WO2018199563A1 - 박수연의 적정간호인력 의사결정 지원시스템 - Google Patents
박수연의 적정간호인력 의사결정 지원시스템 Download PDFInfo
- Publication number
- WO2018199563A1 WO2018199563A1 PCT/KR2018/004660 KR2018004660W WO2018199563A1 WO 2018199563 A1 WO2018199563 A1 WO 2018199563A1 KR 2018004660 W KR2018004660 W KR 2018004660W WO 2018199563 A1 WO2018199563 A1 WO 2018199563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nursing
- indicator
- appropriate
- support system
- indicators
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
- G06Q10/063118—Staff planning in a project environment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
- G06Q10/105—Human resources
Definitions
- the present invention provides the number, composition, and nursing of nursing personnel to produce the highest Quality of Care Outcomes relative to cost, including nurse labor costs, by country, region, medical institution, or department, including worldwide. This is a mechanism for suggesting optimal scenarios for the amount of time or work load, and it is related to the appropriate nursing decision support system that can help to alleviate the social burden of the rapidly increasing elderly health care costs due to the low birth rate. will be.
- the present invention has been invented under the above-mentioned purpose, and the "User-Centered Cloud-based Appropriate Nursing Decision Support System” (name: Park Soo-yeon's Appropriate Nursing Decision Making Support System (Park's User-friendly) Park's Optimized Nurse Staffing (Sweet Spot) Estimation Theory: Copyright c 2016 Park, Marie through "Cloud-based Intersectional Optimized Nurse Staffing (Sweet Spot) Decision-making Support System" " Su-Yeon.All Rights Reserved. The copyright has been registered in Korea [C-2016-031091] and the U.S.A.
- the present invention after searching and determining the indicators to be considered in the strategic decision-making problem for the appropriate nursing personnel by the world, country, region, medical institution, or department, After evaluating the economics for conversion, following the Park Soo-yeon's theory of proper nursing workforce, through mathematical programming or simulation (using mathematical software programs such as MATLAB and MAPLE), the "best optimal nursing workforce range” and "optimal appropriate nursing care” After calculating the workforce indicators, create a strategic portfolio based on the situation, and feed back to the candidates (clients)-the country / region / medical institution / department- It is characterized by a mechanism.
- the present invention through the "user-centered cloud-based appropriate nursing personnel decision support system (Park Soo-yeon's appropriate nursing personnel decision support system) linking DT technology and consulting technology, the optimal quality of care outcomes By providing appropriate nursing consulting to maximize management efficiency while guaranteeing, it can significantly contribute to innovation into a value-based healthcare delivery system.
- Appropriate nursing personnel indicator provided by the present invention is "to satisfy all the medical managers, nurses, and patients," the composition and number of the appropriate nursing personnel by country, region, medical institution, or department, and nursing time or workload, The results are based on Park Soo-yeon's theory of estimation of appropriate nursing personnel, which has been verified by the authoritative international journal of nursing, and can be effectively used as a reliable decision index.
- the present invention can be industrially used in the field of management decision support technology of medical institutions and its application technology.
- Figure 2 is a block diagram showing the configuration of an embodiment of the "user-centered cloud-based appropriate nursing personnel decision support system (Park Soo Yeon appropriate nursing personnel decision support system)" according to the present invention.
- FIG. 3 is a flowchart illustrating an example of a proper nursing personnel decision mechanism of the "user-oriented cloud-based appropriate nursing personnel decision support system (Park Soo-yeon's appropriate nursing personnel decision support system)" according to the present invention.
- the present invention is based on "the optimal nursing labor force lever point and range of the optimal nursing personnel estimation theory of Park Soo-yeon" "User-centered cloud-based appropriate nursing personnel decision support system (Park Soo-yeon appropriate nursing care) Personnel Decision Support System) ⁇ Park's User-friendly Cloud-based Intersectional Optimized Nurse Staffing (Sweet Spot) Decision-making Support System ⁇ " Describe the mechanisms by which the process can be communicated and shared by country, region, medical institution, or department. Therefore, the information calculated by the present invention can be effectively used as a reliable decision index.
- Figure 2 is a "user-oriented cloud-based appropriate nursing personnel decision support system (Park Soo-yeon's appropriate nursing personnel decision support system) ⁇ Park's User-friendly Cloud-based Intersectional Optimized Nurse Staffing (Sweet Spot) Decision-making "Support System” is a block diagram showing the configuration of an embodiment of.
- the appropriate nursing personnel decision support system 100 includes the indicator determining unit 110, the index generating unit 120, the data analyzing unit 130, and the appropriate nursing personnel pseudo.
- the decision support unit 140 is included.
- Customer response unit 150 may be added.
- FIG. 3 is a diagram of a proper nursing personnel decision mechanism of "Park's User-friendly Cloud-based Intersectional Optimized Nurse Staffing [Sweet Spot] Decision-making Support System ⁇ " according to the present invention.
- the indicator determination unit 110 performs a preliminary first step (S100)
- the indicator generation unit 120 performs a preliminary second step (S200)
- the data analysis unit 130 performs a data analysis step (S300), and an appropriate nursing staff.
- Decision support unit 140 is made to include in charge of the final processing step (S400).
- Customer service step (S500) may be included as a department in charge of the customer response unit 150.
- the indicator determination unit 110 searches for and selects / determines the indicators to be considered in the decision of the appropriate nursing staff throughout the preliminary first step (S100). Based on the data uploaded by the evaluator (Sponsor Park's appropriate nursing decision support system), the indicator decision unit 110 is valid and reliable in the field of health care, including medicine, nursing, and public health. Explore and select / determine the indicators to be used for actual data analysis, based on the indicators that have been verified. In this case, the clinical application of the data is not limited to the size and specific field of the institution. Therefore, it may include data collected from public health centers, nursing homes, nursing homes, small and medium hospitals, general hospitals, large general hospitals, and advanced general hospitals. In addition, adult nursing care, elderly care, child care, maternal nursing, nursing management, nursing information, nursing systems, alternative nursing field data may also be included.
- the indicator determination unit 110 may request related data from the evaluation target (client) through the customer response unit 150, and the evaluation target (client) may respond to the customer response unit. It includes a customer service step (S500) that can re-upload the data requested from 150 through the "user-centric cloud-based appropriate nursing personnel decision support system". All these processes are performed throughout the preliminary first step (S100).
- the indicators searched and determined by the indicator determiner 110 include a Quality of Care Outcome indicator, a Nursing Staffing indicator, a Cost indicator, and a Covariates indicator.
- the Quality of Care Outcome indicator includes subjective indicators and objective indicators.
- Subjective indicators may include at least one of "Patient-perceived, Patient-reported Outcomes", such as Quality of Life or Satisfaction. have.
- Objective indicators include mortality, re-admission rates, emergency room re-visit rates, fall rates, pressure sores, urinary tract infection rates, secondary infection rates, complication rates, activities of daily living (ADL) scores, and discharge notices. It may include at least one of "all numerical quantifiable indicators representing the structure, process, or outcome of care,” such as rate, treatment or treatment waiting time.
- the Quality of Care Outcome index can represent the Quality of Care Outcome index not only with one subdivision but also with a combination of several subdivisions.
- patient satisfaction of home care services may be used as an indicator of quality of care outcome.
- one of the indicators of patient performance such as falls, bedsores, urinary tract infections, or secondary complications, or the activities of daily living (ADL) scores, was evaluated. It can be used as an indicator of Quality of Care Outcome.
- Some of the patient satisfaction indicators of home care services and patient performance indicators of home care services can be combined and used as an indicator of the quality of care outcome.
- all of the above indicators can be combined and used as a quality of care outcome indicator.
- the Nursing Staffing Indicator includes at least one of “all numerical quantifiable indicators representing a nurse's work environment” such as the number of nursing personnel, the composition of nursing personnel, nursing time, or nursing workload. can do.
- all numerical quantifiable indicators representing a nurse's work environment
- not only one detailed indicator but also a combination of several detailed indicators may represent the Nursing Staff (Nurse Staffing) indicator.
- the Nursing Staffing Index of Home Nursing Service includes the number of home nurses, the composition of home nurses (eg, nurses, nurse assistants, care robots, etc.), the number of home visits, family nursing time, and administrative processing time.
- One indicator may be included as a nursing staff indicator.
- Some of the Nursing Staffing Indicators of Home Care Services may be combined and used as a Nursing Staffing Indicator.
- all the above indicators can be combined and used as a nursing staffing indicator.
- the cost index may include at least one of “all costs spent in providing care to the subject (s)” such as total cost, direct cost, indirect cost, opportunity cost, and the like.
- Cost indicators can be represented by a combination of several indicators, as well as by one indicator.
- the Cost of Home Nursing Service (Cost) indicator is one of the cost of home nurse labor, home nursing project cost (direct cost), home nursing service item cost (direct cost), and total home nursing service total project cost (direct cost + overhead). ) May be included as an indicator.
- home nursing service projects include subsidies such as social welfare services, rehabilitation services, and other daily life support services.
- Some of the cost indicators of home care services can be combined and used as a cost indicator.
- all of the above indicators can be combined and used as a cost indicator.
- the Covariates indicator is a "Quality of Care” such as "size of care provider (number of beds)", “ownership (private or public)", “membership”, “location (city or province)”, etc.
- Outcomes) and cost (Cost) can be affected directly or indirectly, and may include at least one of all “exogenous variables” to be controlled.
- Covariates can be represented by a combination of several indicators, as well as by one indicator.
- the indicator generation unit 120 may include a cost analysis, a cost-benefit analysis, a cost-effect analysis, a cost-utility analysis, and the like.
- a department that estimates the monetary value of selected indicators using at least one of "all economic valuation methods that can be estimated by quantifying the monetary value" is carried out throughout the preliminary step (S200).
- the indicators calculated by numerically quantifying the monetary value of the selected indicators may be combined with financial numerical indicators such as dollars or won estimated through cost analysis or cost-benefit analysis. Values estimated through utility, quality-adjusted life years (QALYs), or disability-adjusted life years (DALYs) through cost-effectiveness analysis or cost-utility analysis This may include reestimating the indicators back into monetary figures, such as dollars or won, through cost-benefit analysis.
- QALYs quality-adjusted life years
- DALYs disability-adjusted life years
- the data analysis unit 130 performs the following data analysis process throughout the data analysis step (S300).
- the data analysis step (S300) is based on the "Principle of Estimation of Appropriate Nursing Principle", through mathematical programming or simulation (using mathematical software programs such as MATLAB and MAPLE), and the "given constraints" represented by covariates.
- Optimizing the number of nurses and nursing care time, the number and composition of nursing workers, and the amount of care time or workload Scenarios include: (1) "execution stage” (S310), which analyzes data with selected indicators and generates respective portfolios, and (2) the intersection of multiple data analysis results consisting of a combination of indicators.
- the data analysis unit 130 is the execution analysis unit 131 in charge of "execution step” (S310), the precision analysis unit 132 in charge of “precision analysis step” (S320), and "sensitivity analysis step” It includes a sensitivity analysis unit 133 in charge (S330) and the final portfolio correction unit 134 in charge of "correcting data analysis results” (S340).
- step (S310) including "satisfaction of home care services", “labor costs of home nurses” and “the number of home nurses” generated in monetary units, “control (representing a given constraint)” Covariates “indicators,” Scale of Care Providers (number of beds) ",” Ownship (Private or Public) “, and” Location (City or Local) " Evidence, mathematical programming, or simulation analysis (using mathematical software programs such as MATLAB and MAPLE), within the “constrained constraints,” yields “the satisfaction of home care services” versus the "home care services” of the maximum.
- the "execution stage” (S310) includes a process of presenting the selected indicators in the second, third, and fourth order as a portfolio through the same analysis process. All these processes are processed by the "execution analysis unit 131".
- the "precision analysis step” (S320), a step of generating a strategic portfolio according to a situation by comparing and analyzing the portfolio generated in the "execution step” (S310) using the indicators selected as 1st, 2nd, 3rd, and 4th orders. to be.
- the "optimal optimal nursing work range / indicator” belonging to the intersection is estimated, and each index combination is calculated.
- the policy on the decision-making of appropriate nursing workers is based on the situation. Creating a strategic portfolio, including suggestions. All of these processes are processed in the "precision analysis unit 132".
- the "precision analysis step” may also include a portfolio generated by analyzing all the indicators selected as the first, second, third, and fourth data at once.
- the results can be set to the "best optimal nursing workforce range / indicators" and included in generating a strategic portfolio. This process may be included as a task of the "precision analysis unit 132".
- the "sensitivity analysis step” (S330) is an appropriate nursing personnel estimation coefficient using Monte Carlo simulations for each portfolio generated in the "execution step” (S310) and “precision analysis step” (S320) ( values of optimized parameters) All of these processes are processed in the "sensitivity analysis unit 133".
- the appropriate nursing personnel decision support unit 140 is a portfolio generated in the data analysis step (S300) throughout the final processing step (S400) "User-centric cloud-based appropriate nursing personnel decision support system (Park Soo Yeon appropriate nursing personnel decision Feedback to the evaluator (client).
- the customer response unit 150 through the appropriate care personnel decision support unit 140 throughout the customer service step (S500) with respect to the policy decision proposal for the portfolio and appropriate care personnel generated in the data analysis step (S300), To ensure mutual understanding with the subject (sponsor), who is at least one of the world, country, region, medical institution, or department, and to respond more sensitively to future client needs. Record and record and record and reflect client's requirements through big data analysis method.
- the customer response unit 150 includes at least one of SNS communication means such as KakaoTalk, Line, WhatsApp, Skype, and all the IT messenger devices for communication such as email, telephone, PDA, etc. throughout the customer service step (S500). It is made, including. It may include the use of artificial intelligence "chatbots" to optimize communication with the candidate.
- SNS communication means such as KakaoTalk, Line, WhatsApp, Skype
- IT messenger devices for communication such as email, telephone, PDA, etc. throughout the customer service step (S500). It is made, including. It may include the use of artificial intelligence "chatbots" to optimize communication with the candidate.
- the present invention links DT technology with consulting technology, and is based on the "Principal Theory of Appropriate Nursing Service for Park Soo-yeon," which satisfies the cost of the patient.
- the present invention is not limited to the nursing personnel, and can be applied by converting and replacing the indicators for all medical personnel engaged in the medical field, and the "qualified personnel" which guarantees the maximum outcomes for cost.
- the present invention is not limited to the nursing personnel, and can be applied by converting and replacing the indicators for all medical personnel engaged in the medical field, and the "qualified personnel" which guarantees the maximum outcomes for cost.
- industry-wide applications where "optimum appropriate manpower leverage points and ranges" can be applied, and the number of objects, such as non-human robots, the input time of the object, the composition of the object, or the assignment to the object. Since it can be applied / applied in the amount of work, etc., it is apparent that various modifications are possible without departing from the scope of the present invention within the scope covered by the claims below.
- Appropriate nursing personnel indicator provided by the present invention is "to satisfy all the medical managers, nurses, and patients," the composition and number of the appropriate nursing personnel by country, region, medical institution, or department, and nursing time or workload, It is a reliable decision index that is calculated based on Park Soo-yeon's theory of proper nursing personnel, which has been verified through the international journal of nursing. It is available industrially in the field of management decision support technology of medical institution and its application technology.
- the present invention is not limited to the nursing personnel, and can be applied by converting and replacing the indicators for all medical personnel engaged in the medical field, and the "qualified personnel" which guarantees the maximum outcomes for cost.
- the present invention is not limited to the nursing personnel, and can be applied by converting and replacing the indicators for all medical personnel engaged in the medical field, and the "qualified personnel" which guarantees the maximum outcomes for cost.
- industry-wide applications where "optimum appropriate manpower leverage points and ranges" can be applied, and the number of objects, such as non-human robots, the input time of the object, the composition of the object, or the assignment to the object. Since it can be applied / applied in the amount of work, etc., it is apparent that various modifications are possible without departing from the scope of the present invention within the scope covered by the claims below.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Educational Administration (AREA)
- Data Mining & Analysis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Child & Adolescent Psychology (AREA)
Abstract
본 발명은 DT 기술과 컨설팅 기술을 연계한, "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템"에 관한 것으로, "박수연의 적정간호인력 추정 이론"에 근거하여 최적의 환자 성과를 보장하면서도 경영 효율성을 극대화하는, 여러가지 지표의 조합으로 이루어진 복수 자료분석 결과에서 교집합 (Intersection)에 속하는 가장 "최적의 적정간호인력 범위 또는 지표"를 산출, 이를 반영한 상황별 전략적 포트폴리오를 평가대상자(의뢰자) - 전 세계/국가/지역/의료기관/부서 - 에 피드백해 줌으로써, 전 세계적인 가치 중심 건강관리시스템으로의 건강관리전달체계 혁신에 효과적으로 대응할 수 있도록 도와주는 "적정간호인력 의사결정 지원시스템"에 대한 것이다.
Description
본 발명은 전 세계를 포함하여, 국가, 지역, 의료기관, 또는 부서별로, 간호사의 인건비를 포함한 비용 (Cost) 대비 최대의 환자 성과 (Quality of Care Outcomes)를 이끌어내는 간호인력의 수와 구성 그리고 간호시간 또는 업무량 등에 대해 최적의 시나리오를 제시하는 메커니즘에 대한 것으로서, 저출산 초고령화로 급속도로 증가하고 있는 노인건강관리 비용에 대한 사회적 부담을 경감시키는데 도움을 줄 수 있는 적정간호인력 의사결정 지원시스템에 관한 것이다.
The nursing shortage is a serious global issue. Low birth rates and a rapidly ageing population are accelerating the demands of nursing professionals. However, the challenging aspects of nurses’ work environment-e.g., a poor salary, long shift length, heavy workload, temporary staffing or bullying-are still ongoing, leading to compromised patient care, more care left undone, adverse events, poor care quality, inequity in access to health care, longer waiting times, burnout and illness among nurses, and even unexpected yet preventable patient deaths (Ball et al., 2017; Borneo, Helm, & Russell, 2017; Canada Nurse Association, 2017; The Lancet 2017). Not surprisingly, a high turnover rate of nurses is widespread globally.
Each country’s own sociopolitical and financial conflicts exacerbate the nursing shortage: e.g., “Congress’s plan to cut off funding for the Title VIII nursing workforce development programs” and “massive Registered Nurses’ (RNs) retirements” in the United States (American Nurses Association, 2017; McMenamin, 2014), “Brexit” and allowance of “Nursing Associates” in the United Kingdom (Donnelly, 2016; Watts, 2017), “Comprehensive Nursing Care Services” in South Korea (Park, 2017a), the “Nurses’ Strike” in Kenya (The Lancet, 2017), and so on.
Thus far, the perils of such an insufficient nursing workforce have been rigorously investigated in relation to both patient outcomes and quality of care outcomes and extensively reported in the literature (Welton, 2016), which often emphasizes the importance of having more RNs to ensure patient safety (Aiken et al., 2014). 영국의 Safe Staffing Tool과 미국의 Safe Staffing Ratio 역시 환자의 케어요구도 (patient acuity)만을 근거로 필수 간호인력을 추정하는 도구/지침으로서, 간호협회의 권고사항으로만 간주될 뿐 실제 정책결정에는 제대로 반영되고 있지 않다.
이러한 문제점의 원인은 간호사의 인건비를 부담해야하는 의료경영자의 입장을 제대로 반영하지 못하고, 비용대비 보다 질 좋은 의료서비스를 제공하는 의료기관을 선택할 환자의 의사결정권 또한 고려하지 않고 있기 때문이다. 무엇보다 "의료경영자, 간호사, 그리고 환자 모두가 만족하는", 적정간호인력의 수와 구성 그리고 간호시간 또는 업무량에 대한 과학적인 근거가 없고, 이를 검증해주는 적정간호인력 의사결정 지원시스템이 없다는 데에 근본원인이 있다. 이에 본 발명자는 "박수연의 적정간호인력 의사결정 지원시스템"을 개발하였다.
본 발명은 상기의 취지하에 발명된 것으로, Data Technology (DT)기술을 이용한 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (명명: 박수연의 적정간호인력 의사결정 지원시스템 (Park 's User-friendly Cloud-based Intersectional Optimized Nurse Staffing〔Sweet Spot〕Decision-making Support System)"을 통해, "박수연의 적정간호인력 추정 이론" (Park 's Optimized Nurse Staffing〔Sweet Spot〕Estimation Theory: Copyright ⓒ 2016 Park, Claire Su-Yeon. All Rights Reserved. The copyright has been registered in Korea [C-2016-031091] and the U·S·A. [TX 8-371-760] with an effective copyright date of 06 Dec 2016) 에 근거, "의료경영자, 간호사, 그리고 환자 모두가 만족하는", 전 세계, 국가, 지역, 의료기관, 또는 부서별 "적정간호인력의 수와 구성 그리고 간호시간 또는 업무량" 등을 추정 및 산출해내고, "최적의 적정간호인력 범위"와 "최적의 적정간호인력 레버레인지(leverage) 포인트" ("최적의 적정간호인력 지표")을 중심으로 상황별 전략적 포트폴리오를 생성한 뒤, 이를 공유하는 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템)"을 제공함을 그 목적으로 한다.
상기한 목적을 달성하기 위한 본 발명은, 전 세계, 국가, 지역, 의료기관, 또는 부서별 적정간호인력에 대한 전략적 의사결정 문제에 대해, 고려하여야 하는 지표를 탐색하고 결정한 후, 지표의 화폐가치로의 전환을 위한 경제성 평가를 거쳐, "박수연의 적정간호인력 추정 이론"을 따라 수학적 프로그래밍 또는 시뮬레이션 (MATLAB과 MAPLE 같은 수리학 소프트웨어 프로그램을 이용)을 통해 "최적의 적정간호인력 범위"와 "최적의 적정간호인력 지표"를 산출한 다음, 이를 중심으로 상황에 따른 전략적 포트폴리오를 생성하여, "박수연의 적정간호인력 의사결정 지원시스템"으로 평가대상자(의뢰자)- 해당국가/지역/의료기관/부서-에 피드백해주는 메커니즘을 특징으로 한다.
본 발명은, DT 기술과 컨설팅 기술을 연계하는 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템)"을 통해, 최적의 환자성과 (Quality of Care Outcomes)를 보장하면서도 경영 효율성을 극대화하는 적정간호인력 컨설팅을 제공함으로써, 가치중심 건강관리전달체계로의 혁신에 유의미하게 기여할 수 있다. 본 발명으로 제공되는 적정간호인력 지표는 "의료경영자, 간호사, 그리고 환자 모두가 만족하는", 해당국가, 지역, 의료기관, 또는 부서별 적정간호인력의 구성과 수 그리고 간호시간 또는 업무량에 대한 것으로써, 권위있는 간호학 국제학술지를 통해 검증된 "박수연의 적정간호인력 추정 이론"에 근거하여 산출된 결과이므로, 신뢰성있는 의사결정 지표로 효과적으로 활용될 수 있다. 본 발명은 의료기관의 경영 의사결정 지원 기술분야 및 이의 응용 기술분야에서 산업상으로 이용 가능하다.
도 1 은 본 발명의 근간이 되는 "박수연의 적정간호인력 추정 이론" (Park 's Optimized Nurse Staffing〔Sweet Spot〕Estimation Theory: Copyright ⓒ 2016 Park, Claire Su-Yeon. All Rights Reserved. The copyright has been registered in Korea [C-2016-031091] and the U·S·A. [TX 8-371-760] with an effective copyright date of 06 Dec 2016)이다.
도 2 는 본 발명에 따른 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템)"의 일 실시 예의 구성을 도시한 블록도 이다.
도 3 는 본 발명에 따른 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템)"의 적정간호인력 의사결정 메커니즘의 일 예를 도시한 흐름도이다.
이하, 첨부된 도면을 참조하여 기술되는 바람직한 실시 예를 통하여 본 발명을 사용자나 운영자가 용이하게 이해하고 재현할 수 있도록 상세히 기술한다.
다음에 예시하는 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시 예에 한정되는 것은 아니다. 본 발명의 실시 예는 당 업계에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이다.
본 발명 명세서 전반에 걸쳐 사용되는 용어들은 본 발명 실시 예에서의 기능을 고려하여 정의된 용어들로서, 사용자 또는 운용자의 의도, 관례 등에 따라 충분히 변형될 수 있는 사항이므로, 이 용어들의 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1 은 본 발명의 근간이 되는 "박수연의 적정간호인력 추정 이론" (Park 's Optimized Nurse Staffing〔Sweet Spot〕Estimation Theory: Copyright ⓒ 2016 Park, Claire Su-Yeon. All Rights Reserved. The copyright has been registered in Korea [C-2016-031091] and the U·S·A. [TX 8-371-760] with an effective copyright date of 06 Dec 2016) 이다.
"박수연의 적정간호인력 추정 이론"은 "의료경영자, 간호사, 그리고 환자 모두가 만족하는", 전 세계, 국가, 지역, 의료기관, 또는 부서별 (1) 간호인력의 구성과, (2) 간호인력의 수, (3) 간호시간, 또는 (4) 간호업무량 등에 대해 "최적의 적정간호인력 레버레인지 (leverage) 포인트와 범위"를 추정해낼 수 있는 학문적 근거와 바로 적용할 수 있는 단계별 실무 분석과정을 자세하게 제시하고 있다. *레버레인지 (leverage) 포인트는 지렛대에서 파생된 단어로 최소의 비용으로 최대의 성과를 볼 수 있는 특이점을 이른다. 본 명세서에서는 최소의 케어 비용으로 최대의 환자 성과를 이끌어낼 수 있는 간호사의 수와 구성, 간호업무량에 대한 특이점을 말한다.*
본 발명자가 간호학, 미시경제학, 수리경제학, 그리고 산업공학을 융합하여 "박수연의 적정간호인력 추정 이론"을 개발하였으며, 이는 권위있는 간호학 국제학술지인 Journal of Advanced Nursing (간호학 SCI 저널 중 상위 10.5%)의 이중-맹검 동료평가 (Double-blinded peer reviews)를 통해 엄격하게 검증되었다. *이중 맹 검 동료평가 (Double-blinded peer reviews)는 논문의 저자와 논문심사위원이 서로를 전혀 알지 못하는 상태에서 이루어지는 가장 엄격한 형태의 논문심사 평가방식이다.*
본 발명은 "박수연의 적정간호인력 추정 이론"을 근거로 추정된 "최적의 적정간호인력 레버레인지(leverage) 포인트와 범위"를 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템) {Park 's User-friendly Cloud-based Intersectional Optimized Nurse Staffing〔Sweet Spot〕Decision-making Support System}"을 통해 적정간호인력을 추정해내고자 하는 평가대상자(의뢰자) - 전 세계, 국가, 지역, 의료기관, 또는 부서별 - 에게 어떠한 과정으로 정보를 전달하고 공유할 수 있는지에 대한 메커니즘을 설명한다. 따라서 본 발명으로 산출된 정보는 신뢰성 있는 의사결정 지표로서 효과적으로 활용될 수 있다.
도 2는 발명에 따른 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템) {Park 's User-friendly Cloud-based Intersectional Optimized Nurse Staffing〔Sweet Spot〕Decision-making Support System}"의 일 실시 예의 구성을 도시한 블록도 이다. 도 2에 도시한 바와 같이, 이 실시 예에 따른 적정간호인력 의사결정 지원시스템(100)은 지표 결정부(110), 지표 생성부(120), 자료 분석부(130), 그리고 적정간호인력 의사결정 지원부(140)를 포함하여 이루어진다. 고객 응대부(150)가 더하여 질 수 있다.
도 3 는 본 발명에 따른 "박수연의 적정간호인력 의사결정 지원시스템 {Park 's User-friendly Cloud-based Intersectional Optimized Nurse Staffing〔Sweet Spot〕Decision-making Support System}"의 적정간호인력 의사결정 메커니즘의 일 예를 도시한 흐름도이다. 지표 결정부(110)는 예비 1단계(S100)를, 지표 생성부(120)는 예비 2단계(S200)를, 자료 분석부(130)는 자료분석단계(S300)를, 그리고 적정간호인력 의사결정 지원부(140)는 최종처리단계(S400)를 담당하는 것을 포함하여 이루어진다. 고객서비스단계(S500)는 고객 응대부(150)가 담당하는 부서로 포함될 수 있다.
상기 지표 결정부(110)는 적정간호인력 의사결정에 고려하여야 하는 지표를 예비 1단계(S100) 전반에 걸쳐 탐색하고 선택/결정한다. 평가대상자(의뢰자)가 "박수연의 적정간호인력 의사결정 지원시스템"을 통해 업로드 한 자료를 밑바탕으로, 지표 결정부(110)는 의학, 간호학, 보건학을 포함하는 건강관리 학문분야에서 타당하고 신뢰성이 있다고 검증된 지표를 중심으로 실제 자료분석에 사용할 지표를 탐색하고 선택/결정한다. 이때, 자료의 임상적용분야는 해당 기관의 규모와 세부전공분야에 제한을 두지 않는다. 따라서 보건소, 가정간호, 널싱홈, 중소병원, 종합 병원, 대형종합병원, 상급종합병원 등에서 수집된 자료를 포함할 수 있다. 또한, 성인간호, 노인간호, 아동간호, 모성간호, 간호관리, 간호정보, 간호시스템, 대체간호학 분야 자료 역시 포함할 수 있다.
상기 지표 결정부(110)는 자료분석에 더 요구되는 자료가 있을 경우, 고객 응대부(150)를 통해 평가대상자(의뢰자)에게 관련 자료요청을 할 수 있으며, 평가대상자(의뢰자)는 고객 응대부(150)로부터 요청받은 자료를 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템"을 통해 재업로드할 수 있는 고객 서비스 단계(S500)를 포함하여 이루어진다. 이 모든 과정은 예비 1단계(S100) 전반에 걸쳐 수행된다.
상기 지표 결정부(110)가 탐색 및 결정하는 지표는 케어의 질(Quality of Care Outcome) 지표, 간호인력(Nurse Staffing) 지표, 비용(Cost) 지표, 그리고 통제(Covariates) 지표를 포함한다.
상기 케어의 질(Quality of Care Outcome) 지표는 주관적(subjective) 지표들과 객관적(objective) 지표들을 포함한다. 주관적(subjective) 지표는 삶의 질(Quality of Life)이나 만족도(Satisfaction)와 같이 "환자가 지각하고 보고하는 모든 성과지표들(Patient-perceived, Patient-reported Outcomes)" 중 적어도 하나를 포함할 수 있다. 그리고 객관적(objective) 지표는 사망률, 재입원율, 응급실 재방문율, 낙상 발생률, 욕창발생률, 요로감염 발생률, 2차 감염률, 합병증 발생률, 일상생활 기능 정도(activities of daily living, ADL) 평가점수, 퇴원 예고율, 진료 또는 치료 대기시간 등과 같이 "케어의 구조, 과정, 또는 결과를 대변하는 모든 수치계량화가 가능한 지표들" 중 적어도 하나를 포함할 수 있다. 마지막으로 케어의 질(Quality of Care Outcome) 지표는 하나의 세부지표는 물론, 여러 개의 세부지표의 조합으로도 케어의 질(Quality of Care Outcome) 지표를 대변할 수 있다.
예컨대, 가정간호 서비스의 환자 만족도를 케어의 질(Quality of Care Outcome) 지표로 활용할 수 있다. 또한, 가정간호 서비스의 환자성과 지표인 낙상 발생률, 욕창발생률, 요로감염 발생률, 또는 2차 합병증 발생률, 또는 일상생활 기능 정도(activities of daily living, ADL) 평가점수 중에서 하나의 지표를 케어의 질(Quality of Care Outcome) 지표로 활용할 수 있다. 가정간호 서비스의 환자 만족도와 가정간호 서비스의 환자 성과 지표 중 일부분을 합하여 케어의 질(Quality of Care Outcome) 지표로 활용할 수도 있다. 물론, 위의 모든 지표를 다 합하여 케어의 질(Quality of Care Outcome) 지표로 활용할 수도 있다.
상기 간호인력(Nurse Staffing) 지표는 간호인력의 수, 간호인력의 구성, 간호의 시간, 또는 간호업무량과 같이 "간호사의 근무환경을 대변하는 모든 수치계량화 할 수 있는 지표들"중 적어도 하나를 포함할 수 있다. 또한, 하나의 세부지표는 물론, 여러 개의 세부지표의 조합으로도 간호인력(Nurse Staffing) 지표를 대변할 수 있다.
예컨대, 가정간호 서비스의 간호인력(Nurse Staffing) 지표는 가정간호사의 수, 가정간호사의 구성 (예, 간호사, 간호조무사, 케어로봇, 기타), 가정방문의 횟수, 가정간호 시간, 행정업무 처리시간 중에서 하나의 지표를 간호인력(Nurse Staffing) 지표로 포함할 수 있다. 가정간호 서비스의 간호인력(Nurse Staffing) 지표 중 일부분을 합하여 간호인력(Nurse Staffing) 지표로 활용할 수도 있다. 물론, 위의 모든 지표를 다 합하여 간호인력(Nurse Staffing) 지표로 활용할 수도 있다.
상기 비용(Cost) 지표는 전체비용, 직접비용, 간접비용, 기회비용 등과 같이 "대상자(들)에게 케어를 제공하는데 소요된 모든 제반비용" 지표들 중 적어도 하나를 포함할 수 있다. 하나의 세부지표는 물론, 여러 개의 세부지표의 조합으로도 비용(Cost) 지표를 대변할 수 있다.
예컨대, 가정간호 서비스의 비용(Cost) 지표는 가정간호사의 인건비, 가정간호 사업비(직접비), 가정간호 서비스 물품비(직접비), 가정간호 서비스 전체사업비(직접비 + 간접비) 중 하나의 지표를 비용(Cost) 지표로 포함할 수 있다. *가정간호서비스 사업은 간호서비스 이외에도 사회복지서비스, 재활치료서비스, 기타 일상생활 지원서비스 등등 세부 사업들을 아우른다. 가정간호 서비스의 비용(Cost) 지표 중 일부분을 합하여 비용(Cost) 지표로 활용할 수도 있다. 물론, 위의 모든 지표를 다 합하여 비용(Cost) 지표로 활용할 수도 있다.
상기 통제(Covariates) 지표는 "케어 제공기관의 규모(병상 수)", "오너십(사립 또는 공립)", "멤버십", "위치(도시 또는 지방)" 등과 같이 "케어의 질(Quality of Care Outcomes)와 비용(Cost)에 직간접적으로 영향을 줄 수 있어서, 통제해야 하는 모든 외생변수" 지표들 중 적어도 하나를 포함할 수 있다. 하나의 세부지표는 물론, 여러 개의 세부지표의 조합으로도 통제(Covariates) 지표를 대변할 수 있다.
상기 지표 생성부(120)는 비용분석 (Cost Analysis), 비용편익분석 (Cost-Benefit Analysis), 비용효과분석 (Cost-Effectiveness Analysis), 비용효용분석 (Cost-Utility Analysis)등과 같이 "선택된 지표의 화폐가치를 수치계량화하여 추정해낼 수 있는 모든 경제성 평가 방법들" 중 적어도 한 가지를 이용하여 선택된 지표의 화폐가치를 추정해내는 부서로 예비 2단계(S200) 전반에 걸쳐 수행된다.
상기 "선택된 지표의 화폐가치를 수치계량화" 하여 산출되는 지표는 비용분석 (Cost Analysis)이나 비용편익분석 (Cost-Benefit Analysis)을 통해 추정된 달러 또는 원 (dollar or won)과 같은 금전적 수치지표와 비용효과분석 (Cost-Effectiveness Analysis)이나 비용효용분석 (Cost-Utility Analysis) 등을 통해 효용 (Utility), Quality-adjusted life years (QALYs), 또는 Disability-adjusted life years (DALYs) 등으로 추정된 가치지표를 비용편익분석 (Cost-Benefit Analysis)을 통해 다시 달러 또는 원 (dollar or won)과 같은 금전적 수치지표로 재추정하는 것을 포함할 수 있다.
예컨대, "가정간호 서비스의 만족도"와 "가정간호사의 인건비"를 "케어의 질 지표(Quality of Care Outcome)" 지표와 "비용(Cost)" 지표로 선택했다면, "가정간호 서비스의 만족도"를 "가정간호사의 인건비"와 같은 화폐단위로 변경해주어야, 자료분석단계에서 MATLAB과 MAPLE 같은 수리학 소프트웨어 프로그램을 이용하여 수학적 프로그래밍이나 시뮬레이션 분석을 할 수 있다. 이에 "가정간호 서비스의 만족도"를 비용편익분석(Cost-Benefit Analysis)을 통해 달러 또는 원 (dollar or won) 단위의 금전적 수치지표로 화폐가치를 추정하여 새로운 지표를 생성할 수 있다. 이때 적용되는 비용편익분석(Cost-Benefit Analysis)의 화폐가치 추정근거(기준)는 경제성 평가 분석방법을 따른다.
상기 자료 분석부(130)는 다음의 자료분석과정을 자료분석단계(S300) 전반에 걸쳐 수행한다. 자료분석단계(S300)는 "박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB과 MAPLE 같은 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 "주어진 제약조건" 내에서, 비용(Cost) 대비 최대의 환자 성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수와 간호시간(Nursing Care Time) 그리고 간호인력의 수와 구성 그리고 간호시간 또는 간호업무량 등에 대하여 최적의 시나리오를 제시하는 단계로서, (1) 선택된 지표로 자료분석을 하고 각각의 포트폴리오를 생성하는 "실행단계"(S310)와, (2) 여러 가지 지표의 조합으로 이루어진 복수 자료분석 결과에서 교집합 (Intersection)에 속하는 "최적의 적정간호인력 범위/지표"를 추정해내고, 각각의 지표 조합들이 산출한 결과가 "최적의 적정간호인력 범위/지표"와 어떻게 다른지, 얼마나 "최적의 적정간호인력 범위/지표"에서 벗어나는지 등에 대한 세부 분석 결과를 근거로, 상황에 따른 "적정간호인력 의사결정에 대한 정책 제언"을 포함한 전략적 포트폴리오를 생성하는 "정밀분석단계"(S320)와, 그리고 (3) "실행단계"(S310)와 "정밀분석단계"(S320)에서 생성된 각각의 포트폴리오에 대하여 몬테카를로 시뮬레이션(Monte Carlo simulations)을 이용하여 적정간호인력 추정계수(values of optimized parameters) 변동에 따른 민감도를 분석하는 "민감도 분석단계"(S330)와, (4) 상기 민감도 분석 결과, 적정간호인력 추정계수(values of optimized parameters) 변동에 따른 민감도가 기준치를 벗어나는 경우, 대응 시나리오를 생성하고, 생성된 대응 시나리오에 따라 해당 포트폴리오를 수정하는 "자료분석결과 수정단계"(S340)를 포함하여 이루어진다.
상기 자료분석부(130)는 "실행단계"(S310)를 담당하는 실행분석부(131)와, "정밀분석단계"(S320)를 담당하는 정밀분석부(132), 그리고 "민감도 분석단계"(S330)를 담당하는 민감도 분석부(133) 및 "자료분석결과 수정단계"(S340)를 담당하는 최종 포트폴리오 수정부(134)를 포함하여 이루어진다.
예컨대, "가정간호 서비스의 만족도"와 "가정간호사의 인건비"를 "케어의 질 지표(Quality of Care Outcome)"와 "비용(Cost)" 지표로 선택하고, "가정간호사의 인건비" 대비 "가정간호 서비스의 만족도"를 최대로 끌어올릴 수 있는 "가정간호사의 수"를 "간호인력(Nurse staffing)" 지표로 선택한 다음, 케어의 질(Quality of Care Outcomes)와 비용 (Costs)에 직간접적으로 영향을 줄 것으로 판단되는 "케어 제공기관의 규모(병상 수)", "오너십(사립 또는 공립)", 그리고 "위치(도시 또는 지방)"를 "통제(Covariates)" 지표로 삼아 "주어진 제약조건"으로 1차 선택한 경우를 살펴보겠다.
상기 "실행단계(S310)"에서는 화폐단위로 생성된 "가정간호 서비스의 만족도"와 "가정간호사의 인건비" 그리고 "가정간호사의 수"를 포함하여, "주어진 제약조건"을 대변하는 "통제(Covariates)" 지표, 즉 "케어 제공기관의 규모(병상 수)", "오너십(사립 또는 공립)", 그리고 "위치(도시 또는 지방)"를 활용하여, "박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션 분석을 통해 (MATLAB과 MAPLE 같은 수리학 소프트웨어 프로그램을 이용), "주어진 제약조건" 내에서, "가정간호사의 인건비" 대비 최대의 "가정간호 서비스의 만족도"를 이끌어내는 "가정간호사의 수"에 대해 최적의 시나리오를 포트폴리오로 생성한다. "실행단계"(S310)는 2차, 3차, 4차로 선택한 지표들을 같은 분석과정을 통해 포트폴리오로 제시하는 과정을 포함하여 이루어진다. 이 모든 과정은 "실행분석부(131)"에서 처리한다.
상기 "정밀분석단계"(S320)에서는 1차, 2차, 3차, 4차로 선택한 지표들을 사용하여 "실행단계"(S310)에서 생성한 포트폴리오를 비교분석하여 상황에 따른 전략적 포트폴리오를 생성하는 단계이다. 이때 1차, 2차, 3차, 4차로 선택한 지표의 조합으로 이루어진 복수 자료분석 결과에서 교집합 (Intersection)에 속하는 "최적의 적정간호인력 범위/지표"를 추정해내고, 각각의 지표 조합들이 산출한 결과가 "최적의 적정간호인력 범위/지표"와 어떻게 다른지, 얼마나 "최적의 적정간호인력 지표"에서 벗어나는지 등에 대한 세부 분석 결과를 근거로, 상황에 따른 "적정간호인력 의사결정에 대한 정책 제언"을 포함한 전략적 포트폴리오를 생성하는 것을 포함하여 이루어진다. 이 모든 과정은 "정밀분석부(132)"에서 처리한다.
상기 "정밀분석단계"(S320)는 1차, 2차, 3차, 4차로 선택한 지표들을 모두 한꺼번에 자료 분석하여 생성된 포트폴리오도 포함할 수 있다. 또한, 그 결과를 "가장 최적의 적정간호인력 범위/지표"로 설정하고, 전략적 포트폴리오를 생성하는 데에 포함할 수 있다. 이 과정은 "정밀분석부(132)"의 담당업무로 포함될 수 있다.
상기 "민감도 분석 단계"(S330)는 "실행단계"(S310)와 "정밀분석단계"(S320)에서 생성된 각각의 포트폴리오에 대하여 몬테카를로 시뮬레이션 (Monte Carlo simulations)을 이용하여 적정간호인력 추정계수 (values of optimized parameters) 변동에 따른 민감도를 분석한다. 이 모든 과정은 "민감도 분석부(133)"에서 처리한다.
상기 "자료분석결과 수정단계"(S340)는 민감도 분석 결과, 적정간호인력 추정계수 (values of optimized parameters) 변동에 따른 민감도가 기준치를 벗어나는 경우, 대응 시나리오를 생성하고, 생성된 대응 시나리오에 따라 해당 포트폴리오를 수정한다. 이 모든 과정은 "최종 포트폴리오 수정부(134)"에서 처리한다.
상기 적정간호인력 의사결정 지원부(140)는 최종처리단계(S400) 전반에 걸쳐 자료분석단계(S300)에서 생성된 포트폴리오들을 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템 (박수연의 적정간호인력 의사결정 지원시스템)"을 통해 평가대상자(의뢰자)에게 피드백한다.
상기 고객 응대부(150)는 고객 서비스 단계(S500) 전반에 걸쳐 적정간호인력 의사결정 지원부(140)를 통해 자료분석단계(S300)에서 생성된 포트폴리오와 적정간호인력에 대한 정책결정 제언에 대하여, "전 세계, 국가, 지역, 의료기관, 또는 부서별 중 적어도 하나인" 평가대상자(의뢰자)와의 상호 간의 이해진작을 도모하고, 향후 의뢰자의 요구(needs)에 보다 민감하게 대응할 수 있도록, 모든 커뮤니케이션 내용을 녹음 및 기록으로 남기고, 이를 근거로 빅데이터 분석방법을 통해 의뢰자의 요구사항을 파악 및 반영한다.
상기 고객 응대부(150)는 고객 서비스 단계(S500) 전반에 걸쳐 카카오톡, 라인, WhatsApp, Skype 등과 같은 SNS 커뮤니케이션 수단과, 이메일, 전화, PDA 등 의사소통을 전달하는 모든 IT 메신저 기기 중 적어도 하나를 포함하여 이루어진다. 평가대상자(의뢰자)와의 커뮤니케이션을 최적화하기 위해 인공지능을 활용한 "챗봇"을 활용하는 것을 포함할 수 있다.
따라서, 본 발명은 DT 기술과 컨설팅 기술을 연계하여, "박수연의 적정간호인력 추정 이론"에 근거, 의료경영자, 환자, 그리고 간호사 모두가 만족하는, 비용(Cost) 대비 최대의 환자 성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수와 구성 그리고 간호시간 (Nursing Care Time) 또는 업무량 등에 대하여 신뢰성 있는 의사결정 근거를 제공함으로써, 실효성 있는 적정간호인력 정책결정에 유의미하게 기여하고, 이를 통해 간호사의 근무여건은 물론 의료형평성도 개선하고자 하는, 상기에서 제시한 본 발명의 목적을 달성할 수 있게 된다.
또한, 본 발명은 간호인력에만 제한하지 않으며, 의료계에 종사하는 모든 의료인력에 대한 지표로 변환 및 대치하여 적용할 수 있고, 비용(Cost)대비 최대의 성과(Outcomes)를 보장하는 "적정인력"과 "최적의 적정인력 레버레인지(leverage) 포인트와 범위"를 적용할 수 있는 산업계 전반에도 응용 가능하며, 사람이 아닌 로봇과 같은 객체의 수, 객체의 투입시간, 객체의 구성, 또는 객체에 할당된 업무량 등으로 응용/적용할 수 있기 때문에, 후술하는 특허청구범위에 의해 포괄되는 범위 내에서 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.
본 발명으로 제공되는 적정간호인력 지표는 "의료경영자, 간호사, 그리고 환자 모두가 만족하는", 해당국가, 지역, 의료기관, 또는 부서별 적정간호인력의 구성과 수 그리고 간호시간 또는 업무량에 대한 것으로써, 권위있는 간호학 국제학술지를 통해 검증된 "박수연의 적정간호인력 추정 이론"에 근거하여 산출된 신뢰성있는 의사결정 지표로 의료기관의 경영 의사결정 지원 기술분야 및 이의 응용 기술분야에서 산업상으로 이용 가능하다.
또한, 본 발명은 간호인력에만 제한하지 않으며, 의료계에 종사하는 모든 의료인력에 대한 지표로 변환 및 대치하여 적용할 수 있고, 비용(Cost)대비 최대의 성과(Outcomes)를 보장하는 "적정인력"과 "최적의 적정인력 레버레인지(leverage) 포인트와 범위"를 적용할 수 있는 산업계 전반에도 응용 가능하며, 사람이 아닌 로봇과 같은 객체의 수, 객체의 투입시간, 객체의 구성, 또는 객체에 할당된 업무량 등으로 응용/적용할 수 있기 때문에, 후술하는 특허청구범위에 의해 포괄되는 범위 내에서 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.
Claims (15)
- (a) 적정간호인력에 대한 전략적 의사결정 문제에 대하여;(b) 의사결정에 고려하여야 하는 지표를 탐색 및 결정하는 예비 1단계와;(c) 선택된 지표의 화폐가치를 추정해내는 예비 2단계와;(d) "박수연의 적정간호인력 추정 이론"에 근거하여, 수학적 프로그래밍 또는 시뮬레이션을 통해, 적정간호인력에 대한 추정결과를 도출해내는 자료분석단계를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,(d) 자료분석단계에서 생성된 포트폴리오 또는 적정간호인력에 대한 의사결정 정책 제언에 대하여, "전 세계, 국가, 지역, 의료기관, 또는 부서별 중 적어도 하나인" 평가대상자(의뢰자)에게 피드백하고;향후 의뢰자의 요구(needs)에 보다 민감하게 대응할 수 있도록 모든 커뮤니케이션 내용을 녹음 또는 기록으로 남기고 이를 근거로 빅데이터 분석방법을 통해 의뢰자의 요구사항을 파악 및 반영하는 "고객 서비스 단계"를;더 포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,상기 (b) 예비 1단계는:환자성과(Quality of Care Outcome) 지표와;간호인력(Nurse Staffing) 지표와;비용(Cost) 지표와;그리고 통제(Covariates) 지표를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,상기 (c) 예비 2단계는:비용분석(Cost Analysis), 비용편익분석(Cost-Benefit Analysis), 비용효과분석(Cost-Effectivenes Analysis), 비용효용분석(Cost-Utility Analysis)등과 같이 "선택된 지표의 화폐가치를 수치계량화하여 추정해낼 수 있는 모든 경제성 평가 방법들" 중 적어도 한 가지 이상을 포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,상기 (d) 자료분석단계는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간, 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 단계로서;선택된 지표로 자료분석을 하고 "적정간호인력의 범위" 또는 "최적의 적정간호인력 레버레인지(leverage) 포인트"에 대한 각각의 포트폴리오를 생성하는 "실행단계"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,상기 (d) 자료분석단계는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자 성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간, 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 단계로서;여러가지 지표의 조합으로 이루어진 복수 자료분석 결과에서, 교집합 (Intersection)에 속하는 "최적의 적정간호인력 범위 또는 지표"를 추정해내는 "정밀분석 1단계"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,상기 (d) 자료분석단계는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자 성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간, 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 단계로서;각각의 지표 조합들이 산출한 결과가 "최적의 적정간호인력 범위 또는 지표"와 어떻게 다른지, 얼마나 "최적의 적정간호인력 범위 또는 지표"에서 벗어나는지 등에 대한 세부 분석 결과를 근거로, 상황에 따른 "적정간호인력 의사결정에 대한 정책 제언"을 포함한 전략적 포트폴리오를 생성하는 "정밀분석 2단계"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제1항에 대하여,상기 (d) 자료분석단계는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자 성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간, 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 단계로서;"실행단계" 또는 "정밀분석단계"에서 생성된 각각의 포트폴리오에 대하여 몬테카를로 시뮬레이션 (Monte Carlo simulations)을 이용하여 적정간호인력 추정계수 (values of optimized parameters) 변동에 따른 민감도를 분석하는 "민감도 분석단계"와;상기 민감도 분석 결과, 적정간호인력 추정계수 (values of optimized parameters) 변동에 따른 민감도가 기준치를 벗어나는 경우, 대응 시나리오를 생성하고 생성된 대응 시나리오에 따라 해당 포트폴리오를 수정하는 "자료분석결과 수정단계"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 적정간호인력에 대한 전략적 의사결정 문제에 대하여;(1) 의사결정에 고려하여야 하는 지표를 탐색 및 결정하는 "지표 결정부"와;(2) 선택된 지표의 화폐가치를 추정해내는 "지표 생성부"와;(3) "박수연의 적정간호인력 추정 이론"에 근거하여, 수학적 프로그래밍 또는 시뮬레이션을 통해, 적정간호인력에 대한 추정결과를 도출해내는 "자료분석부"와;(4) 이를 "사용자 중심 클라우드 기반 적정간호인력 의사결정 지원시스템"을 통해 "전 세계, 국가, 지역, 의료기관, 또는 부서별 중 적어도 하나인" 평가대상자(의뢰자)에게 피드백해주는 "적정간호인력 의사결정 지원부"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제9항에 대하여,상기 (3) 자료분석부는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간 (Nursing Care Time), 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 부서로서;선택된 지표로 자료분석을 하고 "적정간호인력의 범위" 또는 "최적의 적정간호인력 레버레인지(leverage) 포인트"에 대한 각각의 포트폴리오를 생성하는 "실행분석부"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제9항에 대하여,상기 (3) 자료분석부는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간 (Nursing Care Time), 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 부서로서;여러가지 지표의 조합으로 이루어진 복수 자료분석 결과에서 교집합 (Intersection)에 속하는 "최적의 적정간호인력 범위 또는 지표"를 추정해내고;각각의 지표 조합들이 산출한 결과가 "최적의 적정간호인력 범위 또는 지표"와 어떻게 다른지, 얼마나 "최적의 적정간호인력 범위 또는 지표"에서 벗어나는지 등에 대한 세부분석 결과를 근거로, 상황에 따른 "적정간호인력 의사결정에 대한 정책 제언"을 포함한 전략적 포트폴리오를 생성하는 "정밀분석부"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제9항에 대하여,상기 (3) 자료분석부는:"박수연의 적정간호인력 추정 이론"에 근거, 수학적 프로그래밍 또는 시뮬레이션을 통해 (MATLAB이나 MAPLE 같은 적어도 하나 이상의 수리학 소프트웨어 프로그램을 이용), 통제(Covariates) 지표로 대변되는 주어진 제약조건 내에서, 비용(Cost) 대비 최대의 환자성과(Quality of Care Outcomes)를 이끌어내는 간호인력의 수, 구성, 간호시간 (Nursing Care Time), 또는 업무량 등 적어도 하나 이상의 간호인력(Nurse Staffing) 지표에 대하여 최적의 시나리오를 제시하는 부서로서;"실행단계"와 "정밀분석단계"에서 생성된 각각의 포트폴리오에 대하여 몬테카를로 시뮬레이션 (Monte Carlo simulations)을 이용하여 적정간호인력 추정계수 (values of optimized parameters) 변동에 따른 민감도를 분석하는 "민감도 분석부"와;상기 민감도 분석 결과, 적정간호인력 추정계수 (values of optimized parameters) 변동에 따른 민감도가 기준치를 벗어나는 경우, 대응 시나리오를 생성하고, 생성된 대응 시나리오에 따라 해당 포트폴리오를 수정하는 "최종 포트폴리오 수정부"를;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제9항에 대하여,(1) "지표 결정부"와 (4) "적정간호인력 의사결정 지원부"와의 의사소통을 통해 평가대상자(의뢰자)의 요구(needs)에 보다 민감하게 대응하기 위한 (5) "고객 응대부"를;더 포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제13항에 대하여,(5) "고객 응대부"는 "고객 서비스 단계" 전반에 걸쳐 카카오톡, 라인, WhatsApp, Skype 등과 같은 SNS 커뮤니케이션 수단과 이메일, 전화, PDA 등 의사소통을 전달하는 모든 IT 메신저 기기 중 적어도 하나를;또한 평가대상자(의뢰자)와의 커뮤니케이션을 최적화하기 위한 인공지능을 활용한 "챗봇"을;포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
- 제3항의 지표는간호인력에만 제한하지 않으며, 의료계에 종사하는 모든 의료인력에 대한 지표로 변환 및 대치하여 적용할 수 있고;비용(Cost)대비 최대의 성과(Outcomes)를 보장하는 "적정인력의 범위" 또는 "최적의 적정인력 레버레인지(leverage) 포인트"를 적용할 수 있는 산업계 전반에도 응용 가능하며;사람이 아닌 로봇과 같은 객체의 수, 객체의 투입시간, 객체의 구성, 객체에 할당된 업무량 등으로 응용 및 적용하는 것을;더 포함하는 것을 특징으로 하는 적정간호인력 의사결정 지원시스템.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0052130 | 2017-04-24 | ||
KR1020170052130A KR20180118892A (ko) | 2017-04-24 | 2017-04-24 | 박수연의 적정간호인력 의사결정 지원시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018199563A1 true WO2018199563A1 (ko) | 2018-11-01 |
Family
ID=63918491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/004660 WO2018199563A1 (ko) | 2017-04-24 | 2018-04-23 | 박수연의 적정간호인력 의사결정 지원시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180118892A (ko) |
WO (1) | WO2018199563A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109615227A (zh) * | 2018-12-12 | 2019-04-12 | 泰康保险集团股份有限公司 | 医疗机构年度评价方法、装置、介质及电子设备 |
US20220198596A1 (en) * | 2019-09-24 | 2022-06-23 | Aba Inc. | Care support apparatus, care support method and care support system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102159627B1 (ko) * | 2018-11-02 | 2020-09-24 | 재단법인 아산사회복지재단 | 시뮬레이션을 이용한 진료 세션 관리 방법 및 프로그램 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265324A (ja) * | 2003-03-04 | 2004-09-24 | Shigeji Miyazaki | 人員配置計画方法 |
JP2009009508A (ja) * | 2007-06-29 | 2009-01-15 | Carecom:Kk | 看護支援システム |
US20160253463A1 (en) * | 2015-02-27 | 2016-09-01 | Koninklijke Philips N.V. | Simulation-based systems and methods to help healthcare consultants and hospital administrators determine an optimal human resource plan for a hospital |
JP6030943B2 (ja) * | 2012-12-14 | 2016-11-24 | 株式会社ケアコム | 看護師派遣管理システム |
-
2017
- 2017-04-24 KR KR1020170052130A patent/KR20180118892A/ko unknown
-
2018
- 2018-04-23 WO PCT/KR2018/004660 patent/WO2018199563A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265324A (ja) * | 2003-03-04 | 2004-09-24 | Shigeji Miyazaki | 人員配置計画方法 |
JP2009009508A (ja) * | 2007-06-29 | 2009-01-15 | Carecom:Kk | 看護支援システム |
JP6030943B2 (ja) * | 2012-12-14 | 2016-11-24 | 株式会社ケアコム | 看護師派遣管理システム |
US20160253463A1 (en) * | 2015-02-27 | 2016-09-01 | Koninklijke Philips N.V. | Simulation-based systems and methods to help healthcare consultants and hospital administrators determine an optimal human resource plan for a hospital |
Non-Patent Citations (1)
Title |
---|
PARK, SU-YEON: "Optimizing Staffing, Quality, and Cost in Home Healthcare Nursing: Theory Synthesis, JAN, Informing Practice and Policy Worldwide through Research and Scholarship", DISCUSSION PAPER, vol. 73, no. 8, 9 February 2017 (2017-02-09), pages 1838 - 1847, XP055528568 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109615227A (zh) * | 2018-12-12 | 2019-04-12 | 泰康保险集团股份有限公司 | 医疗机构年度评价方法、装置、介质及电子设备 |
US20220198596A1 (en) * | 2019-09-24 | 2022-06-23 | Aba Inc. | Care support apparatus, care support method and care support system |
Also Published As
Publication number | Publication date |
---|---|
KR20180118892A (ko) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fattahi et al. | Resource planning strategies for healthcare systems during a pandemic | |
Liu et al. | A novel approach for FMEA: combination of interval 2‐tuple linguistic variables and gray relational analysis | |
Mousazadeh et al. | Health service network design: a robust possibilistic approach | |
Giokas | Greek hospitals: how well their resources are used | |
US8645158B2 (en) | Displaying clinical predicted length of stay of patients for workload balancing in a healthcare environment | |
WO2018199563A1 (ko) | 박수연의 적정간호인력 의사결정 지원시스템 | |
Nabeeh et al. | A novel methodology for assessment of hospital service according to BWM, MABAC, PROMETHEE II | |
CN101506831A (zh) | 医疗保健数据管理系统 | |
Ghanes et al. | A comprehensive simulation modeling of an emergency department: A case study for simulation optimization of staffing levels | |
JP7043235B2 (ja) | 病床管理業務支援システム | |
Devyania et al. | Strategic impact of artificial intelligence on the human resource management of the Chinese healthcare industry induced due to COVID-19 | |
Alsuhaibani et al. | Impact of COVID-19 on an infection prevention and control program, Iowa 2020-2021 | |
Rony et al. | Advancing nursing practice with artificial intelligence: Enhancing preparedness for the future | |
Shi et al. | Application of a FMEA method combining interval 2-tuple linguistic variables and grey relational analysis in preoperative medical service process | |
Maghzi et al. | Operating room scheduling optimization based on a fuzzy uncertainty approach and metaheuristic algorithms | |
Dashtpeyma et al. | Humanitarian relief chain agility: identification and evaluation of enabling factors | |
Yang et al. | National IoMT platform strategy portfolio decision model under the COVID-19 environment: based on the financial and non-financial value view | |
Hosseinpour-Sarkarizi et al. | Home healthcare routing and scheduling problem under uncertainty considering patients' preferences and service desirability | |
Garcia et al. | The fifth evolutionary era in infection control: interventional epidemiology | |
Guo et al. | How nurse experience influences the patterns of electronic medical record documentation in an intensive care unit | |
Henneman et al. | Using computer simulation to study nurse-to-patient ratios in an emergency department | |
Romanelli et al. | The societal and indirect economic burden of seasonal influenza in the United Kingdom | |
Teng et al. | Asymmetric nexus between pandemic uncertainty and public health spendings: Evidence from quantile estimation | |
Hashmi et al. | Teletrauma use in US emergency departments | |
Siddique et al. | Challenges in the Implementation of Hospital Management Information System (HMIS) in Healthcare Sector: A Case Study of Lahore, Pakistan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18792232 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18792232 Country of ref document: EP Kind code of ref document: A1 |