WO2018199253A1 - Data processing device, server, mobile body, data processing method, and program - Google Patents

Data processing device, server, mobile body, data processing method, and program Download PDF

Info

Publication number
WO2018199253A1
WO2018199253A1 PCT/JP2018/017037 JP2018017037W WO2018199253A1 WO 2018199253 A1 WO2018199253 A1 WO 2018199253A1 JP 2018017037 W JP2018017037 W JP 2018017037W WO 2018199253 A1 WO2018199253 A1 WO 2018199253A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data processing
acceleration
server
processing device
Prior art date
Application number
PCT/JP2018/017037
Other languages
French (fr)
Japanese (ja)
Inventor
広毅 元垣内
俊明 鈴木
真一 石津
小山 純
一起 岡田
Original Assignee
株式会社スマートドライブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スマートドライブ filed Critical 株式会社スマートドライブ
Priority to JP2018537690A priority Critical patent/JP6397602B1/en
Publication of WO2018199253A1 publication Critical patent/WO2018199253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a data processing device, a server, a mobile object, a data processing method, and a program.
  • IoT Internet of Things
  • An object of the present invention is to appropriately suppress the volume of transmitted data when collecting data.
  • One embodiment of the present invention provides: In a data processing apparatus for collecting data relating to a moving object, An acceleration sensor for measuring the acceleration of the moving body; Among the measurement values of the acceleration sensor, when an acceleration pattern showing a tendency of a change in a plurality of measurement values satisfies a predetermined condition, a processing unit that compresses each measurement value to an approximate value of a predetermined data format, When the acceleration pattern satisfies the predetermined condition, a communication unit that transmits an approximate value compressed by the processing unit, The communication unit transmits a measurement value of the acceleration sensor when the acceleration pattern does not satisfy the predetermined condition.
  • a data processing device In a data processing apparatus for collecting data relating to a moving object, An acceleration sensor for measuring the acceleration of the moving body; Among the measurement values of the acceleration sensor, when an acceleration pattern showing a tendency of a change in a plurality of measurement values satisfies a predetermined condition, a processing unit that compresses each measurement value to an approximate value of a predetermined data format
  • FIG. 1 is a diagram illustrating a vehicle having a data processing apparatus according to the first embodiment and a collection result of accelerations generated as the vehicle travels.
  • FIG. 1A is a plan view of a vehicle (an example of a “moving body”) having the data processing apparatus according to the first embodiment as viewed from above.
  • symbol of FIG. 1A is as follows.
  • “FR” indicates the front along the traveling direction of the vehicle (FR-RR direction).
  • RR indicates rearward along the traveling direction of the vehicle (FR-RR direction).
  • “LS” indicates the left side with respect to the traveling direction of the vehicle (FR-RR direction).
  • RS indicates the right side with reference to the traveling direction of the vehicle (FR-RR direction).
  • RP is a plane (hereinafter referred to as “reference”) defined by a vehicle traveling direction (FR-RR direction) and a lateral direction (LS-RS direction) orthogonal to the vehicle traveling direction (FR-RR direction). Plane).
  • FIG. 1B shows cumulatively the results of collecting accelerations that occur as the vehicle of FIG. 1A travels.
  • FIG. 1B represents the magnitude of acceleration in the reference plane RP using the distance from the origin.
  • the direction in the reference plane RP is represented using an angle from a predetermined direction (for example, the traveling direction (FR-RR direction)).
  • the number of plots or density in the reference plane RP is expressed using shading.
  • the number of plots or density is more preferably expressed using color instead of shading.
  • the sensing data collected in this manner is subjected to data processing corresponding to a change pattern indicated by vehicle acceleration (hereinafter referred to as an “acceleration pattern”), and then connected to the data processing apparatus.
  • acceleration pattern a change pattern indicated by vehicle acceleration
  • FIG. 2 is an explanatory diagram of communication between the data processing apparatus and the server according to the first embodiment.
  • the data processing device 210 can be inserted into, for example, an automobile socket (for example, a cigar socket, an electricity supply socket, or a connection socket) and fixed in the automobile vehicle.
  • the power supply socket or the connection socket is a socket that supports USB (Universal Serial Bus), for example.
  • the data processing device 210 is connected to the server 230 via the mobile terminal 220.
  • Data processor 210 is configured to collect data relating to the vehicle of FIG.
  • the mobile terminal 220 is configured to control communication between the data processing device 210 and the server 230.
  • the portable terminal 220 is, for example, a smartphone or a tablet.
  • the server 230 is configured to store data collected by the data processing device 210 and to provide a client device (for example, the mobile terminal 220) with a result of data processing based on the stored data.
  • the data processing device 210 includes an acceleration sensor 211, a processing unit 212, and a communication unit 213.
  • the acceleration sensor 211 is configured to measure the acceleration of the vehicle.
  • the processing unit 212 is configured to generate measurement data by performing predetermined data processing on the measurement value of the acceleration sensor 211.
  • the processing unit 212 is a microcomputer, for example.
  • the processing unit 212 realizes the function of the data processing device 210 by executing a predetermined program (for example, a program stored in a memory in the microcomputer).
  • the communication unit 213 is configured to transmit a processing result (for example, measurement data) of the processing unit 212.
  • the communication unit 213 is a communication interface, for example.
  • the server 230 includes a communication unit 231, a storage unit 232, and a processing unit 233.
  • the communication unit 231 is configured to control communication between the server 230 and a device (for example, the portable terminal 220) connected to the server 230.
  • the communication unit 231 is, for example, a communication interface.
  • the storage unit 232 is configured to store data received by the communication unit 231 and a program for realizing a function of the server 230 (for example, a function of executing each process of the server 230 described later).
  • the processing unit 233 is configured to process the data stored in the storage unit 232.
  • the processing unit 233 is, for example, a processor (for example, a CPU (Central Processing Unit).
  • the processing unit 233 realizes the function of the server 230 by executing a program stored in the storage unit 232.
  • FIG. 3 is a flowchart of data processing according to the first embodiment.
  • FIG. 4 is an explanatory diagram of the compression processing of FIG.
  • FIG. 5 is an explanatory diagram of adding the time stamp of FIG.
  • the data processing device 210 performs measurement of the acceleration of the moving body (S100). Specifically, the acceleration sensor 211 fixed to the vehicle measures the acceleration caused by the traveling of the vehicle every predetermined measurement period Tm (for example, 0.1 second). The processing unit 212 performs coordinate conversion on the measurement value of the acceleration sensor 211 to match the axial direction of the acceleration sensor 211 with the axial direction of the vehicle (for example, the traveling direction (FR-RR direction)). The processing unit 212 stores the measured value after the coordinate conversion in a storage device (for example, a memory in the microcomputer or a storage device connected to the microcomputer). Thereby, a plurality of measured values are stored in the storage device.
  • a storage device for example, a memory in the microcomputer or a storage device connected to the microcomputer.
  • the data processing device 210 executes acceleration pattern determination (S101). Specifically, the processing unit 212 determines that the acceleration pattern indicated by the plurality of measurement values stored in the storage device in step S100 is a predetermined condition (for example, the amount of change in acceleration during a predetermined period is less than a predetermined threshold). It is determined whether or not it is satisfied.
  • a predetermined condition for example, the amount of change in acceleration during a predetermined period is less than a predetermined threshold. It is determined whether or not it is satisfied.
  • the data processing device 210 executes the compression process (S103). Specifically, the processing unit 212 assigns each measurement value obtained in step S100 to each division obtained by discretely dividing the reference plane RP as shown in FIG.
  • the magnitude of acceleration is expressed in 8 steps (arbitrary units) from 0 to 7
  • the direction is 32 steps (arbitrary units) from 0 to 31 in the clockwise direction with respect to the traveling direction x of the vehicle. They are divided by polar coordinates representing 360 degrees.
  • the processing unit 212 converts the measurement value into a certain data format by approximating the measurement point located in each section by any vertex of the section. For example, the measurement value v1 in FIG. 4 is converted into the closest vertex (r: 5, d: 29) among the vertices of the section including the measurement point corresponding to the measurement value.
  • a first example of conversion of measured values into a predetermined data format will be described.
  • the processing unit 212 generates 8-bit data “10111101” by combining these bit expressions, where r is an upper bit and d is a lower bit. This 8-bit data in bit representation corresponds to an approximate value in a discrete coordinate format on polar coordinates.
  • the processing unit 212 generates the hex data “BD” by converting the 8-bit data “10111101” generated in the first example into a hex expression.
  • the hex data “BD” corresponds to an approximate value in a discrete coordinate format on polar coordinates.
  • step S103 the data is compressed by converting the measurement point located in each section to any vertex of the section, and the data representation (bit representation or hex representation) of the converted data. Is realized.
  • Step S103 is executed in units of a predetermined collection period Pc (for example, 100 milliseconds).
  • the data processing device 210 adds a time stamp (S104). Specifically, as illustrated in FIG. 5, the processing unit 212 has a plurality of measurement values collected within one collection period Pc (that is, a plurality of measurement values obtained for each measurement period Tm in step S100). And a combination of a plurality of approximate values (that is, a plurality of approximate values obtained in step S103), a unique time stamp is added to each collection period Pc.
  • the time stamp is a code generated based on information indicating each collection period Pc (for example, information indicating the start date and time and end date and time of the collection period Pc in seconds), or information indicating each collection period Pc, for example. is there.
  • the data processing device 210 executes transmission processing (S105). Specifically, the communication unit 213 receives the measurement data generated within the unit time (that is, the data stored in the storage device in step S100) at a predetermined transmission interval (for example, 1.0 second). Send to.
  • a predetermined transmission interval for example, 1.0 second
  • the communication unit 213 transmits the compressed data obtained in step S103 to the server 230 when step S103 is executed (that is, when the acceleration pattern satisfies a predetermined condition).
  • Step S103 when the acceleration pattern satisfies a predetermined condition, the communication unit 213 transmits RAW data, which is the measurement value itself obtained in Step S101, to the server 230.
  • FIG. 6 is a diagram illustrating an example of an interface used for displaying data stored in the server according to the second embodiment.
  • FIG. 7 is a diagram illustrating an analysis example of accumulated data according to the second embodiment.
  • FIG. 8 is an enlarged view of the distribution diagram of FIG.
  • the data processing device 210 transmits to the server 230 data (RAW data and compressed data) to which at least one of an identifier for identifying the user of the data processing device 210 and an identifier of the data processing device 210 and a time stamp are added.
  • RAW data and compressed data data (RAW data and compressed data) to which at least one of an identifier for identifying the user of the data processing device 210 and an identifier of the data processing device 210 and a time stamp are added.
  • the server 230 stores the RAW data and the compressed data transmitted from the data processing device 210 in association with at least one of the user identifier and the data processing device 210 identifier.
  • the server 230 Has a function of extracting data corresponding to the user's designation. This function can be provided externally as an application programming interface (API). 6 correspond to the vertices of the sections shown in FIG. Accordingly, the number of measurement values corresponding to each region can be displayed or visually indicated by adding a color according to the number.
  • API application programming interface
  • the size is 8 steps and the direction is 32 steps.
  • a simplified interface such as the size 5 steps and the direction 12 steps in FIG. It can also be.
  • the distribution of measured values can also be shown using a histogram.
  • the server 230 holds the measurement value as a snapshot every unit time. Therefore, the server 230 can extract data (RAW data or compressed data) at an arbitrary time, and can extract cumulative data over a predetermined period. Accumulation of data per unit time made possible by performing compression to a predetermined data format has various aspects of analysis such as being additive.
  • the display screen 600 of the user terminal that receives the accumulated data or the analysis result thereof from the server 230 shows the travel route of the target vehicle on the map 610.
  • the acceleration caused by traveling in the range is cumulatively shown in the distribution map 620.
  • a score indicating driving safety and a detection result of the dangerous driving event are shown based on the acceleration generated by traveling in the range.
  • the dangerous driving event is an event that represents a dangerous driving behavior or a possibility of dangerous driving.
  • the dangerous driving is, for example, at least one of sudden acceleration, sudden deceleration, and sudden steering.
  • the first region 701 represents a sudden deceleration
  • the second region 702 represents a sudden handle
  • the third region 703 represents a sudden acceleration. It means that there was.
  • the accumulated data has an additive property due to its data format, it can be expressed as a composite distribution as shown in a distribution diagram 700. In addition to the composite distribution, the accumulated data can also be expressed separately for each period corresponding to the first region 701, the second region 702, and the third region 703, for example.
  • the server 230 can detect the dangerous driving event by analyzing the data transmitted from the data processing device 210 in real time.
  • the data processing device 210 holds the RAW data of the measured value for a predetermined period (for example, 3 seconds, 5 seconds, or 10 seconds) and receives an event notification indicating that a dangerous driving event has been detected from the server 230.
  • step S105 is executed in any of the following modes.
  • the past RAW data stored is transmitted to the server 230.
  • the RAW data is transmitted to the server 230 only for a predetermined period before or after the time when the event notification is received.
  • Storing RAW data unconditionally puts pressure on storage capacity and communication capacity.
  • the data processing device 210 transmits RAW data to the server 230 using an instruction or notification dynamically given from the server 230 to the data processing device 210 as a trigger, without reducing storage capacity and communication capacity. Efficient data accumulation is possible.
  • the data processing device 210 or the server 230 transmits an instruction to start moving image shooting of the vehicle traveling state (for example, forward FR) to the camera disposed in the vehicle. May be.
  • the data processing device 210 When receiving the event notification, acquires the moving image data from the camera that continuously shoots the moving image, and transmits the moving image data to the server 230 only for several seconds before and after receiving the event notification. May be.
  • the camera may be arranged in a device (for example, the mobile terminal 220 or the drive recorder) fixed to the vehicle, for example.
  • a device for example, the mobile terminal 220 or the drive recorder
  • the data processing device 210 when receiving the event notification, has a function of capturing a moving image of the traveling state of the vehicle and transmitting the moving image data to the server 230.
  • the data stored in the server 230 can also be used to provide various services to mobile users.
  • the server 230 predicts the appropriate value of the insurance premium of the automobile user's insurance contract based on the frequency and content of the dangerous driving event, and provides the prediction result to at least one of the insurance company and the user. May be.
  • FIG. 1B shows the result of collecting acceleration in the reference plane RP, but orthogonal to both the direction perpendicular to the reference plane RP (that is, both the traveling direction (FR-RR direction) and the lateral direction (LS-RS direction)).
  • the acceleration is measured also in the vertical direction (for example, the vertical direction of the vehicle)
  • the position in the polar coordinate or the spherical coordinate may be plotted using the angle from the vertical direction.
  • the magnitude of acceleration may be calculated in three dimensions including the vertical direction, and the plotting may be performed in a reference plane RP that is a two-dimensional plane.
  • step S103 an example in which the size is 3 bits and the angle is 5 bits has been shown.
  • different bit number distributions may be employed depending on the intended use of the data.
  • r is an upper bit and d is a lower bit to obtain a combined bit
  • a combined bit may be obtained by using d as an upper bit and r as a lower bit.
  • the number of combined bits is not limited to 8 bits. The number of combined bits is preferably determined according to the use of data.
  • the data processing device 210 may communicate with the server 230 for storing data via a network according to the function of the communication unit 213.
  • the data processing device 210 communicates with the mobile terminal 220 (for example, a smartphone or a tablet) using a predetermined communication protocol (for example, BLE or USB), and then the wireless network (for example, 3G, LTE (Long Term Evolution) from the mobile terminal 220. )) May communicate with the server 230.
  • a predetermined communication protocol for example, BLE or USB
  • the wireless network for example, 3G, LTE (Long Term Evolution) from the mobile terminal 220.
  • the present embodiment is not limited to this.
  • the present embodiment is also applicable when the data processing device 210 is connected to a vehicle via a connection terminal other than a cigar socket, or when the data processing device 210 is configured integrally with the vehicle.
  • the data processing device 210 is fixed to the vehicle, the error is suppressed, and the accuracy of the measurement value is increased.
  • the vehicle is exemplified as the moving body, but the present embodiment is not limited to this.
  • the present embodiment can also be applied to the following moving objects. ⁇ Aircraft (for example, airplane or drone) ⁇ Ships
  • the present embodiment is not limited to this.
  • the present embodiment can also be applied to the case where the magnitude and direction of the behavior (for example, the flow direction flow velocity of the fluid around the object) of the object (for example, a floating body on the ocean) is measured in time series.
  • Steps S101 to S104 may be executed by the server 230.
  • the data processing device 210 executes step S105 after step S100.
  • step S105 the data processing device 210 transmits RAW data.
  • the server 230 executes steps S101 to S104 based on the RAW data transmitted in step S105.
  • the first aspect of this embodiment is in a data processing device 210 for collecting data relating to a mobile object (for example, a vehicle),
  • An acceleration sensor 211 for measuring the acceleration of the moving object;
  • the processor 212 includes a processing unit 212 that compresses each measured value to an approximate value in a predetermined data format.
  • the communication apparatus includes a communication unit 213 that transmits an approximate value (for example, compressed data) compressed by the processing unit 212.
  • the communication unit 213 transmits a measurement value (for example, RAW data) of the acceleration sensor 211 when the acceleration pattern does not satisfy the predetermined condition.
  • This is a data processing device 210.
  • data processing for the measurement value of the acceleration sensor 211 is switched according to the acceleration pattern.
  • the volume of transmitted data can be appropriately suppressed.
  • the second aspect of this embodiment is The acceleration sensor 211 acquires a plurality of measurement values for each predetermined measurement period, When the acceleration pattern satisfies a predetermined condition, the processing unit 212 compresses each measurement value to an approximate value, The communication unit 213 transmits a combination of a plurality of approximate values. This is a data processing device 210.
  • the capacity of data to be transmitted can be appropriately suppressed.
  • the third aspect of this embodiment is The processing unit 212 associates a time stamp with a combination of a plurality of approximate values,
  • the communication unit 213 transmits a combination of a plurality of approximate values associated with time stamps.
  • This is a data processing device 210.
  • the transmitted approximate value can be associated with time information of a measurement value corresponding to the approximate value.
  • the fourth aspect of this embodiment is When the amount of change in acceleration is less than a predetermined threshold, the processing unit 212 compresses the measurement value to an approximate value. This is a data processing device 210.
  • the compression process is executed when the amount of change in acceleration falls below a predetermined reference. Therefore, the capacity
  • the fifth aspect of this embodiment is The predetermined data format is discrete coordinates on polar coordinates, This is a data processing device 210.
  • the fifth aspect it is possible to appropriately suppress the capacity of data to be transmitted while maintaining essential information of the measurement value.
  • the sixth aspect of this embodiment is
  • the predetermined data format is a coordinate representation of bit or hex. This is a data processing device 210.
  • the seventh aspect of this embodiment is Polar coordinates are Depending on the distance from the origin on the reference plane RP defined by the traveling direction of the moving body (FR-RR direction) and the lateral direction (LS-RS direction) orthogonal to the traveling direction (FR-RR direction), Represents the size, The direction of acceleration is represented by an angle from a predetermined direction in the reference plane RP.
  • This is a data processing device 210.
  • the seventh aspect it is possible to appropriately suppress the capacity of data to be transmitted while maintaining essential information of the measurement value.
  • the eighth aspect of this embodiment is The polar coordinates represent the direction of acceleration by an angle from a direction orthogonal to the reference plane RP (for example, the vertical direction of the moving body).
  • This is a data processing device 210.
  • the acceleration sensor 211 measures three-dimensional acceleration, the volume of transmitted data can be appropriately suppressed.
  • the ninth aspect of this embodiment is In the server 230 that communicates with the data processing device 210, when a dangerous driving event at a certain time is detected based on the acceleration transmitted to the server 230, a notification that the dangerous driving event has been detected is received from the server 230. With means, The communication unit 213 transmits the measurement value of the acceleration sensor 211 for at least one predetermined period before or after the time. This is a data processing device 210.
  • the compression process when there is a possibility of dangerous driving, the compression process is executed. Thereby, the capacity
  • the tenth aspect of this embodiment is It is a mobile body having a data processing device 210.
  • the eleventh aspect of this embodiment is A server 230 in communication with the data processing device 210; Means for receiving measured values and approximate values from the data processor 210; Means for accumulating acceleration data represented by measured values and approximate values; Server 230.
  • the data processing (compressed or uncompressed) for the measured value is switched according to the acceleration pattern. Therefore, when collecting data, the volume of transmitted data can be appropriately suppressed.
  • the twelfth aspect of this embodiment is A means for extracting data corresponding to the designation from the accumulated data in response to the designation of the target data from the user; Server 230.
  • user-desired data can be provided to the user among data to which data processing (compression or non-compression) according to the acceleration pattern is applied.
  • the thirteenth aspect of this embodiment is Means for associating and storing data, a user identifier, and a time corresponding to the data;
  • the designation includes a user identifier and a time or duration.
  • the data corresponding to the time information desired by the user can be provided to the user among the data to which the data processing (compression or non-compression) according to the acceleration pattern is applied. .
  • the fourteenth aspect of this embodiment is This is a program for causing a computer (for example, a processor) to realize the above means.
  • the fifteenth aspect of this embodiment is In a data processing method for collecting data relating to a moving object using a computer (for example, a data processing device 210), Comprising step S100 of measuring the acceleration of the moving object, Steps S101 to S102 for compressing each measurement value to an approximate value in a predetermined data format when an acceleration pattern indicating a tendency of change in a plurality of measurement values among the measurement values of acceleration includes a predetermined condition are provided, When the acceleration pattern satisfies a predetermined condition, the method includes a step S105 for transmitting the compressed approximate value, When the acceleration pattern does not satisfy the predetermined condition, the measurement pattern is provided with step S105. Data processing method.
  • the sixteenth aspect of this embodiment is in a data processing device 210 that collects data relating to an object
  • a sensor for measuring data about the object Among the measured values of the sensor, when a pattern indicating a tendency of a change in a plurality of measured values satisfies a predetermined condition, the processor 212 includes a processing unit 212 that compresses the measured value into an approximate value of a predetermined data format, When the pattern satisfies a predetermined condition, the communication unit 213 transmits the approximate value compressed by the processing unit 212. When the pattern does not satisfy the predetermined condition, the communication unit 213 transmits the sensor measurement value.
  • This is a data processing device 210.
  • the magnitude and direction of the behavior for example, the flow direction flow velocity of the fluid around the object
  • the object for example, floating body on the ocean

Abstract

The objective of the present invention is to appropriately restrict the volume of data to be transmitted when data collection is being performed. A data processing device for collecting data relating to a mobile body is provided with: an acceleration sensor which measures the acceleration of the mobile body; a processing unit which, if an acceleration pattern indicating a variation trend of a plurality of measured values from among measured values from the acceleration sensor satisfies a prescribed condition, compresses each measured value to an approximate value in a prescribed data format; and a communication unit which, if the acceleration pattern satisfies the prescribed condition, transmits the approximate values compressed by the processing unit. If the acceleration pattern does not satisfy the prescribed condition, the communication unit transmits the measured values from the acceleration sensor.

Description

データ処理装置、サーバ、移動体、データ処理方法、及びプログラムData processing device, server, mobile object, data processing method, and program
 本発明は、データ処理装置、サーバ、移動体、データ処理方法、及びプログラムに関する。 The present invention relates to a data processing device, a server, a mobile object, a data processing method, and a program.
 IoT(Internet of Thing)と呼ばれる、あらゆるモノをネットワークに接続する技術に注目が集まっている。これまで通信機能を持たなかった機器に通信機能を与えることで、まったく新たなデータの収集、解析、及び、活用の可能性が開ける。 Attention is being focused on a technology called IoT (Internet of Things) that connects all things to a network. By giving a communication function to a device that has not had a communication function until now, the possibility of collection, analysis, and utilization of completely new data is opened.
 しかしながら、こうして収集可能となるデータに対する制約として、コストの観点から、エッジデバイスの記憶容量の問題がある。エッジデバイスに大容量のメモリを搭載することは一般には期待できない。仮に、エッジデバイスに大容量のメモリを搭載することができたとしても、エッジデバイスとの間で大容量のデータを送受信することは、通信上の制約(たとえば帯域、及び、サーバへの負荷)を受ける。さまざまな機器のIoT化が可能となり、これまでとは異なる膨大なデータの収集及び蓄積が容易になったと同時に、上述に例示したような制約によって十分に活用し切れていない現実がある。 However, as a restriction on data that can be collected in this way, there is a problem of the storage capacity of the edge device from the viewpoint of cost. It is generally not possible to mount a large capacity memory on an edge device. Even if a large-capacity memory can be installed in the edge device, sending and receiving large-capacity data to and from the edge device is a communication limitation (for example, bandwidth and load on the server). Receive. Various devices can be made IoT, making it easy to collect and store a huge amount of data different from the past, and at the same time, there is a reality that it is not fully utilized due to the constraints exemplified above.
 本発明の目的は、データの収集を行う場合において、送信されるデータの容量を適切に抑制することである。 An object of the present invention is to appropriately suppress the volume of transmitted data when collecting data.
 本発明の一態様は、
 移動体に関するデータの収集を行うためのデータ処理装置において、
 前記移動体の加速度を測定する加速度センサを備え、
 前記加速度センサの測定値のうち、複数の測定値の変化の傾向を示す加速度パターンが所定条件を満たす場合、各測定値を所定のデータ形式の近似値に圧縮する処理部を備え、
 前記加速度パターンが前記所定条件を満たす場合、前記処理部により圧縮された近似値を送信する通信部を備え、
 前記通信部は、前記加速度パターンが前記所定条件を満たさない場合、前記加速度センサの測定値を送信する、
データ処理装置である。
One embodiment of the present invention provides:
In a data processing apparatus for collecting data relating to a moving object,
An acceleration sensor for measuring the acceleration of the moving body;
Among the measurement values of the acceleration sensor, when an acceleration pattern showing a tendency of a change in a plurality of measurement values satisfies a predetermined condition, a processing unit that compresses each measurement value to an approximate value of a predetermined data format,
When the acceleration pattern satisfies the predetermined condition, a communication unit that transmits an approximate value compressed by the processing unit,
The communication unit transmits a measurement value of the acceleration sensor when the acceleration pattern does not satisfy the predetermined condition.
A data processing device.
 本発明の一態様によれば、データの収集を行う場合において、送信されるデータ容量を適切に抑制することができる。 According to one aspect of the present invention, when collecting data, it is possible to appropriately suppress the data capacity to be transmitted.
第1の実施形態にかかるデータ処理装置を有する車両、及び、車両の走行に伴い生じる加速度の収集結果を示す図である。It is a figure which shows the collection result of the vehicle which has the data processor concerning 1st Embodiment, and the acceleration which arises with driving | running | working of a vehicle. 第1の実施形態にかかるデータ処理装置とサーバとの間の通信の説明図である。It is explanatory drawing of the communication between the data processor concerning 1st Embodiment, and a server. 第1の実施形態のデータ処理のフローチャートである。It is a flowchart of the data processing of 1st Embodiment. 図3の圧縮処理の説明図である。It is explanatory drawing of the compression process of FIG. 図3のタイムスタンプの付加の説明図である。It is explanatory drawing of addition of the time stamp of FIG. 第2の実施形態のサーバに蓄積されたデータの表示に用いられるインタフェースの一例を示す図である。It is a figure which shows an example of the interface used for the display of the data accumulate | stored in the server of 2nd Embodiment. 第2の実施形態にかかる蓄積データの分析例を示す図である。It is a figure which shows the example of analysis of the accumulation | storage data concerning 2nd Embodiment. 図7の分布図の拡大図である。It is an enlarged view of the distribution map of FIG.
 以下、図面を参照して本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1)第1の実施形態
 第1の実施形態について説明する。
(1) First Embodiment A first embodiment will be described.
(1-1)第1の実施形態の概要
 第1の実施形態の概要について説明する。図1は、第1の実施形態にかかるデータ処理装置を有する車両、及び、車両の走行に伴い生じる加速度の収集結果を示す図である。
(1-1) Overview of First Embodiment An overview of the first embodiment will be described. FIG. 1 is a diagram illustrating a vehicle having a data processing apparatus according to the first embodiment and a collection result of accelerations generated as the vehicle travels.
 図1Aは、第1の実施形態にかかるデータ処理装置を有する車両(「移動体」の一例)を上方から見たときの平面図を示している。
 図1Aの各符号の定義は、以下のとおりである。
・「FR」は、車両の進行方向(FR-RR方向)に沿って前方を示している。
・「RR」は、車両の進行方向(FR-RR方向)に沿って後方を示している。
・「LS」は、車両の進行方向(FR-RR方向)を基準として左側を示している。
・「RS」は、車両の進行方向(FR-RR方向)を基準として右側を示している。
・「RP」は、車両の進行方向(FR-RR方向)と、車両の進行方向(FR-RR方向)に直交する横方向(LS-RS方向)と、によって規定される平面(以下「基準平面」という)を示している。
FIG. 1A is a plan view of a vehicle (an example of a “moving body”) having the data processing apparatus according to the first embodiment as viewed from above.
The definition of each code | symbol of FIG. 1A is as follows.
“FR” indicates the front along the traveling direction of the vehicle (FR-RR direction).
“RR” indicates rearward along the traveling direction of the vehicle (FR-RR direction).
“LS” indicates the left side with respect to the traveling direction of the vehicle (FR-RR direction).
“RS” indicates the right side with reference to the traveling direction of the vehicle (FR-RR direction).
“RP” is a plane (hereinafter referred to as “reference”) defined by a vehicle traveling direction (FR-RR direction) and a lateral direction (LS-RS direction) orthogonal to the vehicle traveling direction (FR-RR direction). Plane).
 図1Bは、図1Aの車両の走行に伴い生じる加速度の収集結果を累積的に示している。
 図1Bは、基準平面RP内の加速度の大きさを、原点からの距離を用いて表している。
 基準平面RP内の方向を、予め定めた方向(たとえば進行方向(FR-RR方向))からの角度を用いて表している。
 基準平面RP内のプロット数又は密度を、濃淡を用いて表している。プロット数又は密度は、濃淡に代えて、色を用いて表すのがより好ましい。
FIG. 1B shows cumulatively the results of collecting accelerations that occur as the vehicle of FIG. 1A travels.
FIG. 1B represents the magnitude of acceleration in the reference plane RP using the distance from the origin.
The direction in the reference plane RP is represented using an angle from a predetermined direction (for example, the traveling direction (FR-RR direction)).
The number of plots or density in the reference plane RP is expressed using shading. The number of plots or density is more preferably expressed using color instead of shading.
 第1の実施形態では、このように収集されたセンシングデータに対して、車両の加速度が示す変化のパターン(以下「加速度パターン」という)に応じたデータ処理を施してから、データ処理装置と接続されたサーバに送信する。 In the first embodiment, the sensing data collected in this manner is subjected to data processing corresponding to a change pattern indicated by vehicle acceleration (hereinafter referred to as an “acceleration pattern”), and then connected to the data processing apparatus. To the specified server.
(1-2)データ処理装置とサーバとの間の通信
 第1の実施形態のデータ処理装置とサーバとの間の通信について説明する。図2は、第1の実施形態にかかるデータ処理装置とサーバとの間の通信の説明図である。
 データ処理装置210は、たとえば自動車のソケット(一例として、シガーソケット、電気供給用ソケット、又は、接続用ソケット)に挿入して、自動車の車両内に固定することができる。電気供給用ソケット又は接続用ソケットは、たとえばUSB(Universal Serial Bus)をサポートするソケットである。データ処理装置210は、携帯端末220を介して、サーバ230と接続される。
 データ処理装置210は、図1の車両に関するデータを収集するように構成される。
(1-2) Communication between Data Processing Device and Server Communication between the data processing device and the server according to the first embodiment will be described. FIG. 2 is an explanatory diagram of communication between the data processing apparatus and the server according to the first embodiment.
The data processing device 210 can be inserted into, for example, an automobile socket (for example, a cigar socket, an electricity supply socket, or a connection socket) and fixed in the automobile vehicle. The power supply socket or the connection socket is a socket that supports USB (Universal Serial Bus), for example. The data processing device 210 is connected to the server 230 via the mobile terminal 220.
Data processor 210 is configured to collect data relating to the vehicle of FIG.
 携帯端末220は、データ処理装置210とサーバ230との間の通信を制御するように構成される。携帯端末220は、たとえばスマートフォン又はタブレットである。 The mobile terminal 220 is configured to control communication between the data processing device 210 and the server 230. The portable terminal 220 is, for example, a smartphone or a tablet.
 サーバ230は、データ処理装置210によって収集されたデータを蓄積し、且つ、蓄積したデータに基づくデータ処理の結果をクライアント装置(たとえば携帯端末220)に提供するように構成される。 The server 230 is configured to store data collected by the data processing device 210 and to provide a client device (for example, the mobile terminal 220) with a result of data processing based on the stored data.
(1-2-1)データ処理装置の構成
 第1の実施形態のデータ処理装置210の構成を説明する。
(1-2-1) Configuration of Data Processing Device The configuration of the data processing device 210 of the first embodiment will be described.
 図2に示すように、データ処理装置210は、加速度センサ211と、処理部212と、通信部213と、を備える。 As shown in FIG. 2, the data processing device 210 includes an acceleration sensor 211, a processing unit 212, and a communication unit 213.
 加速度センサ211は、車両の加速度を測定するように構成される。 The acceleration sensor 211 is configured to measure the acceleration of the vehicle.
 処理部212は、加速度センサ211の測定値に所定のデータ処理を施すことにより、測定データを生成するように構成される。処理部212は、たとえばマイコンである。
 処理部212は、所定のプログラム(たとえば、マイコン内のメモリに記憶されたプログラム)を実行することによって、データ処理装置210の機能を実現する。
The processing unit 212 is configured to generate measurement data by performing predetermined data processing on the measurement value of the acceleration sensor 211. The processing unit 212 is a microcomputer, for example.
The processing unit 212 realizes the function of the data processing device 210 by executing a predetermined program (for example, a program stored in a memory in the microcomputer).
 通信部213は、処理部212の処理結果(たとえば測定データ)を送信するように構成される。通信部213は、たとえば通信インタフェースである。 The communication unit 213 is configured to transmit a processing result (for example, measurement data) of the processing unit 212. The communication unit 213 is a communication interface, for example.
(1-2-2)サーバの構成
 第1の実施形態のサーバ230の構成を説明する。
(1-2-2) Server Configuration The configuration of the server 230 of the first embodiment will be described.
 図2に示すように、サーバ230は、通信部231と、記憶部232と、処理部233と、を備える。 As shown in FIG. 2, the server 230 includes a communication unit 231, a storage unit 232, and a processing unit 233.
 通信部231は、サーバ230と、サーバ230に接続された装置(たとえば携帯端末220)との間の通信を制御するように構成される。通信部231は、たとえば通信インタフェースである。 The communication unit 231 is configured to control communication between the server 230 and a device (for example, the portable terminal 220) connected to the server 230. The communication unit 231 is, for example, a communication interface.
 記憶部232は、通信部231により受信したデータと、サーバ230の機能(たとえば、後述のサーバ230の各処理を実行する機能)を実現するためのプログラムと、を記憶するように構成される。 The storage unit 232 is configured to store data received by the communication unit 231 and a program for realizing a function of the server 230 (for example, a function of executing each process of the server 230 described later).
 処理部233は、記憶部232に記憶されたデータを処理するように構成される。処理部233は、たとえばプロセッサ(一例として、CPU(Central Processing Unit)である。処理部233は、記憶部232に記憶されたプログラムを実行することによって、サーバ230の機能を実現する。 The processing unit 233 is configured to process the data stored in the storage unit 232. The processing unit 233 is, for example, a processor (for example, a CPU (Central Processing Unit). The processing unit 233 realizes the function of the server 230 by executing a program stored in the storage unit 232.
(1-3)データ処理
 第1の実施形態のデータ処理を説明する。図3は、第1の実施形態のデータ処理のフローチャートである。図4は、図3の圧縮処理の説明図である。図5は、図3のタイムスタンプの付加の説明図である。
(1-3) Data Processing Data processing according to the first embodiment will be described. FIG. 3 is a flowchart of data processing according to the first embodiment. FIG. 4 is an explanatory diagram of the compression processing of FIG. FIG. 5 is an explanatory diagram of adding the time stamp of FIG.
 図3に示すように、データ処理装置210は、移動体の加速度の測定(S100)を実行する。
 具体的には、車両に固定された加速度センサ211が、車両の走行に伴い生じる加速度を所定の測定期間Tm(たとえば0.1秒)毎に測定する。
 処理部212は、加速度センサ211の測定値に対して、加速度センサ211の軸方向と車両の軸方向(例えば、進行方向(FR-RR方向))とを一致させるための座標変換を行う。
 処理部212は、座標変換後の測定値を記憶装置(たとえば、マイコン内のメモリ、又は、マイコンに接続された記憶装置)に記憶する。
 これにより、記憶装置には、複数の測定値が記憶される。
As shown in FIG. 3, the data processing device 210 performs measurement of the acceleration of the moving body (S100).
Specifically, the acceleration sensor 211 fixed to the vehicle measures the acceleration caused by the traveling of the vehicle every predetermined measurement period Tm (for example, 0.1 second).
The processing unit 212 performs coordinate conversion on the measurement value of the acceleration sensor 211 to match the axial direction of the acceleration sensor 211 with the axial direction of the vehicle (for example, the traveling direction (FR-RR direction)).
The processing unit 212 stores the measured value after the coordinate conversion in a storage device (for example, a memory in the microcomputer or a storage device connected to the microcomputer).
Thereby, a plurality of measured values are stored in the storage device.
 ステップS100の後、データ処理装置210は、加速度パターンの判定(S101)を実行する。
 具体的には、処理部212は、ステップS100において記憶装置に記憶された複数の測定値が示す加速度パターンが所定条件(たとえば、所定期間の加速度の変化量が所定の閾値未満であること)を満たすか否かを判定する。
After step S100, the data processing device 210 executes acceleration pattern determination (S101).
Specifically, the processing unit 212 determines that the acceleration pattern indicated by the plurality of measurement values stored in the storage device in step S100 is a predetermined condition (for example, the amount of change in acceleration during a predetermined period is less than a predetermined threshold). It is determined whether or not it is satisfied.
 ステップS101において判定された加速度パターンが所定条件を満たす場合(S102-YES)、データ処理装置210は、圧縮処理(S103)を実行する。
 具体的には、処理部212は、ステップS100で得られた各測定値を、図4に示すように、基準平面RPを離散的に区分した各区分に割り当てる。
 この例では、加速度の大きさについては、0から7の8段階(任意単位)で表し、方向については、車両の進行方向xを基準として時計回りに0から31の32段階(任意単位)で360度を表す極座標により区分している。
 処理部212は、各区分内に位置する測定点を、当該区分のいずれかの頂点によって近似することにより、測定値を一定のデータ形式に変換する。たとえば、図4の測定値v1は、当該測定値に対応する測定点が含まれる区分の頂点のうち最も近接する頂点(r:5,d:29)に変換される。
When the acceleration pattern determined in step S101 satisfies the predetermined condition (S102-YES), the data processing device 210 executes the compression process (S103).
Specifically, the processing unit 212 assigns each measurement value obtained in step S100 to each division obtained by discretely dividing the reference plane RP as shown in FIG.
In this example, the magnitude of acceleration is expressed in 8 steps (arbitrary units) from 0 to 7, and the direction is 32 steps (arbitrary units) from 0 to 31 in the clockwise direction with respect to the traveling direction x of the vehicle. They are divided by polar coordinates representing 360 degrees.
The processing unit 212 converts the measurement value into a certain data format by approximating the measurement point located in each section by any vertex of the section. For example, the measurement value v1 in FIG. 4 is converted into the closest vertex (r: 5, d: 29) among the vertices of the section including the measurement point corresponding to the measurement value.
 測定値の所定のデータ形式への変換の第1例を説明する。
 r=5、d=29をそれぞれbit表現すると、r=101、d=11101となる。処理部212は、rを上位ビットとし、dを下位ビットとして、これらのbit表現を結合することにより、8ビットデータ「10111101」を生成する。
 このbit表現の8ビットデータは、極座標上の離散化された座標形式の近似値に対応する。
A first example of conversion of measured values into a predetermined data format will be described.
When r = 5 and d = 29 are expressed as bits, r = 101 and d = 11101 are obtained. The processing unit 212 generates 8-bit data “10111101” by combining these bit expressions, where r is an upper bit and d is a lower bit.
This 8-bit data in bit representation corresponds to an approximate value in a discrete coordinate format on polar coordinates.
 測定値の所定のデータ形式への変換の第2例を説明する。
 処理部212は、第1例によって生成した8ビットデータ「10111101」をhex表現に変換することにより、hexデータ「BD」を生成する。
 このhexデータ「BD」は、極座標上の離散化された座標形式の近似値に対応する。
A second example of conversion of measured values into a predetermined data format will be described.
The processing unit 212 generates the hex data “BD” by converting the 8-bit data “10111101” generated in the first example into a hex expression.
The hex data “BD” corresponds to an approximate value in a discrete coordinate format on polar coordinates.
 このように、ステップS103では、各区分内に位置する測定点を当該区分のいずれかの頂点に変換すること、及び、変換後のデータのデータ表現(bit表現又はhex表現)によって、データの圧縮が実現されている。 As described above, in step S103, the data is compressed by converting the measurement point located in each section to any vertex of the section, and the data representation (bit representation or hex representation) of the converted data. Is realized.
 ステップS103は、所定の収集期間Pc(たとえば100ミリ秒)単位で実行される。 Step S103 is executed in units of a predetermined collection period Pc (for example, 100 milliseconds).
 ステップS102又はS103の後、データ処理装置210は、タイムスタンプの付加(S104)を実行する。
 具体的には、図5に示すように、処理部212は、1つの収集期間Pc内に収集された複数の測定値(つまり、ステップS100で測定期間Tm毎に得られた複数の測定値)の組合せ、及び、複数の近似値(つまり、ステップS103で得られた複数の近似値)の組合せに対して、各収集期間Pcに固有のタイムスタンプを付加する。
 タイムスタンプは、たとえば、各収集期間Pcを示す情報(たとえば、収集期間Pcの開始日時及び終了日時を秒単位で表す情報)、又は、各収集期間Pcを示す情報に基づいて生成されたコードである。
After step S102 or S103, the data processing device 210 adds a time stamp (S104).
Specifically, as illustrated in FIG. 5, the processing unit 212 has a plurality of measurement values collected within one collection period Pc (that is, a plurality of measurement values obtained for each measurement period Tm in step S100). And a combination of a plurality of approximate values (that is, a plurality of approximate values obtained in step S103), a unique time stamp is added to each collection period Pc.
The time stamp is a code generated based on information indicating each collection period Pc (for example, information indicating the start date and time and end date and time of the collection period Pc in seconds), or information indicating each collection period Pc, for example. is there.
 タイムスタンプは、たとえば4バイトで表すことができる。
 この場合、上記時間間隔を1秒とすると、毎秒14(=4+1×10)バイトのデータがデータ処理装置210から送信される。
 仮に、ステップS101~S103が実行されなかった場合、データ処理装置210は、ステップS100で得られた測定値を逐一送信することになる。この場合、100ミリ秒単位で日時を表すタイムスタンプは、たとえば8バイトで表される。したがって、データ処理装置210が送信するデータの容量は、毎秒90(=(8+1)× 10)バイトとなる。
 したがって、ステップS101~S103が実行されなかった場合と比較すると、本実施形態では、データ処理装置210が送信するデータの容量が約16%に圧縮される。
The time stamp can be represented by 4 bytes, for example.
In this case, assuming that the time interval is 1 second, data of 14 (= 4 + 1 × 10) bytes per second is transmitted from the data processing device 210.
If Steps S101 to S103 are not executed, the data processing device 210 transmits the measurement values obtained in Step S100 one by one. In this case, the time stamp representing the date and time in units of 100 milliseconds is represented by 8 bytes, for example. Therefore, the capacity of data transmitted by the data processing device 210 is 90 (= (8 + 1) × 10) bytes per second.
Therefore, as compared with the case where steps S101 to S103 are not executed, in this embodiment, the volume of data transmitted by the data processing device 210 is compressed to about 16%.
 ステップS104の後、データ処理装置210は、送信処理(S105)を実行する。
 具体的には、通信部213は、所定の送信間隔(たとえば1.0秒)毎に、単位時間内に生成された測定データ(つまり、ステップS100において記憶装置に記憶されたデータ)をサーバ230に送信する。
After step S104, the data processing device 210 executes transmission processing (S105).
Specifically, the communication unit 213 receives the measurement data generated within the unit time (that is, the data stored in the storage device in step S100) at a predetermined transmission interval (for example, 1.0 second). Send to.
 より具体的には、通信部213は、ステップS103が実行された場合(つまり、加速度パターンが所定条件を満たす場合)、ステップS103において得られた圧縮データをサーバ230に送信する。
 一方、通信部213は、ステップS103が実行されなかった場合(つまり、加速度パターンが所定条件を満たさない場合)、ステップS101において得られた測定値自体であるRAWデータをサーバ230に送信する。
More specifically, the communication unit 213 transmits the compressed data obtained in step S103 to the server 230 when step S103 is executed (that is, when the acceleration pattern satisfies a predetermined condition).
On the other hand, when Step S103 is not executed (that is, when the acceleration pattern does not satisfy the predetermined condition), the communication unit 213 transmits RAW data, which is the measurement value itself obtained in Step S101, to the server 230.
(2)第2の実施形態
 第2の実施形態を説明する。図6は、第2の実施形態のサーバに蓄積されたデータの表示に用いられるインタフェースの一例を示す図である。図7は、第2の実施形態にかかる蓄積データの分析例を示す図である。図8は、図7の分布図の拡大図である。
(2) Second Embodiment A second embodiment will be described. FIG. 6 is a diagram illustrating an example of an interface used for displaying data stored in the server according to the second embodiment. FIG. 7 is a diagram illustrating an analysis example of accumulated data according to the second embodiment. FIG. 8 is an enlarged view of the distribution diagram of FIG.
 データ処理装置210は、データ処理装置210の利用者を識別する識別子及びデータ処理装置210の識別子の少なくとも1つと、タイムスタンプが付加されたデータ(RAWデータ及び圧縮データ)をサーバ230に送信する。 The data processing device 210 transmits to the server 230 data (RAW data and compressed data) to which at least one of an identifier for identifying the user of the data processing device 210 and an identifier of the data processing device 210 and a time stamp are added.
 サーバ230は、データ処理装置210から送信されたRAWデータ及び圧縮データを、利用者の識別子及びデータ処理装置210の識別子の少なくとも1つと関連付けて蓄積する。
 ユーザが、たとえば携帯端末220を介して、データ処理装置210の識別子及び利用者の識別子の少なくとも1つと、抽出の対象となるデータの情報(たとえば、時刻又は期間)と、を指定すると、サーバ230は、利用者の指定に対応するデータを抽出する機能を有する。この機能は、アプリケーションプログラミングインターフェース(API)として外部に提供することが可能である。図6における矩形の領域は、図4に示した区分の頂点にそれぞれ対応する。これにより、各領域に該当する測定値の数を表示したり、その数に応じて色を付したりすることによって、視覚的に示すことができる。図4では、大きさ8段階、方向32段階であるが、これに対応する数の領域をインタフェースに設ける場合のほか、図6の大きさ5段階、方向12段階のように、簡略化したインタフェースとすることもできる。また、測定値の分布は、ヒストグラムを用いて示すこともできる。
The server 230 stores the RAW data and the compressed data transmitted from the data processing device 210 in association with at least one of the user identifier and the data processing device 210 identifier.
When the user designates at least one of the identifier of the data processing device 210 and the identifier of the user and the information (for example, time or period) of the data to be extracted through the portable terminal 220, for example, the server 230 Has a function of extracting data corresponding to the user's designation. This function can be provided externally as an application programming interface (API). 6 correspond to the vertices of the sections shown in FIG. Accordingly, the number of measurement values corresponding to each region can be displayed or visually indicated by adding a color according to the number. In FIG. 4, the size is 8 steps and the direction is 32 steps. In addition to providing a corresponding number of areas in the interface, a simplified interface such as the size 5 steps and the direction 12 steps in FIG. It can also be. The distribution of measured values can also be shown using a histogram.
 サーバ230は、単位時間毎にスナップショットで測定値を保持する。したがって、サーバ230は、任意の時間のデータ(RAWデータ又は圧縮データ)を抽出すること、及び、所定の期間にわたる累積的なデータを抽出することができる。所定のデータ形式への圧縮を行うことによって可能となった単位時間毎のデータの蓄積は、加法性を有するなど、多様な分析の切り口を提供する。 The server 230 holds the measurement value as a snapshot every unit time. Therefore, the server 230 can extract data (RAW data or compressed data) at an arbitrary time, and can extract cumulative data over a predetermined period. Accumulation of data per unit time made possible by performing compression to a predetermined data format has various aspects of analysis such as being additive.
 図7に示すように、サーバ230から蓄積データ又はその分析結果を受け取るユーザ端末の表示画面600には、地図610上、対象となる車両の走行ルートが示されている。ユーザが、当該走行ルートから範囲を選択すると、当該範囲の走行に伴い生じた加速度が累積的に分布図620に示される。図7では、分布図620とともに、当該範囲の走行に伴い生じた加速度に基づいて、運転の安全性を示すスコアと、危険運転イベントの検知結果と、が示されている。危険運転イベントは、危険運転挙動、又は、危険運転の可能性を表す事象である。危険運転は、たとえば急加速、急減速、及び、急ハンドルの少なくとも1つである。 As shown in FIG. 7, the display screen 600 of the user terminal that receives the accumulated data or the analysis result thereof from the server 230 shows the travel route of the target vehicle on the map 610. When the user selects a range from the travel route, the acceleration caused by traveling in the range is cumulatively shown in the distribution map 620. In FIG. 7, together with the distribution diagram 620, a score indicating driving safety and a detection result of the dangerous driving event are shown based on the acceleration generated by traveling in the range. The dangerous driving event is an event that represents a dangerous driving behavior or a possibility of dangerous driving. The dangerous driving is, for example, at least one of sudden acceleration, sudden deceleration, and sudden steering.
 図8に示すように、分布図700において、第1の領域701は急減速があったことを表し、第2の領域702は急ハンドルがあったことを表し、第3の領域703は急加速があったことを表している。蓄積データは、そのデータ形式のために加法性を有することから、分布図700のように合成分布として表すことができる。
 なお、蓄積データは、合成分布のほかに、一例として、第1の領域701、第2の領域702、及び第3の領域703にそれぞれ対応する期間毎に分けて表すこともできる。
As shown in FIG. 8, in the distribution diagram 700, the first region 701 represents a sudden deceleration, the second region 702 represents a sudden handle, and the third region 703 represents a sudden acceleration. It means that there was. Since the accumulated data has an additive property due to its data format, it can be expressed as a composite distribution as shown in a distribution diagram 700.
In addition to the composite distribution, the accumulated data can also be expressed separately for each period corresponding to the first region 701, the second region 702, and the third region 703, for example.
(3)第3の実施形態
 第3の実施形態を説明する。
(3) Third Embodiment A third embodiment will be described.
 第3の実施形態にかかるサーバ230は、データ処理装置210から送信されてくるデータをリアルタイムに分析して、危険運転イベントを検知することができる。たとえば、データ処理装置210は、測定値のRAWデータを所定期間(たとえば3秒、5秒、又は、10秒)だけ保持しておき、サーバ230から危険運転イベントを検知した旨のイベント通知を受信した場合には、以下の何れかの態様でステップS105を実行する。
・保持しておいた過去のRAWデータをサーバ230に送信する。
・イベント通知を受信した時刻の前又は後の少なくとも一方の所定の期間だけRAWデータをサーバ230に送信する。
The server 230 according to the third embodiment can detect the dangerous driving event by analyzing the data transmitted from the data processing device 210 in real time. For example, the data processing device 210 holds the RAW data of the measured value for a predetermined period (for example, 3 seconds, 5 seconds, or 10 seconds) and receives an event notification indicating that a dangerous driving event has been detected from the server 230. In such a case, step S105 is executed in any of the following modes.
The past RAW data stored is transmitted to the server 230.
The RAW data is transmitted to the server 230 only for a predetermined period before or after the time when the event notification is received.
 RAWデータを無条件に蓄積することはストレージの容量及び通信容量を圧迫する。しかし、サーバ230からデータ処理装置210に対して動的に与えられる指示又は通知をトリガとしてデータ処理装置210がRAWデータをサーバ230に送信することによって、ストレージの容量及び通信容量を圧迫することなく、効率的なデータ蓄積が可能となる。 Storing RAW data unconditionally puts pressure on storage capacity and communication capacity. However, the data processing device 210 transmits RAW data to the server 230 using an instruction or notification dynamically given from the server 230 to the data processing device 210 as a trigger, without reducing storage capacity and communication capacity. Efficient data accumulation is possible.
 データ処理装置210又はサーバ230は、危険運転イベントが検知されたときに、車両に配置されたカメラに対して、車両の走行状況(たとえば前方FR)の動画撮影を開始するための指示を送信してもよい。 When a dangerous driving event is detected, the data processing device 210 or the server 230 transmits an instruction to start moving image shooting of the vehicle traveling state (for example, forward FR) to the camera disposed in the vehicle. May be.
 データ処理装置210は、イベント通知を受信したときに、動画撮影を継続的に行うカメラから動画データを取得し、且つ、イベント通知を受信する前後数秒間だけ、サーバ230に当該動画データを送信してもよい。 When receiving the event notification, the data processing device 210 acquires the moving image data from the camera that continuously shoots the moving image, and transmits the moving image data to the server 230 only for several seconds before and after receiving the event notification. May be.
 カメラは、たとえば、車両に固定されたデバイス(たとえば、携帯端末220又はドライブレコーダ)に配置されてもよい。特に、携帯端末220に配置されたカメラを用いる場合、携帯端末220に所要のアプリケーションをインストールすることにより、携帯端末220をデータ処理装置210として機能させることも可能である。
 この場合、データ処理装置210は、イベント通知を受信したときに、車両の走行状況の動画撮影を行い、且つ、当該動画データをサーバ230に送信する機能を有する。
The camera may be arranged in a device (for example, the mobile terminal 220 or the drive recorder) fixed to the vehicle, for example. In particular, when a camera arranged in the mobile terminal 220 is used, it is possible to cause the mobile terminal 220 to function as the data processing device 210 by installing a required application in the mobile terminal 220.
In this case, when receiving the event notification, the data processing device 210 has a function of capturing a moving image of the traveling state of the vehicle and transmitting the moving image data to the server 230.
 サーバ230に蓄積されたデータは、移動体の利用者に対する様々なサービスの提供にも活用することができる。
 たとえば、サーバ230は、危険運転イベントの頻度及び内容に基づいて、自動車の利用者の保険契約の保険料の適正値を予測し、且つ、予測結果を保険会社及び利用者の少なくとも一方に提供してもよい。
The data stored in the server 230 can also be used to provide various services to mobile users.
For example, the server 230 predicts the appropriate value of the insurance premium of the automobile user's insurance contract based on the frequency and content of the dangerous driving event, and provides the prediction result to at least one of the insurance company and the user. May be.
(4)変形例
 上述の実施形態の変形例について説明する。
(4) Modification A modification of the above-described embodiment will be described.
 図1Bでは、基準平面RP内の加速度の収集結果を示しているが、基準平面RPに垂直な方向(つまり、進行方向(FR-RR方向)及び横方向(LS-RS方向)の両方に直交する垂直方向(たとえば車両の上下方向))についても加速度を測定した場合、この垂直方向からの角度も用いて、極座標又は球座標における位置をプロットしてもよい。
 加速度の大きさは垂直方向も含めて三次元で算出し、且つ、プロットは二次元平面である基準平面RP内で行ってもよい。
FIG. 1B shows the result of collecting acceleration in the reference plane RP, but orthogonal to both the direction perpendicular to the reference plane RP (that is, both the traveling direction (FR-RR direction) and the lateral direction (LS-RS direction)). When the acceleration is measured also in the vertical direction (for example, the vertical direction of the vehicle), the position in the polar coordinate or the spherical coordinate may be plotted using the angle from the vertical direction.
The magnitude of acceleration may be calculated in three dimensions including the vertical direction, and the plotting may be performed in a reference plane RP that is a two-dimensional plane.
 ステップS103では、大きさを3ビット、角度を5ビットとする例を示したが、対象となるデータの用途に応じて、異なるビット数の配分を採用してもよい。
 rを上位ビット、dを下位ビットとして結合ビットを得る例を示したが、dを上位ビット、rを下位ビットとして結合ビットを得てもよい。
 結合ビットのビット数は8ビットに限られるものではない。結合ビットのビット数は、データの用途に応じて決定することが好ましい。
In step S103, an example in which the size is 3 bits and the angle is 5 bits has been shown. However, different bit number distributions may be employed depending on the intended use of the data.
Although an example is shown in which r is an upper bit and d is a lower bit to obtain a combined bit, a combined bit may be obtained by using d as an upper bit and r as a lower bit.
The number of combined bits is not limited to 8 bits. The number of combined bits is preferably determined according to the use of data.
 データ処理装置210は、通信部213の機能に応じて、データの蓄積を行うためのサーバ230とネットワークを介して通信してもよい。
 データ処理装置210は、所定の通信プロトコル(たとえばBLE、又は、USB)により携帯端末220(たとえばスマートフォン、又は、タブレット)と通信した後、携帯端末220から無線ネットワーク(たとえば3G、LTE(Long Term Evolution))を介して、サーバ230と通信してもよい。
The data processing device 210 may communicate with the server 230 for storing data via a network according to the function of the communication unit 213.
The data processing device 210 communicates with the mobile terminal 220 (for example, a smartphone or a tablet) using a predetermined communication protocol (for example, BLE or USB), and then the wireless network (for example, 3G, LTE (Long Term Evolution) from the mobile terminal 220. )) May communicate with the server 230.
 上述の説明では、データ処理装置210を自動車のソケットに挿入する例を説明したが、本実施形態はこれに限られるものではない。本実施形態は、データ処理装置210を、シガーソケット以外の接続端子を介して車両と接続する場合、又は、車両と一体に構成する場合にも、適用可能である。
 データ処理装置210を車両に固定する場合には、誤差が抑制されるので、測定値の精度が高まる。
In the above description, the example in which the data processing device 210 is inserted into the socket of the automobile has been described. However, the present embodiment is not limited to this. The present embodiment is also applicable when the data processing device 210 is connected to a vehicle via a connection terminal other than a cigar socket, or when the data processing device 210 is configured integrally with the vehicle.
When the data processing device 210 is fixed to the vehicle, the error is suppressed, and the accuracy of the measurement value is increased.
 上述の説明では、移動体として車両を例示したが、本実施形態は、これに限られない。本実施形態は、以下の移動体にも適用可能である。
・飛行体(たとえば飛行機、又は、ドローン)
・船舶
In the above description, the vehicle is exemplified as the moving body, but the present embodiment is not limited to this. The present embodiment can also be applied to the following moving objects.
・ Aircraft (for example, airplane or drone)
・ Ships
 上述の説明では、移動体の加速度を測定する例を示したが、本実施形態はこれに限られない。本実施形態は、物体(たとえば洋上浮体)の振る舞い(たとえば、当該物体の周囲の流体の流向流速)の大きさ及び方向を時系列に沿って測定する場合にも適用可能である。 In the above description, the example in which the acceleration of the moving body is measured has been shown, but the present embodiment is not limited to this. The present embodiment can also be applied to the case where the magnitude and direction of the behavior (for example, the flow direction flow velocity of the fluid around the object) of the object (for example, a floating body on the ocean) is measured in time series.
 ステップS101~S104はサーバ230が実行しても良い。
 この場合、データ処理装置210は、ステップS100の後、ステップS105を実行する。このステップS105では、データ処理装置210は、RAWデータを送信する。
 サーバ230は、ステップS105において送信されたRAWデータに基づいて、ステップS101~S104を実行する。
Steps S101 to S104 may be executed by the server 230.
In this case, the data processing device 210 executes step S105 after step S100. In step S105, the data processing device 210 transmits RAW data.
The server 230 executes steps S101 to S104 based on the RAW data transmitted in step S105.
 以上、本発明の実施形態について詳細に説明したが、本発明の範囲は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良及び変更が可能である。また、上記の実施形態及び変形例は、組合せ可能である。 As mentioned above, although embodiment of this invention was described in detail, the scope of the present invention is not limited to said embodiment. The above-described embodiment can be variously improved and changed without departing from the gist of the present invention. Moreover, said embodiment and modification can be combined.
(5)小括
 本実施形態について小括する。
(5) Summary This embodiment is summarized.
 本実施形態の第1態様は、
 移動体(たとえば、車両)に関するデータの収集を行うためのデータ処理装置210において、
 移動体の加速度を測定する加速度センサ211を備え、
 加速度センサ211の測定値のうち、複数の測定値の変化の傾向を示す加速度パターンが所定条件を満たす場合、各測定値を所定のデータ形式の近似値に圧縮する処理部212を備え、
 加速度パターンが所定条件を満たす場合、処理部212により圧縮された近似値(たとえば圧縮データ)を送信する通信部213を備え、
  通信部213は、加速度パターンが所定条件を満たさない場合、加速度センサ211の測定値(たとえばRAWデータ)を送信する、
データ処理装置210である。
The first aspect of this embodiment is
In a data processing device 210 for collecting data relating to a mobile object (for example, a vehicle),
An acceleration sensor 211 for measuring the acceleration of the moving object;
Among the measured values of the acceleration sensor 211, when an acceleration pattern indicating a change tendency of a plurality of measured values satisfies a predetermined condition, the processor 212 includes a processing unit 212 that compresses each measured value to an approximate value in a predetermined data format.
When the acceleration pattern satisfies a predetermined condition, the communication apparatus includes a communication unit 213 that transmits an approximate value (for example, compressed data) compressed by the processing unit 212.
The communication unit 213 transmits a measurement value (for example, RAW data) of the acceleration sensor 211 when the acceleration pattern does not satisfy the predetermined condition.
This is a data processing device 210.
 第1態様によれば、加速度パターンに応じて、加速度センサ211の測定値に対するデータ処理(圧縮、又は、非圧縮)が切り替わる。これにより、データの収集を行う場合において、送信されるデータの容量を適切に抑制することができる。 According to the first aspect, data processing (compression or non-compression) for the measurement value of the acceleration sensor 211 is switched according to the acceleration pattern. Thereby, when collecting data, the volume of transmitted data can be appropriately suppressed.
 本実施形態の第2態様は、
 加速度センサ211は、所定の測定期間毎に複数の測定値を取得し、
 処理部212は、加速度パターンが所定条件を満たす場合、各測定値を近似値に圧縮し、
 通信部213は、複数の近似値の組合せを送信する、
データ処理装置210である。
The second aspect of this embodiment is
The acceleration sensor 211 acquires a plurality of measurement values for each predetermined measurement period,
When the acceleration pattern satisfies a predetermined condition, the processing unit 212 compresses each measurement value to an approximate value,
The communication unit 213 transmits a combination of a plurality of approximate values.
This is a data processing device 210.
 第2態様によれば、複数の近似値を1回の通信で送信する場合にも、送信されるデータの容量を適切に抑制することができる。 According to the second aspect, even when a plurality of approximate values are transmitted by one communication, the capacity of data to be transmitted can be appropriately suppressed.
 本実施形態の第3態様は、
 処理部212は、複数の近似値の組合せにタイムスタンプを関連付け、
 通信部213は、タイムスタンプが関連付けられた複数の近似値の組合せを送信する、
データ処理装置210である。
The third aspect of this embodiment is
The processing unit 212 associates a time stamp with a combination of a plurality of approximate values,
The communication unit 213 transmits a combination of a plurality of approximate values associated with time stamps.
This is a data processing device 210.
 第3態様によれば、複数の近似値を1回の通信で送信する場合、送信された近似値を、当該近似値に対応する測定値の時間情報に関連付けることができる。 According to the third aspect, when a plurality of approximate values are transmitted by one communication, the transmitted approximate value can be associated with time information of a measurement value corresponding to the approximate value.
 本実施形態の第4態様は、
 処理部212は、加速度の変化量が所定の閾値未満である場合、測定値を近似値に圧縮する、
データ処理装置210である。
The fourth aspect of this embodiment is
When the amount of change in acceleration is less than a predetermined threshold, the processing unit 212 compresses the measurement value to an approximate value.
This is a data processing device 210.
 第4態様によれば、加速度の変化量が所定の基準を下回る場合に圧縮処理を実行する。これにより、送信されるデータの容量をより適切に抑制することができる。 According to the fourth aspect, the compression process is executed when the amount of change in acceleration falls below a predetermined reference. Thereby, the capacity | capacitance of the data transmitted can be suppressed more appropriately.
 本実施形態の第5態様は、
 所定のデータ形式は、極座標上の離散化された座標である、
データ処理装置210である。
The fifth aspect of this embodiment is
The predetermined data format is discrete coordinates on polar coordinates,
This is a data processing device 210.
 第5態様によれば、測定値の本質的な情報を維持したまま、送信されるデータの容量を適切に抑制することができる。 According to the fifth aspect, it is possible to appropriately suppress the capacity of data to be transmitted while maintaining essential information of the measurement value.
 本実施形態の第6態様は、
 所定のデータ形式は、座標をbit表現又はhex表現したものである、
データ処理装置210である。
The sixth aspect of this embodiment is
The predetermined data format is a coordinate representation of bit or hex.
This is a data processing device 210.
 第6態様によれば、測定値の本質的な情報を維持したまま、送信されるデータの容量を適切に抑制することができる。 According to the sixth aspect, it is possible to appropriately suppress the capacity of data to be transmitted while maintaining essential information of the measurement value.
 本実施形態の第7態様は、
 極座標は、
  移動体の進行方向(FR-RR方向)、及び、進行方向(FR-RR方向)に直交する横方向(LS-RS方向)により規定される基準平面RP上の原点からの距離により、加速度の大きさを表し、
  基準平面RP内の所定の方向からの角度により、加速度の方向を表す、
データ処理装置210である。
The seventh aspect of this embodiment is
Polar coordinates are
Depending on the distance from the origin on the reference plane RP defined by the traveling direction of the moving body (FR-RR direction) and the lateral direction (LS-RS direction) orthogonal to the traveling direction (FR-RR direction), Represents the size,
The direction of acceleration is represented by an angle from a predetermined direction in the reference plane RP.
This is a data processing device 210.
 第7態様によれば、測定値の本質的な情報を維持したまま、送信されるデータの容量を適切に抑制することができる。 According to the seventh aspect, it is possible to appropriately suppress the capacity of data to be transmitted while maintaining essential information of the measurement value.
 本実施形態の第8態様は、
 極座標は、基準平面RPに直交する方向(たとえば移動体の上下方向)からの角度により、加速度の方向を表す、
データ処理装置210である。
The eighth aspect of this embodiment is
The polar coordinates represent the direction of acceleration by an angle from a direction orthogonal to the reference plane RP (for example, the vertical direction of the moving body).
This is a data processing device 210.
 第8態様によれば、加速度センサ211が三次元の加速度を測定する場合にも、送信されるデータの容量を適切に抑制することができる。 According to the eighth aspect, even when the acceleration sensor 211 measures three-dimensional acceleration, the volume of transmitted data can be appropriately suppressed.
 本実施形態の第9態様は、
 データ処理装置210と通信するサーバ230において、サーバ230に送信された加速度に基づいて、ある時刻における危険運転イベントが検知された場合に、危険運転イベントを検知した旨の通知をサーバ230から受信する手段を備え、
 通信部213は、時刻の前又は後の少なくとも一方の所定期間だけ、加速度センサ211の測定値を送信する、
データ処理装置210である。
The ninth aspect of this embodiment is
In the server 230 that communicates with the data processing device 210, when a dangerous driving event at a certain time is detected based on the acceleration transmitted to the server 230, a notification that the dangerous driving event has been detected is received from the server 230. With means,
The communication unit 213 transmits the measurement value of the acceleration sensor 211 for at least one predetermined period before or after the time.
This is a data processing device 210.
 第9態様によれば、危険運転の可能性がある場合、圧縮処理を実行する。これにより、送信されるデータの容量をより適切に抑制することができる。 According to the ninth aspect, when there is a possibility of dangerous driving, the compression process is executed. Thereby, the capacity | capacitance of the data transmitted can be suppressed more appropriately.
 本実施形態の第10態様は、
 データ処理装置210を有する移動体である。
The tenth aspect of this embodiment is
It is a mobile body having a data processing device 210.
 本実施形態の第11態様は、
 データ処理装置210と通信するサーバ230であって、
 データ処理装置210から測定値及び近似値を受信する手段を備え、
 測定値及び近似値により表される加速度のデータを蓄積する手段を備える、
サーバ230である。
The eleventh aspect of this embodiment is
A server 230 in communication with the data processing device 210;
Means for receiving measured values and approximate values from the data processor 210;
Means for accumulating acceleration data represented by measured values and approximate values;
Server 230.
 第11態様によれば、加速度パターンに応じて、測定値に対するデータ処理(圧縮、又は、非圧縮)が切り替わる。これにより、データの収集を行う場合において、送信されるデータの容量を適切に抑制することができる。 According to the eleventh aspect, the data processing (compressed or uncompressed) for the measured value is switched according to the acceleration pattern. Thereby, when collecting data, the volume of transmitted data can be appropriately suppressed.
 本実施形態の第12態様は、
 利用者から対象となるデータの指定がなされたことに応じて、蓄積されたデータから指定に対応するデータを抽出する手段を備える、
サーバ230である。
The twelfth aspect of this embodiment is
A means for extracting data corresponding to the designation from the accumulated data in response to the designation of the target data from the user;
Server 230.
 第12態様によれば、加速度パターンに応じたデータ処理(圧縮、又は、非圧縮)が適用されたデータのうち、利用者の所望のデータを利用者に提供することができる。 According to the twelfth aspect, user-desired data can be provided to the user among data to which data processing (compression or non-compression) according to the acceleration pattern is applied.
 本実施形態の第13態様は、
 データと、利用者の識別子と、データに対応する時刻と、を関連付けて記憶する手段を備え、
 指定は、利用者の識別子と、時刻又は期間と、を含む、
サーバ230である。
The thirteenth aspect of this embodiment is
Means for associating and storing data, a user identifier, and a time corresponding to the data;
The designation includes a user identifier and a time or duration.
Server 230.
 第13態様によれば、加速度パターンに応じたデータ処理(圧縮、又は、非圧縮)が適用されたデータのうち、利用者の所望の時間情報に対応するデータを利用者に提供することができる。 According to the thirteenth aspect, the data corresponding to the time information desired by the user can be provided to the user among the data to which the data processing (compression or non-compression) according to the acceleration pattern is applied. .
 本実施形態の第14態様は、
 コンピュータ(たとえば、プロセッサ)に、上記各手段を実現させるためのプログラムである。
The fourteenth aspect of this embodiment is
This is a program for causing a computer (for example, a processor) to realize the above means.
 本実施形態の第15態様は、
 コンピュータ(たとえば、データ処理装置210)を用いて、移動体に関するデータの収集を行うためのデータ処理方法において、
 移動体の加速度を測定するステップS100を備え、
 加速度の測定値のうち、複数の測定値の変化の傾向を示す加速度パターンが所定条件を満たす場合、各測定値を所定のデータ形式の近似値に圧縮するステップS101~S102を備え、
 加速度パターンが所定条件を満たす場合、圧縮された近似値を送信するステップS105を備え、
 加速度パターンが所定条件を満たさない場合、測定値を送信するステップS105を備える、
データ処理方法である。
The fifteenth aspect of this embodiment is
In a data processing method for collecting data relating to a moving object using a computer (for example, a data processing device 210),
Comprising step S100 of measuring the acceleration of the moving object,
Steps S101 to S102 for compressing each measurement value to an approximate value in a predetermined data format when an acceleration pattern indicating a tendency of change in a plurality of measurement values among the measurement values of acceleration includes a predetermined condition are provided,
When the acceleration pattern satisfies a predetermined condition, the method includes a step S105 for transmitting the compressed approximate value,
When the acceleration pattern does not satisfy the predetermined condition, the measurement pattern is provided with step S105.
Data processing method.
 本実施形態の第16態様は、
 物体に関するデータを収集するデータ処理装置210において、
 物体に関するデータを測定するためのセンサを備え、
 センサの測定値のうち、複数の測定値の変化の傾向を示すパターンが所定条件を満たす場合、測定値を所定のデータ形式の近似値に圧縮する処理部212を備え、
 パターンが所定条件を満たす場合、処理部212により圧縮された近似値を送信する通信部213を備え、
  通信部213は、パターンが所定条件を満たさない場合、センサの測定値を送信する、
データ処理装置210である。
The sixteenth aspect of this embodiment is
In a data processing device 210 that collects data relating to an object,
A sensor for measuring data about the object,
Among the measured values of the sensor, when a pattern indicating a tendency of a change in a plurality of measured values satisfies a predetermined condition, the processor 212 includes a processing unit 212 that compresses the measured value into an approximate value of a predetermined data format,
When the pattern satisfies a predetermined condition, the communication unit 213 transmits the approximate value compressed by the processing unit 212.
When the pattern does not satisfy the predetermined condition, the communication unit 213 transmits the sensor measurement value.
This is a data processing device 210.
 第16態様によれば、物体(たとえば洋上浮体)の振る舞い(たとえば、当該物体の周囲の流体の流向流速)の大きさ及び方向を時系列に沿って測定する場合にも、送信されるデータの容量を適切に抑制することができる。 According to the sixteenth aspect, even when measuring the magnitude and direction of the behavior (for example, the flow direction flow velocity of the fluid around the object) of the object (for example, floating body on the ocean) along the time series, The capacity can be appropriately suppressed.
210 データ処理装置
211 加速度センサ
212 処理部
213 通信部
220 携帯端末
230 サーバ
231 通信部
232 記憶部
233 処理部
600 表示画面
610 地図
620 分布図
700 分布図
701 第1の領域
702 第2の領域
703 第3の領域

 
210 data processing device 211 acceleration sensor 212 processing unit 213 communication unit 220 portable terminal 230 server 231 communication unit 232 storage unit 233 processing unit 600 display screen 610 map 620 distribution map 700 distribution map 701 first area 702 second area 703 second 3 areas

Claims (16)

  1.  移動体に関するデータの収集を行うためのデータ処理装置において、
     前記移動体の加速度を測定する加速度センサを備え、
     前記加速度センサの測定値のうち、複数の測定値の変化の傾向を示す加速度パターンが所定条件を満たす場合、各測定値を所定のデータ形式の近似値に圧縮する処理部を備え、
     前記加速度パターンが前記所定条件を満たす場合、前記処理部により圧縮された近似値を送信する通信部を備え、
      前記通信部は、前記加速度パターンが前記所定条件を満たさない場合、前記加速度センサの測定値を送信する、
    データ処理装置。
    In a data processing apparatus for collecting data relating to a moving object,
    An acceleration sensor for measuring the acceleration of the moving body;
    Among the measurement values of the acceleration sensor, when an acceleration pattern showing a tendency of a change in a plurality of measurement values satisfies a predetermined condition, a processing unit that compresses each measurement value to an approximate value of a predetermined data format,
    When the acceleration pattern satisfies the predetermined condition, a communication unit that transmits an approximate value compressed by the processing unit,
    The communication unit transmits a measurement value of the acceleration sensor when the acceleration pattern does not satisfy the predetermined condition.
    Data processing device.
  2.  前記加速度センサは、所定の測定期間毎に複数の測定値を取得し、
     前記処理部は、前記加速度パターンが前記所定条件を満たす場合、各測定値を前記近似値に圧縮し、
     前記通信部は、前記複数の近似値の組合せを送信する、請求項1に記載のデータ処理装置。
    The acceleration sensor acquires a plurality of measurement values for each predetermined measurement period,
    When the acceleration pattern satisfies the predetermined condition, the processing unit compresses each measurement value to the approximate value,
    The data processing apparatus according to claim 1, wherein the communication unit transmits a combination of the plurality of approximate values.
  3.  前記処理部は、前記複数の近似値の組合せにタイムスタンプを関連付け、
     前記通信部は、前記タイムスタンプが関連付けられた複数の近似値の組合せを送信する、
    請求項2に記載のデータ処理装置。
    The processing unit associates a time stamp with the combination of the plurality of approximate values,
    The communication unit transmits a combination of a plurality of approximate values associated with the time stamp;
    The data processing apparatus according to claim 2.
  4.  前記処理部は、前記加速度の変化量が所定の閾値未満である場合、前記測定値を前記近似値に圧縮する、
    請求項1から3のいずれかに記載のデータ処理装置。
    The processing unit compresses the measured value to the approximate value when the change amount of the acceleration is less than a predetermined threshold value.
    The data processing apparatus according to any one of claims 1 to 3.
  5.  前記所定のデータ形式は、極座標上の離散化された座標である、
    請求項1から4のいずれかに記載のデータ処理装置。
    The predetermined data format is discrete coordinates on polar coordinates,
    The data processing device according to claim 1.
  6.  前記所定のデータ形式は、前記座標をbit表現又はhex表現したものである、
    請求項5に記載のデータ処理装置。
    The predetermined data format is a representation of the coordinates in bit or hex.
    The data processing apparatus according to claim 5.
  7.  前記極座標は、
      前記移動体の進行方向、及び、前記進行方向に直交する横方向により規定される基準平面上の原点からの距離により、前記加速度の大きさを表し、
      前記基準平面内の所定の方向からの角度により、前記加速度の方向を表す、
    請求項5又は6に記載のデータ処理装置。
    The polar coordinates are
    Representing the magnitude of the acceleration by the distance from the origin on the reference plane defined by the traveling direction of the moving body and the lateral direction orthogonal to the traveling direction,
    The direction of the acceleration is represented by an angle from a predetermined direction in the reference plane.
    The data processing apparatus according to claim 5 or 6.
  8.  前記極座標は、前記基準平面に直交する方向からの角度により、前記加速度の方向を表す、
    請求項7に記載のデータ処理装置。
    The polar coordinates represent the direction of acceleration by an angle from a direction orthogonal to the reference plane.
    The data processing apparatus according to claim 7.
  9.  前記データ処理装置と通信するサーバにおいて、前記サーバに送信された加速度に基づいて、ある時刻における危険運転イベントが検知された場合に、前記危険運転イベントを検知した旨の通知を前記サーバから受信する手段を備え、
     前記通信部は、前記時刻の前又は後の少なくとも一方の所定期間だけ、前記加速度センサの測定値を送信する、
    請求項1から8のいずれかに記載のデータ処理装置。
    In a server communicating with the data processing device, when a dangerous driving event at a certain time is detected based on the acceleration transmitted to the server, the server receives a notification that the dangerous driving event has been detected from the server. With means,
    The communication unit transmits the measurement value of the acceleration sensor only for a predetermined period before or after the time.
    The data processing apparatus according to claim 1.
  10.  請求項1から9のいずれかに記載のデータ処理装置を有する移動体。 A moving body comprising the data processing device according to any one of claims 1 to 9.
  11.  請求項1から9のいずれかに記載のデータ処理装置と通信するサーバであって、
     前記データ処理装置から前記測定値及び前記近似値を受信する手段を備え、
     前記測定値及び前記近似値により表される加速度のデータを蓄積する手段を備える、
    サーバ。
    A server that communicates with the data processing device according to claim 1,
    Means for receiving the measured value and the approximate value from the data processing device;
    Means for accumulating acceleration data represented by the measured value and the approximate value;
    server.
  12.  利用者から対象となるデータの指定がなされたことに応じて、蓄積されたデータから前記指定に対応するデータを抽出する手段を備える、
    請求項11に記載のサーバ。
    Means for extracting data corresponding to the designation from the accumulated data in response to the designation of the target data from the user;
    The server according to claim 11.
  13.  前記データと、前記利用者の識別子と、前記データに対応する時刻と、を関連付けて記憶する手段を備え、
     前記指定は、前記利用者の識別子と、時刻又は期間と、を含む、
    請求項12に記載のサーバ。
    Means for associating and storing the data, the user identifier, and a time corresponding to the data;
    The designation includes an identifier of the user and a time or period.
    The server according to claim 12.
  14.  コンピュータに、請求項1から9のいずれかに記載の手段を実現させるためのプログラム。 A program for causing a computer to realize the means according to any one of claims 1 to 9.
  15.  コンピュータを用いて、移動体に関するデータの収集を行うためのデータ処理方法において、
     前記移動体の加速度を測定するステップを備え、
     前記加速度の測定値のうち、複数の測定値の変化の傾向を示す加速度パターンが所定条件を満たす場合、各測定値を所定のデータ形式の近似値に圧縮するステップを備え、
     前記加速度パターンが前記所定条件を満たす場合、前記圧縮された近似値を送信するステップを備え、
     前記加速度パターンが前記所定条件を満たさない場合、前記測定値を送信するステップを備える、
    データ処理方法。
    In a data processing method for collecting data relating to a moving object using a computer,
    Measuring the acceleration of the moving body,
    A step of compressing each measurement value to an approximate value of a predetermined data format when an acceleration pattern indicating a tendency of a change in a plurality of measurement values among the measurement values of the acceleration satisfies a predetermined condition,
    If the acceleration pattern satisfies the predetermined condition, the step of transmitting the compressed approximate value,
    When the acceleration pattern does not satisfy the predetermined condition, the method includes a step of transmitting the measurement value.
    Data processing method.
  16.  物体に関するデータを収集するデータ処理装置において、
     前記物体に関するデータを測定するためのセンサを備え、
     前記センサの測定値のうち、複数の測定値の変化の傾向を示すパターンが所定条件を満たす場合、測定値を所定のデータ形式の近似値に圧縮する処理部を備え、
     前記パターンが前記所定条件を満たす場合、前記処理部により圧縮された近似値を送信する通信部を備え、
      前記通信部は、前記パターンが前記所定条件を満たさない場合、前記センサの測定値を送信する、
    データ処理装置。
     

     
    In a data processing device that collects data about an object,
    A sensor for measuring data relating to the object,
    Among the measurement values of the sensor, when a pattern showing a tendency of change of a plurality of measurement values satisfies a predetermined condition, a processing unit that compresses the measurement value to an approximate value of a predetermined data format,
    When the pattern satisfies the predetermined condition, a communication unit that transmits an approximate value compressed by the processing unit,
    The communication unit transmits the measurement value of the sensor when the pattern does not satisfy the predetermined condition.
    Data processing device.


PCT/JP2018/017037 2017-04-28 2018-04-26 Data processing device, server, mobile body, data processing method, and program WO2018199253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537690A JP6397602B1 (en) 2017-04-28 2018-04-26 Data processing device, server, mobile object, data processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090804 2017-04-28
JP2017-090804 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199253A1 true WO2018199253A1 (en) 2018-11-01

Family

ID=63920188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017037 WO2018199253A1 (en) 2017-04-28 2018-04-26 Data processing device, server, mobile body, data processing method, and program

Country Status (2)

Country Link
JP (1) JP6952343B2 (en)
WO (1) WO2018199253A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047260A (en) * 2004-08-06 2006-02-16 Ryuichi Yokota Data logger
JP2011237716A (en) * 2010-05-13 2011-11-24 Olympus Imaging Corp Digital camera and method for controlling the same
JP2012048310A (en) * 2010-08-24 2012-03-08 Denso Corp Driving support system, on-vehicle device and information distribution device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047260A (en) * 2004-08-06 2006-02-16 Ryuichi Yokota Data logger
JP2011237716A (en) * 2010-05-13 2011-11-24 Olympus Imaging Corp Digital camera and method for controlling the same
JP2012048310A (en) * 2010-08-24 2012-03-08 Denso Corp Driving support system, on-vehicle device and information distribution device

Also Published As

Publication number Publication date
JP6952343B2 (en) 2021-10-20
JP2018205326A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP3989166A1 (en) Artificial intelligence-based image region recognition method and apparatus, and model training method and apparatus
CN109857002A (en) Collecting method, device, equipment and computer readable storage medium
CN109934954A (en) Unmanned vehicle Run-time scenario determines method and apparatus
CN105894610A (en) Data processing method, device and system
CN112950400A (en) Data processing platform
CN113056904A (en) Image transmission method, movable platform and computer readable storage medium
US20130268157A1 (en) Method for reducing detection data of a monitoring device in a vehicle, and method for monitoring a vehicle defect in near real time using same
CN108234659B (en) Data processing method, device and system
CN104063914A (en) Terminal achieving driving risk management and use method thereof
JP6397602B1 (en) Data processing device, server, mobile object, data processing method, and program
CN113096146A (en) Power transmission line icing monitoring and early warning system, installation equipment and method based on 5G and AI identification technology
WO2018199253A1 (en) Data processing device, server, mobile body, data processing method, and program
CN103002277A (en) Method for image processing of image data recorded with an optical sensor in a motor vehicle, and a motor vehicle
CN104766392A (en) Driving record monitoring device based on cloud storage
CN109829004B (en) Data processing method, device and equipment based on unmanned vehicle and storage medium
CN115200554A (en) Unmanned aerial vehicle photogrammetry supervision system and method based on picture recognition technology
KR101201679B1 (en) The Method Of Reducing Data Using Scale Rule And The Health Monitoring Of Vehicles For Quasi-Realtime Processing
CN112580773A (en) Method and apparatus for compressing deep learning models
CN205490840U (en) Wireless camera device of portable image processing
US20230196847A1 (en) In-vehicle device, vehicle movement analysis system
CN117635889B (en) Real-time rendering method, system and device for laser point cloud data
CN110378241A (en) Crop growthing state monitoring method, device, computer equipment and storage medium
CN213843431U (en) Unmanned aerial vehicle partial discharge monitoring devices
KR102291756B1 (en) Flying Disc Flight Information Monitoring System and Method
CN112859109B (en) Unmanned aerial vehicle panoramic image processing method and device and electronic equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537690

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790303

Country of ref document: EP

Kind code of ref document: A1