WO2018199554A1 - 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법 - Google Patents

강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법 Download PDF

Info

Publication number
WO2018199554A1
WO2018199554A1 PCT/KR2018/004575 KR2018004575W WO2018199554A1 WO 2018199554 A1 WO2018199554 A1 WO 2018199554A1 KR 2018004575 W KR2018004575 W KR 2018004575W WO 2018199554 A1 WO2018199554 A1 WO 2018199554A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
support
electrode
back plate
layer
Prior art date
Application number
PCT/KR2018/004575
Other languages
English (en)
French (fr)
Inventor
공관호
유인근
도준수
Original Assignee
(주)글로벌센싱테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)글로벌센싱테크놀로지 filed Critical (주)글로벌센싱테크놀로지
Publication of WO2018199554A1 publication Critical patent/WO2018199554A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to a microphone having a rigid back plate structure and a method for manufacturing the microphone, and more particularly, negative pressure is formed through the capacitance formed on the membrane and the back plate disposed to face each other and charged in the electrodes.
  • the present invention relates to a microphone having a rigid back plate structure and a method of manufacturing the microphone.
  • a microphone is a type of sensor that converts sound into electrical signals. Microphones are developed and produced in a variety of structures and shapes depending on the application.
  • a microphone used in a mobile device needs to be made small, it is generally produced by a micro electro mechanical system (MEMS) process.
  • MEMS micro electro mechanical system
  • a structure mainly of the capacitive type is widely used.
  • Capacitive microphones largely include a membrane and a backplate. Electrodes are formed on the membrane and the backplate, respectively, and the membrane is formed in a structure capable of vibrating according to a change in negative pressure.
  • the backplate is formed into a flat plate structure that faces parallel to the membrane.
  • the membrane and the backplate having a very thin thickness are formed on the substrate, so the design of the structure supporting the membrane and the backplate to the substrate has a great influence on the production yield and the quality.
  • the back plate generates internal stresses that cause the back plate to bend.
  • Such backplate internal stress causes stress to act on the support for supporting the backplate to the substrate. If the backplate support does not sufficiently overcome the internal stress of the backplate, the backplate will bend and affect the quality of the microphone.
  • the microphone does not operate normally as the back plate support is broken due to internal stress of the back plate in the process of producing the microphone or the process of using the microphone.
  • the present invention has been made to solve the problems described above, it is possible to sufficiently overcome the internal stress that may occur in the back plate of the microphone manufactured by the MEMS process and to stably support the back plate so that the back plate is not bent It is an object of the present invention to provide a method for producing a microphone having a rigid backplate structure which can be made, and a microphone manufactured by the method.
  • the air gap is disposed between the membrane and the back plate, the sound is detected by using the change in capacitance between the first electrode formed on the membrane and the second electrode formed on the back plate
  • a method of manufacturing a microphone comprising: (a) forming a first sacrificial layer on an upper surface of a substrate; (b) etching the first sacrificial layer to surround the outer circumference of the region where the membrane is to be formed to form a membrane outer circumference that exposes the surface of the substrate; (c) forming a first silicon layer by laminating undoped polysilicon on an upper surface of the substrate exposed through the membrane outer peripheral portion and an upper surface of the first sacrificial layer, and forming a membrane by the undoped polysilicon on the outer peripheral portion of the membrane.
  • Forming a first support (d) doping a region of the first electrode to be conductive to form the first electrode in the first silicon layer; (e) etching the first silicon layer leaving a residual area comprising a region where the membrane is to be formed, a region corresponding to the membrane first support portion, and a membrane second support portion extending outside the membrane first support portion; (f) depositing a second sacrificial layer on the first silicon layer after performing step (e); (g) etching the second sacrificial layer to surround the outer periphery of the region where the second electrode is to be formed to form a back plate support groove exposing the surface of the membrane second support portion; (h) forming a second silicon layer by laminating undoped polysilicon on an upper surface of the membrane second support portion exposed through the backplate support groove and an upper surface of the second sacrificial layer, and forming a second silicon layer on the backplate support groove.
  • Forming a backplate support by undoped-polysilicon (i) doping the second silicon layer to form a conductive second electrode in the second silicon layer; (j) etching the second silicon layer leaving a region where the second electrode is to be formed and a region corresponding to the back plate support; (k) depositing nitride on the second sacrificial layer, the back plate support and the second electrode to form a back plate layer; (l) etching the backplate layer and the second electrode of the plurality of sound hole regions to form a plurality of sound holes in an area surrounded by an outer circumference of the back plate; (m) removing a portion of the substrate in the area surrounded by the membrane first support at the bottom of the membrane to form a cavity; And (n) removing the first sacrificial layer exposed through the cavity and removing the second sacrificial layer exposed through the sound hole.
  • the microphone of the present invention the substrate; A membrane disposed on the substrate; A membrane first support portion supporting an outer circumference of the membrane with respect to the substrate; A membrane second support portion formed to extend with respect to the membrane outwardly of the membrane first support portion; A back plate disposed above the membrane; A back plate support formed in the back plate support groove to support an outer circumference of the back plate with respect to the membrane second support; A second electrode formed on the back plate; And a first electrode formed on the membrane.
  • the microphone of the rigid backplate structure and the method of manufacturing the microphone of the present invention provide a method of manufacturing a microphone having a horizontal tensile structure formed of a rigid backplate and a microphone according to the method, thereby improving the process yield of the microphone and improving the quality of the microphone. It works.
  • 1 to 16 are cross-sectional views illustrating a method of manufacturing a microphone of a rigid back plate structure according to an embodiment of the present invention.
  • FIG. 17 is a cutaway perspective view of a microphone manufactured by the method for manufacturing a microphone of the rigid backplate structure shown by FIGS. 1 to 16.
  • 1 to 16 are cross-sectional views illustrating a method of manufacturing a microphone of a rigid back plate structure according to an embodiment of the present invention.
  • the microphone manufacturing method of the rigid backplate structure according to the present invention is for producing a microphone having a structure as shown in FIG.
  • the membrane first support part 220 and the membrane second support part 230 are formed on the substrate 100 to support the membrane 200.
  • the membrane first support 220 is firmly fixed to the substrate by the membrane support fixture 503.
  • the membrane 200 is formed with a membrane second support 230 which is formed to extend with respect to the membrane 200 to the outside of the membrane first support 220.
  • the membrane second support part 230 is fixed to the substrate 100 by the structures of the first sacrificial layer 510 and the second sacrificial layer 520, and in such a state, the membrane second support part 230 is formed of a membrane. Support 200.
  • the first electrode 201 is formed on the membrane 200.
  • the membrane 200 is vibrated by the sound pressure transmitted from the outside.
  • the back plate 300 is disposed above the membrane 200.
  • the backplate 300 is supported relative to the membrane second support 230 by the backplate support 311.
  • a plurality of sound holes 320 are formed in the back plate 300.
  • External sound pressure is transmitted to the membrane 200 through the sound hole 320 of the back plate 300.
  • the second electrode 301 is formed under the back plate 300.
  • a first sacrificial layer is formed on the upper surface of the substrate (step (a)).
  • the first sacrificial layer 510 is prepared by depositing an insulating layer oxide film on the silicon wafer substrate 100.
  • a portion of the first sacrificial layer 510 is etched to surround the outer circumference of the region where the membrane 200 is to be formed to form a membrane outer circumference 501 exposing the surface of the substrate (( b) step).
  • the membrane outer peripheral part 501 is formed by removing the first sacrificial layer 510 at the position where the membrane first support part 220 supporting the membrane 200 is to be formed to expose the substrate 100.
  • the membrane first support 220 is formed on the substrate 100 to form the membrane outer circumference 501 in order to support the membrane 200.
  • the membrane outer periphery 501 is formed in a circular or near circular shape along the circumferential direction.
  • the membrane support groove 502 is also formed.
  • the membrane support groove 502 is formed by etching the first sacrificial layer 510 so that the surface of the substrate is exposed along the inner diameter of the membrane outer circumference 501 to be disposed at a position spaced inwardly with respect to the membrane outer circumference 501. That is, the membrane support groove 502 is formed parallel to the membrane outer peripheral portion 501 along the inner circumference of the membrane outer peripheral portion 501.
  • the undoped polysilicon is laminated on the upper surface of the substrate 100 and the upper surface of the first sacrificial layer 510 exposed through the membrane outer periphery 501 to form the first silicon layer ( 610 is formed and a membrane first support portion 220 is formed on the membrane outer peripheral portion 501 (step (c)).
  • the undoped polysilicon is also laminated to the membrane support groove 502.
  • the undoped polysilicon is laminated to form a membrane support fixing part 503 made of the first sacrificial layer 510 between the membrane outer peripheral part 501 and the membrane support groove 502.
  • the first silicon layer 610 constitutes the membrane 200, the membrane first support part 220, and the membrane support fixing part 503.
  • the region of the first electrode 201 is doped to form the first electrode 201 on the first silicon layer 610 (step (d)).
  • the first silicon layer 610 is doped by ion implantation.
  • the first silicon layer 610 at the position where the first electrode 201 is to be formed becomes conductive.
  • the region of the electrode pad is also doped. The electrode pad is formed to be able to be connected to an external circuit by wire bonding in the future.
  • the remaining first silicon layer 610 is etched while leaving the remaining region of the first silicon layer 610, and thus, the membrane 200, the membrane first support part 220, and the membrane second support part ( 230 (step (e)). That is, the remaining regions of the first silicon layer 610 except for the regions (remaining regions) to be the membrane 200, the membrane first supporting portion 220, the membrane second supporting portion 230, and the electrode pad 401 are etched. To be removed. By this process, the structure constituting the membrane 200 is completed. The membrane 200 is disposed at a height apart from the substrate and the membrane first support 220 is connected along an edge thereof to support the membrane 200 with respect to the substrate 100.
  • the membrane first support 220 supports the membrane 200 relative to the substrate 100 at the position of the membrane outer circumference 501.
  • the membrane second support part 230 which is a structure extending in the horizontal direction from the membrane 200, is formed outside the membrane first support part 220.
  • the membrane second support 230 supports the membrane 200 with respect to the substrate 100 in a state where the membrane second support 230 is fixed to the substrate 100 by the first sacrificial layer 510.
  • the membrane 200 and the membrane second support 230 are horizontally disposed on the same plane, and the membrane first support 220 and the membrane second support 230 move the membrane 200 to the substrate 100. Will be supported.
  • the second sacrificial layer 520 is stacked on the first silicon layer 610 (step (f)).
  • the second sacrificial layer 520 constitutes an air gap 420 between the membrane 200 and the back plate 300.
  • the second sacrificial layer 520 is formed by stacking oxide films.
  • the back plate supporting groove exposing the surface of the membrane second support part 230 by etching the second sacrificial layer 520 to surround the outer circumference of the region where the second electrode 301 is to be formed.
  • Form 310 (step (g)).
  • the upper surface of the portion where the electrode pad 401 connected to the first electrode 201 is formed is etched together.
  • the back plate support groove 310 etches the second sacrificial layer 520 in two rows.
  • the undoped polysilicon is laminated on the top surface of the membrane second support portion 230 and the top surface of the second sacrificial layer 520 exposed through the back plate support groove 310.
  • the undoped polysilicon is laminated in the two rows of back plate support grooves 310 to form the back plate support 311 (step (h)).
  • the undoped polysilicon is stacked on an upper surface of the electrode pad 401 connected to the first electrode 201 etched above.
  • ion implantation doping is performed on a portion where the second electrode 301 is to be formed so as to form a conductive second electrode 301 in the second silicon layer 620 ( (i) step).
  • the second electrode 301 becomes conductive.
  • ion implantation doping is also performed on the second silicon layer 620 on which the electrode pads 402 connected to the second electrode 301 are formed.
  • the second silicon layer 620 having the electrode pad 402 connected to the second electrode 301 by ion doping is conductive.
  • Ion implantation doping is also performed on the second silicon layer 620 corresponding to the position where the electrode pad 401 connected to the first electrode 201 is formed. Doping the second silicon layer 620 at the position where the electrode pad 401 is formed, and as a result, the second silicon layer at the position where the electrode pad 401 is formed is electrically connected to the first electrode 201. .
  • a dimple 330 is formed to prevent adhesion between the first electrode 201 and the second electrode 301.
  • the dimple 330 is an insulating structure formed on the back plate 300 to protrude toward the first electrode 201.
  • a portion of the second electrode 301 and the second sacrificial layer 520 are etched at a predetermined interval to form the dimple 330 (step (o)).
  • the dimple 330 protruding toward the first electrode 201 prevents the membrane 200 from vibrating greatly while the microphone is in use, and thus the first electrode 201 approaches the second electrode 301 and sticks to it.
  • the remaining portions of the second silicon layer 620 stacked in step (h) except for the regions corresponding to the second electrode 301 and the back plate support 311 are etched (( j) step).
  • the second silicon layer 620 portion of the portion where the electrode pad 402 to be connected to the second electrode 301 and the electrode pad 401 to be connected to the first electrode 201 are formed.
  • the etching is performed such that a part of the second silicon layer 620 and the part of the second silicon layer 620 on the left side where the electrode pad 401 is formed remain.
  • nitride is deposited on the second sacrificial layer 520, the back plate support 311, and the second electrode 301 to form a back plate layer.
  • 701 is formed (step (k)).
  • the dimple 330 is formed by depositing nitride in the region etched in step (o).
  • the outer circumferential portion of the back plate 300 is formed on the back plate support 311 described above.
  • the back plate support 311 is formed in step (h) of forming the second silicon layer 620.
  • the back plate support part 311 supports the back plate 300 as a whole by placing the outer circumference of the back plate 300 on the back plate support part 311 formed in a relatively rigid manner.
  • the back plate support 311 is formed by stacking a second silicon layer 620 on the back plate support groove 310 formed by etching the second sacrificial layer 520.
  • the back plate support 311 firmly fixed to the second sacrificial layer 520 is structurally very stable.
  • the step of the back plate support 311 since the step of the back plate support 311 is not formed, no step occurs in the back plate 300 placed thereon. Since the back plate 300 formed on the back plate support part 311 has no step, the back plate 300 is not damaged even in the high stress that may occur in the back plate 300.
  • a second gap between the backplate 300 and the membrane 200 may be provided.
  • the processes of forming the air gap 420 by removing the sacrificial layer 520 are performed, the components outside the back plate support 311 may be stably preserved without being affected. That is, due to the structure of the back plate support 311 as described above, the reproducibility of the process of etching the second sacrificial layer 520 is improved and the overall quality of the microphone manufacturing process is improved.
  • a part of the backplate layer 701 is etched to expose the second silicon layer 620 in the region where the electrode pads 401 and 402 are to be formed (p). ).
  • a portion of the back plate layer 701 is etched to expose a portion of the second silicon layer 620 so as to provide a region in which the electrode pad 401 to be connected to the first electrode 201 is to be formed. Areas in which electrode pads 402 connected to 301 are to be formed are respectively provided.
  • the metal layers for forming the electrode pads 401 and 402 are stacked and then etched to form an electrode pad 401 electrically connected to the first electrode 201 and the second electrode 301. 402 is formed respectively (step (q)).
  • the back plate 300 and the second electrode 301 are etched at a plurality of points inside the region surrounded by the outer circumference of the back plate 300 to form the acoustic hole 320 ( (l) step).
  • the external sound pressure is transmitted to the membrane 200 inside the back plate 300 through the sound hole 320.
  • the back plate 300 is stably supported by the back plate support 311 and has a relatively high rigidity, it is also possible to form the back plate 300 thinly. When the back plate 300 is thin, the length of the sound hole 320 is also shortened.
  • External sound waves passing through the sound hole 320 are subjected to resistance such as colliding or diffracting the sound hole 320 in the process of passing through the sound hole 320. If the length of the sound hole 320 is shortened, such a resistance may be reduced to improve the quality of the microphone. Especially in the case of low frequency sound, the effect is more pronounced.
  • step (m) a portion of the substrate 100 in a region surrounded by the membrane first support portions 220 below the membrane 200 is removed. 101) (step (m)).
  • the cavity 101 formed by etching the rear surface of the substrate 100 serves as a back chamber of the microphone.
  • the first sacrificial layer 510 and the second sacrificial layer 520 are removed through an etching process to make the membrane 200 vibrate ((n) step. ).
  • an air gap 420 is formed between the first electrode 201 and the second electrode 301, and the dimple 330 penetrating the second electrode 301 is the first electrode. Exposed to protrude toward 201. Since the back plate support part 311 surrounds the inner space of the chamber, in the process of removing the first sacrificial layer 510 and the second sacrificial layer 520, there is an advantage of preventing other components from being etched. have.
  • the back plate support 311 formed on the membrane second support 230 there is an advantage that the back plate 300 can be firmly supported without sagging.
  • the back plate support part 311 has a structure in which the second sacrificial layer is filled between the back plate support parts 311 formed in two rows, only the second sacrificial layer 520 of the air gap 420 is removed and the back plate is removed.
  • the second sacrificial layer 520 outside the support 311 remains without being removed to serve to fix and support the back plate support 311 from the outside.
  • the back plate 300 is prevented from being deformed or drooped and the durability is improved. For this reason, the method for manufacturing a microphone having a rigid backplate structure according to the present invention has an advantage of improving yield and improving product quality.
  • step (b) the membrane support groove 502 is formed, and in step (c), the undoped-polysilicon is also laminated to the membrane support groove 502 so that the membrane outer peripheral portion 501 and the membrane support groove are formed.
  • the membrane first support portion 220 in which the membrane support fixing portion 503 is formed between the 502, there is an advantage that the membrane 200 can be more stably supported with respect to the substrate 100.
  • the membrane first support portion 220 in such a structure, there is an advantage in that the reproducibility of the process of removing the first sacrificial layer 510 is improved and the quality of the overall microphone manufacturing process can be improved.
  • the dimple 330 is formed to prevent adhesion between the first electrode 201 and the second electrode 301 has been described as an example. However, in some cases, the dimple may not be configured. It is possible.
  • the structure of the membrane 200 and the back plate 300 may be variously modified.
  • back plate layer 701 has been described as being formed by depositing nitride, it is also possible to configure the back plate layer using another insulating material.
  • the metal layers are stacked and then etched to form the electrode pads 401 and 402, respectively, to form the electrode pads 401 and 402. It is also possible to form.
  • the back plate support 311 has been described in that the back plate support groove 310 is formed by stacking the second silicon layer 620 in the back plate support groove 310 by forming two rows, but the back plate support portion It may be formed in one row and may be formed in three or more rows in some cases.
  • the microphone of the present invention has the same structure as the microphone manufactured by the microphone manufacturing method of the rigid backplate structure described above.
  • the back plate support 311 having a two-row structure has a structure in which an insulating layer oxide film is disposed between the second silicon layers 620. Even if the process of removing the second sacrificial layer 520 and forming the air gap 420 by such a structure, the back plate 300 is effectively prevented from etching or damaging other components around the back plate support 311. ) Can secure a structure that can support () stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)

Abstract

본 발명은 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법에 관한 것으로서, 구동 전극을 포함하는 멤브레인과 고정 전극을 포함하는 백플레이트로 구성되어있으며, 두 전극은 기계적으로 기판에 연결된다. 본 발명의 강성 백플레이트 구조의 마이크로폰 제조 방법은 백플레이트를 지지하는 구조와 멤브레인을 지지하는 구조를 개선하여 마이크로폰을 제조하는 공정의 품질을 향상시키고 마이크로폰의 성능을 개선하는 효과가 있다.

Description

[규칙 제26조에 의한 보정 03.05.2018] 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법
본 발명은 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법에 관한 것으로서, 더욱 상세하게는 서로 마주하도록 평행하게 배치된 멤브레인과 백플레이트에 각각 전극을 형성하고 그 전극들에 충전되는 정전 용량을 통해서 음압을 측정하는 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰을 제조하는 방법에 관한 것이다.
마이크로폰은 소리를 전기 신호로 변환하는 센서의 일종이다. 마이크로폰은 용도에 따라 다양한 구조와 형상으로 개발되어 생산되고 있다.
모바일 기기에 사용되는 마이크로폰의 경우 작게 제작될 필요가 있으므로 멤스(MEMS; micro electro mechanical system) 공정에 의해 생산되는 것이 일반적이다. 또한, 이와 같은 모바일 기기용 마이크로폰의 경우 주로 정전용량 방식의 구조가 널리 사용된다.
정전용량 방식의 마이크로폰은 크게 멤브레인과 백플레이트를 구비한다. 멤브레인과 백플레이트에 각각 전극이 형성되고 멤브레인은 음압 변화에 따라 진동할 수 있는 구조로 형성된다. 백플레이트는 멤브레인과 평행하게 마주하는 평판 구조로 형성된다.
멤스 공정으로 제작되는 마이크로폰의 경우 기판 위에 매우 얇은 두께를 가지는 멤브레인과 백플레이트를 형성하기 때문에 멤브레인과 백플레이트를 기판에 대해 지지하는 구조의 설계가 생산 수율과 품질에 큰 영향을 미친다. 특히, 증착 및 식각과 같은 멤스 공정의 결과에 의해 백플레이트에는 백플레이트가 휘어지게 하는 내부 응력이 발생한다. 이와 같은 백플레이트 내부 응력으로 인해 백플레이트를 기판에 대해 지지하는 지지부에도 응력이 작용하게 된다. 백플레이트 지지부가 백플레이트의 내부 응력을 충분히 극복하지 못하는 경우 백플레이트가 휘어지면서 마이크로폰의 품질에 영향을 미치게 된다. 또한, 마이크로폰을 생산하는 과정이나 마이크로폰을 사용하는 과정에서 백플레이트의 내부 응력으로 인해 백플레이트 지지부가 파손되면서 마이크로폰이 정상적으로 작동하지 못하는 문제점이 있다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로, 멤스 공정에 의해 제조되는 마이크로폰의 백플레이트에 발생할 수 있는 내부 응력을 충분히 극복할 수 있고 백플레이트가 휘어지지 않도록 백플레이트를 안정적으로 지지할 수 있는 강성 백플레이트 구조를 가진 마이크로폰을 제조할 수 있는 방법과 그 방법에 의해 제조되는 마이크로폰을 제공하는 것을 목적으로 한다.
상술한 바와 같은 문제점을 해결하기 위하여 본 발명은, 멤브레인과 백플레이트 사이에 에어 갭이 배치되고 멤브레인에 형성된 제1전극과 백플레이트에 형성된 제2전극 사이의 정전용량의 변화를 이용하여 음향을 감지하는 마이크로폰의 제조 방법에 있어서, (a) 기판의 상면에 제1희생층을 형성하는 단계; (b) 상기 멤브레인이 형성될 영역의 외주를 둘러싸도록 상기 제1희생층을 식각하여 상기 기판의 표면을 노출시키는 멤브레인 외주부를 형성하는 단계; (c) 상기 멤브레인 외주부를 통해 노출되는 기판의 상면과 상기 제1희생층의 상면에 언도프드-폴리 실리콘을 적층하여 제1실리콘층을 형성하고 상기 멤브레인 외주부에는 상기 언도프드-폴리 실리콘에 의해 멤브레인 제1지지부를 형성하는 단계; (d) 상기 제1실리콘층에 상기 제1전극을 형성하기 위하여 상기 제1전극의 영역을 도핑하여 도전성을 갖도록 하는 단계; (e) 상기 멤브레인이 형성될 영역과 상기 멤브레인 제1지지부에 대응하는 영역과 상기 멤브레인 제1지지부 외측으로 연장되는 멤브레인 제2지지부를 포함하는 잔류 영역을 남기고 상기 제1실리콘층을 식각하는 단계; (f) 상기 (e) 단계를 실시한 후에 상기 제1실리콘층 위에 제2희생층을 적층하는 단계; (g) 상기 제2전극이 형성될 영역의 외주를 둘러싸도록 상기 제2희생층을 식각하여 상기 멤브레인 제2지지부의 표면을 노출시키는 백플레이트 지지홈을 형성하는 단계; (h) 상기 백플레이트 지지홈을 통해 노출되는 상기 멤브레인 제2지지부의 상면과 상기 제2희생층의 상면에 언도프드-폴리 실리콘을 적층하여 제2실리콘층을 형성하고 상기 백플레이트 지지홈에는 상기 언도포드-폴리 실리콘에 의해 백플레이트 지지부를 형성하는 단계; (i) 상기 제2실리콘층에 도전성을 갖는 제2전극을 형성할 수 있도록 상기 제2실리콘층을 도핑하는 단계; (j) 상기 제2전극이 형성될 영역과 상기 백플레이트 지지부에 대응하는 영역을 남기고 상기 제2실리콘층을 식각하는 단계; (k) 상기 제2희생층과 백플레이트 지지부와 제2전극에 나이트라이드를 증착하여 백플레이트 레이어(back plate layer)를 형성하는 단계; (l) 상기 백플레이트의 외주부에 의해 둘러싸이는 영역의 내부에 복수의 음향홀을 형성하도록 상기 복수의 음향홀 영역의 상기 백플레이트 레이어 및 제2전극을 식각하는 단계; (m) 상기 멤브레인의 하부의 상기 멤브레인 제1지지부에 의해 둘러싸이는 영역의 상기 기판의 일부분을 제거하여 캐비티를 형성하는 단계; 및 (n) 상기 캐비티를 통해 노출되는 상기 제1희생층을 제거하고 상기 음향홀을 통해 노출되는 상기 제2희생층을 제거하는 단계;를 포함하는 점에 특징이 있다.
또한, 본 발명의 마이크로폰은, 기판; 상기 기판의 상측에 배치되는 멤브레인; 상기 기판에 대해 상기 멤브레인의 외주를 지지하는 멤브레인 제1지지부; 상기 멤브레인 제1지지부의 외측으로 상기 멤브레인에 대해 연장되도록 형성되는 멤브레인 제2지지부; 상기 멤브레인의 상측에 배치되는 백플레이트; 상기 멤브레인 제2지지부에 대해 상기 백플레이트의 외주를 지지하도록 상기 백플레이트 지지홈에 형성되는 백플레이트 지지부; 상기 백플레이트에 형성되는 제2전극; 및 상기 멤브레인에 형성되는 제1전극;을 포함하는 점에 특징이 있다.
본 발명의 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법은 강성 백플레이트로 형성된 수평 인장 구조의 마이크로폰 제조 방법과 그 방법에 의한 마이크로폰을 제공함으로써, 마이크로폰의 공정 수율을 향상시키고 마이크로폰의 품질을 향상시키는 효과가 있다.
도 1 내지 도 16는 본 발명의 일실시예에 따른 강성 백플레이트 구조의 마이크로폰 제조 방법을 설명하기 위한 단면도이다.
도 17은 도 1 내지 도 16에 의해 도시된 강성 백플레이트 구조의 마이크로폰 제조 방법에 의해 제조된 마이크로폰의 절개 사시도이다.
이하, 본 발명에 따른 강성 백플레이트 구조의 마이크로폰 제조 방법의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
도 1 내지 도 16는 본 발명의 일실시예에 따른 강성 백플레이트 구조의 마이크로폰 제조 방법을 설명하기 위한 단면도이다.
본 발명에 따른 강성 백플레이트 구조의 마이크로폰 제조 방법은 도 16에 도시된 것과 같은 구조의 마이크로폰을 제조하기 위한 것이다. 기판(100) 위에 멤브레인 제1지지부(220)와 멤브레인 제2지지부(230)가 형성되어 멤브레인(200)을 지지한다. 멤브레인 제1지지부(220)는 멤브레인 지지 고정부(503)에 의해 기판에 대해 단단히 고정된다. 멤브레인(200)에는 멤브레인 제1지지부(220)의 외측으로 멤브레인(200)에 대해 연장되도록 형성되는 멤브레인 제2지지부(230)가 형성된다. 멤브레인 제2지지부(230)는 제1희생층(510) 및 제2희생층(520)의 구조에 의해 기판(100)에 대해 고정되고, 그와 같은 상태에서 멤브레인 제2지지부(230)는 멤브레인(200)을 지지한다. 멤브레인(200)에는 제1전극(201)이 형성된다. 멤브레인(200)은 외부로부터 전달되는 음압에 의해 진동하게 된다. 멤브레인(200)의 상측에는 백플레이트(300)가 배치된다. 백플레이트(300)는 백플레이트 지지부(311)에 의해 멤브레인 제2지지부(230)에 대해 지지된다. 백플레이트(300)에는 복수의 음향홀(320)이 형성되어 있다. 백플레이트(300)의 음향홀(320)을 통해서 외부의 음압이 멤브레인(200)으로 전달된다. 백플레이트(300) 하부에는 제2전극(301)이 형성된다. 멤브레인(200)이 진동하면 제1전극(201)과 제2전극(301) 사이의 간격이 변하게 되고, 결과적으로 제1전극(201)과 제2전극(301) 사이의 정전 용량이 변하게 된다. 이와 같은 정전 용량의 변화를 이용하여 음압의 변화를 전기적 신호로 변환할 수 있다. 한편, 멤브레인(200)의 하측에는 기판(100)의 일부가 제거되어 캐비티(101)가 형성된다.
이하, 상술한 바와 같은 구조를 가진 마이크로폰을 제조하는 방법에 대해 설명한다.
먼저, 도 1에 도시한 것과 같이 기판의 상면에 제1희생층을 형성한다((a) 단계). 실리콘 웨이퍼 기판(100)에 절연층 산화막을 증착하는 방법으로 제1희생층(510)을 마련한다.
다음으로 도 2에 도시한 것과 같이 멤브레인(200)이 형성될 영역의 외주를 둘러싸도록 제1희생층(510)의 일부분을 식각하여 기판의 표면을 노출시키는 멤브레인 외주부(501)를 형성한다((b) 단계). 멤브레인(200)을 지지하는 멤브레인 제1지지부(220)가 형성될 위치에 제1희생층(510)을 제거하여 기판(100)이 노출되도록 함으로써 멤브레인 외주부(501)를 형성한다. 기판(100) 위에 멤브레인 제1지지부(220)가 형성되어 멤브레인(200)을 지지하도록 구성하기 위하여 이와 같이 멤브레인 외주부(501)을 형성한다. 멤브레인(200)이 효과적으로 진동하는 구조가 되도록 지지하는 멤브레인 제1지지부(220)를 형성하기 위하여 멤브레인 외주부(501)를 원주 방향을 따라 원형 또는 원형에 가까운 형상으로 형성한다.
이와 같이 멤브레인 외주부(501)를 형성할 때 멤브레인 지지홈(502)도 함께 형성한다. 멤브레인 지지홈(502)은 멤브레인 외주부(501)에 대해 내측으로 이격된 위치에 배치되어 멤브레인 외주부(501)의 내경을 따라 기판의 표면이 노출되도록 제1희생층(510)을 식각하여 형성된다. 즉, 멤브레인 지지홈(502)은 멤브레인 외주부(501)의 내주를 따라 멤브레인 외주부(501)와 나란하게 형성된다.
이와 같은 상태에서 도 3에 도시한 것과 같이 멤브레인 외주부(501)을 통해 노출되는 기판(100)의 상면과 제1희생층(510)의 상면에 언도프드-폴리 실리콘을 적층하여 제1실리콘층(610)을 형성하고 멤브레인 외주부(501)에는 멤브레인 제1지지부(220)를 형성한다((c) 단계). 이때 멤브레인 지지홈(502)에도 언도프드-폴리 실리콘이 적층된다. 이와 같이 언도프드-폴리 실리콘이 적층됨으로써 멤브레인 외주부(501)와 멤브레인 지지홈(502)의 사이에 제1희생층(510)으로된 멤브레인 지지 고정부(503)가 형성된다. 이와 같은 제1실리콘층(610)은 멤브레인(200)과 멤브레인 제1지지부(220)와 멤브레인 지지 고정부(503)를 구성하게 된다.
다음으로 도 4에 도시한 것과 같이 제1실리콘층(610)에 제1전극(201)을 형성하기 위하여 제1전극(201)의 영역을 도핑한다((d) 단계). 본 실시예에서는 이온 임플렌테이션(implantation)에 의해 제1실리콘층(610)을 도핑한다. 이와 같은 도핑에 의해 제1전극(201)이 형성될 위치의 제1실리콘층(610)은 도전성을 갖게 된다. 이와 같이 제1전극(201)의 영역을 도핑할 때 도 4에 도시한 것과 같이 전극 패드의 영역도 도핑한다. 전극 패드는 향후 와이어 본딩에 의해 외부 회로와 연결될 수 있도록 형성된다.
다음으로 도 5에 도시한 것과 같이 제1실리콘층(610)의 잔류 영역을 남기고 나머지 제1실리콘층(610)을 식각하여 멤브레인(200), 멤브레인 제1지지부(220) 및 멤브레인 제2지지부(230)를 형성한다((e) 단계). 즉, 제1실리콘층(610) 중에서 멤브레인(200)과 멤브레인 제1지지부(220), 멤브레인 제2지지부(230) 및 전극 패드(401)가 될 영역(잔류 영역)을 제외한 나머지 영역을 식각에 의해 제거하게 된다. 이와 같은 과정에 의해 멤브레인(200)을 구성하는 구조가 완성된다. 멤브레인(200)은 기판에 대해 이격된 높이에 배치되고 그 가장자리를 따라 멤브레인 제1지지부(220)가 연결되어 기판(100)에 대해 멤브레인(200)을 지지하게 된다. 멤브레인 제1지지부(220)는 멤브레인 외주부(501)의 위치에서 멤브레인(200)을 기판(100)에 대해 지지한다. 또한, 멤브레인 제1지지부(220)의 외곽에는 멤브레인(200)으로부터 수평 방향으로 연장되는 구조물인 멤브레인 제2지지부(230)가 형성된다. 멤브레인 제2지지부(230)는 제1희생층(510)에 의해 기판(100)에 고정된 상태에서 멤브레인(200)을 기판(100)에 대해 지지한다.
이에 따라 멤브레인(200)과 멤브레인 제2지지부(230)는 동일 평면상에 수평하게 배치되고 멤브레인 제1지지부(220) 및 멤브레인 제2지지부(230)가 멤브레인(200)을 기판(100)에 대해 지지하게 된다.
다음으로 도 6에 도시한 것과 같이 제1실리콘층(610) 위에 제2희생층(520)을 적층하는 단계를 실시한다((f) 단계). 제2희생층(520)은 멤브레인(200)과 백플레이트(300) 사이의 에어 갭(air gap; 420)을 구성하게 된다. 산화막을 적층하여 제2희생층(520)을 형성하게 된다.
다음으로 도 7에 도시한 것과 같이 제2전극(301)이 형성될 영역의 외주를 둘러싸도록 제2희생층(520)을 식각하여 멤브레인 제2지지부(230)의 표면을 노출시키는 백플레이트 지지홈(310)을 형성한다((g) 단계). 이 때, 제1전극(201)과 연결되는 전극 패드(401)가 형성되는 부분의 상면이 노출되도록 함께 식각한다. 백플레이트 지지홈(310)은 2열이 되도록 제2희생층(520)을 식각한다.
다음으로 도 8에 도시한 것과 같이 백플레이트 지지홈(310)을 통해 노출되는 멤브레인 제2지지부(230)의 상면과 제2희생층(520)의 상면에 언도프트-폴리 실리콘을 적층한다. 그 결과 2열의 백플레이트 지지홈(310)에는 언도프트-폴리 실리콘이 적층되어 백플레이트 지지부(311)를 형성한다((h) 단계). 앞서 식각한 제1전극(201)과 연결되는 전극 패드(401)의 상면에도 언도프트-폴리 실리콘이 적층된다.
이와 같은 상태에서 도 9에 도시한 것과 같이 제2실리콘층(620)에 도전성을 갖는 제2전극(301)이 형성되도록 제2전극(301)이 형성될 부분에 이온 임플렌테이션 도핑을 실시한다((i) 단계). 이온도핑에 의해 제2전극(301)은 도전성을 갖게 된다. 이 때, 제2전극(301)과 연결되는 전극 패드(402)가 형성되는 제2실리콘층(620)에도 이온 임플렌테이션 도핑을 실시한다. 이온 도핑에 의해 제2전극(301)과 연결되는 전극 패드(402)가 형성되는 제2실리콘층(620)은 도전성을 갖는다. 제1전극(201)과 연결되는 전극 패드(401)이 형성되는 위치와 대응되는 제2실리콘층(620)에도 이온 임플렌테이션 도핑을 실시한다. 전극 패드(401)이 형성되는 위치의 제2실리콘층(620)에 도핑을 실시하여 결과적으로 전극 패드(401)이 형성되는 위치의 제2실리콘층은 제1전극(201)과 전기적으로 연결된다.
도 10 내지 도 12에 도시한 것과 같이 제1전극(201)과 제2전극(301)의 점착을 방지하기 하도록 딤플(330)을 형성한다. 딤플(330)은 제1전극(201)을 향해 돌출되도록 백플레이트(300)에 형성된 절연성 구조물이다.
먼저, 도 10에 도시한 것과 같이 딤플(330)을 형성하기 위해 제2전극(301)과 제2희생층(520) 일부를 일정간격으로 식각한다((o) 단계). 제1전극(201)을 향해 돌출된 딤플(330)은 마이크로폰의 사용중에 멤브레인(200)이 크게 진동하여 제1전극(201)이 제2전극(301)에 접근하여 점착하는 것을 방지한다.
다음으로 도 11에 도시한 것과 같이 (h) 단계에서 적층된 제2실리콘층(620)에서 제2전극(301)과 백플레이트 지지부(311)에 대응하는 영역을 제외한 나머지 부분을 식각한다((j) 단계). 이 때, 제2전극(301)과 연결되는 전극 패드(402)가 형성될 부분의 제2실리콘층(620) 부분과 제1전극(201)과 연결되는 전극 패드(401)가 형성되는 위치의 제2실리콘층(620) 부분과 전극 패드(401)가 형성되는 위치의 왼쪽 부분의 제2실리콘층(620)일부도 남아있도록 식각을 실시한다.
이와 같은 상태에서, 도 12에 도시한 것과 같이 제2희생층(520)과 백플레이트 지지부(311)와 제2전극(301)에 나이트라이드(nitride)를 증착하여 백플레이트 레이어(back plate layer)(701)를 형성한다((k) 단계). 이때 (o) 단계에서 식각된 영역에도 나이트라이드가 증착됨으로써 딤플(330)이 형성된다. 백플레이트(300)의 외주 부분은 앞서 설명한 백플레이트 지지부(311) 상부에 형성된다. 백플레이트 지지부(311)는 제2실리콘층(620)을 형성하는 (h) 단계에서 형성된다. 본 실시예의 경우,비교적 단단하게 형성된 백플레이트 지지부(311) 위에 백플레이트(300)의 외주부를 놓아 백플레이트 지지부(311)가 백플레이트(300)를 전체적으로 지지한다. 백플레이트 지지부(311)는 제2희생층(520)을 식각하여 형성한 백플레이트 지지홈(310)에 제2실리콘층(620)이 적층되어 형성된다. 제2희생층(520)에 단단히 고정된 백플레이트 지지부(311)는 구조적으로 매우 안정하다. 높은 응력에도 견딜수 있는 백플레이트(300)을 형성시킴으로써, 백플레이트(300)의 두께를 감소시킬 수 있는 효과가 있다.
또한, 백플레이트 지지부(311)는 단차가 형성되지 않기 때문에 그 위에 놓이는 백플레이트(300)에도 단차가 발생하지 않는다. 백플레이트 지지부(311) 위에 형성되는 백플레이트(300)는 단차가 없기 때문에 백플레이트(300)에서 발생될 수 있는 높은 응력에도 백플레이트(300)가 파손되지 않는 효과가 있다.
또한, 백플레이트 지지부(311)가 2열로 형성되고 2열의 백플레이트 지지부(311) 사이에 배치된 제2희생층(520) 구조로 인해 추후 백플레이트(300)와 멤브레인(200) 사이의 제2희생층(520)을 제거하여 에어 갭(420)을 형성하는 공정을 수행할 때, 백플레이트 지지부(311) 외측의 구성들은 영향을 받지 않고 안정적으로 보존될 수 있는 장점이 있다. 즉, 상술한 바와 같은 백플레이트 지지부(311)의 구조로 인해 제2희생층(520)을 식각하는 공정의 재현성이 향상되고 마이크로폰 제조 공정의 전체적인 품질이 향상되는 효과가 있다.
다음으로, 제1전극(201) 및 제2전극(301)을 외부 회로와 연결하기 위한 전극 패드(401, 402)를 형성하는 과정을 설명한다.
먼저, 도 13에 도시한 것과 같이 백플레이트 레이어(701) 일부를 식각하여 전극 패드(401, 402)가 형성될 영역의 제2실리콘층(620)을 노출시키는 단계를 실시한다((p) 단계). 백플레이트 레이어(701)의 일부를 식각하여 제2실리콘층(620)의 일부가 노출되도록 함으로써 제1전극(201)과 연결되는 전극 패드(401)가 형성될 영역을 마련하고, 제2전극(301)과 연결되는 전극 패드(402)가 형성될 영역을 각각 마련한다.
다음으로 도 14에 도시한 것과 같이 전극 패드(401, 402)를 형성하기 위한 금속층을 적층한 후 식각하여 제1전극(201) 및 제2전극(301)과 전기적으로 연결되는 전극 패드(401, 402)를 각각 형성한다((q) 단계).
다음으로 도 14을 참조하여 음향홀(320)을 형성하는 과정을 설명한다. 도 14에 도시한 것과 같이 백플레이트(300)의 외주부에 의해 둘러싸이는 영역 내부의 복수의 지점에 대해 백플레이트(300) 및 제2전극(301)을 식각하여 음향홀(320)을 형성한다((l) 단계). 상술한 바와 같이 음향홀(320)을 통해서 외부의 음압이 백플레이트(300) 내부의 멤브레인(200)으로 전달된다. 앞서 설명한 것처럼, 백플레이트(300)가 백플레이트 지지부(311)에 의해 안정적으로 지지되고 비교적 높은 강성을 가지기 때문에 백플레이트(300)를 얇게 형성하는 것도 가능하다. 백플레이트(300)가 얇아지면 음향홀(320)의 길이도 짧아진다. 음향홀(320)을 통과하는 외부의 음파는 음향홀(320)을 통과하는 과정에서 음향홀(320)에 충돌하거나 회절하는 등의 저항을 받는다. 음향홀(320)의 길이를 짧게 하면, 이와 같은 저항을 줄여 마이크로폰의 품질을 향상시킬 수 있다. 특히 저주파 영역의 음향의 경우 그 효과는 더욱 두드러진다.
이와 같이 음향홀(320)이 형성된 후에는 도 15에 도시한 것과 같이 멤브레인(200)의 하부의 멤브레인 제1지지부(220)들에 의해 둘러싸이는 영역의 기판(100)의 일부분을 제거하여 캐비티(101)를 형성한다((m) 단계). 기판(100)의 후면을 식각하여 형성된 캐비티(101)는 마이크로폰의 백 챔버의 역할을 수행한다.
다음으로 도 16에 도시한 것과 같이, 제1희생층(510) 및 제2희생층(520)을 식각공정을 통해 제거하여 멤브레인(200)이 진동할 수 있는 상태가 되도록 한다((n) 단계). 제2희생층(520)이 제거됨으로써 제1전극(201)과 제2전극(301) 사이에 에어 갭(420)이 형성되고 제2전극(301)을 관통하는 딤플(330)이 제1전극(201)을 향하여 돌출되는 상태로 노출된다. 백플레이트 지지부(311)에 의해 챔버 내부 공간을 둘러싸게 되므로, 제1희생층(510)과 제2희생층(520)을 제거하는 과정에서 주변의 다른 구성이 식각되는 것을 방지할 수 있는 장점이 있다. 또한, 멤브레인 제2지지부(230) 위에 형성된 백플레이트 지지부(311)의 구성으로 인해 백플레이트(300)을 쳐짐 없이 견고하게 지지할 수 있는 장점이 있다. 특히, 2열로 형성된 백플레이트 지지부(311) 사이에 제2희생층이 채워진 구조로 백플레이트 지지부(311)가 구성되어 있으므로 에어 갭(420) 부분의 제2희생층(520)만 제거되고 백플레이트 지지부(311) 외측의 제2희생층(520)은 제거되지 않고 남아서 백플레이트 지지부(311)을 외측에서 고정하고 지지하는 역할을 하게 된다. 이와 같은 본 실시예의 구성으로 인해 백플레이트(300)는 형상 변형이나 쳐짐이 방지되고 내구성도 향상된다. 이로 인해 본 발명에 의한 강성 백플레이트 구조의 마이크로폰 제조 방법은 수율이 향상되고 제품의 품질이 향상되는 장점이 있다.
한편, 상술한 바와 같이 (b) 단계에서 멤브레인 지지홈(502)을 형성하고, (c) 단계에서 멤브레인 지지홈(502)에도 언도프드-폴리 실리콘을 적층하여 멤브레인 외주부(501)와 멤브레인 지지홈(502)의 사이에 멤브레인 지지 고정부(503)가 형성된 멤브레인 제1지지부(220)를 구성함으로써, 멤브레인(200)을 기판(100)에 대해 더욱 안정적으로 지지할 수 있는 장점이 있다. 이와 같은 구조로 멤브레인 제1지지부(220)를 구성함으로써 제1희생층(510)을 제거하는 공정의 재현성을 향상시키고 전체적인 마이크로폰 제조 공정의 품질을 향상시킬 수 있는 장점이 있다.
이상, 본 발명에 따른 강성 백플레이트 구조의 마이크로폰 제조 방법에 대해 바람직한 예를 들어 설명하였으나, 본 발명의 범위가 앞에서 설명한 경우로 한정되는 것은 아니다.
예를 들어, 앞에서 제1전극(201)과 제2전극(301)의 점착 방지를 위해 딤플(330)을 형성하는 단계를 포함하는 경우를 예로 들어 설명하였으나 경우에 따라서는 딤플을 구성하지 않는 것도 가능하다.
또한, 멤브레인(200)과 백플레이트(300)의 구조는 다양하게 변형될 수 있다.
또한, 앞에서 백플레이트 레이어(701)는 나이트라이드를 증착하여 구성하는 것으로 설명하였으나, 다른 절연성 재질을 사용하여 백플레이트 레이어를 구성하는 것도 가능하다.
또한, 앞에서 전극 패드(401, 402)를 형성하기 위해 금속층을 적층한 후 식각하여 전극 패드(401, 402)를 각각 형성하는 것으로 설명하였으나, 전극 패드가 형성될 부분에만 금속층을 적층하여 전극 패드를 형성하는 것도 가능하다.
또한, 앞에서 백플레이트 지지부(311)는 백플레이트 지지홈(310)을 2열로 형성하여 백플레이트 지지홈(310)에 제2실리콘층(620)이 적층되어 형성되는 것으로 설명하였으나, 백플레이트 지지부는 1열로 형성될 수 있고 경우에 따라서는 3열 이상으로 형성되는 것도 가능하다.
한편 본 발명의 마이크로폰은, 앞에서 설명한 강성 백플레이트 구조의 마이크로폰 제조 방법에 의해 제조되는 마이크로폰과 동일한 구조를 가진다.
상술한 바와 같이 2열 구조로 형성되는 백플레이트 지지부(311)는 제2실리콘층(620) 사이에 절연층 산화막이 배치된 구조로 형성된다. 이와 같은 구조에 의해 제2희생층(520)을 제거하고 에어 갭(420)을 형성하는 공정을 수행하더라도 백플레이트 지지부(311) 주변의 다른 구성이 식각되거나 손상되는 것을 효과적으로 방지하면서 백플레이트(300)를 안정적으로 지지할 수 있는 구조를 확보할 수 있다.

Claims (7)

  1. 멤브레인과 백플레이트 사이에 에어 갭이 배치되고 멤브레인에 형성된 제1전극과 백플레이트에 형성된 제2전극 사이의 정전용량의 변화를 이용하여 음향을 감지하는 마이크로폰의 제조 방법에 있어서,
    (a) 기판의 상면에 제1희생층을 형성하는 단계;
    (b) 상기 멤브레인이 형성될 영역의 외주를 둘러싸도록 상기 제1희생층을 식각하여 상기 기판의 표면을 노출시키는 멤브레인 외주부를 형성하는 단계;
    (c) 상기 멤브레인 외주부를 통해 노출되는 기판의 상면과 상기 제1희생층의 상면에 언도프드-폴리 실리콘을 적층하여 제1실리콘층을 형성하고 상기 멤브레인 외주부에는 상기 언도프드-폴리 실리콘에 의해 멤브레인 제1지지부를 형성하는 단계;
    (d) 상기 제1실리콘층에 상기 제1전극을 형성하기 위하여 상기 제1전극의 영역을 도핑하여 도전성을 갖도록 하는 단계;
    (e) 상기 멤브레인이 형성될 영역과 상기 멤브레인 제1지지부에 대응하는 영역과 상기 멤브레인 제1지지부 외측으로 연장되는 멤브레인 제2지지부를 포함하는 잔류 영역을 남기고 상기 제1실리콘층을 식각하는 단계;
    (f) 상기 (e) 단계를 실시한 후에 상기 제1실리콘층 위에 제2희생층을 적층하는 단계;
    (g) 상기 제2전극이 형성될 영역의 외주를 둘러싸도록 상기 제2희생층을 식각하여 상기 멤브레인 제2지지부의 표면을 노출시키는 백플레이트 지지홈을 형성하는 단계;
    (h) 상기 백플레이트 지지홈을 통해 노출되는 상기 멤브레인 제2지지부의 상면과 상기 제2희생층의 상면에 언도프드-폴리 실리콘을 적층하여 제2실리콘층을 형성하고 상기 백플레이트 지지홈에는 상기 언도프드-폴리 실리콘에 의해 백플레이트 지지부를 형성하는 단계;
    (i) 상기 제2실리콘층에 도전성을 갖는 제2전극을 형성할 수 있도록 상기 제2실리콘층을 도핑하는 단계;
    (j) 상기 제2전극이 형성될 영역과 상기 백플레이트 지지부에 대응하는 영역을 남기고 상기 제2실리콘층을 식각하는 단계;
    (k) 상기 제2희생층과 백플레이트 지지부와 제2전극에 나이트라이드를 증착하여 백플레이트 레이어(back plate layer)를 형성하는 단계;
    (l) 상기 백플레이트의 외주부에 의해 둘러싸이는 영역의 내부에 복수의 음향홀을 형성하도록 상기 복수의 음향홀 영역의 상기 백플레이트 레이어 및 제2전극을 식각하는 단계;
    (m) 상기 멤브레인의 하부의 상기 멤브레인 제1지지부에 의해 둘러싸이는 영역의 상기 기판의 일부분을 제거하여 캐비티를 형성하는 단계; 및
    (n) 상기 캐비티를 통해 노출되는 상기 제1희생층을 제거하고 상기 음향홀을 통해 노출되는 상기 제2희생층을 제거하는 단계;를 포함하는 것을 특징으로 하는 강성 백플레이트 구조의 마이크로폰 제조 방법.
  2. 제1항에 있어서,
    상기 (g) 단계는, 상기 백플레이트 지지홈을 적어도 2열 형성하도록 상기 제2희생층을 식각하는 강성 백플레이트 구조의 마이크로폰 제조 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 (b) 단계를 수행할 때 상기 멤브레인 외주부에 대해 내측으로 이격된 위치에 배치되어 상기 멤브레인 외주부의 내경을 따라 상기 기판의 표면이 노출되도록 상기 제1희생층을 식각하여 멤브레인 지지홈을 함께 형성하고,
    상기 (c) 단계를 수행할 때 상기 멤브레인 지지홈에도 언도프드-폴리 실리콘을 적층하여 상기 멤브레인 외주부와 상기 멤브레인 지지홈의 사이에 상기 제1희생층으로 형성된 멤브레인 지지 고정부가 형성되도록 하고,
    상기 (e) 단계에서 상기 제1실리콘층을 식각할 때 상기 멤브레인 제1지지부의 내부에는 상기 멤브레인 지지 고정부가 남아서 상기 멤브레인 제1지지부를 상기 기판에 대해 고정하도록 형성되는 것을 특징으로 하는 강성 백플레이트 구조의 마이크로폰 제조 방법.
  4. 제2항에 있어서,
    상기 (b) 단계를 수행할 때 상기 멤브레인 외주부에 대해 내측으로 이격된 위치에 배치되어 상기 멤브레인 외주부의 내경을 따라 상기 기판의 표면이 노출되도록 상기 제1희생층을 식각하여 멤브레인 지지홈을 함께 형성하고,
    상기 (c) 단계를 수행할 때 상기 멤브레인 지지홈에도 언도프드-폴리 실리콘을 적층하여 상기 멤브레인 외주부와 상기 멤브레인 지지홈의 사이에 상기 제1희생층으로 형성된 멤브레인 지지 고정부가 형성되도록 하고,
    상기 (e) 단계에서 상기 제1실리콘층을 식각할 때 상기 멤브레인 제1지지부의 내부에는 상기 멤브레인 지지 고정부가 남아서 상기 멤브레인 제1지지부를 상기 기판에 대해 고정하도록 형성되는 것을 특징으로 하는 강성 백플레이트 구조의 마이크로폰 제조 방법.
  5. 제1항에 있어서,
    (p) 상기 (k) 단계에 의해 상기 나이트라이드를 증착하여 백플레이트 레이어를 형성한 후, 상기 백플레이트 레이어를 식각하여 각각 전극 패드가 형성될 영역의 상기 제2실리콘층을 노출시키는 단계; 및
    (q) 상기 전극 패드를 형성하기 위한 금속층을 적층하여 상기 제1전극 및 제2전극과 전기적으로 연결되는 전극 패드를 형성하는 단계;를 더 포함하는 것을 특징으로 하는 강성 백플레이트 구조의 마이크로폰 제조 방법.
  6. 제2항에 있어서,
    (p) 상기 (k) 단계에 의해 상기 나이트라이드를 증착하여 백플레이트 레이어를 형성한 후, 상기 백플레이트 레이어를 식각하여 각각 전극 패드가 형성될 영역의 상기 제2실리콘층을 노출시키는 단계; 및
    (q) 상기 전극 패드를 형성하기 위한 금속층을 적층하여 상기 제1전극 및 제2전극과 전기적으로 연결되는 전극 패드를 형성하는 단계;를 더 포함하는 것을 특징으로 하는 강성 백플레이트 구조의 마이크로폰 제조 방법.
  7. 기판;
    상기 기판의 상측에 배치되는 멤브레인;
    상기 기판에 대해 상기 멤브레인의 외주를 지지하는 멤브레인 제1지지부;
    상기 멤브레인 제1지지부의 외측으로 상기 멤브레인에 대해 연장되도록 형성되는 멤브레인 제2지지부;
    상기 멤브레인의 상측에 배치되는 백플레이트;
    상기 멤브레인 제2지지부에 대해 상기 백플레이트의 외주를 지지하도록 상기 멤브레인 제2지지부의 상측에 형성되는 백플레이트 지지부;
    상기 백플레이트에 형성되는 제2전극; 및
    상기 멤브레인에 형성되는 제1전극;을 포함하는 것을 특징으로 하는 강성 백플레이트 구조의 마이크로폰.
PCT/KR2018/004575 2017-04-27 2018-04-19 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법 WO2018199554A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0054054 2017-04-27
KR1020170054054A KR101893486B1 (ko) 2017-04-27 2017-04-27 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법

Publications (1)

Publication Number Publication Date
WO2018199554A1 true WO2018199554A1 (ko) 2018-11-01

Family

ID=63453685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004575 WO2018199554A1 (ko) 2017-04-27 2018-04-19 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법

Country Status (2)

Country Link
KR (1) KR101893486B1 (ko)
WO (1) WO2018199554A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491244A (zh) * 2020-03-16 2020-08-04 歌尔微电子有限公司 一种mems麦克风的加工方法和mems麦克风

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110123043A1 (en) * 2009-11-24 2011-05-26 Franz Felberer Micro-Electromechanical System Microphone
KR20140040997A (ko) * 2012-09-27 2014-04-04 한국전자통신연구원 멤스 마이크로폰 및 그 제조방법
KR20140104401A (ko) * 2012-04-04 2014-08-28 인피니언 테크놀로지스 아게 Mems 디바이스 및 mems 디바이스를 제조하는 방법
KR101462375B1 (ko) * 2014-06-30 2014-11-17 한국기계연구원 Mems 마이크로폰
KR101688954B1 (ko) * 2016-01-15 2016-12-22 (주)글로벌센싱테크놀로지 멤브레인 지지 구조가 개선된 마이크로폰 및 마이크로폰 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110123043A1 (en) * 2009-11-24 2011-05-26 Franz Felberer Micro-Electromechanical System Microphone
KR20140104401A (ko) * 2012-04-04 2014-08-28 인피니언 테크놀로지스 아게 Mems 디바이스 및 mems 디바이스를 제조하는 방법
KR20140040997A (ko) * 2012-09-27 2014-04-04 한국전자통신연구원 멤스 마이크로폰 및 그 제조방법
KR101462375B1 (ko) * 2014-06-30 2014-11-17 한국기계연구원 Mems 마이크로폰
KR101688954B1 (ko) * 2016-01-15 2016-12-22 (주)글로벌센싱테크놀로지 멤브레인 지지 구조가 개선된 마이크로폰 및 마이크로폰 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491244A (zh) * 2020-03-16 2020-08-04 歌尔微电子有限公司 一种mems麦克风的加工方法和mems麦克风
CN111491244B (zh) * 2020-03-16 2021-11-16 歌尔微电子有限公司 一种mems麦克风的加工方法和mems麦克风

Also Published As

Publication number Publication date
KR101893486B1 (ko) 2018-08-30

Similar Documents

Publication Publication Date Title
KR101578542B1 (ko) 마이크로폰 제조 방법
KR102579503B1 (ko) Mems 구성 요소 및 mems 구성 요소의 제조 방법
US9888324B2 (en) Capacitive micro-electro-mechanical system microphone and method for manufacturing the same
KR101761982B1 (ko) Mems 디바이스
KR100899482B1 (ko) 실리콘 마이크 및 그의 제조 방법
KR102056287B1 (ko) 마이크로폰
US8098870B2 (en) Silicon microphone
US8705777B2 (en) MEMS microphone and method of manufacturing the same
US10433068B2 (en) MEMS acoustic transducer with combfingered electrodes and corresponding manufacturing process
EP2244490A1 (en) Silicon condenser microphone with corrugated backplate and membrane
WO2017122954A1 (ko) 마이크로폰 및 마이크로폰 제조 방법
WO2013168868A1 (ko) 듀얼 백플레이트를 갖는 mems 마이크로폰 및 제조방법
TWI659923B (zh) Mems裝置與製程
KR20190029953A (ko) 마이크로폰 및 이의 제조방법
KR20160127212A (ko) 멤스 마이크로폰 및 그 제조방법
CN111048660B (zh) 压电换能器、制备压电换能器的方法及电子设备
CN216752032U (zh) 一种振膜、微机电结构、麦克风以及终端
US10623852B2 (en) MEMS devices and processes
WO2018199554A1 (ko) 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법
KR102201583B1 (ko) 콘덴서 마이크로폰
WO2018110878A1 (ko) 수평 인장 구조의 마이크로폰 및 그 마이크로폰 제조 방법
JP4944494B2 (ja) 静電容量型センサ
US11780726B2 (en) Dual-diaphragm assembly having center constraint
KR101688954B1 (ko) 멤브레인 지지 구조가 개선된 마이크로폰 및 마이크로폰 제조 방법
CN215935065U (zh) 微机电结构、麦克风和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18791077

Country of ref document: EP

Kind code of ref document: A1