WO2018202086A1 - 移动性测量方法、csi-rs资源配置方法及设备 - Google Patents

移动性测量方法、csi-rs资源配置方法及设备 Download PDF

Info

Publication number
WO2018202086A1
WO2018202086A1 PCT/CN2018/085480 CN2018085480W WO2018202086A1 WO 2018202086 A1 WO2018202086 A1 WO 2018202086A1 CN 2018085480 W CN2018085480 W CN 2018085480W WO 2018202086 A1 WO2018202086 A1 WO 2018202086A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
base station
sequence
identifier
resource configuration
Prior art date
Application number
PCT/CN2018/085480
Other languages
English (en)
French (fr)
Inventor
向铮铮
罗俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710648824.3A external-priority patent/CN108811010B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018202086A1 publication Critical patent/WO2018202086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems

Definitions

  • the present application relates to the field of communications, and in particular, to a mobility measurement method, a CSI-RS resource configuration method, and a device.
  • the base station of each cell sends a reference signal
  • the UE in the cell receives the reference signal sent by the base station of the local cell and the reference signal sent by the neighboring cell base station, and performs mobility measurement: that is, the UE measures the base station of the local cell.
  • the quality of the reference signal transmitted and the quality of the reference signal transmitted by the base station of the neighboring cell The UE reports the mobility measurement result to the base station of the local cell, and the base station determines whether the UE switches to another cell according to the information reported by the UE.
  • CSI-RS Channel State Information Reference Signal
  • LTE Long Term Evolution
  • the CSI-RS sequence transmitted by different cells is associated with the local cell. If the CSI-RS is used for the mobility measurement in the cell handover process, at least the base station of the target cell to be handed over needs to perform signaling interaction to obtain the cell identity of the target cell, for example, parsing out the synchronization signal of the target cell.
  • the cell identifier of the target cell can correctly receive the CSI-RS sent by the target cell base station. Thereby, the burden on the UE cell handover is increased, and the quality of service of the UE communication is reduced.
  • the embodiments of the present invention provide a mobility measurement method, a CSI-RS resource configuration method, and a device, which can reduce the burden on the UE and improve the service quality of the UE communication.
  • a first aspect of the embodiments of the present invention provides a mobility measurement method, where the method includes:
  • the first base station generates a CSI-RS sequence, which is a sequence generated based on the identity information of the UE, and then the base station sends the CSI-RS sequence to the UE for mobility measurement by the UE.
  • the CSI-RS that performs the mobility measurement is generated based on the identifier information of the UE, so that when the UE receives the CSI-RS and performs the mobility measurement, the UE does not need to interact with the base station that sends the CSI-RS to acquire the cell.
  • the identifier can correctly receive the CSI-RS sent by the base station according to the identity information of the UE, thereby reducing the signaling overhead of the UE, reducing the burden on the UE, and improving the communication quality of the UE.
  • the identifier information of the UE may be one of the identifier information of the UE: a cell radio temporary identifier C-RNTI of the UE, a UE group identifier of the UE group where the UE is located, and a dedicated identifier of the UE.
  • the manner in which the first base station generates the CSI-RS sequence may be: generating a CSI-RS sequence based on the first sequence, where the first sequence is initialized by the first initial quantity, where the first initial quantity is corresponding to the identifier information of the UE.
  • the function of the parameter may be: generating a CSI-RS sequence based on the first sequence, where the first sequence is initialized by the first initial quantity, where the first initial quantity is corresponding to the identifier information of the UE. The function of the parameter.
  • the method for generating a CSI-RS sequence may follow the definition of the CSI-RS sequence in the LTE network standard (Release 13), and pass the first sequence, the pseudo-random sequence c(i), through the first
  • the initial amount c init is initialized, and c init is a function of the parameter ⁇ UE corresponding to the identification information of the UE .
  • the parameter corresponding to the identifier information of the UE may be a decimal value corresponding to the identifier information of the UE.
  • the function of the first initial quantity c init can be defined as:
  • the c init is the first initial amount
  • the n′ s is a slot number in a radio frame or a value obtained according to a slot number in a radio frame, where the l is in a slot.
  • the function of the first initial quantity c init can be defined as:
  • the c init is the first initial amount
  • the n′ s is a slot number in a radio frame or a value obtained according to a slot number in a radio frame, where the l is a positive in a slot.
  • the UE may be a UE served by a neighboring base station (second base station) of the first base station, or may be a UE served by the first base station.
  • second base station a neighboring base station of the first base station
  • the method further includes: when the UE enters the coverage of the first base station, the first base station needs to obtain the identifier information of the UE from the second base station, so as to be based on the identifier of the UE.
  • Information generates CSI-RS.
  • the first base station configures CSI-RS resource configuration information to allocate CSI-RS time-frequency resources for transmitting the CSI-RS sequence, and sends CSI-RS resource configuration information to the second base station, where the second base station sends the CSI-RS resource configuration information to the second base station.
  • the sending, by the first base station, the CSI-RS sequence to the UE is actually transmitting the CSI-RS sequence on the allocated CSI-RS time-frequency resource. In this way, the UE can correctly receive the CSI-RS sequence sent by the base station on the CSI-RS time-frequency resource.
  • the cell identifier of the neighboring cell does not need to be acquired, and the CSI-RS sent by the base station of the neighboring cell can be correctly received according to the identity information of the neighboring cell to perform mobility measurement. .
  • the signaling overhead of the UE is reduced, the burden on the UE is reduced, and the communication quality of the UE is improved.
  • the first base station When the UE is the UE served by the first base station, the first base station also needs to configure CSI-RS resource configuration information, and send the CSI-RS resource configuration information to the UE.
  • the sending, by the first base station, the CSI-RS sequence to the UE is actually transmitting the CSI-RS sequence on the CSI-RS time-frequency resource allocated by the CSI-RS resource configuration information.
  • the UE can correctly receive the CSI-RS sent by the base station of the local cell according to its own identification information to perform mobility measurement.
  • the decoupling of the UE and the base station can be further implemented, so that the burden on the UE side can be alleviated.
  • the first base station when the first base station configures the CSI-RS resource configuration information, the first base station allocates the time-frequency resource and/or the code domain of the CSI-RS according to the UE information of the local cell and the UE information reported by the neighboring cell base station. Resources.
  • the embodiment of the present invention further provides a CSI-RS resource configuration method, where the method includes:
  • the second base station When the second base station determines that the UE enters the coverage of the first base station, the second base station sends the identifier information of the UE to the first base station, where the identifier information of the UE is used by the first base station to generate a CSI-RS sequence;
  • the CSI-RS resource configuration information includes: the first base station sends a CSI-RS time-frequency resource of the CSI-RS sequence to the UE, and the second base station sends the CSI-RS resource configuration information to the UE. So that the UE receives the CSI-RS sequence on the CSI-RS time-frequency resource for the UE to perform mobility measurement.
  • the identifier information of the UE may be one of a cell radio temporary identifier C-RNTI of the UE, a UE group identifier of the UE group where the UE is located, or a dedicated identifier of the UE.
  • the first base station may obtain the identifier information of the UE from the base station (ie, the second base station) of the currently serving UE, and generate a CSI-RS sequence for the UE according to the identifier information, and allocate and send the CSI-RS.
  • the resource of the sequence is sent to the UE by the base station currently serving the UE.
  • the UE does not need to acquire the cell identifier of the neighboring cell (that is, the cell served by the first base station), and can correctly receive the CSI-RS sent by the base station (ie, the first base station) of the neighboring cell according to the identity information of the UE to perform mobility. measuring.
  • the burden on the UE side can be alleviated, and the communication quality of the UE is improved.
  • an embodiment of the present invention further provides a mobility measurement method, where the method includes:
  • the UE receives a CSI-RS sequence from the base station, where the CSI-RS sequence is a sequence generated based on the identity information of the UE, and the UE measures the signal quality of the CSI-RS sequence.
  • the CSI-RS received by the UE is generated based on the identifier information of the UE, so that the CSI-RS sent by the base station can be correctly received without performing the identifier of the cell, so as to perform mobility measurement, thereby reducing the UE.
  • the burden on the end improves the communication quality of the UE.
  • a fourth aspect of the embodiments of the present invention provides a beam management method, where the method includes:
  • the first base station generates a CSI-RS sequence, which is a sequence generated based on the identity information of the UE, and then the base station sends the CSI-RS sequence to the UE for beam management by the UE.
  • the method for the first base station to generate the CSI-RS sequence based on the identifier information of the UE, and the method for configuring the resource for sending the CSI-RS sequence are the same as the mobility measurement method provided by the first aspect, and are not used here. Narration.
  • the CSI-RS that performs the beam management is generated based on the identifier information of the UE, so that the UE does not need to interact with the base station that sends the CSI-RS to obtain the cell identifier when receiving the CSI-RS and performing beam management.
  • the CSI-RS sent by the base station can be correctly received according to the identity information of the UE, thereby reducing the signaling overhead of the UE, reducing the burden on the UE, and improving the communication quality of the UE.
  • the embodiment of the present invention further provides a base station, which specifically implements a function corresponding to the mobility measurement method provided by the foregoing first aspect or a function corresponding to the beam management method provided by the fourth aspect.
  • the functions may be implemented by hardware or by executing corresponding software programs through hardware.
  • the hardware and software include one or more unit modules corresponding to the functions described above, which may be software and/or hardware.
  • the base station includes:
  • a generating unit configured to generate a channel state information reference signal CSI-RS sequence, where the CSI-RS sequence is a sequence generated based on the identifier information of the UE, where the CSI-RS sequence is used for the UE to perform mobility measurement, or the CSI-RS sequence is used Perform beam management on the UE;
  • a sending unit configured to send a CSI-RS sequence to the UE.
  • the base station includes:
  • the memory is used to store program code, and the processor calls the program code in the memory to perform the following operations:
  • the CSI-RS sequence is used for the UE to perform mobility measurement, and sends a CSI-RS sequence to the UE through the transceiver.
  • the embodiment of the present invention further provides a base station, which specifically implements a function corresponding to the CSI-RS resource configuration method provided by the foregoing second aspect.
  • the functions may be implemented by hardware or by executing corresponding software programs through hardware.
  • the hardware and software include one or more unit modules corresponding to the functions described above, which may be software and/or hardware.
  • the base station includes:
  • a sending unit configured to: when the UE enters the coverage of the first base station, send the identifier information of the UE to the first base station, where the identifier information of the UE is used by the first base station to generate a CSI-RS sequence;
  • a receiving unit configured to receive CSI-RS resource configuration information from the first base station, where the CSI-RS resource configuration information includes a CSI-RS time-frequency resource that the first base station sends a CSI-RS sequence to the UE;
  • the sending unit is further configured to send the CSI-RS resource configuration information to the UE, so that the UE receives the CSI-RS sequence sent by the first base station on the CSI-RS time-frequency resource.
  • the base station includes:
  • the memory is used to store program code, and the processor calls the program code in the memory to perform the following operations:
  • the identifier information of the UE is sent to the first base station by using the transceiver, and the identifier information of the UE is used by the first base station to generate a CSI-RS sequence, where the CSI-RS sequence is based on the identifier of the UE.
  • the CSI-RS resource configuration information is received by the first base station, where the CSI-RS resource configuration information includes the CSI-RS time-frequency resource of the CSI-RS sequence sent by the first base station to the UE;
  • the CSI-RS resource configuration information is sent to the UE, so that the UE receives the CSI-RS sequence sent by the first base station on the CSI-RS time-frequency resource.
  • the embodiment of the present invention further provides a user equipment, which specifically implements a function corresponding to the mobility measurement method provided by the foregoing third aspect.
  • the functions may be implemented by hardware or by executing corresponding software programs through hardware.
  • the hardware and software include one or more unit modules corresponding to the functions described above, which may be software and/or hardware.
  • the user equipment includes:
  • a receiving unit configured to receive a channel state information reference signal CSI-RS sequence from the base station, where the CSI-RS sequence is a sequence generated based on the identifier information of the UE;
  • a measuring unit for measuring the signal quality of the CSI-RS sequence is a measuring unit for measuring the signal quality of the CSI-RS sequence.
  • the user equipment includes:
  • the memory is used to store program code, and the processor calls the program code in the memory to perform the following operations:
  • the channel state information reference signal CSI-RS sequence is received by the transceiver from the first base station, and the CSI-RS sequence is a sequence generated based on the identity information of the UE; thereafter, the signal quality of the CSI-RS sequence is measured.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the CSI-RS is generated based on the identifier information of the UE, so that the UE does not need to acquire each cell (including the local cell and the neighboring cell) when performing the mobility measurement or the beam management function by using the CSI-RS.
  • the identifier of the UE can correctly receive the CSI-RS sent by the base station of each cell according to the identity information of the UE, thereby reducing the signaling overhead of the UE, reducing the burden on the UE, and improving the communication quality of the UE.
  • FIG. 1 is a schematic diagram of a process of cell handover according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of mapping of a CSI-RS signal on a time-frequency resource according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a UCNC network in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of information interaction in a CSI-RS sending process according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process for a UE to receive a CSI-RS sent by a neighboring cell base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a process for a UE to receive a CSI-RS sent by a base station of a local cell according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a process of receiving, by a UE, a CSI-RS sent by a neighboring cell and a base station of the local cell according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a functional module structure of a base station according to an embodiment of the present invention.
  • FIG. 9 is another schematic diagram of a functional module structure of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a functional module structure of a user equipment according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of hardware of a base station and a user equipment according to an embodiment of the present invention.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • a CDMA network may implement radio technologies such as Universal Terrestrial Radio Access (UTRA), CDMA2000, and the like.
  • UTRA includes Wideband CDMA (W-CDMA) and other CDMA variants.
  • CDMA2000 covers the IS-2000, IS-95, and IS-856 standards.
  • a TDMA network can implement a radio technology such as the Global System for Mobile Communications (GSM).
  • the OFDMA network may implement radio technologies such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, and the like.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new UMTS versions that use E-UTRA.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • the user equipment (ie, the terminal) involved in the present application may be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • it can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the user equipment in the embodiment of the present invention may also be referred to as a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and a Remote Terminal (Remote). Terminal), Access Terminal, User Terminal, User Agent, User Device.
  • a base station as referred to in this application may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • GSM Global System for Mobile Communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • the base station (NodeB) in the Wideband Code Division Multiple Access (W-CDMA) may also be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in Long Term Evolution (LTE), and may also be It is a next-generation wireless communication system, that is, a Transmit-Receive Point (TRP) in a 5G system, and is not limited in this application.
  • TRP Transmit-Receive Point
  • the method in the embodiment of the present invention can be applied to a communication scenario in which 5G users cooperate, and can also be applied to a scenario of mobility measurement in 5G, LTE, or LTE-A.
  • the mobility measurement is mainly used for cell handover.
  • FIG. 1 shows a schematic diagram of a process of cell handover in LTE.
  • the base station of each cell sends a reference signal
  • the UE in the cell receives the reference signal sent by the base station of the local cell and the reference signal sent by the neighboring cell base station, and measures the quality of the received reference signal, such as a reference signal.
  • Receive Signal Received Power (RSRP) Receive Signal Received Power
  • the base station determines whether the UE switches to another cell according to the information reported by the UE.
  • the base station may Transmitting signaling to indicate that the UE switches to the foregoing neighboring cell and performs handover preparation with the neighboring cell base station and data migration of the UE, and after receiving the handover instruction, the UE performs handover confirmation with the neighboring cell base station and initiates initial access, and successfully connects. After entering the neighboring cell base station, normal communication can be started.
  • the UE In the process of cell handover, mobility measurement is an important part, that is, the UE needs to measure the quality of the signal transmitted by the neighboring cell and the signal of the base station of the local cell.
  • the UE may measure the cell reference signal (Cell Reference Signal, CRS) sent by the base station to perform mobility measurement, and report the measurement result to the base station of the cell to serve as a basis for cell handover.
  • CRS Cell Reference Signal
  • the channel state information reference signal CSI-RS can also be used for mobility measurements, for example for mobility measurements in LTE networks, and for mobility measurements in future wireless communication systems including 5G.
  • the spatial dimension in LTE is measured by "layer” and is implemented using multi-antenna transmission and multi-antenna reception techniques, each layer corresponding to a valid data stream and mapped to a logical antenna port.
  • Each antenna port corresponds to a time-frequency resource grid, and has a corresponding reference signal for the receiver to perform channel estimation and coherent demodulation.
  • the eNB periodically sends CSI-RS signals, and the period may be 5 milliseconds, 10 milliseconds, 20 milliseconds, 40 milliseconds, and 80 milliseconds, and CSI-RSs sent on different antenna ports may occupy different time-frequency resources
  • Figure 2 A schematic diagram of the mapping relationship of CSI-RSs on a pair of physical resource blocks is given, where R 15 and R 17 represent CSI-RS signals on antenna port 15 and antenna port 17, respectively.
  • the method for performing mobility measurement using the CSI-RS in the embodiment of the present invention may be applied to an LTE network, and may also be applied to a future wireless communication system including 5G.
  • the result of the mobility measurement can be used as a basis for cell handover.
  • mobility measurement can be used for cell handover; in a 5G network, mobility measurement can be used for user-centric and no cell (User Centric No Cell, UCNC) Switching between TRPs in the network architecture.
  • UCNC User Centric No Cell
  • the UCNC network architecture is an important feature of future wireless communication networks including 5G, and its feature is to emphasize the concept of user-centered and weakened cells.
  • a traditional wireless communication network for example, an LTE network
  • LTE network is cell-centric, and base stations of different cells serve UEs in respective cells.
  • a cell handover occurs, and the cell handover occurs.
  • the process is more complicated, and the signaling overhead involved is also relatively large, which will bring a relatively large delay, which will have a certain negative impact on the user experience of the UE.
  • the UE In the UCNC network, the UE is the center. When the UE moves from one cell to another in a large-scale mobile process, the network side configures the corresponding base station to serve the UE, and the UE side completely perceives the UE. The handover process to the cell.
  • Each of the foregoing large-area cells constitutes a hyper cell in the UCNC network, and the UE does not feel the handover of the UE when moving in the same super cell, thereby reducing the handover overhead of the UE and improving the communication of the UE. Quality and user experience.
  • Figure 3 shows a schematic diagram of a UCNC network.
  • Cell 1, cell 2, cell 3, and cell 4 form a super cell.
  • the UE is served by the base station in cell 1 at time t1. With the UE moving, the UE at time t2.
  • the base station in the cell 4 serves, but the UE itself does not feel the handover of the cell.
  • a Cell Radio Network Temporary Identifier (C-RNTI) is used as the unique identification information of the UE in the cell in the same cell.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the UE dedicate ID is used as the unique identification information of the UE in the super cell.
  • the process of using the CSI-RS for mobility measurement may be the same.
  • the first base station generates a CSI-RS sequence.
  • the UE needs to receive a CSI-RS sequence (CSI-RS for short) generated by the first base station from the first base station when performing mobility measurement using the CSI-RS.
  • CSI-RS CSI-RS for short
  • the CSI-RS sequence generated by the first base station is a CSI-RS sequence based on the identifier information of the UE, and is related to the identifier information of the UE.
  • the identifier information of the UE may be a cell radio temporary identifier (C-RNTI) of the UE.
  • C-RNTI cell radio temporary identifier
  • the identifier information of the UE may be a C-RNTI allocated by the base station of each cell to the UE.
  • the base station may further generate a CSI-RS sequence of the UE based on the C-RNTI of the UE, where the CSI-RS sequence is used for the UE to perform mobility measurement.
  • the identification information of the UE may also be a dedicated identifier of the UE.
  • the identifier information of the UE may be a dedicated identifier of the UE in the super cell.
  • the base station may further generate a CSI-RS sequence of the UE based on the UE-specific identifier, where the CSI-RS sequence is used for the UE to perform mobility measurement.
  • Each cell base station may group the UEs of the local cell and allocate corresponding UE group identifiers.
  • the criteria for grouping UEs may be to group UEs by geographic location, type of service, or other information of the UE.
  • the identifier information of the UE may be the UE group identifier of the UE group in which the UE is located, and the base station may generate a CSI-RS based on the UE group, where the CSI-RS is used for mobility measurement of each UE in the UE group. .
  • the first base station generates a CSI-RS sequence by: generating a CSI-RS sequence based on the first sequence, where the first sequence is initialized by a first initial quantity, where the first initial quantity is a UE A function that identifies the parameter corresponding to the information.
  • the first sequence may be a pseudo-random sequence, and the first sequence at the beginning of each OFDM symbol is initialized by a first initial amount.
  • the parameter corresponding to the identifier information of the UE may be a decimal value corresponding to the identifier information of the UE.
  • the definition of the CSI-RS sequence can be extended by the definition of the CSI-RS sequence in the LTE network standard (Release 13), which is defined as follows:
  • n s is the slot number in a radio frame
  • l is the sequence number of the OFDM symbol in one slot
  • c(i) is a pseudo-random sequence that passes at the beginning of each OFDM symbol c init is initialized.
  • the initial quantity c init in the CSI-RS sequence generation process is a function of the UE related parameter ⁇ UE , that is,
  • the related parameter ⁇ UE may be a parameter corresponding to the identifier information of the UE, and the identifier information of the UE may be the C-RNTI of the UE, or the UE group identifier of the UE group where the UE is located, or the exclusive identifier of the UE.
  • n' s is a value associated with n s . In some cases, the value of n' s may be equal to n s . In some cases, the value of n' s may be equal to
  • N CP is a value corresponding to the type of a subframe cyclic prefix (Cyclic Prefix, CP). If the type of the CP is a normal CP (normal CP), the value of N CP is 1. If the type of the CP is an extended CP (extended CP), the value of N CP is 0.
  • the parameter corresponding to the identifier information of the UE may be a parameter corresponding to the C-RNTI of the UE or a parameter corresponding to the specific identifier of the UE, or a parameter corresponding to the UE group identifier of the UE group in which the UE is located.
  • the modulo operation should be performed, ie
  • the corresponding initial amount c init may be defined as follows:
  • c init 2 10 ⁇ (7 ⁇ (n' s +1)+l+1) ⁇ (2 ⁇ N C-RNTI +1)+2 ⁇ N C-RNTI +N CP ;
  • c init 2 10 ⁇ (2 ⁇ N C-RNTI +1)+2 ⁇ N C-RNTI +N CP
  • the N C-RNTI is a decimal value corresponding to the C-RNTI of the UE.
  • the corresponding initial amount c init is defined as follows:
  • the corresponding initial amount c init is defined as follows:
  • the CSI-RS sequence generation manner may be extended by using the method in the LTE network, and the initial quantity c init of the pseudo-random sequence c(i) is initialized by the above manner; in addition, the CSI-RS sequence generation manner is generated. It can also be other ways, which is not limited herein.
  • the first base station sends the CSI-RS sequence to the UE.
  • the first base station After the first base station generates the CSI-RS sequence based on the identity information of the UE, the first base station sends a CSI-RS sequence to the UE. Specifically, when the CSI-RS sequence is sent, it needs to undergo modulation, coding, mapping, and the like, and then sent through the antenna port. When transmitting, it is specifically sent on a time-frequency resource and/or a code domain resource allocated by the first base station for the CSI-RS sequence.
  • the UE listens to and receives the CSI-RS sequence on the corresponding time-frequency resource and/or code domain resource.
  • the UE After receiving the CSI-RS of the first base station, the UE measures the signal quality of the signal, and reports the measurement result to the currently accessed base station, as the basis for the currently accessed base station to determine whether the UE performs cell handover.
  • the CSI-RS sequence generated by the base station based on the identifier information of the UE may be used not only for the mobility measurement described above, but also for beam management, or for including Other functions or other scenarios of future wireless communication systems, such as 5G.
  • the CSI-RS sequence is also generated and transmitted through the above steps 401 and 402.
  • the UE may measure the signal strength of the beam based on the CSI-RS. Based on this measurement, the UE can perform beam selection and handover, specifically, selecting and switching beams between different beams of the same base station, or selecting and switching beams between beams of different base stations.
  • the CSI-RS is generated based on the identifier information of the UE, so that the UE does not need to acquire each cell (including the local cell and the neighboring cell) when performing the mobility measurement or the beam management function by using the CSI-RS.
  • the identifier of the UE can correctly receive the CSI-RS sent by the base station of each cell according to the identity information of the UE, thereby reducing the signaling overhead of the UE, reducing the burden on the UE, and improving the communication quality of the UE.
  • the UE and the base station can be decoupled further, and the burden on the UE is simplified.
  • the CSI-RS sequence generated by the base station is based on the CSI-RS of the UE, and only when the UE is in an active state and enters the coverage of the cell, the CSI-RS is sent to the UE, and therefore, More flexible transmission of CSI-RS on demand, saving signaling overhead.
  • the UE in the embodiment shown in FIG. 4 may be a UE served by a neighboring base station (second base station) of the first base station, or may be a UE served by the first base station.
  • the UE is a UE served by a neighboring base station (second base station) of the first base station, and the UE enters the coverage of the first base station;
  • eNB1 is the first base station, where the cell is located in cell 1
  • eNB2 is the second base station, and the cell in which it is located is cell 2.
  • the eNB2 is a base station that provides services for the UE.
  • the local cell of the UE is the cell 2
  • the neighboring cell is the cell 1
  • the eNB1 is the base station of the neighboring cell, and the UE enters the coverage of the eNB1.
  • the UE When the UE moves to the coverage of the neighboring cell base station eNB1, the UE receives the CSI-RS transmitted by the base station eNB1 of the neighboring cell, and the CSI-RS is generated by the eNB1 based on the identity information of the UE.
  • the process of the UE receiving the CSI-RS sequence based on the identity information of the UE from the neighboring cell base station eNB1 is as follows:
  • the eNB2 when eNB2 detects that the UE moves to the coverage of the neighboring cell base station eNB1, the eNB2 sends the identifier information of the UE to the eNB1 (specifically, may be sent through the X2 interface);
  • the eNB1 generates a CSI-RS sequence based on the identifier information of the UE.
  • eNB1 configures CSI-RS resource configuration information for the UE, and sends the CSI-RS resource configuration information to the eNB2;
  • the UE can correctly receive the CSI-RS sequence transmitted by the eNB1.
  • the base station of each cell allocates the CSI-RS resource according to the user information reported by the neighboring cell base station and the user information of the local cell, and specifically, the resource for transmitting the CSI-RS is allocated by using high layer signaling, such as RRC signaling.
  • the base station eNB1 of the neighboring cell of the UE After receiving the UE identity information sent by the local cell base station eNB2, the base station eNB1 of the neighboring cell of the UE configures a corresponding CSI-RS time-frequency resource (and/or code domain resource) to send a CSI-RS sequence based on the foregoing UE, and The CSI-RS resource configuration information is transmitted to the aforementioned own cell base station eNB2.
  • the local cell eNB 2 After receiving the CSI-RS resource configuration information, the local cell eNB 2 further sends the CSI-RS resource configuration information to the UE by using RRC signaling.
  • the neighboring cell base station eNB1 sends the generated CSI-RS sequence to the UE on the configured CSI-RS time-frequency resource (and/or the code domain resource), so that the UE performs functions such as mobility measurement or beam management.
  • the UE can listen to the CSI-RS time-frequency resource (or the code domain resource) according to the received CSI-RS resource configuration information, so as to correctly receive the CSI-RS sequence sent by the neighboring cell base station eNB1, where the CSI is received.
  • the RS sequence is generated based on the identification information of the UE, and the UE performs mobility measurement or beam management through the CSI-RS sequence.
  • the cell identifier of the neighboring cell does not need to be acquired, and the CSI-RS sent by the base station of the neighboring cell can be correctly received according to the identity information of the neighboring cell. Mobility measurement or beam management. Thereby, the signaling overhead of the UE is reduced, the burden on the UE is reduced, and the communication quality of the UE is improved.
  • the UE is a UE served by the first base station.
  • eNB3 first base station
  • cell 3 is the own cell of the UE.
  • the process of the UE receiving the CSI-RS sequence based on the UE identity information from the local cell base station eNB3 is as follows:
  • the eNB3 generates a CSI-RS sequence based on the identifier information of the UE.
  • the eNB3 configures CSI-RS resource configuration information for the UE, and sends the CSI-RS resource configuration information to the UE.
  • the eNB3 sends the generated CSI-RS sequence to the UE on the CSI-RS time-frequency resource (and/or the code domain resource) configured in the CSI-RS resource configuration information.
  • the UE can listen to the CSI-RS time-frequency resource (or the code domain resource) according to the received CSI-RS resource configuration information, so as to correctly receive the CSI-RS sequence sent by the eNB3, and the UE passes the CSI-RS.
  • the sequence performs functions such as mobility measurement or beam management.
  • the base station generates a CSI-RS sequence based on the identity information of the UE, and the UE can correctly receive the CSI-RS sent by the base station according to its own identification information, for performing mobility measurement or performing beam management, etc.
  • the decoupling of the UE and the base station can be further implemented, so that the burden on the UE side can be alleviated.
  • the base station may use the manner shown in FIG. 6 of the embodiment of the present invention to generate a CSI-RS based on the identifier information of the UE.
  • the CSI-RS based on the cell identifier may be generated in the manner of the prior art, which is not limited in the embodiment of the present invention.
  • the UE when performing mobility measurement, not only receives the CSI-RS sequence transmitted by the neighboring cell base station eNB1, but also receives the CSI-RS sequence transmitted by the local cell base station eNB2.
  • the CSI-RS sequence received by the UE from the eNB1 is generated based on the identifier information of the UE, and the CSI-RS sequence received by the UE from the eNB2 may be generated based on the identifier information of the UE, or may be generated based on the cell identifier.
  • the CSI-RS sent by the base station of the multiple cells is received at the same time, and the CSI-RS is based on the identification information of the UE. Generated.
  • the base station currently serving the UE is eNB4, and the UE moves to the coverage of eNB5 and eNB6.
  • the eNB4 learns that the UE has moved to the coverage of the eNB5, and then sends the identifier information of the UE to the eNB5, and the eNB5 generates a CSI-RS sequence for the UE based on the identifier information of the UE, and sends the CSI-RS sequence to the UE.
  • the eNB4 learns that the UE has moved to the coverage of the eNB6, and then sends the identification information of the UE to the eNB6.
  • the eNB6 generates a CSI-RS sequence for the UE based on the identifier information of the UE, and sends the CSI-RS sequence to the UE. Furthermore, the eNB 4 itself generates a CSI-RS sequence for the UE based on the identity information of the UE, and transmits the CSI-RS sequence to the UE. Therefore, the UE receives the CSI-RS sequences sent by the three base stations, but the UE does not need to separately obtain the cell identifiers of the three base stations, and can receive the CSI-RSs sent by the three base stations only by using the own identification information. For functions such as mobility measurement or beam management, the burden on the UE side can be alleviated.
  • the eNB 5 and the eNB 6 respectively need to generate CSI-RS resource configuration information for transmitting the CSI-RS sequence, and respectively send the CSI-RS resource configuration information to the UE through the eNB4. So that the UE can receive the CSI-RS sequence on the corresponding CSI-RS time-frequency resource (and/or code domain resource), respectively.
  • the embodiment of the present invention provides a base station, which is provided with the functions of the first base station in the foregoing method, where the base station includes:
  • a generating unit 801 configured to generate a channel state information reference signal CSI-RS sequence, where the CSI-RS sequence is a sequence generated based on identifier information of the UE, where the CSI-RS sequence is used for performing mobility measurement by the UE;
  • the sending unit 802 is configured to send a CSI-RS sequence to the UE.
  • the generating unit 801 is specifically configured to generate a CSI-RS sequence based on the first sequence, where the first sequence is initialized by a first initial quantity, where the first initial quantity is a function of a parameter corresponding to the identification information of the UE.
  • the identification information of the UE is one of the following identification information:
  • the cell radio temporary identifier of the UE is the C-RNTI, the UE group identifier of the UE group in which the UE is located, and the UE-specific identifier.
  • the parameter corresponding to the identifier information of the UE includes a decimal value corresponding to the identifier information of the UE.
  • the UE is a UE served by the second base station, and the second base station includes a base station adjacent to the base station; the base station further includes:
  • the receiving unit 803 is configured to obtain identifier information of the UE from the second base station when the UE enters the coverage of the first base station.
  • the base station further includes:
  • the resource configuration unit 804 is configured to configure CSI-RS resource configuration information, where the CSI-RS resource configuration information includes a CSI-RS time-frequency resource that is sent by the first base station to the CSI-RS sequence.
  • the sending unit 802 is further configured to: send the CSI-RS resource configuration information to the second base station, and send the CSI-RS resource configuration information to the UE by using the second base station;
  • the sending unit 802 is specifically configured to send the CSI-RS sequence on the CSI-RS time-frequency resource.
  • the UE includes a UE served by the first base station
  • the resource configuration unit 801 is further configured to configure CSI-RS resource configuration information, where the CSI-RS resource configuration information includes a CSI-RS time-frequency resource that the first base station sends a CSI-RS sequence;
  • the sending unit 802 is further configured to send CSI-RS resource configuration information to the UE;
  • the sending unit 802 is specifically configured to send the CSI-RS sequence on the CSI-RS time-frequency resource.
  • the function of the first initial amount used by the generating unit 801 to generate the CSI-RS sequence includes:
  • n' s is the slot number in a radio frame or a value obtained according to the slot number in one radio frame
  • l is an orthogonal frequency division multiplexing OFDM in one slot
  • the serial number of the symbol The parameter corresponding to the C-RNTI corresponding to the UE or the parameter corresponding to the UE's unique identifier or the UE group identifier corresponding to the UE group in which the UE is located, and the N CP is a value corresponding to the type of the subframe cyclic prefix.
  • the embodiment of the present invention provides a base station, which is provided with the functions of the second base station in the foregoing method embodiment, where the base station includes:
  • the sending unit 901 is configured to: when the UE enters the coverage of the first base station, send the identifier information of the UE to the first base station, where the identifier information of the UE is used by the first base station to generate a CSI-RS sequence, where the CSI-RS sequence is based on the UE. a sequence of identification information generated;
  • the receiving unit 902 is configured to receive CSI-RS resource configuration information from the first base station, where the CSI-RS resource configuration information includes a CSI-RS time-frequency resource that the first base station sends a CSI-RS sequence to the UE;
  • the sending unit 901 is further configured to send the CSI-RS resource configuration information to the UE, so that the UE receives the CSI-RS sequence sent by the first base station on the CSI-RS time-frequency resource.
  • the embodiment of the present invention provides a user equipment, which has the functions of the UE in the foregoing method embodiment, where the user equipment includes:
  • the receiving unit 1001 is configured to receive a channel state information reference signal CSI-RS sequence from the base station, where the CSI-RS sequence is a sequence generated based on the identity information of the UE, and a measurement unit 1002, configured to measure a signal quality of the CSI-RS sequence.
  • the hardware structure of the base station and the user equipment in the example of the present invention is as shown in FIG. 11.
  • the user equipment and the base station in the system in the implementation of the present invention respectively have the functions of the user equipment and the base station in the foregoing method embodiments.
  • the user equipment and the base station are directly connected by radio frequency or directly connected through the baseband.
  • the base station provides wireless access of the user equipment to the network, including one or more processors, one or more memories, one or more network interfaces, and one or more transceivers (each transceiver including the receiver Rx and the transmitter) Machine Tx), connected via bus.
  • One or more transceivers are coupled to the antenna or antenna array.
  • the one or more processors include computer program code.
  • the network interface is connected to the core network through a link (eg, a link to the core network) or to other base stations via a wired or wireless link.
  • the processor executes a series of computer program code instructions in memory to perform all or part of the steps performed by the base station in the above-described method embodiments (embodiments shown in Figures 4-7).
  • the user equipment includes one or more processors, one or more memories, and one or more transceivers (each transceiver including a transmitter Tx and a receiver Rx) connected by a bus. One or more transceivers are coupled to one or more antennas.
  • the computer program code is included in one or more memories, and the processor executes a series of computer program code instructions in the memory to perform all of the operations performed by the user equipment in the method embodiments (the embodiments illustrated in FIGS. 4-7) Part of the steps.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
  • the definition of the c init function can be as follows:
  • the definition of the c init function can be as follows:
  • the definition of the c init function can be as follows:
  • n' s is a value associated with n s . In some cases, the value of n' s may be equal to n s . In some cases, the value of n' s may be equal to Indicates rounding down.
  • the maximum value of the cell identity or virtual cell identity For example, in an LTE system, It can be 503, the maximum value of the cell identity. In the NR system, The maximum value that can be the cell identity or the virtual cell identity, for example, can be 1008. have to be aware of is, The value of the present invention can be determined according to the actual needs of the communication system. The above examples are exemplary and are not to be construed as limiting the embodiments of the present invention.
  • N CP is a value corresponding to the type of a subframe cyclic prefix (Cyclic Prefix, CP). If the type of the CP is a normal CP (normal CP), the value of N CP is 1. If the type of the CP is an extended CP (extended CP), the value of N CP is 0.
  • the parameter corresponding to the identifier information of the UE may be a parameter corresponding to the C-RNTI of the UE or a parameter corresponding to the specific identifier of the UE, or a parameter corresponding to the UE group identifier of the UE group in which the UE is located.
  • the corresponding initial amount c init may be defined as follows:
  • c init 2 6 ⁇ (7 ⁇ (n' s +1)+l+1) ⁇ (2 ⁇ N C-RNTI +1)+2 ⁇ N C-RNTI +N CP ; or,
  • the N C-RNTI is a decimal value corresponding to the C-RNTI of the UE.
  • the corresponding initial amount c init is defined as follows:
  • the corresponding initial amount c init is defined as follows:
  • the function of the first initial amount used by the generating unit 801 to generate the CSI-RS sequence includes:
  • n' s is the slot number in a radio frame or a value obtained according to the slot number in one radio frame
  • l is an orthogonal frequency division multiplexing OFDM in one slot
  • the serial number of the symbol The parameter corresponding to the C-RNTI corresponding to the UE or the parameter corresponding to the UE's unique identifier or the UE group identifier corresponding to the UE group in which the UE is located, and the N CP is a value corresponding to the type of the subframe cyclic prefix.
  • the function of the first initial amount used by the generating unit 801 to generate the CSI-RS sequence further includes:
  • the c init is the first initial amount
  • the n′ s is a slot number in a radio frame or a value obtained according to a slot number in a radio frame, where the l is a positive in a slot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种移动性测量方法、CSI-RS资源配置方法及设备,能够减轻UE端的负担,提升UE通信的服务质量。本发明实施例的方法包括:第一基站生成CSI-RS序列,该CSI-RS序列是基于UE的标识信息生成的序列,之后,该基站向UE发送该CSI-RS序列,以供UE进行移动性测量。本发明实施例中,进行移动性测量的CSI-RS是基于UE的标识信息生成的,使得UE在使用CSI-RS进行移动性测量时,无需与生成该CSI-RS的基站交互去获取小区标识,根据自身的标识信息就可以正确接收该基站发送的CSI-RS,从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。

Description

移动性测量方法、CSI-RS资源配置方法及设备 技术领域
本申请涉及通信领域,尤其涉及一种移动性测量方法、CSI-RS资源配置方法及设备。
背景技术
小区切换是无线网络的一个重要过程,对用户设备(User Equipment,UE)无线通信质量的保障起着十分关键的作用。在无线网络中,各个小区的基站都会发送参考信号,小区中的UE会接收本小区基站发送的参考信号以及相邻小区基站发送的参考信号,并进行移动性测量:即UE测量本小区的基站发送的参考信号质量以及相邻小区的基站发送的参考信号质量。UE将移动性测量结果上报给本小区的基站,本小区基站根据UE上报的信息来确定该UE是否切换到其他小区。
信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)是长期演进(Long Term Evolution,LTE)网络中一种重要的参考信号。在5G网络中,可以通过CSI-RS来进行移动性测量。
在现有技术中,由于CSI-RS序列生成过程中的一个关键参数是小区级的,因而不同小区发送的CSI-RS序列和本小区相关联。若在小区切换过程中使用CSI-RS进行移动性测量,则至少需要与待切换至的目标小区的基站进行信令交互以获取目标小区的小区标识,例如:从目标小区的同步信号中解析出目标小区的小区标识,才能正确接收目标小区基站发送的CSI-RS。从而增加了UE小区切换时的负担,降低了UE通信的服务质量。
发明内容
本发明实施例提供了一种移动性测量方法、CSI-RS资源配置方法及设备,能够减轻UE端的负担,提升UE通信的服务质量。
本发明实施例第一方面提供了一种移动性测量方法,该方法包括:
第一基站生成CSI-RS序列,该CSI-RS序列是基于UE的标识信息生成的序列,之后,该基站向UE发送该CSI-RS序列,以供UE进行移动性测量。
本发明实施例中,进行移动性测量的CSI-RS是基于UE的标识信息生成的,使得UE在接收CSI-RS并进行移动性测量时,无需与发送该CSI-RS的基站交互去获取小区标识,根据自身的标识信息就可以正确接收该基站发送的CSI-RS,从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。
可选的,UE的标识信息可以为以下UE的标识信息的其中之一:UE的小区无线临时标识C-RNTI、UE所在的UE组的UE组标识、和UE的专属标识。
可选的,第一基站生成CSI-RS序列的方式可以是:基于第一序列生成CSI-RS序 列,其中,第一序列被第一初始量初始化,第一初始量是UE的标识信息对应的参数的函数。
一种可行的方式中,生成CSI-RS序列的方式可以沿用LTE网络标准(Release 13)中对CSI-RS序列的定义,将其中的第一序列——伪随机序列c(i)通过第一初始量c init初始化,c init是关于UE的标识信息对应的参数α UE的一个函数。
可选的,UE的标识信息对应的参数可以是UE的标识信息对应的十进制数值。
可选的,第一初始量c init的函数可以定义为:
Figure PCTCN2018085480-appb-000001
或,
Figure PCTCN2018085480-appb-000002
或,
Figure PCTCN2018085480-appb-000003
其中,所述c init为所述第一初始量,所述n′ s为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号,所述
Figure PCTCN2018085480-appb-000004
为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值。
可选的,第一初始量c init的函数可以定义为:
Figure PCTCN2018085480-appb-000005
或,
Figure PCTCN2018085480-appb-000006
其中,
Figure PCTCN2018085480-appb-000007
表示向下取整。所述c init为所述第一初始量,所述n′ s为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号,所述
Figure PCTCN2018085480-appb-000008
为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值,所述
Figure PCTCN2018085480-appb-000009
为小区标识或者虚拟小区标识的最大值。
所述UE可以是第一基站的邻基站(第二基站)所服务的UE,也可以是第一基站所服务的UE。
当所述UE为第二基站所服务的UE时,该方法还包括:当UE进入第一基站的覆盖范围时,第一基站需要先从第二基站获得UE的标识信息,以便根据UE的标识信息生成CSI-RS。
进一步,为了降低用于CSI-RS的系统资源开销,并使得UE能正确接收基站发送 的CSI-RS序列。第一基站配置CSI-RS资源配置信息,以分配发送所述CSI-RS序列的CSI-RS时频资源;并将CSI-RS资源配置信息发送给第二基站,第二基站再将其发送至UE。所述第一基站向UE发送CSI-RS序列实际是在所述分配的CSI-RS时频资源上发送CSI-RS序列。如此,UE就可以在CSI-RS时频资源上正确接收到基站发送的CSI-RS序列。
在此种场景中,当UE移动到邻小区的覆盖范围时,无需去获取邻小区的小区标识,根据自身的标识信息就可以正确接收邻小区的基站发送的CSI-RS,以进行移动性测量。从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。
当所述UE为第一基站所服务的UE时,同样,第一基站也需要配置CSI-RS资源配置信息,并将CSI-RS资源配置信息发送至UE。所述第一基站向UE发送CSI-RS序列实际是在CSI-RS资源配置信息所分配的CSI-RS时频资源上发送CSI-RS序列。
在此种场景中,UE可以根据自身的标识信息就可以正确接收本小区基站发送的CSI-RS,以进行移动性测量。能够进一步实现UE和基站的解耦,从而能够减轻UE端的负担。
可选的,第一基站配置CSI-RS资源配置信息时,是第一基站根据本小区的UE信息以及邻小区基站报告的UE信息分配发送所述CSI-RS的时频资源和/或码域资源。
第二方面,本发明实施例还提供了一种CSI-RS资源配置方法,该方法包括:
当第二基站确定UE进入第一基站的覆盖范围时,第二基站将UE的标识信息发送给第一基站,UE的标识信息用于第一基站生成CSI-RS序列;第二基站再从第一基站接收CSI-RS资源配置信息,该CSI-RS资源配置信息包括第一基站向UE发送CSI-RS序列的CSI-RS时频资源;第二基站再将CSI-RS资源配置信息发送给UE,以使得UE在CSI-RS时频资源上接收CSI-RS序列,以供UE进行移动性测量。
可选的,UE的标识信息可以是UE的小区无线临时标识C-RNTI、UE所在的UE组的UE组标识、或UE的专属标识中的其中之一。
本发明实施例中,第一基站可以从当前服务UE的基站(即第二基站)获得UE的标识信息,并根据该标识信息生成对该UE的CSI-RS序列,并分配发送该CSI-RS序列的资源,将该资源通过当前服务UE的基站发送给UE。从而可以降低CSI-RS的系统资源开销。且UE无需去获取邻小区(即第一基站所服务的小区)的小区标识,根据自身的标识信息就可以正确接收邻小区的基站(即第一基站)发送的CSI-RS,以进行移动性测量。可以减轻了UE端的负担,提升了UE的通信质量。
第三方面,本发明实施例还提供了一种移动性测量方法,该方法包括:
UE从基站接收CSI-RS序列,该CSI-RS序列是基于UE的标识信息生成的序列,UE测量CSI-RS序列的信号质量。
本发明实施例中,UE接收的CSI-RS是基于UE的标识信息生成的,因此无需去获取小区的标识,即可正确接收基站发送的CSI-RS,以进行移动性测量,从而减轻了UE端的负担,提升了UE的通信质量。
本发明实施例第四方面提供了一种波束管理方法,该方法包括:
第一基站生成CSI-RS序列,该CSI-RS序列是基于UE的标识信息生成的序列,之后,该基站向UE发送该CSI-RS序列,以供UE进行波束管理。
具体的,第一基站基于UE的标识信息生成所述CSI-RS序列的方法以及配置发送所述CSI-RS序列的资源的方法与第一方面所提供的移动性测量方法相同,此处不做赘述。
本发明实施例中,进行波束管理的CSI-RS是基于UE的标识信息生成的,使得UE在接收CSI-RS并进行波束管理时,无需与发送该CSI-RS的基站交互去获取小区标识,仅根据自身的标识信息就可以正确接收该基站发送的CSI-RS,从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。
第五方面,本发明实施例还提供一种基站,具体实现对应于上述第一方面提供的移动性测量方法的功能或对应第四方面所提供的波束管理方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件程序实现。硬件和软件包括一个或多个与上述功能相对应的单元模块,所述单元模块可以是软件和/或硬件。
一种可能的设计中,所述基站包括:
生成单元,用于生成信道状态信息参考信号CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列,CSI-RS序列用于UE进行移动性测量,或所述CSI-RS序列用于UE进行波束管理;
发送单元,用于向UE发送CSI-RS序列。
一种可能的设计中,所述基站包括:
相互连接的收发器、处理器及存储器;
存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行以下操作:
生成CSI-RS序列,该CSI-RS序列是基于UE的标识信息生成的序列,CSI-RS序列用于UE进行移动性测量;并通过收发器向UE发送CSI-RS序列。
第五方面,本发明实施例还提供一种基站,具体实现对应于上述第二方面提供的CSI-RS资源配置方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件程序实现。硬件和软件包括一个或多个与上述功能相对应的单元模块,所述单元模块可以是软件和/或硬件。
一种可能的设计中,所述基站包括:
发送单元,用于当UE进入第一基站的覆盖范围时,将UE的标识信息发送给第一基站,UE的标识信息用于第一基站生成CSI-RS序列;
接收单元,用于从第一基站接收CSI-RS资源配置信息,CSI-RS资源配置信息包括第一基站向UE发送CSI-RS序列的CSI-RS时频资源;
发送单元,还用于将CSI-RS资源配置信息发送给UE,以使得UE在CSI-RS时频资源上接收第一基站发送的CSI-RS序列。
一种可能的设计中,所述基站包括:
相互连接的收发器、处理器及存储器;
存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行以下操作:
当确定UE进入第一基站的覆盖范围时,将UE的标识信息通过收发器发送给第一基站,UE的标识信息用于第一基站生成CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列;再通过收发器从第一基站接收CSI-RS资源配置信息,CSI-RS资源配置信息包括第一基站向UE发送CSI-RS序列的CSI-RS时频资源;再通过收发器 将CSI-RS资源配置信息发送给UE,以使得UE在CSI-RS时频资源上接收第一基站发送的CSI-RS序列。
第六方面,本发明实施例还提供一种用户设备,具体实现对应于上述第三方面提供的移动性测量方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件程序实现。硬件和软件包括一个或多个与上述功能相对应的单元模块,所述单元模块可以是软件和/或硬件。
一种可能的设计中,所述用户设备包括:
接收单元,用于从基站接收信道状态信息参考信号CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列;
测量单元,用于测量CSI-RS序列的信号质量。
一种可能的设计中,所述用户设备包括:
相互连接的收发器、处理器及存储器;
存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行以下操作:
通过收发器从第一基站接收信道状态信息参考信号CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列;之后,测量CSI-RS序列的信号质量。
第七方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本发明实施例中,CSI-RS是基于UE的标识信息生成的,使得UE在使用CSI-RS进行移动性测量或进行波束管理等功能时,无需去获取各小区(包括本小区和邻小区)的标识,根据自身的标识信息就可以正确接收各小区的基站发送的CSI-RS,从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。
附图说明
图1为本发明实施例中的小区切换的过程示意图;
图2为本发明实施例中的CSI-RS信号在时频资源上的一种映射示意图;
图3为本发明实施例中的UCNC网络的示意图;
图4为本发明实施例中的CSI-RS发送过程中的信息交互示意图;
图5为本发明实施例中UE接收邻小区基站发送的CSI-RS的过程示意图;
图6为本发明实施例中的UE接收本小区的基站发送的CSI-RS的过程示意图;
图7为本发明实施例中的UE接收邻小区和本小区的基站发送的CSI-RS的过程示意图;
图8为本发明实施例中的基站的功能模块结构的一种示意图;
图9为本发明实施例中的基站的功能模块结构的另一种示意图;
图10为本发明实施例中的用户设备的功能模块结构的一种示意图;
图11为本发明实施例中的基站和用户设备的硬件结构示意图。
具体实施方式
以下结合附图对本发明实施例进行进一步详细说明。
本发明实施例中的技术方案可以应用于各种无线通信系统,诸如码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络、单载波FDMA(SC-FDMA)网络等。术语“网络”和“系统”常被可互换地使用。CDMA网络可实现诸如通用地面无线电接入(UTRA)、CDMA2000等无线电技术。UTRA包括宽带CDMA(W-CDMA)和其他CDMA变体。CDMA2000涵盖IS-2000、IS-95和IS-856标准。TDMA网络可实现诸如全球移动通信系统(GSM)之类的无线电技术。OFDMA网络可实现诸如演进型UTRA(E-UTRA)、超移动宽带(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(UMTS)的部分。3GPP长期演进(LTE)和高级LTE(LTE-A)是使用E-UTRA的新UMTS版本。本文所描述的技术可被用于以上所提及的无线网络和无线电技术以及其他无线网络和无线电技术。
本申请中涉及的用户设备(即终端),可以是无线终端也可以是有线终端。无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。还可以是个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。本发明实施例中的用户设备也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户装备(User Device)。
本申请中涉及的基站可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,W-CDMA)中的基站(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),还可以是下一代无线通信系统,即5G系统中的收发点(Transmit-Receive Point,TRP),本申请并不限定。
本发明实施例中的方法可以应用于5G用户协作的通信场景,也可以应用于5G、LTE或LTE-A中的移动性测量的场景,移动性测量主要用于小区切换。
小区切换是无线网络的一个重要过程,对UE无线通信质量的保障起着十分关键 的作用。图1所示为LTE中的小区切换的过程示意。在无线网络中,各个小区的基站都会发送参考信号,小区中的UE会接收本小区基站发送的参考信号以及相邻小区基站发送的参考信号,并且测量接收到的参考信号的质量,例如参考信号接收功率(Reference Signal Received Power,RSRP),将接收到的参考信号质量信息,上报给本小区的基站。本小区基站根据UE上报的信息来确定该UE是否切换到其他小区,例如当UE接收到的邻小区基站发送的参考信号的RSRP大于其接收到的本小区基站发送的参考信号的RSRP,基站可以发送信令来指示该UE切换到前述邻小区并且和邻小区基站进行切换准备和该UE的数据迁移,而UE收到切换指令后会和邻小区基站进行切换确认并发起初始接入,成功接入邻小区基站后便可以开始正常通信。
在小区切换过程中,移动性测量是比较重要的一环,也即UE需要通过测量相邻小区发送的信号和本小区基站的信号的质量。在LTE网络中,UE可以测量基站发送的小区参考信号(Cell Reference Signal,CRS)来进行移动性测量,并将测量结果上报给本小区基站以作为小区切换的依据。
信道状态信息参考信号CSI-RS也可以用于移动性测量,例如可以用于LTE网络中的移动性测量,也可以用于包括5G在内的未来无线通信系统中的移动性测量。
在LTE网络中,CSI-RS最多可以在32个天线端口(antenna port)上进行传输,对应的天线端口号为p=15,16,...,46。关于天线端口,LTE中的空间维度是以“层(layer)”来度量并使用多天线传输和多天线接收技术来实现,每层对应一条有效的数据流并会映射到逻辑上的天线端口上,每个天线端口对应一个时频资源网格,并有一个对应的参考信号,以便接收端进行信道估计和相干解调等。
eNB会周期性的发送CSI-RS信号,周期可以是5毫秒、10毫秒、20毫秒、40毫秒、80毫秒,并且不同天线端口上发送的CSI-RS可能会占据不同的时频资源,图2给出了CSI-RS在一个物理资源块对上映射关系的一个示意图,其中R 15和R 17分别代表在天线端口15和天线端口17上的CSI-RS信号。
本发明实施例中使用CSI-RS进行移动性测量的方法,可以适用于LTE网络,也可以适用于包括5G在内的未来无线通信系统。移动性测量的结果可以作为小区切换的依据,例如:在LTE网络中,移动性测量可以用于小区(Cell)切换;在5G网络中,移动性测量可以用于用户为中心且无小区(User Centric No Cell,UCNC)网络架构中的TRP之间的切换。
其中,UCNC网络架构是包括5G在内的未来无线通信网络的一个重要特性,其特征是强调以用户为中心,弱化小区的概念。传统的无线通信网络(例如LTE网络)是以小区为中心的,不同小区的基站服务各自小区中的UE,UE在移动过程中从本小区进入邻小区时会发生小区的切换,而小区切换的流程比较复杂,其涉及的信令开销也比较多,会带来比较大的时延,对UE的用户体验会有一定的负面影响。
在UCNC网络中,则是以UE为中心,UE在大范围的移动过程中,即使从一个小区移动到了另一个小区,网络侧也会配置对应的基站来服务该UE,UE端则完全感知不到小区的切换过程。前述大范围内的各个小区构成了UCNC网络中的一个超级小区(hyper cell),UE在同一超级小区内移动时感受不到小区的切换,从而减小了UE端的切换开销,提高了UE的通信质量和用户体验。
图3给出了UCNC网络的一个示意图,小区1、小区2、小区3和小区4组成了一个超级小区,UE在t1时刻由小区1中的基站服务,随着UE的移动,在t2时刻UE由小区4中的基站服务,但是UE自身感觉不到小区的切换。
在传统的无线通信网络(例如LTE网络)中,在同一个小区中,使用小区无线临时标识(Cell Radio Network Temporary Identifier,C-RNTI)作为UE在小区中的唯一标识信息。而在UCNC网络中,在同一个超级小区中,使用UE专属标识(UE dedicate ID)作为UE在超级小区中的唯一标识信息。
虽然在LTE网络和包括5G在内的未来无线通信系统的小区切换流程不一定相同,但使用CSI-RS进行移动性测量的过程可以相同。
下面结合图4中的信息交互流程图,对本发明实施例中使用CSI-RS进行移动性测量的过程进行介绍。
401、第一基站生成CSI-RS序列;
UE在使用CSI-RS进行移动性测量时,需要从第一基站接收第一基站生成的CSI-RS序列(简称CSI-RS)。
本发明实施例中,第一基站生成的CSI-RS序列是基于UE的标识信息的CSI-RS序列,与该UE的标识信息相关。
UE的标识信息可以是UE的小区无线临时标识(C-RNTI),例如:在LTE网络中,UE的标识信息可以为各小区的基站给UE分配的C-RNTI。进而基站可以基于UE的C-RNTI生成该UE的CSI-RS序列,该CSI-RS序列用于该UE进行移动性测量。
UE的标识信息还可以是UE的专属标识,例如:在UCNC网络中,UE的标识信息可以为超级小区中的UE的专属标识。进而基站可以基于UE的专属标识生成该UE的CSI-RS序列,该CSI-RS序列用于该UE进行移动性测量。
各小区基站可以将本小区的UE进行分组并分配相应的UE组标识。对UE进行分组的标准可以是通过地理位置、业务类型或UE的其他信息对UE进行分组。可选的,UE的标识信息还可以是UE所在的UE组的UE组标识,进而基站可以生成基于UE组的CSI-RS,该CSI-RS用于该UE组中的各UE进行移动性测量。
在一种可行的方式中,第一基站生成CSI-RS序列具体方式可以是:基于第一序列生成CSI-RS序列,其中,第一序列被第一初始量初始化,第一初始量是UE的标识信息对应的参数的函数。可选的,第一序列可以是伪随机序列,在每个OFDM符号的开头第一序列通过第一初始量初始化。
具体的,UE的标识信息对应的参数可以是UE的标识信息对应的十进制数值。
一种可行的方式中,CSI-RS序列的定义可以延用LTE网络标准(Release13)中对CSI-RS序列的定义,定义如下:
Figure PCTCN2018085480-appb-000010
其中n s是一个无线帧(radio frame)中的时隙序号,l是一个时隙中的OFDM符号的序号,c(i)是伪随机序列,该伪随机序列在每个OFDM符号的开头通过c init进行初 始化。
可选的,CSI-RS序列生成过程中的初始量c init是UE的相关参量α UE的一个函数,也即
c init=f(α UE)
其中,该相关参量α UE可以是UE的标识信息对应的参数,UE的标识信息可以是UE的C-RNTI,或者是UE所在UE组的UE组标识,或者是UE的专属标识。
一种可行的方式中,c init的函数定义可以如下:
Figure PCTCN2018085480-appb-000011
另一种可行的方式中,c init的函数定义还可以如下所示:
Figure PCTCN2018085480-appb-000012
其中,n′ s为与n s相关的值,在某些情况下n′ s的取值可以等于n s,在某些情况下,n′ s的取值可以等于
Figure PCTCN2018085480-appb-000013
N CP为子帧循环前缀(Cyclic Prefix,CP)的类型对应的值。若CP的类型是常规CP(normal CP),则N CP取值为1,若CP的类型是扩展CP(extended CP)时,则N CP取值为0。
Figure PCTCN2018085480-appb-000014
为UE的标识信息对应的参数,可以为UE的C-RNTI对应的参数或所述UE的专属标识对应的参数,或UE所在的UE组的UE组标识对应的参数。
可选的,c init的值不能超过c 0,例如在LTE系统中c 0=2 31-1。如果
Figure PCTCN2018085480-appb-000015
以及其他参数的选择使得c init有可能超过c 0,则应该进行取模操作,也即
Figure PCTCN2018085480-appb-000016
Figure PCTCN2018085480-appb-000017
或者如果
Figure PCTCN2018085480-appb-000018
的取值大于N 0时会使得c init的值超过c 0,则可以针对
Figure PCTCN2018085480-appb-000019
进行取模操作,也即
Figure PCTCN2018085480-appb-000020
Figure PCTCN2018085480-appb-000021
如果
Figure PCTCN2018085480-appb-000022
以及其他参数的选择使得c init没有可能超过c 0,则不必进行取模操 作。
可选的,当UE的标识信息为小区无线临时标识(C-RNTI)时,相应的初始量c init可以定义如下:
c init=2 10·(7·(n′ s+1)+l+1)·(2·N C-RNTI+1)+2·N C-RNTI+N CP
或,c init=2 10·(2·N C-RNTI+1)+2·N C-RNTI+N CP
其中N C-RNTI即为UE的C-RNTI对应的十进制数值。
可选的,当UE的标识信息为UE的专属标识时,相应的初始量c init定义如下:
Figure PCTCN2018085480-appb-000023
或,
Figure PCTCN2018085480-appb-000024
其中
Figure PCTCN2018085480-appb-000025
即为UE的专属标识对应的十进制数值。
可选的,当UE的标识信息为UE所在的UE组的UE组标识时,相应的初始量c init定义如下:
Figure PCTCN2018085480-appb-000026
或,
Figure PCTCN2018085480-appb-000027
Figure PCTCN2018085480-appb-000028
为UE所在的UE组的UE组标识对应的十进制数值。
需要说明的是,CSI-RS序列的生成方式可以延用LTE网络中的方式,通过以上方式初始化伪随机序列c(i)的初始量c init;除此之外,CSI-RS序列的生成方式还可以是其它的方式,在此不做限定。
402、第一基站向UE发送所述CSI-RS序列;
第一基站基于UE的标识信息生成了CSI-RS序列后,向该UE发送CSI-RS序列。具体的,发送CSI-RS序列时,需要经过调制、编码、映射等过程,再通过天线端口发送。在发射时,具体是在第一基站为该CSI-RS序列分配的时频资源和/或码域资源上发送。
UE在对应的时频资源和/或码域资源上侦听并接收到该CSI-RS序列。
UE接收到第一基站的CSI-RS后,测量该信号的信号质量,并将测量结果上报给当前接入的基站,作为当前接入的基站判断该UE是否进行小区切换的依据。
需要说明的是,本发明实施例中基站基于UE的标识信息生成的CSI-RS序列不仅可以用于前面所述的移动性测量,还可以用于进行波束管理(beam management),或用于包括5G在内的未来无线通信系统的其他功能或其他场景。当用于进行波束管理等其他功能时,同样通过上述步骤401和步骤402生成并发送CSI-RS序列。
当通过本发明实施例中方法生成的CSI-RS序列用于波束管理时,UE可以基于CSI-RS对波束的信号强度进行测量。基于此测量,UE可以进行波束的选择和切换,具体可以是在同一个基站的不同波束间进行波束的选择和切换,也可以是在不同的基 站的波束间进行波束的选择和切换。
本发明实施例中,CSI-RS是基于UE的标识信息生成的,使得UE在使用CSI-RS进行移动性测量或进行波束管理等功能时,无需去获取各小区(包括本小区和邻小区)的标识,根据自身的标识信息就可以正确接收各小区的基站发送的CSI-RS,从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。
此外,若本发明实施例用于UCNC网络中,能够更进一步地以UE为中心,使UE和基站的解耦,简化UE端的负担。
另外,本发明实施例中,基站生成的CSI-RS序列是基于UE的CSI-RS,只有当UE处于激活状态,且进入该小区的覆盖范围时,才向UE发送CSI-RS,因此,能够更灵活地按需发送CSI-RS,从而节省信令开销。
图4所示的实施例中的UE可以是第一基站的邻基站(第二基站)所服务的UE,也可以是第一基站所服务的UE。
下面结合图5和图6分别对本发明实施例中的这两种场景进行介绍。
一、该UE是第一基站的邻基站(第二基站)所服务的UE,UE进入了第一基站的覆盖范围内;
如图5所示,eNB1为第一基站,所在的小区为小区1,eNB2为第二基站,所在的小区为小区2。eNB2为给UE提供服务的基站,UE的本小区为小区2,邻小区为小区1,eNB1为邻小区的基站,UE进入了eNB1的覆盖范围。
当UE移动到了邻小区基站eNB1的覆盖范围时,UE接收邻小区的基站eNB1发送的CSI-RS,该CSI-RS是eNB1基于UE的标识信息生成的。
具体的,UE从邻小区基站eNB1接收基于该UE的标识信息的CSI-RS序列的过程如下:
501、当eNB2检测到UE移动到邻小区基站eNB1的覆盖范围时,eNB2将UE的标识信息发送给eNB1(具体可以通过X2接口发送);
502、eNB1基于该UE的标识信息生成CSI-RS序列;
503、eNB1为UE配置CSI-RS资源配置信息,将该CSI-RS资源配置信息发送给eNB2;
为了降低CSI-RS的系统资源开销,并使得UE能正确接收eNB1发送的CSI-RS序列。各小区基站会根据邻小区基站汇报的用户信息以及本小区的用户信息来分配发送CSI-RS的资源,具体可以是通过高层信令,比如RRC信令来分配发送CSI-RS的资源。
UE的邻小区的基站eNB1收到本小区基站eNB2发送的UE标识信息后,配置相应的CSI-RS时频资源(和/或码域资源)来发送基于前述UE的CSI-RS序列,并且将CSI-RS资源配置信息发送给前述本小区基站eNB2。
504、本小区基站eNB2收到该CSI-RS资源配置信息后,进一步地通过RRC信令将该CSI-RS资源配置信息发送给UE。
505、邻小区基站eNB1将生成的CSI-RS序列在配置的CSI-RS时频资源(和/或码域资源)上发送给UE,以供UE进行移动性测量或进行波束管理等功能。
506、UE根据收到的CSI-RS资源配置信息,就可以在CSI-RS时频资源(或者码 域资源)上侦听,从而正确接收前述邻小区基站eNB1发送的CSI-RS序列,该CSI-RS序列是基于该UE的标识信息来生成的,UE通过该CSI-RS序列进行移动性测量或进行波束管理等功能。
图5所示的实施例中,当UE移动到邻小区的覆盖范围时,无需去获取邻小区的小区标识,根据自身的标识信息就可以正确接收邻小区的基站发送的CSI-RS,以进行移动性测量或进行波束管理等功能。从而减少了UE端的信令开销,减轻了UE端的负担,提升了UE的通信质量。
二、该UE是第一基站所服务的UE
如图6所示,eNB3(第一基站)为UE提供服务,小区3为该UE的本小区。UE从本小区基站eNB3接收基于该UE标识信息的CSI-RS序列的过程如下:
601、eNB3基于该UE的标识信息生成CSI-RS序列;
602、eNB3为该UE配置CSI-RS资源配置信息,将该CSI-RS资源配置信息发送给UE;
603、eNB3将生成的CSI-RS序列在CSI-RS资源配置信息中配置的CSI-RS时频资源(和/或码域资源)上发送给UE。
604、UE根据收到的CSI-RS资源配置信息,就可以在CSI-RS时频资源(或者码域资源)上侦听,从而正确接收eNB3发送的CSI-RS序列,UE通过该CSI-RS序列进行移动性测量或进行波束管理等功能。
图6所示的实施例中,基站是基于UE的标识信息生成CSI-RS序列,UE可以根据自身的标识信息就可以正确接收基站发送的CSI-RS,以进行移动性测量或进行波束管理等功能。能够进一步实现UE和基站的解耦,从而能够减轻UE端的负担。
需要说明的是,在实际应用中,对于某基站来说,该基站可以对该基站服务的UE采用本发明实施例图6中所示的方式,生成基于UE的标识信息的CSI-RS;也可以采用现有技术中的方式,生成基于小区标识的CSI-RS,本发明实施例不做限定。
例如:在图5所示的实施例中,UE在进行移动性测量时,不仅仅接收到邻小区基站eNB1发送的CSI-RS序列,还接收到本小区基站eNB2发送的CSI-RS序列。其中,UE从eNB1接收到的CSI-RS序列是基于UE的标识信息生成的,UE从eNB2接收到的CSI-RS序列可以是基于UE的标识信息生成的,也可以是基于小区标识生成的。
基于本发明实施例中的方法,若一个UE位于多个小区的覆盖范围内时,则同时会收到多个小区的基站发送的CSI-RS,该CSI-RS都是基于该UE的标识信息生成的。
如图7所示,当前为UE提供服务的基站为eNB4,UE移动到了eNB5和eNB6的覆盖范围内。此时,eNB4获知UE已经移动到了eNB5的覆盖范围内,则将UE的标识信息发送给eNB5,eNB5基于UE的标识信息生成对该UE的CSI-RS序列,将该CSI-RS序列发送给UE。同样,eNB4获知UE已经移动到了eNB6的覆盖范围内,则将UE的标识信息发送给eNB6,eNB6基于UE的标识信息生成对该UE的CSI-RS序列,将该CSI-RS序列发送给UE。并且,eNB4自身也基于UE的标识信息生成对该UE的CSI-RS序列,将该CSI-RS序列发送给UE。因此,UE会接收到三个基站发送的CSI-RS序列,但UE并不需要去分别获取这三个基站的小区标识,仅用自身的标识信息就可以接收这三个基站发送的CSI-RS,以进行移动性测量或进行波束管理等功 能,从而能够减轻UE端的负担。
需要说明的是,在图7所示的实施例中,eNB5和eNB6分别需要生成发送该CSI-RS序列的CSI-RS资源配置信息,分别将该CSI-RS资源配置信息通过eNB4发送给UE,以使得UE可以分别在对应的CSI-RS时频资源(和/或码域资源)上接收CSI-RS序列。具体过程请参阅图5所示的实施例中的CSI-RS资源配置的过程。
以上是对本发明实施例中的方法进行的介绍,下面从功能模块角度对本发明实施例中的基站及用户设备进行介绍。
如图8所示,本发明实施例提供了一种基站,具备上述方法实施例中的第一基站所具备的功能,基站在功能模块上包括:
生成单元801,用于生成信道状态信息参考信号CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列,CSI-RS序列用于UE进行移动性测量;
发送单元802,用于向UE发送CSI-RS序列。
在一些具体的实施例中:
生成单元801,具体用于基于第一序列生成CSI-RS序列,第一序列被第一初始量初始化,第一初始量是UE的标识信息对应的参数的函数。
在一些具体的实施例中,UE的标识信息为下列标识信息的其中之一:
UE的小区无线临时标识C-RNTI、UE所在的UE组的UE组标识和UE的专属标识。
在一些具体的实施例中,UE的标识信息对应的参数包括UE的标识信息对应的十进制数值。
在一些具体的实施例中,UE为第二基站所服务的UE,第二基站包括与基站相邻的基站;该基站还包括:
接收单元803,用于当UE进入第一基站的覆盖范围时,从第二基站获得UE的标识信息。
在一些具体的实施例中,基站还包括:
资源配置单元804,用于配置CSI-RS资源配置信息,CSI-RS资源配置信息中包括第一基站发送CSI-RS序列的CSI-RS时频资源;
发送单元802,还用于将CSI-RS资源配置信息发送至第二基站,通过第二基站将CSI-RS资源配置信息发送至UE;
发送单元802,具体用于在CSI-RS时频资源上发送CSI-RS序列。
在一些具体的实施例中,UE包括第一基站所服务的UE;
资源配置单元801还用于配置CSI-RS资源配置信息,CSI-RS资源配置信息中包括第一基站发送CSI-RS序列的CSI-RS时频资源;
发送单元802,还用于将CSI-RS资源配置信息发送至UE;
发送单元802,具体用于在CSI-RS时频资源上发送CSI-RS序列。
在一些具体的实施例中,生成单元801生成CSI-RS序列时所使用的第一初始量的函数包括:
Figure PCTCN2018085480-appb-000029
或,
Figure PCTCN2018085480-appb-000030
其中,c init为第一初始量,n′ s为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,l为一个时隙中的正交频分复用OFDM符号的序号,
Figure PCTCN2018085480-appb-000031
为UE的C-RNTI对应的参数或UE的专属标识对应的参数或UE所在的UE组的UE组标识对应的参数,N CP为子帧循环前缀的类型对应的值。
如图9所示,本发明实施例提供了一种基站,具备上述方法实施例中第二基站所具备的功能,该基站在功能模块上包括:
发送单元901,用于当UE进入第一基站的覆盖范围时,将UE的标识信息发送给第一基站,UE的标识信息用于第一基站生成CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列;
接收单元902,用于从第一基站接收CSI-RS资源配置信息,CSI-RS资源配置信息包括第一基站向UE发送CSI-RS序列的CSI-RS时频资源;
发送单元901,还用于将CSI-RS资源配置信息发送给UE,以使得UE在CSI-RS时频资源上接收第一基站发送的CSI-RS序列。
如图10所示,本发明实施例提供了一种用户设备,具备上述方法实施例中UE所具备的功能,该用户设备在功能模块上包括:
接收单元1001,用于从基站接收信道状态信息参考信号CSI-RS序列,CSI-RS序列是基于UE的标识信息生成的序列;测量单元1002,用于测量CSI-RS序列的信号质量。
以上图8所示的实施例中的基站的各功能模块之间的信息交互、图9所示的实施例中的基站的各功能模块之间的信息交互、以及图10所示的实施例中的用户设备的各功能模块之间的信息交互均可以参阅上述方法实施例(图4至图7所示的实施例),此处不再赘述。
本发明例中的基站与用户设备的硬件结构示意图如图11所示,在本发明实施中的系统中的用户设备和基站分别具有上述方法实施例中所述用户设备和基站所具备的功能。
用户设备与基站通过射频直连,或通过基带直连。基站提供用户设备到网络的无线接入,包括一个或多个处理器,一个或多个存储器,一个或多个网络接口,以及一个或多个收发器(每个收发器包括接收机Rx和发射机Tx),通过总线连接。一个或多个收发器与天线或天线阵列连接。一个或多个处理器包括计算机程序代码。网络接口通过链路(例如与核心网之间的链路)与核心网连接,或者通过有线或无线链路与其它基站进行连接。处理器执行存储器中的一系列计算机程序代码指令操作,执行上述方法实施例(图4至图7所示的实施例)中基站所执行全部或部分步骤。
用户设备包括一个或多个处理器,一个或多个存储器,一个或多个收发器(每个收发器包括发射机Tx和接收机Rx),通过总线相连接。一个或多个收发器与一个或多个天线连接。一个或多个存储器中包括计算机程序代码,处理器执行存储器中的一系列计算机程序代码指令操作,执行上述方法实施例(图4至图7所示的实施例)中用户设备所执行的全部或部分步骤。
需要说明的是,在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产 品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
在一种可行的方式中,c init函数的定义可以如下所示:
Figure PCTCN2018085480-appb-000032
在另一种可行的方式中,c init函数的定义可以如下所示:
Figure PCTCN2018085480-appb-000033
在又一种可行的方式中,c init函数的定义可以如下所示:
Figure PCTCN2018085480-appb-000034
其中,n′ s为与n s相关的值,在某些情况下n′ s的取值可以等于n s,在某些情况下,n′ s的取值可以等于
Figure PCTCN2018085480-appb-000035
Figure PCTCN2018085480-appb-000036
表示向下取整。
Figure PCTCN2018085480-appb-000037
为小区标识或者虚拟小区标识的最大值。例如在LTE系统中,
Figure PCTCN2018085480-appb-000038
可以为503,即小区标识的最大值。在NR系统中,
Figure PCTCN2018085480-appb-000039
可以为小区标识或者虚拟小区标识的最大值,例如可以为1008。需要注意的是,
Figure PCTCN2018085480-appb-000040
的取值可以根据通信系统的实际需要进行确定,上述举例为示例性的,不能理解为对本发明实施例的限制。
N CP为子帧循环前缀(Cyclic Prefix,CP)的类型对应的值。若CP的类型是常规CP(normal CP),则N CP取值为1,若CP的类型是扩展CP(extended CP)时,则N CP取值为0。
Figure PCTCN2018085480-appb-000041
为UE的标识信息对应的参数,可以为UE的C-RNTI对应的参数或所述UE的专属标识对应的参数,或UE所在的UE组的UE组标识对应的参数。
可选的,当UE的标识信息为小区无线临时标识(C-RNTI)时,相应的初始量c init可以定义如下:
c init=2 6·(7·(n′ s+1)+l+1)·(2·N C-RNTI+1)+2·N C-RNTI+N CP;或,
Figure PCTCN2018085480-appb-000042
或,
Figure PCTCN2018085480-appb-000043
其中N C-RNTI即为UE的C-RNTI对应的十进制数值。
可选的,当UE的标识信息为UE的专属标识时,相应的初始量c init定义如下:
Figure PCTCN2018085480-appb-000044
或,
Figure PCTCN2018085480-appb-000045
或,
Figure PCTCN2018085480-appb-000046
其中
Figure PCTCN2018085480-appb-000047
即为UE的专属标识对应的十进制数值。
可选的,当UE的标识信息为UE所在的UE组的UE组标识时,相应的初始量c init定义如下:
Figure PCTCN2018085480-appb-000048
或,
Figure PCTCN2018085480-appb-000049
或,
Figure PCTCN2018085480-appb-000050
Figure PCTCN2018085480-appb-000051
为UE所在的UE组的UE组标识对应的十进制数值。
在一些具体的实施例中,生成单元801生成CSI-RS序列时所使用的第一初始量的函数包括:
Figure PCTCN2018085480-appb-000052
或,
Figure PCTCN2018085480-appb-000053
或,
Figure PCTCN2018085480-appb-000054
其中,c init为第一初始量,n′ s为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,l为一个时隙中的正交频分复用OFDM符号的序号,
Figure PCTCN2018085480-appb-000055
为UE的C-RNTI对应的参数或UE的专属标识对应的参数或UE所在的UE组的UE组标识对应的参数,N CP为子帧循环前缀的类型对应的值。
在一些具体的实施例中,生成单元801生成CSI-RS序列时所使用的第一初始量的函数还包括:
Figure PCTCN2018085480-appb-000056
或,
Figure PCTCN2018085480-appb-000057
其中,
Figure PCTCN2018085480-appb-000058
表示向下取整。所述c init为所述第一初始量,所述n′ s为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号,所述
Figure PCTCN2018085480-appb-000059
为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值,所述
Figure PCTCN2018085480-appb-000060
为小区标识或者虚拟小区标识的最大值。

Claims (28)

  1. 一种移动性测量方法,其特征在于,所述方法包括:
    第一基站生成信道状态信息参考信号CSI-RS序列,所述CSI-RS序列是基于UE的标识信息生成的序列,所述CSI-RS用于所述UE进行移动性测量;
    所述第一基站向所述UE发送所述CSI-RS序列。
  2. 根据权利要求1所述的方法,其特征在于,所述第一基站生成所述CSI-RS序列包括:
    所述第一基站基于第一序列生成所述CSI-RS序列,所述第一序列被第一初始量初始化,所述第一初始量是所述UE的标识信息对应的参数的函数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述UE的标识信息为下列标识信息的其中之一:
    UE的小区无线临时标识C-RNTI、UE所在的UE组的UE组标识和UE的专属标识。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述UE的标识信息对应的参数包括所述UE的标识信息对应的十进制数值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于:
    所述UE为第二基站所服务的UE,所述第二基站包括与所述第一基站相邻的基站;
    所述方法还包括:
    当所述UE进入所述第一基站的覆盖范围时,所述第一基站从所述第二基站获得所述UE的标识信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一基站配置CSI-RS资源配置信息,所述CSI-RS资源配置信息中包括所述第一基站发送所述CSI-RS序列的CSI-RS时频资源;
    所述第一基站将所述CSI-RS资源配置信息通过所述第二基站发送至所述UE;
    所述第一基站向所述UE发送CSI-RS序列包括:
    所述第一基站在所述CSI-RS时频资源上发送所述CSI-RS序列。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述UE包括所述第一基站所服务的UE;
    所述方法还包括:
    所述第一基站配置CSI-RS资源配置信息,所述CSI-RS资源配置信息中包括所述第一基站发送所述CSI-RS序列的CSI-RS时频资源;
    所述第一基站将所述CSI-RS资源配置信息发送至所述UE;
    所述第一基站向所述UE发送CSI-RS序列包括:
    所述第一基站在所述CSI-RS时频资源上发送所述CSI-RS序列。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述第一初始量的所述函数包括:
    Figure PCTCN2018085480-appb-100001
    或,
    Figure PCTCN2018085480-appb-100002
    或,
    Figure PCTCN2018085480-appb-100003
    其中,所述c init为所述第一初始量,所述n s′为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号,所述
    Figure PCTCN2018085480-appb-100004
    为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值。
  9. 根据权利要求2至7中任一项所述的方法,其特征在于,所述第一初始量的所述函数包括:
    Figure PCTCN2018085480-appb-100005
    或,
    Figure PCTCN2018085480-appb-100006
    其中,
    Figure PCTCN2018085480-appb-100007
    表示向下取整。所述c init为所述第一初始量,所述n s′为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号,所述
    Figure PCTCN2018085480-appb-100008
    为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值,所述
    Figure PCTCN2018085480-appb-100009
    为小区标识或者虚拟小区标识的最大值。
  10. 一种信道状态信息参考信号CSI-RS资源配置方法,其特征在于,所述方法包括:
    当第二基站确定UE进入第一基站的覆盖范围时,所述第二基站将所述UE的标识信息发送给所述第一基站,所述UE的标识信息用于所述第一基站生成CSI-RS序列;
    所述第二基站从所述第一基站接收CSI-RS资源配置信息,所述CSI-RS资源配置信息包括所述第一基站向所述UE发送所述CSI-RS序列的CSI-RS时频资源;
    所述第二基站将所述CSI-RS资源配置信息发送给所述UE,以使得所述UE在所述CSI-RS时频资源上接收所述第一基站发送的所述CSI-RS序列。
  11. 一种移动性测量方法,其特征在于,所述方法包括:
    用户设备UE从基站接收信道状态信息参考信号CSI-RS序列,所述CSI-RS序列是基于所述UE的标识信息生成的序列;
    所述UE测量所述CSI-RS序列的信号质量。
  12. 一种基站,其特征在于,所述基站包括:
    生成单元,用于生成信道状态信息参考信号CSI-RS序列,所述CSI-RS序列是基 于UE的标识信息生成的序列,所述CSI-RS序列用于所述UE进行移动性测量;
    发送单元,用于向所述UE发送所述CSI-RS序列。
  13. 根据权利要求12所述的基站,其特征在于,
    所述生成单元,具体用于基于第一序列生成所述CSI-RS序列,所述第一序列被第一初始量初始化,所述第一初始量是所述UE的标识信息对应的参数的函数。
  14. 根据权利要求12或13所述的基站,其特征在于,所述UE的标识信息为下列标识信息的其中之一:
    UE的小区无线临时标识C-RNTI、UE所在的UE组的UE组标识和UE的专属标识。
  15. 根据权利要求13或14所述的基站,其特征在于,
    所述UE的标识信息对应的参数包括所述UE的标识信息对应的十进制数值。
  16. 根据权利要求12至15中任一项所述的基站,其特征在于:
    所述UE为第二基站所服务的UE,所述第二基站包括与所述基站相邻的基站;
    所述基站还包括:
    接收单元,用于当所述UE进入所述第一基站的覆盖范围时,从所述第二基站获得所述UE的标识信息。
  17. 根据权利要求16所述的基站,其特征在于,所述基站还包括:
    资源配置单元,用于配置CSI-RS资源配置信息,所述CSI-RS资源配置信息中包括所述第一基站发送所述CSI-RS序列的CSI-RS时频资源;
    所述发送单元,还用于将所述CSI-RS资源配置信息发送至所述第二基站,通过所述第二基站将所述CSI-RS资源配置信息发送至所述UE;
    所述发送单元,具体用于在所述CSI-RS时频资源上发送所述CSI-RS序列。
  18. 根据权利要求12至15中任一项所述的基站,其特征在于,
    所述UE包括所述第一基站所服务的UE;
    所述基站还包括:
    资源配置单元,用于配置CSI-RS资源配置信息,所述CSI-RS资源配置信息中包括所述第一基站发送所述CSI-RS序列的CSI-RS时频资源;
    所述发送单元,还用于将所述CSI-RS资源配置信息发送至所述UE;
    所述发送单元,具体用于在所述CSI-RS时频资源上发送所述CSI-RS序列。
  19. 根据权利要求13至18中任一项所述的基站,其特征在于,
    所述生成单元生成所述CSI-RS序列时所使用的所述第一初始量的所述函数包括:
    Figure PCTCN2018085480-appb-100010
    或,
    Figure PCTCN2018085480-appb-100011
    或,
    Figure PCTCN2018085480-appb-100012
    其中,所述c init为所述第一初始量,所述n s′为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号, 所述
    Figure PCTCN2018085480-appb-100013
    为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值。
  20. 根据权利要求13至18中任一项所述的基站,其特征在于,
    所述生成单元生成所述CSI-RS序列时所使用的所述第一初始量的所述函数包括:
    Figure PCTCN2018085480-appb-100014
    或,
    Figure PCTCN2018085480-appb-100015
    其中,
    Figure PCTCN2018085480-appb-100016
    表示向下取整。所述c init为所述第一初始量,所述n s′为一个无线帧中的时隙号或根据一个无线帧中的时隙号得到的值,所述l为一个时隙中的正交频分复用OFDM符号的序号,所述
    Figure PCTCN2018085480-appb-100017
    为所述UE的C-RNTI对应的参数或所述UE的专属标识对应的参数或所述UE所在的UE组的UE组标识对应的参数,所述N CP为子帧循环前缀的类型对应的值,所述
    Figure PCTCN2018085480-appb-100018
    为小区标识或者虚拟小区标识的最大值。
  21. 一种基站,其特征在于,所述基站包括:
    发送单元,用于当UE进入第一基站的覆盖范围时,将所述UE的标识信息发送给所述第一基站,所述UE的标识信息用于所述第一基站生成CSI-RS序列;
    接收单元,用于从所述第一基站接收CSI-RS资源配置信息,所述CSI-RS资源配置信息包括所述第一基站向所述UE发送所述CSI-RS序列的CSI-RS时频资源;
    所述发送单元,还用于将所述CSI-RS资源配置信息发送给所述UE,以使得所述UE在所述CSI-RS时频资源上接收所述第一基站发送的所述CSI-RS序列。
  22. 一种用户设备,其特征在于,所述用户设备包括:
    接收单元,用于从基站接收信道状态信息参考信号CSI-RS序列,所述CSI-RS序列是基于所述UE的标识信息生成的序列;
    测量单元,用于测量所述CSI-RS序列的信号质量。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-9任一项所述的移动性测量方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求10所述信道状态信息参考信号CSI-RS资源配置方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求11移动性测量方法。
  26. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,基站的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得基站实施权利要求1-9任一项所述的移动性测量方法。
  27. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程 序存储在可读存储介质中,基站的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得基站实施权利要求10所述信道状态信息参考信号CSI-RS资源配置方法。
  28. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,用户设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得用户设备实施权利要求11所述的移动性测量方法。
PCT/CN2018/085480 2017-05-05 2018-05-03 移动性测量方法、csi-rs资源配置方法及设备 WO2018202086A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710313489.1 2017-05-05
CN201710313489 2017-05-05
CN201710648824.3A CN108811010B (zh) 2017-05-05 2017-08-01 移动性测量方法、csi-rs资源配置方法及设备
CN201710648824.3 2017-08-01

Publications (1)

Publication Number Publication Date
WO2018202086A1 true WO2018202086A1 (zh) 2018-11-08

Family

ID=64015762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085480 WO2018202086A1 (zh) 2017-05-05 2018-05-03 移动性测量方法、csi-rs资源配置方法及设备

Country Status (1)

Country Link
WO (1) WO2018202086A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163533A1 (en) * 2011-12-23 2013-06-27 Research In Motion Limited Method Implemented in an eNodeB Base Station
CN104509154A (zh) * 2012-07-31 2015-04-08 株式会社Ntt都科摩 通信系统、基站装置、移动终端装置以及通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163533A1 (en) * 2011-12-23 2013-06-27 Research In Motion Limited Method Implemented in an eNodeB Base Station
CN104509154A (zh) * 2012-07-31 2015-04-08 株式会社Ntt都科摩 通信系统、基站装置、移动终端装置以及通信方法

Similar Documents

Publication Publication Date Title
US11910252B2 (en) Radio network node, wireless device, and methods performed in a wireless communication network
TWI744439B (zh) 波束改變指令接收失敗期間的回退波束選擇程序
JP7241070B2 (ja) 通信方法及び通信装置
US20230114512A1 (en) Method and device in ue, base station and service center
US10615937B2 (en) Data transmission method, user equipment, and base station
TW202005433A (zh) 用於干擾管理的增強型rrm/csi 量測
US11832319B2 (en) System and method for providing time domain allocations in a communication system
US9986520B2 (en) Method and system for cell synchronization and synchronization cell indication
RU2619054C1 (ru) Способ, устройство и система для обработки внутриканальных помех в соте
TWI710271B (zh) 用於設備到設備發送和接收的頻率決定
WO2013166705A1 (zh) 参考信号处理方法及用户设备、基站
WO2014023261A1 (zh) 小区选择方法及终端
WO2018202023A1 (zh) 一种参考信号通知方法及其装置
WO2017174034A1 (zh) 一种功率配置方法及设备
WO2020058743A1 (en) Channel state information reference signal resource mapping
WO2016082118A1 (zh) 一种无线通信方法、设备及系统
JP6319821B2 (ja) デバイスツーデバイスd2d通信の方法及び装置
WO2019101206A1 (zh) 数据接收方法、数据发送方法、装置和系统
CN108811010B (zh) 移动性测量方法、csi-rs资源配置方法及设备
US20180103483A1 (en) Data transmission method and apparatus
JP2023513291A (ja) データ伝送方法及び装置
WO2018228286A1 (zh) 参考信号指示方法、参考信号确定方法及设备
WO2018202086A1 (zh) 移动性测量方法、csi-rs资源配置方法及设备
EP3496287B1 (en) Receiving timing configuration method and communication device
WO2023284456A1 (zh) 信息处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794816

Country of ref document: EP

Kind code of ref document: A1