WO2018201485A1 - 一种周期性业务调度方法及装置 - Google Patents

一种周期性业务调度方法及装置 Download PDF

Info

Publication number
WO2018201485A1
WO2018201485A1 PCT/CN2017/083335 CN2017083335W WO2018201485A1 WO 2018201485 A1 WO2018201485 A1 WO 2018201485A1 CN 2017083335 W CN2017083335 W CN 2017083335W WO 2018201485 A1 WO2018201485 A1 WO 2018201485A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
period
terminal
sub
base station
Prior art date
Application number
PCT/CN2017/083335
Other languages
English (en)
French (fr)
Inventor
铁晓磊
李军
汲桐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/083335 priority Critical patent/WO2018201485A1/zh
Priority to CN201780090349.0A priority patent/CN110622577A/zh
Publication of WO2018201485A1 publication Critical patent/WO2018201485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a periodic service scheduling method and apparatus.
  • IoT Internet of Things
  • MTC Machine-Type Communications
  • Coverage enhancement Many MTC terminals are in poor coverage, such as meter water meters, etc., usually installed in indoors or even basements where wireless network signals are poor. Therefore, coverage enhancement technology is needed to solve communication under poor coverage. Quality issues.
  • the MTC terminal is powered by a battery. However, in many scenarios, the MTC terminal is required to be able to use for more than ten years without replacing the battery. This requires the MTC terminal to work with very low power consumption.
  • NPDSCH Narrowband Physical Downlink Shared Channel
  • NPDCCH Narrowband Physical Downlink Control Channel
  • PRB physical resource block
  • the length of one search space is Rmax subframes.
  • the terminal For the UE specific search space (USS), the terminal needs to detect all candidates in the search space according to the format shown in FIG. 2. (Candidate), the blind detection process of the terminal. . If the terminal detects a Candidate, that is, it is determined by the blind detection that it is scheduled, the downlink control information (DCI) is further detected, and the DCI is carried by the NPDCCH, and the NPDCCH corresponds to the Candidate detected by the terminal. The terminal performs downlink NPDSCH reception or uplink NPUSCH transmission according to the detected DCI.
  • DCI downlink control information
  • the terminal may determine whether to match the Cell Radio Network Temporary Identifier (C-RNTI) of the Candidate by checking a Cyclic Redundancy Check (CRC) mask of each Candidate. If the match is successful, it indicates that the terminal itself is scheduled. Otherwise, it indicates that the terminal is not scheduled. After the terminal completes blind detection on the search space, it performs time-frequency tracking according to the Narrowband Reference Signal (NRS).
  • C-RNTI Cell Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • the NB-IoT terminal needs to blindly detect all search spaces, and when there is no NPDSCH or NPUSCH service scheduling, the NB-IoT terminal detects that the search space is pure power. Overhead.
  • LTE Long Term Evolution
  • SPS Semi-Persistent Scheduling
  • the semi-persistent scheduling of LTE is mainly used for the Voice over Internet Protocol (VoIP) service, and the size of the data packet is relatively fixed, and the time interval between the data packets also satisfies a certain regularity.
  • VoIP Voice over Internet Protocol
  • the SPS resources of the system (including uplink and downlink) need only be allocated or specified once through the PDCCH, after which the same time-frequency resource can be periodically used repeatedly.
  • the SPS is configured through RRC signaling, and is activated by allocating corresponding resources to it in the PDCCH.
  • the terminal saves the corresponding resource allocation and reuses it in the subsequent SPS period.
  • the terminal still needs to blindly detect all the search spaces to monitor the dynamic resource allocation of the PDCCH channel. If the dynamic allocation of the PDCCH is detected in the search space, the terminal needs to perform dynamic allocation based on the PDCCH. Transmission of non-SPS configurations. Therefore, the SPS only reduces the scheduling overhead, that is, reduces the DCI overhead, and there is no saving for the terminal to detect the power consumption of the search space.
  • the embodiment of the present invention provides a periodic service scheduling method and device, which are used to solve the problem that the terminal continuously detects the search space and causes power consumption waste.
  • a periodic service scheduling method includes: detecting, by a terminal, first downlink scheduling information in a first search space corresponding to a first sub-period of a scheduling period; and detecting, by the terminal, the first in the first search space
  • the terminal receives the downlink data sent by the base station according to the first downlink scheduling information; when the terminal successfully receives the downlink data, the terminal does not belong to the second search space corresponding to the at least one second sub-period in the scheduling period.
  • the second downlink scheduling information is detected.
  • the scheduling period includes a first sub-period and at least one second sub-period.
  • the first sub-period corresponds to the first search space
  • the at least one second sub-period corresponds to one second search space.
  • the first sub-period may be equal to the second sub-period.
  • the terminal does not detect the second search space corresponding to the subsequent at least one second sub-period in the current scheduling period, but when the next scheduling period arrives, the terminal detects the first sub-period in the next scheduling period.
  • the first search space Compared with the prior art, the terminal needs to continuously detect that each search space causes a serious waste of power consumption.
  • the method provided by the embodiment of the present application does not need to detect the subsequent in the scheduling period when the terminal successfully receives the downlink data.
  • the second search space corresponding to the at least one second sub-period can effectively save the power consumption of the terminal by using the method provided in the embodiment of the present application, and can be widely applied to the NB-IoT terminal.
  • the first downlink scheduling information herein refers to downlink scheduling information used for scheduling initial transmission of downlink data, which is only sent in the first search space (ie, the initial search space). It should be understood that the downlink scheduling information may also be used to schedule downlink data retransmission, that is, second downlink scheduling information, and the second downlink scheduling information needs to schedule a downlink data retransmission in a search space other than the initial search space (ie, Is sent in any second search space).
  • the first downlink scheduling information and the second downlink scheduling information have in common that the TB blocks carried in the NPDSCH are the same content.
  • the method before the terminal detects the first downlink scheduling information in the first search space corresponding to the first sub-period of the scheduling period, the method further includes: acquiring, by the terminal, configuration information of the scheduling period, where the configuration information includes the first The configuration parameters of the search space, the number of second search spaces, and the configuration parameters of the second search space. Therefore, the terminal needs to first obtain the configuration information of the scheduling period.
  • the base station and the terminal both need to acquire the configuration information of the scheduling period before the scheduling starts, where the configuration information includes the configuration parameter of the first search space, the configuration parameter of the second search space, and the number of the second search space.
  • the configuration parameters of the first search space are the same as the configuration parameters of the second search space, and therefore, for each search space
  • the configuration parameters include G, Rmax, and ALPHAoffet corresponding to the period of the search space, the maximum number of repetitions, and the offset.
  • Rmax represents the length of a search space (in subframes)
  • Rmax*G represents the period in which a search space occurs
  • ALPHAoffet represents the position of a subframe at the beginning of a search space period.
  • the method further includes: the terminal feeding back the success message to the base station.
  • the method further includes: when the terminal fails to receive the downlink data, the terminal sequentially detects the second downlink scheduling information in the second search space corresponding to the subsequent at least one second sub-period in the scheduling period; When the second downlink scheduling information is detected on any of the second search spaces, the terminal receives the downlink data retransmitted by the base station according to the second downlink scheduling information, until the downlink data is successfully received. Specifically, the foregoing process is repeated until the terminal successfully receives downlink data or arrives in the next scheduling period. Therefore, it can effectively ensure that the terminal has multiple opportunities to receive downlink data.
  • the method further includes: the terminal feeding back the reception failure message to the base station.
  • a periodic service scheduling method includes: detecting, by a terminal, first uplink scheduling information in a first search space corresponding to a first sub-period in a scheduling period, where the scheduling period includes a first sub-period and at least one second sub- The first sub-period corresponds to the first search space, and the at least one second sub-period corresponds to a second search space.
  • the terminal detects the first uplink scheduling information in the first search space, the terminal is configured according to the first uplink scheduling information.
  • the terminal sends uplink data to the base station; when the terminal detects the success message in the third search space, the terminal does not detect the second uplink scheduling information in any second search space after the third search space, and the success message is sent by the base station to the terminal.
  • the third search space is the first second search space after the first search space.
  • the terminal does not detect the second uplink scheduling information in any second search space after the third search space, but when the next scheduling period arrives, the terminal searches for the first search corresponding to the first sub-period in the next scheduling period.
  • the space detects the first uplink scheduling information. Therefore, compared with the prior art, the terminal needs to continuously detect that each search space causes a serious waste of power consumption.
  • the method provided by the embodiment of the present application when the terminal determines that the base station successfully receives the uplink data, does not need to detect. Any second search space after the three search spaces can effectively save power consumption of the terminal and can be widely applied to NB-IoT terminals.
  • the first uplink scheduling information herein refers to uplink scheduling information used for scheduling initial transmission of uplink data, and is sent only in the first search space (ie, the initial search space). It should be understood that the uplink scheduling information may also be used to schedule uplink data retransmission, that is, the second uplink scheduling information, which is sent in a search space other than the initial search space (ie, any second search space).
  • the method before the terminal detects the first uplink scheduling information in the first search space corresponding to the first sub-period in the scheduling period, the method further includes: acquiring, by the terminal, configuration information of the scheduling period, where the configuration information includes the first search.
  • the configuration parameters and number of spaces, the number of second search spaces, and the configuration parameters of the second search space before the terminal detects the first uplink scheduling information in the first search space corresponding to the first sub-period in the scheduling period, the method further includes: acquiring, by the terminal, configuration information of the scheduling period, where the configuration information includes the first search.
  • the configuration parameters and number of spaces, the number of second search spaces, and the configuration parameters of the second search space before the terminal detects the first uplink scheduling information in the first search space corresponding to the first sub-period in the scheduling period.
  • the terminal further includes: when the terminal detects the receiving failure message from the third search space, the terminal retransmits the uplink data to the base station, where the receiving failure message is sent by the base station after the uplink data transmission sent by the terminal fails.
  • the base station fails to receive the uplink data.
  • the terminal After receiving the reception failure message (including the second uplink scheduling information) fed back by the base station, the terminal retransmits the uplink data to the base station according to the second uplink scheduling information. If the base station successfully receives the uplink data for the retransmission, the terminal detects the success message in the first second search space after the third search space, otherwise the process is repeated until the uplink data reception is detected in the subsequent search space. The success message, or the first sub-cycle in the next scheduling cycle, is reached.
  • a periodic service scheduling method includes: a base station corresponding to a first sub-period in a scheduling period
  • the first search space sends the first downlink scheduling information to the terminal, where the scheduling period includes a first sub-period and at least one second sub-period, where the first sub-period corresponds to the first search space, and the at least one second sub-period corresponds to a second a search space;
  • the base station sends downlink data to the terminal according to the first downlink scheduling information.
  • the power consumption of the terminal can be effectively saved by using the method provided in the embodiment of the present application.
  • the base station before the sending, by the base station, the first downlink scheduling information in the first search space corresponding to the first sub-period of the scheduling period, the base station further includes: acquiring, by the base station, configuration information of the scheduling period, where the configuration information includes the first The configuration parameters and number of the search space, the number of second search spaces, and the configuration parameters of the second search space.
  • the method further includes: when the base station receives the reception failure message fed back by the terminal, the base station sends the second downlink scheduling information in the third search space, where the third search space is the first one after the first search space. a second search space; the base station retransmits downlink data to the terminal according to the second downlink scheduling information.
  • the method further includes: receiving, by the base station, a reception success message fed back by the terminal.
  • the method further includes: the base station does not send the second downlink scheduling information to the terminal in the second search space corresponding to the at least one second sub-period. Therefore, the signaling provided by the embodiment of the present application can also reduce the signaling overhead of the base station.
  • a method for scheduling a periodic service includes: transmitting, by a base station, first uplink scheduling information to a terminal in a first search space corresponding to a first sub-period of a scheduling period, where the scheduling period includes a first sub-period and at least one a second sub-period, the first sub-period corresponds to the first search space, and the at least one second sub-period corresponds to a second search space; the base station receives the uplink data sent by the terminal according to the first uplink scheduling information; and when the base station successfully receives the uplink data, The base station feeds back a success message to the terminal in the third search space, where the third search space is the first second search space after the first search space.
  • the power consumption of the terminal can be effectively saved by using the method provided in the embodiment of the present application.
  • the base station When the base station successfully receives the uplink data, the base station does not send the second uplink scheduling information to the terminal in any second search space after the third search space. Therefore, the power consumption and signaling overhead of the base station can be effectively saved.
  • the base station before the sending, by the base station, the first uplink scheduling information corresponding to the first sub-period of the scheduling period to the terminal, the base station further includes: acquiring, by the base station, configuration information of the scheduling period, where the configuration information includes the first The configuration parameters and number of the search space, the number of second search spaces, and the configuration parameters of the second search space.
  • the method further includes: when the base station fails to receive uplink data, the base station feeds back a failure message to the terminal in the third search space.
  • the receiving failure message may be that the base station feeds back the NACK and the second uplink scheduling information to the terminal in the third search space, that is, the base station directly indicates that the base station fails to receive the uplink data, or the base station feeds back the second uplink scheduling information to the terminal in the third search space, that is, Implicitly indicating that the base station failed to receive uplink data.
  • an embodiment of the present application provides a terminal, including a transceiver, and a processor, where the transceiver is responsible for communicating with the other communication device, where the processor performs any of the first aspect or the first aspect.
  • the operation of the designed method is a terminal, including a transceiver, and a processor, where the transceiver is responsible for communicating with the other communication device, where the processor performs any of the first aspect or the first aspect.
  • an embodiment of the present application provides a terminal, including a transceiver, and a processor, where the transceiver is responsible for communicating with the other communication device, and the processor performs any of the second aspect or the second aspect. The operation of the designed method.
  • an embodiment of the present application provides a base station, including a transceiver and a processor, where the transceiver is responsible for communicating with the other communication device, and the processor performs any of the third aspect or the third aspect. The operation of the designed method.
  • an embodiment of the present application provides a base station, including a transceiver and a processor, where the transceiver is responsible for the The terminal is in communication with other communication devices that perform the operations of any of the possible aspects of the fourth or fourth aspect.
  • the ninth aspect the embodiment of the present application provides a communication system, comprising the terminal according to the fifth aspect and/or the sixth aspect, and the base station according to the seventh aspect and/or the eighth aspect.
  • an embodiment of the present application provides a baseband chip, where the baseband chip is coupled to a transceiver, and is used to implement any of the foregoing third or third aspects.
  • the embodiment of the present application provides a baseband chip, and the baseband chip is coupled to a transceiver, and is used to implement any of the foregoing fourth or fourth aspects.
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the above first aspect or the first aspect Possible design approach.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • FIG. 1 is a schematic structural diagram of a search space in the background art of the present application.
  • FIG. 3 is a schematic structural diagram of dynamic resource allocation of a PDCCH channel in the background art of the present application.
  • FIG. 5 is a schematic structural diagram of an SPS period corresponding to downlink scheduling in an embodiment of the present application.
  • FIG. 6 is a second schematic structural diagram of an SPS period corresponding to downlink scheduling in the embodiment of the present application.
  • FIG. 7 is a second flowchart of an overview of a periodic service scheduling method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an SPS period corresponding to an uplink scheduling according to an embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of an SPS period corresponding to an uplink scheduling according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the embodiment of the present application is mainly applied to a scenario in which a terminal service is a service that periodically arrives.
  • the period of the terminal service is a period in which the terminal periodically receives downlink data, or a period in which the terminal periodically reports uplink data. Therefore, in the embodiment of the present application, the length of the scheduling period is the same as the length of the period of the terminal service.
  • the scheduling period herein can be understood as an SPS period.
  • the method for scheduling a terminal provided by the present application can be understood as an SPS method.
  • the scheduling period includes a first sub-period and at least one second sub-period, where the first sub-period corresponds to the first search space, and the at least one second sub-period corresponds to one second search space.
  • the first sub-period may be equal to the second sub-period.
  • the base station and the terminal both need to acquire the configuration information of the scheduling period before the scheduling starts, where the configuration information includes the configuration parameter of the first search space, the configuration parameter of the second search space, and the number of the second search space.
  • the configuration parameters of the first search space are the same as the configuration parameters of the second search space, and therefore, for each search space
  • the configuration parameters include G, Rmax, and ALPHAoffet corresponding to the period of the search space, the maximum number of repetitions, and the offset.
  • Rmax represents the length of a search space (in subframes)
  • Rmax*G represents the period in which a search space occurs
  • ALPHAoffet represents the position of a subframe at the beginning of a search space period.
  • the embodiment of the present application provides a periodic service scheduling method, where the terminal service is a service that the downlink data periodically arrives, and the method includes:
  • Step 401 The base station sends the first downlink scheduling information to the terminal in the first search space corresponding to the first sub-period in the scheduling period.
  • the downlink scheduling information includes resource locations (possibly including frequency domain and/or time domain) of the scheduled NPDSCH transmission, and TB size and modulation and coding mode information of the scheduled NPDSCH transmission.
  • the downlink scheduling information may also include the number of repetitions of the scheduled NPDSCH transmission, the resource location corresponding to the uplink ACK/NACK transmission of the NPDSCH transmission, and the corresponding RV version.
  • the first downlink scheduling information herein refers to downlink scheduling information used for scheduling initial transmission of downlink data, which is only sent in the first search space (ie, the initial search space). It should be understood that the downlink scheduling information may also be used to schedule downlink data retransmission, that is, second downlink scheduling information, and the second downlink scheduling information needs to schedule a downlink data retransmission in a search space other than the initial search space (ie, Is sent in any second search space).
  • the first downlink scheduling information and the second downlink scheduling information have in common that the TB blocks carried in the NPDSCH are the same content.
  • Step 402 The terminal detects the first downlink scheduling information in the first search space corresponding to the first sub-period in the scheduling period.
  • the SPS period in FIG. 5 includes four search spaces.
  • the position shown in the first shaded box in FIG. 5 indicates the first search space, and the UE detects downlink scheduling information in the first search space. Specifically, the UE performs as shown in FIG. 2 .
  • the blind detection process shown detects the DCI carried by the NPDCCH.
  • Step 403 The base station sends downlink data to the terminal according to the first downlink scheduling information.
  • the base station transmits the downlink data to the terminal by using the NPDSCH, where the downlink data is the new transmission TB.
  • Step 404 The terminal receives downlink data sent by the base station according to the first downlink scheduling information.
  • the terminal decodes the TB carried by the NPDSCH.
  • Step 405 When the terminal successfully receives the downlink data, the terminal does not detect the second downlink scheduling information in the second search space corresponding to the at least one second sub-period in the scheduling period.
  • the terminal when the terminal successfully receives the downlink data, the terminal feeds back the success message to the base station.
  • the reception success message here can be ACK.
  • the terminal does not detect the second search space corresponding to the subsequent at least one second sub-period in the current scheduling period, but when the next scheduling period arrives, the terminal detects the first sub-period in the next scheduling period.
  • the first search space Therefore, compared with the prior art, the terminal needs to continuously detect that each search space causes a serious waste of power consumption.
  • the method provided by the embodiment of the present application does not need to detect the scheduling period when the terminal successfully receives downlink data.
  • the second search space corresponding to the at least one second sub-period respectively can effectively save the power consumption of the terminal, and can be widely applied to the NB-IoT terminal.
  • the base station after receiving the success message fed back by the terminal, the base station does not send the second downlink scheduling information to the terminal in the second search space corresponding to the at least one second sub-period.
  • the terminal when the terminal fails to receive the downlink data, the terminal continues to detect the second search space corresponding to the at least one second sub-period in the scheduling period, and the terminal detects the second search space.
  • the terminal receives the downlink data retransmitted by the base station according to the second downlink scheduling information, and the foregoing process is repeated until the terminal successfully receives the downlink data or arrives in the next scheduling period.
  • the terminal when the terminal fails to receive downlink data, the terminal feeds back a failure message to the base station.
  • the reception failure message here can be NACK.
  • the initial search space refers to the first search space
  • the next search space after the start of the search space is the third search space.
  • the UE fails to decode the newly transmitted TB, and the UE feeds back the NACK to the base station.
  • the base station After receiving the NACK fed back by the UE, the base station sends downlink scheduling information in the next Search space after the initial search space, that is, initiates retransmission.
  • the next Search space after the starting search space is the position shown in the second shaded box in Figure 6.
  • the UE detects the second downlink scheduling information in the next search space after starting the search space, and receives the downlink data on the corresponding time-frequency resource, as shown by the second black rectangle in FIG. 6, and the base station targets the UE for the downlink data. Retransmit. If the UE receives the downlink data for the retransmission successfully, the UE does not detect other search spaces. Otherwise, the process is repeated until the downlink data is successfully received, or the first sub-cycle in the next scheduling period
  • the first type of misdetection possibility the base station misidentifies the NACK as an ACK.
  • the base station does not send the second downlink scheduling information in the subsequent second search space, but the terminal still continuously detects the subsequent second search space until the first sub-period of the next scheduling period arrives.
  • the base station detects the first downlink scheduling information in the first search space corresponding to the first sub-period of the next scheduling period, and the terminal discards the TB that was not correctly decoded before.
  • the second misdetection possibility the base station erroneously checks the ACK as NACK.
  • the base station sends the second downlink scheduling information in the subsequent second search space, and the terminal does not detect the subsequent second search space, so the terminal power consumption is not wasted.
  • the embodiment of the present application provides a periodic service scheduling method, where the terminal service is a service that is periodically reported by the uplink data, including:
  • Step 701 The base station sends the first uplink scheduling information to the terminal in the first search space corresponding to the first sub-period in the scheduling period.
  • the uplink scheduling information includes the resource location (possibly including the frequency domain and/or the time domain) of the scheduled NPUSCH transmission, and the TB size of the scheduled NPUSCH transmission and modulation and coding mode information.
  • the uplink scheduling information may also include the number of repetitions of the scheduled NPUSCH transmission, the corresponding RV version, and the like.
  • the first uplink scheduling information herein refers to uplink scheduling information used for scheduling initial transmission of uplink data, and is sent only in the first search space (ie, the initial search space). It should be understood that the uplink scheduling information may also be used to schedule uplink data retransmission, that is, the second uplink scheduling information, which is sent in a search space other than the initial search space (ie, any second search space).
  • Step 702 The terminal detects the first uplink scheduling information in the first search space corresponding to the first sub-period in the scheduling period.
  • the position shown in the first shaded block in FIG. 8 indicates the initial search space, and the UE detects the first uplink scheduling information in the first search space of the scheduling period. Specifically, the UE performs the blind detection process as shown in FIG. 2, The DCI carried by the NPDCCH is detected.
  • Step 703 The terminal sends uplink data to the base station according to the first uplink scheduling information.
  • the UE uses a narrowband physical uplink shared channel (Narrowband).
  • the Physical Uplink Shared Channel (NPUSCH) transmits uplink data to the base station, that is, a new transmission TB.
  • NPUSCH Physical Uplink Shared Channel
  • Step 704 The base station receives the uplink data sent by the terminal according to the first uplink scheduling information.
  • Step 705 When the base station successfully receives the uplink data, the base station feeds back the success message to the terminal in the third search space.
  • the third search space is the first second search space after the first search space.
  • the success message is sent by the base station after the uplink data sent by the terminal is successfully received.
  • the reception success message here can be ACK.
  • Step 706 When the terminal detects the reception success message in the third search space, the terminal does not detect the second uplink scheduling information in any second search space after the third search space.
  • the terminal does not detect the second uplink scheduling information in any second search space after the third search space, but when the next scheduling period arrives, the terminal searches for the first search corresponding to the first sub-period in the next scheduling period.
  • the space detects the first uplink scheduling information. Therefore, compared with the prior art, the terminal needs to continuously detect that each search space causes a serious waste of power consumption.
  • the method provided by the embodiment of the present application when the terminal determines that the base station successfully receives the uplink data, does not need to detect. Any second search space after the three search spaces can effectively save power consumption of the terminal and can be widely applied to NB-IoT terminals.
  • the base station when the base station successfully receives the uplink data, the base station does not send the second uplink scheduling information to the terminal in any second search space after the third search space.
  • the base station when the base station fails to receive uplink data, the base station feeds back a failure message to the terminal in the third search space.
  • the terminal detects the reception failure message from the third search space, the terminal sends the uplink data to the base station again, where the reception failure message is sent by the base station after the uplink data transmission sent by the terminal fails.
  • the receiving failure message may be that the base station feeds back the NACK and the second uplink scheduling information to the terminal in the third search space, that is, directly indicates that the base station fails to receive the uplink data, or the base station feeds back to the terminal in the third search space.
  • the uplink scheduling information that is, implicitly indicates that the base station fails to receive uplink data.
  • the initial search space refers to the first search space
  • the next search space after the start of the search space is the third search space.
  • the base station fails to receive the uplink data, and the base station feeds back the NACK and the second uplink scheduling information to the terminal in the next search space after starting the search space.
  • the next Search space after the starting search space is the position shown in the second shaded box in Figure 9.
  • the terminal After receiving the NACK fed back by the base station, the terminal retransmits the uplink data to the base station according to the second uplink scheduling information, as shown by the second black rectangle in FIG. 9 .
  • the terminal If the base station successfully receives the uplink data for the retransmission, the terminal detects the success message in the first second search space after the third search space, that is, the position shown in the third shaded box in FIG. 9, otherwise The above process is repeated until an uplink data reception success message is detected in the subsequent search space, or the first sub-cycle in the next scheduling period is reached.
  • the present application further provides a terminal, which can be used to perform the steps performed by the terminal in FIG. 4, and therefore, the implementation manner of the terminal provided by the embodiment of the present application can be referred to the implementation manner of the method, where it is repeated. No longer.
  • an embodiment of the present application provides a terminal, including: a transceiver 1001 and a processor 1002 coupled to the transceiver 1001;
  • the processor 1002 is configured to:
  • the first search space corresponding to the first sub-period in the scheduling period detects the first downlink scheduling information, where the scheduling period includes a first sub-period and at least one second sub-period, where the first sub-period corresponds to the first search space, at least one The second sub-period corresponds to a second search space;
  • the downlink data sent by the base station is received by the transceiver according to the first downlink scheduling information
  • the second downlink scheduling information is not detected in the second search space corresponding to the subsequent at least one second sub-period in the scheduling period.
  • the processor 1002 is further configured to:
  • the first search space corresponding to the first sub-period in the scheduling period detects the first downlink scheduling information, acquiring configuration information of the scheduling period, where the configuration information includes configuration parameters of the first search space, and the number and sum of the second search spaces.
  • the configuration parameters of the second search space are configured to be used to determine whether the first search space corresponding to the first sub-period in the scheduling period.
  • the processor 1002 is further configured to:
  • the receiving success message is fed back to the base station through the transceiver.
  • the processor 1002 is further configured to:
  • the second downlink scheduling information is detected in the second search space corresponding to the subsequent at least one second sub-period in the scheduling period;
  • the downlink data retransmitted by the base station is received by the transceiver according to the second downlink scheduling information, until the downlink data is successfully received.
  • the processor 1002 is further configured to:
  • the receiving failure message is fed back to the base station through the transceiver.
  • the present application further provides a terminal, which can be used to perform the steps performed by the terminal in FIG. 6 . Therefore, the terminal implementation manner provided by the embodiment of the present application can refer to the implementation manner of the method, and the repetition is not Let me repeat.
  • the embodiment of the present application provides a terminal, which is the same as the terminal structure shown in FIG. 10, and includes: a transceiver and a processor coupled to the transceiver;
  • the processor is used to:
  • the scheduling period includes a first sub-period and at least one second sub-period, where the first sub-period corresponds to the first search space, at least one The two sub-periods respectively correspond to one second search space;
  • the uplink data is sent to the base station by using the transceiver according to the first uplink scheduling information
  • the third search space detects the success message
  • the second uplink scheduling information is not detected in any second search space after the third search space, and the success message is sent by the base station after the uplink data sent by the terminal is successfully received.
  • the third search space is the first second search space after the first search space.
  • the processor is also used to:
  • the first search space corresponding to the first sub-period in the scheduling period detects the first uplink scheduling information, acquiring configuration information of the scheduling period, where the configuration information includes configuration parameters and the number of the first search space, and the number of the second search space And the configuration parameters of the second search space.
  • the processor is also used to:
  • the uplink data is retransmitted to the base station, and the receiving failure message is sent by the base station after the uplink data transmission sent by the terminal fails.
  • the present application further provides a base station, which can be used to perform the steps performed by the base station in FIG. 4, and therefore, the implementation manner of the base station provided in this embodiment of the present application can refer to the implementation manner of the method, and the repetition is not Let me repeat.
  • an embodiment of the present application provides a base station, including: a transceiver 1101 and a processor 1102 coupled to the transceiver 1101;
  • the processor 1102 is configured to:
  • the first search space corresponding to the first sub-period of the scheduling period sends the first downlink scheduling information to the terminal by using the transceiver, where the scheduling period includes a first sub-period and at least one second sub-period, where the first sub-period corresponds to the first Search space, at least one second sub-period corresponding to a second search space;
  • the processor 1102 is configured to:
  • the configuration information of the scheduling period is obtained, where the configuration information includes configuration parameters and the number of the first search space, and the number of the second search space. And the configuration parameters of the second search space.
  • the processor 1102 is configured to:
  • the second downlink scheduling space is sent by the transceiver in the third search space, where the third search space is the first second search space after the first search space;
  • the processor 1102 is configured to:
  • the receiving success message fed back by the terminal is received by the transceiver.
  • the processor 1102 is configured to:
  • the second downlink scheduling information is not sent to the terminal by the transceiver in the second search space corresponding to the at least one second sub-period.
  • the present application further provides a base station, which can be used to perform the steps performed by the base station in FIG. 6 above. Therefore, the implementation manner of the base station provided in this embodiment of the present application can refer to the implementation manner of the method, and the repetition is not Let me repeat.
  • the embodiment of the present application provides a base station, which has the same structure as the terminal shown in FIG. 11, and includes: a transceiver and a processor coupled to the transceiver;
  • the processor is used to:
  • the first search space corresponding to the first sub-period of the scheduling period sends the first uplink scheduling information to the terminal by using the transceiver, where the scheduling period includes a first sub-period and at least one second sub-period, where the first sub-period corresponds to the first search. Space, at least one second sub-period corresponding to a second search space;
  • the receiving success message is fed back to the terminal through the transceiver in the third search space, where the third search space is the first second search space after the first search space.
  • the processor is used to:
  • the first search space corresponding to the first sub-period of the scheduling period sends the first uplink scheduling information to the terminal, acquiring configuration information of the scheduling period, where the configuration information includes configuration parameters and numbers of the first search space, and the second search space The number and configuration parameters of the second search space.
  • the processor is used to:
  • the receiving failure message is fed back to the terminal through the transceiver in the third search space.
  • the embodiment of the present application provides a communication system, including a terminal and a base station as shown in the embodiment of FIG. 4 or FIG. 6.
  • the embodiment of the present application provides a baseband chip, and the baseband chip is coupled to the transceiver, and is configured to send the first downlink scheduling information to the terminal by using the transceiver in the first search space corresponding to the first sub-period in the scheduling period, and the scheduling period.
  • the first sub-period and the at least one second sub-period include: the first sub-period corresponds to the first search space, and the at least one second sub-period corresponds to a second search space; and the first downlink scheduling information is sent to the terminal through the transceiver. Downstream data.
  • the embodiment of the present application provides a baseband chip, where the baseband chip is coupled to the transceiver, and is configured to send the first uplink scheduling information to the terminal by using the transceiver in the first search space corresponding to the first sub-period in the scheduling period, where the scheduling period includes The first sub-period and the at least one second sub-period, the first sub-period corresponds to the first search space, and the at least one second sub-period corresponds to a second search space; and the uplink sent by the terminal is received by the transceiver according to the first uplink scheduling information. Data; when the uplink data is successfully received, the receiving success message is fed back to the terminal through the transceiver in the third search space, and the third search space is the first second search space after the first search space.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the method of the embodiment of FIG. 4 or FIG.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the embodiment of Figure 4 or Figure 6.
  • the terminal needs to continuously detect that each search space causes a serious waste of power consumption, and the method provided by the embodiment of the present application does not need to detect when the terminal successfully receives downlink data. And a second search space corresponding to the at least one second sub-period in the scheduling period.
  • the terminal determines that the base station successfully receives the uplink data, it does not need to detect any second search space after the third search space. Therefore, the method provided by the embodiment of the present application can effectively save power consumption of the terminal, and can be widely applied to the NB-IoT terminal.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种周期性业务调度方法及装置,用以解决终端持续检测Search space造成功耗浪费的问题,该方法包括:终端在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息,;当终端在第一搜索空间上检测到第一下行调度信息时,终端根据第一下行调度信息接收基站发送的下行数据;在终端针对下行数据接收成功时,终端不在调度周期中的后续至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息,因此,可以有效节省终端的功耗。

Description

一种周期性业务调度方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种周期性业务调度方法及装置。
背景技术
物联网(Internet of things,IoT)是一种面向机器间通信(Machine-Type Communications,MTC)的网络,未来主要应用在智能抄表、医疗检测监控、物流检测、工业检测监控、汽车联网、智能社区以及可穿戴设备等。由于其应用场景多种多样,从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求,包括:
(1)覆盖增强:许多MTC终端都处于覆盖较差的环境下,比如电表水表等,通常安装在室内甚至地下室等无线网络信号很差的地方,因此需要覆盖增强技术来解决差覆盖下的通信质量问题。
(2)支持大量低速率设备:MTC终端的数量要远远大于人与人通信的设备数量,但是传输的数据包很小,并且对延时并不敏感。
(3)非常低的成本:许多MTC应用要求非常低的终端设备成本,从而能够大规模部署。
(4)低能量消耗:在大多数情况下,MTC终端是通过电池来供电的。但是在很多场景下,MTC终端又要求能够使用十年以上而不需要更换电池。这就要求MTC终端能够以极低的电力消耗来工作。
在窄带物联网(Narrow Band Internet of Things,NB-IoT)中,由于下行共享信道(NarrowbandPhysical Downlink Shared Channel,NPDSCH)和下行控制信道(NarrowbandPhysical Downlink Control Channel,NPDCCH)完全使用时分复用(Time Division Multiplexing,TDM)方式复用在一个180kHz的物理资源块(physical resource block,PRB)资源内,因此,搜索空间(Search space)是按照周期性配置的,如图1所示,其中,G,Rmax和ALPHAoffet分别为配置Search space的参数。
对于NB-IoT终端来说,一个Search space的长度为Rmax个子帧,对于用户专用搜索空间(UE specific Search space,USS),终端需要按照如图2所示的格式在Search space中检测所有备选(Candidate),即终端的盲检测过程。。若终端检测到某个Candidate,即通过盲检测确定自身被调度,则进一步检测出下行控制信息(Downlink Control Information,DCI),该DCI是由NPDCCH承载的,该NPDCCH对应终端检测到的Candidate。终端根据检测到的DCI进行下行NPDSCH接收或者上行NPUSCH发送。具体的,终端可以通过检查每个Candidate的循环冗余校验(Cyclic Redundancy Check,CRC)掩码判断是否与自身的小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI)匹配,若匹配成功,则表明终端自身被调度,否则,表明终端未被调度,终端对Search space完成盲检测后,根据窄带参考信号(Narrowband Reference Signal,NRS)等进行时频跟踪。
由上可知,目前Rel-13/Rel-14的NB-IoT系统,NB-IoT终端需要盲检测所有的Search space,而当没有NPDSCH或者NPUSCH业务调度时,NB-IoT终端检测Search space是纯功率开销。
对于周期性达到的业务,在长期演进(Long Term Evolution,LTE)系统中,当这类业务采用的传输块(Transport Block,TB)和信道条件变化不大的情况下,可以使用半持续调度(Semi-Persistent Scheduling,SPS)来减少调度开销。例如,LTE的半持续调度主要用于模拟信号数字化(Voice over Internet Protocol,VoIP)业务,其数据包的大小相对比较固定,而且数据包之间的时间间隔也满足一定的规律性。
如图3所示,在SPS中,系统的资源(包括上行和下行)只需通过PDCCH分配或指定一次,在此之后就可以周期性地重复使用相同的时频资源。SPS通过RRC信令进行配置,同时通过在PDCCH中为其分配相应的资源来激活,终端保存相应的资源分配,并在随后的SPS周期内重复使用。但是,在配置了SPS传输以后,终端仍然需要盲检测所有的Search space,以监听PDCCH信道的动态资源分配,如果在Search space中检测到PDCCH的动态分配,终端需要进行基于PDCCH动态分配的传输而非SPS配置的传输。因此,SPS只是减少了调度开销,即降低了DCI开销,对于终端检测Search space的功耗并没有节省。
发明内容
本申请实施例提供一种周期性业务调度方法及装置,用以解决终端持续检测Search space造成功耗浪费的问题。
第一方面,一种周期性业务调度方法,包括:终端在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息;当终端在第一搜索空间上检测到第一下行调度信息时,终端根据第一下行调度信息接收基站发送的下行数据;在终端针对下行数据接收成功时,终端不在调度周期中的后续至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息。其中,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间。可选的,第一子周期可以与第二子周期相等。须知,此时终端不再检测当前调度周期中的后续至少一个第二子周期分别对应的第二搜索空间,但是当下一个调度周期到达时,终端会检测下一个调度周期中的第一子周期对应的第一搜索空间。相较于现有技术中,终端需要持续检测每个Search space造成严重的功耗浪费的问题,采用本申请实施例提供的方法,当终端针对下行数据接收成功时,无需检测调度周期中的后续至少一个第二子周期分别对应的第二搜索空间,采用本申请实施例提供的方法可以有效节省终端的功耗,并可广泛应用于NB-IoT终端。
其中,这里的第一下行调度信息是指用于调度下行数据初传的下行调度信息,它仅在第一搜索空间(即起始搜索空间)中被发送。应理解的是,下行调度信息还可以用于调度下行数据重传,即第二下行调度信息,第二下行调度信息需要调度下行数据重传时,在除起始搜索空间以外的搜索空间(即任一第二搜索空间)中被发送。第一下行调度信息与第二下行调度信息的共同点在于NPDSCH里承载的TB块是相同的内容。
在一种可能的设计中,在终端在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息之前,还包括:终端获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数,第二搜索空间的数目和和第二搜索空间的配置参数。因此,终端需要首先获取调度周期的配置信息。
在本申请实施例中,基站和终端均需要在调度开始前获取调度周期的配置信息,其中,配置信息包括第一搜索空间的配置参数,第二搜索空间的配置参数和第二搜索空间的数目。例如,第一搜索空间的配置参数与第二搜索空间的配置参数相同,因此,每个搜索空间的 配置参数包括G,Rmax和ALPHAoffet分别对应搜索空间的周期、最大重复次数和偏移。其中,Rmax代表了一个search space的长度(以子帧为单位),而Rmax*G则表示了一个search space出现的周期,ALPHAoffet表示了一个search space周期开始的子帧位置。
在一种可能的设计中,在终端针对下行数据接收成功后,还包括:终端向基站反馈接收成功消息。
在一种可能的设计中,还包括:在终端针对下行数据接收失败时,终端依次在调度周期中的后续至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息;当终端在任一第二搜索空间上检测到第二下行调度信息时,终端根据第二下行调度信息接收基站重传的下行数据,直到下行数据接收成功。具体的,上述过程一直重复至终端成功接收下行数据或下一个调度周期到达。因此,可以有效保障终端有多次机会接收下行数据。
在一种可能的设计中,在终端针对下行数据接收失败后,还包括:终端向基站反馈接收失败消息。
第二方面,一种周期性业务调度方法,包括:终端在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;当终端在第一搜索空间上检测到第一上行调度信息时,终端根据第一上行调度信息向基站发送上行数据;在终端在第三搜索空间检测到接收成功消息时,终端不在第三搜索空间后的任一第二搜索空间检测第二上行调度信息,接收成功消息是基站对终端发送的上行数据接收成功后发送的,第三搜索空间为第一搜索空间后的第一个第二搜索空间。
须知,此时终端不在第三搜索空间后的任一第二搜索空间检测第二上行调度信息,但是当下一个调度周期到达时,终端会在下一个调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息。因此,相较于现有技术中,终端需要持续检测每个Search space造成严重的功耗浪费的问题,采用本申请实施例提供的方法,当终端确定基站针对上行数据接收成功时,无需检测第三搜索空间后的任一第二搜索空间,可以有效节省终端的功耗,并可广泛应用于NB-IoT终端。
其中,这里的第一上行调度信息是指用于调度上行数据初传的上行调度信息,它仅在第一搜索空间(即起始搜索空间)中被发送。应理解的是,上行调度信息还可以用于调度上行数据重传,即第二上行调度信息,在除起始搜索空间以外的搜索空间(即任一第二搜索空间)中被发送。
在一种可能的设计中,在终端在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息之前,还包括:终端获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数和个数,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,还包括:在终端从第三搜索空间检测到接收失败消息时,终端向基站重传上行数据,接收失败消息是基站对终端发送的上行数据接收失败后发送的。基站针对上行数据接收失败,终端接收到基站反馈的接收失败消息(包括第二上行调度信息)后,根据第二上行调度信息向基站重传上行数据。若基站针对本次重传的上行数据接收成功,终端在第三搜索空间后的第一个第二搜索空间检测到接收成功消息,否则重复上述过程,直到在后续搜索空间中检测到上行数据接收成功消息,或者下一个调度周期中的第一子周期达到。
第三方面,一种周期性业务调度方法,包括:基站在调度周期中的第一子周期对应的 第一搜索空间向终端发送第一下行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;基站根据第一下行调度信息向终端发送下行数据。采用本申请实施例提供的方法,可以有效节省终端的功耗。
在一种可能的设计中,在基站在调度周期中的第一子周期对应的第一搜索空间发送第一下行调度信息之前,还包括:基站获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,还包括:当基站接收到终端反馈的接收失败消息时,基站在第三搜索空间发送第二下行调度信息,第三搜索空间为第一搜索空间后的第一个第二搜索空间;基站根据第二下行调度信息向终端重传下行数据。
在一种可能的设计中,在基站根据第一下行调度信息向终端发送下行数据之后,还包括:基站接收终端反馈的接收成功消息。
在一种可能的设计中,在基站接收终端反馈的接收成功消息之后,还包括:基站不在至少一个第二子周期分别对应的第二搜索空间向终端发送第二下行调度信息。因此,采用本申请实施例提供的方法也可以降低基站的功耗好信令开销。
第四方面,一种周期性业务调度方法,包括:基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;基站根据第一上行调度信息接收终端发送的上行数据;在基站针对上行数据接收成功时,基站在第三搜索空间向终端反馈接收成功消息,第三搜索空间为第一搜索空间后的第一个第二搜索空间。采用本申请实施例提供的方法,可以有效节省终端的功耗。
基站针对上行数据接收成功时,不在第三搜索空间后的任一第二搜索空间向终端发送第二上行调度信息。因此,可以有效节省基站的功耗和信令开销。
在一种可能的设计中,在基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息之前还包括:基站获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,还包括:在基站针对上行数据接收失败时,基站在第三搜索空间向终端反馈接收失败消息。接收失败消息可以是基站在第三搜索空间向终端反馈NACK以及第二上行调度信息,即直接表明基站针对上行数据接收失败,或者,基站在第三搜索空间向终端反馈第二上行调度信息,即隐式表明基站针对上行数据接收失败。
第五方面,本申请实施例提供一种终端,包括收发器和处理器,所述收发器负责所述终端与其他通信装置通信,所述处理器执行第一方面或第一方面中的任意可能设计的方法的操作。
第六方面,本申请实施例提供一种终端,包括收发器和处理器,所述收发器负责所述终端与其他通信装置通信,所述处理器执行第二方面或第二方面中的任意可能设计的方法的操作。
第七方面,本申请实施例提供一种基站,包括收发器和处理器,所述收发器负责所述终端与其他通信装置通信,所述处理器执行第三方面或第三方面中的任意可能设计的方法的操作。
第八方面,本申请实施例提供一种基站,包括收发器和处理器,所述收发器负责所述 终端与其他通信装置通信,所述处理器执行第四方面或第四方面中的任意可能设计的方法的操作。
第九方面,本申请实施例提供一种通信系统,包括如上述第五方面和/或第六方面所述的终端,和如上述第七方面和/或第八方面所述的基站。
第十方面,本申请实施例提供一种基带芯片,所述基带芯片与收发器耦合,用于实现上述第三方面或第三方面中的任意可能设计的方法。
第十一方面,本申请实施例提供一种基带芯片,所述基带芯片与收发器耦合,用于实现上述第四方面或第四方面中的任意可能设计的方法。
第十二方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的设计的方法。
第十三方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请背景技术中搜索空间的结构示意图;
图2为本申请背景技术中Candidate的分布示意图;
图3为本申请背景技术中PDCCH信道的动态资源分配的结构示意图;
图4为本申请实施例中周期性业务调度方法的概述流程图之一;
图5为本申请实施例中下行调度对应的SPS周期的结构示意图之一;
图6为本申请实施例中下行调度对应的SPS周期的结构示意图之二;
图7为本申请实施例中周期性业务调度方法的概述流程图之二;
图8为本申请实施例中上行调度对应的SPS周期的结构示意图之一;
图9为本申请实施例中上行调度对应的SPS周期的结构示意图之二;
图10为本申请实施例中终端的结构示意图;
图11为本申请实施例中基站的结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
本申请实施例主要应用于终端业务为周期性到达业务的场景,其中,终端业务的周期是指终端周期性接收下行数据的周期,或终端周期性上报上行数据的周期。因此,在本申请实施例中,调度周期的长度与终端业务的周期的长度相同。这里的调度周期可以理解为一种SPS周期,本申请提供的调度终端的方法可以理解为一种SPS的方法。
在本申请实施例中,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间。可选的,第一子周期可以与第二子周期相等。
在本申请实施例中,基站和终端均需要在调度开始前获取调度周期的配置信息,其中,配置信息包括第一搜索空间的配置参数,第二搜索空间的配置参数和第二搜索空间的数目。例如,第一搜索空间的配置参数与第二搜索空间的配置参数相同,因此,每个搜索空间的 配置参数包括G,Rmax和ALPHAoffet分别对应搜索空间的周期、最大重复次数和偏移。其中,Rmax代表了一个search space的长度(以子帧为单位),而Rmax*G则表示了一个search space出现的周期,ALPHAoffet表示了一个search space周期开始的子帧位置。
参阅图4所示,本申请实施例提供一种周期性业务调度方法,针对终端业务为下行数据周期性到达的业务,该方法包括:
步骤401:基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一下行调度信息。
典型地,下行调度信息包含所调度的NPDSCH传输的资源位置(可能包含频域和/或时域),以及所调度的NPDSCH传输的TB大小以及调制编码方式信息。除此外,下行调度信息,还可能包含调度的NPDSCH传输的重复次数、对应于所述NPDSCH传输的上行ACK/NACK发送的资源位置以及对应的RV版本等。
其中,这里的第一下行调度信息是指用于调度下行数据初传的下行调度信息,它仅在第一搜索空间(即起始搜索空间)中被发送。应理解的是,下行调度信息还可以用于调度下行数据重传,即第二下行调度信息,第二下行调度信息需要调度下行数据重传时,在除起始搜索空间以外的搜索空间(即任一第二搜索空间)中被发送。第一下行调度信息与第二下行调度信息的共同点在于NPDSCH里承载的TB块是相同的内容。
步骤402:终端在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息。
图5中的SPS周期包括四个搜索空间,如图5中第一个阴影方块所示的位置表示第一搜索空间,UE在第一搜索空间检测下行调度信息,具体的,UE执行如图2所示的盲检测过程,检测到由NPDCCH承载的DCI。
步骤403:基站根据第一下行调度信息向终端发送下行数据。
在如图5中第一个黑色长方形所示的位置,基站采用NPDSCH向终端发送下行数据,这里记下行数据为新传TB。
步骤404:终端根据第一下行调度信息接收基站发送的下行数据。
具体的,终端对由NPDSCH承载的TB进行译码。
步骤405:在终端针对下行数据接收成功时,终端不在调度周期中的后续至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息。
可选的,在终端针对下行数据接收成功时,终端向基站反馈接收成功消息。
这里的接收成功消息可以为ACK。
须知,此时终端不再检测当前调度周期中的后续至少一个第二子周期分别对应的第二搜索空间,但是当下一个调度周期到达时,终端会检测下一个调度周期中的第一子周期对应的第一搜索空间。因此,相较于现有技术,终端需要持续检测每个Search space造成严重的功耗浪费的问题,采用本申请实施例提供的方法,当终端针对下行数据接收成功时,无需检测调度周期中的后续至少一个第二子周期分别对应的第二搜索空间,可以有效节省终端的功耗,并可广泛应用于NB-IoT终端。
可选的,基站在接收到终端反馈的接收成功消息后,不在至少一个第二子周期分别对应的第二搜索空间向终端发送第二下行调度信息。
另一种可能的情况,当终端针对下行数据接收失败时,终端继续检测调度周期中的后续至少一个第二子周期分别对应的第二搜索空间,当终端在任一第二搜索空间上检测到第 二下行调度信息时,终端根据第二下行调度信息接收基站重传的下行数据,上述过程一直重复至终端成功接收下行数据或下一个调度周期到达。
可选的,在终端针对下行数据接收失败时,终端向基站反馈接收失败消息。
这里的接收失败消息可以为NACK。
如图6所示,起始搜索空间是指第一搜索空间,起始搜索空间后的下一个Search space为第三搜索空间。UE对新传TB译码不成功,UE向基站反馈NACK。基站接收到UE反馈的NACK后,会在起始搜索空间后的下一个Search space发送下行调度信息,即发起重传。起始搜索空间后的下一个Search space为如图6中第二个阴影方块所示的位置。UE在起始搜索空间后的下一个Search space检测第二下行调度信息,并在对应时频资源上接收下行数据,如图6中第二个黑色长方形所示的位置,基站向UE针对下行数据进行重传。若UE针对本次重传的下行数据接收成功时,UE不再检测其他搜索空间,否则重复上述过程,直到下行数据接收成功,或者下一个调度周期中的第一子周期达到。
此外,由于基站对终端反馈的ACK或NACK存在错检的可能性,下面针对两种错检可能性进行分析:
第一种错验可能性:基站将NACK错验为ACK。
基站不会在后续第二搜索空间发送第二下行调度信息,但是终端仍然会持续检测后续第二搜索空间,直到下一个调度周期中的第一子周期到达。在下一个调度周期中的第一子周期到达时,基站会在下一个调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息,终端丢弃之前未能正确译码的TB。
第二种错验可能性:基站将ACK错验为NACK。
基站会在后续第二搜索空间发送第二下行调度信息,而终端不会检测后续第二搜索空间,因此不会造成终端功耗浪费。
参阅图7所示,本申请实施例提供一种周期性业务调度方法,针对终端业务为上行数据周期性上报的业务,包括:
步骤701:基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息。
典型地,上行调度信息包含所调度的NPUSCH传输的资源位置(可能包含频域和/或时域),以及所调度的NPUSCH传输的TB大小以及调制编码方式信息。除此外,上行调度信息,还可能包含调度的NPUSCH传输的重复次数、以及对应的RV版本等。
其中,这里的第一上行调度信息是指用于调度上行数据初传的上行调度信息,它仅在第一搜索空间(即起始搜索空间)中被发送。应理解的是,上行调度信息还可以用于调度上行数据重传,即第二上行调度信息,在除起始搜索空间以外的搜索空间(即任一第二搜索空间)中被发送。
步骤702:终端在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息。
如图8中第一个阴影方块所示的位置表示起始搜索空间,UE在调度周期的第一搜索空间检测第一上行调度信息,具体的,UE执行如图2所示的盲检测过程,检测到由NPDCCH承载的DCI。
步骤703:终端根据第一上行调度信息向基站发送上行数据。
在如图8中第一个黑色长方形所示的位置,UE采用窄带物理上行共享信道(Narrowband  Physical Uplink Shared Channel,NPUSCH)向基站发送上行数据,即新传TB。
步骤704:基站根据第一上行调度信息接收终端发送的上行数据。
步骤705:在基站针对上行数据接收成功时,基站在第三搜索空间向终端反馈接收成功消息。
其中,第三搜索空间为第一搜索空间后的第一个第二搜索空间。
接收成功消息是基站对终端发送的上行数据接收成功后发送的。这里的接收成功消息可以为ACK。
步骤706:在终端在第三搜索空间检测到接收成功消息时,终端不在第三搜索空间后的任一第二搜索空间检测第二上行调度信息。
须知,此时终端不在第三搜索空间后的任一第二搜索空间检测第二上行调度信息,但是当下一个调度周期到达时,终端会在下一个调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息。因此,相较于现有技术中,终端需要持续检测每个Search space造成严重的功耗浪费的问题,采用本申请实施例提供的方法,当终端确定基站针对上行数据接收成功时,无需检测第三搜索空间后的任一第二搜索空间,可以有效节省终端的功耗,并可广泛应用于NB-IoT终端。
可选的,基站针对上行数据接收成功时,不在第三搜索空间后的任一第二搜索空间向终端发送第二上行调度信息。
另一种可能的情况,当基站针对上行数据接收失败时,基站在第三搜索空间向终端反馈接收失败消息。在终端从第三搜索空间检测到接收失败消息时,终端向基站再次发送上行数据,其中,接收失败消息是基站对终端发送的上行数据接收失败后发送的。
应理解的是,接收失败消息可以是基站在第三搜索空间向终端反馈NACK以及第二上行调度信息,即直接表明基站针对上行数据接收失败,或者,基站在第三搜索空间向终端反馈第二上行调度信息,即隐式表明基站针对上行数据接收失败。
如图9所示,起始搜索空间是指第一搜索空间,起始搜索空间后的下一个Search space为第三搜索空间。基站针对上行数据接收失败,基站在起始搜索空间后的下一个Search space向终端反馈NACK以及第二上行调度信息。起始搜索空间后的下一个Search space为如图9中第二个阴影方块所示的位置。终端接收到基站反馈的NACK后,根据第二上行调度信息在如图9中第二个黑色长方形所示的位置向基站重传上行数据。若基站针对本次重传的上行数据接收成功,终端在第三搜索空间后的第一个第二搜索空间检测到接收成功消息,即如图9中第三个阴影方块所示的位置,否则重复上述过程,直到在后续搜索空间中检测到上行数据接收成功消息,或者下一个调度周期中的第一子周期达到。
基于同一构思,本申请还提供了一种终端,该通终端可以用于执行上述图4中终端执行的步骤,因此本申请实施例提供的终端实施方式可以参见该方法的实施方式,重复之处不再赘述。
参阅图10所示,本申请实施例提供一种终端,包括:收发器1001以及耦合到收发器1001的处理器1002;
处理器1002用于:
在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;
当在第一搜索空间上检测到第一下行调度信息时,根据第一下行调度信息通过收发器接收基站发送的下行数据;
在针对下行数据接收成功时,不在调度周期中的后续至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息。
在一种可能的设计中,处理器1002,还用于:
在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息之前,获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,处理器1002,还用于:
在针对下行数据接收成功后,通过收发器向基站反馈接收成功消息。
在一种可能的设计中,处理器1002,还用于:
在针对下行数据接收失败时,依次在调度周期中的后续至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息;
当在任一第二搜索空间上检测到第二下行调度信息时,根据第二下行调度信息通过收发器接收基站重传的下行数据,直到下行数据接收成功。
在一种可能的设计中,处理器1002,还用于:
在针对下行数据接收失败后,通过收发器向基站反馈接收失败消息。
基于同一构思,本申请还提供了一种终端,该终端可以用于执行上述图6中终端执行的步骤,因此本申请实施例提供的终端实施方式可以参见该方法的实施方式,重复之处不再赘述。
本申请实施例提供一种终端,与图10所示的终端结构相同,包括:收发器以及耦合到收发器的处理器;
处理器用于:
在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;
当在第一搜索空间上检测到第一上行调度信息时,根据第一上行调度信息通过收发器向基站发送上行数据;
在第三搜索空间检测到接收成功消息时,不在第三搜索空间后的任一第二搜索空间检测第二上行调度信息,接收成功消息是基站对终端发送的上行数据接收成功后发送的,第三搜索空间为第一搜索空间后的第一个第二搜索空间。
在一种可能的设计中,处理器,还用于:
在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息之前,获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数和个数,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,处理器,还用于:
在从第三搜索空间检测到接收失败消息时,向基站重传上行数据,接收失败消息是基站对终端发送的上行数据接收失败后发送的。
基于同一构思,本申请还提供了一种基站,该基站可以用于执行上述图4中基站执行的步骤,因此本申请实施例提供的基站实施方式可以参见该方法的实施方式,重复之处不 再赘述。
参阅图11所示,本申请实施例提供一种基站,包括:收发器1101以及耦合到收发器1101的处理器1102;
处理器1102用于:
在调度周期中的第一子周期对应的第一搜索空间通过收发器向终端发送第一下行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;
根据第一下行调度信息通过收发器向终端发送下行数据。
在一种可能的设计中,处理器1102用于:
在调度周期中的第一子周期对应的第一搜索空间发送第一下行调度信息之前,获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,处理器1102用于:
当通过收发器接收到终端反馈的接收失败消息时,在第三搜索空间通过收发器发送第二下行调度信息,第三搜索空间为第一搜索空间后的第一个第二搜索空间;
根据第二下行调度信息通过收发器向终端重传下行数据。
在一种可能的设计中,处理器1102用于:
在根据第一下行调度信息向终端发送下行数据之后,通过收发器接收终端反馈的接收成功消息。
在一种可能的设计中,处理器1102用于:
在通过收发器接收终端反馈的接收成功消息之后,不在至少一个第二子周期分别对应的第二搜索空间通过收发器向终端发送第二下行调度信息。
基于同一构思,本申请还提供了一种基站,该基站可以用于执行上述图6中基站执行的步骤,因此本申请实施例提供的基站实施方式可以参见该方法的实施方式,重复之处不再赘述。
本申请实施例提供一种基站,与图11所示的终端结构相同,包括:收发器以及耦合到收发器的处理器;
处理器用于:
在调度周期中的第一子周期对应的第一搜索空间通过收发器向终端发送第一上行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;
根据第一上行调度信息通过收发器接收终端发送的上行数据;
在针对上行数据接收成功时,在第三搜索空间通过收发器向终端反馈接收成功消息,第三搜索空间为第一搜索空间后的第一个第二搜索空间。
在一种可能的设计中,处理器用于:
在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息之前,获取调度周期的配置信息,配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
在一种可能的设计中,处理器用于:
在针对上行数据接收失败时,在第三搜索空间通过收发器向终端反馈接收失败消息。
本申请实施例提供一种通信系统,包括如图4或图6实施例所示的终端和基站。
本申请实施例提供一种基带芯片,基带芯片与收发器耦合,用于实现在调度周期中的第一子周期对应的第一搜索空间通过收发器向终端发送第一下行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;根据第一下行调度信息通过收发器向终端发送下行数据。
本申请实施例提供一种基带芯片,基带芯片与收发器耦合,用于实现在调度周期中的第一子周期对应的第一搜索空间通过收发器向终端发送第一上行调度信息,调度周期包括第一子周期和至少一个第二子周期,第一子周期对应第一搜索空间,至少一个第二子周期分别对应一个第二搜索空间;根据第一上行调度信息通过收发器接收终端发送的上行数据;在针对上行数据接收成功时,在第三搜索空间通过收发器向终端反馈接收成功消息,第三搜索空间为第一搜索空间后的第一个第二搜索空间。
第十二方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行图4或图6实施例的方法。
第十三方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行图4或图6实施例的方法。
综上所述,相较于现有技术中,终端需要持续检测每个Search space造成严重的功耗浪费的问题,采用本申请实施例提供的方法,当终端针对下行数据接收成功时,无需检测调度周期中的后续至少一个第二子周期分别对应的第二搜索空间。当终端确定基站针对上行数据接收成功时,无需检测第三搜索空间后的任一第二搜索空间。因此,采用本申请实施例提供的方法可以有效节省终端的功耗,并可广泛应用于NB-IoT终端。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种周期性业务调度方法,其特征在于,包括:
    终端在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    当所述终端在所述第一搜索空间上检测到所述第一下行调度信息时,所述终端根据所述第一下行调度信息接收基站发送的下行数据;
    在所述终端针对所述下行数据接收成功时,所述终端不在所述调度周期中的后续所述至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息。
  2. 如权利要求1所述的方法,其特征在于,在终端在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息之前,还包括:
    所述终端获取所述调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数,第二搜索空间的数目和和第二搜索空间的配置参数。
  3. 如权利要求1或2所述的方法,其特征在于,在所述终端针对所述下行数据接收成功后,还包括:
    所述终端向所述基站反馈接收成功消息。
  4. 如权利要求1-3任一项所述的方法,其特征在于,还包括:
    在所述终端针对所述下行数据接收失败时,所述终端依次在所述调度周期中的后续所述至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息;
    当所述终端在任一第二搜索空间上检测到所述第二下行调度信息时,所述终端根据所述第二下行调度信息接收所述基站重传的所述下行数据,直到所述下行数据接收成功。
  5. 如权利要求4所述的方法,其特征在于,在所述终端针对所述下行数据接收失败后,还包括:
    所述终端向所述基站反馈接收失败消息。
  6. 一种周期性业务调度方法,其特征在于,包括:
    终端在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    当所述终端在所述第一搜索空间上检测到所述第一上行调度信息时,所述终端根据所述第一上行调度信息向基站发送上行数据;
    在所述终端在第三搜索空间检测到接收成功消息时,所述终端不在所述第三搜索空间后的任一第二搜索空间检测第二上行调度信息,所述接收成功消息是所述基站对所述终端发送的所述上行数据接收成功后发送的,所述第三搜索空间为所述第一搜索空间后的第一个第二搜索空间。
  7. 如权利要求6所述的方法,其特征在于,在终端在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息之前,还包括:
    所述终端获取所述调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数和个数,第二搜索空间的数目和和第二搜索空间的配置参数。
  8. 如权利要求6或7所述的方法,其特征在于,还包括:
    在所述终端从所述第三搜索空间检测到接收失败消息时,所述终端向所述基站重传所述上行数据,所述接收失败消息是所述基站对所述终端发送的所述上行数据接收失败后发送的。
  9. 一种周期性业务调度方法,其特征在于,包括:
    基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一下行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    所述基站根据所述第一下行调度信息向所述终端发送下行数据。
  10. 如权利要求9所述的方法,其特征在于,在基站在调度周期中的第一子周期对应的第一搜索空间发送第一下行调度信息之前,还包括:
    所述基站获取调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
  11. 如权利要求9或10所述的方法,其特征在于,还包括:
    当所述基站接收到所述终端反馈的接收失败消息时,所述基站在第三搜索空间发送第二下行调度信息,所述第三搜索空间为所述第一搜索空间后的第一个第二搜索空间;
    所述基站根据所述第二下行调度信息向所述终端重传所述下行数据。
  12. 如权利要求9-11任一项所述的方法,其特征在于,在所述基站根据所述第一下行调度信息向终端发送所述下行数据之后,还包括:
    所述基站接收所述终端反馈的接收成功消息。
  13. 如权利要求12所述的方法,其特征在于,在所述基站接收所述终端反馈的接收成功消息之后,还包括:
    所述基站不在所述至少一个第二子周期分别对应的第二搜索空间向所述终端发送所述第二下行调度信息。
  14. 一种周期性业务调度方法,其特征在于,包括:
    基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    所述基站根据所述第一上行调度信息接收所述终端发送的上行数据;
    在所述基站针对所述上行数据接收成功时,所述基站在第三搜索空间向所述终端反馈接收成功消息,所述第三搜索空间为所述第一搜索空间后的第一个第二搜索空间。
  15. 如权利要求14所述的方法,其特征在于,在基站在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息之前还包括:
    所述基站获取调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
  16. 如权利要求14或15所述的方法,其特征在于,还包括:
    在所述基站针对所述上行数据接收失败时,所述基站在所述第三搜索空间向所述终端反馈接收失败消息。
  17. 一种终端,其特征在于,包括:收发器以及耦合到所述收发器的处理器;
    所述处理器用于:
    在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息,所述调度周 期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    当在所述第一搜索空间上检测到所述第一下行调度信息时,根据所述第一下行调度信息通过所述收发器接收基站发送的下行数据;
    在针对所述下行数据接收成功时,不在所述调度周期中的后续所述至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息。
  18. 如权利要求17所述的终端,其特征在于,所述处理器,还用于:
    在调度周期中的第一子周期对应的第一搜索空间检测第一下行调度信息之前,获取所述调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数,第二搜索空间的数目和和第二搜索空间的配置参数。
  19. 如权利要求17或18所述的终端,其特征在于,所述处理器,还用于:
    在针对所述下行数据接收成功后,通过所述收发器向所述基站反馈接收成功消息。
  20. 如权利要求17-19任一项所述的终端,其特征在于,所述处理器,还用于:
    在针对所述下行数据接收失败时,依次在所述调度周期中的后续所述至少一个第二子周期分别对应的第二搜索空间检测第二下行调度信息;
    当在任一第二搜索空间上检测到所述第二下行调度信息时,根据所述第二下行调度信息通过所述收发器接收所述基站重传的所述下行数据,直到所述下行数据接收成功。
  21. 如权利要求20所述的终端,其特征在于,所述处理器,还用于:
    在针对所述下行数据接收失败后,通过所述收发器向所述基站反馈接收失败消息。
  22. 一种终端,其特征在于,包括:收发器以及耦合到所述收发器的处理器;
    所述处理器用于:
    在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    当在所述第一搜索空间上检测到所述第一上行调度信息时,根据所述第一上行调度信息通过所述收发器向基站发送上行数据;
    在第三搜索空间检测到接收成功消息时,不在所述第三搜索空间后的任一第二搜索空间检测第二上行调度信息,所述接收成功消息是所述基站对所述终端发送的所述上行数据接收成功后发送的,所述第三搜索空间为所述第一搜索空间后的第一个第二搜索空间。
  23. 如权利要求22所述的终端,其特征在于,所述处理器,还用于:
    在调度周期中的第一子周期对应的第一搜索空间检测第一上行调度信息之前,获取所述调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数和个数,第二搜索空间的数目和和第二搜索空间的配置参数。
  24. 如权利要求22或23所述的终端,其特征在于,所述处理器,还用于:
    在从所述第三搜索空间检测到接收失败消息时,向所述基站重传所述上行数据,所述接收失败消息是所述基站对所述终端发送的所述上行数据接收失败后发送的。
  25. 一种基站,其特征在于,包括:收发器以及耦合到所述收发器的处理器;
    所述处理器用于:
    在调度周期中的第一子周期对应的第一搜索空间通过所述收发器向终端发送第一下行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期 对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    根据所述第一下行调度信息通过所述收发器向所述终端发送下行数据。
  26. 如权利要求25所述的基站,其特征在于,所述处理器用于:
    在调度周期中的第一子周期对应的第一搜索空间发送第一下行调度信息之前,获取调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
  27. 如权利要求25或26所述的基站,其特征在于,所述处理器用于:
    当通过所述收发器接收到所述终端反馈的接收失败消息时,在第三搜索空间通过所述收发器发送第二下行调度信息,所述第三搜索空间为所述第一搜索空间后的第一个第二搜索空间;
    根据所述第二下行调度信息通过所述收发器向所述终端重传所述下行数据。
  28. 如权利要求25-27任一项所述的基站,其特征在于,所述处理器用于:
    在根据所述第一下行调度信息向终端发送所述下行数据之后,通过所述收发器接收所述终端反馈的接收成功消息。
  29. 如权利要求25所述的基站,其特征在于,所述处理器用于:
    在通过所述收发器接收所述终端反馈的接收成功消息之后,不在所述至少一个第二子周期分别对应的第二搜索空间通过所述收发器向所述终端发送所述第二下行调度信息。
  30. 一种基站,其特征在于,包括:收发器以及耦合到所述收发器的处理器;
    所述处理器用于:
    在调度周期中的第一子周期对应的第一搜索空间通过所述收发器向终端发送第一上行调度信息,所述调度周期包括所述第一子周期和至少一个第二子周期,所述第一子周期对应第一搜索空间,所述至少一个第二子周期分别对应一个第二搜索空间;
    根据所述第一上行调度信息通过所述收发器接收所述终端发送的上行数据;
    在针对所述上行数据接收成功时,在第三搜索空间通过所述收发器向所述终端反馈接收成功消息,所述第三搜索空间为所述第一搜索空间后的第一个第二搜索空间。
  31. 如权利要求30所述的基站,其特征在于,所述处理器用于:
    在调度周期中的第一子周期对应的第一搜索空间向终端发送第一上行调度信息之前,获取调度周期的配置信息,所述配置信息包括第一搜索空间的配置参数和数目,第二搜索空间的数目和和第二搜索空间的配置参数。
  32. 如权利要求30或31所述的基站,其特征在于,所述处理器用于:
    在针对所述上行数据接收失败时,在所述第三搜索空间通过所述收发器向所述终端反馈接收失败消息。
PCT/CN2017/083335 2017-05-05 2017-05-05 一种周期性业务调度方法及装置 WO2018201485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/083335 WO2018201485A1 (zh) 2017-05-05 2017-05-05 一种周期性业务调度方法及装置
CN201780090349.0A CN110622577A (zh) 2017-05-05 2017-05-05 一种周期性业务调度方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083335 WO2018201485A1 (zh) 2017-05-05 2017-05-05 一种周期性业务调度方法及装置

Publications (1)

Publication Number Publication Date
WO2018201485A1 true WO2018201485A1 (zh) 2018-11-08

Family

ID=64016842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083335 WO2018201485A1 (zh) 2017-05-05 2017-05-05 一种周期性业务调度方法及装置

Country Status (2)

Country Link
CN (1) CN110622577A (zh)
WO (1) WO2018201485A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2582170A1 (en) * 2010-06-13 2013-04-17 ZTE Corporation Method and user equipment for detecting downlink control information in carrier aggregation scenario
EP3051738A1 (en) * 2015-01-30 2016-08-03 Alcatel Lucent Method for monitoring a user equipment specific search space, user equipment, a node and a computer program product
US20170048885A1 (en) * 2015-08-13 2017-02-16 Spreadtrum Hong Kong Limited Apparatus and method for scheduling order of downlink control information in a wireless network

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010141618A1 (en) * 2009-06-02 2010-12-09 Research In Motion Limited System and method for power control for carrier aggregation using single power control message for multiple carriers
CN102420786B (zh) * 2010-09-27 2014-11-26 大唐移动通信设备有限公司 物理下行控制信道的盲检测方法和设备
CN103108384B (zh) * 2011-11-09 2016-10-26 华为技术有限公司 获取调度信息的方法、获取调度信息的控制方法及装置
CN103812602B (zh) * 2012-11-09 2019-05-28 北京三星通信技术研究有限公司 盲检公共搜索空间和ue特定搜索空间的方法及设备
CN105871527A (zh) * 2015-01-20 2016-08-17 上海交通大学 增强载波聚合下共享的搜索空间方法以及基站和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2582170A1 (en) * 2010-06-13 2013-04-17 ZTE Corporation Method and user equipment for detecting downlink control information in carrier aggregation scenario
EP3051738A1 (en) * 2015-01-30 2016-08-03 Alcatel Lucent Method for monitoring a user equipment specific search space, user equipment, a node and a computer program product
US20170048885A1 (en) * 2015-08-13 2017-02-16 Spreadtrum Hong Kong Limited Apparatus and method for scheduling order of downlink control information in a wireless network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "On support of Semi-Persistent Scheduling", 3GPP TSG RAN WG1 MEETING #88BIS RL-1704291, 7 April 2017 (2017-04-07), XP051242443 *
INTER DIGITAL COMMUNICATIONS: "Downlink Control Channel Framework", 3GPP TSG RAN WG1 MEETING #88 R1-1702378, 17 February 2017 (2017-02-17), XP051209532 *

Also Published As

Publication number Publication date
CN110622577A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
US11363626B2 (en) Method and apparatus for scheduling multiple transmission in a wireless communication system
US11646771B2 (en) Feedback information transmission method and apparatus
US10805916B2 (en) Procedure, user equipment and base station for code block group based hybrid automatic repeat request process
US9185690B2 (en) Allocating and determining resources for a device-to-device link
EP3497842B1 (en) Communication system
US10849120B2 (en) Methods, apparatus and systems for determining a size of a feedback signal in a wireless communication
WO2018219353A1 (zh) 一种数据传输的方法和装置
WO2016045099A1 (zh) 一种上行信号的传输方法和相关设备
EP3304786B1 (en) Apparatus and method for handling the configuration of bundle sizes
JP2018121370A (ja) ユーザ装置に動的なアップリンク−ダウンリンク再構成情報を与えるための方法、装置及びコンピュータプログラム製品
JP2014534728A (ja) 持続的スケジューリング変更情報を伝送及び受信する方法及びそのための装置
US20220104236A1 (en) Response information transmission method and apparatus
US11777668B2 (en) Method and apparatus for device-to-device communication based on a threshold
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
US20220217753A1 (en) User equipments, base stations and methods for monitoring a control channel for pusch transmission
CN109923893B (zh) 单小区点到多点反馈
WO2017106031A2 (en) Performance monitoring in mission-critical wireless networks
WO2018201485A1 (zh) 一种周期性业务调度方法及装置
US20230189278A1 (en) User equipments, base stations and methods for priority rules of channel state information reports
KR20110044286A (ko) 네트워크에서 통신하기 위한 방법, 무선 스테이션들 및 그에 대한 시스템
US20220322387A1 (en) User equipments, base stations and methods for uplink transmission in interrupted transmission indication
US20220322296A1 (en) Method and apparatus for resource allocation in v2x communication
WO2017124297A1 (zh) 一种针对上行信道的反馈方法及装置
CN112369101B (zh) 一种数据传输方法及通信装置
WO2022150976A1 (zh) 半永久性调度的反馈方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908677

Country of ref document: EP

Kind code of ref document: A1