WO2018202093A1 - 发送和接收信息的方法、网络设备和终端设备 - Google Patents

发送和接收信息的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018202093A1
WO2018202093A1 PCT/CN2018/085499 CN2018085499W WO2018202093A1 WO 2018202093 A1 WO2018202093 A1 WO 2018202093A1 CN 2018085499 W CN2018085499 W CN 2018085499W WO 2018202093 A1 WO2018202093 A1 WO 2018202093A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
physical layer
layer
protocol layer
channel
Prior art date
Application number
PCT/CN2018/085499
Other languages
English (en)
French (fr)
Inventor
刘瑾
袁璞
罗俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18794386.5A priority Critical patent/EP3637842B1/en
Priority to AU2018263098A priority patent/AU2018263098B2/en
Priority to CA3062373A priority patent/CA3062373A1/en
Priority to JP2019560651A priority patent/JP6875554B2/ja
Publication of WO2018202093A1 publication Critical patent/WO2018202093A1/zh
Priority to US16/674,849 priority patent/US11178629B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communications and, more particularly, to a method of transmitting and receiving information, a network device, and a terminal device.
  • a Synchronization Signal Block is introduced due to the consideration of multiple beams.
  • the beam has a configurable mapping relationship with the SSB, for example, each of the multiple beams transmits a different SSB, or two beams can transmit the same SSB.
  • Each SSB may include an NR-Primary Synchronization Signal (NR-PSS), an NR-Secondary Synchronization Signal (NR-SSS), and a Physical Broadcast Channel (PBCH).
  • the network device may periodically transmit one or more SSBs in one or more radio frame periods, and one or more SSBs transmitted in one cycle may form an SS burst set.
  • the terminal device can be based on the currently received SSB.
  • the frame boundaries and slot boundaries of the cell are inferred to complete timing alignment with the cell radio frame.
  • the terminal device needs to know the relative position of the received SSB in the associated SSB burst set to complete the timing alignment with the cell radio frame.
  • the present application provides a method for transmitting and receiving information, a network device, and a terminal device, to send, in an SSB, information for determining a time-frequency resource of an SSB in an associated SS burst set to a terminal device, thereby implementing timing with a cell radio frame. Align.
  • a method of transmitting information including:
  • the network device generates first information and second information in the first protocol layer, where the first information includes system information, and the second information is used to determine time-frequency resources corresponding to one or more synchronization signal blocks SSB, where A protocol layer is a protocol layer above the physical layer;
  • the network device performs physical layer processing on the first information and the second information
  • the network device sends the data obtained by the physical layer processing through the physical broadcast channel PBCH in the SSB.
  • the embodiment of the present application provides a method for transmitting information, which can be used to determine information about a time-frequency resource of an SSB, and send the information to the terminal device, so that the terminal device determines, according to the information, that the received SSB is in the SS burst.
  • the time-frequency resources in the set infer the frame boundary and the cell boundary, thereby achieving timing alignment with the cell radio frame.
  • the network device generates the first information and the second information in the first protocol layer, and may be processed by using different data processing methods listed below, and finally sent to the terminal device by using the PBCH in the SSB.
  • the network device transmits the first information and the second information from the first protocol layer to a physical layer, including:
  • the network device performs encapsulation processing on the first information layer and the second information as a whole at the first protocol layer to generate a first message;
  • the network device sends the first message to the physical layer in an intermediate channel between the first protocol layer and the physical layer.
  • the intermediate channel is composed of the same logical channel and the same transmission channel.
  • the network device transmits the first information and the second information from the first protocol layer to a physical layer, including:
  • the network device performs encapsulation processing on the first information at the first protocol layer to generate a first message.
  • the network device performs encapsulation processing on the second information at the first protocol layer to generate a second message
  • the network device sends the first message and the second message to the physical layer in an intermediate channel between the first protocol layer and the physical layer.
  • the intermediate channel is composed of the same logical channel and the same transport channel, or the intermediate channel is composed of different logical channels and the same transport channel.
  • the network device transmits the first information and the second information from the first protocol layer to a physical layer, including:
  • the network device performs encapsulation processing on the first information at the first protocol layer to generate a first message.
  • the network device performs encapsulation processing on the second information at the first protocol layer to generate a second message
  • the network device sends the first message to the physical layer in a first intermediate channel between the first protocol layer and the physical layer;
  • the network device sends the second message to the physical layer in a second intermediate channel between the first protocol layer and the physical layer.
  • the network device performs physical layer processing on the first information and the second information, including:
  • the network device performs physical layer processing on the physical layer as a whole on the first message received through the first intermediate channel and the second message received through the second intermediate channel.
  • the network device performs physical layer processing on the first information and the second information, including:
  • the network device performs physical layer processing on the first message received through the first intermediate channel and the second message received through the second intermediate channel at the physical layer.
  • a method of receiving information including:
  • the terminal device receives data sent by the network device on the physical broadcast channel PBCH;
  • the terminal device performs physical layer processing on the received data at the physical layer
  • the embodiment of the present application provides a method for receiving information, which can be used to determine information about a time-frequency resource of an SSB, and send the information to the terminal device, so that the terminal device determines, according to the information, that the received SSB is in the SS burst.
  • the time-frequency resources in the set infer the frame boundary and the cell boundary, thereby achieving timing alignment with the cell radio frame.
  • the terminal device may process the data received on the PBCH by using different data processing methods listed below to obtain the first information and the second information in the first protocol layer.
  • the terminal device transmits the data processed by the physical layer from the physical layer to the first protocol layer, including:
  • Processing, by the terminal device, the data processed by the physical layer in the first protocol layer, to obtain the first information and the second information including: the terminal device is in the first protocol layer Performing a decapsulation process on the data received through the intermediate channel to obtain an entirety of the first information and the second information, and combining the first information and the second information The first information and the second information are obtained in the whole.
  • the intermediate channel is composed of the same logical channel and the same transmission channel.
  • the terminal device transmits the data processed by the physical layer from the physical layer to the first protocol layer, including:
  • the terminal device performs decapsulation processing on the data received by the intermediate channel at the first protocol layer, to obtain the first information and the second information.
  • the intermediate channel is composed of the same logical channel and the same transport channel, or the intermediate channel is composed of different logical channels and the same transport channel.
  • the terminal device performs physical layer processing on the received data at the physical layer, including:
  • the terminal device performs physical layer processing on the received data at the physical layer to obtain first data and second data processed by the physical layer;
  • the terminal device performs decapsulation processing on the second data received by the second intermediate channel at the first protocol layer to obtain the second information.
  • the data received by the terminal device includes third data and fourth data; and,
  • the terminal device performs physical layer processing on the received data at the physical layer, including:
  • the terminal device performs physical layer processing on the third data at the physical layer to obtain third data processed by the physical layer;
  • the terminal device performs physical layer processing on the fourth data at the physical layer to obtain fourth data processed by the physical layer; and the terminal device transmits data processed by the physical layer from the physical layer To the first protocol layer, including:
  • the terminal device performs decapsulation processing on the fourth data received by the second intermediate channel at the first protocol layer to obtain the second information.
  • a network device comprising means for performing the method of transmitting information in the first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising means for performing the method of receiving information in any of the possible implementations of the second aspect or the second aspect.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs the first aspect or any of the possible implementations of the first aspect The method in .
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the terminal device performs any of the second aspect or the second aspect The method in .
  • a computer program product comprising: computer program code, when the computer program code is executed by a network device, causing the network device to perform the first aspect or the first aspect A method in a possible implementation.
  • a computer program product comprising: computer program code, when the computer program code is executed by a network device, causing the terminal device to perform the second aspect or the second aspect A method in a possible implementation.
  • a ninth aspect a computer readable medium storing program code, the program code comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect .
  • a tenth aspect a computer readable medium storing program code, the program code comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect .
  • a chip system comprising a processor for calling and running a computer program from a memory, the computer program for implementing the methods of the above aspects.
  • the first intermediate channel comprises: a first logical channel and/or a first transport channel
  • the second intermediate channel comprises: a second logical channel and/or a second transport channel
  • the logical channel is defined by the type of information it carries, for example, it can be divided into a control channel and a traffic channel.
  • a logical channel is provided to an upper layer by a Media Access Control (MAC) layer.
  • MAC Media Access Control
  • the transport channel is defined by the way the channel is transmitted.
  • a transport channel is provided by the physical (PHY) layer to the upper layer.
  • the physical layer and the first protocol layer may be adjacent protocol layers, and the intermediate channel may be a redefined channel for simultaneously implementing the functions of the logical channel and the transport channel to implement the physical layer and the first protocol layer.
  • Information exchange; or, the physical layer and the first protocol layer may contain more or less protocol layers, which may use logical channels and transport channels in LTE, or logical channels and transport channels and redefine The other channels are used to implement the information exchange between the protocol layers, which is not specifically limited in this embodiment of the present application.
  • the second information includes:
  • the first SSB indexes the TI at a first time in the associated SS pulse set, or
  • the system information includes one or more of the following: configuration information including a system bandwidth value, a system frame number (SFN), or a remaining minimum system information (RMSI). Indicates time-frequency resource information and subcarrier spacing used to transmit the remaining minimum system information).
  • configuration information including a system bandwidth value, a system frame number (SFN), or a remaining minimum system information (RMSI).
  • SFN system frame number
  • RMSI remaining minimum system information
  • the present application transmits information for determining the time-frequency resource of the SSB in the associated SS burst set to the terminal device in the SSB, so that the terminal device can implement timing alignment with the cell radio frame according to the information.
  • FIG. 1 is a schematic diagram of a communication system suitable for a method of transmitting and receiving information in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a possible SSB resource structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing a possible SS pulse set resource structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for sending and receiving information according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a method for sending information according to an embodiment of the present application.
  • FIG. 6 is another schematic diagram of a method for sending information according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a method for sending information according to an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a method for sending information according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a method for sending information according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is another schematic structural diagram of a terminal device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • Universal Mobile Telecommunications System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • 5G Fifth-Generation
  • the 5G system can also be called a new generation wireless access technology (NR) system.
  • NR wireless access technology
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for use in a method of transmitting and receiving information in accordance with an embodiment of the present application.
  • the communication system 100 includes at least two communication devices, such as a network device 110 and a terminal device 120, wherein data communication can be performed between the network device 110 and the terminal device 120 through a wireless connection.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in Global System for Mobile Communications (GSM) or Code Division Multiple Access (CDMA), or may be a base station in Wideband Code Division Multiple Access (WCDMA).
  • BTS Base Transceiver Station
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • NodeB, NB may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station, an access point or a Radio Radio Unit (RRU), or a vehicle
  • the device and the wearable device may also be a wireless controller in a cloud radio access network (CRAN) scenario, and a network side device in a future 5G system, such as a transmission point (TP), and a transmission.
  • CRAN cloud radio access network
  • TP transmission point
  • the present invention is not limited in this particular embodiment.
  • TP transmission point
  • the terminal device 120 may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, A wireless communication device, user agent, or user device.
  • UE User Equipment
  • the terminal device may be a station (Station, ST) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local) Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems,
  • PDA Personal Digital Assistant
  • the terminal device in the 5G network or the terminal device in the publicly-developed Public Land Mobile Network (PLMN) network in the future is not specifically limited in this embodiment of the present application.
  • FIG. 1 is merely a simplified schematic diagram for ease of understanding.
  • Other communication devices and/or terminal devices may also be included in the communication system 100, which are not shown in FIG.
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small Cell), where the small cell may include: a metro cell, a micro cell, and a pico cell. (Pico cell), femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the cell may also be a hypercell.
  • Hypercell adopts User Centric No Cell Radio Access (UCNC) technology, that is, the terminal device no longer accesses a fixed physical site (for example, TRP), but accesses a group.
  • TRP's Logical Entity (LE) is used to obtain services.
  • This logical entity can be called Hypercell.
  • the boundaries of the Hypercell are flexible and can vary depending on network load and user distribution. All the TRPs in the Hypercell are transparent to the terminal device. The terminal device only needs to access the Hypercell ID to obtain the TRP service in the Hypercell, and no longer connect to a TRP.
  • FIG. 2 is a schematic diagram of a possible SSB resource structure provided by an embodiment of the present application.
  • one SSB may include one NR-PSS of Orthogonal Frequency Division Multiplexing (OFDM) symbols, NR-SSS of one OFDM symbol, and NR-PBCH of two OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • NR-PSS, NR-SSS and NR-PBCH in each SSB occupy four consecutive OFDM symbols.
  • the NR-PSS and the NR-SSS may respectively have the functions of PSS and SSS in the prior art (for example, LTE).
  • NR-PSS can be used to determine OFDM symbol timing, frequency synchronization, slot timing, and cell ID within a cell group;
  • NR-SSS can be used to determine frame timing, cell group, etc., or
  • NR-PSS and NR-SSS It can also have different functions from the current PSS and SSS, which is not limited by the embodiment of the present application.
  • the NR-PSS and the NR-SSS may also adopt the same or different sequences as the current PSS and the SSS, which are not limited in this embodiment of the present application.
  • the NR-PBCH may have the same or different functions as the PBCH in the prior art (for example, LTE), which is not limited in this application.
  • the NR-PBCH may carry a Master Information Block (MIB).
  • MIB Master Information Block
  • the resource structure of the SSB shown in FIG. 2 is only one possible structure, and should not be construed as limiting the embodiments of the present application.
  • the number of subcarriers occupied by the NR-PSS, NR-SSS, and NR-PBCH in the frequency domain may be different, which is not shown in the figure.
  • NR-PSS, NR-SSS, and NR-PBCH may also be discontinuous in time, or the SSB may include only NR-PSS and NR-PBCH, or only NR-SSS and NR-PBCH, or even It is also possible to include only NR-PBCH.
  • the resource structure of the SSB is not particularly limited in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a possible SS burst set resource structure provided by an embodiment of the present application.
  • One or more SSBs may constitute an SS burst, and one or more SS bursts may constitute an SS burst set, and an SS burst set is mapped into one or more radio frames for periodic transmission.
  • the transmission period of an SS burst set includes one or more radio frames.
  • FIG. 3 shows a case where the transmission period of one SS burst set includes 2 radio frames.
  • multiple SSBs in each SS burst set may be continuous or discontinuous in the time domain.
  • SSB1 and SSB2 are continuous in the time domain
  • SSB3 and SSB4 are continuous in the time domain
  • SSB2 and SSB3 are not continuous in the time domain.
  • This embodiment of the present application is not particularly limited. Among them, SSB1 and SSB2 can form an SS burst, SSB3 and SSB4 can form an SS burst, and so on.
  • the relative position of PSS and SSS in each radio frame can be fixed in a certain duplex mode.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the PSS is transmitted on the third symbol of the first subframe and the sixth subframe, and the last symbol of the SSS in the 0th subframe and the 5th subframe. Transfer on.
  • the terminal device does not know the duplex mode of the searched cell, it can distinguish between FDD and TDD by the difference in timing structure between PSS and SSS, and further complete slot synchronization and frame synchronization.
  • multiple SSBs can be transmitted on each radio frame.
  • the terminal device receives the SSB, the relative positional relationship between the SSB and the frame boundary and the slot boundary is not known, and the frame boundary and the slot boundary cannot be inferred.
  • the relative position of each SSB in the associated SS burst set is fixed, that is, the time domain resource occupied by each SSB may be relatively fixed.
  • the SSB1 shown in FIG. 3 may be in the first radio frame.
  • the first symbol of the first time slot of the first subframe is transmitted on the last symbol.
  • An embodiment of the present application provides a method for transmitting and receiving information, where the SSB carries additional information, which may be used, for example, to determine a sequence number (or time index) of the SSB in the SS burst set transmission period.
  • Time Index, TI the TI can be used not only to determine the order of the SSBs in the SS burst set transmission period, but also to determine the time domain resource locations of the SSBs with the same TI in the SS burst set transmission period to which they belong. It can be understood that any two SSBs having the same TI have the same time domain resource location in the SS burst set transmission period to which they belong.
  • the terminal device may infer the frame boundary and the time slot boundary of the cell according to the time domain resources mapped by the SSB corresponding to the TI in the SS burst set transmission period, thereby implementing Timing alignment of cell radio frames.
  • FIG. 4 is a schematic flowchart of a method 400 for transmitting and receiving information provided by an embodiment of the present application from the perspective of device interaction.
  • the method 400 includes:
  • the network device generates first information and second information in a first protocol layer.
  • the first information may be system information.
  • the system information may be system information in LTE, or may be system information defined in the NR standard.
  • the system information may include: system bandwidth value (System Bandwidth), system frame number (SFN), or configuration information of Remaining Minimum System Information (RMSI).
  • the configuration information of the RMSI is used to indicate the time-frequency resource and the sub-carrier spacing used to transmit the RMSI.
  • the second information is used to determine time-frequency resources corresponding to one or more SSBs.
  • the time domain resource corresponding to the SSB in the SS burst set to be sent may pass the TI in the SS burst set of the SSB (for the sake of distinction and description, it is recorded as the first TI, for example, Characterized by the number, 2, etc. of the SSB as shown in Figure 3, or by the TI of the SSB in the associated SS burst (for the sake of distinction and description, denoted as the second TI) and the SS burst Characterized by a combination of TIs (referred to as third TIs for ease of distinction and description) in the SS burst set.
  • the second information may include: the first TI of the SSB to be transmitted in the SS burst set; or the second TI of the SSB to be transmitted in the SS burst and the SS burst in the associated SS burst set The combination of the third TI.
  • the network device may determine the first TI of the SSB, or the second TI and the third TI according to the time domain resource of the current SSB to be sent, that is, determine the second information.
  • the TI may not only be designed to indicate the sequence number of the SSB in the SS burst set transmission period, but may also be designed to indicate the frequency domain resource of the SSB; or, the TI may be designed to use In order to indicate the sequence number of the SSB in the SS burst set transmission period, the frequency domain resource of the SSB may be pre-configured. Therefore, the TI may be used to determine the time-frequency resource corresponding to the SSB.
  • the first protocol layer may be a protocol layer above a physical (PHY) layer.
  • the first protocol layer may be a radio resource control (RRC) layer.
  • RRC radio resource control
  • MAC medium access control
  • RLC radio link control
  • Packet Data Convergence Packet Data Convergence
  • One or more layers in the protocol (PDCP) layer, the physical layer and the RRC layer may also be two adjacent protocol layers, which is not specifically limited in this embodiment of the present application. It can be understood that, because the division of the protocol layer in the 5G network is not clear, the embodiment of the present application does not preclude merging one or more layers in the protocol stack in the current LTE, or adding one or more The possibility of the protocol layer.
  • the first protocol layer is an RRC layer, and the protocol stack structure in LTE is used for the description.
  • the first protocol layer may also be a physical layer or higher.
  • Other protocol layers such as the MAC layer, or a new protocol layer defined in NR, etc.
  • the network device transmits the first information and the second information from the first protocol layer to the physical layer;
  • the network device performs physical layer processing on the first information and the second information.
  • the network device sends the data processed by the physical layer by using the PBCH in the SSB.
  • the network device may pass the first information and the second information to a Radio Bearer (RB), and use a protocol layer (PDCP) as shown in FIG. 5 to FIG.
  • RB Radio Bearer
  • PDCP protocol layer
  • the layer, the RLC layer, and the MAC layer are transmitted to the physical layer, and the data obtained by performing physical layer processing on the first information and the second information at the physical layer is mapped to the PBCH symbol in the time domain resource corresponding to the SBB indicated by the second information.
  • the network device generates the first information and the second information in the RRC layer, and performs the process of the RRC layer and the processing of the intermediate protocol layer between the RRC layer and the physical layer until the physical layer processing is performed.
  • the specific process of S420 to S440 can be implemented by any of the following methods:
  • the method 1 may include the following steps:
  • Step 1 The network device encapsulates the first information and the second information as a whole at the first protocol layer to obtain a first message.
  • Step 2 The network device maps the first message to the physical layer in an intermediate channel.
  • Step 3 The network device performs physical layer processing on the first message received by the intermediate channel at the physical layer, and sends data processed by the physical layer by using the PBCH in the time-frequency resource corresponding to the SSB.
  • FIG. 5 is a schematic diagram of a method for transmitting information according to an embodiment of the present application. Specifically, FIG. 5 illustrates the processing and transmission process of the first information and the second information in conjunction with the protocol stack structure in LTE.
  • the protocol stack may include five protocol layers, which are an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the first information and the second information generated by the network device at the RRC layer can be understood as two independent payloads, for example, the first payload and the second payload, respectively, the first payload and the first information.
  • the second payload corresponds to the second information.
  • the network device may treat the first information and the second information as a whole, or as a payload, for example, as a third payload.
  • the third payload may be obtained by cascading the first payload and the second payload. The cascading may be to sequentially connect each bit in the first payload and each bit in the second payload.
  • the network device encapsulates the third payload.
  • the encapsulation process may be an Abstract Syntax Notation (ASN.1) encapsulation process to obtain a first message, which may be referred to as an RRC message.
  • ASN.1 Abstract Syntax Notation
  • the intermediate channel comprises a logical channel and/or a transport channel.
  • the intermediate channel may include a logical channel and a transport channel.
  • step 2 the network device performs intermediate protocol layer processing on the first message at an intermediate protocol layer between the RRC layer (ie, an instance of the first protocol layer) and the physical layer.
  • the network devices can be respectively sent to the MAC layer through a Broadcast Control Channel (BCCH).
  • BCCH Broadcast Control Channel
  • the MAC layer sends the received first message to the physical layer through the broadcast control (BCH).
  • the protocol stack architecture in FIG. 5 is taken as an example to briefly describe the operations performed by the network device at each protocol layer: the network device can perform Internet Protocol (IP) header compression at the PDCP layer to reduce bits transmitted on the wireless interface.
  • IP Internet Protocol
  • the network device can split or cascade, retransmit control, repeat detection, and sequence transmission of data packets from the PDCP layer to the upper layer at the RLC layer.
  • the RLC layer provides services for the PDCP layer.
  • Each radio bearer of a terminal configures an RLC entity; the network device can determine the format sent by the air interface at the MAC layer, such as the size of the data block, and allocate physical layer resources according to the size of the data block, such as determining the data block.
  • the method is adjusted, the subcarrier used for carrying the data block, and the like are determined; the network device can perform channel coding, rate matching, interleaving, scrambling, and modulation at the physical layer.
  • the MAC layer provides services for the RLC layer in the form of logical channels, and uses services from the physical layer in the form of transport channels.
  • the network device may perform resource mapping on the data obtained by the physical layer processing. For example, the network device may determine a frame number of a radio frame used to transmit data processed by the physical layer, and specific time-frequency resource information in a radio frame, and map the data processed by the physical layer to the time-frequency resource.
  • the data obtained by the physical layer processing is sent by the time-frequency resource. It can be understood that the time-frequency resource is the PBCH symbol in the time-frequency resource corresponding to the currently transmitted SSB described in S410.
  • the intermediate channel may consist of the same logical channel and the same transport channel.
  • the operations of the various protocol layers and network devices described above in connection with FIG. 5 are performed by way of example only, and should not be construed as limiting the embodiments of the present application.
  • the first protocol layer and the physical layer may be adjacent protocol layers, and the first message obtained by processing the first information and the second information generated by the first protocol layer may be directly sent to the physical Layers are processed by the physical layer and sent through the corresponding time-frequency resources.
  • more protocol layers and the like may be included between the first protocol layer and the physical layer. For the sake of brevity, we will not list them one by one here.
  • the method 2 may include the following steps:
  • Step 1 The network device encapsulates the first information in the first protocol layer to generate a first message.
  • Step 2 The network device encapsulates the second information at the first protocol layer to generate a second message.
  • Step 3 The network device maps the first message and the second message to an intermediate channel and sends the information to the physical layer.
  • Step 4 The network device performs physical layer processing on the first message and the second message received by the intermediate channel at the physical layer, and uses the PBCH in the time-frequency resource corresponding to the SSB to be processed by the physical layer.
  • the data is
  • FIG. 6 and FIG. 7 are another schematic diagrams of a method for transmitting information according to an embodiment of the present application. Specifically, FIG. 6 and FIG. 7 illustrate the processing and transmission process of the first information and the second information in combination with the protocol stack structure in LTE, respectively.
  • the protocol stack can include five protocol layers, which are the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer from top to bottom.
  • the network device may perform the encapsulation processing on the generated first information and the second information, for example, ASN.1 encapsulation processing, to obtain the first message and the second message.
  • the first message and the second message are both RRC messages.
  • the network device encapsulates two pieces of information at the RRC layer separately, and obtains two independent RRC messages.
  • step three the two RRC messages can be sent to the physical layer through the intermediate channel.
  • the intermediate channel is composed of the same logical channel and the same transport channel (Case 1), or the intermediate channel is composed of different logical channels and the same transport channel (Case 2).
  • Fig. 6 shows the processing and transmission process of the first information and the second information in the first case.
  • the first message and the second message generated by the RRC layer may be transmitted as a whole map to the MAC layer in one logical channel.
  • the network device can process the data from the upper protocol layer in each protocol layer and send it to the lower protocol layer.
  • the network device may combine the first message and the second message in any one of the RRC layer, the PDCP layer, and the RLC layer to obtain a combined first message and a second message, and then the mapping is sent in the logical channel.
  • the network device may be mapped to the same transport channel and sent to the physical layer.
  • Fig. 7 shows the processing and transmission process of the first information and the second information in the second case.
  • the first message and the second message generated by the RRC layer may be sent to the MAC layer through different logical channels, respectively.
  • the network device may process the data from the upper protocol layer in the RRC layer, the PDCP layer, and the RLC layer, and send the data to the lower protocol layer.
  • the network device may combine the received first message and the second message to obtain a combined first message and a first message.
  • the second message is then sent to the physical layer in the same transport channel.
  • the network device performs physical layer processing on the data received from the intermediate channel to obtain data processed by the physical layer.
  • the physical layer processing may include: channel coding, rate matching, interleaving, scrambling, modulation, and the like.
  • the network device maps the data processed by the physical layer to the PBCH, and sends the data processed by the physical layer through the PBCH.
  • the time-frequency resource is also the PBCH symbol in the time-frequency resource corresponding to the currently transmitted SSB described in S410.
  • the first protocol layer and the physical layer may also be adjacent protocol layers, and the channel between the first protocol layer and the physical layer may be a logical channel or a transport channel, or other channels for implementing the same or similar functions.
  • the first message and the second message generated at the first protocol layer may be sent to the physical layer directly through an intermediate channel between the first protocol layer and the physical layer.
  • the operations performed by the network device in each protocol layer in the second method may be similar to the operations in the method one, except that the objects operated in the partial protocol layer are different.
  • the network device is omitted from being executed at each protocol layer. Detailed description of the operation.
  • the third method may include the following steps:
  • Step 1 The network device encapsulates the first information at the first protocol layer to generate a first message.
  • Step 2 The network device encapsulates the second information in the first protocol layer to generate a second message.
  • Step 3 The network device maps the first message to the physical layer in the first intermediate channel.
  • Step 4 The network device maps the second message to the physical layer in the second intermediate channel.
  • Step 5 The network device performs physical layer processing on the physical layer to the first message received through the first intermediate channel and the second message received through the second intermediate channel, and uses the corresponding SSB.
  • the PBCH in the time-frequency resource transmits data processed by the physical layer.
  • FIG. 8 is another schematic diagram of a method for transmitting information according to an embodiment of the present application. Specifically, FIG. 8 illustrates the processing and transmission process of the first information and the second information in conjunction with the protocol stack structure in LTE.
  • the protocol stack may include five protocol layers, which are an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the network device may perform the encapsulation processing on the generated first information and the second information, for example, ASN.1 encapsulation processing, to obtain the first message and the second message.
  • the first message and the second message are both RRC messages.
  • step 3 and step 4 the network device maps the first message and the second message to the first intermediate channel and the second intermediate channel, respectively, and sends the information to the physical layer. Different from the second method, the network device processes the first message and the second message in the intermediate protocol layer above the physical layer. Therefore, the network device receives the two messages processed by the intermediate protocol layer at the physical layer. .
  • the intermediate channel comprises: a logical channel and/or a transport channel.
  • the network device may map the first message to the first logical channel and send it to the MAC layer, and then map the first message processed by the MAC layer to the first transport channel and send it to the physical layer; accordingly, the network device may The second message is mapped to the second logical channel and sent to the MAC layer, and then the second message processed by the MAC layer is mapped to the second transport channel and sent to the physical layer.
  • the first protocol layer and the physical layer may also be adjacent protocol layers, and the channel between the first protocol layer and the physical layer may be a logical channel or a transport channel, or other channels for implementing the same or similar functions.
  • the first message and the second message generated at the first protocol layer may be sent to the physical layer directly through two different intermediate channels located between the first protocol layer and the physical layer.
  • the network device combines the two messages processed by the intermediate protocol layer at the physical layer, and performs physical layer processing on the two messages processed by the intermediate protocol layer as a whole.
  • the physical layer processing may include: channel coding, rate matching, interleaving, scrambling, modulation, and the like.
  • the network device maps the data processed by the physical layer to the PBCH, and sends the data processed by the physical layer through the PBCH.
  • the time-frequency resource is also the PBCH symbol in the time-frequency resource corresponding to the currently transmitted SSB described in S410.
  • the operation performed by the network device in each protocol layer in the third method may be similar to the operation in the first method, but the objects operated in the partial protocol layer are different.
  • the network device is omitted at each protocol layer. Detailed description of the operation.
  • method four may include the following steps:
  • Step 1 The network device encapsulates the first information in the first protocol layer to generate a first message.
  • Step 2 The network device encapsulates the second information in the first protocol layer to generate a second message.
  • Step 3 The network device maps the first message to the physical layer in the first intermediate channel.
  • Step 4 The network device maps the second message to the physical layer in the second intermediate channel.
  • Step 5 The network device performs physical layer processing on the first message received through the first intermediate channel and the second message received through the second intermediate channel at the physical layer, and uses the time frequency corresponding to the SSB.
  • the PBCH in the resource transmits data processed by the physical layer.
  • FIG. 9 is another schematic diagram of a method for transmitting information according to an embodiment of the present application. Specifically, FIG. 9 illustrates the processing and transmission process of the first information and the second information in conjunction with the protocol stack structure in LTE.
  • the protocol stack may include five protocol layers, which are an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the network device may perform the encapsulation processing on the generated first information and the second information, for example, ASN.1 encapsulation processing, to obtain the first message and the second message.
  • the first message and the second message are both RRC messages.
  • step 3 and step 4 the network device maps the first message and the second message to the first intermediate channel and the second intermediate channel, respectively, and sends the information to the physical layer. Since the network device processes the first message and the second message respectively in the intermediate protocol layer above the physical layer, the network device receives the two messages processed by the intermediate protocol layer at the physical layer.
  • the intermediate channel comprises: a logical channel and/or a transport channel.
  • the network device may map the first message to the first logical channel and send it to the MAC layer, and then map the first message processed by the MAC layer to the first transport channel and send it to the physical layer; accordingly, the network device may The second message is mapped to the second logical channel and sent to the MAC layer, and then the second message processed by the MAC layer is mapped to the second transport channel and sent to the physical layer.
  • the first protocol layer and the physical layer may also be adjacent protocol layers, and the channel between the first protocol layer and the physical layer may be a logical channel or a transport channel, or other channels for implementing the same or similar functions.
  • the first message and the second message generated at the first protocol layer may be sent to the physical layer directly through two different intermediate channels located between the first protocol layer and the physical layer.
  • step 5 the network device performs physical layer processing on the first message received from the first intermediate channel and the second message received from the second intermediate channel, respectively.
  • the network device performs physical layer processing on the two messages processed by the intermediate protocol layer at the physical layer, and the data obtained by the physical layer may include the first data and the second data, where the first The data includes a first message, and the second data includes a second message.
  • the network device maps the first data and the second data obtained by the physical layer processing to the PBCH, and sends the data processed by the physical layer through the PBCH.
  • the PBCH is also the PBCH symbol in the time-frequency resource corresponding to the currently transmitted SSB described in S410.
  • each protocol layer in the method 4 may be similar to the operations in the method one, except that the objects operated by the protocol layer are different.
  • the network device is omitted at each protocol layer. Detailed description of the operation.
  • the terminal device receives data transmitted by the network device on the PBCH.
  • the data received by the terminal device on the PBCH includes the first information and the second information, where the first information and the second information are generated by the network device in the first protocol layer, and are used in the time-frequency resource corresponding to the SSB.
  • the time domain resource location of the SSB sent by the PBCH may be determined according to the second information.
  • the terminal device performs physical layer processing on the received data.
  • the terminal device transmits the physical layer processed data from the physical layer to the first protocol layer;
  • the terminal device processes the data processed by the physical layer at the first protocol layer to obtain the first information and the second information.
  • the process in which the terminal device processes the received data in S450 to S470 to acquire the first information and the second information in the first protocol layer, and the network device generates the first protocol layer is corresponding, or reversible.
  • the terminal device can also process the received data by using any of the above four methods.
  • the processing methods adopted by the network device and the terminal device are corresponding.
  • the data processing method may be pre-defined in the protocol, and the network device and the terminal device may send and receive information according to the predefined processing method.
  • the process in which the terminal device processes the received data to acquire the first information and the second information in the first protocol layer may be implemented by any one of the following methods:
  • the terminal device performs physical layer processing on the received data at the physical layer to obtain data processed by the physical layer;
  • the terminal device maps the data processed by the physical layer to the first protocol layer in an intermediate channel
  • the terminal device performs decapsulation processing on the data received through the intermediate channel at the first protocol layer to obtain the first information and the second information.
  • the intermediate channel is composed of the same logical channel and the same transport channel.
  • the terminal device performs physical layer processing on the received data at the physical layer to obtain data processed by the physical layer;
  • the terminal device maps the data processed by the physical layer to the first protocol layer in an intermediate channel
  • the terminal device performs decapsulation processing on the data received through the intermediate channel at the first protocol layer to obtain the first information and the second information.
  • the intermediate channel is composed of the same logical channel and the same transport channel, or the intermediate channel is composed of different logical channels and the same transport channel.
  • the terminal device performs physical layer processing on the received data at the physical layer to obtain first data and second data processed by the physical layer;
  • the terminal device transmits the first data mapping processed by the physical layer to the first protocol layer in the first intermediate channel;
  • the terminal device maps the second data processed by the physical layer to the second intermediate channel and sends the data to the first protocol layer;
  • the terminal device performs decapsulation processing on the first data received by the first intermediate channel at the first protocol layer, to obtain the first information
  • the terminal device performs decapsulation processing on the second data received by the second intermediate channel at the first protocol layer to obtain the second information.
  • the terminal device processes the received data to obtain the first information and the second information at the first protocol layer, including:
  • the terminal device performs physical layer processing on the received third data at the physical layer to obtain third data processed by the physical layer;
  • the terminal device performs physical layer processing on the received fourth data at the physical layer to obtain fourth data processed by the physical layer;
  • the terminal device transmits the fourth data mapping processed by the physical layer to the first protocol layer in the second intermediate channel;
  • the terminal device performs decapsulation processing on the third data received by the first intermediate channel at the first protocol layer, to obtain the first information
  • the terminal device performs decapsulation processing on the fourth data received by the second intermediate channel at the first protocol layer to obtain the second information.
  • the method 400 further includes:
  • the terminal device determines the time domain resource corresponding to the SSB according to the second information, so as to be aligned with the time sequence of the cell radio frame according to the time domain resource corresponding to the SSB.
  • the second information may include: the first TI of the SSB to be transmitted in the SS burst set; or the second TI of the SSB to be transmitted in the SS burst and the SS burst in the SS burst set The combination of the third TI.
  • the one-to-one correspondence between the time domain resource location of the SSB and the TI of the SSB may be determined according to a predetermined one. Determining the location of the time-frequency resource corresponding to the received SSB, inferring the frame boundary and the slot boundary, thereby achieving timing alignment with the cell radio frame.
  • the network device in the embodiment of the present application generates the first information and the second information in the first protocol layer and sends the PBCH in the SSB determined according to the second information to the terminal device, so that the terminal device can process the received number. Therefore, the first information and the second information are obtained in the first protocol layer, and then the time-frequency resources of the SSB are determined, and the frame boundary and the time slot boundary are inferred, and the timing alignment with the cell radio frame is implemented, which is applicable to the NR multi-beam scenario.
  • FIG. 10 is a schematic structural diagram of a network device 10 according to an embodiment of the present application.
  • the network device 10 can be the network device in the method 400 of transmitting and receiving information shown in FIG.
  • the network device 10 includes a transceiver 11 and a processor 12.
  • the transceiver 11 may be referred to as a Remote Radio Unit (RRU), a transceiver unit, a transceiver, or a transceiver circuit, and the like.
  • the transceiver 11 can include at least one antenna 111 and a radio frequency unit 112.
  • the transceiver 11 can be used for transceiving radio frequency signals and converting radio frequency signals with baseband signals.
  • the network device 10 includes one or more Baseband Units (BBUs) 13.
  • the baseband unit includes a processor 12.
  • the baseband unit 13 is mainly used for baseband processing such as channel coding, multiplexing, modulation, spread spectrum, etc., and control of the base station.
  • the transceiver 11 and the baseband unit 13 may be physically disposed together or physically separated, that is, distributed base stations.
  • the baseband unit 13 may be composed of one or more single boards, and multiple boards may jointly support a single access system radio access network, or may separately support different access systems.
  • the baseband unit 13 includes a processor 12.
  • the processor 12 can be used to control the network device 10 to perform the corresponding operations in the method embodiments described above in connection with Figures 4-9.
  • the baseband unit 13 may also include a memory 14 for storing the necessary instructions and data.
  • the processor 12 is configured to generate first information and second information in the first protocol layer, where the first information includes system information, where the second information is used to determine a time frequency corresponding to one or more synchronization signal blocks SSB.
  • the first protocol layer is a protocol layer above the physical layer;
  • the processor 12 is further configured to transmit the first information and the second information from the first protocol layer to a physical layer;
  • the processor 12 is further configured to perform physical layer processing on the first information and the second information.
  • the transceiver 11 is configured to transmit data obtained by physical layer processing through a physical broadcast channel PBCH in the SSB.
  • network device 10 may correspond to a network device in method 400 of transmitting and receiving information in accordance with an embodiment of the present invention, which may include network device execution for performing method 400 of transmitting and receiving information in FIG.
  • the module of the method Moreover, the modules in the network device 10 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 400 for transmitting and receiving information in FIG. 4, and specifically, the processor 12 is configured to execute S410 in the method 400 to S430, the transceiver 11 is used to perform S440 in the method 400.
  • the descriptions of the method embodiments in conjunction with FIG. 4 to FIG. 9 are omitted. For brevity, no further details are provided herein.
  • FIG. 11 is a schematic structural diagram of a network device 20 according to an embodiment of the present application.
  • the network device 20 can be the network device in the method 400 of transmitting and receiving information shown in FIG.
  • the network device 20 includes a processing unit 21 and a transceiver unit 22.
  • the processing unit 21 and the transceiver unit 22 may be implemented in software or in hardware.
  • the processing unit 21 may be the processor 11 of FIG. 10, which may be the transceiver 12 of FIG.
  • FIG. 12 is a schematic structural diagram of a terminal device 30 according to an embodiment of the present application.
  • the terminal device 30 can be the terminal device in the method 400 of transmitting and receiving information shown in FIG.
  • the terminal device 30 includes a processor 31 and a transceiver 32.
  • the transceiver 32 can include a control circuit and an antenna, wherein the control circuit can be used for converting baseband signals and radio frequency signals and processing the radio frequency signals, and the antenna can be used to transmit and receive radio frequency signals.
  • the terminal device 30 may further include a memory, an input/output device, and the like.
  • the processor 31 can be configured to process the communication protocol and the communication data, and control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the foregoing description in conjunction with FIGS. 4 to 9.
  • Memory is primarily used to store software programs and data. After the terminal device is powered on, the processor 31 can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the transceiver 31 is configured to receive data sent by the network device on the physical broadcast channel PBCH, where the data includes first information and second information, where the first information and the second information are generated by the network device at the first protocol layer.
  • the first information includes system information, where the second information is used to determine a first time-frequency resource of the one or more synchronization signal blocks SSB, where the PBCH is located in a time-frequency resource corresponding to the SSB, and the first protocol layer is a physical a protocol layer above the layer;
  • the processor 32 is configured to perform physical layer processing on the received data at the physical layer;
  • the processor 32 is further configured to transmit data processed by the physical layer from the physical layer to the first protocol layer;
  • the processor 32 further processes the processed data of the physical layer at the first protocol layer to obtain the first information and the second information.
  • the terminal device 30 may correspond to a terminal device in the method 400 of transmitting and receiving information according to an embodiment of the present invention, which may include a terminal device for performing the method 400 of transmitting and receiving information in FIG.
  • the module of the method of execution are respectively used to implement the corresponding process of the method 400 for transmitting and receiving information in FIG. 4, and specifically, the transceiver 31 is configured to execute S440 in the method 400.
  • the processor 32 is configured to execute S450 to S470 in the method 400.
  • FIG. 13 is a schematic structural diagram of a terminal device 40 according to an embodiment of the present application.
  • the terminal device 40 may be the terminal device in the method 400 of transmitting and receiving information shown in FIG.
  • the terminal device 40 includes a transceiver unit 41 and a processing unit 42.
  • the transceiver unit 41 and the processing unit 42 may be implemented in software or in hardware.
  • the transceiver unit 41 can be the transceiver 32 of FIG. 12, which can be the processor 31 of FIG.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收信息的方法、网络设备和终端设备,能够在PBCH上发送用于确定SSB的信息,进而实现与小区无线帧的时序对齐。该方法包括:网络设备在第一协议层生成第一信息和第二信息,该第一信息包括系统信息,该第二信息用于确定一个或多个同步信号块SSB对应的时频资源,该第一协议层是物理层以上的一个协议层;该网络设备将该第一信息和该第二信息从该第一协议层传输至物理层;该网络设备对该第一信息和该第二信息进行物理层处理;该网络设备通过该SSB中的物理广播信道PBCH发送经物理层处理后得到的数据。

Description

发送和接收信息的方法、网络设备和终端设备
本申请要求于2017年5月5日提交中国专利局、申请号为201710313281.X、发明名称为“发送和接收信息的方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及发送和接收信息的方法、网络设备和终端设备。
背景技术
在新一代无线接入技术(New Radio Access Technology,NR)系统中,因考虑到多波束,引入了同步信号块(Synchronization Signal Block,SSB)。波束与SSB具有可配置的映射关系,例如,多波束中的每个波束发送不同的SSB,或者2个波束可以发送同一SSB。每个SSB可以包括NR主同步信号(NR-Primary Synchronization Signal,NR-PSS)、NR辅同步信号(NR-Secondary Synchronization Signal,NR-SSS)和物理广播信道(Physical Broadcast Channel,PBCH)。网络设备可以以一个或多个无线帧为周期,周期性地发送一个或多个SSB,一个周期内发送的一个或多个SSB可以组成一个SS脉冲集(SS burst set)。
考虑到SSB的上述发送方式,需要在SSB中携带一些附加信息,以实现终端设备对SSB的检测或者实现更多的功能。例如,由于每个SSB在所属的SS burst set中的相对位置是固定的,也就是网络设备发送每个SSB所使用的时域资源是相对固定的,因此,终端设备可以根据当前接收到的SSB推断小区的帧边界和时隙边界,以完成与小区无线帧的时序对齐。然而,由于一个SS burst set可能包括多个SSB,终端设备需要知道接收到的SSB在所属SSB burst set中的相对位置,才能完成与小区无线帧的时序对齐。
因此,网络设备如何向终端设备指示网络设备当前发送的SSB在所属SS burst set中的相对位置,成为亟需解决的技术问题。
发明内容
本申请提供一种发送和接收信息的方法、网络设备和终端设备,以在SSB中向终端设备发送用于确定SSB在所属SS burst set中时频资源的信息,从而实现与小区无线帧的时序对齐。
第一方面,提供了一种发送信息的方法,包括:
网络设备在第一协议层生成第一信息和第二信息,所述第一信息包括系统信息,所述第二信息用于确定一个或多个同步信号块SSB对应的时频资源,所述第一协议层是物理层以上的一个协议层;
所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层;
所述网络设备对所述第一信息和所述第二信息进行物理层处理;
所述网络设备通过所述SSB中的物理广播信道PBCH发送经物理层处理后得到的数据。
在NR中,为了支持多波束,每个无线帧上可以发送多个SSB,当终端设备接收到SSB时,并不知道该SSB与帧边界以及时隙边界的相对位置关系,无法推断帧边界以及时隙边界。而每个SSB在所属的SS burst set中的相对位置是固定的,也就是每个SSB占用的时域资源可以是相对固定的。因此,本申请实施例提供一种发送信息的方法,能够将用于确定SSB的时频资源的信息携带在SSB中发送给终端设备,以便于终端设备根据该信息确定接收到的SSB在SS burst set中的时频资源,推断出帧边界和小区边界,进而实现与小区无线帧的时序对齐。
在本申请实施例中,网络设备在第一协议层分别生成第一信息和第二信息,并可以通过以下列举的不同的数据处理方式进行处理,最后通过SSB中的PBCH发送给终端设备。
可选地,所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层,包括:
所述网络设备在所述第一协议层将所述第一信息和所述第二信息作为一个整体进行封装处理,生成第一消息;
所述网络设备将所述第一消息映射在所述第一协议层和所述物理层之间的中间信道中发送给所述物理层。
其中,中间信道由同一逻辑信道和同一传输信道组成。
可选地,所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层,包括:
所述网络设备在所述第一协议层对所述第一信息进行封装处理,生成第一消息;
所述网络设备在所述第一协议层对所述第二信息进行封装处理,生成第二消息;
所述网络设备将所述第一消息和所述第二消息映射在所述第一协议层和所述物理层之间的中间信道中发送给所述物理层。
其中,所述中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
可选地,所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层,包括:
所述网络设备在所述第一协议层对所述第一信息进行封装处理,生成第一消息;
所述网络设备在所述第一协议层对所述第二信息进行封装处理,生成第二消息;
所述网络设备将所述第一消息映射在所述第一协议层和所述物理层之间的第一中间信道中发送给物理层;
所述网络设备将所述第二消息映射在所述第一协议层和所述物理层之间的第二中间信道中发送给所述物理层。
可选地,所述网络设备对所述第一信息和所述第二信息进行物理层处理,包括:
所述网络设备在所述物理层对通过所述第一中间信道接收到的第一消息和通过所述第二中间信道接收到的第二消息作为一个整体进行物理层处理。
可选地,所述网络设备对所述第一信息和所述第二信息进行物理层处理,包括:
所述网络设备在所述物理层对通过所述第一中间信道接收到的第一消息和通过所述第二中间信道接收到的第二消息分别进行物理层处理。
第二方面,提供了一种接收信息的方法,包括:
终端设备在物理广播信道PBCH接收网络设备发送的数据;
所述终端设备在所述物理层对接收到的所述数据进行物理层处理;
所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层;
所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取第一信息和第二信息,所述第一信息包括系统信息,所述第二信息用于确定承载所述数据的一个或多个同步信号块SSB对应的时频资源。
在NR中,为了支持多波束,每个无线帧上可以发送多个SSB,当终端设备接收到SSB时,并不知道该SSB与帧边界以及时隙边界的相对位置关系,无法推断帧边界以及时隙边界。而每个SSB在所属的SS burst set中的相对位置是固定的,也就是每个SSB占用的时域资源可以是相对固定的。因此,本申请实施例提供一种接收信息的方法,能够将用于确定SSB的时频资源的信息携带在SSB中发送给终端设备,以便于终端设备根据该信息确定接收到的SSB在SS burst set中的时频资源,推断出帧边界和小区边界,进而实现与小区无线帧的时序对齐。
在本申请实施例中,终端设备可以对在PBCH上接收到的数据通过以下列举的不同的数据处理方式进行处理,以在第一协议层获取第一信息和第二信息。
可选地,所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
所述终端设备将经所述物理层处理后的数据映射在所述第一协议层和所述物理层之间的中间信道中发送给所述第一协议层;
所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:所述终端设备在所述第一协议层对通过所述中间信道接收到的数据进行解封装处理,得到由所述第一信息和所述第二信息组合而成的整体,并从所述第一信息和所述第二信息组合而成的整体中获取所述第一信息和所述第二信息。
其中,中间信道由同一逻辑信道和同一传输信道组成。
可选地,所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
所述终端设备将经所述物理层处理后的数据映射在所述第一协议层和所述物理层之间的中间信道中发送给所述第一协议层;
所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
所述终端设备在所述第一协议层对通过所述中间信道接收到的数据进行解封装处理,得到所述第一信息和所述第二信息。
其中,所述中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
可选地,所述终端设备在所述物理层对接收到的所述数据进行物理层处理,包括:
所述终端设备在所述物理层对接收到的所述数据进行物理层处理,得到经所述物理层 处理后的第一数据和第二数据;
所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
所述终端设备将经所述物理层处理后的第一数据映射在所述第一协议层和所述物理层之间的第一中间信道中发送给所述第一协议层;
所述终端设备将经所述物理层处理后的第二数据映射到所述第一协议层和所述物理层之间的第二中间信道中发送给所述第一协议层;
所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
所述终端设备在所述第一协议层对通过所述第一中间信道接收到的第一数据进行解封装处理,得到所述第一信息;
所述终端设备在所述第一协议层对通过所述第二中间信道接收到的第二数据进行解封装处理,得到所述第二信息。
可选地,所述终端设备接收到的数据包括第三数据和第四数据;以及,
所述终端设备在所述物理层对接收到的所述数据进行物理层处理,包括:
所述终端设备在所述物理层对所述第三数据进行物理层处理,得到物理层处理后的第三数据;
所述终端设备在所述物理层对所述第四数据进行物理层处理,得到物理层处理后的第四数据;所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
所述终端设备将经所述物理层处理后的第三数据映射在所述第一协议层和所述物理层之间的第一中间信道中发送给所述第一协议层;
所述终端设备将经所述物理层处理后的第四数据映射在所述第一协议层和所述物理层之间的第二中间信道中发送给所述第一协议层;
所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
所述终端设备在所述第一协议层对通过所述第一中间信道接收到的第三数据进行解封装处理,得到所述第一信息;
所述终端设备在所述第一协议层对通过所述第二中间信道接收到的第四数据进行解封装处理,得到所述第二信息。
第三方面,提供了一种网络设备,所述网络设备包括用于执行第一方面或第一方面任一种可能实现方式中的发送信息的方法的各个单元。
第四方面,提供了一种终端设备,所述终端设备包括用于执行第二方面或第二方面任一种可能实现方式中的接收信息的方法的各个单元。
第五方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面或第一方面任一种可能实现方式中的方法。
第六方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该 计算机程序,使得该终端设备执行第二方面或第二方面任一种可能实现方式中的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被网络设备运行时,使得所述网络设备执行上述第一方面或第一方面任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被网络设备运行时,使得所述终端设备执行上述第二方面或第二方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第一方面或第一方面任一种可能实现方式中的方法的指令。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第二方面或第二方面任一种可能实现方式中的方法的指令。
第十一方面,提供了一种芯片系统,包括处理器,该处理器用于从存储器中调用并运行计算机程序,该计算机程序用于实现上述各方面中的方法。
可选地,所述第一中间信道包括:第一逻辑信道和/或第一传输信道,所述第二中间信道包括:第二逻辑信道和/或第二传输信道。
其中,逻辑信道是由它所承载的信息类型而定义,例如,可以分为控制信道和业务信道。例如,在长期演进(Long Term Evolution,LTE)协议中,逻辑信道由媒体接入控制(Media Access Control,MAC)层提供给上层使用。
传输信道是以信道的传输方式而定义。在LTE协议中,传输信道由物理(Physical,PHY)层提供给上层使用。
应理解,上述对中间信道的具体内容的列举仅为示例性说明,不应对本发明实施例构成任何限定,本发明实施例也不应限于此。例如,物理层和第一协议层可以为相邻的协议层,该中间信道可以为重新定义的一个信道,用于同时实现逻辑信道和传输信道的功能,实现物理层与第一协议层之间的信息交互;或者,物理层和第一协议层之间可以包含更多或者更少的协议层,该中间信道可以沿用LTE中的逻辑信道和传输信道,也可以逻辑信道和传输信道和重新定义的其他信道,用于实现各协议层之间的信息交互,本申请实施例对此并未特别限定。
所述第二信息包括:
所述第一SSB在所属SS脉冲集中的第一时间索引TI,或者,
所述第一SSB在所属SS脉冲中的第二TI和所述SS脉冲在所属SS脉冲集中的第三TI的组合。
可选地,所述系统信息包括以下的一种或多种:包括系统带宽值、系统帧号SFN(System Frame Number)、或剩余最少系统信息(Remaining Minimum System Information,RMSI)的配置信息(用于指示用以传输剩余最少系统信息的时频资源信息和子载波间隔)。
本申请通过在SSB中向终端设备发送用于确定SSB在所属SS burst set中时频资源的信息,使得终端设备能够根据该信息实现与小区无线帧的时序对齐。
附图说明
图1是适用于本申请实施例的发送和接收信息的方法的通信系统的示意图;
图2示出了本申请实施例提供的一种可能的SSB资源结构的示意图;
图3示出了本申请实施例提供的一种可能的SS脉冲集资源结构的示意图;
图4是本申请实施例提供的发送和接收信息的方法的示意性流程图;
图5是本申请实施例提供的发送信息的方法的示意图;
图6是本申请实施例提供的发送信息的方法的另一示意图;
图7是本申请实施例提供的发送信息的方法的另一示意图;
图8是本申请实施例提供的发送信息的方法的另一示意图;
图9是本申请实施例提供的发送信息的方法的另一示意图;
图10是本申请实施例提供的网络设备的结构示意图;
图11是本申请实施例提供的网络设备的另一结构示意图;
图12是本申请实施例提供的终端设备的结构示意图;
图13是本申请实施例提供的终端设备的另一结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-Advanced,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或下一代通信系统(例如,第五代通信(Fifth-Generation,5G)系统)等。其中,5G系统也可以称为新一代无线接入技术(NR)系统。
为便于理解本申请实施例,首先结合图1简单介绍适用于本申请实施例的通信系统。图1是适用于本申请实施例的发送和接收信息的方法的通信系统100的示意图。如图1所示,该通信系统100包括至少两个通信设备,例如,网络设备110和终端设备120,其中,网络设备110与终端设备120之间可以通过无线连接进行数据通信。
其中,应理解,该网络设备110可以是全球移动通信(GSM)或码分多址(CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(WCDMA)中的基站(NodeB,NB),还可以是长期演进(LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站、接入点或射频拉远单元(Remote Radio Unit,RRU),或者车载设备、可穿戴设备,还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,以及未来5G系统中的网络侧设备,如传输点(Transmission Point,TP)、发送接收点(Transmission Reception Point,TRP)、基站(gNodeB,gNB)、小基站设备等,本申请实施例对此并未特别限定。
还应理解,终端设备120也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(Station,ST),可以是蜂窝电话、无绳电话、会话启动协 议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等,本申请实施例对此并未特别限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备和/或终端设备,图1中未予以画出。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small Cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。另外,该小区还可以是超级小区(Hypercell)。Hypercell采用用户为中心的无蜂窝无线接入(User Centric No Cell Radio Access,UCNC)技术,即终端设备不再接入某一个固定的物理站点(例如,TRP),而是接入一个包含一组TRP的逻辑实体(Logical Entity,LE)来获得服务,这种逻辑实体可以称为Hypercell。Hypercell的边界是灵活的,可以根据网络负载、用户分布的变化而变化。Hypercell内的所有TRP对于终端设备都是透明的,终端设备只需要根据Hypercell ID接入,就可以获得Hypercell内TRP的服务,而不再固定与某个TRP连接。
在NR中,由于考虑多波束,引入了多个SSB。图2示出了本申请实施例提供的一种可能的SSB资源结构的示意图。如图2所示,一个SSB可以包括一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的NR-PSS、一个OFDM符号的NR-SSS和两个OFDM符号的NR-PBCH。由图可以看到,每个SSB中的NR-PSS、NR-SSS和NR-PBCH占用连续的四个OFDM符号。
在本申请实施例中,NR-PSS和NR-SSS可以分别具有现有技术(例如,LTE)中的PSS和SSS的功能。例如,NR-PSS可以用于确定OFDM符号定时、频率同步、时隙定时和小区组内的小区ID;NR-SSS可以用于确定帧定时、小区组等,或者,NR-PSS和NR-SSS也可以具有与目前的PSS和SSS不同的功能,本申请实施例对此并未限定。另外,NR-PSS和NR-SSS还可以采用分别与目前的PSS和SSS相同或不同的序列,本申请实施例对此也不限定。
另外,在本申请实施例中,NR-PBCH可以具有与现有技术(例如,LTE)中的PBCH相同或不同的功能,本申请对此也不限定。可选地,NR-PBCH中可以携带主信息块(Master Information Block,MIB)。
应理解,图2中示出的SSB的资源结构仅为一种可能的结构,不应对本申请实施例构成任何限定。例如,NR-PSS、NR-SSS和NR-PBCH在频域上占用的子载波数可能是不同的,图中并未予以示出。或者,NR-PSS、NR-SSS和NR-PBCH也有可能在时间上并不连续,或者,该SSB可能仅包括NR-PSS和NR-PBCH,或者,仅包括NR-SSS和NR-PBCH,甚至还可以仅包括NR-PBCH。本申请实施例对于SSB的资源结构并未特别限定。
图3示出了本申请实施例提供的一种可能的SS burst set资源结构的示意图。一个或多 个SSB可以构成一个SS burst,一个或多个SS burst可以构成一个SS burst set,一个SS burst set被映射到一个或多个无线帧中,呈周期性发送。或者说,一个SS burst set的发送周期包括一个或多个无线帧。例如,图3示出了一个SS burst set的发送周期包括2个无线帧的情形。由图可以看到,每个SS burst set中的多个SSB在时域上可以连续或者不连续,如图中示出,SSB1和SSB2在时域上连续,SSB3和SSB4在时域上连续,但SSB2和SSB3在时域上不连续。本申请实施例对此并未特别限定。其中,SSB1和SSB2可以构成一个SS burst,SSB3和SSB4可以构成一个SS burst,以此类推。
综上可以看到,NR中的SSB与LTE中的同步信号在时域资源上的分布有较大的差异。在LTE中,在一定的双工模式下,PSS和SSS在每个无线帧中的相对位置可以是固定的。例如,在频分双工(Frequency Division Duplex,FDD)模式下,PSS在第0子帧和第5子帧的第一个时隙(slot)的最后一个符号(symbol)上传输,而SSS则在同一个符号上紧邻最后那个符号的位置上传输。而在时分双工(Time Division Duplex,TDD)模式下,PSS在第1子帧和第6子帧的第三个符号上传输,而SSS在第0子帧和第5子帧的最后一个符号上传输。终端设备虽然并不知道所搜索到的小区的双工模式,但是在可以通过PSS和SSS在时序结构上的差别来区分FDD和TDD,并进一步完成时隙同步和帧同步。
然而,在NR中,每个无线帧上可以发送多个SSB,当终端设备接收到SSB时,并不知道该SSB与帧边界以及时隙边界的相对位置关系,无法推断帧边界以及时隙边界。而每个SSB在所属的SS burst set中的相对位置是固定的,也就是每个SSB占用的时域资源可以是相对固定的,例如,图3中示出的SSB1可以在第一个无线帧的第1子帧的第一个时隙的最后一个符号上传输。
本申请实施例提供一种发送和接收信息的方法,在SSB中携带附加信息,该附加信息例如可以用于确定该SSB在所属SS burst set发送周期中的排序的序号(或者称,时间索引,Time Index,TI),该TI不仅可以用于确定SSB在所属SS burst set发送周期中的排序,还可以确定具有相同TI的SSB在各自所属的SS burst set发送周期中的时域资源位置。可以理解的是,具有相同TI的任意两个SSB在各自所属的SS burst set发送周期中的时域资源位置是相同的。因此,终端设备在获取一个或多个SSB中的TI后,便可以根据TI对应的SSB在SS burst set发送周期中映射的时域资源,推断出小区的帧边界和时隙边界,从而实现与小区无线帧的时序对齐。
然而,如何在SSB中携带附加信息,以及终端设备如何读取该附加信息,仍然是一个待解决的问题。
下面将结合附图详细说明本申请实施例的发送和接收信息的方法。
图4从设备交互的角度示出了本申请实施例提供的发送和接收信息的方法400的示意性流程图。
如图4所示,该方法400包括:
S410,该网络设备在第一协议层生成第一信息和第二信息。
其中,第一信息可以为系统信息。具体地,该系统信息可以是LTE中的系统信息,也可以是NR标准中定义的系统信息。作为示例而非限定,系统信息可以包括:系统带宽值(System Bandwidth)、系统帧号(System Frame Number,SFN)、或剩余最少系统信息(Remaining Minimum System Information,RMSI)的配置信息。其中,RMSI的配置信 息用于指示用以传输RMSI的时频资源和子载波间隔。
第二信息用于确定一个或多个SSB对应的时频资源。在本申请实施例中,待发送的SSB在所属SS burst set中对应的时域资源可以通过该SSB在所属SS burst set中的TI(为便于区分和说明,记作第一TI,例如,可以如图3中所示的SSB的编号1、2等)来表征,或者,也可以通过该SSB在所属SS burst中的TI(为便于区分和说明,记作第二TI)和该SS burst在所属SS burst set中的TI(为便于区分和说明,记作第三TI)的组合来表征。
换句话说,该第二信息可以包括:待发送的SSB在SS burst set中的第一TI;或者,待发送的SSB在SS burst中的第二TI和该SS burst在所属SS burst set中的第三TI的组合。
在每个SS burst set的发送周期中,各SSB在时域上的相对位置是固定的,换句话说,在每个SS burst set的发送周期中,多个SSB的TI(包括第一TI,或者,第二TI和第三TI的组合)与多个时域资源具有一一对应的关系。因此,网络设备可以根据当前待发送的SSB的时域资源确定该SSB的第一TI,或者,第二TI和第三TI,也就是确定了第二信息。
需要说明的是,TI不仅可以被设计为用于指示SSB在SS burst set发送周期中的排序的序号,还可以被设计为用于指示该SSB的频域资源;或者,TI可以被设计为用于指示SSB在SS burst set发送周期中的排序的序号,该SSB的频域资源可以预先配置,因此,TI可以用于确定该SSB对应的时频资源。
在本申请实施例中,该第一协议层可以是物理(Physical,PHY)层以上的一个协议层。可选地,该第一协议层可以为无线资源控制(radio resource control,RRC)层。
在物理层和RRC层之间,还可以包括其他的中间协议层,例如,媒体接入控制(MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层中的一层或多层,该物理层与RRC层也可以为相邻的两个协议层,本申请实施例对此并未特别限定。可以理解的是,由于5G网络中协议层的划分并不明确,因此,本申请实施例并不排除将目前的LTE中的协议栈中的一个或多个层合并、或者新增一个或多个协议层的可能。
以下,为便于说明,仅以第一协议层是RRC层为例,结合LTE中的协议栈结构进行说明,但不应对本申请实施例构成任何限定,该第一协议层也可以为物理层以上的其他协议层,例如MAC层,或者NR中定义的新的协议层等。
S420,该网络设备将第一信息和第二信息从第一协议层传输至物理层;
S430,该网络设备对该第一信息和第二信息进行物理层处理;
S440,该网络设备通过该SSB中的PBCH发送经物理层处理得到的数据。
网络设备在生成第一信息和第二信息之后,可以将该第一信息和第二信息通过无线承载(Radio Bearer,RB)、并使用如图5至图9中所示出的协议层(PDCP层、RLC层和MAC层)传输至物理层,在物理层对第一信息和第二信息进行物理层处理后得到的数据映射到第二信息所指示的SBB对应的时域资源中的PBCH符号发送,从而传送给终端设备。
具体地,网络设备在RRC层生成第一信息和第二信息,经过RRC层的处理以及处于RRC层和物理层之间的中间协议层的处理,直至经过物理层处理后发送出去的过程(也就是S420至S440的具体过程)可以通过以下任意一种方法来实现:
方法一:
具体地,方法一可以包括以下步骤:
步骤一:该网络设备在第一协议层将该第一信息和第二信息作为一个整体进行封装处理,得到第一消息;
步骤二:该网络设备将该第一消息映射在中间信道中发送给物理层;
步骤三:该网络设备在该物理层对通过该中间信道接收到的第一消息进行物理层处理,并使用该SSB对应的时频资源中的该PBCH发送经该物理层处理得到的数据。
下面结合图5详细说明方法一。图5是本申请实施例提供的发送信息的方法的示意图。具体地,图5结合LTE中的协议栈结构示出了该第一信息和第二信息的处理和发送过程。
如图5所示,该协议栈中可以包括5个协议层,自上而下分别为RRC层、PDCP层、RLC层、MAC层和PHY层。
网络设备在RRC层生成的第一信息和第二信息可以理解为独立的两个净荷(payload),例如可以分别记作第一净荷和第二净荷,第一净荷与第一信息对应,第二净荷与第二信息对应。
在步骤一中,网络设备可以将第一信息和第二信息作为一个整体,或者说,作为一个净荷,例如记作第三净荷。可选地,该第三净荷可以是对第一净荷和第二净荷进行级联得到。级联可以是将第一净荷中的各比特和第二净荷中的各比特依次连接。网络设备对该第三净荷进行封装处理,例如,该封装处理可以为抽象语法标记(Abstract Syntax Notation,ASN.1)封装处理,得到第一消息,该第一消息可以称为RRC消息。
可选地,该中间信道包括逻辑信道和/或传输信道。
在LTE的协议栈结构中,该中间信道可以包括逻辑信道和传输信道。
在步骤二中:网络设备在RRC层(即,第一协议层的一例)和物理层之间的中间协议层对该第一消息进行中间协议层处理。如图5中所示,网络设备可以分别通过广播控制信道(Broadcast Control Channel,BCCH)发送给MAC层。MAC层将接收到的第一消息进行MAC层处理后通过广播信道(Broadcast Control,BCH)发送给物理层。
这里以图5中的协议栈架构为例,简单说明网络设备在各协议层执行的操作:网络设备在PDCP层可进行网际协议(Internet Protocol,IP)包头压缩,以减少无线接口上传输的比特数;网络设备在RLC层可将来自PDCP层的数据包进行分割或级联、重传控制、重复检测和序列传送到更上层。RLC层为PDCP层提供服务。一个终端的每个无线承载都会配置一个RLC实体;网络设备在MAC层可确定空中接口发送的格式,如数据块的大小等,以及根据数据块的大小分配物理层资源,如确定对数据块的调整方式、确定用于承载数据块的子载波等;网络设备在物理层可进行信道编码、速率匹配、交织、加扰和调制等。
需要说明的是,在LTE协议中,MAC层以逻辑信道的形式为RLC层提供服务,并使用来自物理层的以传输信道形式出现的服务。
应理解,上述列举结合LTE中的协议栈结构对网络设备在各协议层执行的操作作了简单的说明,其具体的实现过程可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
在步骤三中,网络设备在对从传输信道接收到的经中间协议层处理后的第一消息进行物理层处理之后,便可以将物理层处理后得到的数据进行资源映射。例如,网络设备可以确定用于传输该物理层处理得到的数据的无线帧的帧号、以及在一个无线帧中的具体时频 资源信息,将物理层处理得到的数据映射到与该时频资源上,通过该时频资源发送该物理层处理得到的数据。可以理解,该时频资源也就是在S410中描述的当前发送的SSB对应的时频资源中的PBCH符号。
在方法一中,中间信道可以由同一逻辑信道和同一传输信道组成。
应理解,上述列举的逻辑信道和传输信道仅为示例性说明,本申请并不排除在NR协议中定义一个或多个新的信道来替代该逻辑信道和传输信道并实现相同的功能的可能。
还应理解,上述结合图5描述的各协议层以及网络设备在各协议层执行的操作仅为示例性说明,而不应对本申请实施例构成任何限定。例如,第一协议层和物理层可以为相邻的协议层,经第一协议层生成后的第一信息和第二信息经第一协议层的处理后得到的第一消息可以直接发送给物理层,以进行物理层处理,并通过相应的时频资源发送。又例如,第一协议层和物理层之间可以包含有比上述列举更多的协议层等等。为了简洁,这里不再一一列举。
方法二:
具体地,方法二可以包括以下步骤:
步骤一:网络设备在第一协议层分别对第一信息进行封装处理,生成第一消息;
步骤二:该网络设备在该第一协议层对第二信息进行封装处理,生成第二消息;
步骤三:该网络设备将该第一消息和该第二消息映射在中间信道中发送给物理层;
步骤四:该网络设备在物理层对通过该中间信道接收到的第一消息和第二消息进行物理层处理,并使用SSB对应的时频资源中的所述PBCH发送经所述物理层处理得到的数据。
下面结合图6和图7详细说明方法二。图6和图7是本申请实施例提供的发送信息的方法的另一示意图。具体地,图6和图7分别结合LTE中的协议栈结构示出了该第一信息和第二信息的处理和发送过程。
如图所示,该协议栈中可以包括5个协议层,自上而下分别为RRC层、PDCP层、RLC层、MAC层和PHY层。
在步骤一和步骤二中,网络设备在RRC层可以分别对生成的第一信息和第二信息进行封装处理,例如,ASN.1封装处理,得到第一消息和第二消息。该第一消息和第二消息均为RRC消息。
与方法一不同的是,网络设备在RRC层是分别对两个信息进行封装处理的,得到的是两个独立的RRC消息。
在步骤三中,该两个RRC消息可以通过中间信道发送给物理层。
这里,中间信道由同一逻辑信道和同一传输信道组成(情况一),或者,所述中间信道由不同的逻辑信道和同一传输信道组成(情况二)。
情况一:
图6示出了情况一中第一信息和第二信息的处理和发送过程。如图6所示,经RRC层生成的第一消息和第二消息可以作为一个整体映射在一个逻辑信道中发送到MAC层。在此过程中,网络设备可以依次在各协议层对来自上层协议层的数据进行处理,并发给下层协议层。其中,网络设备可以在RRC层、PDCP层、RLC层中的任意一层将第一消息和第二消息进行组合,得到一个组合后的第一消息和第二消息,然后映射在逻辑信道中发 送给MAC层。其后,网络设备在MAC层对从逻辑信道接收到的组合后的第一消息和第二消息进行MAC层处理之后,又可以映射到同一个传输信道中发送给物理层。
情况二:
图7示出了情况二中第一信息和第二信息的处理和发送过程。如图7所示,经RRC层生成的第一消息和第二消息可以分别经不同的逻辑信道发送到MAC层。其中,网络设备可以依次在RRC层、PDCP层、RLC层对来自上层协议层的数据进行处理,并发送给下层协议层。网络设备在MAC通过不同的逻辑信道接收到经上层处理后的第一消息和第二消息之后,可以对接收到的第一消息和第二消息进行组合,得到一个组合后的第一消息和第二消息,然后映射在同一传输信道中发送给物理层。
在步骤四中,网络设备对从中间信道接收到的数据进行物理层处理,得到物理层处理后的数据。具体地,该物理层处理可包括:信道编码、速率匹配、交织、加扰和调制等。
网络设备将经物理层处理得到的数据映射到PBCH上,通过该PBCH发送该物理层处理得到的数据。该时频资源也就是在S410中描述的当前发送的SSB对应的时频资源中的PBCH符号。
应理解,上述列举的两种情况仅为示例性说明,不应对本申请实施例构成任何限定。例如,第一协议层和物理层也可以为相邻的协议层,该第一协议层和物理层之间的信道可以为逻辑信道或传输信道,或者其他用于实现相同或相似功能的信道。在第一协议层生成的第一消息和第二消息可以直接通过位于第一协议层和物理层之间的一个中间信道发送给物理层。
还应理解,方法二中网络设备在各协议层执行的操作可以与方法一中的操作相似,只是在部分协议层操作的对象有所不同,为了简洁,这里省略对网络设备在各协议层执行的操作的详细说明。
方法三:
具体地,方法三可以包括以下步骤:
步骤一:网络设备在第一协议层对第一信息进行封装处理,生成第一消息;
步骤二:该网络设备在该第一协议层对该第二信息进行封装处理,生成第二消息;
步骤三:该网络设备将该第一消息映射在第一中间信道中发送给物理层;
步骤四:该网络设备将该第二消息映射在第二中间信道中发送给该物理层;
步骤五:该网络设备在该物理层对通过该第一中间信道接收到的第一消息和通过该第二中间信道接收到的第二消息作为一个整体进行物理层处理,并使用该SSB对应的时频资源中的该PBCH发送经该物理层处理得到的数据。
下面结合图8详细说明方法三。图8是本申请实施例提供的发送信息的方法的另一示意图。具体地,图8结合LTE中的协议栈结构示出了该第一信息和第二信息的处理和发送过程。
如图8所示,该协议栈中可以包括5个协议层,自上而下分别为RRC层、PDCP层、RLC层、MAC层和PHY层。
在步骤一和步骤二中,网络设备在RRC层可以分别对生成的第一信息和第二信息进行封装处理,例如,ASN.1封装处理,得到第一消息和第二消息。该第一消息和第二消息均为RRC消息。
在步骤三和步骤四中,网络设备将第一消息和第二消息分别映射到第一中间信道和第二中间信道中发送给物理层。与方法二不同的是,网络设备在物理层以上的中间协议层分别对第一消息和第二消息进行处理,因此,网络设备在物理层接收到的是经中间协议层处理后的两个消息。
可选地,该中间信道包括:逻辑信道和/或传输信道。
换句话说,网络设备可以将第一消息映射到第一逻辑信道发送给MAC层,再将经MAC层处理后的第一消息映射到第一传输信道发送给物理层;相应地,网络设备可以将第二消息映射到第二逻辑信道发送给MAC层,再将经MAC层处理后的第二消息映射到第二传输信道发送给物理层。
应理解,上述列举的中间信道仅为示例性说明,不应对本申请实施例构成任何限定。例如,第一协议层和物理层也可以为相邻的协议层,该第一协议层和物理层之间的信道可以为逻辑信道或传输信道,或者其他用于实现相同或相似功能的信道。在第一协议层生成的第一消息和第二消息可以直接通过位于第一协议层和物理层之间的两个不同的中间信道发送给物理层。或者,该第一协议层和物理层之间还可以更多的协议层和信道,该中间信道可以包括处于第一协议层与中间协议层、物理层与中间协议层,以及中间协议层之间的信道。
在步骤五中,网络设备在物理层对经中间协议层处理后的两个消息进行组合,将经中间协议层处理后的两个消息作为一个整体进行物理层处理。具体地,该物理层处理可包括:信道编码、速率匹配、交织、加扰和调制等。
网络设备将经物理层处理得到的数据映射到PBCH上,通过该PBCH发送该物理层处理得到的数据。该时频资源也就是在S410中描述的当前发送的SSB对应的时频资源中的PBCH符号。
应理解,方法三中网络设备在各协议层执行的操作可以与方法一中的操作相似,只是在部分协议层操作的对象有所不同,为了简洁,这里省略对网络设备在各协议层执行的操作的详细说明。
方法四:
具体地,方法四可以包括以下步骤:
步骤一:网络设备在该第一协议层对该第一信息进行封装处理,生成第一消息;
步骤二:该网络设备在该第一协议层对该第二信息进行封装处理,生成第二消息;
步骤三:该网络设备将该第一消息映射在第一中间信道中发送给物理层;
步骤四:该网络设备将该第二消息映射在第二中间信道中发送给该物理层;
步骤五:该网络设备在该物理层对通过该第一中间信道接收到的第一消息和通过该第二中间信道接收到的第二消息分别进行物理层处理,并使用该SSB对应的时频资源中的该PBCH发送经该物理层处理得到的数据。
下面结合图9详细说明方法三。图9是本申请实施例提供的发送信息的方法的另一示意图。具体地,图9结合LTE中的协议栈结构示出了该第一信息和第二信息的处理和发送过程。
如图9所示,该协议栈中可以包括5个协议层,自上而下分别为RRC层、PDCP层、RLC层、MAC层和PHY层。
在步骤一和步骤二中,网络设备在RRC层可以分别对生成的第一信息和第二信息进行封装处理,例如,ASN.1封装处理,得到第一消息和第二消息。该第一消息和第二消息均为RRC消息。
在步骤三和步骤四中,网络设备将第一消息和第二消息分别映射到第一中间信道和第二中间信道中发送给物理层。由于网络设备在物理层以上的中间协议层分别对第一消息和第二消息进行处理,因此,网络设备在物理层接收到的是经中间协议层处理后的两个消息。
可选地,该中间信道包括:逻辑信道和/或传输信道。
换句话说,网络设备可以将第一消息映射到第一逻辑信道发送给MAC层,再将经MAC层处理后的第一消息映射到第一传输信道发送给物理层;相应地,网络设备可以将第二消息映射到第二逻辑信道发送给MAC层,再将经MAC层处理后的第二消息映射到第二传输信道发送给物理层。
应理解,上述列举的中间信道仅为示例性说明,不应对本申请实施例构成任何限定。例如,第一协议层和物理层也可以为相邻的协议层,该第一协议层和物理层之间的信道可以为逻辑信道或传输信道,或者其他用于实现相同或相似功能的信道。在第一协议层生成的第一消息和第二消息可以直接通过位于第一协议层和物理层之间的两个不同的中间信道发送给物理层。或者,该第一协议层和物理层之间还可以更多的协议层和信道,该中间信道可以包括处于第一协议层与中间协议层、物理层与中间协议层,以及中间协议层之间的信道。
在步骤五中,网络设备对从第一中间信道接收的第一消息和从第二中间信道接收的第二消息分别进行物理层处理。与方法三不同的是,网络设备在物理层分别对经中间协议层处理后的两个消息进行物理层处理,得到物理层处理后的数据可以包括第一数据和第二数据,其中,第一数据中包括第一消息,第二数据中包括第二消息。
网络设备将经物理层处理得到的第一数据和第二数据映射到PBCH上,通过PBCH发送该物理层处理得到的数据。该PBCH也就是在S410中描述的当前发送的SSB对应的时频资源中的PBCH符号。
应理解,方法四中网络设备在各协议层执行的操作可以与方法一中的操作相似,只是在部分协议层操作的对象有所不同,为了简洁,这里省略对网络设备在各协议层执行的操作的详细说明。
还应理解,上述结合图5至图9的描述是将LTE中的协议栈结构作为一种可能的协议栈结构来进行举例说明的,而不应对本申请实施例构成任何限定。本申请并不排除在NR协议中仍然沿用相同的协议栈结构,但对各协议层实体的功能重新定义的可能,同时也不排除在NR协议中重新定义协议栈结构和各协议层实体的功能的可能。
在S440中,终端设备在PBCH上接收网络设备发送的数据。
可以理解,终端设备在PBCH上接收到的数据包括第一信息和第二信息,该第一信息和第二信息是由网络设备在第一协议层生成,并使用SSB对应的时频资源中的PBCH发送的,该SSB的时域资源位置可以根据第二信息确定。
S450,该终端设备对接收到的数据进行物理层处理;
S460,该终端设备将经物理层处理后的数据从物理层传输至第一协议层;
S470,该终端设备在第一协议层对物理层处理后的数据进行处理,以获取第一信息和 第二信息。
与S420至S440相对应地,终端设备在S450至S470中对接收到的数据进行处理以在第一协议层获取第一信息和第二信息的过程,与网络设备对第一协议层生成的第一信息和第二信息进行处理以得到物理层处理后的数据的过程是相对应的,或者说是可逆的。
终端设备也可以采用上述四种方法中的任意一种对接收到的数据进行处理。但需要注意的是,网络设备和终端设备所采用的处理方法是相对应的。协议中可以预先定义数据的处理方法,网络设备和终端设备可以根据该预先定义的处理方法进行信息的发送和接收。
具体的,终端设备对接收到的数据进行处理以在第一协议层获取第一信息和第二信息的过程(也就是S450至S470的具体过程)可以通过以下任意一种方法来实现:
方法一:
该终端设备在该物理层对接收到的该数据进行物理层处理,得到经该物理层处理后的数据;
该终端设备将经该物理层处理后的数据映射在中间信道中发送给该第一协议层;
该终端设备在该第一协议层对通过该中间信道接收到的数据进行解封装处理,得到该第一信息和该第二信息。
其中,该中间信道由同一逻辑信道和同一传输信道组成。
方法二:
该终端设备在该物理层对接收到的该数据进行物理层处理,得到经该物理层处理后的数据;
该终端设备将经该物理层处理后的数据映射在中间信道中发送给该第一协议层;
该终端设备在该第一协议层对通过该中间信道接收到的数据进行解封装处理,得到该第一信息和该第二信息。
其中,该中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
方法三:
该终端设备在该物理层对接收到的该数据进行物理层处理,得到经该物理层处理后的第一数据和第二数据;
该终端设备将经该物理层处理后的第一数据映射在第一中间信道中发送给该第一协议层;
该终端设备将经该物理层处理后的第二数据映射到第二中间信道中发送给该第一协议层;
该终端设备在该第一协议层对通过该第一中间信道接收到的第一数据进行解封装处理,得到该第一信息;
该终端设备在该第一协议层对通过该第二中间信道接收到的第二数据进行解封装处理,得到该第二信息。
方法四:
该终端设备对接收到的该数据进行处理,以在该第一协议层获取该第一信息和该第二信息,包括:
该终端设备在该物理层对接收到的该第三数据进行物理层处理,得到经该物理层处理 后的第三数据;
该终端设备在该物理层对接收到的该第四数据进行物理层处理,得到经该物理层处理后的第四数据;
该终端设备将经该物理层处理后的第三数据映射在第一中间信道中发送给该第一协议层;
该终端设备将经该物理层处理后的第四数据映射在第二中间信道中发送给该第一协议层;
该终端设备在该第一协议层对通过该第一中间信道接收到的第三数据进行解封装处理,得到该第一信息;
该终端设备在该第一协议层对通过该第二中间信道接收到的第四数据进行解封装处理,得到该第二信息。
应理解,终端设备通过上述任意一种方法对接收到的数据进行处理的具体过程与网络设备通过相应的方法对第一信息和第二信息进行处理并发送的具体过程是相似的,为了简洁,这里省略对其具体过程的详细说明。
可选地,该方法400还包括:
该终端设备根据该第二信息,确定SSB所对应的时域资源,以便根据该SSB所对应的时域资源与小区无线帧的时序对齐。
在S410中已经说明,该第二信息可以包括:待发送的SSB在SS burst set中的第一TI;或者,待发送的SSB在SS burst中的第二TI和该SS burst在所属SS burst set中的第三TI的组合。
当终端设备从该第二信息中获取到第一TI,或者,第二TI和第三TI的组合之后,便可以根据预先规定的SSB的时域资源位置与SSB的TI的一一对应关系,确定接收到的SSB所对应的时频资源位置,推断帧边界和时隙边界,进而实现与小区无线帧的时序对齐。
应理解,终端设备与小区无线帧的时序对齐的具体过程可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
因此,本申请实施例网络设备在第一协议层生成第一信息和第二信息并通过根据第二信息确定的SSB中的PBCH发送给终端设备,使得终端设备能够通过对接收到的数进行处理,从而在第一协议层获取第一信息和第二信息,进而确定SSB的时频资源,推断出帧边界和时隙边界,实现与小区无线帧的时序对齐,适用于NR多波束的场景。
以上,结合图4至图9详细说明了本申请实施例的发送和接收信息的方法。以下,结合图10至图13详细说明本申请实施例的网络设备和终端设备。
本发明实施例还提供了一种网络设备。下面结合图10对网络设备的结构和功能进行描述。图10是本申请实施例提供的网络设备10的结构示意图。该网络设备10可以是图4中示出的发送和接收信息的方法400中的网络设备。如图10所示,该网络设备10包括:收发器11和处理器12。
可选地,该收发器11可以称为远端射频单元(Remote Radio Unit,RRU)、收发单元、收发机、或者收发电路等等。收发器11可以包括至少一个天线111和射频单元112,收发器11可以用于射频信号的收发以及射频信号与基带信号的转换。
可选地,该网络设备10包括一个或多个基带单元(Baseband Unit,BBU)13。该基 带单元包括处理器12。基带单元13主要用于进行基带处理,如信道编码,复用,调制,扩频等,以及对基站进行控制。收发器11与该基带单元13可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
在一个示例中,基带单元13可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。基带单元13包括处理器12。处理器12可以用于控制网络设备10执行前文中的结合图4至图9描述的方法实施例中的相应操作。可选地,基带单元13还可以包括存储器14,用以存储必要的指令和数据。
具体地,该处理器12用于在第一协议层生成第一信息和第二信息,该第一信息包括系统信息,该第二信息用于确定一个或多个同步信号块SSB对应的时频资源,该第一协议层是物理层以上的一个协议层;
该处理器12还用于将该第一信息和该第二信息从该第一协议层传输至物理层;
该处理器12还用于对该第一信息和该第二信息进行物理层处理;
该收发器11用于通过该SSB中的物理广播信道PBCH发送经物理层处理得到的数据。
应理解,网络设备10可以对应于根据本发明实施例的发送和接收信息的方法400中的网络设备,该网络设备10可以包括用于执行图4中发送和接收信息的方法400的网络设备执行的方法的模块。并且,该网络设备10中的各模块和上述其他操作和/或功能分别为了实现图4中发送和接收信息的方法400的相应流程,具体地,处理器12用于执行方法400中的S410至S430,收发器11用于执行方法400中的S440,各模块执行上述相应步骤的具体过程请参照前文中结合图4至图9的方法实施例的描述,为了简洁,在此不再赘述。
本申请实施例还提供了一种网络设备。下面结合图11对该网络设备的结构和功能进行描述。图11是本申请实施例提供的网络设备20的结构示意图。该网络设备20可以是图4中示出的发送和接收信息的方法400中的网络设备。如图11所示,该网络设备20包括:处理单元21和收发单元22。该处理单元21和收发单元22可以是软件实现也可以是硬件实现。在硬件实现的情况下,该处理单元21可以是图10中的处理器11,该收发单元22可以是图10中的收发器12。
本申请实施例还提供了一种终端设备。下面结合图12对该终端设备的结构和功能进行描述。图12是本申请实施例提供的终端设备30的结构示意图。该终端设备30可以是图4中示出的发送和接收信息的方法400中的终端设备。如图12所示,该终端设备30包括处理器31和收发器32。
可选地,收发器32可以包括控制电路和天线,其中,控制电路可用于基带信号与射频信号的转换以及对射频信号的处理,天线可用于收发射频信号。
可选地,该终端设备30还可以包括存储器、输入输出装置等。
处理器31可用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行前文中的结合图4至图9描述的相应操作。存储器主要用于存储软件程序和数据。当终端设备开机后,处理器31可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。
具体地,该收发器31用于在物理广播信道PBCH接收网络设备发送的数据,该数据 包括第一信息和第二信息,该第一信息和该第二信息由网络设备在第一协议层生成,该第一信息包括系统信息,该第二信息用于确定一个或多个同步信号块SSB第一的时频资源,该PBCH位于该SSB对应的时频资源中,该第一协议层是物理层以上的一个协议层;
该处理器32用于在该物理层对接收到的该数据进行物理层处理;
该处理器32还用于将经该物理层处理后的数据从该物理层传输至该第一协议层;
该处理器32还在该第一协议层对该物理层处理后的数据进行处理,以获取该第一信息和该第二信息。
应理解,该终端设备30可以对应于根据本发明实施例的发送和接收信息的方法400中的终端设备,该终端设备30可以包括用于执行图4中发送和接收信息的方法400的终端设备执行的方法的模块。并且,该终端设备30中的各模块和上述其他操作和/或功能分别为了实现图4中发送和接收信息的方法400的相应流程,具体地,收发器31用于执行方法400中的S440,处理器32用于执行方法400中的S450至S470,各模块执行上述相应步骤的具体过程请参照前文中结合图4至图9的方法实施例的描述,尤其是结合图4至图9的描述,为了简洁,在此不再赘述。
本申请实施例还提供了一种终端设备。下面结合图13对该终端设备的结构和功能进行描述。图13是本申请实施例提供的终端设备40的结构示意图。该终端设备40可以是图4中示出的发送和接收信息的方法400中的终端设备。如图13所示,该终端设备40包括收发单元41和处理单元42。该收发单元41和处理单元42可以是软件实现也可以是硬件实现。在硬件实现的情况下,该收发单元41可以是图12中的收发器32,该处理单元42可以是图12中的处理器31。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机 程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种发送信息的方法,其特征在于,包括:
    网络设备在第一协议层生成第一信息和第二信息,所述第一信息包括系统信息,所述第二信息用于确定一个或多个同步信号块SSB对应的时频资源,所述第一协议层是物理层以上的一个协议层;
    所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层;
    所述网络设备对所述第一信息和所述第二信息进行物理层处理;
    所述网络设备通过所述SSB中的物理广播信道PBCH发送经物理层处理后得到的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层,包括:
    所述网络设备在所述第一协议层将所述第一信息和所述第二信息作为一个整体进行封装处理,生成第一消息;
    所述网络设备将所述第一消息映射在所述第一协议层和所述物理层之间的中间信道中发送给所述物理层;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成。
  3. 根据权利要求1所述的方法,其特征在于,所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层,包括:
    所述网络设备在所述第一协议层对所述第一信息进行封装处理,生成第一消息;
    所述网络设备在所述第一协议层对所述第二信息进行封装处理,生成第二消息;
    所述网络设备将所述第一消息和所述第二消息映射在所述第一协议层和所述物理层之间的中间信道中发送给所述物理层;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
  4. 根据权利要求1所述的方法,其特征在于,所述网络设备将所述第一信息和所述第二信息从所述第一协议层传输至物理层,包括:
    所述网络设备在所述第一协议层对所述第一信息进行封装处理,生成第一消息;
    所述网络设备在所述第一协议层对所述第二信息进行封装处理,生成第二消息;
    所述网络设备将所述第一消息映射在所述第一协议层和所述物理层之间的第一中间信道中发送给物理层;
    所述网络设备将所述第二消息映射在所述第一协议层和所述物理层之间的第二中间信道中发送给所述物理层。
  5. 根据权利要求4所述的方法,其特征在于,所述网络设备对所述第一信息和所述第二信息进行物理层处理,包括:
    所述网络设备在所述物理层对通过所述第一中间信道接收到的第一消息和通过所述第二中间信道接收到的第二消息作为一个整体进行物理层处理。
  6. 根据权利要求4所述的方法,其特征在于,所述网络设备对所述第一信息和所述 第二信息进行物理层处理,包括:
    所述网络设备在所述物理层对通过所述第一中间信道接收到的第一消息和通过所述第二中间信道接收到的第二消息分别进行物理层处理。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述第一中间信道包括:第一逻辑信道和/或第一传输信道,所述第二中间信道包括:第二逻辑信道和/或第二传输信道。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第二信息包括:
    所述第一SSB在所属SS脉冲集中的第一时间索引TI,或者,
    所述第一SSB在所属SS脉冲中的第二TI和所述SS脉冲在所属SS脉冲集中的第三TI的组合。
  9. 一种接收信息的方法,其特征在于,包括:
    终端设备在物理广播信道PBCH接收网络设备发送的数据;
    所述终端设备在所述物理层对接收到的所述数据进行物理层处理;
    所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层;
    所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取第一信息和第二信息,所述第一信息包括系统信息,所述第二信息用于确定承载所述数据的一个或多个同步信号块SSB对应的时频资源。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
    所述终端设备将经所述物理层处理后的数据映射在所述第一协议层和所述物理层之间的中间信道中发送给所述第一协议层;
    所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
    所述终端设备在所述第一协议层对通过所述中间信道接收到的数据进行解封装处理,得到由所述第一信息和所述第二信息组合而成的整体,并从所述第一信息和所述第二信息组合而成的整体中获取所述第一信息和所述第二信息;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成。
  11. 根据权利要求9所述的方法,其特征在于,所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
    所述终端设备将经所述物理层处理后的数据映射在所述第一协议层和所述物理层之间的中间信道中发送给所述第一协议层;
    所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
    所述终端设备在所述第一协议层对通过所述中间信道接收到的数据进行解封装处理,得到所述第一信息和所述第二信息;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
  12. 根据权利要求9所述的方法,其特征在于,所述终端设备在所述物理层对接收到的所述数据进行物理层处理,包括:
    所述终端设备在所述物理层对接收到的所述数据进行物理层处理,得到经所述物理层处理后的第一数据和第二数据;
    所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
    所述终端设备将经所述物理层处理后的第一数据映射在所述第一协议层和所述物理层之间的第一中间信道中发送给所述第一协议层;
    所述终端设备将经所述物理层处理后的第二数据映射到所述第一协议层和所述物理层之间的第二中间信道中发送给所述第一协议层;
    所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
    所述终端设备在所述第一协议层对通过所述第一中间信道接收到的第一数据进行解封装处理,得到所述第一信息;
    所述终端设备在所述第一协议层对通过所述第二中间信道接收到的第二数据进行解封装处理,得到所述第二信息。
  13. 根据权利要求9所述的方法,其特征在于,所述终端设备接收到的数据包括第三数据和第四数据;以及,
    所述终端设备在所述物理层对接收到的所述数据进行物理层处理,包括:
    所述终端设备在所述物理层对所述第三数据进行物理层处理,得到物理层处理后的第三数据;
    所述终端设备在所述物理层对所述第四数据进行物理层处理,得到物理层处理后的第四数据;
    所述终端设备将经所述物理层处理后的数据从所述物理层传输至所述第一协议层,包括:
    所述终端设备将经所述物理层处理后的第三数据映射在所述第一协议层和所述物理层之间的第一中间信道中发送给所述第一协议层;
    所述终端设备将经所述物理层处理后的第四数据映射在所述第一协议层和所述物理层之间的第二中间信道中发送给所述第一协议层;
    所述终端设备在所述第一协议层对所述物理层处理后的数据进行处理,以获取所述第一信息和所述第二信息,包括:
    所述终端设备在所述第一协议层对通过所述第一中间信道接收到的第三数据进行解封装处理,得到所述第一信息;
    所述终端设备在所述第一协议层对通过所述第二中间信道接收到的第四数据进行解封装处理,得到所述第二信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一中间信道包括:第一逻辑信道和/或第一传输信道,所述第二中间信道包括:第二逻辑信道和/或第二传输信道。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述第二信息包括:
    所述第一SSB在所属SS脉冲集中的第一时间索引TI,或者,
    所述第一SSB在所属SS脉冲中的第二TI和所述SS脉冲在所属SS脉冲集中的第三TI的组合。
  16. 一种网络设备,其特征在于,包括:
    处理单元,用于在第一协议层生成第一信息和第二信息,所述第一信息包括系统信息,所述第二信息用于确定一个或多个同步信号块SSB对应的时频资源,所述第一协议层是物理层以上的一个协议层;
    所述处理单元还用于将所述第一信息和所述第二信息从所述第一协议层传输至物理层;
    所述处理单元还用于对所述第一信息和所述第二信息进行物理层处理;
    收发单元,用于通过所述SSB中的物理广播信道PBCH发送经物理层处理得到的数据。
  17. 根据权利要求16所述的网络设备,其特征在于,所述处理单元具体用于:
    在所述第一协议层将所述第一信息和所述第二信息作为一个整体进行封装处理,生成第一消息;
    将所述第一消息映射在所述第一协议层和所述物理层之间的中间信道中发送给所述物理层;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成。
  18. 根据权利要求16所述的网络设备,其特征在于,所述处理单元具体用于:
    在所述第一协议层对所述第一信息进行封装处理,生成第一消息;
    在所述第一协议层对所述第二信息进行封装处理,生成第二消息;
    将所述第一消息和所述第二消息映射在所述第一协议层和所述物理层之间的中间信道中发送给所述物理层;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
  19. 根据权利要求16所述的网络设备,其特征在于,所述处理单元具体用于:
    在所述第一协议层对所述第一信息进行封装处理,生成第一消息;
    在所述第一协议层对所述第二信息进行封装处理,生成第二消息;
    将所述第一消息映射在所述第一协议层和所述物理层之间的第一中间信道中发送给物理层;
    将所述第二消息映射在所述第一协议层和所述物理层之间的第二中间信道中发送给所述物理层。
  20. 根据权利要求19所述的网络设备,其特征在于,所述处理单元具体用于在所述物理层对通过所述第一中间信道接收到的第一消息和通过所述第二中间信道接收到的第二消息作为一个整体进行物理层处理。
  21. 根据权利要求19所述的网络设备,其特征在于,所述处理单元具体用于在所述物理层对通过所述第一中间信道接收到的第一消息和通过所述第二中间信道接收到的第二消息分别进行物理层处理。
  22. 根据权利要求19至21中任一项所述的网络设备,其特征在于,所述第一中间信道包括:第一逻辑信道和/或第一传输信道,所述第二中间信道包括:第二逻辑信道和/或第二传输信道。
  23. 根据权利要求16至22中任一项所述的网络设备,其特征在于,所述第二信息包 括:
    所述第一SSB在所属SS脉冲集中的第一时间索引TI,或者,
    所述第一SSB在所属SS脉冲中的第二TI和所述SS脉冲在所属SS脉冲集中的第三TI的组合。
  24. 一种终端设备,其特征在于,包括:
    收发单元,用于在物理广播信道PBCH接收网络设备发送的数据;
    处理单元,用于在所述物理层对接收到的所述数据进行物理层处理;
    所述处理单元还用于将经所述物理层处理后的数据从所述物理层传输至所述第一协议层;
    所述处理单元还在所述第一协议层对所述物理层处理后的数据进行处理,以获取第一信息和第二信息,所述第一信息包括系统信息,所述第二信息用于确定承载所述数据的一个或多个同步信号块SSB对应的时频资源。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理单元具体用于:
    将经所述物理层处理后的数据映射在所述第一协议层和所述物理层之间的中间信道中发送给所述第一协议层;
    在所述第一协议层对通过所述中间信道接收到的数据进行解封装处理,得到由所述第一信息和所述第二信息组合而成的整体,并从所述第一信息和所述第二信息组合而成的整体中获取所述第一信息和所述第二信息;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成。
  26. 根据权利要求24所述的终端设备,其特征在于,所述处理单元具体用于:
    将经所述物理层处理后的数据映射在所述第一协议层和所述物理层之间的中间信道中发送给所述第一协议层;
    在所述第一协议层对通过所述中间信道接收到的数据进行解封装处理,得到所述第一信息和所述第二信息;
    其中,所述中间信道由同一逻辑信道和同一传输信道组成,或者,所述中间信道由不同的逻辑信道和同一传输信道组成。
  27. 根据权利要求24所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述物理层对接收到的所述数据进行物理层处理,得到经所述物理层处理后的第一数据和第二数据;
    将经所述物理层处理后的第一数据映射在所述第一协议层和所述物理层之间的第一中间信道中发送给所述第一协议层;
    将经所述物理层处理后的第二数据映射到所述第一协议层和所述物理层之间的第二中间信道中发送给所述第一协议层;
    在所述第一协议层对通过所述第一中间信道接收到的第一数据进行解封装处理,得到所述第一信息;
    在所述第一协议层对通过所述第二中间信道接收到的第二数据进行解封装处理,得到所述第二信息。
  28. 根据权利要求24所述的终端设备,其特征在于,所述收发单元接收到的所述数据包括第三数据和第四数据,
    所述处理单元具体用于:
    在所述物理层对接收到的所述第三数据进行物理层处理,得到经所述物理层处理后的第三数据;
    在所述物理层对接收到的所述第四数据进行物理层处理,得到经所述物理层处理后的第四数据;
    将经所述物理层处理后的第三数据映射在所述第一协议层和所述物理层之间的第一中间信道中发送给所述第一协议层;
    将经所述物理层处理后的第四数据映射在所述第一协议层和所述物理层之间的第二中间信道中发送给所述第一协议层;
    在所述第一协议层对通过所述第一中间信道接收到的第三数据进行解封装处理,得到所述第一信息;
    在所述第一协议层对通过所述第二中间信道接收到的第四数据进行解封装处理,得到所述第二信息。
  29. 根据权利要求27或28所述的终端设备,其特征在于,所述第一中间信道包括:第一逻辑信道和/或第一传输信道,所述第二中间信道包括:第二逻辑信道和/或第二传输信道。
  30. 根据权利要求24至29中任一项所述的终端设备,其特征在于,所述第二信息包括:
    所述第一SSB在所属SS脉冲集中的第一时间索引TI,或者,
    所述第一SSB在所属SS脉冲中的第二TI和所述SS脉冲在所属SS脉冲集中的第三TI的组合。
PCT/CN2018/085499 2017-05-05 2018-05-03 发送和接收信息的方法、网络设备和终端设备 WO2018202093A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18794386.5A EP3637842B1 (en) 2017-05-05 2018-05-03 Method of transmitting and receiving information, network device and terminal device
AU2018263098A AU2018263098B2 (en) 2017-05-05 2018-05-03 Information sending and receiving method, network device, and terminal device
CA3062373A CA3062373A1 (en) 2017-05-05 2018-05-03 Information sending and receiving method, network device, and terminal device
JP2019560651A JP6875554B2 (ja) 2017-05-05 2018-05-03 情報送信及び受信方法、ネットワーク装置、及び端末装置
US16/674,849 US11178629B2 (en) 2017-05-05 2019-11-05 Information sending and receiving method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313281.X 2017-05-05
CN201710313281.XA CN108810983B (zh) 2017-05-05 2017-05-05 发送和接收信息的方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,849 Continuation US11178629B2 (en) 2017-05-05 2019-11-05 Information sending and receiving method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018202093A1 true WO2018202093A1 (zh) 2018-11-08

Family

ID=64016848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085499 WO2018202093A1 (zh) 2017-05-05 2018-05-03 发送和接收信息的方法、网络设备和终端设备

Country Status (7)

Country Link
US (1) US11178629B2 (zh)
EP (1) EP3637842B1 (zh)
JP (1) JP6875554B2 (zh)
CN (1) CN108810983B (zh)
AU (1) AU2018263098B2 (zh)
CA (1) CA3062373A1 (zh)
WO (1) WO2018202093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711552A (zh) * 2019-02-14 2021-11-26 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842927B (zh) * 2017-11-24 2021-01-29 华为技术有限公司 上行控制的方法、装置和系统
WO2019241951A1 (zh) * 2018-06-21 2019-12-26 北京小米移动软件有限公司 传输同步信号的方法及装置
CN111464954B (zh) * 2019-01-18 2021-10-26 华为技术有限公司 通信方法、装置及设备
CN111586643B (zh) * 2019-02-15 2022-07-22 华为技术有限公司 单播传输的方法和通信装置
CN111586842B (zh) * 2019-02-15 2023-09-05 华为技术有限公司 通信方法和通信装置
US11533144B2 (en) * 2019-08-15 2022-12-20 Qualcomm Incorporated Indication of time-frequency synchronization signal block (SSB) locations of neighboring transmission-reception points for positioning reference signal puncturing purposes
CN112788731B (zh) * 2019-11-08 2022-07-08 大唐移动通信设备有限公司 一种信息的发送、接收方法、装置及终端
CN112788730B (zh) * 2019-11-08 2022-08-05 大唐移动通信设备有限公司 一种信号的发送、接收方法、装置及终端
WO2021134693A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932091A (zh) * 2009-06-22 2010-12-29 中国移动通信集团公司 协作多点传输系统、方法及相关装置
CN102474386A (zh) * 2009-07-29 2012-05-23 马维尔国际贸易有限公司 用于wlan发送的方法和装置
CN105917699A (zh) * 2014-01-17 2016-08-31 高通股份有限公司 用于在无线接入技术(rat)之间切换承载的技术
US20160261327A1 (en) * 2015-03-02 2016-09-08 Qualcomm Incorporated Methods and apparatus for channel state information sounding and feedback

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594373A (zh) * 2011-01-07 2012-07-18 北京中科国技信息系统有限公司 一种低复杂度的rfid系统ssb信号生成方法
WO2013055173A2 (ko) 2011-10-14 2013-04-18 엘지전자 주식회사 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US9867103B2 (en) * 2012-12-20 2018-01-09 Lg Electronics Inc. Method for communicating in wireless communication system and apparatus supporting same
US9820206B2 (en) * 2013-03-04 2017-11-14 Lg Electronics Inc. Cell reselection method and user equipment therefor
WO2014185749A1 (ko) 2013-05-16 2014-11-20 엘지전자 주식회사 커버리지 개선을 위한 신호 전송 방법 및 이를 위한 장치
US9419750B2 (en) * 2013-06-05 2016-08-16 Texas Instruments Incorporated NLOS wireless backhaul uplink communication
JP2019054314A (ja) * 2016-02-02 2019-04-04 シャープ株式会社 端末装置および方法
JP7085723B2 (ja) * 2016-02-02 2022-06-17 シャープ株式会社 端末装置、および通信方法
US20190110275A1 (en) * 2016-04-08 2019-04-11 Ntt Docomo, Inc. Radio base station and communication control method
US10470191B2 (en) * 2016-12-09 2019-11-05 Samsung Electronics Co., Ltd. Method and apparatus of broadcast signals and channels for system information transmission
JP7033603B2 (ja) * 2017-02-02 2022-03-10 コンヴィーダ ワイヤレス, エルエルシー スイープされる下りリンクビームでページングブロックを伝送するための装置
US10194410B2 (en) * 2017-02-16 2019-01-29 Qualcomm Incorporated Synchronization signal blocks
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
US10512080B2 (en) * 2017-03-17 2019-12-17 Qualcomm Incorporated MCS/rank adjustment when multiplexing data in a control region
KR102603689B1 (ko) * 2017-04-01 2023-11-17 삼성전자 주식회사 랜덤 액세스 방법, 네트워크 노드 및 사용자 장치
CN110574459B (zh) * 2017-04-26 2023-07-21 夏普株式会社 终端装置、基站装置以及通信方法
KR102583644B1 (ko) * 2017-05-04 2023-10-04 샤프 가부시키가이샤 라디오 시스템을 위한 동기화 신호 송신 및 수신
JP7030818B2 (ja) * 2017-05-05 2022-03-07 エルジー エレクトロニクス インコーポレイティド 同期信号を受信する方法及びそのための装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932091A (zh) * 2009-06-22 2010-12-29 中国移动通信集团公司 协作多点传输系统、方法及相关装置
CN102474386A (zh) * 2009-07-29 2012-05-23 马维尔国际贸易有限公司 用于wlan发送的方法和装置
CN105917699A (zh) * 2014-01-17 2016-08-31 高通股份有限公司 用于在无线接入技术(rat)之间切换承载的技术
US20160261327A1 (en) * 2015-03-02 2016-09-08 Qualcomm Incorporated Methods and apparatus for channel state information sounding and feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637842A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711552A (zh) * 2019-02-14 2021-11-26 株式会社Ntt都科摩 用户终端以及无线通信方法
CN113711552B (zh) * 2019-02-14 2024-05-14 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
JP6875554B2 (ja) 2021-05-26
AU2018263098B2 (en) 2021-02-18
EP3637842A4 (en) 2020-05-06
EP3637842A1 (en) 2020-04-15
CN108810983B (zh) 2021-07-09
EP3637842B1 (en) 2022-07-20
CA3062373A1 (en) 2019-11-26
JP2020520592A (ja) 2020-07-09
US11178629B2 (en) 2021-11-16
US20200068514A1 (en) 2020-02-27
AU2018263098A1 (en) 2020-01-02
CN108810983A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018202093A1 (zh) 发送和接收信息的方法、网络设备和终端设备
US10979274B2 (en) Efficient utilization of SSBs in new radio systems
JP7243873B2 (ja) 無線アクセスネットワークノード及び無線端末並びにこれらの方法
US11109392B2 (en) Communication method, network device, and relay device
US20220368501A1 (en) Information transmission method, terminal device, and network device
US11516777B2 (en) Data transmission method and apparatus and communications device
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
JP2018523389A (ja) デバイス・ツー・デバイス通信のためのスケジューリング割り当て最適化
WO2017092632A1 (zh) 无线通信的方法和装置
CN115104292A (zh) 使用峰值降低音调的基于机器学习的接收机性能改善
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2022006851A1 (zh) 无线通信方法、终端设备和网络设备
TW201818747A (zh) 用於傳輸上行訊號的方法和裝置
TW202029710A (zh) 下行鏈路/上行鏈路的循環字首正交分頻多工序列配置
TW201919427A (zh) 無線通訊方法、終端和網路設備
JP2021519563A (ja) 信号伝送方法、中央アクセススポイントap、及び遠隔無線ユニットrru
WO2020063596A1 (zh) 一种通信方法及装置
CN113691359B (zh) 用于复制数据传输的方法和设备
WO2022141105A1 (zh) 无线通信方法、终端设备和网络设备
WO2023044610A1 (zh) 一种识别mac ce类型的方法及装置、终端设备、网络设备
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2024065806A1 (zh) 无线通信的方法、终端设备及网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023044623A1 (zh) 一种激活trs的方法及装置、终端设备、网络设备
WO2023164867A1 (en) System and method for l1 connection setup and l1 reconfiguration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794386

Country of ref document: EP

Effective date: 20191203

ENP Entry into the national phase

Ref document number: 2018263098

Country of ref document: AU

Date of ref document: 20180503

Kind code of ref document: A