WO2018201375A1 - 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池 - Google Patents

用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池 Download PDF

Info

Publication number
WO2018201375A1
WO2018201375A1 PCT/CN2017/083001 CN2017083001W WO2018201375A1 WO 2018201375 A1 WO2018201375 A1 WO 2018201375A1 CN 2017083001 W CN2017083001 W CN 2017083001W WO 2018201375 A1 WO2018201375 A1 WO 2018201375A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal oxide
solar cell
electrode
photovoltaic cell
Prior art date
Application number
PCT/CN2017/083001
Other languages
English (en)
French (fr)
Inventor
崔永郁
Original Assignee
无锡帝科电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡帝科电子材料股份有限公司 filed Critical 无锡帝科电子材料股份有限公司
Priority to PCT/CN2017/083001 priority Critical patent/WO2018201375A1/zh
Publication of WO2018201375A1 publication Critical patent/WO2018201375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the present invention relates to the field of solar cell manufacturing technology, and in particular to a glass powder for preparing a solar cell electrode, a paste composition including the same, a solar cell electrode, and a solar cell.
  • Solar cells use the photovoltaic effect to convert the photons of sunlight into electricity through the p-n junction.
  • a front electrode and a rear electrode are respectively formed on upper and lower surfaces of a semiconductor wafer or substrate having a p-n junction. Then, the photoelectric effect of the p-n junction is induced by sunlight entering the semiconductor wafer, and electrons generated by the photoelectric effect of the p-n junction supply current to the outside through the electrode.
  • the composition for the electrode is placed on the wafer, patterned and baked to form an electrode of the solar cell.
  • the solar cells are connected to each other by a bonding tape to constitute a solar cell module.
  • the solar cell electrode manufactured by a typical lead-containing glass powder has insufficient adhesion to the ribbon, and the low adhesion between the electrode and the ribbon causes high series resistance and deterioration of conversion efficiency.
  • the invention aims to provide a glass powder for preparing solar cell electrodes, a paste composition comprising the same, a solar cell electrode and a solar cell, so as to solve the problem of insufficient adhesion between the solar cell electrode and the solder ribbon in the prior art.
  • the low adhesion between the electrode and the ribbon causes a technical problem of high series resistance and deterioration of conversion efficiency.
  • a glass frit for preparing a solar cell electrode comprises 20 to 50 wt% of PbO, 31 to 70 wt% of TeO 2 , 0.1 to 7 wt% of Group IA metal oxide, 0.1 to 7 wt% of Group IIA metal oxide and other oxides, and Group IA metal
  • the mass ratio of the oxide to the Group IIA metal oxide is from 0.1 to 7:1, and the total amount of the Group IA metal oxide, the Group IIA metal oxide and other oxides added to the glass powder is from 1 to 25% by weight.
  • Group IA metal oxide is one or more selected from the group consisting of Li 2 O, Na 2 O, and K 2 O.
  • the Group IIA metal oxide is one or more selected from the group consisting of MgO, CaO, SrO, and BaO.
  • the other oxide is one or more selected from the group consisting of P 2 O 5 , B 2 O 3 , TiO 2 , WO 3 , NiO, SiO 2 and ZnO.
  • the glass powder has an average particle diameter D50 of 0.1 to 10 ⁇ m.
  • a paste composition for preparing a solar cell electrode contains 60 to 95% by weight of conductive powder, 1.0 to 20% by weight of an organic vehicle, 0.1 to 5% by weight of the above glass powder, and the balance of additives.
  • the additive is one or more selected from the group consisting of a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, a UV stabilizer, an antioxidant, and a coupling agent.
  • the conductive powder is silver powder.
  • a solar cell electrode is provided.
  • the solar cell is prepared from the paste composition of any of the above.
  • a solar cell including an electrode is provided.
  • the electrode is the above-described solar cell electrode prepared from the paste composition of the present invention.
  • the solar cell electrodes prepared using the paste composition of the present invention, and the solder have excellent bond strength and minimize series resistance (Rs), thereby providing high conversion efficiency.
  • FIG. 1 shows a schematic view of a solar cell fabricated using a paste composition in accordance with an embodiment of the present invention.
  • a glass frit for preparing a solar cell electrode comprises 20 to 50 wt% of PbO, 31 to 70 wt% of TeO 2 , 0.1 to 7 wt% of a Group IA metal oxide, 0.1 to 7 wt% of a Group IIA metal oxide and other oxides, and the IA
  • the mass ratio of the group metal oxide to the group IIA metal oxide is 0.1 to 7:1, and the total amount of the group IA metal oxide, the group IIA metal oxide and the other oxide added to the glass powder is 1 to 25 wt. %.
  • oxides refer to oxides other than Group IA metal oxides and Group IIA metal oxides.
  • the solar cell electrodes prepared using the paste composition of the present invention, and the solder have excellent bond strength and minimize series resistance (Rs), thereby providing high conversion efficiency.
  • the Group IA metal oxide is one or more selected from the group consisting of Li 2 O, Na 2 O, and K 2 O; the Group IIA metal oxide is selected from the group consisting of MgO, CaO, SrO, and BaO. One or more of the groups.
  • the other oxide is one or more selected from the group consisting of P 2 O 5 , B 2 O 3 , TiO 2 , WO 3 , NiO, SiO 2 and ZnO.
  • a paste composition for use in preparing a solar cell electrode contains 60 to 95% by weight of conductive powder, 1.0 to 20% by weight of an organic vehicle, 0.1 to 5% by weight of the above glass powder, and the balance of additives.
  • the additive is one or more selected from the group consisting of a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, a UV stabilizer, an antioxidant, and a coupling agent.
  • a solar cell electrode is provided.
  • the solar cell is prepared from the paste composition of any of the above.
  • a solar cell including an electrode is provided.
  • the electrode is the above-described solar cell electrode prepared from the paste composition of the present invention.
  • the solar cell electrode component comprises silver powder, lead oxide-yttria-Group IA metal oxide-IIA metal oxide based glass powder and an organic vehicle.
  • a paste composition for preparing a solar cell electrode contains silver powder as a conductive powder.
  • the particle size of the silver powder can be on the order of nanometers or micrometers.
  • the silver powder may have a particle size of several tens to several hundreds of nanometers, or several to several tens of micrometers.
  • the silver powder may be a mixture of two or more silver powders having different particle sizes.
  • the silver powder may have a spherical shape, a flake or an amorphous shape.
  • the silver powder preferably has an average particle diameter (D50) of from about 0.1 ⁇ m to about 10 ⁇ m, more preferably an average particle diameter (D50) of from about 0.5 ⁇ m to about 5 ⁇ m.
  • the average particle diameter can be measured using an apparatus such as Mastersize 2000 (Malvern Co., Ltd.) after the conductive powder is dispersed by ultrasonic wave in isopropyl alcohol (IPA) at 25 ° C for 3 minutes. Within this average particle size range, the composition can provide low contact resistance and low line resistance.
  • the silver powder may be present in an amount from about 60% to about 95% by weight, based on the total weight of the composition. Within this range, the conductive powder can prevent deterioration of conversion efficiency due to an increase in electrical resistance. More preferably, the electrically conductive powder is present in an amount of from about 70% by weight to about 95% by weight.
  • the glass powder is used to enhance the adhesion between the conductive powder and the wafer or the substrate, and the contact resistance is reduced by forming the silver crystal grains in the emitter region by etching the anti-reflection layer and melting the silver powder during the sintering of the conductive paste. .
  • the glass frit softens and lowers the sintering temperature during the sintering process.
  • the solar cells are connected to each other by a bonding tape to constitute a solar cell module.
  • the low adhesive strength between the solar cell electrode and the ribbon may cause the battery to detach or lower the reliability.
  • a lead oxide-yttria-Group III metal oxide-IIA metal oxide based glass powder is used.
  • the lead oxide-yttria-Group III metal oxide-IIA metal oxide-based glass powder may contain 20 to 50% by weight of PbO, 31 to 70% by weight of TeO 2 , and 0.1 to 7% by weight of Group IA.
  • Metal oxide, 0.1 to 7 wt% of Group IIA metal oxide and other oxides RO, and mass ratio of Group IA metal oxide to Group IIA metal oxide is 0.1 to 7:1, Group IA metal oxide, Group IIA
  • the sum of the metal oxides and other oxides added to the glass powder is from 1 to 25% by weight. Within this range, the glass powder can ensure excellent bond strength and excellent conversion efficiency.
  • the lead oxide-yttria-Group IA metal oxide-IIA metal oxide based glass powder may further comprise at least one other oxide selected from the group consisting of phosphorus oxide (P 2 O 5 ) ), boron oxide (B 2 O 3 ), titanium oxide (TiO 2 ), tungsten oxide (WO 3 ), nickel oxide (NiO), silicon dioxide (SiO 2 ), zinc oxide (ZnO).
  • the glass powder can be prepared by any typical method from lead oxide-yttria-Group III metal oxide-Group IIA metal oxide.
  • the oxide is mixed with lead oxide-yttria-yttria-tungsten oxide in a certain ratio.
  • Mixing can be carried out using a ball mill or a planetary mill.
  • the combined composition is melted at a temperature of from about 900 ° C to about 1300 ° C and then quenched to about 25 ° C.
  • the obtained material is pulverized using a disc grinder, a planetary mill or the like to provide a glass frit.
  • the glass powder may have an average particle diameter D50 of from about 0.1 ⁇ m to about 10 ⁇ m and an amount of from about 0.1% by weight to about 5% by weight based on the total amount of the composition.
  • the glass powder may have a spherical or amorphous shape.
  • the organic carrier imparts the appropriate viscosity and rheological properties required for the conductive paste printing process by mechanical mixing with the inorganic components in the solar cell electrodes.
  • the organic vehicle may be any typical organic vehicle used for the solar cell electrode composition, and may include a binder resin, a solvent, and the like.
  • the binder resin may be selected from an acrylate resin or a cellulose resin. Ethyl cellulose is usually used as the binder resin. Further, the binder resin may be selected from the group consisting of ethyl hydroxyethyl cellulose, nitrocellulose, a blend of ethyl cellulose and phenolic resin, alkyd resin, phenol, acrylate, xylene, polybutene, poly Ester, urea, melamine, vinyl acetate resin, wood rosin, polymethacrylate of alcohol, and the like.
  • the solvent may be selected, for example, from hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl carbitol (diethylene glycol monobutyl ether), dibutyl carbitol (diethylene glycol) Butyl ether), butyl carbitol acetate (monobutyl ether acetate), propylene glycol monomethyl ether, hexanediol, terpineol, methyl ethyl ketone, benzyl alcohol, ⁇ -butyrolactone, Ethyl lactate and combinations thereof.
  • the organic vehicle may be present in an amount from about 1% to about 20% by weight, based on the total weight of the composition. Within this range, the organic vehicle can provide sufficient adhesive strength and excellent printability to the composition.
  • the composition may further include typical additives as needed to enhance flow properties, processability and stability.
  • the additive may include, but is not limited to, a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, a UV stabilizer, an antioxidant, a coupling agent, and the like. These additives may be used singly or as a mixture thereof. These additives may be present in an amount of from about 0.1% to about 5% by weight of the composition, although the amount may be varied as desired.
  • the back electrode 210 and the front electrode 230 may be formed by printing a battery electrode composition on a wafer or substrate 100 including a p-layer 101 and an n-layer 102 serving as an emitter, and sintering.
  • a preliminary process for preparing a back electrode is carried out by printing a composition on the back side of a wafer and drying the printed composition at about 200 ° C to about 400 ° C for about 10 seconds to 60 seconds.
  • a preliminary process for preparing the front electrode can be performed by printing a paste on the front surface of the wafer and drying the printed composition.
  • the front electrode and the back electrode may be formed by sintering the wafer at about 400 ° C to about 950 ° C, preferably about 850 ° C to about 950 ° C for about 30 seconds to 50 seconds.
  • the oxides were mixed according to the composition shown in Table 1, and melted and sintered at 900 ° C to 1400 ° C to prepare lead oxide-yttria-group III metal oxide-IIA having an average particle diameter (D50) of 2.0 ⁇ m.
  • Group metal oxide based glass powder The oxides were mixed according to the composition shown in Table 1, and melted and sintered at 900 ° C to 1400 ° C to prepare lead oxide-yttria-group III metal oxide-IIA having an average particle diameter (D50) of 2.0 ⁇ m.
  • Group metal oxide based glass powder Group metal oxide based glass powder.
  • ethyl cellulose As an organic binder, 1.0% by weight of ethyl cellulose was sufficiently dissolved in 9.0% by weight of butyl carbitol at 60 ° C, and 86% by weight of spherical silver powder having an average particle diameter of 1.5 ⁇ m was added, 1.5. % by weight of the prepared lead oxide-yttria-Group IA metal oxide-IIA metal oxide glass powder and 0.5% by weight of the thixotropic agent Thixatrol ST into the binder solution, followed by grinding in a three-roll mill, Thereby, a solar cell electrode composition was prepared.
  • the electrode composition prepared as above was deposited by screen printing on a front surface of a single crystal silicon wafer in a predetermined pattern, followed by drying in an infrared drying oven. Then, the composition for preparing the back aluminum electrode was printed on the back surface of the wafer and dried in the same manner.
  • the cell sheet processed by the above procedure was fired in a belt firing furnace at 910 ° C for 40 seconds.
  • the solar energy efficiency tester (CT-801) was used to measure the conversion efficiency (%) of the battery, the series resistance Rs (m ⁇ ), the open circuit voltage (Voc), and the like.
  • CT-801 was used to measure the conversion efficiency (%) of the battery, the series resistance Rs (m ⁇ ), the open circuit voltage (Voc), and the like.
  • the electrode of the battery is welded to the ribbon with a solder using a soldering iron at 300 ° C to 400 ° C.
  • the adhesive strength (N/mm) of the battery electrode and the ribbon was measured using a tester at a peel angle of 180 and
  • Examples 1 to 11 and Comparative Examples 1 to 7 were prepared using the composition of the glass frit as shown in Table 1, and the compositions for solar cell electrodes were prepared in the same manner, and physical properties were evaluated. It is to be noted that the examples and comparative examples in Table 1 are intended to highlight the features of one or more of the inventions, and are not intended to limit the scope of the invention, nor to illustrate that the comparative examples are outside the scope of the invention. Further, the inventive subject matter is not limited to the specific details described in the examples and the comparative examples.
  • the solar cell electrodes produced from the compositions prepared in Examples 1 to 11 exhibited high adhesion strength to the solder ribbon and excellent conversion efficiency as compared with the other Comparative Examples 1-7.
  • Comparative Examples 1-7 exhibited either lower cell efficiencies or lower pull forces, or both.
  • Comparative Example 1 shows that the glass composition contains a lower PbO content, and the efficiency and tensile force of the fabricated solar electrode are lower than in the inventive example.
  • Comparative Example 2 shows that the glass composition contains a higher PbO content, and the resulting solar cell is less efficient.
  • Comparative Example 3 has no Group 1 oxide and the resulting solar cell is less efficient.
  • Comparative Examples 4 and 5 had no Group 2 oxides, and the efficiency and tensile force of the fabricated solar electrodes were lower than in the inventive examples.
  • Comparative Examples 6, 7 indicate that the content of the Group II oxide is not within the scope of the present invention, and the resulting solar cell may have a lower efficiency or a lower tensile force or both.
  • the glass frit component is 20 to 50 wt% of PbO, 31 to 70 wt% of TeO 2 , 0.1 to 7 wt% of Group IA metal oxide, 0.1 to 7 wt% of Group IIA metal oxide and other oxides, and
  • the mass ratio of the Group IA metal oxide to the Group IIA metal oxide is from 0.1 to 7:1, and the total amount of the Group IA metal oxide, the Group IIA metal oxide and other oxides added to the glass powder is from 1 to 25% by weight.
  • the finished solar cell has higher performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

一种用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池。其中,该玻璃粉料包含20~50wt%的PbO、31~70wt%的TeO2、0.1~7wt%的IA族金属氧化物、0.1~7wt%的IIA族金属氧化物和其他氧化物,且IA族金属氧化物与IIA族金属氧化物的质量比为0.1~7:1,IA族金属氧化物、IIA族金属氧化物和所述其他氧化物在所述玻璃粉料中的添加量总和为1~25wt%。应用该糊剂组合物制备的太阳能电池电极,和焊带有优异的粘合强度并且使串联电阻(Rs)最小化,从而提供高转换效率。

Description

用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池 技术领域
本发明涉及太阳能电池制造技术领域,具体而言,涉及一种用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池。
背景技术
太阳能电池通过p-n结利用光伏效应将太阳光的光子转换来产生电能。在太阳能电池中,前电极和后电极分别在具有p-n结的半导体晶片或基底的上下表面形成。然后,p-n结的光电效应由进入半导体晶片的太阳光诱导,进而由p-n结的光电效应产生的电子通过电极向外部提供电流。电极用组合物设置于晶片上,再经图案化和烘焙,形成太阳能电池的电极。
通过持续减小发射极厚度的方法来提高太阳能电池效率,反而有可能导致分流,这将使太阳能电池的性能变差。另外,太阳能电池已经逐渐增加面积以提高效率。然而,在这种情况下,可能存在由于太阳能电池的接触电阻的增加而导致的效率下降的问题。
太阳能电池通过焊带彼此连接以构成太阳能电池组件。目前,典型含铅玻璃粉料在内的成份制造的太阳能电池电极与焊带的粘合力不足,电极和焊带之间的低粘附性会导致高的串联电阻和转换效率的劣化。
发明内容
本发明旨在提供一种用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池,以解决现有技术中太阳能电池电极与焊带的粘合力不足,电极和焊带之间的低粘附性会导致高的串联电阻和转换效率的劣化的技术问题。
为了实现上述目的,根据本发明的一个方面,提供了一种用于制备太阳能电池电极的玻璃粉料。该玻璃粉料包含20~50wt%的PbO、31~70wt%的TeO2、0.1~7wt%的IA族金属氧化物、0.1~7wt%的IIA族金属氧化物和其他氧化物,且IA族金属氧化物与IIA族金属氧化物的质量比为0.1~7:1,IA族金属氧化物、IIA族金属氧化物和其他氧化物在所述玻璃粉料中的添加量总和为1~25wt%。
进一步地,IA族金属氧化物为选自由Li2O、Na2O和K2O组成的组中的一种或多种。
进一步地,IIA族金属氧化物为选自由MgO、CaO、SrO和BaO组成的组中的一种或多种。
进一步地,其他氧化物为选自由P2O5、B2O3、TiO2、WO3、NiO、SiO2和ZnO组成的组中的一种或多种。
进一步地,玻璃粉料的平均粒径D50为0.1~10μm。
根据本发明的另一个方面,提供一种用于制备太阳能电池电极的糊剂组合物。该糊剂组合物包含60~95wt%的导电粉末、1.0~20wt%的有机载体、0.1~5wt%的上述玻璃粉料,以及余量的添加剂。
进一步地,添加剂为选自由分散剂、触变剂、增塑剂、粘度稳定剂、消泡剂、颜料、UV稳定剂、抗氧化剂和偶联剂组成的组中的一种或多种。
进一步地,导电粉末为银粉。
根据本发明的再一个方面,提供一种太阳能电池电极。该太阳能电池由上述任一种的糊剂组合物制备而成。
根据本发明的又一方面,提供了一种太阳能电池,包括电极。该电极为上述由本发明的糊剂组合物制备而成的太阳能电池电极。
应用本发明的糊剂组合物制备的太阳能电池电极,和焊带有优异的粘合强度并且使串联电阻(Rs)最小化,从而提供高转换效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明一实施方式中使用糊剂组合物制造的太阳能电池的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
根据本发明一种典型的实施方式,提供一种用于制备太阳能电池电极的玻璃粉料。该玻璃粉料包含20~50wt%的PbO、31~70wt%的TeO2、0.1~7wt%的IA族金属氧化物、0.1~7wt%的IIA族金属氧化物和其他氧化物,且所述IA族金属氧化物与IIA族金属氧化物的质量比为0.1~7:1,IA族金属氧化物、IIA族金属氧化物和所述其他氧化物在玻璃粉料中的添加量总和为1~25wt%。
其他氧化物是指除IA族金属氧化物和IIA族金属氧化物之外氧化物。
应用本发明的糊剂组合物制备的太阳能电池电极,和焊带有优异的粘合强度并且使串联电阻(Rs)最小化,从而提供高转换效率。
优选的,IA族金属氧化物为选自由Li2O、Na2O和K2O组成的组中的一种或多种;IIA族金属氧化物为选自由MgO、CaO、SrO和BaO组成的组中的一种或多种。
根据本发明一种典型的实施方式,其他氧化物为选自由P2O5、B2O3、TiO2、WO3、NiO、SiO2和ZnO组成的组中的一种或多种。
根据本发明一种典型的实施方式,提供供一种用于制备太阳能电池电极的糊剂组合物。该糊剂组合物包含60~95wt%的导电粉末、1.0~20wt%的有机载体、0.1~5wt%的上述玻璃粉料,以及余量的添加剂。其中,添加剂为选自由分散剂、触变剂、增塑剂、粘度稳定剂、消泡剂、颜料、UV稳定剂、抗氧化剂和偶联剂组成的组中的一种或多种。
根据本发明一种典型的实施方式,提供了一种太阳能电池电极。该太阳能电池由上述任一种的糊剂组合物制备而成。
根据本发明一种典型的实施方式,提供了一种太阳能电池,包括电极。该电极为上述由本发明的糊剂组合物制备而成的太阳能电池电极。
根据本发明一种典型的实施方式,太阳能电池电极组分包括银粉、氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物基玻璃粉料和有机载体。现在,将更详细地描述本发明的太阳能电池电极的组成。
(A)银粉
根据本发明一种典型的实施方式,用于制备太阳能电池电极的糊剂组合物包含银粉作为导电粉末。银粉的粒度可以是纳米或微米级。例如,银粉可以具有几十至几百纳米,或几至几十微米的粒度。或者,银粉可以是具有不同粒径的两种或更多种银粉的混合物。
银粉可以具有球形、薄片或无定形形状。
银粉优选具有约0.1μm至约10μm的平均粒径(D50),更优选约0.5μm至约5μm的平均粒径(D50)。平均粒径可以使用仪器,如Mastersize 2000(Malvern Co.,Ltd。)在将导电粉末在25℃下通过超声波分散在异丙醇(IPA)中3分钟之后测量。在该平均粒径范围内,组合物可以提供低接触电阻和低线电阻。
基于组合物的总重量,银粉可以约60wt%至约95wt%的量存在。在该范围内,导电粉末可以防止由于电阻的增加而导致的转换效率的劣化。更佳情况下,导电粉末以约70wt%至约95wt%的量存在。
(B)氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物基玻璃粉料
玻璃粉料用于增强导电粉末与晶片或基板之间的粘附力,并且在导电浆料烧结过程中,通过蚀刻减反射层和熔化银粉而在发射极区域中形成银晶粒来降低接触电阻。此外,在烧结工艺期间,玻璃粉料软化并降低烧结温度。
当为了提高太阳能电池效率而增加太阳能电池的面积时,可能存在太阳能电池的接触电阻增加的问题。因此,需要最小化串联电阻(Rs)和对p-n结的影响。另外,随着使用具有不同表面电阻的各种晶片的适合烧结温度在宽范围内变化,玻璃粉料需要确保足够的热稳定性以耐受较大的烧结温度窗口。
太阳能电池通过焊带彼此连接以构成太阳能电池组件。在这种情况下,太阳能电池电极和焊带之间的低粘合强度有可能导致电池的脱离或降低可靠性。在本发明中,为了确保太阳能电池具有所需的电学和物理性质例如粘合强度,使用氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物基玻璃粉料。
在本发明中,氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物基玻璃粉料可以包含20~50wt%的PbO、31~70wt%的TeO2、0.1~7wt%的IA族金属氧化物、0.1~7wt%的IIA族金属氧化物和其他氧化物RO,且IA族金属氧化物与IIA族金属氧化物的质量比为0.1~7:1,IA族金属氧化物、IIA族金属氧化物和其他氧化物在玻璃粉料中的添加量总和为1~25wt%。在该范围内,玻璃粉料可以确保优异的粘合强度和优异的转化效率。
根据本发明一种典型的实施方式,氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物基玻璃粉料可以进一步包括至少一种其他氧化物,选自氧化磷(P2O5),氧化硼(B2O3),氧化钛(TiO2),氧化钨(WO3),氧化镍(NiO),二氧化硅(SiO2),氧化锌(ZnO)。
玻璃粉料可以由氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物通过任何典型的方法制备。例如,氧化物与氧化铅-氧化铋–氧化碲-氧化钨以一定的比例混合。混合可以使用球磨机或行星式磨机进行。将混合的组合物在约900℃至约1300℃下熔融,然后骤冷至约25℃。使用盘磨机,行星式磨机等对所得材料进行粉碎,从而提供玻璃粉料。
玻璃粉料的平均粒径D50可以约0.1μm至约10μm,并且占基于组合物的总量的约0.1wt%至约5wt%的量。玻璃粉料可以具有球形或无定形形状。
(C)有机载体
通过与太阳能电池电极中的无机组分的机械混合,有机载体赋予导电浆料打印过程所需的适当的粘度和流变特性。
有机载体可以是用于太阳能电池电极组合物的任何典型的有机载体,并且可以包括粘合剂树脂,溶剂等。
粘合剂树脂可以选自丙烯酸酯树脂或纤维素树脂。通常使用乙基纤维素作为粘合剂树脂。此外,粘合剂树脂可以选自乙基羟乙基纤维素、硝化纤维素、乙基纤维素和酚醛树脂的共混物、醇酸树脂、苯酚、丙烯酸酯、二甲苯、聚丁烯、聚酯、脲、三聚氰胺、乙酸乙烯酯树脂、木松香、醇的聚甲基丙烯酸酯等。
溶剂可以选自例如己烷、甲苯、乙基溶纤剂、环己酮、丁基溶纤剂、丁基卡必醇(二甘醇单丁基醚)、二丁基卡必醇(二甘醇二丁基醚)、丁基卡必醇乙酸酯(单丁醚乙酸酯)、丙二醇单甲醚、己二醇、萜品醇、甲基乙基酮、苄醇、γ-丁内酯、乳酸乙酯及其组合。
基于组合物的总重量,有机载体可以约1wt%至约20wt%的量存在。在该范围内,有机载体可以为组合物提供足够的粘合强度和优异的可印刷性。
(D)添加剂
根据需要,组合物可以进一步包括典型的添加剂,以增强流动性能,加工性能和稳定性。添加剂可以包括分散剂、触变剂、增塑剂、粘度稳定剂、消泡剂、颜料、UV稳定剂、抗氧化剂、偶联剂等,但不限于此。这些添加剂可以单独使用或作为其混合物使用。这些添加剂可以以组合物中约0.1wt%至约5wt%的量存在,但该量可根据需要改变。
根据本发明一种典型的实施方式,使用糊剂组合物制造的太阳能电池。如图1所示,背面电极210和正面电极230可以通过印刷电池电极组分于包括p层101和用作发射极的n层102的晶片或基板100上,并经过烧结来形成。例如,通过在晶片的背面上印刷组合物并在约200℃至约400℃下干燥所印刷的组合物约10秒至60秒,来进行用于制备背面电极的预备工艺。此外,可以通过在晶片的前表面上印刷浆料并干燥印刷的组合物来进行用于制备前电极的初步工艺。然后,可以通过在约400℃至约950℃,优选约850℃至约950℃下烧结晶片约30秒至50秒来形成正面电极和背面电极。
接下来,本发明将通过参考实施例更详细地描述。然而,应当注意,这些实施例的提供仅用于说明本发明,不应以任何方式解释为限制本发明。
为了清楚的目的,省略了本领域技术人员清楚的详细描述。
实施例及对比例
根据表1所示的组成将氧化物混合,并在900℃~1400℃下进行熔融和烧结,从而制备平均粒径(D50)为2.0μm的氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物基玻璃粉料。
作为有机粘合剂,在60℃下将1.0重量%的乙基纤维素充分溶解在9.0重量%的丁基卡必醇中,并加入包括86重量%的平均粒径为1.5μm球形银粉,1.5重量%的所制备的氧化铅-氧化碲-IA族金属氧化物-IIA族金属氧化物玻璃粉和0.5重量%的触变剂Thixatrol ST到粘合剂溶液中,随后在三辊机中研磨,从而制备太阳能电池电极组合物。
将如上所制备的电极组合物通过丝网印刷,以预定图案沉积在单晶硅片的前表面上,随后在红外干燥炉中干燥。然后,将用于制备背铝电极的组合物印刷在晶片的背面上并以相同的方式干燥。将通过以上步骤处理的电池片在带式烧成炉中,于910℃下烧成40秒。使用太阳能效率测试仪(CT-801)来测量电池的转换效率(%),串联电阻Rs(mΩ),开路电压(Voc)等。然后,使用烙铁在300℃至400℃下用焊剂将电池的电极与焊带焊接。然后,电池电极与焊带的的粘合强度(N/mm)使用测试仪在180°的剥离角和50mm/min的拉伸速率下测量。测量的转换效率和拉力测试显示于表1中。
实施例1~11和对比例1~7
实施例1~11和对比例1~7采用如表1所示的玻璃粉的组成,以相同的方式制备用于太阳能电池电极的组合物,并评价物理性能。需要表明的是表1中的实施例和对比例是为了突出一个或多个发明例的特点,而不是为限制本发明的范围,也不是说明对比例在本发明的范围之外。此外,发明主体并不局限于实施例和对比例中所描述的特定细节。
表1
Figure PCTCN2017083001-appb-000001
如表1所示,由实施例1~11中制备的组合物制造的太阳能电池电极与其它比较例1-7相比,表现出与焊带很高的粘合强度以及优异的转换效率。而对比例1~7则表现出或者较低的电池效率或者较低的拉力,或者两者同时较低。
对比例1表明玻璃组成中含有较低PbO含量的情况,制成的太阳能电极的效率及拉力都相对发明实例较低。对比例2表明玻璃组成中含有较高PbO含量的情况,制成的太阳能电池的效率较低。类似的,对比例3没有第一族氧化物,制成的太阳能电池的效率较低。对比例4、5没有第二族氧化物,制成的太阳能电极的效率及拉力都相对发明实例较低。对比例6、7表明II族氧化物的含量不在本发明的范围内,制成的太阳能电池或有较低的效率或有较低的拉力或两者都较低。
发明实例表明,玻璃粉成份为20~50wt%的PbO、31~70wt%的TeO2、0.1~7wt%的IA族金属氧化物、0.1~7wt%的IIA族金属氧化物和其他氧化物,且IA族金属氧化物与IIA族金属氧化物的质量比为0.1~7:1,IA族金属氧化物、IIA族金属氧化物和其他氧化物在玻璃粉料中的添加量总和为1~25wt%,制成的太阳能电池有更高的性能。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于制备太阳能电池电极的玻璃粉料,其特征在于,所述玻璃粉料包含20~50wt%的PbO、31~70wt%的TeO2、0.1~7wt%的IA族金属氧化物、0.1~7wt%的IIA族金属氧化物和其他氧化物,且所述IA族金属氧化物与IIA族金属氧化物的质量比为0.1~7:1,所述IA族金属氧化物、所述IIA族金属氧化物和所述其他氧化物在所述玻璃粉料中的添加量总和为1~25wt%。
  2. 根据权利要求1所述的玻璃粉料,其特征在于,所述IA族金属氧化物为选自由Li2O、Na2O和K2O组成的组中的一种或多种。
  3. 根据权利要求1所述的玻璃粉料,其特征在于,所述IIA族金属氧化物为选自由MgO、CaO、SrO和BaO组成的组中的一种或多种。
  4. 根据权利要求1所述的玻璃粉料,其特征在于,所述其他氧化物为选自由P2O5、B2O3、TiO2、WO3、NiO、SiO2和ZnO组成的组中的一种或多种。
  5. 根据权利要求1所述的玻璃粉料,其特征在于,所述玻璃粉料的平均粒径D50为0.1~10μm。
  6. 一种用于制备太阳能电池电极的糊剂组合物,其特征在于,包含60~95wt%的导电粉末、1.0~20wt%的有机载体、0.1~5wt%的如权利要求1至5中任一项所述玻璃粉料,以及余量的添加剂。
  7. 根据权利要求6所述的糊剂组合物,其特征在于,所述添加剂为选自由分散剂、触变剂、增塑剂、粘度稳定剂、消泡剂、颜料、UV稳定剂、抗氧化剂和偶联剂组成的组中的一种或多种。
  8. 根据权利要求6所述的糊剂组合物,其特征在于,所述导电粉末为银粉。
  9. 一种太阳能电池电极,其特征在于,由权利要求6至8中任一项所述的糊剂组合物制备而成。
  10. 一种太阳能电池,包括电极,其特征在于,所述电极为如权利要求9所述的太阳能电池电极。
PCT/CN2017/083001 2017-05-04 2017-05-04 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池 WO2018201375A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083001 WO2018201375A1 (zh) 2017-05-04 2017-05-04 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083001 WO2018201375A1 (zh) 2017-05-04 2017-05-04 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池

Publications (1)

Publication Number Publication Date
WO2018201375A1 true WO2018201375A1 (zh) 2018-11-08

Family

ID=64016422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083001 WO2018201375A1 (zh) 2017-05-04 2017-05-04 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池

Country Status (1)

Country Link
WO (1) WO2018201375A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692668A (zh) * 2015-02-11 2015-06-10 西北大学 一种太阳能电池正面电极浆料用快速结晶型玻璃粉
CN104876448A (zh) * 2015-04-23 2015-09-02 江苏欧耐尔新型材料有限公司 低铅太阳能银浆玻璃粉及其制备方法
CN105489710A (zh) * 2016-01-22 2016-04-13 四川银河星源科技有限公司 一种全背电极太阳能电池的生产工艺
JP2016103627A (ja) * 2015-09-17 2016-06-02 株式会社ノリタケカンパニーリミテド 導電性組成物
CN106601335A (zh) * 2016-12-30 2017-04-26 无锡帝科电子材料科技有限公司 用于制备太阳能电池电极的糊剂组合物、太阳能电池电极及太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692668A (zh) * 2015-02-11 2015-06-10 西北大学 一种太阳能电池正面电极浆料用快速结晶型玻璃粉
CN104876448A (zh) * 2015-04-23 2015-09-02 江苏欧耐尔新型材料有限公司 低铅太阳能银浆玻璃粉及其制备方法
JP2016103627A (ja) * 2015-09-17 2016-06-02 株式会社ノリタケカンパニーリミテド 導電性組成物
CN105489710A (zh) * 2016-01-22 2016-04-13 四川银河星源科技有限公司 一种全背电极太阳能电池的生产工艺
CN106601335A (zh) * 2016-12-30 2017-04-26 无锡帝科电子材料科技有限公司 用于制备太阳能电池电极的糊剂组合物、太阳能电池电极及太阳能电池

Similar Documents

Publication Publication Date Title
TWI647195B (zh) 用於製備太陽能電池電極的糊劑組合物、太陽能電池電極及太陽能電池
TWI469946B (zh) 供用於太陽能電池電極的組成物及使用該組成物製造的電極
US9741876B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
JP6392354B2 (ja) 太陽電池電極形成用組成物及びこれによって製造された電極
US10164128B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI525843B (zh) 太陽電池電極用組成物及使用其製造的電極
KR101590227B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US9748417B2 (en) Composition for forming solar cell electrode and electrode produced from same
WO2018120030A1 (zh) 用于制备太阳能电池电极的糊剂组合物、太阳能电池电极及太阳能电池
WO2019056418A1 (zh) 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极和太阳能电池
CN107216041B (zh) 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池
KR101600659B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
CN107879635B (zh) 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池
CN114538782A (zh) 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池
KR101940170B1 (ko) 전극 형성용 조성물 및 이로부터 제조된 전극과 태양전지
WO2018201375A1 (zh) 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池
TWI663739B (zh) 用於太陽電池電極的組成物及使用其製作的太陽電池電極
KR101590226B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR20200015318A (ko) 알루미늄 산화물층을 포함하는 태양 전지의 전극 형성용 조성물, 이로부터 제조된 전극 및 이로부터 제조된 전극을 포함하는 태양 전지
KR20170025892A (ko) 전극 형성용 조성물 및 이로부터 제조된 전극과 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908218

Country of ref document: EP

Kind code of ref document: A1