载上行控制信息的时频资源的大小小于第一资源中用于承载上行控制信息的时频资源的大小。与此相对,根据本申请实施例的传输上行控制信息的方法,第二时频资源中用于承载上行控制信息的第三时频资源的大小是基于第一时频资源的大小确定的,即,第三时频资源的大小与第一时频资源中用于承载上行控制信息的时频资源的差异在预设范围内,即,较现有技术相比,本申请实施例的用于承载上行控制信息的时频资源的大小增大,能够确保上行控制信息的传输的可靠性。
并且,终端设备对候选时频资源的所在载波进行检测,并根据该检测的结果,选择第一时频资源或第二时频资源发送上行信道。在这个过程中,该终端设备生成的编码后的上行数据包与该第一时频资源匹配,当该检测的结果是该第一时频资源时,该终端设备在该第一时频资源上发送该上行数据包;当该检测的结果是该第二时频资源时,由于能力所限,该终端设备不能重新生成编码后的与该第二时频资源匹配的另一个上行数据包,因此,该终端设备将丢弃该上行数据包中不能与该第二时频资源匹配的部分,即对该上行数据包打孔后与该第二时频资源匹配,并在该第二时频资源上传输该上行数据包打孔后的部分。通常情况下,上行控制信息只进行一次传输,上行数据对应的传输块可以进行多次传输,当上行信道中包括上行控制信息和上行数据信息时,上行数据的传输性能可以通过重传来保证,因此,在一次上行传输中,如果包括上行控制信息,需要优先保证上行控制信息的传输性能。
根据本申请实施例中的确定用于上行控制信息传输的资源的方法,无论终端设备根据信道检测结果确定可用于上行信道发送的候选时频资源是第一时频资源还是第二时频资源,承载于该上行信道上的上行控制信息均可以得到发送,从而可以保证上行控制信息的性能。
另外,在本申请实施例中,该时频资源#2可以对应至少一个TTI(以下,为了便于理解和说明,记做:TTI#1)
在本申请实施例中,TTI#1可以包括至少两个时域起点。
可选地,在本申请实施例中,该时频资源#3在时域上的位置可以位于两个时域起点之间,或者,该时频资源#3在时域上的位置可以位于TTI#1包括的至少两个时域起点中的最后一个时域起点之后。
综上所述,在本申请实施例中,网络设备#B分配给终端设备#B的时频资源#1对应的TTI#1上可以包括至少两个可以被终端设备#B使用的时频资源(即,第一时频资源和第二时频资源),并且,该第一时频资源的时域起点与该第二时频资源的时域起点不同,该第二时频资源的时域起点晚于该第一时频资源的时域起点。
从而,终端设备#B可以对该时频资源#1所在载波进行检测(例如,LBT检测),以从该第一时频资源和该第二时频资源中,确定该终端设备#B在该TTI#1中能够使用的 时频资源(即,候选时频资源)。
其后,终端设备#B可以在该候选时频资源上发送上行信道。
根据本申请实施例的传输上行控制信息的方法,通过在基于竞争机制使用的TTI中设置多个时域起始点,并且,终端设备在需要进行上行传输之前,对候选时频资源所对应的载波进行检测,能够使终端设备从第一时频资源或第二时频资源中确定该终端设备能够使用的候选时频资源,并通过该候选时频资源进行上行信道的传输,即,较现有技术相比,终端设备无需在确定候选时频资源的时域起始点位于一个子帧的起始点的情况下,才能够使用候选时频资源进行无线通信,从而,能够提高终端设备能够使用该候选时频资源进行无线通信的可能性,提高了通信效率、减小了业务传输时延,改善了用户体验。
需要说明的是,上述方法200和方法300可以单独使用也可以结合使用,本申请并未特别限定。
并且,在本申请实施例中,上述终端设备#A与终端设备#B可以是同一终端设备,也可以是不同终端设备,本申请并未特别限定,即,一个终端设备可以执行上述方法200和300中描述的终端设备双方的动作。
并且,在本申请实施例中,上述网络设备#A与网络设备#B可以是同一网络设备,也可以是不同网络设备,本申请并未特别限定,即,一个网络设备可以执行上述方法200和300中描述的网络设备双方的动作。
图10示出了本申请实施例的传输上行控制信息的装置400的示意性框图,该传输上行控制信息的装置400可以对应(例如,可以配置于或本身即为)上述方法100描述的终端设备(例如,终端设备#A)或上述方法200中的终端设备(例如终端设备#B),并且,传输上行控制信息的装置400中各模块或单元分别用于执行上述方法100或200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置400可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该设备还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图10所示的装置400中的收发单元可以对应该收发器,图10所示的装置400中的处理单元可以对应该处理器。
图11示出了本申请实施例的传输上行控制信息的装置500的示意性框图,该传输上行控制信息的装置500可以对应(例如,可以配置于或本身即为)上述方法100描述的网络设备(例如,网络设备#A)或上述方法200描述的网络设备(例如,网络设备#B),并且,传输上行控制信息的装置500中各模块或单元分别用于执行上述方法100或方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置500可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该设备还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图11所示的装置500中的收发单元可以对应该收发器,图11所示的装置700中的处理单元可以对应该处理器。
应注意,上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元 的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。

Claims (35)

  1. 一种传输上行控制信息的方法,其特征在于,包括:
    终端设备生成编码后的上行数据包,所述上行数据包属于上行信道,所述上行信道承载于第一时间传输间隔TTI中的候选时频资源上,其中,所述候选时频资源为第一时频资源或第二时频资源,所述第二时频资源的第二时域起点晚于所述第一时频资源的第一时域起点;
    所述终端设备对所述候选时频资源的所在载波进行检测,所述终端设备根据所述检测的结果,在所述候选时频资源上发送所述上行信道,所述上行信道中包括上行控制信息和所述编码后的上行数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述检测的结果,在所述候选时频资源上发送所述上行信道,包括:
    在所述终端设备在所述第一时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述终端设备在所述第一时频资源上发送所述上行信道。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备在所述第一时频资源上发送所述上行信道,包括:
    所述终端设备根据第一时频资源的大小值和第一系数,从所述第一时频资源中,确定第三时频资源;
    所述终端设备通过所述第三时频资源发送所述上行控制信息。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述检测的结果,在所述候选时频资源上发送所述上行信道,包括:
    在所述终端设备在所述第一时域起点之前确定所述候选时频资源的所在载波未处于可发送状态,且所述终端设备在所述第二时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述终端设备在所述第二时频资源上发送所述上行信道。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备在所述第二时频资源上发送所述上行信道,包括:
    所述终端设备根据第二时频资源的大小值和第二系数,从所述第二时频资源中,确定第四时频资源;或
    所述终端设备根据第一时频资源的大小值和第一系数,从所述第二时频资源中,确定第四时频资源;
    所述终端设备通过所述第四时频资源发送所述上行控制信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述终端设备禁止在所述第一时频资源中除所述第二时频资源以外的时频资源上发送所述上行控制信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第二时频资源在时域上占用的资源为所述第一时频资源在时域上占用的资源的子集,且所述第一时频资源在频域上占用的资源的大小和所述第二时频资源在频域上占用的资源的大小相等。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述上行控制信息包括 混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
  9. 一种传输上行控制信息的方法,其特征在于,包括:
    网络设备向终端设备发送调度信息,所述调度信息用于指示所述终端设备在第一时间传输间隔TTI内传输上行信道,所述上行信道至少包括上行控制信息,所述上行信道承载于所述第一TTI中的候选时频资源,其中,所述候选时频资源为第一时频资源或第二时频资源,所述第二时频资源的第二时域起点晚于所述第一时频资源的第一时域起点;
    所述网络设备通过所述候选时频资源接收所述终端设备发送的上行信道。
  10. 根据权利要求9所述的方法,其特征在于,在所述终端设备在所述第一时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述上行信道承载于所述第一时频资源上。
  11. 根据权利要求10所述的方法,其特征在于,所述上行控制信息承载于所述第一时频资源中的第三时频资源,所述第三时频资源是根据第一时频资源的大小值和第一系数确定的。
  12. 根据权利要求9所述的方法,其特征在于,在所述终端设备在所述第一时域起点之前确定所述候选时频资源的所在载波未处于可发送状态,且所述终端设备在所述第二时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述上行信道承载于所述第二时频资源上。
  13. 根据权利要求12所述的方法,其特征在于,所述上行控制信息承载于所述第二时频资源中的第四时频资源,所述第四时频资源是根据第二时频资源的大小值和第二系数确定的。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述网络设备设备禁止在所述第一时频资源中除所述第二时频资源以外的时频资源上接收所述上行控制信息。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述第二时频资源在时域上占用的资源为所述第一时频资源在时域上占用的资源的子集,且所述第一时频资源在频域上占用的资源的大小和所述第二时频资源在频域上占用的资源的大小相等。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
  17. 一种传输上行控制信息的装置,其特征在于,包括:
    处理单元,用于生成编码后的上行数据包,所述上行数据包属于上行信道,所述上行信道承载于第一时间传输间隔TTI中的候选时频资源上,其中,所述候选时频资源为第一时频资源或第二时频资源,所述第二时频资源的第二时域起点晚于所述第一时频资源的第一时域起点;
    通信单元,用于对所述候选时频资源的所在载波进行检测,并根据所述检测的结果,在所述候选时频资源上发送所述上行信道,所述上行信道中包括上行控制信息和所述编码后的上行数据包。
  18. 根据权利要求17所述的装置,其特征在于,在所述第一时域起点之前确定所述 候选时频资源的所在载波处于可发送状态的情况下,所述通信单元具体用于在所述第一时频资源上发送所述上行信道。
  19. 根据权利要求18所述的装置,其特征在于,所述通信单元具体用于根据第一时频资源的大小值和第一系数,从所述第一时频资源中,确定第三时频资源,并通过所述第三时频资源发送所述上行控制信息。
  20. 根据权利要求19所述的装置,其特征在于,在所述第一时域起点之前确定所述候选时频资源的所在载波未处于可发送状态,且所述终端设备在所述第二时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述通信单元具体用于在所述第二时频资源上发送所述上行信道。
  21. 根据权利要求20所述的装置,其特征在于,所述通信单元具体用于根据第二时频资源的大小值和第二系数,从所述第二时频资源中,确定第四时频资源;或根据第一时频资源的大小值和第一系数,从所述第二时频资源中,确定第四时频资源;并通过所述第四时频资源发送所述上行控制信息。
  22. 根据权利要求20或21所述的装置,其特征在于,所述通信单元还用于禁止在所述第一时频资源中除所述第二时频资源以外的时频资源上发送所述上行控制信息。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述第二时频资源在时域上占用的资源为所述第一时频资源在时域上占用的资源的子集,且所述第一时频资源在频域上占用的资源的大小和所述第二时频资源在频域上占用的资源的大小相等。
  24. 根据权利要求17至23中任一项所述的装置,其特征在于,所述上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
  25. 一种传输上行控制信息的装置,其特征在于,包括:
    处理单元,用于生成调度信息,所述调度信息用于指示终端设备在第一时间传输间隔TTI内传输上行信道,所述上行信道至少包括上行控制信息,所述上行信道承载于所述第一TTI中的候选时频资源,其中,所述候选时频资源为第一时频资源或第二时频资源,所述第二时频资源的第二时域起点晚于所述第一时频资源的第一时域起点;
    通信单元,用于向所述终端设备发送调度信息;并通过所述候选时频资源接收所述终端设备发送的上行信道。
  26. 根据权利要求25所述的装置,其特征在于,在所述终端设备在所述第一时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述上行信道承载于所述第一时频资源上。
  27. 根据权利要求26所述的装置,其特征在于,所述上行控制信息承载于所述第一时频资源中的第三时频资源,所述第三时频资源是根据第一时频资源的大小值和第一系数确定的。
  28. 根据权利要求27所述的装置,其特征在于,在所述终端设备在所述第一时域起点之前确定所述候选时频资源的所在载波未处于可发送状态,且所述终端设备在所述第二时域起点之前确定所述候选时频资源的所在载波处于可发送状态的情况下,所述上行信道承载于所述第二时频资源上。
  29. 根据权利要求28所述的装置,其特征在于,所述上行控制信息承载于所述第二 时频资源中的第四时频资源,所述第四时频资源是根据第二时频资源的大小值和第二系数确定的。
  30. 根据权利要求28或29所述的装置,其特征在于,所述通信单元还用于禁止在所述第一时频资源中除所述第二时频资源以外的时频资源上接收所述上行控制信息。
  31. 根据权利要求25至30中任一项所述的装置,其特征在于,所述第二时频资源在时域上占用的资源为所述第一时频资源在时域上占用的资源的子集,且所述第一时频资源在频域上占用的资源的大小和所述第二时频资源在频域上占用的资源的大小相等。
  32. 根据权利要求25至31中任一项所述的装置,其特征在于,所述上行控制信息包括混合自动重传HARQ反馈信息、下行信道质量指示信息CQI、秩指示信息RI和预编码矩阵指示信息PMI中的至少一个信息。
  33. 一种通信设备,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信设备执行权利要求1至16中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至16中任意一项所述的方法。
  35. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至16中任意一项所述的方法。
PCT/CN2018/085570 2017-05-04 2018-05-04 传输上行控制信息的方法和装置 WO2018202118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18795158.7A EP3618483A4 (en) 2017-05-04 2018-05-04 METHOD AND APPARATUS FOR TRANSMITTING UPLINK CONTROL INFORMATION
US16/673,377 US11134482B2 (en) 2017-05-04 2019-11-04 Method and apparatus for transmitting uplink control information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710309047 2017-05-04
CN201710309047.X 2017-05-04
CN201710686579.5A CN108809545B (zh) 2017-05-04 2017-08-11 传输上行控制信息的方法和装置
CN201710686579.5 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,377 Continuation US11134482B2 (en) 2017-05-04 2019-11-04 Method and apparatus for transmitting uplink control information

Publications (1)

Publication Number Publication Date
WO2018202118A1 true WO2018202118A1 (zh) 2018-11-08

Family

ID=64016434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085570 WO2018202118A1 (zh) 2017-05-04 2018-05-04 传输上行控制信息的方法和装置

Country Status (1)

Country Link
WO (1) WO2018202118A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN105898770A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种空频道检测方法及节点设备
WO2016167623A1 (ko) * 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
CN106559791A (zh) * 2015-09-24 2017-04-05 电信科学技术研究院 一种数据传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898770A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种空频道检测方法及节点设备
WO2016167623A1 (ko) * 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN106559791A (zh) * 2015-09-24 2017-04-05 电信科学技术研究院 一种数据传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618483A4 *

Similar Documents

Publication Publication Date Title
US11122560B2 (en) Uplink channel transmission method and apparatus, and downlink channel transmission method and apparatus
US11134482B2 (en) Method and apparatus for transmitting uplink control information
WO2018166447A1 (zh) 传输信息的方法和装置
WO2018228529A1 (zh) 传输控制信息的方法和装置
CN109417795B (zh) 用于在上行链路导频时隙中传送物理上行链路共享信道的技术
US20200068624A1 (en) Data sending method and apparatus thereof
KR102196857B1 (ko) 상향링크 정보 송신 방법 및 장치와, 상향링크 정보 수신 방법 및 장치
CN109076569B (zh) 一种上行控制信息的传输方法和装置
EP3651522A1 (en) Method of handling communication in unlicensed spectrum and related communication device
JP2019533360A (ja) 柔軟な無線サービスのための5g nrデータ送達
KR20220071963A (ko) 데이터 전송 방법 및 장치
US20130003664A1 (en) Scheduling of a User Equipment in a Radio Communication System
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
US11844080B2 (en) Scheduled UCI transmission scheme
US20230308228A1 (en) Time and code domain coverage enhancements
WO2018209803A1 (zh) 一种传输信息的方法和装置
WO2017132986A1 (zh) 传输控制数据的方法和装置
WO2018082678A1 (zh) 通信方法和通信装置
WO2019214660A1 (zh) 通信方法和通信装置
WO2019192500A1 (zh) 通信方法和通信装置
TW202041072A (zh) 通訊方法和終端設備
KR20200120701A (ko) 채널 전송 방법, 장치 및 컴퓨터 기억 매체
WO2018202118A1 (zh) 传输上行控制信息的方法和装置
CN109831824B (zh) 用于上行捎带传输的方法、装置及系统
CN116998122A (zh) 一种信息传输方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018795158

Country of ref document: EP

Effective date: 20191126