WO2018201889A1 - 一种预编码矩阵指示方法、终端和网络侧设备 - Google Patents
一种预编码矩阵指示方法、终端和网络侧设备 Download PDFInfo
- Publication number
- WO2018201889A1 WO2018201889A1 PCT/CN2018/083345 CN2018083345W WO2018201889A1 WO 2018201889 A1 WO2018201889 A1 WO 2018201889A1 CN 2018083345 W CN2018083345 W CN 2018083345W WO 2018201889 A1 WO2018201889 A1 WO 2018201889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- precoding
- particle
- particles
- precoding matrix
- precoded
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
- H04L1/0038—Blind format detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
Definitions
- the present disclosure relates to the field of communications technologies, and in particular, to a precoding matrix indication method, a terminal, and a network side device.
- a communication system for example, an NR system
- the terminal since the number of terminal transmitting antennas is large and the computing power of the terminal is improved, it is considered to adopt sub-band precoding in uplink data transmission, that is, the terminal follows a frequency resource on which the uplink data is scheduled to be transmitted. Small subbands are precoded and different precoding matrices are used on different subbands. This is called subband precoding.
- the number of subbands is also variable, so that the number of control signaling bits of the precoding notification of the network side device is changed according to the number of subbands. For example, the number of the transmit antennas of the terminal is 2, and the precoding matrix is 3 bits.
- the network side device schedules a subband size frequency resource, the network side device needs to notify the terminal with 3-bit control signaling.
- the coding matrix if the network side device schedules 2 subband size frequency resources, the network side device needs to notify the terminal precoding matrix with 6 bits (3 bits per subband) of control signaling.
- the control signaling sent by the terminal receiving the network side device is blinded, the change of the control signaling length increases the blind detection complexity of the terminal receiving the control signaling. It can be seen that the blind detection complexity of the terminal receiving control signaling is high.
- An object of the present disclosure is to provide a precoding matrix indication method, a terminal, and a network side device, to solve the problem that the blind detection complexity of the terminal receiving control signaling is high.
- an embodiment of the present disclosure provides a precoding matrix indication method, including: receiving, by a terminal, control signaling sent by a network side device, where the control signaling includes N-bit precoding information, where N is a positive integer Determining, by the terminal, the number of precoding particles according to the scheduling resource, and determining, in the N-bit precoding information, precoding information bits of each precoding particle according to the number of the precoding particles, wherein each pre- The coded particle includes at least one subband, and each of the subbands includes at least one physical resource block (PRB); the terminal acquires a precoding matrix indicated by precoding information bits of each precoded particle.
- the control signaling includes N-bit precoding information, where N is a positive integer Determining, by the terminal, the number of precoding particles according to the scheduling resource, and determining, in the N-bit precoding information, precoding information bits of each precoding particle according to the number of the precoding particles, wherein each pre- The coded particle includes at least one subband, and each
- the terminal determines, in the N-bit precoding information, the precoding information bits of each precoding particle according to the number of the precoding particles, including: the terminal according to the precoding The number of particles, the number of bits of the precoding information bits of each precoded particle is determined, and the precoding information bits of each precoded particle are determined in the N-bit precoding information according to the number of bits.
- the acquiring, by the terminal, a precoding matrix of each precoding particle includes: selecting, by the terminal, a precoding information bit indication in a precoding matrix group corresponding to each precoding particle. Precoding matrix.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-acquired by pre-acquisition Convention.
- the determining, by the terminal, the number of pre-coded particles according to the scheduling resource includes: determining, by the terminal, the number of pre-coded particles according to the size information of the scheduling resource in the control signaling; Or the number of pre-coded particles determined by the terminal according to the size of the pre-coded particles indicated by other signaling received in advance and the size of the scheduling resource.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the embodiment of the present disclosure further provides a precoding matrix indication method, including: the network side device generates control signaling including N bits of precoding information, where the N bits of precoding information includes a scheduling resource included by the terminal. a precoding information bit of each precoding particle, and a precoding matrix of each precoding particle is a precoding matrix indicated by a respective precoding information bit, the N being a positive integer; the network side device transmitting to the terminal The control signaling.
- the number of bits of precoded information bits per precoded particle is a determined number of bits according to the number of precoded particles of the scheduled resource.
- the precoding matrix of each precoded particle is a precoding matrix indicated by a respective precoding information bit in a respective corresponding precoding matrix group.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-transmitted by pre-sending Convention.
- the number of pre-coded particles includes: a number of pre-coded particles corresponding to size information of the scheduling resource in the control signaling; or
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the embodiment of the present disclosure further provides a terminal, including: a receiving module, configured to receive control signaling sent by a network side device, where the control signaling includes N-bit precoding information, where the N is a positive integer; a determining module, And determining a number of precoding particles according to the scheduling resource, and determining, in the N-bit precoding information, precoding information bits of each precoding particle according to the number of the precoding particles, wherein each precoding particle Include at least one subband, and each subband includes at least one physical resource block; an obtaining module, configured to acquire a precoding matrix indicated by precoding information bits of each precoded particle.
- the determining module is configured to determine a number of precoding particles according to a scheduling resource, and determine a number of bits of precoding information bits of each precoded particle according to the number of the precoded particles, And precoding information bits of each precoded particle are determined in the N-bit precoding information according to the number of bits.
- the obtaining module is configured to select a precoding matrix indicated by a respective precoding information bit in a precoding matrix group corresponding to each precoding particle.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-acquired by pre-acquisition Convention.
- the determining module is configured to determine, according to size information of the scheduling resource in the control signaling, a number of pre-coded particles, and according to the number of the pre-coded particles, Determining, by the N-bit precoding information, precoding information bits of each precoding particle; or determining, by the determining module, according to a size of the precoding particle indicated by other signaling received in advance and a size of the scheduling resource Precoding the number of particles and determining precoding information bits for each precoded particle in the N-bit precoding information based on the number of precoded particles.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the embodiment of the present disclosure further provides a network side device, including: a generating module, configured to generate control signaling including N-bit precoding information, where the N-bit precoding information includes a scheduling resource included by the terminal. a precoding information bit of each precoding particle, and a precoding matrix of each precoding particle is a precoding matrix indicated by a respective precoding information bit, the N being a positive integer; a sending module, configured to send to the terminal The control signaling.
- a generating module configured to generate control signaling including N-bit precoding information, where the N-bit precoding information includes a scheduling resource included by the terminal.
- a precoding information bit of each precoding particle, and a precoding matrix of each precoding particle is a precoding matrix indicated by a respective precoding information bit, the N being a positive integer
- a sending module configured to send to the terminal The control signaling.
- the number of bits of precoded information bits per precoded particle is a determined number of bits according to the number of precoded particles of the scheduled resource.
- the precoding matrix of each precoded particle is a precoding matrix indicated by a respective precoding information bit in a respective corresponding precoding matrix group.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-transmitted by pre-sending Convention.
- the number of pre-coded particles includes: a number of pre-coded particles corresponding to size information of the scheduling resource in the control signaling; or other pre-sent by the network side device The number of precoded particles determined by the size of the precoded particles indicated by the signaling and the size of the scheduled resources.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the embodiment of the present disclosure further provides a terminal, including: a processor, a transceiver, and a memory, wherein: the processor is configured to read a program in the memory, and perform the following process: receiving, by the transceiver, control signaling sent by the network side device
- the control signaling includes N-bit precoding information, the N is a positive integer; determining a number of precoding particles according to the scheduling resource, and according to the number of the precoding particles in the N-bit precoding information Determining precoding information bits for each precoded particle, wherein each precoded particle includes at least one subband, and each subband includes at least one physical resource block; obtaining a precoding information bit indication for each precoded particle An encoding matrix; the transceiver is for receiving and transmitting data.
- the embodiment of the present disclosure further provides a network side device, including: a processor, a transceiver, and a memory, wherein: the processor is configured to read a program in the memory, and perform the following process: generating control of precoding information including N bits Signaling, where the N-bit precoding information includes precoding information bits of each precoding particle included in a scheduling resource of the terminal, and the precoding matrix of each precoding particle is indicated by a respective precoding information bit. a precoding matrix, the N being a positive integer; the control signaling sent by the transceiver to the terminal; the transceiver being configured to receive and transmit data.
- a network side device including: a processor, a transceiver, and a memory, wherein: the processor is configured to read a program in the memory, and perform the following process: generating control of precoding information including N bits Signaling, where the N-bit precoding information includes precoding information bits of each precoding particle included in a scheduling resource of the terminal, and the precoding matrix of each pre
- the terminal receives control signaling sent by the network side device, where the control signaling includes N-bit precoding information, where the N is a positive integer;
- the terminal terminal determines the number of precoding particles according to the scheduling resource, and determines precoding information bits of each precoding particle in the N-bit precoding information according to the number of the precoding particles, wherein each precoding particle At least one subband is included;
- the terminal acquires a precoding matrix indicated by precoding information bits of each precoded particle. In this way, the precoding matrix can be indicated by using the fixed N bits of precoding information, so that the blind detection complexity of the terminal receiving control signaling can be reduced.
- FIG. 1 is a schematic structural diagram of a network applicable to an embodiment of the present disclosure
- FIG. 2 is a flowchart of a method for indicating a precoding matrix according to an embodiment of the present disclosure
- FIG. 3 is a flowchart of another method for indicating a precoding matrix according to an embodiment of the present disclosure
- FIG. 4 is a structural diagram of a terminal according to an embodiment of the present disclosure.
- FIG. 5 is a structural diagram of a network side device according to an embodiment of the present disclosure.
- FIG. 6 is a structural diagram of another terminal according to an embodiment of the present disclosure.
- FIG. 7 is a structural diagram of another network side device according to an embodiment of the present disclosure.
- FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
- the terminal 11 includes a terminal 11 and a network side device 12 .
- the terminal 11 may be a mobile phone, a tablet (Tablet Personal Computer), and a knee.
- Terminal-side devices such as laptop computers, personal digital assistants (PDAs), mobile Internet devices (MIDs), or wearable devices (Wearable Devices), etc.
- the specific type of the terminal 11 is not limited in the embodiment of the present disclosure.
- the terminal 11 can establish communication with the network side device 12, wherein the network in the figure can indicate that the terminal 11 wirelessly establishes communication with the network side device 12, and the network side device 12 can be an evolved base station (eNB) or other base station. It may be a network side device such as an access point device. It should be noted that the specific type of the network side device 12 is not limited in the embodiment of the present disclosure.
- an embodiment of the present disclosure provides a precoding matrix indication method.
- the method includes the following steps: 201: A terminal receives control signaling sent by a network side device, where the control signaling includes N bits. Encoding information, the N is a positive integer; 202, the terminal determines a number of pre-coded particles according to the scheduling resource, and determines each pre-coding in the N-bit precoding information according to the number of the pre-coded particles a precoding information bit of a particle, wherein each precoding particle includes at least one subband, and each subband includes at least one PRB; 203, the terminal acquires a precoding matrix indicated by a precoding information bit of each precoded particle .
- the foregoing control signaling may be control signaling for performing precoding matrix indication.
- the foregoing control signaling may include other information in addition to the N-bit precoding information, and the number of bits of the other information. It is also fixed, so that the total number of bits of control signaling is fixed.
- the foregoing N may be pre-configured by the network side device, or pre-negotiated by the protocol or the network side device and the terminal, for example, N is 10 or 20 or 30, and the like.
- the number of bits N of the precoding information in the control signaling that is, the fixed length or the length of the precoding information that is not variable, can reduce the blind detection complexity of the terminal receiving control signaling.
- precoding information of the same number of bits may be used for different terminals or different services.
- the foregoing scheduling resource may be a resource that is allocated by the network side device to the terminal or a resource allocated to the user terminal, and the resource may include one or more precoding particles, and each precoding particle may include one or more subbands, and each of the precoding particles may include one or more subbands.
- the subbands include at least one PRB, and the subbands within the same precoded particle use the same precoding matrix.
- the number of the sub-bands included in the different pre-coded particles may be the same or different, which is not limited by the embodiment of the present disclosure.
- the determining the number of pre-coded particles according to the scheduling resource may be determining the number of pre-coded particles of the scheduling resource, that is, determining how many pre-coded particles are included in the scheduling resource, where the determining manner may be determined according to a pre-acquired correspondence. Or it may be determined according to the size information of the scheduling resource, etc., which is not limited in this embodiment.
- Determining, in the N-bit precoding information, the precoding information bits of each precoding particle according to the number of the precoding particles may be, according to the correspondence between the number of precoding particles and the number of bits of precoding information bits. Determining the number of bits of the precoded information bits, and determining the precoding information of each precoded particle according to the number of bits. For example, the precoding information bits of each precoded particle are determined in the above-described N-bit precoding information in the frequency domain or time domain order of the precoded particles.
- the precoding information bits of each precoding particle are determined by the foregoing sequence.
- the precoding of each precoding particle may also be determined by the correspondence between the precoding particle and the precoding information bit position. Information bits.
- the precoding information bit may be an index or indication information of the precoding matrix.
- the precoding information bits of each precoding particle are determined according to the number of precoded particles, so that the precoding information bits of the precoded particles can be realized, and the total precoding information in the control signaling is
- the bits are immutable so that the blind check complexity of the terminal receiving control signaling can be reduced. For example, if the scheduling resources scheduled by the network side device are large (for example, the number of PRBs is large), then less bits are used for each precoding granule to indicate a precoding matrix, if the scheduling resources scheduled by the network side device are small (for example: PRB) The number is small), then the precoding matrix is indicated by a larger number of bits for each precoded particle to keep the size of the control signaling of the total precoding indication unchanged.
- the determining, by the terminal, the precoding information bits of each precoding particle in the N-bit precoding information according to the number of the precoding particles including:
- the number of bits of precoding information bits of the precoded particles may be changed according to the number of precoding particles of the scheduling resource, for example, if the scheduling resources scheduled by the network side device are large (for example, the number of PRBs is large. Then, using less bits for each precoding granule indicates a precoding matrix, if the scheduling resources scheduled by the network side device are small (for example, the number of PRBs is small), then a larger number of bits is used for each precoded granule to indicate Encoding the matrix to keep the total precoding indication of the control signaling size unchanged.
- the determining the number of bits of the precoding information bits of each precoding particle according to the number of the precoding particles may be, according to the correspondence between the number of precoded pixels obtained in advance and the number of bits of the precoding information bits, The number of bits of precoding information bits for each precoded particle is determined.
- N and M may be operated, for example, an integer of N except M is used as the number of bits of precoding information bits of each precoded particle, where M is the number of the precoded particles, that is, the scheduling resource.
- the number of precoded particles For example, if N is 20 and the above M is 4, the precoding matrix of each precoding particle uses 5 bits to indicate the precoding matrix index. For example: as shown in Table 1:
- Precoded information bits Precoding matrix index 00000 Precoding matrix 1 00001 Precoding matrix 2 00010 Precoding matrix 3 00011 Precoding matrix 4 ... ... 11111 Precoding matrix 32
- each precoded particle can indicate one of the 32 precoding matrices by 5 bits.
- the precoding matrix of each precoding particle uses 4 bits to indicate the precoding matrix index. For example: as shown in Table 2:
- Precoded information bits Precoding matrix index 0000 Precoding matrix 1 0001 Precoding matrix 2 0010 Precoding matrix 3 0011 Precoding matrix 4 ... ... 1111 Precoding matrix 16
- each precoding particle pass 4 bits can indicate one of the 16 precoding matrices.
- the precoding matrix of each precoded pixel indicates the precoding matrix index by 3 bits. For example: as shown in Table 3:
- Precoded information bits Precoding matrix index 000 Precoding matrix 1 001 Precoding matrix 2 010 Precoding matrix 3 011 Precoding matrix 4 ... ... 111 Precoding matrix 8
- the bit corresponding to the remainder obtained by dividing the N by the M in the above N bits may be filled with a preset value or used as a spare bit.
- the acquiring, by the terminal, a precoding matrix of each precoding particle includes: selecting, by the terminal, a precoding information bit indication in a precoding matrix group corresponding to each precoding particle. Precoding matrix.
- a precoding matrix group corresponding to each precoding particle may be implemented, and each precoding particle selects a precoding matrix indicated by a precoding information bit only in its own corresponding precoding matrix group, thereby improving precoding particles.
- the flexibility of the precoding matrix may be implemented, and each precoding particle selects a precoding matrix indicated by a precoding information bit only in its own corresponding precoding matrix group, thereby improving precoding particles.
- the precoding matrix group corresponding to each precoding particle may be pre-stored, or the network side device improves the configuration to the terminal, and the like, which is not limited in this embodiment.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-acquired by pre-acquisition Convention.
- the precoding matrix group corresponding to each precoding particle is pre-acquired. Signaling notice or pre-agreed. For the precoding matrix group corresponding to each precoding particle is the same, that is, only the same one of the precoding matrix groups, then no signaling can be needed in this case, and the precoding matrix group can adopt the default or Pre-agreed.
- the foregoing signaling may be the control signaling received in step 201, or may be other signaling, which is not limited in this embodiment of the disclosure.
- the determining, by the terminal, the number of pre-coded particles according to the scheduling resource includes: determining, by the terminal, the number of pre-coded particles according to the size information of the scheduling resource in the control signaling; Or the number of pre-coded particles determined by the terminal according to the size of the pre-coded particles indicated by other signaling received in advance and the size of the scheduling resource.
- the number of corresponding pre-coded particles may be determined according to the size information of the scheduling resource in the control signaling. For example, the correspondence between the size information of the pre-acquired scheduling resource and the number of pre-coded particles may be determined. The number of precoded particles. Thus, since the number of precoded particles is determined by the size information of the scheduling resources in the control signaling, the flexibility of the system is improved.
- the size information of the scheduling resource may also be referred to as scheduling resource size information.
- the number of pre-coded particles determined according to the size of the pre-coded particles and the size of the scheduling resource may also be implemented, for example, the size of the scheduling resource and the size of the pre-coded particles are calculated.
- the number of precoded particles such as an integer that divides the size of the scheduling resource by the size of the precoded particles as the number of precoded particles; or may also implement the size of the precoded particles according to the pre-acquisition, the size of the scheduled resource, and the pre-
- the correspondence between the three numbers of encoded particles determines the number of pre-coded particles to achieve flexibility in indicating the number of pre-coded particles to the terminal.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the foregoing signaling may be the control signaling received in step 201, or other signaling, which is not limited in this embodiment of the disclosure.
- the signaling indicates that the number of subbands included in each precoded particle can increase the flexibility of the system, and the use of preset values can reduce the transmission overhead. And the number of subbands included in each precoding particle may be the same or different.
- each precoding particle including a specific subband may be signaling indication or pre-agreed.
- the terminal receives control signaling sent by the network side device, where the control signaling includes N-bit precoding information, where the N is a positive integer; the terminal determines the number of pre-coded particles according to the scheduling resource, and Determining precoding information bits for each precoded particle in the N-bit precoding information according to the number of precoded particles, wherein each precoded particle includes at least one subband; the terminal acquires each preamble A precoding matrix of the coded precoding information bits of the code. In this way, the precoding matrix can be indicated by using the fixed N bits of precoding information, so that the blind detection complexity of the terminal receiving control signaling can be reduced.
- an embodiment of the present disclosure provides another precoding matrix indication method.
- the method includes the following steps: 301: A network side device generates control signaling including N bits of precoding information, where The N-bit precoding information includes precoding information bits of each precoding particle included in the scheduling resource of the terminal, and the precoding matrix of each precoding particle is a precoding matrix indicated by a respective precoding information bit, the N a positive integer; 301, the control signaling sent by the network side device to the terminal.
- the number of bits of precoded information bits per precoded particle is a determined number of bits according to the number of precoded particles of the scheduled resource.
- the precoding matrix of each precoded particle is a precoding matrix indicated by a respective precoding information bit in a respective corresponding precoding matrix group.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same.
- the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-agreed by pre-sending. .
- the number of pre-coded particles includes: a number of pre-coded particles corresponding to size information of the scheduling resource in the control signaling; or other pre-sent by the network side device The number of precoded particles determined by the size of the precoded particles indicated by the signaling and the size of the scheduled resources.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the present embodiment is an implementation manner of the network side device corresponding to the embodiment shown in FIG. 2, and a specific implementation manner of the embodiment may refer to the related description of the embodiment shown in FIG. This embodiment will not be described again, and the same advantageous effects can be achieved.
- the terminal 400 includes: a receiving module 401, configured to receive control signaling sent by a network side device, where the control signaling includes N bits.
- the precoding information the N is a positive integer
- the determining module 402 is configured to determine a number of precoding particles according to the scheduling resource, and determine each of the N bits of precoding information according to the number of the precoding particles
- Precoding information bits of precoded particles wherein each precoded particle includes at least one subband, and each subband includes at least one physical resource block
- an acquisition module 403 is configured to obtain precoding information bits of each precoded particle The indicated precoding matrix.
- the determining module 402 is configured to determine a number of precoded particles according to the scheduling resource, and determine a number of bits of precoding information bits of each precoded particle according to the number of the precoded particles, and Precoding information bits for each precoded particle are determined in the N-bit precoding information according to the number of bits.
- the obtaining module 403 is configured to select a precoding matrix indicated by a respective precoding information bit in a precoding matrix group corresponding to each precoding particle.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-acquired by pre-acquisition Convention.
- the determining module is configured to determine, according to size information of the scheduling resource in the control signaling, a number of pre-coded particles, and according to the number of the pre-coded particles, Determining, by the N-bit precoding information, precoding information bits of each precoding particle; or determining, by the determining module, according to a size of the precoding particle indicated by other signaling received in advance and a size of the scheduling resource Precoding the number of particles and determining precoding information bits for each precoded particle in the N-bit precoding information based on the number of precoded particles.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the terminal 40 may be a terminal in any embodiment of the method in the embodiment of the disclosure, and any implementation manner of the terminal in the method embodiment in the embodiment of the disclosure may be used in this embodiment.
- the above-mentioned terminal 400 is implemented, and the same beneficial effects are achieved, and details are not described herein again.
- the network side device 500 includes: a generating module 501, configured to generate control signaling including N-bit precoding information, The precoding information of each precoding particle included in the scheduling resource of the terminal is included in the precoding information of the N bits, and the precoding matrix of each precoding particle is a precoding matrix indicated by the respective precoding information bits.
- the N is a positive integer; the sending module 502 is configured to send the control signaling to the terminal.
- the number of bits of precoded information bits per precoded particle is a determined number of bits according to the number of precoded particles of the scheduled resource.
- the precoding matrix of each precoded particle is a precoding matrix indicated by a respective precoding information bit in a respective corresponding precoding matrix group.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-transmitted by pre-sending Convention.
- the number of pre-coded particles includes: a number of pre-coded particles corresponding to size information of the scheduling resource in the control signaling; or other pre-sent by the network side device The number of precoded particles determined by the size of the precoded particles indicated by the signaling and the size of the scheduled resources.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the network side device 500 may be the network side device in any of the method embodiments in the embodiment of the disclosure, and any implementation manner of the network side device in the method embodiment in the embodiment of the disclosure It can be implemented by the above network side device 500 in this embodiment, and achieve the same beneficial effects, and details are not described herein again.
- the terminal includes: a processor 600, a transceiver 610, a memory 620, a user interface 630, and a bus interface, where: the processor 600 For reading the program in the memory 620, the following process is performed: receiving, by the transceiver 610, control signaling sent by the network side device, where the control signaling includes N-bit precoding information, where N is a positive integer; Dispatching resources determine a number of precoded particles, and determining precoding information bits for each precoded particle in the N-bit precoding information according to the number of precoded particles, wherein each precoded particle includes at least one Subbands, and each subband includes at least one PRB; a precoding matrix indicating precoding information bits of each precoded particle is obtained.
- the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
- the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
- the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
- the determining, in the N-bit precoding information, the precoding information bits of each precoding particle according to the number of the precoding particles including: according to the precoding particle a number, a number of bits of precoding information bits of each precoded particle is determined, and precoding information bits of each precoded particle are determined in the N-bit precoding information according to the number of bits, wherein the M The number of precoded particles included for the scheduling resource.
- the acquiring a precoding matrix of each precoding particle includes: selecting a precoding matrix indicated by a respective precoding information bit in a precoding matrix group corresponding to each precoding particle. .
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-acquired by pre-acquisition Convention.
- determining the number of pre-coded particles according to the scheduling resource including: determining a number of pre-coded particles according to size information of the scheduling resource in the control signaling; or receiving according to pre-received The other signaling indicates the size of the precoded particles and the size of the scheduling resource to determine the number of precoded particles.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the foregoing terminal may be the terminal in the embodiment shown in FIG. 1 to FIG. 3, and any implementation manner of the terminal in the embodiment shown in FIG. 1 to FIG. 3 may be used in the embodiment.
- the above terminals are implemented, and the same beneficial effects are achieved, and details are not described herein again.
- the network side device includes: a processor 700, a transceiver 710, a memory 720, a user interface 730, and a bus interface, where The processor 700 is configured to read a program in the memory 720, and perform the following process: generating control signaling including N-bit precoding information, where the N-bit precoding information includes a scheduling resource included by the terminal. Precoding information bits of each precoded particle, and the precoding matrix of each precoded particle is a precoding matrix indicated by a respective precoding information bit, the N being a positive integer; sent to the terminal by the transceiver 710 The control signaling.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- Transceiver 710 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
- the user interface 730 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
- the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
- the number of bits of precoded information bits per precoded particle is a determined number of bits according to the number of precoded particles of the scheduled resource.
- the precoding matrix of each precoded particle is a precoding matrix indicated by a respective precoding information bit in a respective corresponding precoding matrix group.
- the precoding matrix group corresponding to each precoding particle is the same, or the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particle is the same. And if the precoding matrix group corresponding to each precoding particle is different, or the precoding matrix group corresponding to the partial precoding particles is the same, the precoding matrix group corresponding to each precoding particle is notified or pre-transmitted by pre-sending Convention.
- the number of pre-coded particles includes: a number of pre-coded particles corresponding to size information of the scheduling resource in the control signaling; or other pre-sent by the network side device The number of precoded particles determined by the size of the precoded particles indicated by the signaling and the size of the scheduled resources.
- each precoding particle includes a subband that uses the same precoding matrix, and the number of subbands included in each precoding particle is a signaling indication or a preset value.
- the network side device may be the network side device in the embodiment shown in FIG. 1 to FIG. 3, and any implementation manner of the network side device in the embodiment shown in FIG. It is implemented by the above network side device in this embodiment, and achieves the same beneficial effects, and details are not described herein again.
- the disclosed method and apparatus may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
- the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
- the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本公开提供一种预编码矩阵指示方法、终端和网络侧设备,该方法包括:终端接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;所述终端根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个PRB;所述终端获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
Description
相关申请的交叉引用
本申请主张在2017年5月4日在中国提交的中国专利申请号No.201710307917.X的优先权,其全部内容通过引用包含于此。
本公开涉及通信技术领域,特别涉及一种预编码矩阵指示方法、终端和网络侧设备。
在通信系统(例如:NR系统)因为终端发射天线数目较多,且终端的计算能力提升,所以考虑在上行数据发送采用子带预编码,即终端在被调度上行发送数据的频率资源上按照一个小的子带进行预编码,且不同子带上使用不同的预编码矩阵,这个称之为子带预编码。但因为被调度资源大小是可变的因而子带个数也是可变的,这样导致网络侧设备的预编码通知的控制信令比特数是根据子带的个数变化的。比如:以终端发射天线数目为2,且预编码矩阵指示为3比特进行举例,如果网络侧设备调度了1个子带大小的频率资源,那么网络侧设备需要用3比特的控制信令通知终端预编码矩阵,如果网络侧设备调度了2个子带大小的频率资源,那么网络侧设备需要用6比特(每个子带3比特)的控制信令通知终端预编码矩阵。但由于终端接收网络侧设备发送的控制信令是通过盲检,这样控制信令长度变化会增加终端接收控制信令的盲检复杂度。可见,目前终端接收控制信令的盲检复杂度较高。
发明内容
本公开的目的在于提供一种预编码矩阵指示方法、终端和网络侧设备,以解决终端接收控制信令的盲检复杂度较高的问题。
为了达到上述目的,本公开实施例提供一种预编码矩阵指示方法,包括:终端接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信 息,所述N为正整数;所述终端根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块(Physical Resource Block,PRB);所述终端获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,所述终端根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,包括:终端根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
在一些可选的实施例中,所述终端获取每个预编码颗粒的预编码矩阵,包括:所述终端在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
在一些可选的实施例中,所述终端根据调度资源确定预编码颗粒的数目,包括:所述终端根据所述控制信令中的所述调度资源的大小信息,确定预编码颗粒的数目;或者所述终端根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
本公开实施例还提供一种预编码矩阵指示方法,包括:网络侧设备生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;所述网络侧设备向所述终端发送的所述控制信令。
在一些可选的实施例中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源的预编码颗粒的数目,确定的比特数目。
在一些可选的实施例中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
在一些可选的实施例中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者
所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
本公开实施例还提供一种终端,包括:接收模块,用于接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;确定模块,用于根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块;获取模块,用于获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,所述确定模块用于根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
在一些可选的实施例中,所述获取模块用于在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同, 或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
在一些可选的实施例中,所述确定模块用于根据所述控制信令中的所述调度资源的大小信息,确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特;或者所述确定模块用于根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
本公开实施例还提供一种网络侧设备,包括:生成模块,用于生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;发送模块,用于向所述终端发送的所述控制信令。
在一些可选的实施例中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源预编码颗粒的数目,确定的比特数目。
在一些可选的实施例中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
在一些可选的实施例中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的 预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
本公开实施例还提供一种终端,包括:处理器、收发机、存储器,其中:所述处理器用于读取存储器中的程序,执行下列过程:通过收发机接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块;获取每个预编码颗粒的预编码信息比特指示的预编码矩阵;所述收发机用于接收和发送数据。
本公开实施例还提供一种网络侧设备,包括:处理器、收发机、存储器,其中:所述处理器用于读取存储器中的程序,执行下列过程:生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;通过收发机向所述终端发送的所述控制信令;所述收发机用于接收和发送数据。
本公开的上述技术方案至少具有如下有益效果:本公开实施例,终端接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;所述终端终端根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带;所述终端获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。这样可以实现采用固定N比特的预编码信息指示预编码矩阵,从而可以降低终端接收控制信令的盲检复杂度。
图1为本公开实施例可应用的网络结构示意图;
图2为本公开实施例提供的一种预编码矩阵指示方法的流程图;
图3为本公开实施例提供的另一种预编码矩阵指示方法的流程图;
图4为本公开实施例提供的一种终端的结构图;
图5为本公开实施例提供的一种网络侧设备的结构图;
图6为本公开实施例提供的另一种终端的结构图;
图7为本公开实施例提供的另一种网络侧设备的结构图。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1为本公开实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。终端11可以与网络侧设备12建立通信,其中,附图中的网络可以表示终端11与网络侧设备12无线建立通信,网络侧设备12可以是演进型基站(eNB,evolved Node B)或者其他基站,或者可以是接入点设备等网络侧设备,需要说明的是,在本公开实施例中并不限定网络侧设备12的具体类型。
请参考图2,本公开实施例提供一种预编码矩阵指示方法,如图2所示,包括以下步骤:201、终端接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;202、所述终端根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个PRB;203、所述终端获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
其中,上述控制信令可以是用于进行预编码矩阵指示的控制信令,当然,上述控制信令除了上述N比特的预编码信息之外,还可以包括其他信息,且这些其他信息的比特数也是固定的,从而保证控制信令的总比特数是固定的。
另外,上述N可以是网络侧设备预先配置的,或者协议规定的或者网络侧设备与终端预先协商的等等,例如:N为10或者20或者30等等。由于,本公开实施例中,控制信令中预编码信息的比特数N,即固定长度或者长度不可变的预编码信息,从而可以降低终端接收控制信令的盲检复杂度。另外,本公开实施例中,针对不同终端或者不同业务,均可以采用相同比特数的预编码信息。
上述调度资源可以是网络侧设备向上述终端调度的资源或者为上述用户终端分配的资源,该资源中可以包括一个或者多个预编码颗粒,每个预编码颗粒可以包括一个或者多个子带,每个子带包括至少一个PRB,且同一个预编码颗粒内的子带采用相同的预编码矩阵。且本公开实施例中,不同预编码颗粒包括的子带个数可以是相同或者不同的,对此本公开实施例不作限定。
上述根据调度资源确定预编码颗粒的数目可以是确定上述调度资源的预编码颗粒的数目,即确定该调度资源包括多少个预编码颗粒,其中,确定的方式可以是根据预先获取的对应关系确定,或者可以是根据调度资源的大小信息确定等,对此本公开实施例不作限定。
上述根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特可以是,根据预编码颗粒的数目与预编码信息比特的比特数目的对应关系,确定预编码信息比特的比特数目,再根据比特数目确定各预编码颗粒的预编码信息。例如:按照预编码颗粒的频域或者时域顺序,在上述N比特的预编码信息确定各预编码颗粒的预编码信息比特。如预编码颗粒1按照频域或者时域的顺序在预编码颗粒2的前面,而上述N为10,上述比特数目为5,则可以确定前5个比特为预编码颗粒1的预编码信息比特,后5个比特为预编码颗粒2的预编码信息比特。当然,本公开实施例中并不限定通过上述顺序来确定各预编码颗粒的预编码信息比特,例如:还可以通过预编码颗粒与预编码信息比特位置的对应关系确定各预编码颗粒的预编码信息比特。
其中,预编码信息比特可以是预编码矩阵的索引或者指示信息,这样终端获取每个预编码颗粒的预编码信息比特后,就可以直接获取各预编码颗粒的预编码矩阵。且每个预编码颗粒的预编码矩阵为各自预编码信息比特指示 的预编码矩阵。
在上述步骤中,根据预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特,从而可以实现预编码颗粒的预编码信息比特是可变的,而控制信令中总预编码信息的比特是不可变的,从而可以降低终端接收控制信令的盲检复杂度。例如:如果网络侧设备所调度的调度资源大(例如:PRB数目多),那么针对每个预编码颗粒采用较少比特指示预编码矩阵、如果网络侧设备所调度的调度资源小(例如:PRB数目少),那么针对每个预编码颗粒采用较多比特数指示预编码矩阵,以保持总的预编码指示的控制信令大小不变。
在一些可选的实施例中,所述终端根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,包括:
终端根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,所述M为所述调度资源包括的预编码颗粒的数目。
该实施方式中,可以实现将预编码颗粒的预编码信息比特的比特数目是随调度资源的预编码颗粒的数目变化的,例如:如果网络侧设备所调度的调度资源大(例如:PRB数目多),那么针对每个预编码颗粒采用较少比特指示预编码矩阵、如果网络侧设备所调度的调度资源小(例如:PRB数目少),那么针对每个预编码颗粒采用较多比特数指示预编码矩阵,以保持总的预编码指示的控制信令大小不变。
另外,上述根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目可以是,根据预先获取的预编码颗粒的数目和预编码信息比特的比特数目的对应关系,确定每个预编码颗粒的预编码信息比特的比特数目。或者可以是将N与M进行运算,例如:将N除了M的整数作为每个预编码颗粒的预编码信息比特的比特数目,其中,M为所述预编码颗粒的数目,即上述调度资源的预编码颗粒的数目。例如:上述N为20,上述M为4,则每个预编码颗粒的预编码矩阵采用5个比特指示预编码矩阵索引。例如:如表1所示:
表1:
预编码信息比特 | 预编码矩阵索引 |
00000 | 预编码矩阵1 |
00001 | 预编码矩阵2 |
00010 | 预编码矩阵3 |
00011 | 预编码矩阵4 |
... | ... |
11111 | 预编码矩阵32 |
这样每个预编码颗粒通过5比特可以指示32个预编码矩阵中的一个预编码矩阵。
又例如:上述N为20,上述M为5,则每个预编码颗粒的预编码矩阵采用4个比特指示预编码矩阵索引。例如:如表2所示:
表2:
预编码信息比特 | 预编码矩阵索引 |
0000 | 预编码矩阵1 |
0001 | 预编码矩阵2 |
0010 | 预编码矩阵3 |
0011 | 预编码矩阵4 |
... | ... |
1111 | 预编码矩阵16 |
这样每个预编码颗粒通:4比特可以指示16个预编码矩阵中的一个预编码矩阵。
又例如:上述N为20,上述M为6,则每个预编码颗粒的预编码矩阵采用3个比特指示预编码矩阵索引。例如:如表3所示:
表3:
预编码信息比特 | 预编码矩阵索引 |
000 | 预编码矩阵1 |
001 | 预编码矩阵2 |
010 | 预编码矩阵3 |
011 | 预编码矩阵4 |
... | ... |
111 | 预编码矩阵8 |
其中,本公开实施例中可以将上述N比特中所述N除以M得的余数对应的比特采用预设值填充或者作为备用比特。例如:在表2所示的3比特的预编码信息,则20除3,余数为2,即20-(6*3)=2,则将这2比特采用预 设值填充或者作为备用比特。
在一些可选的实施例中,所述终端获取每个预编码颗粒的预编码矩阵,包括:所述终端在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
该实施方式中,可以实现每个预编码颗粒对应的预编码矩阵组,每个预编码颗粒只在自己对应的预编码矩阵组中选择预编码信息比特指示的预编码矩阵,从而提高预编码颗粒的预编码矩阵的灵活性。
另外,本公开实施例中,每个预编码颗粒对应的预编码矩阵组可以是预先存储的,或者网络侧设备提高配置给终端的等等,对此本公开实施例不作限定。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
该实施方式中,可以在每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同的情况下,每个预编码颗粒对应的预编码矩阵组采用预先获取的信令通知或者预先约定。而对于每个预编码颗粒对应的预编码矩阵组相同,即只有相同的一个预编码矩阵组,那么,该情况下可以不需要信令通知,该情况,以及该预编码矩阵组可以采用默认或者预先约定。另外,上述信令可以是步骤201接收到的控制信令,或者可以是其他信令,对此本公开实施例不作限定。
在一些可选的实施例中,所述终端根据调度资源确定预编码颗粒的数目,包括:所述终端根据所述控制信令中的所述调度资源的大小信息,确定预编码颗粒的数目;或者所述终端根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目。
该实施方式中,可以实现根据控制信令中的调度资源的大小信息确定对应的预编码颗粒的数目,例如:可以根据预先获取的调度资源的大小信息与预编码颗粒的数目的对应关系,确定预编码颗粒的数目。这样由于预编码颗 粒的数目是由控制信令中的调度资源的大小信息确定的,以提高系统的灵活性。其中,上述调度资源的大小信息还可以称作调度资源大小信息。
另外,该实施方式中,还可以实现根据预编码颗粒的大小和所述调度资源的大小确定的预编码颗粒的数目,例如:将所述调度资源的大小与预编码颗粒的大小作运算,得到预编码颗粒的数目,如将调度资源的大小除以预编码颗粒的大小的整数作为预编码颗粒的数目;或者还可以实现根据预先获取的预编码颗粒的大小、所述调度资源的大小和预编码颗粒的数目这三者的对应关系,确定预编码颗粒的数目,以实现灵活向终端指示预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
其中,上述信令可以是步骤201接收到的控制信令,或者其他信令,对此本公开实施例不作限定。通过信令指示每个预编码颗粒包括的子带个数可以提高系统的灵活性,而采用预设数值可以减少传输开销。且每个预编码颗粒包括的子带个数可以相同或者不同的,另外,每个预编码颗粒包括具体子带可以为信令指示或者预先约定。
需要说明的是,本公开实施例介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本公开实施例不作限定。
本公开实施例,终端接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;所述终端根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带;所述终端获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。这样可以实现采用固定N比特的预编码信息指示预编码矩阵,从而可以降低终端接收控制信令的盲检复杂度。
参考图3,本公开实施例提供另一种预编码矩阵指示方法,如图3所示,包括以下步骤:301、网络侧设备生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;301、网络侧设备向所述终端发送 的所述控制信令。
在一些可选的实施例中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源的预编码颗粒的数目,确定的比特数目。
在一些可选的实施例中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;
且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
在一些可选的实施例中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
参考图4,本公开实施例提供一种终端的结构图,如图4所示,终端400包括:接收模块401,用于接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;确定模块402,用于根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块;获取模块403,用于获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,确定模块402用于根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信 息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
在一些可选的实施例中,所述获取模块403用于在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
在一些可选的实施例中,所述确定模块用于根据所述控制信令中的所述调度资源的大小信息,确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特;或者所述确定模块用于根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
需要说明的是,本实施例中上述终端40可以是本公开实施例中方法实施例中任意实施方式的终端,本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端400所实现,以及达到相同的有益效果,此处不再赘述。
参考图5,本公开实施例提供的一种网络侧设备的结构图,如图5所示,网络侧设备500包括:生成模块501,用于生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;发送模块502,用于向所述终端发送的所述控制信令。
在一些可选的实施例中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源的预编码颗粒的数目,确定的比特数目。
在一些可选的实施例中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
在一些可选的实施例中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
需要说明的是,本实施例中上述网络侧设备500可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备500所实现,以及达到相同的有益效果,此处不再赘述。
参考图6,本公开实施例提供另一种终端的结构图,如图6所示,该终端包括:处理器600、收发机610、存储器620、用户接口630和总线接口,其中:处理器600,用于读取存储器620中的程序,执行下列过程:通过收发机610接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个PRB;获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。其中,收发机610,用于在处理器600的控制下接收和发送数据。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的 各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
在一些可选的实施例中,所述根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,包括:根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,所述M为所述调度资源包括的预编码颗粒的数目。
在一些可选的实施例中,所述获取每个预编码颗粒的预编码矩阵,包括:在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
在一些可选的实施例中,所述根据调度资源确定预编码颗粒的数目,包括:根据所述控制信令中的所述调度资源的大小信息,确定预编码颗粒的数目;或者根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
需要说明的是,本实施例中上述终端可以是图1-图3所示的实施例中的终端,图1-图3所示实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
参考图7,本公开实施例提供另一种网络侧设备的结构图,如图7所示,该网络侧设备包括:处理器700、收发机710、存储器720、用户接口730和总线接口,其中:处理器700,用于读取存储器720中的程序,执行下列过程:生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;通过收发机710向所述终端发送的所述控制信令。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口730还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
在一些可选的实施例中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源的预编码颗粒的数目,确定的比特数目。
在一些可选的实施例中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
在一些可选的实施例中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
在一些可选的实施例中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的 预编码颗粒的数目。
在一些可选的实施例中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
需要说明的是,本实施例中上述网络侧设备可以是图1-图3所示的实施例中的网络侧设备,图1-图3所示实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
Claims (26)
- 一种预编码矩阵指示方法,包括:终端接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;所述终端根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块PRB;所述终端获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
- 如权利要求1所述的方法,其中,所述终端根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,包括:终端根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
- 如权利要求1或2所述的方法,其中,所述终端获取每个预编码颗粒的预编码矩阵,包括:所述终端在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
- 如权利要求3所述的方法,其中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
- 如权利要求1或2所述的方法,其中,所述终端根据调度资源确定预编码颗粒的数目,包括:所述终端根据所述控制信令中的所述调度资源的大小信息,确定预编码 颗粒的数目;或者所述终端根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目。
- 如权利要求1或2所述的方法,其中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
- 一种预编码矩阵指示方法,包括:网络侧设备生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;所述网络侧设备向所述终端发送的所述控制信令。
- 如权利要求7所述的方法,其中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源的预编码颗粒的数目,确定的比特数目。
- 如权利要求7或8所述的方法,其中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
- 如权利要求9所述的方法,其中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
- 如权利要求8所述的方法,其中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的预编码颗粒的数目。
- 如权利要求7或8所述的方法,其中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预 设数值。
- 一种终端,包括:接收模块,用于接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;确定模块,用于根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块;获取模块,用于获取每个预编码颗粒的预编码信息比特指示的预编码矩阵。
- 如权利要求13所述的终端,其中,所述确定模块用于根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目,确定每个预编码颗粒的预编码信息比特的比特数目,并按照所述比特数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
- 如权利要求13或14所述的终端,其中,所述获取模块用于在每个预编码颗粒对应的预编码矩阵组中,选择各自的预编码信息比特指示的预编码矩阵。
- 如权利要求15所述的终端,其中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先获取的信令通知或者预先约定。
- 如权利要求13或14所述的终端,其中,所述确定模块用于根据所述控制信令中的所述调度资源的大小信息,确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特;或者所述确定模块用于根据预先接收的其他信令指示的预编码颗粒的大小和所述调度资源的大小,确定的预编码颗粒的数目,并根据所述预编码颗粒的 数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特。
- 如权利要求13或14所述的终端,其中,每个预编码颗粒包括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
- 一种网络侧设备,包括:生成模块,用于生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;发送模块,用于向所述终端发送的所述控制信令。
- 如权利要求19所述的网络侧设备,其中,每个预编码颗粒的预编码信息比特的比特数目为根据所述调度资源的预编码颗粒的数目,确定的比特数目。
- 如权利要求19或20所述的网络侧设备,其中,每个预编码颗粒的预编码矩阵为,各自的预编码信息比特在各自对应的预编码矩阵组中指示的预编码矩阵。
- 如权利要求21所述的网络侧设备,其中,所述每个预编码颗粒对应的预编码矩阵组相同,或者每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同;且若每个预编码颗粒对应的预编码矩阵组不同,或者部分预编码颗粒对应的预编码矩阵组相同,则每个预编码颗粒对应的预编码矩阵组由预先发送的信令通知或者预先约定。
- 如权利要求20所述的网络侧设备,其中,所述预编码颗粒的数目包括:所述控制信令中的所述调度资源的大小信息对应的预编码颗粒的数目;或者所述网络侧设备预先发送的其他信令指示的预编码颗粒的大小和所述调度资源的大小确定的预编码颗粒的数目。
- 如权利要求19或20所述的网络侧设备,其中,每个预编码颗粒包 括的子带采用相同的预编码矩阵,且每个预编码颗粒包括的子带个数为信令指示或预设数值。
- 一种终端,包括:处理器、收发机、存储器,其中:所述处理器用于读取存储器中的程序,执行下列过程:通过收发机接收网络侧设备发送的控制信令,所述控制信令包括N比特的预编码信息,所述N为正整数;根据调度资源确定预编码颗粒的数目,并根据所述预编码颗粒的数目在所述N比特的预编码信息中确定每个预编码颗粒的预编码信息比特,其中,每个预编码颗粒包括至少一个子带,且每个子带包括至少一个物理资源块;获取每个预编码颗粒的预编码信息比特指示的预编码矩阵;所述收发机用于接收和发送数据。
- 一种网络侧设备,包括:处理器、收发机、存储器,其中:所述处理器用于读取存储器中的程序,执行下列过程:生成包括N比特的预编码信息的控制信令,其中,所述N比特的预编码信息中包括终端的调度资源包括的各预编码颗粒的预编码信息比特,且每个预编码颗粒的预编码矩阵为各自的预编码信息比特指示的预编码矩阵,所述N为正整数;通过收发机向所述终端发送的所述控制信令;所述收发机用于接收和发送数据。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18794784.1A EP3621384B1 (en) | 2017-05-04 | 2018-04-17 | Precoding matrix indication method, terminal, and network apparatus |
US16/608,154 US11336339B2 (en) | 2017-05-04 | 2018-04-17 | Precoding matrix indication method, terminal, and network side device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710307917.X | 2017-05-04 | ||
CN201710307917.XA CN108811101B (zh) | 2017-05-04 | 2017-05-04 | 一种预编码矩阵指示方法、终端和网络侧设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018201889A1 true WO2018201889A1 (zh) | 2018-11-08 |
Family
ID=64015701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083345 WO2018201889A1 (zh) | 2017-05-04 | 2018-04-17 | 一种预编码矩阵指示方法、终端和网络侧设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11336339B2 (zh) |
EP (1) | EP3621384B1 (zh) |
CN (1) | CN108811101B (zh) |
WO (1) | WO2018201889A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021163925A1 (zh) * | 2020-02-19 | 2021-08-26 | 北京小米移动软件有限公司 | 数据传输方法、装置、通信设备及存储介质 |
CN113824481B (zh) * | 2020-06-19 | 2023-03-28 | 华为技术有限公司 | 上行传输方法、装置、芯片系统及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090046569A1 (en) * | 2007-08-14 | 2009-02-19 | Texas Instruments Incorporated | Precoding matrix feedback processes, circuits and systems |
CN102244559A (zh) * | 2010-05-12 | 2011-11-16 | 华为技术有限公司 | 一种预编码信息的发送和接收方法及装置 |
CN102948243A (zh) * | 2010-04-16 | 2013-02-27 | 捷讯研究有限公司 | 针对lte和lte-a的预编码粒度的信令 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105634573B (zh) * | 2007-04-20 | 2019-08-20 | 交互数字技术公司 | e节点B、WTRU及网络实体 |
US8917677B2 (en) | 2010-04-14 | 2014-12-23 | Samsung Electronics Co., Ltd. | Systems and methods for bundling resource blocks in a wireless communication system |
WO2013033919A1 (zh) * | 2011-09-09 | 2013-03-14 | 富士通株式会社 | 数据传输方法、系统、发射机和接收机 |
EP2822339B1 (en) * | 2012-02-28 | 2017-08-23 | LG Electronics Inc. | Method and apparatus for allocating resources in wireless communication system |
WO2018128504A1 (ko) * | 2017-01-08 | 2018-07-12 | 엘지전자(주) | 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치 |
CN115483951A (zh) * | 2017-01-13 | 2022-12-16 | Idac控股公司 | 针对相位连续的频率选择性预编码处理的方法、装置和系统 |
CN108631999B (zh) * | 2017-03-25 | 2021-07-09 | 华为技术有限公司 | 信令的发送方法,装置和系统 |
CN116112141A (zh) * | 2017-04-03 | 2023-05-12 | 三星电子株式会社 | 通信系统中的用户设备、基站及其方法 |
-
2017
- 2017-05-04 CN CN201710307917.XA patent/CN108811101B/zh active Active
-
2018
- 2018-04-17 WO PCT/CN2018/083345 patent/WO2018201889A1/zh unknown
- 2018-04-17 EP EP18794784.1A patent/EP3621384B1/en active Active
- 2018-04-17 US US16/608,154 patent/US11336339B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090046569A1 (en) * | 2007-08-14 | 2009-02-19 | Texas Instruments Incorporated | Precoding matrix feedback processes, circuits and systems |
CN102948243A (zh) * | 2010-04-16 | 2013-02-27 | 捷讯研究有限公司 | 针对lte和lte-a的预编码粒度的信令 |
CN102244559A (zh) * | 2010-05-12 | 2011-11-16 | 华为技术有限公司 | 一种预编码信息的发送和接收方法及装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3621384A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN108811101A (zh) | 2018-11-13 |
CN108811101B (zh) | 2020-10-30 |
EP3621384B1 (en) | 2023-03-29 |
US11336339B2 (en) | 2022-05-17 |
EP3621384A1 (en) | 2020-03-11 |
US20200145064A1 (en) | 2020-05-07 |
EP3621384A4 (en) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110769502B (zh) | 用于多波束发送上行信道的方法、终端设备和网络侧设备 | |
WO2018196628A1 (zh) | 一种指示及确定预编码向量的方法和设备 | |
CN105846965B (zh) | 无线通信系统中的用于下行链路协调多点的信令 | |
TW201911904A (zh) | 資料傳輸方法、基地台和終端 | |
CN110768700B (zh) | 信道估计方法和装置 | |
JP6733938B2 (ja) | プリコーディング情報を送信し、且つプリコーディング情報をフィードバックするための方法及び装置 | |
CN110474665B (zh) | 信道估计方法和装置 | |
WO2018228228A1 (zh) | 信息传输方法及装置 | |
CN109936396B (zh) | 多天线系统中预编码的方法及装置 | |
WO2021129768A1 (zh) | 指示消息传输方法和通信设备 | |
TW202044892A (zh) | 上行信號傳輸方法、調度資訊確定方法、終端及網路側設備 | |
WO2018201889A1 (zh) | 一种预编码矩阵指示方法、终端和网络侧设备 | |
TW201637409A (zh) | 一種資料的發送方法、接收方法及裝置 | |
CN114762265A (zh) | 将窗口化fd基础映射到用于pmi报告和使用的组合指示 | |
CN108696306B (zh) | 一种csi反馈配置方法、网络侧设备和终端 | |
WO2020063470A1 (zh) | 信道状态信息的接收方法、反馈方法、网络侧设备及终端 | |
CN109510651B (zh) | 一种srs的发送方法、接收方法和相关设备 | |
CN114303322A (zh) | 用于上行链路控制信令的装置、方法和计算机程序 | |
WO2016106696A1 (zh) | 一种预编码矩阵指示pmi的反馈方法 | |
CN108322283B (zh) | 数据发送技术 | |
CN109429344B (zh) | 一种流数据的发送方法、接收方法、相关设备及系统 | |
WO2019137204A1 (zh) | 控制资源集coreset的分配方法、用户终端和网络侧设备 | |
CN108075813B (zh) | 一种预编码信息指示方法、ue及接入网实体 | |
CN110855330B (zh) | 一种传输方法及装置 | |
WO2024078440A1 (zh) | 信息反馈方法、装置、终端、网络侧设备及可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18794784 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018794784 Country of ref document: EP Effective date: 20191204 |