WO2018199627A1 - 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템 - Google Patents

암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템 Download PDF

Info

Publication number
WO2018199627A1
WO2018199627A1 PCT/KR2018/004799 KR2018004799W WO2018199627A1 WO 2018199627 A1 WO2018199627 A1 WO 2018199627A1 KR 2018004799 W KR2018004799 W KR 2018004799W WO 2018199627 A1 WO2018199627 A1 WO 2018199627A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cancer
information
survival
mean
Prior art date
Application number
PCT/KR2018/004799
Other languages
English (en)
French (fr)
Inventor
김혜현
이정훈
Original Assignee
주식회사 싸이퍼롬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 싸이퍼롬 filed Critical 주식회사 싸이퍼롬
Publication of WO2018199627A1 publication Critical patent/WO2018199627A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/90Programming languages; Computing architectures; Database systems; Data warehousing

Definitions

  • the present invention relates to a method and system for customizing anticancer treatment using cancer genome sequence variation, transcript expression and patient survival information, and more specifically, quantitative synthesis selected through analysis of cancer genome sequence variation information and transcript expression analysis of a patient.
  • one of the important parts in the treatment of cancer patients with primary tumors is the accurate prediction of the prognosis, and this prognosis is not only determined based on general clinical variables such as age and pathological stage.
  • Molecular variables such as amplification and amplification are used to confirm the prognosis of cancer patients.
  • protein expression levels of ER, PR, and HER2 have been identified as important prognostic factors in breast cancer, which has been used for practical treatment.
  • a study was conducted to predict prognosis with molecular profile in ovarian cancer. In this study, patients were divided according to the presence of mutations in the BRCA1 and BRCA2 genes. The difference was confirmed. This is an early study confirming that the prognosis of cancer patients can be measured by molecular profiles in addition to clinical variables.
  • TCGA Cancer Genome Atlas
  • ICGC International Cancer Genome Consortium
  • TCGA has published research on genomes, transcripts, and epigenetic profiles for about 30 cancers, including finding the causal genes in cancer, the molecular classification of cancers, and heterogeneity in cancers. The information was included.
  • the present invention has been made in view of the above, quantitative synthetic cancer survival gene pairs derived from cancer genome sequence variation, transcript expression and patient survival information were selected, and the selected quantitative synthetic cancer survival gene pairs were selected.
  • the present invention comprises the steps of detecting one or more over-expression candidate genes and one or more corresponding genes constituting a Synthetic Dosage Cancer Survival gene pair from cancer genome sequences and transcript expression analysis results of cancer patients ; And selecting a drug that inhibits the corresponding gene, and provides a method of providing information for selecting an anticancer therapeutic drug using cancer genome sequence variation information and transcript expression information.
  • the present invention comprises the steps of calculating the number of overexpression candidate genes and nucleotide sequence candidates constituting the quantitative Synthetic Cancer Survival gene pair from the results of cancer genome sequence and transcript expression analysis of cancer patients It provides a method for providing information for predicting the prognosis of a cancer patient, including.
  • the present invention provides a customized anticancer drug selection system using cancer genome sequence variation information and transcript expression information, wherein the system is capable of controlling anticancer drug and a drug that can be applied to cancer patients.
  • a database capable of searching or extracting information related to genes;
  • a communication unit accessible to the database; Cancer genome sequence analysis unit; Cancer transcript expression level analysis unit; Drug selection information providing unit;
  • a display unit wherein the cancer genome sequence analysis unit selects one or more overexpression candidate genes and one or more nucleotide sequence mutation candidate genes belonging to the quantitative synthetic cancer surviving gene pair, and the overexpression candidate gene.
  • a mutant candidate gene constituting the quantitative synthetic cancer survival gene pair and including a corresponding gene selection unit for selecting one or more corresponding genes that are not damaged, wherein the drug selection information providing unit suppresses the one or more corresponding genes.
  • the drug selection information providing unit suppresses the one or more corresponding genes.
  • the present invention comprises the steps of selecting a quantitative Synthetic Dosage Cancer Survival gene pair from cancer genome sequence variation information and transcript expression information; And selecting one or more drugs that are nucleotide sequence candidates constituting the quantitative synthetic cancer survival gene pair together with an overexpression candidate gene and inhibiting one or more corresponding intact genes, or selecting the number of the quantitative synthetic cancer survival gene pairs.
  • a computer readable medium comprising an execution module for executing a processor to perform an operation comprising selecting one or more drugs to increase.
  • the customized anticancer treatment method and system using cancer genome sequence variation, transcript expression and patient survival information of the present invention can select an anticancer drug having a good therapeutic effect and prognosis through analysis of quantitative synthetic cancer survival gene pairs.
  • the technology is reliable and can provide relevant information quickly and simply.
  • a combination of one or more mutations and overexpression genes found in a plurality of patients for each specific carcinoma is selected and independent of the genome sequencing analysis of individual patients. It is possible to select a combination of one or more anti-cancer drugs that are expected to have a good therapeutic effect and prognosis in patients, thereby providing a technology that can be utilized for the development and clinical application of combination chemotherapy that is specific to each carcinoma. It is reliable and can provide relevant information quickly and simply.
  • the methods and systems according to the present invention can be used to predict the prognosis of cancer through frequency and distribution analysis of quantitative synthetic cancer surviving gene pairs, and can be effectively used to predict drug treatment responsiveness.
  • FIG. 1 is a diagram showing a network of genes constituting quantitative synthetic cancer survival gene pairs detected in lung adenocarcinoma (LUAD) and colorectal adenocarcinoma (COAD).
  • Figure 1 (a) shows a network of quantitative synthetic cancer surviving gene pairs detected in lung adenocarcinoma (LUAD) is composed of a yellow peak with mutations and a blue peak causing overexpression.
  • FIG. 1 (b) shows a network of quantitative synthetic cancer surviving gene pairs detected in colorectal adenocarcinoma (COAD), and is composed of purple vertices with mutations and green vertices causing overexpression.
  • Figure 2 is a diagram showing the frequency of nucleotide sequence mutation gene and overexpression gene constituting a quantitative synthetic cancer survival gene pair in lung adenocarcinoma (LUAD) and colorectal adenocarcinoma (COAD).
  • LAD lung adenocarcinoma
  • COAD colorectal adenocarcinoma
  • FIG. 3 is a diagram showing survival curves of cancer patients according to the presence and absence of mutation and overexpression of four quantitative synthetic cancer survival gene pairs in (a-d) lung adenocarcinoma (LUAD) and (e-h) colorectal adenocarcinoma (COAD), respectively.
  • LUAD lung adenocarcinoma
  • COAD colorectal adenocarcinoma
  • FIG. 4 is a diagram showing a Kaplan Meier survival curve divided into two groups according to the number of quantitative synthetic cancer surviving gene pairs in the lung adenocarcinoma (LUAD) patient group ((a) with quantitative synthetic cancer survival gene pairs / Otherwise, (b) if you have 5 or more / otherwise, (c) if you have 10 or more / otherwise, (d) if you have 15 or more / otherwise).
  • LAD lung adenocarcinoma
  • FIG. 5 is a diagram showing a Kaplan Meier survival curve divided into two groups according to the number of quantitative synthetic cancer surviving gene pairs in the colorectal adenocarcinoma (COAD) patient group ((a) having at least one quantitative synthetic cancer surviving gene pair If present / otherwise, (b) having 5 or more / if not, (c) having 10 or more / otherwise, (d) having 15 or more / if not).
  • COAD colorectal adenocarcinoma
  • the present invention deviates from the conventional concept of synthetic lethality, and when the function of one of two genes is impaired, when the function of one gene is overactivated, the function of both genes is normal. In this case, the patient's survival is poor, but the mutation and overexpression of the two genes are based on the concept of "quantitative synthetic cancer survival", which is a form in which the patient's survival is improved. To provide a new method that can be used to predict the prognosis of cancer patients.
  • the present invention comprises the steps of detecting one or more over-expression candidate genes and one or more corresponding genes constituting a Synthetic Dosage Cancer Survival gene pair from cancer genome sequences and transcript expression analysis results of cancer patients ; And selecting a drug that inhibits the corresponding gene, and provides a method of providing information for selecting an anticancer therapeutic drug using cancer genome sequence variation information and transcript expression information.
  • base sequence or nucleotide sequence is an ordered sequence of bases that are one of the constituents of a nucleotide that is the basic unit of nucleic acid DNA or RNA composition.
  • base sequence variation information refers to a portion showing a difference when a nucleic acid sequence shows a difference in sequence with a nucleotide sequence of a reference group to be compared, and refers to a base constituting the exon of a gene.
  • the nucleotide sequence variation may be calculated based on the retention of the loss of function variant and its distribution.
  • the malfunction mutation may include, but is not limited to, nonsense mutation, frameshift insertion and deletion, nonstop mutation and splice site mutation.
  • the reference base sequence or reference base genome is a base sequence when the base sequence comparison is also referred to as a standard base sequence.
  • transcriptome gene expression level refers to a value indicating how much mRNA, which is a product before the protein is produced, is copied from the genome. Transcript expression can be a measure of how gene activity varies according to disease or condition.
  • Cancer genome sequencing information used in the present invention can be determined using known sequencing methods, and also services such as Complete Genomics, BGI (Beijing Genome Institute), Knome, Macrogen, DNALink, etc., which provide commercially available services. Can be, but is not limited thereto.
  • Gene sequence variation information present in the cancer genome sequence in the present invention can be extracted using a variety of methods, a sequence comparison program with a genome sequence of a reference group, for example HG19, for example, ANNOVAR (Wang et al., Nucleic Acids Research, 2010; 38 (16): e164), Sequence Variant Analyzer (SVA) (Ge et al., Bioinformatics. 2011; 27 (14): 1998-2000), Break Dancer (Chen et al. , Nat Methods.2009 Sep; 6 (9): 677-81) and the like.
  • Transcript expression information used in the present invention can be extracted using a variety of known methods, and can also use services such as Affymetrix, Illumina, Macrogen, DNALink, etc., which provides a commercialized service, but is not limited thereto.
  • the gene sequence variation information and transcript expression information may be received / obtained through a computer system.
  • the method may further include receiving the gene mutation information and transcript expression information into a computer system.
  • the computer system used in the present invention includes or has access to one or more databases including anti-cancer therapeutic drugs targeted for cancer patients and databases capable of retrieving or extracting information related to genes that the drugs can inhibit. Do.
  • SDCS Synthetic Dosage Cancer Survival
  • a quantitative synthetic cancer survival candidate gene was selected through survival analysis using cancer genome sequence variation, transcript expression level and patient survival information, and examples thereof are shown in Table 2.
  • the term “synthetic dosage lethality” refers to a phenomenon in which a combination of a sequence mutation gene and a transcript overexpression gene causes cell death, and each of the sequence mutation gene and overexpression gene causes cell death. Viable mutation / variant genes and over-expression genes that do not induce, but when the combination of two or more viable sequence mutations and overexpression causes cell death It is called death.
  • the synthetic dose method refers to a phenomenon in which a combination of a sequence mutation gene and a transcript overexpression gene causes cancer cell death.
  • cancer cell death may have some effect on the survival rate of the cancer patient, but the effect is limited, and cancer metastasis is known to have a greater effect on the survival rate of cancer patients than cell death.
  • the evaluation index of synthetic dose killing is not only the cell death but also the survival rate of the patient, and thus the concept of quantitative synthetic cancer survival and synthetic dose killing disclosed in the present invention are differentiated.
  • the term quantitative synthetic cancer survival does not necessarily refer to the case where the combination of the nucleotide sequence mutation gene and the overexpression gene constituting the quantitative synthetic cancer survival gene pair occurs in one cancer cell.
  • quantitative synthetic survival a combination of two or more gene sequence mutation genes and overexpression genes occurs in different cancer cells in the same cancer tissue and is combined, this is called quantitative synthetic survival.
  • the quantitative synthetic cancer survival gene pair performs survival analysis from sequence variation information, transcript expression level information and survival information of cancer patients, or genomes in cancer cell lines, cancer organoids, or cancer tissues. Sequence variation analysis, or infiltration and / or metastasis identification.
  • the quantitative synthetic cancer survival gene pair can be obtained through analysis of population data by cancer type or cancer type, and its distribution may vary greatly among individuals.
  • quantitative synthetic cancer survival gene pair used in the present invention means a pair consisting of two genes corresponding to a sequencing candidate gene and a transcript overexpression candidate gene.
  • corresponding gene refers to a sequence mutation candidate gene constituting a quantitative synthetic cancer survival gene pair together with an overexpression candidate gene and refers to an intact gene. Can be used to improve the survival rate of the cancer patient.
  • the corresponding gene may be determined by the gene sequence variation score or gene damage score possessed by the gene, and may be determined based on the retention of a loss of function variant. That is, the corresponding gene refers to a gene that is judged to be intact because there is no loss of function or the gene damage score is lower than a certain threshold.
  • the term “gene sequence variation score” refers to an amino acid sequence variation (substitution, addition, etc.) when a genomic sequence variation is found at an exon region of a gene encoding a protein. Or deletion) or transcriptional control mutations, and the like, and the numerical value of the degree of causing significant changes or damages to the structure and / or function of the protein, wherein the gene sequence variation score is the number of amino acids on the genome sequence It can be calculated by considering the degree of evolutionary conservation and the degree of change in the structure or function of the protein according to the physical properties of the modified amino acid.
  • Calculating the gene sequence variation score used in the gene damage score calculation method according to the present invention can be performed using a method known in the art.
  • SIFT Small Intolerant From Tolerant, Pauline C et al., Genome Res. 2001 May; 11 (5): 863-874; Pauline C et al., Genome Res. 2002 March; 12 (3): 436 -446; Jing Hul et al., Genome Biol. 2012; 13 (2): R9
  • PolyPhen, PolyPhen-2 Polymorphism Phenotyping, Ramensky V et al., Nucleic Acids Res.
  • DANN a deep learning approach for annotating the pathogenicity of genetic variants.
  • REVEL an Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants._AGHG 2016, https://sites.google.com/site/revelgenomics/) , CHASM (Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B, Karchin R Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations Cancer Res 2009; 69 (16): 6660-7, http://www.cravat.us), mCluster (Yue P, Forrest WF, Kaminker JS, Lohr S, Zhang Z, Cavet G: Inferring the functional effects of mutation through clusters of mutations in homologous proteins. Human mutation.
  • NsSNPAnayzer Lei Bao, Mi Zhou, and Yan Cui ns SNPA nalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms.Nucleic Acids Res 2005; SAAPpred (Nouf S Al- zeror and Andrew CR Martin.The SAAP pipeline and database: tools to analyze the impact and predict the pathogenicity of mutations.BMC Genomics 2013; 14 (3): 1-11, www.bioinf. org.uk/saap/dap/), HanSa (Acharya V.
  • CanPredict a computational tool for predicting cancer-associated missense mutations.Nucleic Acids Res., 2007; 35: 595: 598, http://pgws.nci.nih.gov/cgi- bin / GeneViewer.cgi_), FIS (Boris Reva, Yevgeniy Antipin, and Chris Sander.Predicting the functional impact of protein mutations: Application to cancer genomics.Nucleic Acids Res 2011; 39: e118-e118.), BONGO (Cheng T.M.K., Lu Y-E, Vendruscolo M., Lio P., Blundell T.L.
  • Gene sequence variation scores may be calculated from the gene sequence variation information, but are not limited thereto. For example, when assigning a gene sequence variation score using an SIFT score, a mutation of 0.7 or more mutations is applied by applying the assumption that a variation of 0.7 or more SIFT scores does not cause a significant change in the function of the gene.
  • Filtering processes such as those that do not exist, may be applied, and such modifications are within the scope of the present invention.
  • a score applied by calculating a value of transforming the SIFT score through an arbitrary function is also within the scope of the present invention.
  • the purpose of the algorithms described above is to determine how each gene sequence mutation affects the expression or function of the protein, how this damage damages the protein, or how little is affected. They have in common that they determine the impact on the expression, structure and / or function of the protein by determining the amino acid sequence and related changes of the protein encoded by the gene, which will result in individual gene sequence variations.
  • a Sorting Intolerant From Tolerant (SIFT) algorithm was used to calculate an individual gene sequence variation score.
  • SIFT Sorting Intolerant From Tolerant
  • gene sequence variation information is input to a VCF (Variant Call Format) format file, and each gene sequence variation is scored for damaging the gene.
  • VCF Variant Call Format
  • the five algorithms were compared using a set of known data, HumVar and HumDiv (Adzhubei, IA et al., A method and server for predicting damaging missense mutations.Nature Methods, 2010; 7 (4): 248-249). .
  • gene sequence mutations that cause protein damage of 97.9% of HumVar and gene sequence mutations of less than 97.3% were detected identically in at least three of the five algorithms, and 99.7% protein damage of HumDiv.
  • Gene sequencing mutations and gene sequencing mutations with less influence of 98.8% were detected in at least three of the five algorithms.
  • the gene sequence variation information may be related to the degree of impairment of protein function.
  • the method of the present invention includes the concept of calculating a "gene damage score" based on the gene sequence variation score. More specifically, the mutant gene and the corresponding gene may be determined by a gene damage score calculated from a gene sequence variation score calculated by applying the above-described algorithm to the gene sequence variation possessed by each corresponding gene.
  • a gene damage score when there are two or more gene sequence mutations possessed by the gene, a gene damage score may be calculated as an average value of each gene sequence variation score.
  • GDS Gene Deleteriousness Score
  • the gene damage score is calculated as an average value of the gene sequence variation scores calculated for each mutation, and the average value is, for example, a geometric mean, an arithmetic mean, or a harmonic mean.
  • Arithmetic geometric mean, arithmetic harmonic mean, geometric harmonic mean, Pythagorean mean, quadrant mean, quadratic mean, cutting mean, windsorized mean, weighted mean, weighted geometric mean, weighted arithmetic mean, weighted harmonic mean, function mean, ⁇ average Can be computed as a generalized f-mean, percentile, maximum, minimum, mode, median, median, or measures of central tendency, simple product or weighted product, or a function operation of the outputs. However, the present invention is not limited thereto.
  • the gene damage score was calculated by the following Equation 1, and the following Equation 1 may be variously modified, but is not limited thereto.
  • Equation 1 Sg is DNA damage score of the protein of the gene g coding, n is the number of the analyte nucleotide sequence variation of the nucleotide sequence mutations of the gene g, vi is the nucleotide sequence variation in the i-th analyzed Sequence Variation Score, p is a nonzero real number.
  • p when the value of p is 1, it is an arithmetic mean, and when the value of p is -1, it is a harmonic mean, and in the extreme case when the value of p is close to 0, it is a geometric mean.
  • the gene damage score was calculated by the following Equation 2.
  • Equation 2 Sg is DNA damage score of the protein of the gene g coding, n is a nucleotide sequence variation of the number of the nucleotide sequence mutation target analysis, vi is the gene sequence of the i-th analyte nucleotide sequence mutations of the gene g Is a variation score, and wi is a weight given to the gene sequence variation score vi of the i- th sequence variation. When all weights wi have the same value, the gene damage score Sg becomes a geometric mean value of the gene sequence variation score vi .
  • the weight may be given in consideration of the type of the protein, the pharmacokinetic or pharmacodynamic classification of the protein, the pharmacokinetic parameters of the drug enzyme protein, and the population or race distribution.
  • the method according to the present invention comprises the steps of determining priorities between drugs applied for the cancer patient using the quantitative synthetic cancer survival gene pair information; Alternatively, the method may further include determining whether to use a drug applied to the cancer patient using the quantitative synthetic cancer survival gene pair information.
  • the method according to the present invention is further divided into two or more subgroups based on the biological markers significant for each carcinoma, and then quantitated through survival analysis using genomic sequence variation information, transcript expression information and patient survival information in each subgroup. Synthetic cancer survival gene pairs can be selected.
  • the biological marker is a concept that includes all known markers known in the art to be involved in the diagnosis, treatment and prognosis associated with cancer.
  • known markers for each carcinoma can be used without limitation, including microsatellite instability (MSI), which is known as an important biological marker for the diagnosis, treatment and prognosis of colorectal cancer.
  • MSI microsatellite instability
  • the selection of candidate drugs is based on the calculated number of quantitative synthetic cancer surviving gene pairs selected from cancer genome sequences and transcript expression analysis results, and the priority or combination of candidate drugs based on the calculated number. It can be performed by the step of determining.
  • the present invention by selecting a pair of quantitative synthetic cancer surviving genes, and when there exists an overexpressing gene constituting the pair, it is possible to enhance the survival rate of cancer patients by inhibiting the paired and intact corresponding genes in pairs with the target. It was confirmed. Therefore, it is possible to select personalized anticancer drugs among several comparison drugs through analysis of cancer genome sequences and transcript expression levels, and to predict the effects or side effects of drugs in advance to determine the priority or use of anticancer drugs applied to individuals. You can decide.
  • a combination of one or more mutations and overexpression genes found in a plurality of patients for each specific carcinoma is selected and independent of the genome sequencing analysis of individual patients.
  • the present invention comprises the steps of calculating the number of overexpression candidate genes and nucleotide sequence candidates constituting the quantitative Synthetic Cancer Survival gene pair from the results of cancer genome sequence and transcript expression analysis of cancer patients It provides a method for providing information for predicting the prognosis of a cancer patient, including.
  • the survival rate of cancer patients significantly increased as the number of quantitative synthetic cancer survival gene pairs, represented by the number of quantitative synthetic cancer survival gene pairs through the genome analysis of cancer patients By confirming the burden of synthetic cancer survival, the survival prognosis of the cancer patient can be effectively predicted.
  • the present invention provides a customized anticancer drug selection system using cancer genome sequence variation information and transcript expression information, wherein the system is capable of controlling anticancer drug and a drug that can be applied to cancer patients.
  • a database capable of searching or extracting information related to genes;
  • a communication unit accessible to the database; Cancer genome sequence analysis unit; Cancer transcript expression level analysis unit; Drug selection information providing unit;
  • a display unit wherein the cancer genome sequence analysis unit selects one or more overexpression candidate genes and one or more nucleotide sequence mutation candidate genes belonging to the quantitative synthetic cancer surviving gene pair, and the overexpression candidate gene.
  • a mutant candidate gene constituting the quantitative synthetic cancer survival gene pair and including a corresponding gene selection unit for selecting one or more corresponding genes that are not damaged, wherein the drug selection information providing unit suppresses the one or more corresponding genes.
  • the drug selection information providing unit suppresses the one or more corresponding genes.
  • the system according to the present invention extracts relevant information by accessing a database capable of searching or extracting information related to anticancer therapeutic drugs and genes that can be inhibited by cancer patients, and selecting the customized drug accordingly. It may further comprise a user interface for presenting information to the user.
  • the server including the database or its access information, the calculated information, and the user interface device connected thereto may be used in connection with each other.
  • the user interface or the terminal may request, receive and / or store a customized anticancer drug selection process using a cancer genome sequence variation and transcript expression amount from a server, and receive a smartphone, a personal computer (PC). ), A tablet PC, a personal digital assistant (PDA), a web pad, etc., may be configured as a terminal having a mobile communication function having a computing capability with a memory means and a microprocessor.
  • the server is a means for providing access to a database, and is configured to be connected to a user interface or a terminal through a communication unit so as to exchange various information.
  • the communication unit as well as communication in the same hardware, local area network (LAN), metropolitan area network (MAN), wide area network (WAN), the Internet, 2G, 3G, 4G It may include a mobile communication network, Wi-Fi (Wi-Fi), Wibro (Wibro), and the like, and the communication method is wired, wireless, any communication method.
  • the database can also be connected to various life science databases accessible via the Internet, depending on the purpose.
  • a storage medium includes any medium for storage or delivery in a form readable by a device such as a computer.
  • a computer readable medium may include read only memory (ROM); Random access memory (RAM); Magnetic disk storage media; Optical storage media; Flash memory devices and other electrical, optical or acoustic signaling media, and the like.
  • the present invention comprises the steps of selecting a Synthetic Dosage Cancer Survival gene pair from cancer genome sequence variation information and transcript expression information; And selecting one or more drugs that are nucleotide sequence candidates constituting the quantitative synthetic cancer survival gene pair together with an overexpression candidate gene and inhibiting one or more corresponding intact genes, or selecting the number of the quantitative synthetic cancer survival gene pairs.
  • a computer readable medium comprising an execution module for executing a processor to perform an operation comprising selecting one or more drugs to increase.
  • Level2 somatic mutation data is in the form of a mutation annotation format (maf). Mutation location and mutation classification were used for analysis.
  • Mutations include 'Missense mutation', 'Nonsense mutation', 'Nonstop mutation', 'Frameshift indel', 'In frame indel', 'splice site mutation', 'Translation start site mutation', 'Silent mutation', 'Intron', Classified as "UTR" and "Intergenic.” Among them, 'Missense mutation', 'Nonsense_Mutation', 'Nonstop mutation', 'Splice site mutation' and 'Translation start site mutation' were used. Level 3 transcript expression (RNA sequence) data was used in the TCGA expression data of cancer cells provided by RSEM normalization in advance. The level 2 clinical data includes various clinical variables according to the carcinoma, and the variables used in the cox model were reviewed by a professional pathologist.
  • the data of patients without information for the cox proportional hazard model were excluded.
  • the data of patients without mutation data and patients without transcript expression data were excluded. More specifically, the mutation data excludes synonymous mutations first, and then excludes genes marked 'Unknown' in the data as genes without HGNC symbols. Finally, the data of patients without clinical information were excluded. Finally, data from 5,723 patients were used for later analysis.
  • GDS Gene deleteriousness score
  • Gene deleteriousness scores were defined to quantify the degree of deleteriousness of genes.
  • the gene damage score is calculated according to the number and types of mutations of the gene, and the scale of the score is from 0 to 1, and a smaller score is defined as meaning that the functional structural damage of the gene is more severe. If a gene has LoFs such as nonsense mutations, frameshift insertion and deletion, nonstop mutations, splice site mutations, and translation start site mutations, the gene damage score for that gene is set to zero. If a gene does not have a non-synonymous mutation, the gene damage score for that gene is set to 1.0.
  • the gene damage score for that gene is the SIFT score of all non-synonymous mutations in the gene.
  • the geometric mean was set. In order to avoid dividing by zero, if SIFT score is 0, it is replaced with 10e-8. Mutations having a value of 0.7 or more of the SIFT score were excluded because of the effect of correcting the high score in calculating the gene damage score.
  • the filtering criterion of the SIFT score 0.7 is an arbitrary filtering criterion applied in the case of this embodiment, and various filtering criteria may be applied according to the purpose of analysis.
  • the variation score of 10e-8 points given to avoid the denominator being 0 is also an arbitrary criterion applied in the case of the present embodiment, and various criteria may be applied according to the purpose of the analysis.
  • the SIFT algorithm (see Equation 3 below) used to calculate the gene damage score in this embodiment is also an arbitrary algorithm applied in the case of this embodiment, and various algorithms can be applied according to the purpose of analysis.
  • RNA sequence data provided by TCGA was used to define the transcript overexpression gene of the patient. Since the data has already been RSEM normalization process for comparison between samples in this experiment, the expression normalization process between samples was omitted. Genes with low expression levels were removed and the criteria were to be removed when 20 or fewer patients had a cpm (Count per million) value greater than 5 for the expression level of a gene. The z transform was used to shift the distribution of transcript levels of the patient to the standard normal distribution to see the difference in relative expression values among the patients. Finally, the gene of the patient whose z expression value of gene expression is greater than 2 was defined as an overexpression gene.
  • the Cox proportional hazard model was used as a survival assay for the screening of Synthetic Dosage Cancer Survival gene pairs. Cox proportional hazard models can correct for disturbances in clinical variables.
  • the patient group was divided into four groups for each gene pair to identify the prognostic effect according to the nucleotide sequence variation and overexpression state of the gene pairs;
  • One gene is an overexpression gene and the gene damage score of the corresponding gene is less than or equal to 0.3, one gene is an overexpression gene, but the gene damage score of the corresponding gene is greater than 0.3, and one gene does not show overexpression but the gene damage score of the corresponding gene is 0.3
  • the group which is less than one, and which one gene does not show overexpression, and the gene damage score of a corresponding gene is also larger than 0.3.
  • Quantitative synthetic cancer surviving gene pairs were selected according to p value and hazard ratio for each group. Specifically, a gene pair having a P value of 0.05 or less and a hazard ratio of 1 or more was defined as a quantitative synthetic cancer survival gene pair.
  • Example 1-2 clinical information, DNA somatic mutation information, and transcript expression amount (RNA sequence) information were obtained in 20 carcinomas.
  • the data set has all three data types and contains information on all clinical variables required for the cox proportional hazard model.
  • the data set was named core set and used for further analysis.
  • gene damage scores were calculated for all genes in all patients, with most scores being 1.0. Aside from one point, gene damage scores of many genes showing somatic mutations were distributed at zero. In this example, a gene damage score of 0.3 was analyzed by dividing genes with moderate or higher gene function impairment and genes that did not (corresponding gene) on the basis of an analysis threshold.
  • Example 1-4 the expression level of each gene was analyzed by analyzing transcript expression amount (RNA sequence) data independently in each carcinoma. First, about 27.35% of genes were removed from each carcinoma by low expression gene filtering using cpm values. Specifically, in 473 lung adenocarcinoma transcript expression data, the distribution of overexpressed patients for each gene was 19, median 18, and standard deviation 4.70.
  • 803 quantitative synthetic cancer survival gene pairs consist of 249 mutant genes and 489 transcript overexpressed genes.
  • genes such as TTN, MUC16, KRAS, and TNR showed high frequency in 121, 111, 48, and 29 times, respectively, and overexpressed genes such as CBFB, MYC, and TNFRSF17. Frequency 37, 21, 12 times.
  • it was related to apoptosis, cell death and cell adhesion in Biological process and chromosome and sarcomere in Cellular component.
  • Most patients did not have quantitative synthetic cancer surviving gene pairs, and as the number of SCS pairs in one patient increased, the number of patients decreased.
  • FIG. 1 The network of genes constituting the quantitative synthetic cancer survival gene pair confirmed through the above process is shown in FIG. 1, and the frequency of quantitative synthetic cancer survival gene genes is shown in FIG. 2.
  • Figure 1 (a) shows a pair of quantitative synthetic cancer surviving genes appearing in lung adenocarcinoma (LUAD), consisting of a yellow peak with mutations and a blue peak causing transcript overexpression by connecting two different types of vertices by a line Quantitative synthetic cancer survival gene pairs were expressed.
  • Figure 1 (b) is a network of quantitative synthetic cancer surviving gene pairs appearing in colorectal adenocarcinoma (COAD) is composed of a purple peak with mutations and a green peak causing overexpression.
  • COAD colorectal adenocarcinoma
  • the survival curve of FIG. 3 is a result of analyzing the survival curve according to the presence or absence of somatic mutation and transcript overexpression of the quantitative synthetic cancer surviving gene pair obtained from the above experimental results.
  • Figure 3 (a) it can be seen that the RYR2 gene and ABCF1 gene is in a quantitative synthetic cancer survival gene pair (SCDS pair of genes) relationship with each other.
  • SCDS pair of genes quantitative synthetic cancer survival gene pair
  • the TTN gene-DPH2 gene, the MUC16 gene-ANO8 gene, and the FAT3 gene-PBMXL1 gene correspond to quantitative synthetic cancer survival gene pairs in lung adenocarcinoma, respectively, and FIG. 3.
  • TTN gene-ZNF512B gene, TP53 gene-F2RL2 gene, KRAS gene-TRAPPC3 gene and PCLO gene-CMTM7 gene correspond to quantitative synthetic cancer survival gene pairs in colorectal adenocarcinoma, respectively. It was.
  • Table 2 shows an exemplary list of 803 quantitative synthetic cancer surviving gene pairs selected from nine carcinomas using the criteria of this example. Carcinomas with a large number of synthetic cancer surviving gene pairs are shown in order.
  • the survival curves of the lung adenocarcinoma patient group and the colorectal adenocarcinoma patient group are analyzed.
  • the survival rate of cancer patients is higher than that of patients with fewer or no quantitative synthetic cancer survival gene pairs. It was high and confirmed that the prognosis was good.
  • the prognosis of cancer patients can be predicted by identifying pairs of quantitative synthetic cancer surviving genes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Software Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Evolutionary Computation (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템에 관한 것으로, 보다 구체적으로 환자의 암 유전체 염기서열 변이 정보 및 전사체 발현 분석을 통해 선정된 정량 합성암생존(Synthetic Dosage Cancer Survival) 유전자 쌍을 이용한 맞춤형 항암 치료 약물 선택 방법 및 시스템에 관한 것이다. 본 발명의 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템은 정량 합성암생존 유전자 쌍의 분석을 통하여 개인별로 치료 효과 및 예후가 좋은 항암 치료 약물을 선택할 수 있는 기술로서 신뢰도가 높으며 신속하고 간단하게 관련 정보를 제공할 수 있다.

Description

암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템
본 발명은 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템에 관한 것으로, 보다 구체적으로 환자의 암 유전체 염기서열 변이 정보 및 전사체 발현 분석을 통해 선정된 정량 합성암생존(Synthetic Dosage Cancer Survival) 유전자 쌍을 이용한 맞춤형 항암 치료 약물 선택 방법 및 시스템에 관한 것이다.
생명공학 기술의 발전으로 인해 현재는 인간의 전 유전체 염기서열(whole genome sequence)을 분석하여 개개인의 질병을 예측하고 맞춤형 질병 예방 및 치료를 제공하는 단계까지 도달하였다.
유전체학의 급속한 발전으로 암의 병인론으로 유전체의 불안정성과 누적된 변형이 정설로 정립되었으며, 유전체의 고속대용량 분석 및 정보처리 신기술의 급속한 발전으로 선진국에서는 실제 임상적용이 빠르게 실현되고 있다.
한편, 원발성 종양을 가진 암환자의 치료에서 중요한 부분 중 하나는 정확한 예후의 예측이며, 이러한 예후(prognosis)는 나이, 병리학적 단계 등 일반적인 임상 변수에 기초하여 판단될 뿐만 아니라, 최근에는 유전학적 변이나 증폭과 같은 분자적 변수들을 이용하여 암환자의 예후를 확인하고 있다. 대표적으로 ER, PR, HER2의 단백질 발현 수준이 유방암에서의 중요한 예후인자로 확인되었으며, 이는 실제적인 치료에도 사용되고 있다. 또한, 2011년에는 난소암에서 분자적 프로파일을 가지고 예후를 예측한 연구가 소개되었으며, 이 연구에서는 BRCA1 유전자와 BRCA2 유전자에 존재하는 돌연변이의 여부에 따라 환자의 그룹을 나눈 후, 각 그룹에서 예후의 차이를 보임을 확인하였다. 이 연구는 임상적 변인 외에 분자적 프로파일로도 암환자의 예후를 측정할 수 있음을 확인한 초기의 연구이다.
최근, 일반적인 암유전체 연구들과 관련된 많은 논문들이 TCGA(The Cancer Genome Atlas), ICGC(International Cancer Genome Consortium) 등에 의해 발표되었다. TCGA는 약 30개의 암종에 대해 유전체, 전사체, 후성유전체적 프로파일에 대한 연구 결과를 출간하였으며, 이 연구에는 암에서 원인 유전자를 찾는 것, 암의 분자적인 분류 및 암에서의 이질성(heterogeneity) 등에 관한 내용이 포함되었다.
현재까지 발표된 대부분의 연구는 한 개의 유전자에 대해 집중되어있고 그 중 암의 예후와 관련된 연구들 역시 한 개의 유전자와 한 개의 암종에 대해서만 한정적으로 개시하고 있다. 그러나 이렇게 확인된 원인 유전자들이 직접적으로 약이 될 수 있는 것은 아니기 때문에 임상적 적용이 어려운 한계가 있다.
따라서 단일 암 관련 마커 유전자를 이용한 항암 치료 연구를 넘어서서, 암 유전체학 정보와 개인 유전체 염기서열 변이 및 전사체 발현정보를 직접 활용하여 맞춤형 항암제를 선별함으로써 항암 치료 효율을 높이고 부작용을 줄일 수 있는 방법론 도입의 필요성이 강하게 제기된다.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보로부터 도출된 정량 합성암생존 유전자 쌍을 선정하였으며, 상기 선정된 정량 합성암생존 유전자 쌍을 구성하는 하나 이상의 과발현 유전자와 쌍을 이루는 하나 이상의 대응 유전자를 억제하는 약물을 선택함으로써, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법 및 시스템을 제공하고자 한다.
한 양태에서 본 발명은 암 환자의 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자 쌍을 구성하는 하나 이상의 과발현 후보 유전자 및 하나 이상의 대응 유전자를 검출하는 단계; 및 상기 대응 유전자를 억제하는 약물을 선정하는 단계를 포함하는, 암 유전체 염기서열 변이 정보 및 전사체 발현 정보를 이용한 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법을 제공한다.
다른 양태에서 본 발명은 암 환자의 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 정량 합성암생존 (Synthetic Cancer Survival) 유전자 쌍을 구성하는 과발현 후보 유전자 및 염기서열 변이 후보 유전자의 수를 산출하는 단계;를 포함하는, 암 환자의 예후 예측을 위한 정보를 제공하는 방법을 제공한다.
또 다른 양태에서 본 발명은 암 유전체 염기서열 변이 정보 및 전사체 발현 정보를 이용한 맞춤형 항암 치료 약물 선택 시스템에 있어서, 상기 시스템은 암 환자에 대해 적용대상이 되는 항암 치료 약물 및 상기 약물이 조절할 수 있는 유전자와 관련된 정보 검색 또는 추출이 가능한 데이터베이스; 상기 데이터베이스에 접근 가능한 통신부; 암 유전체 염기서열 분석부; 암 전사체 발현량 분석부; 약물 선택 정보 제공부; 및 표시부를 포함하며, 상기 암 유전체 염기서열 분석부는 정량 합성암생존 유전자 쌍에 속하는 하나 이상의 과발현 후보 유전자 및 하나 이상의 염기서열 변이 후보 유전자를 선정하는 정량 합성암생존 유전자쌍 선정부 및 상기 과발현 후보 유전자와 함께 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이며, 손상되지 않은 하나 이상의 대응 유전자를 선정하는 대응 유전자 선정부를 포함하고, 상기 약물 선택 정보 제공부는 상기 하나 이상의 대응 유전자를 억제하는 약물 정보를 제공하거나, 상기 정량 합성암생존 유전자 쌍의 개수를 증가시키는 약물 정보를 제공하는 것인, 맞춤형 항암 치료 약물 선택 시스템을 제공한다.
또 다른 양태에서 본 발명은 암 유전체 염기서열 변이 정보 및 전사체 발현 정보로부터 정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자 쌍을 선별하는 단계; 및 과발현 후보 유전자와 함께 상기 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이고, 손상되지 않은 하나 이상의 대응 유전자를 억제하는 하나 이상의 약물을 선별하거나, 상기 정량 합성암생존 유전자 쌍의 개수를 증가시키는 하나 이상의 약물을 선별하는 단계를 포함하는 동작을 수행하는 프로세서를 실행시키는 실행모듈을 포함하는 컴퓨터 판독 가능한 매체를 제공한다.
본 발명의 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템은 정량 합성암생존 유전자 쌍의 분석을 통하여 개인별로 치료 효과 및 예후가 좋은 항암 치료 약물을 선택할 수 있는 기술로서 신뢰도가 높으며 신속하고 간단하게 관련 정보를 제공할 수 있다. 본 발명에 따른 방법 및 시스템을 이용할 경우, 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자와 과발현 후보 유전자를 선정하고, 해당 과발현 유전자와 쌍을 이루며 손상되지 않은 대응 유전자의 선정을 통해, 상기 대응 유전자를 표적으로 조절하는 항암 치료 약물을 선택함으로써, 여러 개의 비교 대상 약물 중에서 개인별 맞춤형 항암제 선택이 가능하며, 약물의 효과 또는 부작용 등을 사전에 예측함으로써 개인에 적용되는 항암제 간의 우선순위 또는 사용 여부를 결정할 수 있다. 또한, 정량 합성암생존 유전자 쌍에 속하는 유전자의 조합 중, 특정 암종별로 다수의 환자에서 발견되는 하나 이상의 변이 및 과발현 유전자의 조합을 선정하여, 개별 환자의 유전체 염기서열 분석결과와는 독립적으로, 다수의 환자에서 치료 효과 및 예후가 좋을 것으로 예측되는 하나 이상의 항암 치료 약물의 조합을 선택하여 각 암종별로 특화된 복합항암요법(combination chemotherapy)의 개발 및 임상적용에 활용할 수 있는 기술의 제공이 가능하며, 이는 신뢰도가 높으며 신속하고 간단하게 관련 정보를 제공할 수 있다. 또한, 본 발명에 따른 방법 및 시스템은 정량 합성암생존 유전자 쌍의 빈도 및 분포 분석을 통해 암의 예후를 예측하는데 사용될 수 있고, 약물 치료 반응성을 예측하는 데에도 효과적으로 사용될 수 있다.
도 1은 폐선암(LUAD)과 대장선암(COAD)에서 검출된 정량 합성암생존 유전자 쌍을 구성하는 유전자의 네트워크를 나타낸 도이다. 도 1(a)는 폐선암(LUAD)에서 검출된 정량 합성암생존 유전자 쌍을 네트워크로 나타낸 것이며, 변이를 가진 노란색 정점과 과발현을 일으키는 파란색 정점으로 구성되어있다. 도 1(b)는 대장선암(COAD)에서 검출된 정량 합성암생존 유전자 쌍을 네트워크로 나타낸 것이며, 변이를 가진 보라색 정점과 과발현을 일으키는 초록색 정점으로 구성되어 있다.
도 2는 폐선암(LUAD)과 대장선암(COAD)에서 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 유전자와 과발현 유전자의 빈도를 나타낸 도이다.
도 3은 (a-d) 폐선암(LUAD) 및 (e-h) 대장선암(COAD)에서 각각 4가지 정량 합성암생존 유전자 쌍의 변이와 과발현의 유무에 따른 암 환자의 생존 곡선을 나타낸 도이다.
도 4는 폐선암(LUAD) 환자군에서 정량 합성암생존 유전자 쌍의 개수에 따라 암 환자를 두 군으로 나누어 Kaplan Meier 생존 곡선을 나타낸 도이다((a) 정량 합성암생존 유전자 쌍을 가지고 있는 경우 / 그렇지 않은 경우, (b) 5개 이상 가진 경우 / 그렇지 않은 경우, (c) 10개 이상 가진 경우 / 그렇지 않은 경우, (d) 15개 이상 가진 경우 / 그렇지 않은 경우).
도 5는 대장선암(COAD) 환자군에서 정량 합성암생존 유전자 쌍의 개수에 따라 암 환자를 두 군으로 나누어 Kaplan Meier 생존 곡선을 나타낸 도이다((a) 정량 합성암생존 유전자 쌍을 1개 이상 가지고 있는 경우 / 그렇지 않은 경우, (b) 5개 이상 가진 경우 / 그렇지 않은 경우, (c) 10개 이상 가진 경우 / 그렇지 않은 경우, (d) 15개 이상 가진 경우 / 그렇지 않은 경우).
본 발명은 종래 공지된 합성치사(synthetic lethality)의 개념에서 벗어나, 특정 두 개의 유전자 중 하나의 유전자의 기능이 손상되는 경우, 하나의 유전자의 기능이 과활성화 되는 경우, 두 유전자의 기능이 모두 정상일 경우에는 환자의 생존이 나쁜데, 두 유전자의 기능에 각각 변이와 과발현이 발생한 경우 그 환자의 생존이 좋아지는 형태인 “정량 합성암생존”의 개념에 근거한 것으로, 이를 이용하여 맞춤형 항암 치료 약물 선택 및 암 환자의 예후를 예측하는데 활용할 수 있는 새로운 방법을 제공하고자 한다.
한 양태에서 본 발명은 암 환자의 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자 쌍을 구성하는 하나 이상의 과발현 후보 유전자 및 하나 이상의 대응 유전자를 검출하는 단계; 및 상기 대응 유전자를 억제하는 약물을 선정하는 단계를 포함하는, 암 유전체 염기서열 변이 정보 및 전사체 발현 정보를 이용한 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법을 제공한다.
본 발명에서 사용된 용어, “염기서열 또는 뉴클레오타이드 서열 (base sequence or nucleotide sequence)”이란 핵산 DNA 또는 RNA 구성의 기본단위인 뉴클레오타이드의 구성성분 중 하나인 염기들을 순서대로 나열한 순서 배열이다.
본 발명에서 사용된 용어, “염기서열 변이 정보”는 핵산 염기서열이 비교대상인 참조군의 염기서열과 서열상의 차이를 나타낼 때 그 차이를 보이는 부분을 의미하는 것으로, 유전자의 엑손을 구성하는 염기의 치환, 부가 또는 결실에 관한 정보를 의미한다. 이러한 염기의 치환, 부가, 또는 결실은 여러 가지 원인에 의해 발생할 수 있으며, 예를 들면 염색체의 돌연변이, 절단, 결실, 중복, 역위 및/또는 전좌를 포함하는 구조적 이상에 의할 수 있다. 구체적으로, 염기서열 변이는 기능상실변이(Loss of Function Variant)의 보유 여부와 그 분포를 기준으로 산출될 수 있다. 상기 기능상실변이에는 nonsense mutation, frameshift insertion and deletion, nonstop mutation and splice site mutation이 포함될 수 있으며, 이에 제한되지 않는다.
상기 참조군 염기서열 또는 참조군 유전체 (Reference base (or nucleotide) sequence or Reference genome)란 염기서열 비교 시에 기준이 되는 염기서열로 표준 염기서열이라고도 한다.
본 발명에서 사용된 용어, “전사체 발현량 (Transcriptome gene expression level)”이란 단백질이 생산되기 전의 산물인 mRNA가 유전체로부터 얼마나 많이 복사되었는지를 나타내는 값을 뜻한다. 전사체 발현량은 질병이나 상태에 따라 유전자들의 활성도가 어떻게 달라지는지 볼 수 있는 척도가 될 수 있다.
본 발명에서 사용되는 암 유전체 염기서열 정보는 공지된 염기서열분석법을 이용하여 결정될 수 있으며, 또한 상용화된 서비스를 제공하는 Complete Genomics, BGI (Beijing Genome Institute), Knome, Macrogen, DNALink 등의 서비스를 이용할 수 있고, 이에 제한되지 않는다.
본 발명에서 암 유전체 염기서열에 존재하는 유전자 염기서열 변이 정보는 다양한 방법을 이용하여 추출될 수 있으며, 참조군, 예를 들면 HG19의 유전체 염기서열과의 서열 비교 프로그램, 예를 들어, ANNOVAR(Wang et al., Nucleic Acids Research, 2010; 38(16): e164), SVA(Sequence Variant Analyzer) (Ge et al., Bioinformatics. 2011; 27(14): 1998-2000), BreakDancer(Chen et al., Nat Methods. 2009 Sep; 6(9):677-81) 등을 이용한 염기서열 비교 분석을 통해 수득될 수 있다.
본 발명에서 사용되는 전사체 발현 정보는 공지된 다양한 방법을 이용하여 추출될 수 있으며, 또한 상용화된 서비스를 제공하는 Affymetrix, Illumina, Macrogen, DNALink 등의 서비스를 이용할 수 있으며 이에 제한되지 않는다.
상기 유전자 염기서열 변이 정보와 전사체 발현 정보는 컴퓨터 시스템을 통하여 접수/수득될 수 있으며, 이런 측면에서 본 발명의 방법은 유전자 변이 정보와 전사체 발현 정보를 컴퓨터 시스템으로 접수하는 단계를 추가로 포함할 수 있다. 본 발명에서 사용되는 컴퓨터 시스템은 암 환자에 대해 적용대상이 되는 항암 치료 약물 및 상기 약물이 억제할 수 있는 유전자와 관련된 정보 검색 또는 추출이 가능한 데이터베이스를 포함하는 하나 이상의 데이터베이스를 포함하거나 데이터베이스에 접근 가능하다.
본 발명에서 사용된 용어, “정량 합성암생존 (Synthetic Dosage Cancer Survival, SDCS)”은 암 세포 또는 암 조직에 포함된 염기서열 변이 유전자와 (전사체) 과발현 유전자의 조합이 해당 암 환자의 생존률 향상을 유발하는 현상으로, 이들 염기서열 변이 및 과발현 유전자 중 일부, 즉, 염기서열 변이 유전자와 과발현 유전자 각각의 존재는 해당 암 환자의 생존률 향상을 유발하지 않지만, 염기서열 변이 유전자와 과발현 유전자의 동시적 조합이 해당 암 환자의 생존률 향상을 유발하는 경우, 그 현상을 정량 합성암생존이라 한다. 본 발명의 일 실시예에서는 암 유전체 염기서열 변이, 전사체 발현량 및 환자 생존 정보를 이용한 생존 분석을 통해 정량 합성암생존 후보 유전자를 선정하였으며, 그 예시를 표 2에 나타내었다.
본 발명에서 사용된 용어, “합성용량치사 (Synthetic Dosage Lethality)”는 염기서열 변이 유전자와 전사체 과발현 유전자의 조합이 세포 사망을 유발하는 현상으로, 염기서열 변이 유전자와 과발현 유전자 각각은 세포 사망을 유발하지 않는 생존 가능한 염기서열 변이 (viable mutation/variant) 유전자와 과발현 (Over-expression) 유전자이지만, 이들 두 개 이상의 생존 가능한 염기서열 변이와 과발현의 조합이 세포 사망을 유발하는 경우 그 현상을 합성용량치사라 한다.
상기 합성용량치사는 암 질환에 적용하면, 염기서열 변이 유전자와 전사체 과발현 유전자의 조합이 암 세포의 사망을 유발하는 현상을 지칭한다. 암 질환의 경우, 암 세포 사망이 해당 암 환자의 생존률에 다소간의 영향을 미칠 수는 있으나, 그 영향 정도는 제한적이며, 암 전이가 세포 사망 보다 암 환자의 생존률에 더 큰 영향을 미치는 것으로 알려져 있다. 또한 합성용량치사의 평가 지표는 세포사망일뿐 환자의 생존률은 아니어서, 본 발명에서 개시하고 있는 정량 합성암생존과 합성용량치사는 차별화되는 개념이다.
또한 본 발명에 따른 실시예 1과 실시예 2에 나타낸 바와 같이, 실제 다수의 정량 합성암생존 유전자 쌍이 다양한 암종의 조직, 세포주 또는 오가노이드 등에서 발견된다. 그러나 이들 암 조직, 세포주 또는 오가노이드가 세포 사망에 이르지 않고 생존하는 것에서 확인할 수 있듯이 정량 합성암생존과 합성용량치사는 차별화되는 개념이다.
또한 본 발명에 따른 실시에 3에 나타낸 정량 합성암생존 부담 (Synthetic Dosage Cancer Survival Burden) 개념과 같이, 정량 합성암생존 유전자 쌍을 더 많이 가질수록 환자의 예후가 좋아지는 선형상관관계를 확인하였다. 반면 합성용량치사 개념에서는 이와 같은 선형상관관계가 논의된 바 없다. 합성용량치사 개념에서는 한 쌍의 합성용량치사 유전자 쌍의 손상만으로도 해당 세포는 비가역적으로 사망하는 것으로 정의된다. 그러므로 두 쌍, 또는 세 쌍, 또는 그 이상의 합성용량치사 유전자 쌍이 더 발견된다고 하여 더 많거나 크거나 강한 사망이 유발된다는 개념은 유효하지 않다. 따라서 합성용량치사 부담 (Synthetic Dosage Lethality Burden)의 개념은 성립하지 않거나 입증된 바 없다. 정량 합성암생존 부담의 신개념에서 확인할 수 있듯이 정량 합성암생존과 합성용량치사는 차별화되는 개념이다.
본 발명에서 사용된 용어 정량 합성암생존은 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 유전자와 과발현 유전자의 조합이 반드시 한 개의 암세포 내에서 발생한 경우만을 지칭하는 것은 아니다. 두 개 이상의 유전자 염기서열 변이 유전자 및 과발현 유전자의 조합이 동일한 암조직 내의 서로 다른 암세포에서 각각 발생하여 조합을 이룬 경우에도 이를 정량 합성암생존이라 한다.
본 발명에 따른 정량 합성암생존 유전자 쌍은 암 환자의 염기서열 변이 정보, 전사체 발현량 정보 및 생존 정보로부터 생존 분석을 수행하거나, 암 세포주, 암 오가노이드(organoid), 또는 암 조직에서의 유전체 염기서열 변이 분석, 또는 침윤능 및/또는 전이능 동정을 통해 선정될 수 있다. 상기 정량 합성암생존 유전자 쌍은 암종별 또는 암종별 인구집단 자료 분석을 통해 획득할 수 있으며, 개인에 따라 그 분포가 크게 다를 수 있다.
구체적으로, 본 발명에서 사용된 용어, “정량 합성암생존 유전자 쌍 (SDCS pair of genes)”은 염기서열 변이 후보 유전자와 전사체 과발현 후보 유전자에 해당하는 두 개의 유전자로 구성된 쌍을 의미한다.
본 발명에서 사용된 용어, “대응 유전자”는 과발현 후보 유전자와 함께 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이고, 손상되지 않은 유전자를 의미하는 것으로, 상기 대응 유전자를 억제하는 약물을 사용하여 해당 암 환자의 생존률을 향상시킬 수 있다.
본 발명에서, 대응 유전자는 유전자가 보유한 유전자 염기서열 변이 점수 또는 유전자 손상 점수에 의해 결정될 수 있으며, 기능상실변이(Loss of Function Variant)의 보유 여부를 기준으로 결정될 수 있다. 즉, 대응 유전자는 기능상실변이가 없거나 유전자 손상 점수가 특정 역치 이하여서 손상되지 않았다고 판단되는 유전자를 의미한다.
본 발명에서 사용된 용어 “유전자 염기서열 변이 점수”란 유전체 염기서열 변이가 단백질을 코딩하는 유전자의 엑손 부위에서 발견되었을 때, 이러한 개별 변이가 해당 유전자가 코딩하는 단백질의 아미노산 서열 변이 (치환, 부가 또는 결실) 또는 전사 조절 변이 등을 초래하여, 해당 단백질의 구조 및/또는 기능에 유의한 변화 혹은 손상을 유발하는 정도를 수치화한 점수를 말하며, 상기 유전자 염기서열 변이 점수는 유전체 염기서열 상에서 아미노산의 진화론적 보존 정도, 변형된 아미노산의 물리적 특성에 따른 해당 단백질의 구조나 기능의 변화에 미치는 정도 등을 고려하여 산출할 수 있다.
본 발명에 의한 유전자 손상 점수 산출 방법에 사용되는 유전자 염기서열 변이 점수를 산출하는 것은 당업계에 공지된 방법을 이용하여 수행될 수 있다. 예를 들면, SIFT (Sorting Intolerant From Tolerant, Pauline C et al., Genome Res. 2001 May; 11(5): 863-874; Pauline C et al., Genome Res. 2002 March; 12(3): 436-446; Jing Hul et al., Genome Biol. 2012; 13(2): R9), PolyPhen, PolyPhen-2 (Polymorphism Phenotyping, Ramensky V et al., Nucleic Acids Res. 2002 September 1; 30(17): 3894-3900; Adzhubei IA et al., Nat Methods 7(4):248-249 (2010)), MAPP (Eric A. et al., Multivariate Analysis of Protein Polymorphism, Genome Res. 2005;15:978-986), Logre (Log R Pfam E-value, Clifford R.J et al., Bioinformatics 2004;20:1006-1014), Mutation Assessor (Reva B et al., Genome Biol. 2007;8:R232, http://mutationassessor.org/), Condel (Gonzalez-Perez A et al.,The American Journal of Human Genetics 2011;88:440-449, http://bg.upf.edu/fannsdb/), GERP (Cooper et al., Genomic Evolutionary Rate Profiling, Genome Res. 2005;15:901-913, http://mendel.stanford.edu/SidowLab/downloads/gerp/), CADD (Combined Annotation-Dependent Depletion, http://cadd.gs.washington.edu/), MutationTaster, MutationTaster2 (Schwarz et al., MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods 2014;11:361-362, http://www.mutationtaster.org/), PROVEAN (Choi et al., PLoS One. 2012;7(10):e46688), PMuit (Ferrer-Costa et al., Proteins 2004;57(4):811-819, http://mmb.pcb.ub.es/PMut/), CEO (Combinatorial Entropy Optimization, Reva et al., Genome Biol 2007;8(11):R232), SNPeffect (Reumers et al., Bioinformatics. 2006;22(17):2183-2185, http://snpeffect.vib.be), fathmm (Shihab et al., Functional Analysis through Hidden Markov Models, Hum Mutat 2013;34:57-65, http://fathmm.biocompute.org.uk/), MSRV (Jiang, R. et al. Sequence-based prioritization of nonsynonymous single-nucleotide polymorphisms for the study of disease mutations. Am J Hum Genet 2007;81:346-360, http://msms.usc.edu/msrv/), Align-GVGD (Tavtigian, Sean V., et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of medical genetics 2006:295-305., http://agvgd.hci.utah.edu/), DANN (Quang, Daniel, Yifei Chen, and Xiaohui Xie. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2014: btu703., https://cbcl.ics.uci.edu/public_data/DANN/), Eigen (Ionita-Laza, Iuliana, et al. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nature genetics (2016):214-220., http://www.columbia.edu/~ii2135/eigen.html), KGGSeq (Li MX, Gui HS, Kwan JS, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases.Nucleic Acids Res. 2012 Apr;40(7):e53., http://grass.cgs.hku.hk/limx/kggseq/), LRT (Chun, Sung, and Justin C. Fay. Identification of deleterious mutations within three human genomes. Genome Res. 2009:1553-1561., http://www.genetics.wustl.edu/jflab/lrt_query.html), MetaLR (Dong, Chengliang, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Human molecular genetics 2015;24(8):2125-2137), MetaSVM (Dong, Chengliang, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Human molecular genetics 2015;24(8):2125-2137), MutPred (Mort, Matthew, et al. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biology 2014;(15)1:1, http://www.mutdb.org/mutpredsplice/about.htm), PANTHER (Mi, Huaiyu, et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Research 2005;(33)suppl 1:D284-D288., http://www.pantherdb.org/tools/csnpScoreForm.jsp), Parepro (Tian, Jian, et al. Predicting the phenotypic effects of non-synonymous single nucleotide polymorphisms based on support vector machines. BMC bioinformatics 2007; 8.1, http://www.mobioinfor.cn/parepro/contact.htm), phastCons (Siepel, Adam, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;915)8:1034-1050, http://compgen.cshl.edu/phast/), PhD-SNP (Capriotti, E., Calabrese, R., Casadio, R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006;22:2729-2734., http://snps.biofold.org/phd-snp/), phyloP (Pollard, Katherine S., et al. Detection of nonneutral substitution rates on mammalian phylogenies._Genome Res. 2010;(20)1:110-121., http://compgen.cshl.edu/phast/background.php), PON-P (Niroula, Abhishek, Siddhaling Urolagin, and Mauno Vihinen. PON-P2: prediction method for fast and reliable identification of harmful variants. PLoS One 2015;(10)2:e0117380., http://structure.bmc.lu.se/PON-P2/), SiPhy (Garber, Manuel, et al. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 2009;(25)12:i54-i62, http://portals.broadinstitute.org/genome_bio/siphy/documentation.html), SNAP (Bromberg,Y. and Rost,B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007;35:3823-3835,w http://www.rostlab.org/services/SNAP), SNPs&GO (Remo Calabrese, Emidio Capriotti, Piero Fariselli, Pier Luigi Martelli, and Rita Casadio. Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutatation 2009;30:1237- 1244, http://snps.biofold.org/snps-and-go/), VEP (McLaren W, Pritchard B, Rios D, Chen Y, Flicek P and Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010;26:2069-70 http://www.ensembl.org/info/docs/tools/vep/), VEST (Carter H, Douville C, Stenson P, Cooper D, Karchin R Identifying Mendelian disease genes with the Variant Effect Scoring Tool BMC Genomics 2013;14(Suppl 3):S3), SNAP2 (Yana Bromberg, Guy Yachdav, and Burkhard Rost. SNAP predicts effect of mutations on protein function. Bioinformatics 2008;24:2397-2398, http://www.rostlab.org/services/SNAP), CAROL (Lopes MC, Joyce C, Ritchie GR, John SL, Cunningham F et al. A combined functional annotation score for non-synonymous variants, http://www.sanger.ac.uk/science/tools/carol), PaPI (Limongelli, Ivan, Simone Marini, and Riccardo Bellazzi. PaPI: pseudo amino acid composition to score human protein-coding variants. BMC bioinformatics 2015;(16)1:1, http://papi.unipv.it/), Grantham (Grantham, R. Amino acid difference formula to help explain protein evolution. Science 1974;(185)4154:862-864, https://ionreporter.thermofisher.com/ionreporter/help/GUID-D9DFB21C-652D-4F95-8132-A0C442F65399.html), SInBaD (Lehmann, Kjong-Van, and Ting Chen. Exploring functional variant discovery in non-coding regions with SInBaD. Nucleic Acids Research 2013;(41)1:e7-e7, http://tingchenlab.cmb.usc.edu/sinbad/), VAAST (Hu, Hao, et al. VAAST 2.0: Improved variant classification and disease_]gene identification using a conservation_]controlled amino acid substitution matrix. Genetic epidemiology 2013;(37)6:622-634, http://www.yandell-lab.org/software/vaast.html), REVEL (Ioannidis, Nilah M., et al. REVEL: an Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants._AGHG 2016, https://sites.google.com/site/revelgenomics/), CHASM (Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B, Karchin R Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations Cancer Res 2009;69(16):6660-7, http://www.cravat.us), mCluster (Yue P, Forrest WF, Kaminker JS, Lohr S, Zhang Z, Cavet G: Inferring the functional effects of mutation through clusters of mutations in homologous proteins. Human mutation. 2010;31(3):264-271. 10.1002/humu.21194.), nsSNPAnayzer (Lei Bao, Mi Zhou, and Yan Cui nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 2005;33:480-482, http://snpanalyzer.uthsc.edu/), SAAPpred (Nouf S Al-Numair and Andrew C R Martin. The SAAP pipeline and database: tools to analyze the impact and predict the pathogenicity of mutations. BMC Genomics 2013;14(3):1-11, www.bioinf.org.uk/saap/dap/), HanSa (Acharya V. and Nagarajaram H.A. Hansa An automated method for discriminating disease and neutral human nsSNPs. Human Mutation 2012;2:332-337, hansa.cdfd.org.in:8080/), CanPredict (Kaminker,J.S. et al. CanPredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Res., 2007;35:595:598, http://pgws.nci.nih.gov/cgi-bin/GeneViewer.cgi_), FIS (Boris Reva, Yevgeniy Antipin, and Chris Sander. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res 2011;39:e118-e118.), BONGO (Cheng T.M.K., Lu Y-E, Vendruscolo M., Lio P., Blundell T.L. Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms. PLoS Comp Biology 2008;(4)7:e1000135, http:// www.bongo.cl.cam.ac.uk/Bongo2/Bongo.htm) 등과 같은 알고리즘을 각 해당 유전자가 보유한 유전자 염기서열 변이에 적용하여 유전자 염기서열 변이 정보에서 유전자 염기서열 변이 점수를 산출할 수 있으며, 이에 제한되지 않는다. 예를 들어, SIFT 점수를 이용하여 유전자 염기서열 변이 점수를 부여할 때, SIFT 점수 0.7점 이상의 변이는 해당 유전자의 기능에 의미있는 변화를 유발하지 않는다는 가정을 적용하여, 0.7점 이상의 변이를 변이가 존재하지 않는 것으로 환산하는 등의 필터링 과정이 적용될 수 있으며, 이러한 변형은 본 발명의 범위에 속하는 것이다. 예를 들어, SIFT 점수를 이용하여 유전자 염기서열 변이 점수를 부여할 때, 해당 SIFT 점수를 임의의 함수를 통해 변형(transform)한 값을 산출하여 적용한 점수도 본 발명의 범위에 속하는 것이다.
상술된 알고리즘들의 목적은 각각의 유전자 염기서열 변이가 해당 단백질의 발현 또는 기능에 얼마나 영향을 미치고, 이 영향이 단백질에 얼마나 손상을 주게 되는지, 혹은 별다른 영향이 없는지 등을 가려내기 위함이다. 이들은 기본적으로 개별 유전자 염기서열 변이가 초래할 해당 유전자가 코딩하는 단백질의 아미노산 서열 및 관련 변화를 판단함으로써 해당 단백질의 발현, 구조 및/또는 기능에 미칠 영향을 판단한다는 점에서 공통점이 있다.
본 발명에 따른 일 구현예에서는 개별 유전자 염기서열 변이 점수를 산출하기 위하여, SIFT (Sorting Intolerant From Tolerant) 알고리즘을 이용하였다. SIFT 알고리즘의 경우, 예를 들면, VCF (Variant Call Format) 형식 파일로 유전자 염기서열 변이 정보를 입력받아, 각각의 유전자 염기서열 변이가 해당 유전자를 손상시키는 정도를 점수화 한다. SIFT 알고리즘의 경우 산출 점수가 0에 가까울수록 해당 유전자가 코딩하는 단백질의 손상이 심해서 해당 기능이 손상됐을 것으로 판단하고, 1에 가까울수록 해당 유전자가 코딩하는 단백질이 정상 기능을 유지하고 있을 것으로 판단한다.
또 다른 알고리즘인 PolyPhen-2의 경우, 산출 점수가 높을수록 해당 유전자가 코딩하는 단백질의 기능적 손상 정도가 큰 것으로 판단한다.
최근에는 SIFT, Polyphen2, MAPP, Logre, Mutation Assessor를 서로 비교하고 종합하여 Condel 알고리즘을 제시한 연구(Gonzalez-Perez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. The American Journal of Human Genetics, 2011;88(4):440-449)가 발표되었으며, 상기 연구에서는 단백질에 손상을 주는 유전자 염기서열 변이 및 영향이 적은 유전자 염기서열 변이와 관련하여 공지된 데이터의 집합인 HumVar와 HumDiv(Adzhubei, IAet al., A method and server for predicting damaging missense mutations. Nature Methods, 2010;7(4):248-249)를 사용하여 상기 다섯 개의 알고리즘을 비교하였다. 그 결과, HumVar의 97.9%의 단백질 손상을 일으키는 유전자 염기서열 변이와 97.3%의 영향이 적은 유전자 염기서열 변이가 상기 다섯 개의 알고리즘 중 최소 세 개의 알고리즘에서 동일하게 감지되었으며, HumDiv의 99.7%의 단백질 손상을 일으키는 유전자 염기서열 변이와 98.8%의 영향이 적은 유전자 염기서열 변이가 상기 다섯 개의 알고리즘 중 최소 세 개의 알고리즘에서 동일하게 감지되었다. 또한, 상기 HumDiv와 HumVar에 대하여 상기 다섯 개의 알고리즘과 각 알고리즘을 통합하여 계산한 결과들의 정확도를 나타내는 ROC (Reciever Operating Curve) 곡선을 그려본 결과, 상당히 높은 수준(69%~88.2%)에서 AUC(Area Under the Reciever Operating Curve)의 일치도를 보이는 것을 확인하였다. 즉 상술한 다양한 알고리즘들은 그 산출 방법은 달라도 산출된 유전자 염기서열 변이 점수들은 서로 유의하게 상관된 것이다. 따라서 상술한 알고리즘들 또는 알고리즘들을 응용한 방법을 적용하여 유전자 염기서열 변이 점수를 산출하는 서로 다른 알고리즘의 종류에 상관없이 본 발명의 범위에 속하는 것이다. 유전자 염기서열 변이가 단백질을 코딩하는 유전자의 엑손 부위에 발생할 경우, 단백질의 발현, 구조 및/또는 기능에 직접적인 영향을 미칠 수 있다. 따라서 상기 유전자 염기서열 변이 정보를 단백질 기능 손상 정도와 관련시킬 수 있다. 이런 측면에서 본 발명의 방법은 유전자 염기서열 변이 점수를 기반으로 “유전자 손상 점수”를 산출하는 개념을 포함한다. 보다 구체적으로, 변이 유전자와 대응 유전자는 상술한 알고리즘을 각 해당 유전자가 보유한 유전자 염기서열 변이에 적용하여 산출된 유전자 염기서열 변이 점수로부터 산출되는 유전자 손상 점수에 의해 결정될 수 있다.
본 발명에 있어서, 해당 유전자가 보유한 유전자 염기서열 변이가 두 개 이상인 경우, 각 유전자 염기서열 변이 점수들의 평균값으로 유전자 손상 점수가 산출될 수 있다.
본 발명에서 사용된 용어 “유전자 손상 점수(Gene Deleteriousness Score, GDS)”란 하나의 단백질을 코딩하는 유전자 부위에 두 개 이상의 유의한 염기서열 변이가 발견되어, 하나의 단백질이 두 개 이상의 유전자 염기서열 변이 점수를 갖게 되는 경우, 상기 유전자 염기서열 변이 점수를 종합하여 계산된 점수를 말하며, 만약 단백질을 코딩하는 유전자 부위에 유의한 염기서열 변이가 한 개인 경우에는 유전자 손상 점수를 해당 유전자 염기서열 변이 점수와 동일하게 산출할 수 있다. 이때, 단백질을 코딩하는 유전자 염기서열 변이가 두 개 이상인 경우, 유전자 손상 점수는 각 변이 별로 계산된 유전자 염기서열 변이 점수들의 평균값으로 계산되며, 이러한 평균값은 예를 들면 기하평균, 산술평균, 조화평균, 산술기하평균, 산술조화평균, 기하조화평균, 피타고라스 평균, 사분평균, 이차평균, 절삭평균, 윈저화 평균, 가중평균, 가중기하평균, 가중산술평균, 가중조화평균, 함수의 평균, 멱평균, 일반화된 f-평균, 백분위수, 최대값, 최소값, 최빈값, 중앙값, 중앙범위, 또는 중심경향도(measures of central tendency), 단순 곱 또는 가중곱, 또는 상기 산출값들의 함수 연산으로 계산될 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 일 구현예에서는 하기 수학식 1에 의해 유전자 손상 점수를 산출하였으며, 하기 수학식 1은 다양한 변형이 가능하므로, 이에 제한되지 않는다.
Figure PCTKR2018004799-appb-M000001
상기 수학식 1에서 Sg는 유전자 g가 코딩하는 단백질의 유전자 손상점수, n은 상기 유전자 g의 염기서열 변이 중 분석대상 염기서열 변이의 수, vii 번째 분석대상 염기서열 변이의 상기 염기서열 변이 점수이며, p는 0이 아닌 실수이다. 상기 수학식 1에서 상기 p의 값이 1일 때는 산술평균, 상기 p의 값이 -1일 때는 조화평균이 되며, 상기 p의 값이 0에 가까워지는 극한의 경우에는 기하평균이 된다.
본 발명에 따른 또 다른 일 구현예에서는 하기 수학식 2에 의해 유전자 손상 점수를 산출하였다.
Figure PCTKR2018004799-appb-M000002
상기 수학식 2에서 Sg는 유전자 g가 코딩하는 단백질의 유전자 손상점수, n은 상기 유전자 g의 염기서열 변이 중 분석대상인 염기서열 변이의 수, vii 번째 분석대상 염기서열 변이의 상기 유전자 염기서열 변이 점수이며, wi는 상기 i 번째 염기서열 변이의 상기 유전자 염기서열 변이 점수 vi에 부여되는 가중치이다. 모든 가중치 wi가 같은 값을 갖는 경우 상기 유전자 손상점수 Sg는 상기 유전자 염기서열 변이 점수 vi의 기하평균값이 된다. 상기 가중치는 해당 단백질의 종류, 해당 단백질의 약동학적 또는 약력학적 분류, 해당 약물 효소 단백질의 약동학적 파라미터, 인구 집단 또는 인종별 분포를 고려하여 부여될 수 있다.
본 발명에 따른 방법은 상기 정량 합성암생존 유전자 쌍 정보를 이용하여 상기 암 환자에 대해 적용되는 약물 간의 우선순위를 결정하는 단계; 또는 상기 정량 합성암생존 유전자 쌍 정보를 이용하여 상기 암 환자에 적용되는 약물의 사용 여부를 결정하는 단계를 추가로 포함할 수 있다.
본 발명에 따른 방법은 추가적으로 암종별로 유의한 생물학적 마커를 기준으로 두 개 이상의 아군으로 구분한 후, 각 아군에서의 유전체 염기서열 변이정보, 전사체 발현정보와 환자 생존 정보를 이용한 생존 분석을 통해 정량 합성암생존 유전자 쌍을 선정할 수 있다.
상기 생물학적 마커는 암과 관련된 진단, 치료 및 예후에 관여하는 것으로 당업계에 알려진 공지된 마커를 모두 포함하는 개념이다. 예를 들어, 대장암의 진단, 치료 및 예후에 중요한 생물학적 마커로 알려진 MSI(Microsatellite instability)를 비롯하여 각 암종 별로 공지된 마커를 제한 없이 이용할 수 있다.
본 발명에 있어서, 후보 약물의 선정은 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 선별된 정량 합성암생존 유전자 쌍의 개수를 산출하여, 그 산출된 개수를 기준으로 후보 약물의 우선순위 또는 조합을 결정하는 단계에 의해 수행될 수 있다.
본 발명의 일 실시예에서는 정량 합성암생존 유전자 쌍을 선별하고, 이를 구성하는 과발현 유전자가 존재할 때, 이와 쌍을 이루며 손상되지 않은 대응 유전자를 표적으로 이를 억제함으로써 암 환자의 생존률을 증진시킬 수 있음을 확인하였다. 따라서 암 유전체 염기서열 및 전사체 발현량 분석을 통해 여러 개의 비교 대상 약물 중에서 개인별 맞춤형 항암제 선택이 가능하며, 약물의 효과 또는 부작용 등을 사전에 예측함으로써 개인에 적용되는 항암제 간의 우선순위 또는 사용여부를 결정할 수 있다. 또한, 정량 합성암생존 유전자 쌍에 속하는 유전자의 조합 중, 특정 암종별로 다수의 환자에서 발견되는 하나 이상의 변이 및 과발현 유전자의 조합을 선정하여, 개별 환자의 유전체 염기서열 분석결과와는 독립적으로, 다수의 환자에서 치료 효과 및 예후가 좋을 것으로 예측되는 하나 이상의 항암 치료 약물의 조합을 선택하여 각 암종별로 특화된 복합항암요법(combination chemotherapy)의 개발 및 임상적용에 활용할 수 있는 기술의 제공이 가능하다.
다른 양태에서 본 발명은 암 환자의 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 정량 합성암생존 (Synthetic Cancer Survival) 유전자 쌍을 구성하는 과발현 후보 유전자 및 염기서열 변이 후보 유전자의 수를 산출하는 단계;를 포함하는, 암 환자의 예후 예측을 위한 정보를 제공하는 방법을 제공한다.
본 발명의 일 실시예에서는 정량 합성암생존 유전자 쌍을 많이 가질수록 암환자의 생존률이 통계학적으로 유의하게 높아짐을 확인하였는바, 암환자의 유전체 분석을 통해 정량 합성암생존 유전자 쌍의 개수로 표현되는 합성암생존 부담을 확인함으로써 해당 암환자의 생존 예후를 효과적으로 예측할 수 있다.
또 다른 양태에서 본 발명은 암 유전체 염기서열 변이 정보 및 전사체 발현 정보를 이용한 맞춤형 항암 치료 약물 선택 시스템에 있어서, 상기 시스템은 암 환자에 대해 적용대상이 되는 항암 치료 약물 및 상기 약물이 조절할 수 있는 유전자와 관련된 정보 검색 또는 추출이 가능한 데이터베이스; 상기 데이터베이스에 접근 가능한 통신부; 암 유전체 염기서열 분석부; 암 전사체 발현량 분석부; 약물 선택 정보 제공부; 및 표시부를 포함하며, 상기 암 유전체 염기서열 분석부는 정량 합성암생존 유전자 쌍에 속하는 하나 이상의 과발현 후보 유전자 및 하나 이상의 염기서열 변이 후보 유전자를 선정하는 정량 합성암생존 유전자쌍 선정부 및 상기 과발현 후보 유전자와 함께 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이며, 손상되지 않은 하나 이상의 대응 유전자를 선정하는 대응 유전자 선정부를 포함하고, 상기 약물 선택 정보 제공부는 상기 하나 이상의 대응 유전자를 억제하는 약물 정보를 제공하거나, 상기 정량 합성암생존 유전자 쌍의 개수를 증가시키는 약물 정보를 제공하는 것인, 맞춤형 항암 치료 약물 선택 시스템을 제공한다.
본 발명에 따른 시스템은 암 환자에 대해 적용대상이 되는 항암 치료 약물 및 상기 약물이 억제할 수 있는 유전자와 관련된 정보 검색 또는 추출이 가능한 데이터베이스에 접근하여 관련 정보를 추출하고, 이에 따라 상기 맞춤형 약물 선택 정보를 사용자에게 제공하는 사용자 인터페이스를 추가로 포함할 수 있다.
본 발명에 따른 시스템에서 상기 데이터베이스 또는 그 접근 정보를 포함하는 서버, 산출된 정보 및 이와 연결된 사용자 인터페이스 장치는 서로 연계되어 사용될 수 있다.
본 발명에 따른 시스템에서 사용자 인터페이스 또는 단말은 서버로부터 암 유전체 염기서열 변이와 전사체 발현량을 이용한 맞춤형 항암 치료 약물 선택 처리를 요청, 결과 수신 및/또는 저장할 수 있으며, 스마트 폰, PC(Personal Computer), 태블릿 PC, 개인 휴대 정보 단말기(Personal Digital Assistant, PDA), 웹 패드 등과 같이 메모리 수단을 구비하고 마이크로프로세서를 탑재하여 연산 능력을 갖춘 이동 통신 기능을 구비한 단말기로 구성될 수 있다.
본 발명에 따른 시스템에서 서버는 데이터베이스에 대한 접근을 제공하는 수단으로, 통신부를 통해 사용자 인터페이스 또는 단말)과 연결되어 각종 정보를 교환할 수 있도록 구성된다. 여기서, 통신부는 동일한 하드웨어에서의 통신은 물론, 구내 정보 통신망(local area network, LAN), 도시권 통신망(metropolitan area network, MAN), 광역 통신망(wide area network, WAN), 인터넷, 2G, 3G, 4G 이동 통신망, 와이파이(Wi-Fi), 와이브로(Wibro) 등을 포함할 수 있으며, 통신 방식도 유선, 무선을 가리지 않으며 어떠한 통신 방식이라도 상관없다. 데이터베이스 또한 서버에 직접 설치된 것뿐 아니라 목적에 따라 인터넷 등을 통해 접근 가능한 다양한 생명과학 데이터베이스에 연결될 수 있다.
본 발명에 따른 방법은 하드웨어, 펌웨어, 또는 소프트웨어 또는 이들의 조합으로 구현될 수 있다. 소프트웨어로 구현되는 경우 저장매체는 컴퓨터와 같은 장치에 의해 판독 가능한 형태의 저장 또는 전달하는 임의의 매체를 포함한다. 예를 들면 컴퓨터 판독 가능한 매체는 ROM(read only memory); RAM(random access memory); 자기디스크 저장 매체; 광저장 매체; 플래쉬 메모리 장치 및 기타 전기적, 광학적 또는 음향적 신호 전달 매체 등을 포함한다.
이러한 양태에서 본 발명은 암 유전체 염기서열 변이 정보 및 전사체 발현 정보로부터 정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자 쌍을 선별하는 단계; 및 과발현 후보 유전자와 함께 상기 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이고, 손상되지 않은 하나 이상의 대응 유전자를 억제하는 하나 이상의 약물을 선별하거나, 상기 정량 합성암생존 유전자 쌍의 개수를 증가시키는 하나 이상의 약물을 선별하는 단계를 포함하는 동작을 수행하는 프로세서를 실행시키는 실행모듈을 포함하는 컴퓨터 판독 가능한 매체를 제공한다.
본 발명에서 이용되는 컴퓨터 판독 가능한 매체에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위하여 그 기재를 생략한다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 실험 방법
1-1. 대상 데이터 선정
분석을 위한 데이터를 TCGA 데이터 포탈에서 2015년 10월 6일을 기준으로 다운로드하였다. 상기 데이터는 level2 체세포 돌연변이(somatic mutation) 데이터와 level2 임상 데이터 및 level3 전사체 발현량(RNA sequence) 데이터를 모두 가지고 있는 암 환자 5,723명을 포함하고 있다. 상기 level2 체세포 돌연변이(somatic mutation) 데이터는 maf(mutation annotation format)의 형식으로 되어있다. 분석을 위해서 돌연변이 위치와 돌연변이 분류가 사용되었다. 돌연변이들은 ‘Missense mutation', 'Nonsense mutation', 'Nonstop mutation', 'Frameshift indel', 'In frame indel', 'splice site mutation', 'Translation start site mutation', 'Silent mutation', 'Intron', 'UTR' 및 'Intergenic'으로 분류되어 있고. 이중에 non-synonymous mutation에 해당하는 'Missense mutation', 'Nonsense_Mutation', 'Nonstop mutation', 'Splice site mutation', 'Translation start site mutation'이 사용되었다. Level3 전사체 발현량(RNA sequence) 데이터는 TCGA에서 사전에 RSEM 정규화하여 제공하는 암세포의 발현 데이터를 사용하였다. 상기 level2 임상데이터는 암종에 따른 다양한 임상 변인들을 포함하고 있으며, 실제적으로 cox model에 사용된 변인들은 전문적인 병리학자에 의해 검토되었다.
1-2. 데이터 프로세싱 (필터링)
먼저, 임상데이터 중 cox proportional hazard model을 위한 정보가 없는 환자들의 데이터를 제외하였다. 다음으로 cox model에 사용되어야 할 암종에 따른 임상 변인들이 존재하지 않는 환자들의 데이터를 제거하였다. 그리고 돌연변이 데이터가 없는 환자들 및 전사체 발현량 데이터가 없는 환자들의 데이터를 제외하였다. 보다 구체적으로, 돌연변이 데이터는 먼저 synonymous 돌연변이들을 제외한 후, HGNC symbol이 없는 유전자로 데이터에 'Unknown'으로 표기된 유전자들을 제외하였다. 마지막으로 임상정보가 없는 환자들의 데이터를 제외하였으며, 최종적으로 5,723명의 환자들의 데이터를 이용하여 이후 분석에 사용하였다.
1-3. 유전자 손상 점수: Gene deleteriousness score (GDS)
유전자의 유해(deleteriousness) 정도를 정량화하기 위해서 유전자 손상 점수(gene deleteriousness score)를 정의하였다. 유전자 손상 점수는 그 유전자의 돌연변이의 개수와 종류들에 따라서 계산되며, 상기 점수의 스케일은 0에서 1까지이고, 더 작은 점수일수록 해당 유전자의 기능적 구조적 손상이 더 심하다는 의미로 정의되었다. 만약 유전자가 nonsense mutation, frameshift insertion and deletion, nonstop mutation, splice site mutation, translation start site mutation과 같은 기능상실변이(LoF)를 가지고 있다면 그 유전자의 유전자 손상 점수는 0으로 정하였다. 만약 유전자가 non-synonymous 돌연변이를 가지지 않는다면 그 유전자의 유전자 손상 점수는 1.0으로 지정하였으며, 만약 유전자가 LoF 돌연변이를 가지지 않는다면 그 유전자의 유전자 손상 점수는 그 유전자에 있는 모든 non-synonymous 돌연변이들의 SIFT 점수의 기하평균으로 정하였다. 이때 0으로 나눠지는 경우를 피하기 위해 SIFT 점수가 0이라면 그것을 10e-8으로 대체하였다. 상기 SIFT 점수의 값이 0.7 이상인 변이에 대해서는 유전자 손상 점수의 계산에 있어서 높은 점수로 보정시키는 효과 때문에 제외하도록 하였다.
상기 SIFT 점수 0.7의 필터링 기준은 본 실시예의 경우에 적용된 임의적인 필터링 기준이며 분석의 목적에 따라 다양한 필터링 기준을 적용할 수 있다. 또한 분모가 0이 되는 것을 피하기 위해 부여한 10e-8점의 변이 점수도 본 실시예의 경우에 적용된 임의적인 기준이며 분석의 목적에 따라 다양한 기준을 적용할 수 있다. 본 실시예에서 유전자 손상 점수를 산출하기 위해 사용된 SIFT 알고리즘(하기 수학식 3 참조) 또한 본 실시예의 경우에 적용된 임의적인 알고리즘이며 분석의 목적에 따라 다양한 알고리즘을 적용할 수 있다.
Figure PCTKR2018004799-appb-M000003
1-4. 전사체 과발현 유전자의 검출 (Overexpression gene selection)
환자의 전사체 과발현(overexpression) 유전자를 정의하기 위해 TCGA에서 제공하는 RNA sequence 데이터를 이용하였다. 상기 데이터는 샘플간의 비교를 위한 RSEM 정규화 과정이 이미 되어있기 때문에 본 실험에서는 샘플간의 발현량 정규화 과정을 생략하였다. 발현량이 낮은 유전자의 경우 제거하였고, 그 기준은 한 유전자의 발현량에 대해서 cpm (Count per million) 값이 5보다 큰 환자가 20명 이하일 때 제거하는 것으로 하였다. 환자들간의 상대적인 발현값의 차이를 보기 위해 z 변환을 이용하여 환자의 전사체 발현량 분포를 표준정규분포로 이동시켰다. 마지막으로 유전자 발현량의 z 값이 2보다 큰 환자의 유전자를 과발현(Overexpression) 유전자로 정의하였다.
1-5. Cox proportional hazard model with penalized likelihood
정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자쌍의 스크리닝을 위한 생존분석으로 Cox proportional hazard model을 사용하였다. Cox proportional hazard model은 임상 변인들의 교란작용을 보정할 수 있다. 먼저, 유전자쌍 들의 염기서열 변이 및 과발현 상태에 따른 예후에 미치는 효과(prognostic effect)를 확인하기 위하여 각각의 유전자 쌍 별로 환자군을 4군으로 나누었다; 한 유전자는 과발현 유전자이고 대응 유전자의 유전자 손상 점수가 0.3 이하인 군, 한 유전자는 과발현 유전자이지만 대응 유전자의 유전자 손상 점수가 0.3 보다 큰 군, 한 유전자가 과발현을 보이지 않지만 대응 유전자의 유전자 손상 점수가 0.3 이하인 군, 및 한 유전자도 과발현을 보이지 않고 대응 유전자의 유전자 손상 점수도 0.3보다 큰 군.
일반적으로 사용되는 maximum likelihood를 이용한 cox proportional hazard model의 경우 death event가 0이 된 경우에 컨버전스(convergence) 문제가 생기므로 본 실험에서는 penalized likelihood를 이용한 cox proportional hazard model을 사용하였다. 생존분석은 R (3.2.0)의 'coxphf' 패키지를 이용하여 진행하였다. 또한, 각각의 암종 별로 임상변수들의 교란작용을 보정하기 위하여 cox model에 추가하였다. 나이나 성별과 같은 일반적인 임상 변인들과 전문적 병리학자에 의해 검토되고 이전 연구들에서 사용된 임상 변인들을 추가하였다.
각 군별 변인에 대한 p value와 hazard ratio에 따라 정량 합성암생존 유전자 쌍을 선별하였다. 구체적으로, P value가 0.05 이하이고 hazard ratio가 1 이상인 유전자 쌍을 정량 합성암생존 유전자 쌍으로 정의했다.
실시예 2. 실험 결과 분석
2-1. TCGA core data set
상기 실시예 1-2의 데이터 프로세싱 결과, 20개의 암종에서 임상정보, DNA 체세포(somatic) 돌연변이 정보, 전사체 발현량(RNA sequence) 정보를 수득하였다. 상기 데이터 세트는 세 개의 데이터 타입을 모두 가지고 있고, cox proportional hazard model에 필요한 모든 임상변인에 대한 정보를 가지고 있으며, 이하 실험에서는 상기 데이터 세트를 core set라 명명하고 이후 분석에 사용하였다.
2-2. 유전자 손상 점수 분포 (Gene deleteriousness score distribution)
상기 실시예 1-3과 같이 각각의 암종에서 최소 하나이상의 non-synonymous 돌연변이를 가지는 모든 유전자들의 유전자 손상 점수를 계산하였다.
체세포 돌연변이의 발생이 모든 유전체로 보았을 때 흔한 현상이 아니므로, 모든 환자의 모든 유전자들에 대하여 유전자 손상 점수를 계산한 결과, 대부분의 점수는 1.0으로 확인되었다. 1점 외에는 체세포 돌연변이를 보이는 다수의 유전자의 유전자 손상점수가 0점에 분포하였다. 본 실시예에서는 유전자 손상 점수 0.3점을 기준(분석 역치)으로 중등도 이상의 유전자 기능 손상이 일어난 유전자와 그렇지 않은 유전자(대응 유전자)로 나누어 분석하였다.
2-3. 전사체 과발현 유전자 분포 (Overexpressed gene distribution)
상기 실시예 1-4와 같이 각각의 암종에서 독립적으로 전사체 발현량(RNA sequence) 데이터를 분석하여 각 유전자의 발현량을 분석하였다. 먼저, cpm값을 이용한 저발현 유전자 필터링을 통해 각각의 암종에서 약 27.35% 가량의 유전자들이 제거되었다. 구체적으로, 473명의 폐선암(Lung adenocarcinoma) 전사체 발현량 데이터에서 각 유전자에 대한 과발현 환자의 분포는 평균 19, 중간값 18, 표준편차 4.70 이었다.
2-4. 정량 합성암생존 유전자 후보 쌍의 선별
상기 실시예 1-5와 같이 20개의 암종에서 생존 분석을 진행한 결과, 803개의 정량 합성암생존 유전자 후보 쌍(candidate pair)들이 9개의 암종에서 발견되었다 (p < 0.05, HR >1). 대부분의 결과들은 대장선암(Colon adenocarcinoma) 및 폐선암(Lung adenocarcinoma)과 같은 특정 암종에서 발견되었다. 두 암종 모두 체세포 돌연변이 빈도가 높고, 다소 높은 사망률을 보이는 암종이다. 이상의 실험 결과를 표 1에 나타내었다.
Tumor Type Num. of SCS pairs Clinical variables used in cox model
COAD 393 Age, Gender, Pathologic T/N stage, vascular/lymphovascular invasion status, Anatomic neoplasm subdivision
LUAD 203 Age, Gender, Pathologic T/N stage
GBM 94 Age, Gender, Grade, Histologic type, Symptom, Symptom duration, IDH1 status
CESC 81 Age, Gender, Pathologic T/N stage, Necrosis
KIRC 22 Age, Gender, Pathologic T stage, Residual tumor, Grade
BLCA 5 Age, Gender, Pathologic T/N stage, Race, Marginal status, Smoking status, Alcohol status, Anatomic neoplasm subdivision, HPV status
STAD 3 Age, Gender, Pathologic T/N stage, Grade, Race, Anatomic neoplasm subdivision
HNSC 1 Age, Gender, Pathologic T/N stage, vascular/lymphovascular invasion status, Anatomic neoplasm subdivision
LIHC 1 Age, Grade, Stage, Residual tumor
BRCA 0 Age, Gender, Grade, Pathologic T stage, Necrosis
CESC 0 Age, Gender, Pathologic T/N stage, Necrosis
THCA 0 Age, Gender, Pathologic T/N stage, Focality
KIRP 0 Age, Gender, Karnofsky score
LAML 0 Age, Gender, Pathologic T/N stage, Smoking status
LUSC 0 Age, Grade, Clinical Stage
OV 0 Age, Pathologic T/N stage, Residual tumor, PSA, Gleason pattern, Biochemical recurrence
PRAD 0 Age, Gender, Pathologic T/N stage, Anatomic neoplasm subdivision
READ 0 Age, Gender, Pathologic T/N stage, Tumor site, Clark level, Primary tumor multiple present, Adjuvant pharmaceutical treatment
UCEC 0 Age, Stage, Grade, Histologic type, Residual tumor, Peritoneal washing, Tumor invasion percent
SKCM 0 Age, Pathologic T/N stage, Marginal status, ER/PR/HER2 status
Total 803
보다 구체적으로, 803개의 정량 합성암생존 유전자 쌍은 249개의 변이 유전자와 489개의 전사체 과발현 유전자로 구성되어 있다. 정량 합성암생존 유전자 쌍을 이루는 유전자 중, 변이 유전자에는 TTN, MUC16, KRAS, TNR과 같은 유전자들이 각각 121, 111, 48, 29번씩 높은 빈도를 보였고, 과발현 유전자에는 CBFB, MYC, TNFRSF17과 같은 유전자들이 37, 21, 12번씩 빈도를 보였다. 이와 같이 높은 빈도를 보이는 변이 유전자들의 GO 분석을 수행한 결과, Biological process에서 apoptosis, cell death, cell adhesion 등에 연관되어 있었고, Cellular component 에서 chromosome, sarcomere 등이 연관되어 있었다. 대부분의 환자들은 정량 합성암생존 유전자 쌍을 가지고 있지 않았으며, 한 환자에서 가지는 SCS 쌍의 수가 많아질수록 해당 환자의 수가 줄어드는 것을 확인하였다.
상기 과정을 통해 확인한 정량 합성암생존 유전자 쌍을 구성하는 유전자의 네트워크를 도 1에, 정량 합성암생존 유전자 유전자 빈도를 도 2에 나타내었다. 도 1(a)에서는 폐선암(LUAD)에서 나타나는 정량 합성암생존 유전자 쌍을 나타낸 것으로, 변이를 가진 노란색 정점과 전사체 과발현을 일으키는 파란색 정점으로 구성하였고 서로 다른 종류의 두 정점을 선으로 연결함으로써 정량 합성암생존 유전자 쌍을 표현하였다. 도 1(b)는 대장선암(COAD)에서 나타나는 정량 합성암생존 유전자 쌍을 네트워크로 나타낸 것이며, 변이를 가진 보라색 정점과 과발현을 일으키는 초록색 정점으로 구성되어 있다.
도 3의 생존곡선은 상기 실험 결과에서 구한 정량 합성암생존 유전자 쌍에 대한 체세포 돌연변이와 전사체 과발현 유무에 따른 생존곡선을 분석한 결과이다. 예를 들어, 도 3(a)에 나타낸 바와 같이, RYR2 유전자와 ABCF1 유전자가 서로 정량 합성암생존 유전자 쌍(SCDS pair of genes) 관계에 있음을 알 수 있다. 즉, RYR2 유전자(빨간 선)만 기능 손상 유전자 (functionally damaged gene)이거나 ABCF1 유전자(초록 선)만 유전체 과발현 유전자인 경우에는 기능 손상 유전자 및 과발현 유전자 모두 가지지 않는 보통의 경우(파란 선)과 비교하였을 때 암 생존률에서 유의한 차이가 없으나, RYR2 유전자에 기능 손상과 동시에 ABCF1 유전자가 과발현이 되어있는 경우는 유의하게 암 환자의 생존률이 향상된 것을 확인하였다. 마찬가지로, 도 3(b) 내지 (d)에 나타낸 바와 같이, 폐선암에서 TTN 유전자-DPH2 유전자, MUC16 유전자-ANO8 유전자 및 FAT3 유전자-PBMXL1 유전자가 각각 정량 합성암생존 유전자 쌍에 해당하며, 도 3(e) 내지 (h)에 나타낸 바와 같이, 대장선암에서 TTN 유전자-ZNF512B 유전자, TP53 유전자-F2RL2 유전자, KRAS 유전자-TRAPPC3 유전자 및 PCLO 유전자-CMTM7 유전자가 각각 정량 합성암생존 유전자 쌍에 해당함을 확인하였다.
상기 실험 결과를 통하여, 환자의 암 유전체 염기서열 정보와 전사체 발현량을 분석함으로써, 정량 합성암생존을 유발하는 유전자 쌍에 속하는 변이 유전자 및 전사체 과발현 유전자가 존재하는 것을 확인하였다.
그러므로 개인 암 환자에서, 상기 선정된 변이 유전자 및 전사체 과발현 유전자로 구성된 정량 합성암생존 유전자 쌍의 암 유전체 염기서열 변이 및 전사체 발현 분석을 통해, 해당 암 환자에서 발견된 하나 이상의 과발현 유전자와 쌍을 이루는 유전자이지만 유전자 손상 점수가 설정된 역치보다 높고, LoF 변이가 발견되지 않아 유전자 손상이 없는 대응 유전자를 억제하는 항암제를 이용하여, 인위적으로 정량 합성암생존 유전자 쌍의 상태를 유발하는 것이 항암 치료 효율을 높이기 위해 바람직함을 확인하였다.
예를 들어 도 3(a)에 나타낸 바와 같이, RYR2 유전자와 ABCF1 유전자가 서로 합성암생존 유전자 쌍 관계에 있으므로, 특정 암 환자의 암 유전체 및 전사체 분석결과 ABCF1 유전자만 과발현을 보이고, RYR2 유전자는 기능 손상을 보이지 않는 경우, 과발현 ABCF1의 대응 유전자인 RYR2 유전자의 억제 약물을 투여하여 암 생존률을 향상시킬 수 있다.
본 실시예의 판단 기준을 적용하여 9개의 암종에서 선별한 803개의 정량 합성암생존 유전자 쌍의 예시 목록을 표 2에 나타내었다. 많은 수의 합성암생존 유전자 쌍을 가진 암종부터 순서대로 나타내었다.
대장선암 정량 합성암생존 유전자쌍
변이 유전자 과발현 유전자 변이 유전자 과발현 유전자
ABCA13 DNAJA1 MUC5B CLN8
ABCA13 PGAM1 MUC5B CNNM4
ABCA13 PSMB7 MUC5B CNTN4
ACVR2A TLX1 MUC5B COL8A2
APC BBS2 MUC5B DFNA5
APC DDO MUC5B DPYD
APC HM13 MUC5B FAP
APC JMJD6 MUC5B FSTL1
APC POLR1D MUC5B GFPT2
APC RP9 MUC5B GPR124
APC SESN1 MUC5B GPX8
APC SLC1A7 MUC5B KCTD1
APC TNNC2 MUC5B KIRREL
APC TRIM58 MUC5B LAMB2
APC UFC1 MUC5B LOXL1
APC VPS28 MUC5B MMP3
APC ZNF7 MUC5B NLGN2
BRAF ADAM8 MUC5B PDGFRL
BRAF BACE2 MUC5B PFKFB3
BRAF CCDC48 MUC5B VEGFC
BRAF DUSP4 MUC5B VIM
BRAF ERO1L MXRA5 GFM2
BRAF FAM46A OBSCN LGALS3BP
BRAF GALNT5 OBSCN LXN
BRAF GPR126 OBSCN PFKFB3
BRAF HSH2D OBSCN TBC1D8
BRAF KIFC3 OBSCN TOE1
BRAF MBP ODZ3 SLFN11
BRAF MEOX1 ODZ3 ZNF189
BRAF PLEC PAPPA2 HSPA8
BRAF PPP4R1 PCLO LYSMD2
BRAF PTGFRN PCLO SYT13
BRAF RAB27B PDE4DIP MTAP
BRAF RAB8B PDE4DIP SLC4A11
BRAF SHE PREX2 MBP
BRAF SLC4A11 RYR1 FCGR1B
BRAF SMCHD1 RYR1 HK3
BRAF STYK1 RYR1 IL4I1
BRAF TBC1D15 RYR1 ITGB2
BRAF TMEM144 RYR1 SLC4A11
BRAF TNIP1 RYR1 TRIM29
BRAF TSHZ2 RYR2 SLC4A11
CACNA1H DUSP4 RYR3 ALDOA
CACNA1H PRSS12 RYR3 HSPA8
CACNA1H RAB27B RYR3 IGF2BP3
CACNA1H TOR1AIP2 RYR3 TMED3
CDH23 INO80C RYR3 WDR54
CELSR2 GRAMD1B SDK1 B3GNT1
COL12A1 HIF1A SDK1 FN1
COL12A1 IKBIP SDK1 GLT8D2
COL6A6 OAZ1 SDK1 KIRREL
COL7A1 CYB5D2 SDK1 SGIP1
COL7A1 MBP SYNE1 ANO1
CROCC C18orf32 SYNE1 DUSP4
CSMD1 ERO1L SYNE1 TBC1D15
CSMD1 SLC4A11 SYNE2 CALM2
CTNNB1 HSPA8 TAS2R19 TLX1
DCHS2 SLC4A11 TCHH KIFC3
DNAH1 MLPH TP53 APLNR
DNAH1 WDR54 TP53 CD93
DNAH11 MBP TP53 CH25H
DNAH11 METTL10 TP53 COL15A1
DNAH17 CALM2 TP53 CYYR1
DNAH17 CD109 TP53 F2RL2
DNAH3 PGAM1 TP53 GGT5
DNAH5 IGF2BP3 TP53 HLX
DST TRIM29 TP53 HSPA12B
FAT4 ATP8B1 TP53 SEPT04
FAT4 C10orf12 TP53 TEK
FAT4 CD109 TTN ADAM8
FAT4 CTDP1 TTN ADCY7
FAT4 DPP4 TTN ADPRH
FAT4 ERO1L TTN AEBP1
FAT4 IL24 TTN AGRN
FAT4 MME TTN APBA2
FAT4 MOGAT2 TTN ARHGAP31
FAT4 MYEOV TTN BOLA3
FAT4 RAB27B TTN C10orf12
FAT4 RASSF6 TTN C10orf26
FAT4 TMEM184B TTN C1R
FAT4 TOE1 TTN C1S
FBXW10 TLX1 TTN C20orf103
FBXW7 TRPS1 TTN CCDC48
FLNC C12orf29 TTN CCDC88A
FLNC CALM2 TTN CCL14-CCL15
GPR98 TBC1D15 TTN CD97
HMCN1 DUSP4 TTN CDH11
HMCN1 MYEOV TTN CEP170
KRAS AGPAT4 TTN CHN1
KRAS ANKRD50 TTN CHST3
KRAS BBS2 TTN CLEC14A
KRAS BCAP29 TTN CNTN4
KRAS C19orf70 TTN COLEC12
KRAS C1orf43 TTN COMTD1
KRAS C2orf42 TTN CPA3
KRAS C3orf67 TTN CSGALNACT2
KRAS CARKD TTN CTU2
KRAS CH25H TTN CYYR1
KRAS CHMP4C TTN DCN
KRAS CHMP5 TTN DOHH
KRAS CXorf38 TTN DPY19L3
KRAS CYFIP2 TTN ELK3
KRAS CYR61 TTN EPAS1
KRAS DLEU2 TTN FAM126A
KRAS FN1 TTN FAM173A
KRAS GADD45B TTN FAM19A5
KRAS GGT5 TTN FAP
KRAS HAS2 TTN FHL2
KRAS IKBIP TTN FKBP1B
KRAS KDM5A TTN FLT3LG
KRAS LMBR1 TTN FN1
KRAS MRPS14 TTN FN3K
KRAS NCK2 TTN FOLR2
KRAS NKIRAS1 TTN FSTL1
KRAS OCIAD1 TTN GFPT2
KRAS OSTC TTN GGT5
KRAS P2RY13 TTN GJA4
KRAS PCDHGB6 TTN GLIS3
KRAS PLK1 TTN GNAI2
KRAS PMF1 TTN GPR176
KRAS PMPCB TTN GPR68
KRAS RAVER1 TTN GPX8
KRAS RBM42 TTN HLX
KRAS RPS29 TTN IGF2BP3
KRAS SLC39A6 TTN JUNB
KRAS TMEM128 TTN KCNS3
KRAS TRAPPC3 TTN KIRREL
KRAS TRIM29 TTN LEPR
KRAS UBE2W TTN LPXN
KRAS UFC1 TTN LUM
KRAS UNC50 TTN MARVELD2
KRAS WDFY2 TTN MMP23B
KRAS WRB TTN MMRN2
KRAS YEATS4 TTN MXRA8
KRAS ZC3H8 TTN NID2
KRAS ZC3HC1 TTN NLGN2
LILRA6 WISP1 TTN NR3C1
LILRB3 WISP1 TTN ODZ4
LILRB3 PDGFB TTN PDGFRB
LRP1 APOBEC3F TTN PECAM1
MACF1 CD109 TTN PHTF2
MLL2 ANTXR1 TTN PMEPA1
MLL2 DFNA5 TTN PODN
MLL2 DPYD TTN POSTN
MLL2 GPR68 TTN PPAPDC1A
MLL2 IKBIP TTN PRICKLE1
MLL2 RECK TTN RAPGEF3
MLL2 SLC4A11 TTN RECK
MLL2 VIM TTN RNF144A
MLL4 CALM2 TTN RNF7
MLL4 DUSP4 TTN RPL24
MLL4 ERO1L TTN SDK1
MLL4 GPR126 TTN SDS
MLL4 MTAP TTN SEPT04
MLL4 S100A14 TTN SERPINF1
MLL4 SDR16C5 TTN SGIP1
MLL4 WDR54 TTN SHISA4
MUC16 ABTB1 TTN SLC16A3
MUC16 ACER2 TTN SLC2A6
MUC16 ARHGAP1 TTN SRD5A3
MUC16 B3GNT9 TTN SRGAP2
MUC16 CALM2 TTN SRPX
MUC16 CAMSAP1 TTN SSC5D
MUC16 CAPZA1 TTN SULF1
MUC16 CFH TTN TEK
MUC16 CHMP5 TTN TGFB1
MUC16 COL8A2 TTN THBD
MUC16 COMTD1 TTN THOC7
MUC16 CSGALNACT2 TTN TMEM131
MUC16 CTDP1 TTN TSHZ3
MUC16 DFNA5 TTN VEGFC
MUC16 DNAJA1 TTN WASH2P
MUC16 DPYD TTN WDR54
MUC16 ELK3 TTN WDR91
MUC16 EVC TTN ZEB2
MUC16 FAM165B UNC13C METTL10
MUC16 FAP USH2A AEBP1
MUC16 KIFC3 USH2A C10orf72
MUC16 LOXL1 USH2A CDH11
MUC16 MASTL USH2A CFLAR
MUC16 METTL10 USH2A EVC
MUC16 MYO1A USH2A FBN1
MUC16 NRP2 USH2A FLT3LG
MUC16 PDGFRL USH2A FN1
MUC16 PLXDC2 USH2A MSC
MUC16 PSMB7 USH2A ODZ4
MUC16 RAPGEF3 USH2A OLFML2B
MUC16 SDR16C5 USH2A PDGFRB
MUC16 SLC4A11 USH2A PRRX1
MUC16 TEP1 USH2A SERPINF1
MUC16 VAPA USH2A THBS2
MUC16 WDR54 ZFHX3 PIAS2
MUC5B ARHGAP1 ZFHX3 TRPS1
MUC5B CALU ZFHX4 METTL10
MUC5B CD82 ZNF814 CSTB
MUC5B CD93 ZNF814 IGF2BP3
MUC5B CHST3
폐선암 정량 합성암생존 유전자쌍
USH2A CEACAM19 MUC16 ZNF512B
USH2A TBC1D16 MUC16 ZNF528
RANBP2 SLCO5A1 MUC16 ZNF653
NAV3 APOBEC3B MUC16 ZYG11A
TTN CBX6 SI EXOC3
TTN CCDC97 PAPPA2 KIAA1468
TTN CSDE1 PAPPA2 MYRIP
TTN DPH2 HMCN1 LASS5
TTN KIAA1967 HMCN1 THAP3
TTN ODF2L HMCN1 THOC6
TTN PGPEP1 HMCN1 ZNF821
TTN PKN1 HMCN1 ZSWIM3
TTN WIZ ABCB5 C19orf52
TTN ZNF570 ABCB5 EBP
FAT3 ABCF1 ABCB5 NR2C2AP
FAT3 BRD4 ABCB5 PAFAH1B3
FAT3 CCDC97 DCAF12L2 EDN1
FAT3 CSDE1 FRG1B CEACAM19
FAT3 DHX34 TNN BRD4
FAT3 DPH2 TNN GRIN2D
FAT3 DTNB TNN IGFBPL1
FAT3 GRLF1 TNN KIF7
FAT3 LIG1 TNN MAGEA6
FAT3 MAGEA6 TNN PCDHB13
FAT3 NEURL TNN PLEKHG4
FAT3 PCDHB14 TNN STRN4
FAT3 SF3B3 TNN ZNF229
FAT3 ZNF229 TNR ALKBH4
ANK2 SLC38A7 TNR ANO8
FER1L6 RABEPK TNR C16orf70
MUC16 AARS2 TNR CCHCR1
MUC16 ACIN1 TNR DHDDS
MUC16 ANKLE1 TNR DHX38
MUC16 ANO8 TNR DIP2A
MUC16 ATXN1L TNR DOCK3
MUC16 ATXN2L TNR EXD3
MUC16 BTBD12 TNR GPATCH3
MUC16 CCDC130 TNR GRIN2D
MUC16 CCDC97 TNR KRI1
MUC16 CHTF18 TNR LOC100132287
MUC16 COL28A1 TNR MFN2
MUC16 CUL9 TNR NGDN
MUC16 DDX31 TNR PABPN1
MUC16 DHX34 TNR PHLDB3
MUC16 DIP2A TNR PILRB
MUC16 DOCK3 TNR PRR3
MUC16 DUSP28 TNR RGL3
MUC16 E2F4 TNR RNF31
MUC16 EDC4 TNR SDR39U1
MUC16 EXD3 TNR SF3B3
MUC16 FAM76A TNR TIGD7
MUC16 GATAD1 TNR XAB2
MUC16 GLTSCR1 TNR ZNF436
MUC16 GPATCH3 TNR ZNF653
MUC16 GPN2 TNR ZNF778
MUC16 GTPBP3 TNR ZYG11A
MUC16 JUND RYR2 ABCF1
MUC16 KIAA0467 RYR2 ANKLE1
MUC16 KPTN RYR2 ARFGEF2
MUC16 KRI1 RYR2 BCL3
MUC16 KSR2 RYR2 CHEK2
MUC16 LOC283922 RYR2 CNTD2
MUC16 LOC440173 RYR2 CTAG1B
MUC16 MKL2 RYR2 DMBX1
MUC16 MTOR RYR2 EHMT1
MUC16 NFATC4 RYR2 KPTN
MUC16 NOC2L RYR2 ODF2L
MUC16 PABPN1 RYR2 RBM28
MUC16 PCSK4 RYR2 SF3B3
MUC16 PGPEP1 RYR2 SLC5A5
MUC16 PHLDB3 RYR2 ZFYVE9
MUC16 PILRB RYR2 ZNF200
MUC16 PKN1 RYR2 ZNF223
MUC16 PLCG1 RYR2 ZNF229
MUC16 PMS2L3 KEAP1 ERP29
MUC16 POLR2E MYO18B MAGEA6
MUC16 RECQL4 MYO18B ZNF131
MUC16 RERE CACNA1E C16orf88
MUC16 SFRS16 CACNA1E PAFAH1B3
MUC16 SIN3B HELZ IDH1
MUC16 SKIV2L MAGEC1 ZNF560
MUC16 SLC7A6OS MYLK BTBD12
MUC16 SNHG11 MYLK ZBTB17
MUC16 SNIP1 RYR3 ANKLE1
MUC16 SPATA2L RYR3 ARHGAP39
MUC16 SPATA2 RYR3 BRD4
MUC16 SSBP4 RYR3 CTAG1B
MUC16 STK31 RYR3 MAGEB2
MUC16 TFF3 RYR3 MTF2
MUC16 THAP3 RYR3 NASP
MUC16 TRIM39 RYR3 ODF2L
MUC16 TRIM62 RYR3 PCDHB13
MUC16 TRMT1 RYR3 PCDHB14
MUC16 TRPM4 RYR3 PLEKHG4
MUC16 VPS16 RYR3 SF3B3
MUC16 WDR8 RYR3 ZNF229
MUC16 XAB2 PRDM9 POLR2J4
MUC16 ZBTB17 SCN10A COG5
MUC16 ZBTB22 DNAH5 RNASEN
MUC16 ZNF182 OR4A15 COBL
MUC16 ZNF362 ZFHX4 SEC61A2
MUC16 ZNF436
교아종 정량 합성암생존 유전자쌍
SYNE1 CBFB KIR2DL3 YES1
COG1 MYC HUNK CBFB
TENM2 CBFB TEX264 PAX3
UTP20 CBFB ENTPD1 MYC
TRAK2 EGFR DDX23 CBFB
SLC6A9 MYC FMNL3 MYC
KIF13B CBFB PLA2G4B CBFB
LRP1 CBFB BCO1 YES1
PHACTR1 MYC TOP2A MYC
LDB2 CBFB DND1 CBFB
PREP MYC SCUBE3 YES1
AGAP4 MYC LAMB4 YES1
CKAP5 CBFB UBE2E3 PAX3
NSD1 CBFB PBRM1 MYC
ZNF831 MYC TTBK2 STIL
HEPACAM EGFR RBL1 STIL
TAS2R43 CBFB KRTAP26-1 CBFB
LRP6 CBFB PRAMEF10 YES1
BCL9 TCF3 ADCY3 GFI1B
CD8B MYC FLNC CBFB
TRAK2 TCF3 CLIP1 TCF3
PRPF8 CBFB SLC12A6 CBFB
ITPR3 CBFB FOSB GFI1B
CTC-435M10.3 CBFB OR5B21 CBFB
KCNA2 CBFB ZNF608 GFI1B
FN1 YES1 GOLM1 TCF3
FAM208B CBFB QRICH1 YES1
POLE CBFB CACNA1D CREB3L2
AGO4 EGFR PIDD1 TCF3
AGO4 MYC HTT CBFB
CACNA1D CBFB OR5L1 MYC
LILRA6 CBFB SIK2 CBFB
PTCHD2 MYC FMNL3 STIL
UHMK1 STIL E2F7 YES1
SLC3A1 MYC VPS33B CBFB
SLC25A20 MYC THUMPD1 CBFB
SLC4A4 CBFB INPP5K MYC
KCNJ12 MYC RFXANK CBFB
RBL1 MYC TOMM34 CBFB
GPR61 CBFB OR2T3 GFI1B
BRPF3 EGFR PPM1G YES1
ADNP2 CBFB IKBKB GFI1B
PLCB1 YES1 METTL21A GFI1B
NCOA6 CBFB EXOSC3 MYC
BCL9 CBFB PTPDC1 GFI1B
MIA3 YES1 MUC5B CREB3L2
IGF1R MYC SHANK2 YES1
자궁경부암 정량 합성암생존 유전자쌍
TDG MYB LAMA2 TCL1A
AHNAK2 TNFRSF17 CEMIP LCK
MUC17 LYN RBBP6 PRKCI
KRTAP9-9 MYB SPTBN5 LHX4
EEF2KMT LHX4 PSG1 PRKCI
LRP5 POU2AF1 ZNRF3 LYN
ALPK3 PAX7 DUSP27 VAV1
LILRA2 PIM2 HECW2 FGF5
OR1L4 PIM2 KIAA1109 PRKCI
TENM4 POU2AF1 PPP1R10 LYN
TENM4 TNFRSF17 TAS2R31 TBC1D3
AHNAK2 PRKCI BAZ1A LMO1
KCNJ12 RNF213 ARHGEF1 LHX4
DNAJC11 RNF213 POTEH WHSC1
HMCN1 ELF4 CNTN2 TLX1
HMCN1 TCL1A IQCE LCK
USH2A BRCC3 SLC24A2 TLX1
CAD LYN C12orf43 RNF213
CAD RNF213 VWA8 LCK
PDZRN3 AGR2 PCNX LHX4
EEF2KMT GMPS PML MAFA
KIAA1244 LCK CEMIP LYN
LRP5 LCK MYCBPAP MAL
CFAP54 LCK MAN2B1 PAX7
CILP MYEOV MDGA1 HMGA2
RYR1 BRCC3 AASS LHX4
ZNF142 GMPS CFAP58 PAX7
ADAMTS12 LCK MYCBPAP TLX1
HLA-DQB2 VAV1 GALNT14 MAFA
DNAH8 LYN ATP13A3 LHX4
REV3L LYN TRPA1 REL
KIAA1244 TNFRSF17 NDST2 LCK
UBE2N TLX1 ITGA11 LYN
ITGA11 PAX7 DENND5B LHX4
MET MAFA RIPK4 PRKCI
CFAP54 TNFRSF17 MPP7 MAL
CILP LCK CYP2C9 LCK
ARHGEF1 PAX7 DEPDC7 LCK
KIR3DL3 VAV1 PRMT5 POU2AF1
ACSS1 TLX1 SLC24A3 HOXA9
FAT1 TCL1A
신장암 정량 합성암생존 유전자쌍
SEPT10 CDT1 GDA FSTL3
NFIL3 TNFRSF17 SYCP3 TNFRSF17
SLTM TNFRSF17 PDE6C TNFRSF17
ELF1 CCND1 ATR CCND1
NEDD9 EVI2B UPF3A TNFRSF17
PLA2G4A TNFRSF17 BIRC6 PDGFD
HEATR5A FSTL3 MSTN EVI2B
ZBTB38 EVI2B NRAP FSTL3
SGOL1 CCND1 ZBTB38 TNFRSF17
POLR3B EVI2B DNAI1 FSTL3
SETD2 FSTL3 TM7SF2 TNFRSF17
고환암 정량 합성암생존 유전자쌍
TTN CCT7 TTN ITGA2
TTN DAP3 TTN LOC645676
TTN EIF5B
위암 정량 합성암생존 유전자쌍
APOB TCL1A KALRN TCL1A
ERICH3 FAM83A
두경부암 정량 합성암생존 유전자쌍
TP53 DIABLO
간암 정량 합성암생존 유전자쌍
NPIPB15 MLLT6
실시예 3. 암종별 정량 합성암생존 부담을 이용한 암 생존 및 예후 예측
암 환자의 정량 합성암생존 유전자 쌍의 개수가 따른 암 환자의 예후와 생존률에 미치는 영향을 분석하였다. 그 결과를 도 4 및 도 5에 나타내었다.
도 4 및 도 5에 나타낸 바와 같이, 폐선암 환자군 및 대장선암 환자군에서의 생존 곡선을 분석한 결과, 정량 합성암생존 유전자 쌍을 많이 가지는 환자군 일수록 더 적게 가지는 혹은 가지지 않는 환자군보다 암 환자의 생존률이 높으며, 예후가 좋은 것을 확인하였다. 이는 일반적으로 non-synonymous mutation이 많을수록 암환자의 예후가 나빠지는 것이 반대되는 결과로, 이로부터 정량 합성암생존 유전자 보유 쌍을 확인함으로써 암 환자의 예후를 예측할 수 있음을 확인하였다.

Claims (18)

  1. 암 환자의 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자 쌍을 구성하는 하나 이상의 과발현 후보 유전자 및 하나 이상의 대응 유전자를 검출하는 단계; 및
    상기 대응 유전자를 억제하는 약물을 선정하는 단계를 포함하는,
    암 유전체 염기서열 변이 정보 및 전사체 발현 정보를 이용한 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  2. 제 1 항에 있어서, 상기 대응 유전자는 과발현 후보 유전자와 함께 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이고, 손상되지 않은 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  3. 제 2 항에 있어서,
    상기 염기서열 변이는 유전자의 엑손(exon)을 구성하는 염기의 치환, 부가 또는 결실인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  4. 제 3 항에 있어서,
    상기 염기의 치환, 부가 또는 결실은 염색체의 절단, 결실, 중복, 역위 및 전좌로 이루어진 군에서 선택된 1종 이상의 구조적 이상에 의한 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  5. 제 2 항에 있어서,
    상기 염기서열 변이는 기능상실변이(Loss of Function (LoF) Variant)의 보유인 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  6. 제 1 항에 있어서,
    상기 암 유전체 염기서열 및 전사체 발현량 분석은 참조군의 유전체 염기서열 및 전사체 발현량과의 비교 분석을 통해 수득되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  7. 제 1 항에 있어서,
    상기 대응 유전자는 유전자가 보유한 유전자 염기서열 변이 점수 또는 유전자 손상 점수에 의해 결정되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  8. 제7 항에 있어서,
    상기 유전자 염기서열 변이 점수는 SIFT (Sorting Intolerant From Tolerant), PolyPhen, PolyPhen-2 (Polymorphism Phenotyping), MAPP (Multivariate Analysis of Protein Polymorphism), Logre (Log R Pfam E-value), Mutation Assessor, Condel, GERP (Genomic Evolutionary Rate Profiling), CADD (Combined Annotation-Dependent Depletion), MutationTaster, MutationTaster2, PROVEAN, PMuit, CEO (Combinatorial Entropy Optimization), SNPeffect, fathmm, MSRV (Multiple Selection Rule Voting), Align-GVGD, DANN, Eigen, KGGSeq, LRT (Likelihood Ratio Test), MetaLR, MetaSVM, MutPred, PANTHER, Parepro, phastCons, PhD-SNP, phyloP, PON-P, PON-P2, SiPhy, SNAP, SNPs&GO, VEP (Variant Effect Predictor), VEST (Variant Effect Scoring Tool), SNAP2, CAROL, PaPI, Grantham, SInBaD, VAAST, REVEL, CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations), mCluster, nsSNPAnayzer, SAAPpred, HanSa, CanPredict, FIS 및 BONGO(Bonds ON Graphs)로 이루어진 군에서 선택된 하나 이상의 알고리즘을 유전자 염기서열 변이에 적용하여 산출되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  9. 제 7 항에 있어서,
    상기 유전자 손상 점수는 해당 유전자가 보유한 유전자 염기서열 변이가 두 개 이상인 경우, 각 유전자 염기서열 변이 점수들의 평균값으로 산출되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  10. 제 9 항에 있어서,
    상기 평균값은 기하평균, 산술평균, 조화평균, 산술기하평균, 산술조화평균, 기하조화평균, 피타고라스 평균, 헤론 평균, 역조화평균, 평균제곱근편차, 센트로이드 평균, 사분평균, 이차평균, 절삭평균, 윈저화 평균, 가중평균, 가중기하평균, 가중산술평균, 가중조화평균, 함수의 평균, 멱평균, 일반화된 f-평균, 백분위수, 최대값, 최소값, 최빈값, 중앙값, 중앙범위, 중심경향도(measures of central tendency), 단순 곱 및 가중 곱으로 이루어진 군으로부터 선택된 하나 이상에 의해 계산되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  11. 제 7 항에 있어서,
    상기 유전자 손상 점수는 하기 수학식 1에 의해 산출되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법:
    [수학식 1]
    Figure PCTKR2018004799-appb-I000001
    상기 수학식 1에서 Sg는 유전자 g가 코딩하는 단백질의 유전자 손상 점수, n은 상기 유전자 g의 염기서열 변이 중 분석대상 염기서열 변이의 수, vii 번째 분석대상 염기서열 변이의 상기 염기서열 변이 점수이며, p는 0이 아닌 실수임.
  12. 제 7 항에 있어서,
    상기 유전자 손상 점수는 하기 수학식 2에 의해 산출되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법:
    [수학식 2]
    Figure PCTKR2018004799-appb-I000002
    상기 수학식 2에서 Sg는 유전자 g가 코딩하는 단백질의 유전자 손상 점수, n은 상기 유전자 g의 염기서열 변이 중 분석대상인 염기서열 변이의 수, vii 번째 분석대상 염기서열 변이의 상기 유전자 염기서열 변이 점수이며, wi는 상기 i 번째 염기서열 변이의 상기 유전자 염기서열 변이 점수 vi에 부여되는 가중치임.
  13. 제 1 항에 있어서,
    상기 정량 합성암생존 유전자 쌍은 하나 이상의 과발현 후보 유전자 및 하나 이상의 염기서열 변이 후보 유전자의 조합의 존재가 암 환자의 생존률 향상을 유발하는 유전자 쌍을 의미하는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  14. 제 1 항에 있어서,
    상기 정량 합성암생존 유전자 쌍 정보를 이용하여 상기 암 환자에 대해 적용되는 약물 간의 우선순위를 결정하는 단계; 또는
    상기 정량 합성암생존 유전자 쌍 정보를 이용하여 상기 암 환자에 적용되는 약물의 사용 여부를 결정하는 단계를 추가로 포함하는, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  15. 제 1 항에 있어서,
    상기 정량 합성암생존 유전자 쌍은,
    암 환자의 염기서열 변이 정보, 전사체 발현량 정보 및 생존 정보로부터 생존 분석을 수행하는 단계; 또는
    암 세포주, 암 오가노이드 (organoid), 또는 암 조직에서의 유전체 염기서열 변이 분석, 침윤능 또는 전이능 동정을 수행하는 단계;를 통해 선정되는 것인, 맞춤형 항암 치료 약물 선택을 위한 정보를 제공하는 방법.
  16. 암 환자의 암 유전체 염기서열 및 전사체 발현량 분석 결과로부터 정량 합성암생존 (Synthetic Cancer Survival) 유전자 쌍을 구성하는 과발현 후보 유전자 및 염기서열 변이 후보 유전자의 수를 산출하는 단계;를 포함하는, 암 환자의 예후 예측을 위한 정보를 제공하는 방법.
  17. 암 유전체 염기서열 변이 정보 및 전사체 발현 정보를 이용한 맞춤형 항암 치료 약물 선택 시스템에 있어서,
    상기 시스템은 암 환자에 대해 적용대상이 되는 항암 치료 약물 및 상기 약물이 조절할 수 있는 유전자와 관련된 정보 검색 또는 추출이 가능한 데이터베이스;
    상기 데이터베이스에 접근 가능한 통신부;
    암 유전체 염기서열 분석부;
    암 전사체 발현량 분석부;
    약물 선택 정보 제공부; 및 표시부를 포함하며,
    상기 암 유전체 염기서열 분석부는 정량 합성암생존 유전자 쌍에 속하는 하나 이상의 과발현 후보 유전자 및 하나 이상의 염기서열 변이 후보 유전자를 선정하는 정량 합성암생존 유전자쌍 선정부 및
    상기 과발현 후보 유전자와 함께 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이며, 손상되지 않은 하나 이상의 대응 유전자를 선정하는 대응 유전자 선정부를 포함하고,
    상기 약물 선택 정보 제공부는 상기 하나 이상의 대응 유전자를 억제하는 약물 정보를 제공하거나, 상기 정량 합성암생존 유전자 쌍의 개수를 증가시키는 약물 정보를 제공하는 것인, 맞춤형 항암 치료 약물 선택 시스템.
  18. 하기 프로세서를 실행시키는 실행모듈을 포함하는 컴퓨터 판독 가능한 매체:
    암 유전체 염기서열 변이 정보 및 전사체 발현 정보로부터 정량 합성암생존 (Synthetic Dosage Cancer Survival) 유전자 쌍을 선별하는 단계; 및
    과발현 후보 유전자와 함께 상기 정량 합성암생존 유전자 쌍을 구성하는 염기서열 변이 후보 유전자이고, 손상되지 않은 하나 이상의 대응 유전자를 억제하는 하나 이상의 약물을 선별하거나,
    상기 정량 합성암생존 유전자 쌍의 개수를 증가시키는 하나 이상의 약물을 선별하는 단계를 포함하는 동작을 수행하는 프로세서.
PCT/KR2018/004799 2017-04-25 2018-04-25 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템 WO2018199627A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170053094 2017-04-25
KR10-2017-0053094 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018199627A1 true WO2018199627A1 (ko) 2018-11-01

Family

ID=63920337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004799 WO2018199627A1 (ko) 2017-04-25 2018-04-25 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR102188376B1 (ko)
WO (1) WO2018199627A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717930A (zh) * 2021-09-07 2021-11-30 复旦大学附属华山医院 携带fbn1突变的颅颈动脉夹层特异诱导多能干细胞系

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230108089A (ko) 2022-01-10 2023-07-18 광주과학기술원 전장 유전체 데이터를 이용한 유전체 복원 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150021476A (ko) * 2013-08-19 2015-03-02 서울대학교산학협력단 약물 부작용 방지를 위한 개인별 단백질 손상 정보 기반의 약물 선택 방법 및 시스템
US20150331992A1 (en) * 2014-05-15 2015-11-19 Ramot At Tel-Aviv University Ltd. Cancer prognosis and therapy based on syntheic lethality
KR20160101708A (ko) * 2015-02-17 2016-08-25 싸이퍼롬, 인코퍼레이티드 항암제 부작용 방지를 위한 개인별 단백질 손상 정보 기반의 항암제 선택 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150021476A (ko) * 2013-08-19 2015-03-02 서울대학교산학협력단 약물 부작용 방지를 위한 개인별 단백질 손상 정보 기반의 약물 선택 방법 및 시스템
US20150331992A1 (en) * 2014-05-15 2015-11-19 Ramot At Tel-Aviv University Ltd. Cancer prognosis and therapy based on syntheic lethality
KR20160101708A (ko) * 2015-02-17 2016-08-25 싸이퍼롬, 인코퍼레이티드 항암제 부작용 방지를 위한 개인별 단백질 손상 정보 기반의 항암제 선택 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JERBY-ARNON ET AL.: "Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality", CELL, vol. 158, no. 5, 28 August 2014 (2014-08-28), pages 1199 - 1209, XP055376363 *
WANG ET AL.: "Widespread genetic epistasis among cancer genes", NATURE COMMUNICATIONS, vol. 5, 19 November 2014 (2014-11-19), pages 1 - 10, XP055528669 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717930A (zh) * 2021-09-07 2021-11-30 复旦大学附属华山医院 携带fbn1突变的颅颈动脉夹层特异诱导多能干细胞系

Also Published As

Publication number Publication date
KR102188376B1 (ko) 2020-12-08
KR20180119522A (ko) 2018-11-02

Similar Documents

Publication Publication Date Title
Pugh et al. VisCap: inference and visualization of germ-line copy-number variants from targeted clinical sequencing data
Ito et al. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing
Turner et al. Genomic islands of speciation in Anopheles gambiae
Li et al. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression
TWI732771B (zh) Dna混合物中組織之單倍型甲基化模式分析
EP4073805B1 (en) Systems and methods for predicting homologous recombination deficiency status of a specimen
JP2024016039A (ja) 相同組換え欠損を推定するための統合された機械学習フレームワーク
Gebauer et al. Genomic insights into the pathogenesis of Epstein–Barr virus-associated diffuse large B-cell lymphoma by whole-genome and targeted amplicon sequencing
KR101949286B1 (ko) 암 환자의 유전체 염기서열 변이 정보와 생존 정보를 이용한 맞춤형 약물 선택 방법 및 시스템
Zhang et al. Extended haplotype association study in Crohn’s disease identifies a novel, Ashkenazi Jewish-specific missense mutation in the NF-κB pathway gene, HEATR3
AU2016324166A1 (en) Predicting disease burden from genome variants
Zheng et al. Integrated multi-omics analysis of genomics, epigenomics, and transcriptomics in ovarian carcinoma
Bai et al. An integrated genome-wide systems genetics screen for breast cancer metastasis susceptibility genes
Ruark et al. The ICR1000 UK exome series: a resource of gene variation in an outbred population
WO2018199627A1 (ko) 암 유전체 염기서열 변이, 전사체 발현 및 환자 생존 정보를 이용한 맞춤형 항암 치료 방법 및 시스템
Cheng et al. Integrative analysis of transcriptome‐wide association study data and messenger RNA expression profiles identified candidate genes and pathways for inflammatory bowel disease
Li et al. Mining the coding and non-coding genome for cancer drivers
Chi et al. Hypomethylation mediates genetic association with the major histocompatibility complex genes in Sjögren’s syndrome
Masoodi et al. Structural prediction, whole exome sequencing and molecular dynamics simulation confirms p. G118D somatic mutation of PIK3CA as functionally important in breast cancer patients
Bakhtiar et al. Identifying human disease genes: advances in molecular genetics and computational approaches
WO2017074036A2 (ko) 암 환자의 유전체 염기서열 변이 정보와 생존 정보를 이용한 맞춤형 약물 선택 방법 및 시스템
Banaganapalli et al. Introduction to bioinformatics
Mellerup et al. Combinations of genetic data in a study of oral cancer
Jiang et al. A landscape of gene expression regulation for synovium in arthritis
Ma et al. Use of high-throughput targeted exome sequencing in genetic diagnosis of Chinese family with congenital cataract

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18791081

Country of ref document: EP

Kind code of ref document: A1