WO2018201698A1 - 无源光网络中传输汇聚层组帧的实现方法及系统 - Google Patents

无源光网络中传输汇聚层组帧的实现方法及系统 Download PDF

Info

Publication number
WO2018201698A1
WO2018201698A1 PCT/CN2017/112051 CN2017112051W WO2018201698A1 WO 2018201698 A1 WO2018201698 A1 WO 2018201698A1 CN 2017112051 W CN2017112051 W CN 2017112051W WO 2018201698 A1 WO2018201698 A1 WO 2018201698A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
length
gem
idle
data
Prior art date
Application number
PCT/CN2017/112051
Other languages
English (en)
French (fr)
Inventor
李祥辉
Original Assignee
烽火通信科技股份有限公司
武汉飞思灵微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司, 武汉飞思灵微电子技术有限公司 filed Critical 烽火通信科技股份有限公司
Priority to BR112019009969A priority Critical patent/BR112019009969A2/pt
Publication of WO2018201698A1 publication Critical patent/WO2018201698A1/zh
Priority to PH12019500990A priority patent/PH12019500990A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of passive optical networks, and in particular to a method and system for implementing transmission aggregation layer framing in a passive optical network.
  • the PON system generally includes an OLT (Optical Line Terminal), an ODN (Optical Distribution Network), and an ONU (Optical Network Unit).
  • OLT Optical Line Terminal
  • ODN Optical Distribution Network
  • ONU Optical Network Unit
  • the OLT broadcasts data to all ONUs through the ODN.
  • each ONU performs data transmission only in time slots authorized by the OLT.
  • data services such as Ethernet frames
  • other services such as OMCI management frames
  • TC framing includes three. Part: GEM (GPON Encapsulation Mode) data frame, GEM idle frame, and TC overhead.
  • TC framing In the relevant standards of the PON system (GPON standard ITU-T G.984.3, XGPON standard ITU-T G.987.3, NGPON2 standard and XGS-PON standard ITU-T G.989.3, hereinafter referred to as PON protocol), TC framing The structure is described in detail. At present, the problems in the circuit design of the TC framing that implements the PON protocol encapsulation are:
  • the minimum can be 5 bytes, and the maximum is more than 38000 bytes, XG-PON The minimum can be 8 bytes, the maximum is more than 155520 bytes)); and the actual service data (such as Ethernet service) is suddenly variable, so for rate adaptation, a large data buffer is needed (at least Store 1/2 frame maximum length TC framing) to store bursty traffic data, but this will take up a large circuit area.
  • the technical problem to be solved by the present invention is: how to dynamically control the insertion of data frame framing and idle frames when transmitting the convergence layer framing in the passive optical network, and ensure the constant line of the TC group frame. At the same time, the framing probability of the data frame is increased as much as possible, and the idle frame insertion is minimized, thereby improving the throughput and QOS of the entire PON system.
  • the method for implementing the transmission convergence layer framing in the passive optical network includes the following steps:
  • Step A When the GEM idle frame length + GEM data frame length ⁇ all GEM frame length + data frame framing threshold, and the data frame length of the participating TC group frame > 0, if the total length of the GEM frame - GEM idle frame length -GEM data frame length ⁇ GEM frame header length + data frame length of the TC group frame; the data frames participating in the TC group frame are fragmented to obtain the data frames participating in the fragmentation, and the data frames participating in the fragmentation are added to the GEM.
  • the length of the data frame encapsulated into the GEM frame the total length of the GEM frame - the length of the GEM idle frame - the length of the GEM data frame - the length of the GEM frame header, and proceeds to step B;
  • An implementation system for transmitting a convergence layer framing in a passive optical network that implements the foregoing method, including a data frame fragmentation unit and an idle frame insertion unit;
  • the data frame fragmentation unit is configured to: when the GEM idle frame length + GEM data frame length ⁇ all GEM frame length + data frame framing threshold, and the data frame length of the TC group frame is > 0, if the total length of the GEM frame - GEM idle frame length - GEM data frame length ⁇ GEM frame header length + data frame length of the TC group frame; the data frames participating in the TC group frame are fragmented, and the data frames participating in the fragment are obtained, and the fragmentation is performed.
  • the present invention reduces the large-capacity data frame buffer according to the self-developed calculation method, thereby significantly reducing the area of the design circuit.
  • the present invention inserts a minimum length of idle frames as much as possible while ensuring a constant line rate, thereby improving the framing efficiency, thereby significantly improving the throughput and QOS of the entire PON system.
  • the algorithm developed by the present invention is relatively simple, and can be applied to an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit), which is suitable for any PON system, and is particularly suitable for Supporting multimode OLT or multimode PON systems in a single circuit (for example, supporting both GPON and XGPON) is well suited for generalization.
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • FIG. 1 is a flowchart of a method for implementing a convergence layer framing in a passive optical network according to an embodiment of the present invention
  • FIG. 2 is a connection block diagram of an implementation system for transmitting convergence layer framing in a passive optical network according to an embodiment of the present invention.
  • GPON Gigabit-capable passive optical networks
  • GTC the transmission convergence layer in GPON
  • XG-PON (10-Gigabit-capable passive optical networks), the transmission convergence layer in XG-PON is XGTC;
  • NG-PON2 (40-Gigabit-capable passive optical networks), the transmission convergence layer in NG-PON2 is NG-PON2TC;
  • XGS-PON whose transmission convergence layer is XGS-PON TC.
  • an implementation method for transmitting a convergence layer framing in a passive optical network includes the following steps:
  • S1 Set all GEM frame lengths of the TC group to 0. All GEM frame lengths include the read and unread GEM data frame length and the GEM idle frame length, and go to S2.
  • the total length of the TC group frame is obtained.
  • the total length of the GEM frame to be framed is obtained.
  • the data overhead length includes the TC layer overhead and the FEC overhead, and goes to S3.
  • the data frame of the TC group frame is divided into two parts: the data frame participating in the fragmentation and the data frame not participating in the fragmentation, and the data frame participating in the fragment is added to the GEM frame header, encapsulated into the GEM frame, and transferred to the S4. .
  • the length of the data frame encapsulated into the GEM frame the total length of the GEM frame - the length of the GEM idle frame - the length of the GEM data frame - the length of the GEM frame header;
  • Data frame length not participating in fragmentation data frame length of participating framing - (GEM frame total length - GEM idle frame length - GEM data frame length - GEM frame frame header length).
  • S4 Encrypt the data frame encapsulated into the GEM frame in S3 according to the encryption algorithm specified by the PON protocol (for example, AES128), and go to S5.
  • PON protocol for example, AES1228
  • the idle frame in which the length of the idle frame inserted in S5 is smaller than the minimum length of the idle frame of the minimum length may be taken only by the length of the length of the idle frame inserted in the minimum length of the idle frame.
  • S7 scramble the line data according to the scrambling algorithm specified by the PON protocol, scramble the line data, and go to S8.
  • an implementation system for transmitting a convergence layer framing in a passive optical network includes a data frame fragmentation unit, a data frame encryption unit, an idle frame insertion unit, and an FEC processing unit. And data scrambling unit.
  • the data frame fragmentation unit is configured to: when the GEM idle frame length + GEM data frame length ⁇ all GEM frame length + data frame framing threshold value, and the data frame length of the TC group frame is > 0:
  • the data frames participating in the TC group frame are fragmented to obtain the data frame participating in the fragmentation.
  • the GEM frame header is added, and the data frame of the GEM frame header is added to the GEM frame.
  • the updated GEM data frame length the GEM data frame length before the update + the GEM frame frame length + The data frame length of the TC group frame.
  • the data frame encryption unit is configured to: encrypt the data frame encapsulated into the GEM frame by the data frame fragmentation unit according to an encryption algorithm specified by the PON protocol (for example, AES128).
  • the idle frame insertion unit is configured to: when the idle frame needs to be inserted, if the GEM idle frame length + the GEM data frame length + the path length from the data frame framing circuit to the FEC processing circuit ⁇ all GEM frame lengths, and participate in the framing When the data frame length is 0:
  • the length of the GEM idle frame is updated after inserting the idle frame of the following length, and the workflow of the idle frame insertion unit is re-executed;
  • the FEC processing unit is used to: increase the FEC according to the FEC algorithm specified by the PON protocol Check byte; FEC function is an optional function. When the circuit configuration does not need to support FEC, the FEC processing unit processing unit only updates all GEM frame lengths.
  • the data scrambling unit is configured to: scramble the line data according to the scrambling algorithm specified by the PON protocol; and scramble the line data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种无源光网络中传输汇聚层组帧的实现方法及系统,涉及无源光网络领域。该方法的步骤为:按照自主研发的算法将参与TC组帧的数据帧进行分片,得到参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧;需要插入空闲帧时,按照自主研发的算法计算空闲帧的长度。本发明能够动态控制数据帧组帧和空闲帧的插入,在保证TC组帧恒定线速率的同时,尽可能增加数据帧的组帧几率,最大限度的减少空闲帧插入,从而提高整个PON系统的吞吐量和QOS。

Description

无源光网络中传输汇聚层组帧的实现方法及系统 技术领域
本发明涉及无源光网络领域,具体涉及一种无源光网络中传输汇聚层组帧的实现方法及系统。
背景技术
随着通信技术的发展,PON(Passive Optical Network,无源光网络)已经成为了一种应用广泛的高速带宽接入技术。PON系统一般包括OLT(Optical Line Terminal,光线路终端)、ODN(Optical Distribution Network,光分配网络)和ONU(Optical Network Unit,光网络单元)。在下行方向,OLT将数据通过ODN广播到所有的ONU;在上行方向,为了避免光冲突,则采用时分复用的方式,每个ONU只在被OLT授权的时隙进行数据传输。在PON系统中,无论上行还是下行,数据业务(例如以太网帧)和其他业务(例如OMCI管理帧)最终都是通过封装成TC(传输汇聚层)组帧来进行传输,TC组帧包括三部分:GEM(G-PON Encapsulation Mode,GPON封装方式)数据帧、GEM空闲帧和TC开销(TC overhead)。
在PON系统的相关标准中(GPON标准ITU-T G.984.3,XGPON标准ITU-T G.987.3,NGPON2标准和XGS-PON标准ITU-T G.989.3,以下简称PON协议),对TC组帧的结构进行了详细描述。目前,实现PON协议封装的TC组帧的电路设计存在的问题为:
(1)由于TC组帧是连续、且速率恒定的(例如GPON中GTC长度(不含开销),最小可以为5字节,最大超过38000字节,XG-PON 中最小可以为8字节,最大超过155520字节));而实际业务数据(如以太网业务)是突发可变的,因此为了进行速率适配,需要一个很大的数据缓存(至少能存储1/2帧最大长度TC组帧)来存储突发的业务数据,但这会占用较大的电路面积。
(2)TC组帧的开销是固定的,因此,在保证恒定线速率的前提下,空闲帧数目越少,传送的数据业务帧越多,封装效率越高。但是目前为随机插入空闲帧,其升组帧效率较低,进而降低了整个PON系统的吞吐量和QOS(Quality of Service,服务质量)。
发明内容
针对现有技术中存在的缺陷,本发明解决的技术问题为:实现无源光网络中传输汇聚层组帧时,如何动态控制数据帧组帧和空闲帧的插入,在保证TC组帧恒定线速率的同时,尽可能增加数据帧的组帧几率,最大限度的减少空闲帧插入,从而提高整个PON系统的吞吐量和QOS。
为达到以上目的,本发明提供的无源光网络中传输汇聚层组帧的实现方法,包括以下步骤:
步骤A:当GEM空闲帧长度+GEM数据帧长度<所有GEM帧长度+数据帧组帧门限值、并且参与TC组帧的数据帧长度>0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度<GEM帧帧头长度+参与TC组帧的数据帧长度;将参与TC组帧的数据帧进行分片,得到参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧,封装至GEM帧的数据帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度,转到步骤B;
步骤B:当需要插入空闲帧时,若GEM空闲帧长度+GEM数据帧长度+从数据帧组帧电路到FEC处理电路之间的路径长度<所有 GEM帧长度、并且参加组帧的数据帧长度=0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否≤最小长度的空闲帧,则插入以下长度空闲帧,形成TC组帧,插入空闲帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度。
本发明提供的实现上述方法的无源光网络中传输汇聚层组帧的实现系统,包括数据帧分片单元和空闲帧插入单元;
数据帧分片单元用于:当GEM空闲帧长度+GEM数据帧长度<所有GEM帧长度+数据帧组帧门限值、并且参与TC组帧的数据帧长度>0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度<GEM帧帧头长度+参与TC组帧的数据帧长度;将参与TC组帧的数据帧进行分片,得到参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧,封装至GEM帧的数据帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度;
空闲帧插入单元用于:当需要插入空闲帧时,若GEM空闲帧长度+GEM数据帧长度+从数据帧组帧电路到FEC处理电路之间的路径长度<所有GEM帧长度、并且参加组帧的数据帧长度=0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否≤最小长度的空闲帧,则插入以下长度空闲帧,形成TC组帧,插入空闲帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度。
与现有技术相比,本发明的优点在于:
(1)本发明根据自主研发的计算方式,减少了大容量的数据帧缓存,进而显著减少了设计电路的面积。
(2)本发明根据自主研发的空闲帧插入算法,在保证恒定线路速率的同时,尽可能插入最少长度的空闲帧,以提升组帧效率,进而显著提升了整个PON系统的吞吐量和QOS。
(3)本发明自主研发的算法比较简单,能够城在于FPGA(Field-Programmable Gate Array)或者ASIC(Application Specific Integrated Circuit,专门目的而设计的集成电路),适用于任意的PON系统,特别适用于在单个电路中支持多模OLT或多模PON系统(例如同时支持GPON和XGPON),非常适于推广。
附图说明
图1为本发明实施例中无源光网络中传输汇聚层组帧的实现方法的流程图;
图2本发明实施例中无源光网络中传输汇聚层组帧的实现系统的连接框图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
本发明实施例中的无源光网络包括:
GPON(Gigabit-capable passive optical networks),GPON中的传输汇聚层为GTC;
XG-PON(10-Gigabit-capable passive optical networks),XG-PON中的传输汇聚层为XGTC;
NG-PON2(40-Gigabit-capable passive optical networks),NG-PON2中的传输汇聚层为NG-PON2TC;
XGS-PON,其传输汇聚层为XGS-PON TC。
参见图1所示,本发明实施例中无源光网络中传输汇聚层组帧的实现方法,包括以下步骤:
S1:将TC组帧所有GEM帧长度全部置0,所有GEM帧长度包括已读取和未读取的GEM数据帧长度和GEM空闲帧长度,转到S2。
S2:根据TC协议或者是带宽分配,得到TC组帧的总长度;根据TC组帧的总长度和数据开销长度,得到需要组帧的GEM帧总长度,计算公式为:GEM帧总长度=TC组帧的总长度-数据开销。数据开销长度包括TC层开销和FEC开销,转到S3。
S3:当GEM空闲帧长度+GEM数据帧长度<所有GEM帧长度+数据帧组帧门限值(该值可以预先配置)、并且参与TC组帧的数据帧长度(该长度在新的突发到来时或者分片时更新)>0时,判断GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否≥GEM帧帧头长度+参与TC组帧的数据帧长度;
若是,增加GEM帧头(对于GPON协议,GEM帧帧头长度=5)、并将整个数据帧封装至GEM帧后,更新GEM数据帧长度和参与TC组帧的数据帧长度,重新执行S3;
更新后的GEM数据帧长度=更新前的GEM数据帧长度+GEM帧帧头长度+参与TC组帧的数据帧长度,参与TC组帧的数据帧长度=0;
否则将参与TC组帧的数据帧分为2片:参与分片的数据帧和未参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧,转到S4。
封装至GEM帧的数据帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度;
未参与分片的数据帧长度=参加组帧的数据帧长度-(GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度)。
S4:按照PON协议规定的加密算法(例如AES128),对S3中封装至GEM帧的数据帧进行加密,转到S5。
S5:当需要插入空闲帧时,若GEM空闲帧长度+GEM数据帧长 度+从数据帧组帧电路到FEC处理电路之间的路径长度(对于GPON协议,路径长度=11)<所有GEM帧长度,且参加组帧的数据帧长度=0,此时判断GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否>最小长度的空闲帧(对于GPON协议,最小长度的空闲帧=5):
若是,插入以下长度的空闲帧后更新GEM空闲帧长度,重新执行S5;插入空闲帧的长度=所有GEM帧长度-GEM空闲帧长度+GEM数据帧长度-路径长度;更新后的GEM空闲帧长度=更新前GEM空闲帧长度+插入空闲帧的长度。
否则插入以下长度空闲帧,形成TC组帧,插入空闲帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度,转到S6。
S5中插入空闲帧的长度小于最小长度的空闲帧最小长度的空闲帧,只取最小长度的空闲帧中前插入空闲帧的长度个字节即可。
S6:按照PON协议规定的FEC(Forward Error Correction,前向纠错)算法,在TC组帧中增加FEC校验字节、并更新所有GEM帧长度;若电路配置不支持FEC时,S6仅更新所有GEM帧长度,转到S7。
S7:按照PON协议规定的扰码算法,对线路数据进行扰码,加扰线路数据,转到S8。
S8:输出最终的TC组帧。
参见图2所示,本发明实施例中的实现上述方法的无源光网络中传输汇聚层组帧的实现系统,包括数据帧分片单元、数据帧加密单元、空闲帧插入单元、FEC处理单元和数据加扰单元。
数据帧分片单元用于:当GEM空闲帧长度+GEM数据帧长度<所有GEM帧长度+数据帧组帧门限值、并且参与TC组帧的数据帧长度>0时:
若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度<GEM帧帧头长度+参与TC组帧的数据帧长度;将参与TC组帧的数据帧进行分片,得到参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧,封装至GEM帧的数据帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度。
若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度≥GEM帧帧头长度+参与TC组帧的数据帧长度,则增加GEM帧头、并将增加GEM帧头的数据帧封装至GEM帧,更新GEM数据帧长度和参与TC组帧的数据帧长度后,重新执行数据帧分片单元的工作流程;更新后的GEM数据帧长度=更新前的GEM数据帧长度+GEM帧帧头长度+参与TC组帧的数据帧长度。
数据帧加密单元用于:按照PON协议规定的加密算法(例如AES128),对数据帧分片单元封装至GEM帧的数据帧进行加密。
空闲帧插入单元用于:当需要插入空闲帧时,若GEM空闲帧长度+GEM数据帧长度+从数据帧组帧电路到FEC处理电路之间的路径长度<所有GEM帧长度、并且参加组帧的数据帧长度=0时:
若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否≤最小长度的空闲帧,则插入以下长度空闲帧,形成TC组帧,插入空闲帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度。
若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否>最小长度的空闲帧,则插入以下长度的空闲帧后更新GEM空闲帧长度,重新执行空闲帧插入单元的工作流程;插入空闲帧的长度=所有GEM帧长度-GEM空闲帧长度+GEM数据帧长度-路径长度;更新后的GEM空闲帧长度=更新前GEM空闲帧长度+插入空闲帧的长度。
FEC处理单元用于:按照PON协议规定FEC算法,增加FEC 校验字节;FEC功能是一个可选的功能,当电路配置不需要支持FEC时,FEC处理单元处理单元仅仅完成所有GEM帧长度的更新。
数据加扰单元用于:按照PON协议规定的扰码算法,对线路数据进行扰码;加扰线路数据。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (8)

  1. 一种无源光网络中传输汇聚层组帧的实现方法,其特征在于,该方法包括以下步骤:
    步骤A:当GEM空闲帧长度+GEM数据帧长度<所有GEM帧长度+数据帧组帧门限值、并且参与TC组帧的数据帧长度>0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度<GEM帧帧头长度+参与TC组帧的数据帧长度;将参与TC组帧的数据帧进行分片,得到参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧,封装至GEM帧的数据帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度,转到步骤B;
    步骤B:当需要插入空闲帧时,若GEM空闲帧长度+GEM数据帧长度+从数据帧组帧电路到FEC处理电路之间的路径长度<所有GEM帧长度、并且参加组帧的数据帧长度=0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否≤最小长度的空闲帧,则插入以下长度空闲帧,形成TC组帧,插入空闲帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度。
  2. 如权利要求1所述的无源光网络中传输汇聚层组帧的实现方法,其特征在于:步骤A中若所述GEM帧总长度-GEM空闲帧长度-GEM数据帧长度≥GEM帧帧头长度+参与TC组帧的数据帧长度,则增加GEM帧头、并将增加GEM帧头的数据帧封装至GEM帧,更新GEM数据帧长度和参与TC组帧的数据帧长度后,重新执行步骤A;更新后的GEM数据帧长度=更新前的GEM数据帧长度+GEM帧帧头长度+参与TC组帧的数据帧长度。
  3. 如权利要求1所述的无源光网络中传输汇聚层组帧的实现方法,其特征在于:步骤B中若所述GEM帧总长度-GEM空闲帧长度 -GEM数据帧长度是否>最小长度的空闲帧,则插入以下长度的空闲帧后更新GEM空闲帧长度,重新执行步骤B;插入空闲帧的长度=所有GEM帧长度-GEM空闲帧长度+GEM数据帧长度-路径长度;更新后的GEM空闲帧长度=更新前GEM空闲帧长度+插入空闲帧的长度。
  4. 如权利要求1至3任一项所述的无源光网络中传输汇聚层组帧的实现方法,其特征在于:步骤A之前还包括以下步骤:将TC组帧所有GEM帧长度全部置0,所有GEM帧长度包括GEM数据帧长度和GEM空闲帧长度。
  5. 如权利要求1至3任一项所述的无源光网络中传输汇聚层组帧的实现方法,其特征在于:步骤A和步骤B中所述GEM帧总长度=TC组帧的总长度-数据开销;所述数据开销长度包括TC层开销和FEC开销。
  6. 一种实现权利要求1至5任一项所述方法的无源光网络中传输汇聚层组帧的实现系统,其特征在于:该系统包括数据帧分片单元和空闲帧插入单元;
    数据帧分片单元用于:当GEM空闲帧长度+GEM数据帧长度<所有GEM帧长度+数据帧组帧门限值、并且参与TC组帧的数据帧长度>0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度<GEM帧帧头长度+参与TC组帧的数据帧长度;将参与TC组帧的数据帧进行分片,得到参与分片的数据帧,将参与分片的数据帧增加GEM帧头后,封装至GEM帧,封装至GEM帧的数据帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度-GEM帧帧头长度;
    空闲帧插入单元用于:当需要插入空闲帧时,若GEM空闲帧长度+GEM数据帧长度+从数据帧组帧电路到FEC处理电路之间的路径 长度<所有GEM帧长度、并且参加组帧的数据帧长度=0时,若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否≤最小长度的空闲帧,则插入以下长度空闲帧,形成TC组帧,插入空闲帧的长度=GEM帧总长度-GEM空闲帧长度-GEM数据帧长度。
  7. 如权利要求6所述的无源光网络中传输汇聚层组帧的实现系统,其特征在于,所述数据帧分片单元还用于:若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度≥GEM帧帧头长度+参与TC组帧的数据帧长度,则增加GEM帧头、并将增加GEM帧头的数据帧封装至GEM帧,更新GEM数据帧长度和参与TC组帧的数据帧长度后,重新执行数据帧分片单元的工作流程;更新后的GEM数据帧长度=更新前的GEM数据帧长度+GEM帧帧头长度+参与TC组帧的数据帧长度。
  8. 如权利要求6所述的无源光网络中传输汇聚层组帧的实现系统,其特征在于,所述空闲帧插入单元还用于:若GEM帧总长度-GEM空闲帧长度-GEM数据帧长度是否>最小长度的空闲帧,则插入以下长度的空闲帧后更新GEM空闲帧长度,重新执行空闲帧插入单元的工作流程;插入空闲帧的长度=所有GEM帧长度-GEM空闲帧长度+GEM数据帧长度-路径长度;更新后的GEM空闲帧长度=更新前GEM空闲帧长度+插入空闲帧的长度。
PCT/CN2017/112051 2017-05-05 2017-11-21 无源光网络中传输汇聚层组帧的实现方法及系统 WO2018201698A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112019009969A BR112019009969A2 (pt) 2017-05-05 2017-11-21 método e sistema de implementação do enquadramento de camada de convergência de transmissão em uma rede óptica passiva.
PH12019500990A PH12019500990A1 (en) 2017-05-05 2019-05-03 Implementation method and system for framing in transmission convergence layer in passive optical network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313701.4A CN107172507B (zh) 2017-05-05 2017-05-05 无源光网络中传输汇聚层组帧的实现方法及系统
CN201710313701.4 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018201698A1 true WO2018201698A1 (zh) 2018-11-08

Family

ID=59813193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112051 WO2018201698A1 (zh) 2017-05-05 2017-11-21 无源光网络中传输汇聚层组帧的实现方法及系统

Country Status (4)

Country Link
CN (1) CN107172507B (zh)
BR (1) BR112019009969A2 (zh)
PH (1) PH12019500990A1 (zh)
WO (1) WO2018201698A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172507B (zh) * 2017-05-05 2019-06-21 烽火通信科技股份有限公司 无源光网络中传输汇聚层组帧的实现方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140639A1 (en) * 2004-12-28 2006-06-29 General Instrument Corporation Methods and apparatus for Raman crosstalk reduction via idle data pattern control
CN1984051A (zh) * 2006-04-30 2007-06-20 华为技术有限公司 无源光网络中的业务帧传输方法、光网络单元和光线路终端
CN101043294A (zh) * 2007-03-15 2007-09-26 华为技术有限公司 数据帧的切片方法和光网络单元
CN101409708A (zh) * 2008-11-08 2009-04-15 浙江工业大学 基于fpga的gpon gtc成帧子层
CN107172507A (zh) * 2017-05-05 2017-09-15 烽火通信科技股份有限公司 无源光网络中传输汇聚层组帧的实现方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045130B (zh) * 2009-10-20 2013-06-05 华为技术有限公司 一种下行成帧的方法、光线路终端及无源光网络系统
CN102201974B (zh) * 2010-11-12 2014-05-07 华为技术有限公司 带宽分配方法及实现带宽分配的设备
CN103152292B (zh) * 2013-03-14 2015-09-16 烽火通信科技股份有限公司 Xgpon系统中onu端的xgem组帧装置及组帧方法
CN104113493B (zh) * 2014-08-11 2018-05-29 烽火通信科技股份有限公司 基于流量监控的动态带宽分配装置及其实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140639A1 (en) * 2004-12-28 2006-06-29 General Instrument Corporation Methods and apparatus for Raman crosstalk reduction via idle data pattern control
CN1984051A (zh) * 2006-04-30 2007-06-20 华为技术有限公司 无源光网络中的业务帧传输方法、光网络单元和光线路终端
CN101043294A (zh) * 2007-03-15 2007-09-26 华为技术有限公司 数据帧的切片方法和光网络单元
CN101409708A (zh) * 2008-11-08 2009-04-15 浙江工业大学 基于fpga的gpon gtc成帧子层
CN107172507A (zh) * 2017-05-05 2017-09-15 烽火通信科技股份有限公司 无源光网络中传输汇聚层组帧的实现方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"10-Gigabit-capable Passive Optical Networks (XG-PON): Transmission Convergence (TC) Layer Specification", ITU-T G. 987.3, 31 October 2010 (2010-10-31), pages 26 - 30 *
"40-Gigabit-capable Passive Optical Networks (NG-PON2): Transmission Convergence Layer Specification", ITU-T G. 989. 3, 31 October 2015 (2015-10-31), pages 35 - 51 *
"Gigabit-capable Passive Optical Networks (G PON): Transmission Convergence Layer Specification", ITU-T G. 984.3, 31 January 2014 (2014-01-31), pages 46 - 51 *

Also Published As

Publication number Publication date
PH12019500990A1 (en) 2019-11-25
CN107172507B (zh) 2019-06-21
CN107172507A (zh) 2017-09-15
BR112019009969A2 (pt) 2019-08-27

Similar Documents

Publication Publication Date Title
CN101983487B (zh) 适用于下一代接入的吉比特无源光网络传输汇聚扩展
US8934772B2 (en) Method and system for upstream bandwidth allocation in a passive optical network
US20140233950A1 (en) Downstream Burst Transmission In Passive Optical Networks
KR102171132B1 (ko) 수동형 광네트워크에서의 프레이밍 방법 및 장치, 그리고 시스템
US11356755B2 (en) Multiple-rate optical network unit (ONU) activation
US20160286290A1 (en) Dynamic bandwidth assignment method and apparatus on passive optical network
JP5607074B2 (ja) 動的等化遅延パッシブ光ネットワークのための方法およびシステム
CN106851439A (zh) 一种多个光网络单元的接入方法及装置
EP3282601B1 (en) Method for mapping packet service to optical transport network, and otn device
WO2017177549A1 (zh) 无源光网络架构及其实现数据传输的方法和光网络设备
EP3716641A1 (en) Data transport method, device and system
CN101959091B (zh) 一种数据传输方法、系统以及运营商边缘节点
WO2020015338A1 (zh) 一种无源光网络系统中协商加密算法的方法及系统
KR102646634B1 (ko) 서비스 데이터 송신 방법, 관련 장치, 및 디지털 처리 칩
WO2018201698A1 (zh) 无源光网络中传输汇聚层组帧的实现方法及系统
WO2023246416A1 (zh) 一种数据传输方法及装置
US20230045051A1 (en) Bandwidth adjustment method and related device
JP4413797B2 (ja) 受動型光ネットワークシステム
US11895448B2 (en) Communication apparatus and communication method
ES2960696T3 (es) Comunicación en redes ópticas pasivas (PONs) relacionadas con procesamiento de señales digitales para señal óptica (oDSP)
WO2023123654A1 (zh) 数据传输方法、装置、存储介质及电子装置
US20230403487A1 (en) Configuration method, data transmission method, controller, optical line terminal, and medium
JP2009130623A (ja) 光加入者線端局装置、それを含んだ通信システムおよびパケット送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908587

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009969

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019009969

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190516

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908587

Country of ref document: EP

Kind code of ref document: A1