WO2018201291A1 - 一种基于云计算的文具销售分析系统 - Google Patents
一种基于云计算的文具销售分析系统 Download PDFInfo
- Publication number
- WO2018201291A1 WO2018201291A1 PCT/CN2017/082759 CN2017082759W WO2018201291A1 WO 2018201291 A1 WO2018201291 A1 WO 2018201291A1 CN 2017082759 W CN2017082759 W CN 2017082759W WO 2018201291 A1 WO2018201291 A1 WO 2018201291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stationery
- data
- sales
- store
- cloud computing
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
Definitions
- the invention belongs to the technical field of computers, and in particular relates to a stationery sales analysis system based on cloud computing.
- the embodiment of the invention provides a stationery sales analysis system based on cloud computing, which can accurately and timely analyze and analyze the sales data of the stationery, and ranks the data of the stationery stores, various stationery ranking data and various stationery sales data. Accurate, real-time, and comprehensive release is displayed to users.
- the embodiment of the present invention is implemented by the cloud computing-based stationery sales analysis system, comprising: a data acquisition module, a data compilation module, a database, a data calling module, a cloud computing processor, a central monitor, and a display;
- An acquisition module is connected to the data compilation module;
- the database is connected to the data compilation module and the data invoking module;
- the cloud computing processor is connected to the data invoking module and the central monitor;
- the monitor is connected to the display;
- the stationery sales data of each stationery store is obtained by the data acquisition module; and the obtained stationery sales data is compiled and converted into a computer language recognizable by the cloud computing processor by the data compiling module, and the computer language is Stored in the database, at the same time, through the data call module to call the information stored in the database; and through the cloud computing processor to quickly process the stored information, and the analysis results are transmitted to the central monitor, the central monitor will analyze The result is transmitted to the display for display.
- the data acquisition module includes:
- a stationery category obtaining unit for obtaining stationery category information of each stationery store
- a sales acquisition unit for obtaining sales information of various stationery of each stationery store
- a price acquisition unit for obtaining price information of various stationery of each stationery store
- a storage quantity acquisition unit configured to obtain storage information of various stationery of each stationery store
- a purchase date obtaining unit for obtaining the purchase date of each type of stationery of each stationery store
- the purchase quantity acquisition unit the user obtains the quantity of the various types of stationery of each stationery store.
- the sales volume obtaining unit includes:
- the annual sales acquisition sub-unit is used to obtain annual sales data of various stationery of each stationery store
- the daily sales acquisition sub-unit is used to obtain daily sales data of various stationery of each stationery store.
- the cloud computing processor comprises:
- the annual sales unit of the stationery store is used to rank each stationery store according to the annual sales data of the stationery of each stationery store obtained;
- the monthly sales unit of the stationery store is used to rank each stationery store according to the monthly sales data of the stationery of each stationery store obtained;
- the stationery store daily sales ranking unit is used to rank each stationery store based on the daily sales data of the stationery of each stationery store.
- the cloud computing processor comprises:
- the annual sales unit of stationery is used to rank all kinds of stationery according to the annual sales data of various types of stationery obtained;
- the monthly sales unit of stationery is used to rank all kinds of stationery according to the monthly sales data of various types of stationery obtained;
- the stationery daily sales ranking unit is used to rank all kinds of stationery according to the daily sales data of various types of stationery obtained.
- the database comprises: a storage unit and a redundant unit.
- the data compilation module is a Perl, PHP or Python programming language.
- the database is a MySQL database.
- the cloud computing-based stationery sales analysis system compiles and converts the stationery sales data of each stationery store acquired by the data acquisition module into a computer language recognizable by the cloud computing processor through the data compiling module, and the computer language is
- the storage is stored in the database, and the stored information in the database called by the data calling module is quickly processed and analyzed by the cloud computing processor, and the analysis result is transmitted to the central monitor, and the central monitor transmits the analysis result to the display for display.
- FIG. 1 is a schematic structural diagram of a cloud computing-based stationery sales analysis system according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a data acquisition module according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a mechanism of a sales volume acquiring unit according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a cloud computing processor according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of another cloud computing processor according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of a database provided by an embodiment of the present invention.
- the cloud computing-based stationery sales analysis system compiles and converts the stationery sales data of each stationery store acquired by the data acquisition module into a computer language recognizable by the cloud computing processor through the data compiling module, and the computer language is
- the storage is stored in the database, and the stored information in the database called by the data calling module is quickly processed and analyzed by the cloud computing processor, and the analysis result is transmitted to the central monitor, and the central monitor transmits the analysis result to the display for display.
- a cloud computing-based stationery sales analysis system 100 includes: a data acquisition module 110, a data compilation module 120, a database 130, a data invocation module 140, and a cloud computing processor 150.
- the data acquisition module 110 is coupled to the data compilation module 120; the database 130 is coupled to the data compilation module 120, the data invocation module 140; the cloud computing processor 150 is connected to the data invoking module 140 and the central monitor 160; the central monitor 160 is connected to the display 170; the stationery sales data of each stationery store is obtained through the data acquisition module; and is acquired by the data compiling module
- the stationery sales data is compiled and converted into a computer language recognizable by the cloud computing processor, and the computer language is stored in the database, and at the same time, the information stored in the database is invoked through the data calling module; and the called storage is processed by the cloud computing processor.
- the information is processed quickly and analyzed, and the results are transmitted to the central monitor.
- the central monitor will The analysis results are transmitted to the display for display. Accurate and real-time processing and analysis of stationery sales data, and accurate, real-time and comprehensive release of various stationery store ranking data, various stationery ranking data and various stationery sales data to users, so that users can know the sales of stationery .
- the data acquisition module 110 includes: a stationery category acquisition unit 111, a sales volume acquisition unit 112, a price acquisition unit 113, a reserve acquisition unit 114, a purchase date acquisition unit 115, and a quantity of purchase.
- the unit 116 is obtained.
- the stationery category obtaining unit 111 is configured to acquire the stationery category information of each stationery store; the sales volume acquiring unit 112 is configured to acquire sales information of various stationery of each stationery store; the price acquiring unit 113, Obtaining price information of various types of stationery in each stationery store; the storage obtaining unit 114 is configured to acquire the storage amount information of each type of stationery of each stationery store; and the purchase date obtaining unit 115 is configured to acquire each of the stationery stores The purchase date of the stationery, the purchase quantity acquisition unit 116, the user acquires the quantity of the various types of stationery of each stationery store.
- the sales volume acquisition unit 112 includes an annual sales volume acquisition sub-unit 1121, a monthly sales volume acquisition sub-unit 1122, and a daily sales volume acquisition sub-unit 1123.
- the annual sales acquisition subunit 1121 is configured to obtain annual sales data of various stationery of each stationery store;
- the monthly sales acquisition subunit 1122 is configured to obtain monthly sales data of various stationery of each stationery store;
- the daily sales acquisition subunit 1123 is configured to acquire daily sales data of various stationery of each stationery store.
- the cloud computing processor 150 includes a stationery store annual sales ranking unit 151, a stationery store monthly sales ranking unit 152, and a stationery store daily sales ranking unit 153.
- the stationery store annual sales ranking unit 151 is configured to arrange each stationery store according to the obtained annual sales data of the stationery of each stationery store;
- the stationery store monthly sales ranking unit 152 is configured to acquire each Each of the stationery stores is arranged in the monthly sales data of the stationery of the stationery store, and the stationery store daily sales ranking unit 153 is configured to sort the stationery stores based on the daily sales data of the stationery of each stationery store.
- the cloud computing processor 150 includes a stationery annual sales ranking unit 154, a stationery monthly sales ranking unit 155, and a stationery daily sales ranking unit 156.
- the stationery annual sales ranking unit 154 is configured to classify various types of stationery according to the obtained annual sales data of various types of stationery; the stationery monthly sales ranking unit 155 is used for the month according to the acquired various types of stationery.
- the sales data is used to rank various types of stationery; the stationery daily sales ranking unit 156 is configured to sort various types of stationery according to the daily sales data of various types of stationery obtained.
- the database 130 includes: a storage unit 131 and a redundancy unit 132.
- the storage unit 131 and the redundant unit 132 operate synchronously; the data compiling module 120 compiles and converts the acquired stationery sales data into a computer language recognizable by the cloud computing processor, and stores the computer language separately into the storage unit.
- the 131 and the redundant unit 132 can inversely transform the erroneous data to obtain the original data, thereby preventing data loss and errors.
- the data compilation module 120 can be a Perl, PHP or Python programming language; the database 130 can be a MySQL database.
- the cloud computing-based stationery sales analysis system compiles and converts the stationery sales data of each stationery store acquired by the data acquisition module into a computer language recognizable by the cloud computing processor through a data compiling module, and the computer language is
- the storage is stored in the database, and the stored information in the database called by the data calling module is quickly processed and analyzed by the cloud computing processor, and the analysis result is transmitted to the central monitor, and the central monitor transmits the analysis result to the display for display.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于云计算的文具销售分析系统(100),适用于计算机技术领域,包括:数据获取模块(110)、数据编译模块(120)、数据库(130)、数据调用模块(140)、云计算处理器(150)、中央监控器(160)和显示器(170);通过数据编译模块(120)将数据获取模块(110)获取的各文具店的文具销售数据编译转换成云计算处理器(150)可识别的计算机语言,并将该计算机语言存储至数据库(130)中,并通过云计算处理器(150)对数据调用模块(140)调用的数据库(130)中的存储信息进行快速的处理分析,并将分析结果传输至中央监控器(160),中央监控器(160)将分析结果传输至显示器(170)进行显示,能对文具销售数据进行准确、实时的处理分析,并将各文具店排行数据、各类文具排行数据和各类文具销量数据准确、实时、全面的发布显示给用户,便于用户知晓文具的销售情况。
Description
本发明属于计算机技术领域,尤其涉及一种基于云计算的文具销售分析系统。
近年来,互联网的发展越来越迅速,使用互联网的人也越来越普及,人们在使用互联网进行日常的活动的时候,例如网购,查看节目,信息,商品都会产生大量的数据,而这些数据对于电子商务网站或者互联网媒体类网站来说是非常宝贵的,利用这些大数据的处理分析能得到非常宝贵的商业价值。
本发明实施例提供一种基于云计算的文具销售分析系统,本发明能对文具销售数据进行准确、实时的处理分析,并将各文具店排行数据、各类文具排行数据和各类文具销量数据准确、实时、全面的发布显示给用户。
本发明实施例是这样实现的,一种基于云计算的文具销售分析系统,包括:数据获取模块、数据编译模块、数据库、数据调用模块、云计算处理器、中央监控器和显示器;所述数据获取模块与所述数据编译模块连接;所述数据库与所述数据编译模块、所述数据调用模块连接;所述云计算处理器与所述数据调用模块、所述中央监控器连接;所述中央监控器与所述显示器连接;通过数据获取模块获取各文具店的文具销售数据;并通过数据编译模块将获取的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言存储至数据库中,同时,通过数据调用模块调用数据库中存储的信息;并通过云计算处理器对调用的存储信息进行快速的处理分析,并将分析结果传输至中央监控器,中央监控器将分析结果传输至显示器进行显示。
优选地,所述数据获取模块,包括:
文具类别获取单元,用于获取各文具店的文具类别信息;
销量获取单元,用于获取各文具店的各类文具的销量信息;
价格获取单元,用于获取各文具店的各类文具的价格信息;
储量获取单元,用于获取各文具店的各类文具的储量信息;
进货日期获取单元,用于获取各文具店的各类文具的进货日期;以及
进货数量获取单元,用户获取各文具店的各类文具的进货数量。
优选地,所述销量获取单元,包括:
年销量获取子单元,用于获取各文具店的各类文具的年销量数据;
月销量获取子单元,用于获取各文具店的各类文具的月销量数据;以及
日销量获取子单元,用于获取各文具店的各类文具的日销量数据。
优选地,所述云计算处理器,包括:
文具店年销量排行单元,用于根据获取的各文具店的文具的年销量数据,将各文具店进行排行;
文具店月销量排行单元,用于根据获取的各文具店的文具的月销量数据,将各文具店进行排行;以及
文具店日销量排行单元,用于根据获取的各文具店的文具的日销量数据,将各文具店进行排行。
优选地,所述云计算处理器,包括:
文具年销量排行单元,用于根据获取的各类文具的年销量数据,将各类文具进行排行;
文具月销量排行单元,用于根据获取的各类文具的月销量数据,将各类文具进行排行;以及
文具日销量排行单元,用于根据获取的各类文具的日销量数据,将各类文具进行排行。
优选地,所述数据库,包括:存储单元和冗余单元。
优选地,所述数据编译模块为Perl、PHP或者Python编程语言。
优选地,所述数据库为MySQL数据库。
本发明实施例提供的基于云计算的文具销售分析系统,通过数据编译模块将数据获取模块获取的各文具店的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言存储至数据库中,并通过云计算处理器对数据调用模块调用的数据库中的存储信息进行快速的处理分析,并将分析结果传输至中央监控器,中央监控器将分析结果传输至显示器进行显示,能对文具销售数据进行准确、实时的处理分析,并将各文具店排行数据、各类文具排行数据和各类文具销量数据准确、实时、全面的发布显示给用户,便于用户知晓文具的销售情况。
图1是本发明实施例提供的一种基于云计算的文具销售分析系统的结构示意图;
图2是本发明实施例提供的数据获取模块的结构示意图;
图3是本发明实施例提供的销量获取单元的机构示意图;
图4是本发明实施例提供的一种云计算处理器的结构示意图;
图5是本发明实施例提供的另一种云计算处理器的结构示意图;
图6是本发明实施例提供的数据库的结构示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供的基于云计算的文具销售分析系统,通过数据编译模块将数据获取模块获取的各文具店的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言存储至数据库中,并通过云计算处理器对数据调用模块调用的数据库中的存储信息进行快速的处理分析,并将分析结果传输至中央监控器,中央监控器将分析结果传输至显示器进行显示,能对文具销售数据进行准确、实时的处理分析,并将各文具店排行数据、各类文具排行数据和各类文具销量数据准确、实时、全面的发布显示给用户,便于用户知晓文具的销售情况。
以下结合具体实施例对本发明的具体实现进行详细描述。
如图1所示,在本发明实施例中,一种基于云计算的文具销售分析系统100,包括:数据获取模块110、数据编译模块120、数据库130、数据调用模块140、云计算处理器150、中央监控器160和显示器170;所述数据获取模块110与所述数据编译模块120连接;所述数据库130与所述数据编译模块120、所述数据调用模块140连接;所述云计算处理器150与所述数据调用模块140、所述中央监控器160连接;所述中央监控器160与所述显示器170连接;通过数据获取模块获取各文具店的文具销售数据;并通过数据编译模块将获取的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言存储至数据库中,同时,通过数据调用模块调用数据库中存储的信息;并通过云计算处理器对调用的存储信息进行快速的处理分析,并将分析结果传输至中央监控器,中央监控器将分析结果传输至显示器进行显示。能对文具销售数据进行准确、实时的处理分析,并将各文具店排行数据、各类文具排行数据和各类文具销量数据准确、实时、全面的发布显示给用户,便于用户知晓文具的销售情况。
在本实施例中,如图2所示,所述数据获取模块110,包括:文具类别获取单元111、销量获取单元112、价格获取单元113、储量获取单元114、进货日期获取单元115和进货数量获取单元116。其中,所述文具类别获取单元111,用于获取各文具店的文具类别信息;所述销量获取单元112,用于获取各文具店的各类文具的销量信息;所述价格获取单元113,用于获取各文具店的各类文具的价格信息;所述储量获取单元114,用于获取各文具店的各类文具的储量信息;所述进货日期获取单元115,用于获取各文具店的各类文具的进货日期;所述进货数量获取单元116,用户获取各文具店的各类文具的进货数量。
在本实施例中,如图3所示,所述销量获取单元112,包括:年销量获取子单元1121、月销量获取子单元1122和日销量获取子单元1123。其中,所述年销量获取子单元1121,用于获取各文具店的各类文具的年销量数据;所述月销量获取子单元1122,用于获取各文具店的各类文具的月销量数据;所述日销量获取子单元1123,用于获取各文具店的各类文具的日销量数据。
在本实施例中,如图4所示,所述云计算处理器150,包括:文具店年销量排行单元151、文具店月销量排行单元152和文具店日销量排行单元153。其中,所述文具店年销量排行单元151,用于根据获取的各文具店的文具的年销量数据,将各文具店进行排行;所述文具店月销量排行单元152,用于根据获取的各文具店的文具的月销量数据,将各文具店进行排行;所述文具店日销量排行单元153,用于根据获取的各文具店的文具的日销量数据,将各文具店进行排行。
在本实施例中,如图5所示,所述云计算处理器150,包括:文具年销量排行单元154、文具月销量排行单元155和文具日销量排行单元156。其中,所述文具年销量排行单元154,用于根据获取的各类文具的年销量数据,将各类文具进行排行;所述文具月销量排行单元155,用于根据获取的各类文具的月销量数据,将各类文具进行排行;所述文具日销量排行单元156,用于根据获取的各类文具的日销量数据,将各类文具进行排行。
在本实施例中,如图6所示,所述数据库130,包括:存储单元131和冗余单元132。所述存储单元131和所述冗余单元132同步运行;所述数据编译模块120将获取的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言分别存储至存储单元131和冗余单元中132,能对错误数据进行反变换得到原始数据,防止了数据的丢失、错误。
在本实施例中,所述数据编译模块120可为Perl、PHP或者Python编程语言;所述数据库130可为MySQL数据库。
上述发明实施例提供的基于云计算的文具销售分析系统,通过数据编译模块将数据获取模块获取的各文具店的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言存储至数据库中,并通过云计算处理器对数据调用模块调用的数据库中的存储信息进行快速的处理分析,并将分析结果传输至中央监控器,中央监控器将分析结果传输至显示器进行显示,能对文具销售数据进行准确、实时的处理分析,并将各文具店排行数据、各类文具排行数据和各类文具销量数据准确、实时、全面的发布显示给用户,便于用户知晓文具的销售情况。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (8)
- 一种基于云计算的文具销售分析系统,其特征在于,包括:数据获取模块、数据编译模块、数据库、数据调用模块、云计算处理器、中央监控器和显示器;所述数据获取模块与所述数据编译模块连接;所述数据库与所述数据编译模块、所述数据调用模块连接;所述云计算处理器与所述数据调用模块、所述中央监控器连接;所述中央监控器与所述显示器连接;通过数据获取模块获取各文具店的文具销售数据;并通过数据编译模块将获取的文具销售数据编译转换成云计算处理器可识别的计算机语言,并将该计算机语言存储至数据库中,同时,通过数据调用模块调用数据库中存储的信息;并通过云计算处理器对调用的存储信息进行快速的处理分析,并将分析结果传输至中央监控器,中央监控器将分析结果传输至显示器进行显示。
- 如权利要求1所述的基于云计算的文具销售分析系统,其特征在于,所述数据获取模块,包括:文具类别获取单元,用于获取各文具店的文具类别信息;销量获取单元,用于获取各文具店的各类文具的销量信息;价格获取单元,用于获取各文具店的各类文具的价格信息;储量获取单元,用于获取各文具店的各类文具的储量信息;进货日期获取单元,用于获取各文具店的各类文具的进货日期;以及进货数量获取单元,用户获取各文具店的各类文具的进货数量。
- 如权利要求2所述的基于云计算的文具销售分析系统,其特征在于,所述销量获取单元,包括:年销量获取子单元,用于获取各文具店的各类文具的年销量数据;月销量获取子单元,用于获取各文具店的各类文具的月销量数据;以及日销量获取子单元,用于获取各文具店的各类文具的日销量数据。
- 如权利要求3所述的基于云计算的文具销售分析系统,其特征在于,所述云计算处理器,包括:文具店年销量排行单元,用于根据获取的各文具店的文具的年销量数据,将各文具店进行排行;文具店月销量排行单元,用于根据获取的各文具店的文具的月销量数据,将各文具店进行排行;以及文具店日销量排行单元,用于根据获取的各文具店的文具的日销量数据,将各文具店进行排行。
- 如权利要求3所述的基于云计算的文具销售分析系统,其特征在于,所述云计算处理器,包括:文具年销量排行单元,用于根据获取的各类文具的年销量数据,将各类文具进行排行;文具月销量排行单元,用于根据获取的各类文具的月销量数据,将各类文具进行排行;以及文具日销量排行单元,用于根据获取的各类文具的日销量数据,将各类文具进行排行。
- 如权利要求1所述的基于云计算的文具销售分析系统,其特征在于,所述数据编译模块为Perl、PHP或者Python编程语言。
- 如权利要求1所述的基于云计算的文具销售分析系统,其特征在于,所述数据库,包括:存储单元和冗余单元。
- 如权利要求1所述的基于云计算的文具销售分析系统,其特征在于,所述数据库为MySQL数据库。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/082759 WO2018201291A1 (zh) | 2017-05-02 | 2017-05-02 | 一种基于云计算的文具销售分析系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/082759 WO2018201291A1 (zh) | 2017-05-02 | 2017-05-02 | 一种基于云计算的文具销售分析系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018201291A1 true WO2018201291A1 (zh) | 2018-11-08 |
Family
ID=64015943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/082759 WO2018201291A1 (zh) | 2017-05-02 | 2017-05-02 | 一种基于云计算的文具销售分析系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018201291A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080133313A1 (en) * | 2006-12-04 | 2008-06-05 | Arash Bateni | Improved methods and systems for forecasting product demand using price elasticity |
CN102214342A (zh) * | 2010-04-09 | 2011-10-12 | 香港纺织及成衣研发中心 | 智能时装销售预测系统 |
CN105512898A (zh) * | 2015-12-15 | 2016-04-20 | 佛山市明扬软件科技有限公司 | 一种基于商品价格管理的运营系统与方法 |
CN106372834A (zh) * | 2016-08-31 | 2017-02-01 | 温州泛海网络科技有限公司 | 一种隐形眼镜进销存管理平台 |
-
2017
- 2017-05-02 WO PCT/CN2017/082759 patent/WO2018201291A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080133313A1 (en) * | 2006-12-04 | 2008-06-05 | Arash Bateni | Improved methods and systems for forecasting product demand using price elasticity |
CN102214342A (zh) * | 2010-04-09 | 2011-10-12 | 香港纺织及成衣研发中心 | 智能时装销售预测系统 |
CN105512898A (zh) * | 2015-12-15 | 2016-04-20 | 佛山市明扬软件科技有限公司 | 一种基于商品价格管理的运营系统与方法 |
CN106372834A (zh) * | 2016-08-31 | 2017-02-01 | 温州泛海网络科技有限公司 | 一种隐形眼镜进销存管理平台 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hinch et al. | OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing | |
Kocaman et al. | Spark NLP: natural language understanding at scale | |
Rath et al. | Representation of rare diseases in health information systems: the Orphanet approach to serve a wide range of end users | |
Kahn et al. | An expert system for culture-based infection control surveillance. | |
Meyer et al. | DKPro agreement: An open-source Java library for measuring inter-rater agreement | |
Boubela et al. | Big data approaches for the analysis of large-scale fMRI data using apache spark and GPU processing: a demonstration on resting-state fMRI data from the human connectome project | |
US20080306984A1 (en) | System and method for semantic normalization of source for metadata integration with etl processing layer of complex data across multiple data sources particularly for clinical research and applicable to other domains | |
Anan et al. | [Retracted] Research and Development of an IoT‐Based Remote Asthma Patient Monitoring System | |
Chén et al. | Personalized health care and public health in the digital age | |
WO2022035018A1 (ko) | 클리닉 매니저 서비스 플랫폼 및 이를 제공하는 시스템 | |
CN111145847A (zh) | 临床试验数据的录入方法及装置、介质和电子设备 | |
JP2016091560A (ja) | 企業のコンテンツ管理における複数のオブジェクトをレポーティングするためのシステム及び方法 | |
Mouček et al. | Software and hardware infrastructure for research in electrophysiology | |
O'connor et al. | Barriers and facilitators to patient and public engagement and recruitment to digital health interventions: protocol of a systematic review of qualitative studies | |
Ulrich et al. | Hands on the Medical Informatics Initiative Core data set—lessons learned from converting the MIMIC-IV | |
Kock-Schoppenhauer et al. | Medical Data Engineering–Theory and Practice | |
Pimenta et al. | Interoperability of Clinical Data through FHIR: A review | |
Senk et al. | A collaborative simulation-analysis workflow for computational neuroscience using HPC | |
Blanco et al. | Implementation of specialised attention mechanisms: ICD-10 classification of Gastrointestinal discharge summaries in English, Spanish and Swedish | |
Soto-Rey et al. | Implementation of an ODM and HL7 compliant electronic patient-reported outcome system | |
WO2018201291A1 (zh) | 一种基于云计算的文具销售分析系统 | |
Schilling et al. | Utilization of social work research: Reaching the practitioner | |
WO2019006638A1 (zh) | 一种基于云计算的文具销售大数据挖掘和分析系统 | |
Guo et al. | Automatic decision-making style recognition method using Kinect technology | |
Nicholson | Crowsetta: A Python tool to work with any format for annotating animal vocalizations and bioacoustics data. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17908734 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17908734 Country of ref document: EP Kind code of ref document: A1 |