WO2018199112A1 - Transgenic microorganism and use thereof - Google Patents

Transgenic microorganism and use thereof Download PDF

Info

Publication number
WO2018199112A1
WO2018199112A1 PCT/JP2018/016675 JP2018016675W WO2018199112A1 WO 2018199112 A1 WO2018199112 A1 WO 2018199112A1 JP 2018016675 W JP2018016675 W JP 2018016675W WO 2018199112 A1 WO2018199112 A1 WO 2018199112A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
acid
microorganism
lignin
transformed
Prior art date
Application number
PCT/JP2018/016675
Other languages
French (fr)
Japanese (ja)
Inventor
英司 政井
直史 上村
高橋 健司
和典 園木
Original Assignee
国立大学法人長岡技術科学大学
国立大学法人弘前大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長岡技術科学大学, 国立大学法人弘前大学 filed Critical 国立大学法人長岡技術科学大学
Priority to JP2019514547A priority Critical patent/JP7067706B2/en
Publication of WO2018199112A1 publication Critical patent/WO2018199112A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Definitions

  • the present invention relates to a transformed microorganism capable of producing muconic acid or protocatechuic acid, and a method for producing muconic acid or protocatechuic acid using the transformed microorganism.
  • the present invention is a method for growing and muconic acid using a biomass containing an aromatic compound derived from syringyl lignin, an aromatic compound derived from guaiacyl lignin and / or an aromatic compound derived from p-hydroxyphenyl lignin as a carbon source, or
  • the present invention relates to a transformed microorganism capable of producing protocatechuic acid.
  • Lignin is an amorphous polymer that exists as a component of plant vascular cell walls. It is a complex condensation of phenylpropane-based structural units, and the main feature of its chemical structure is the inclusion of methoxy groups. ing. Lignin has a function of sticking woody plant cells to each other and strengthening the tissue, and is present in about 18 to 36% in wood and about 15 to 25% in herbs. Therefore, in order to effectively use wood, various attempts have been made to decompose lignin and obtain useful compounds.
  • muconic acid cis, cis-muconic acid
  • muconic acid is a highly reactive compound due to two double bonds and carboxy groups in the molecule.
  • muconic acid derivatives starting from muconic acid include lactone, sulfone, polyamide, polyester, thioester, and addition polymer.
  • Such muconic acid derivatives are known to have various uses, and can be used as, for example, surfactants, flame retardants, UV light stabilizers, thermosetting plastics, coating agents and the like.
  • muconic acid is used for various purposes, and if muconic acid can be produced from lignin, resource regeneration is achieved, which is very useful. Therefore, a method for producing muconic acid from lignin or a substance derived from lignin has been attempted. In particular, bioconversion using microorganisms has been studied as such a method.
  • Non-Patent Document 1 the Pseudomonas putida and (Pseudomonas putida) as a host microorganism, pCAH gene and pcaG gene on chromosome (hereinafter combined And the catR gene, catB gene, catC gene and catA gene are disrupted, and the inserted catA gene and aroY gene, or the catA gene, aroY gene and ecdB gene are expressed. It is described that a transformed microorganism was produced, the transformed microorganism was grown with glucose, and then muconic acid was produced with p-coumaric acid.
  • Non-Patent Document 2 the entire description of which is incorporated herein by reference
  • the Sphingobium species SYK-6 strain is grown using vanillic acid and syringic acid as a carbon source. It is described that it can.
  • the transformed microorganism described in Non-Patent Document 1 metabolizes aromatic compounds derived from p-hydroxyphenyl lignin such as p-coumaric acid and aromatic compounds derived from guaiacyl lignin such as ferulic acid. be able to.
  • the transformed microorganism described in Non-Patent Document 1 cannot metabolize aromatic compounds derived from syringyl lignin, such as syringic acid. Therefore, using the transformed microorganism described in Non-Patent Document 1, there is a problem that muconic acid cannot be substantially produced using biomass containing a large amount of syringyl lignin as a raw material.
  • the method for producing muconic acid using the transformed microorganism described in Non-Patent Document 1 since the transformed microorganism described in Non-Patent Document 1 requires expensive glucose as a carbon source for growth, the method for producing muconic acid using the transformed microorganism described in Non-Patent Document 1 is economical. There is a problem that is bad. Furthermore, since two or more types of carbon sources are required, such as glucose for cell growth and p-coumaric acid as a substrate for muconic acid production, considering the total amount of these carbon sources, The method for producing muconic acid using the transformed microorganism described in Non-Patent Document 1 has a problem that the yield of muconic acid is poor.
  • the present invention can use a biomass containing a large amount of syringyl lignin as a raw material, has good economic efficiency, and can produce muconic acid with a high yield, and mucon using the microorganism.
  • An object of the present invention is to provide a method for producing an acid.
  • the present inventors have intensively studied a microorganism capable of producing muconic acid from biomass containing a large amount of syringyl lignin.
  • FIG. 1 shows the metabolic pathway of the transformed microorganism described in Non-Patent Document 1.
  • the transformed microorganism described in Non-Patent Document 1 is Pseudomonas putida in which the host microorganism undergoes degradation through the protocatechuic acid • 3,4-cleavage pathway. From this, when trying to efficiently produce muconic acid by the transformed microorganism described in Non-Patent Document 1, the pcaHG gene and catB gene on the chromosome of the host microorganism are deleted, and the inserted aroY gene is expressed. There must be.
  • the transformed microorganism described in Non-Patent Document 1 can metabolize aromatic compounds derived from syringyl lignin such as syringic acid into protocatechuic acid and muconic acid. Furthermore, they cannot be propagated using these. In addition, since the transformed microorganism described in Non-Patent Document 1 lacks the pcaHG gene on the chromosome, a substrate other than lignin-derived aromatic compounds such as glucose is required for the growth of the microorganism. To do.
  • the present inventors have made intensive studies, which resulted in the focusing on sphingomyelin monad (Sphingomonad) family microorganism capable of metabolizing aromatic compounds from syringyl lignin such syringic acid.
  • the present inventors then disrupted the protocatechuate-4,5-dioxygenase gene on the chromosome of the sphingomonad family microorganism, and then expressed the aroY gene, kpdB gene, catA gene, etc. inserted separately as foreign genes. Succeeded in creating transformed microorganisms.
  • the transformed microorganism produced by the present inventors grows using an aromatic compound derived from syringyl lignin such as syringic acid, that is, an aromatic compound derived from syringyl lignin. It has been found that muconic acid can be produced using an aromatic compound derived from guaiacyl lignin and p-hydroxyphenyl lignin. In this way, the present inventors can use the transformed microorganisms produced by the present inventors to use aromatic compounds derived from various types of lignin such as syringyl lignin, guaiacyl lignin, and p-hydroxyphenyl lignin. Succeeded in creating a method for producing muconic acid from
  • the method using the transformed microorganisms produced by the present inventors requires the use of these lignin-derived aromatic compounds as carbon sources, but also uses glucose and lignin-derived aromatic compounds as substrates. It has been found that the yield of muconic acid is comparable or higher compared to the method using a transformed microorganism described in Non-Patent Document 1 or the like.
  • the present inventors apply a transformed microorganism capable of producing muconic acid to produce a transformed microorganism capable of producing protocatechuic acid, which is an intermediate of muconic acid, and further, using the transformed microorganism, We have succeeded in creating a method for producing protocatechuic acid from aromatic compounds derived from various types of lignin such as gill lignin, guaiacyl lignin and p-hydroxyphenyl lignin.
  • the lignin-derived aromatic compound can be obtained from biomass such as waste materials.
  • hardwood is rich in syringyl lignin. Therefore, since the biomass derived from broad-leaved broad-leaved trees that are nowadays in Japan can be obtained at a very low cost, a method for producing muconic acid and protocatechuic acid using a transformed microorganism produced by the present inventors is described in Non-Patent Document 1. This is an economically advantageous method compared to a method using a transformed microorganism. The present invention has been completed based on these findings and successful examples.
  • the host microorganism has a protocatechuic acid degrading enzyme gene on a chromosome, and a Sphingomonas monad (Sphingomonad) family microorganism assimilates aromatic compounds from syringyl lignin,
  • the protocatechuate degrading enzyme gene on the chromosome is deleted, Expressing the inserted catA gene, and Expressing the inserted aroY gene or aroY gene and kpdB gene; Transformed microorganisms.
  • the protocatechuic acid degrading enzyme gene is a gene selected from the group consisting of a ligA gene, a ligB gene, a pcaG gene, a pcaH gene and a prA gene, according to any one of (1) to (4) Transformed microorganisms.
  • the following method (7) for producing muconic acid (7) An aromatic compound derived from p-hydroxyphenyl lignin and / or an aromatic compound derived from guaiacyl lignin and an aromatic compound derived from syringyl lignin according to any one of (1) to (6) A method for producing muconic acid, comprising the step of obtaining muconic acid by acting on the transformed microorganism described above.
  • the following transformed microorganism (8) is provided.
  • the host microorganism is a sphingomonad family microorganism having a protocatechuate degrading enzyme gene on a chromosome and assimilating an aromatic compound derived from syringyl lignin;
  • the protocatechuate degrading enzyme gene on the chromosome is deleted, Transformed microorganisms.
  • the manufacturing method of the protocatechuic acid of the following (9) is provided.
  • An aromatic compound derived from p-hydroxyphenyl lignin and / or an aromatic compound derived from guaiacyl lignin and an aromatic compound derived from syringyl lignin are allowed to act on the transformed microorganism described in (8).
  • the manufacturing method of protocatechuic acid including the process of obtaining protocatechuic acid by this.
  • a biomass containing a large amount of syringyl lignin which has been difficult or impossible by the method using a conventional microorganism, is used as a raw material at low cost and in a low yield.
  • Muconic acid and protocatechuic acid can be produced while maintaining or improving the rate. Therefore, according to the transformed microorganism of one embodiment of the present invention and the production method of one embodiment of the present invention, as part of effective utilization of biomass containing various types of lignin and biomass relatively easily available in Japan, Production of muconic acid and protocatechuic acid on a scale can be expected.
  • FIG. 1 shows FIG. 1 is a schematic diagram of a metabolic pathway of Pseudomonas putida described in 1.
  • the transformed microorganism which is one embodiment of the present invention is a microorganism obtained by transforming a host microorganism so that a specific gene on the chromosome of the host microorganism is deleted.
  • the transformed microorganism which is one embodiment of the present invention further transforms the host microorganism so as to express a specific gene involved in the muconic acid synthesis pathway from protocatechuic acid inserted as a foreign gene. There are two types of modes.
  • gene deletion means that a gene does not function normally, such as a gene that is not normally transcribed or a protein that is to be produced by gene expression is not translated normally. It means that expression is prevented. Deletion of a gene can occur, for example, when the structure of the gene is changed due to destruction, deletion, substitution, insertion, or the like of all or part of the gene. However, gene deletion can also occur when gene expression is suppressed by means such as blocking the control region of a gene without causing a change in the structure of the gene.
  • gene expression means that a protein encoded by a gene is produced in such a manner as to have an original structure or activity through transcription, translation, or the like.
  • overexpression of a gene in the present specification means that a protein encoded by the gene is produced in excess of the amount originally expressed by the host microorganism by inserting the gene.
  • the host microorganism has a protocatechuate degrading enzyme gene on the chromosome.
  • the protocatechuic acid degrading enzyme gene is not particularly limited as long as it expresses an enzyme having an activity of degrading protocatechuic acid, and examples thereof include ligA gene, ligB gene, pcaG gene, pcaH gene, and prA gene.
  • transformed microorganisms lack part or all of the protocatechuate degrading enzyme gene on the chromosome of the host microorganism.
  • the ligA gene and the ligB gene are genes that express the small and large subunits of protocatechuic acid and 4,5-dioxygenase, respectively, or genes that express protocatechuic acid and 4,5-dioxygenase consisting of a single polypeptide. If it is, it will not specifically limit, For example, the gene etc. which have the base sequence of sequence number 19 and 20, respectively are mentioned.
  • Protocatechuic acid 4,5-dioxygenase for example, possessed by Sphingobium species SYK-6, etc., produces 4-carboxy-2-hydroxymuconic acid-6-semialdehyde from protocatechuic acid It has an activity of catalyzing the reaction to be performed and requires Fe 2+ as a cofactor.
  • the pcaH gene and the pcaG gene are not particularly limited as long as they are genes that express the ⁇ subunit and ⁇ subunit of protocatechuate and 3,4-dioxygenase, respectively.
  • they have the nucleotide sequences of SEQ ID NOs: 35 and 36, respectively.
  • Examples include genes.
  • Protocatechuic acid • 3,4-dioxygenase is possessed by, for example, Pseudomonas putida KT2440 strain, and has an activity of catalyzing the reaction to produce 3-carboxymuconic acid from protocatechuic acid, and contains Fe 3+ Require as a cofactor.
  • the prA gene is not particularly limited as long as it is a gene that expresses protocatechuic acid-2,3-dioxygenase, and examples thereof include a gene having the base sequence of SEQ ID NO: 37.
  • Protocatechuic acid-2,3-dioxygenase is, for example, possessed by Paenibacillus species JJ-1b and the like, and produces 5-carboxy-2-hydroxymuconic acid-6-semialdehyde from protocatechuic acid. Has the activity of catalyzing
  • transformed microorganism (1) expresses the inserted catA gene.
  • the transformed microorganism (1) further expresses the inserted aroY gene or aroY gene and kpdB gene.
  • the transformed microorganism (2) none of the catA gene, the aroY gene, and the kpdB gene is inserted into the transformed microorganism of another embodiment of the present invention (hereinafter referred to as transformed microorganism (2)). That is, the transformed microorganism (2) cannot substantially produce muconic acid from protocatechuic acid.
  • transformed microorganisms (1) and (2) are collectively referred to, they are simply referred to as “transformed microorganisms”.
  • the catA gene is not particularly limited as long as it is a gene that expresses catechol 1,2-dioxygenase, and examples thereof include a gene having the base sequence of SEQ ID NO: 21.
  • Catechol 1,2-dioxygenase (EC 1.13.11.1) is also called 1,2-dihydroxybenzene 1,2-dioxygenase and the like.
  • Catechol 1,2-dioxygenase is possessed by, for example, Pseudomonas putida KT2440 strain, has an activity of catalyzing the reaction of generating cis, cis-muconic acid from catechol, and co-factors Fe 3+ As request.
  • Intradiol dioxygenase domain is contained in the amino acid sequence of catechol 1,2-dioxygenase (accession no. Q88I35).
  • the domain is [LIVMF] -xGx- [LIVM] -x (4)-[GS] -x (2)-[LIVMA] -x (4)-[LIVM]-[DE]-[LIVFMFYC ] -X (6) -Gx- [FY] (Prosite entry no. P00083), and Y in the sequence is related to the binding of Fe 3+ as a cofactor.
  • L137 to Y165 in the amino acid sequence of catechol 1,2-dioxygenase correspond to the above domain.
  • the aroY gene is not particularly limited as long as it is a gene that expresses protocatechuic acid / decarboxylase, and examples thereof include a gene having the base sequence of SEQ ID NO: 22.
  • Protocatechuic acid decarboxylase (EC 4.1.1.63) is also called 3,4-dihydroxybenzoate carboxy-lyase.
  • Protocatechuic acid / decarboxylase is not particularly limited as long as it is an enzyme that catalyzes a reaction for producing catechol from protocatechuic acid.
  • An enzyme having an activity of catalyzing a reaction for producing 3-methoxycatechol from 3-O-methylgallic acid or a reaction for producing pyrogallol from gallic acid may be used as protocatechuic acid / decarboxylase.
  • vanillic acid decarboxylase and 4-hydroxybenzoic acid decarboxylase may also be used as protocatechuic acid / decarboxylase because protocatechuic acid may be decarboxylated.
  • Protocatechuic acid decarboxylase is structurally classified into a protein group (UbiD superfamily) containing a UbiD domain (Domain architecture ID 10487953).
  • protocatechuic acid decarboxylase Klebsiella pneumoniae subsp. Pneumoniae (Klebsiella pneumoniae subsp pneumoniae.) Protein from A170-40 strain (ATCC twenty-five thousand five hundred and ninety-seven strain) (accession no.AB479384; AB479384 protein) etc. Can be mentioned.
  • protocaterate decarboxylase derived from Enterobacter cloacae MBRL1077 accession no. AMJ70686; sequence identity 87.2%
  • E. coli E. coli.
  • Examples include, but are not limited to, proteins registered as protocatechuate decarboxylase such as protocatechuate decarboxylase (accession no. CZU76022; sequence identity 85.7%) derived from cloacae e1026 strain. These enzymes are characterized as a series of enzymes that require Mn 2+ , prenylated flavin mononucleotide (prenyl-FMN) as cofactors.
  • prenyl-FMN prenylated flavin mononucleotide
  • the kpdB gene is not particularly limited as long as it is a gene that expresses flavin / prenyltransferase, and examples thereof include a gene that expresses 4-hydroxybenzoic acid / decarboxylase / subunit B.
  • SEQ ID NO: 23 a gene having the nucleotide sequence of Among the UbiX family is Phenolic acid (hydroxylylic acid) decarboxylase subunit B, one of which is 4-hydroxybenzoic acid, decarboxylase, subunit B.
  • phenolic acid decarboxylase there are homo-oligomeric enzymes such as AroY and Fdc (ferric acid decarboxylase derived from yeast), and BCD such as 4-hydroxybenzoic acid / decarboxylase and vanillic acid / decarboxylase.
  • homo-oligomeric enzymes such as AroY and Fdc (ferric acid decarboxylase derived from yeast), and BCD such as 4-hydroxybenzoic acid / decarboxylase and vanillic acid / decarboxylase.
  • hetero-oligomeric enzymes consisting of subunits.
  • Flavin prenyltransferase catalyzes the reaction of synthesizing prenyl-FMN by binding a dimethylallyl structure from dimethylallyl monophosphate (DMAP) to the flavin backbone of flavin mononucleotide (FMN).
  • DMAP dimethylallyl monophosphate
  • 4-hydroxybenzoic acid / decarboxylase / subunit B is an enzyme classified into the flavoprotein, UbiX / Pad1 family
  • the amino acid sequence thereof is, for example, E. coli .
  • amino acid sequence sequence identity with (accession no.P0AG03) of coli K-12 strain derived from Flavin prenyltransferase (UbiX) is 50%;
  • the host microorganism has the ability to grow (utilize) an aromatic compound derived from syringyl lignin such as syringic acid and syringaldehyde as a carbon source.
  • an aromatic compound having a syringyl nucleus such as syringic acid or syringaldehyde as a sole carbon source
  • the host microorganism has a syringate / demethylase gene (eg desA on the chromosome).
  • 3-O-methylgallic acid ⁇ 3,4-dioxygenase gene eg desZ
  • 3-O-methylgallic acid ⁇ demethylase gene eg vanAB, ligM
  • Hydrolase gene eg ligI
  • gallic acid / dioxygenase gene eg desB
  • 4-oxalomesaconic acid / tautomerase eg ligU
  • 4-oxalomesaconic acid / hydratase gene eg ligJ
  • 4-carboxy-4-hydroxy- 2-oxoadipic acid al Hydrolase gene (e.g. ligK), such as oxaloacetate decarboxylase gene (e.g. ligK)
  • the desA gene is not particularly limited as long as it is a gene that expresses syringate O-demethylase, and examples thereof include a gene having the base sequence of SEQ ID NO: 38.
  • the syringic acid demethylase is possessed by, for example, Sphingobium sp. Strain SYK-6 and has an activity of catalyzing a reaction for producing 3-O-methylgallic acid from syringic acid.
  • VanAB can convert syringic acid into 3-O-methylgallic acid, and thus can also be used as syringic acid / demethylase.
  • the host microorganism preferably has a gene expressing vanillate demethylase in addition to the protocatechuate degrading enzyme gene on the chromosome.
  • a gene expressing vanillate demethylase is not particularly limited, and examples thereof include a ligM gene, a vanA gene, and a vanB gene.
  • the ligM gene is not particularly limited as long as it is a gene that expresses tetrahydrofolate-dependent vanillic acid / 3-O-methylgallic acid / O-demethylase (tetrahydrofolate-dependent vanillate / 3-O-methylgallate O-demethylase). And a gene having the base sequence of SEQ ID NO: 24.
  • the vanA gene is not particularly limited as long as it is a gene that expresses a vanillate / demethylase / oxygenase component (vanillate demethylase oxygenase component), and examples thereof include a gene having the base sequence of SEQ ID NO: 25.
  • Examples of the vanillic acid / demethylase / oxygenase component include VanA (accession no. Q88GI6) derived from Pseudomonas putida KT2440.
  • the vanillic acid / demethylase / oxygenase component cleaves the methyl ether bond of vanillic acid using an NADH or NADPH-derived electron supplied via Oxidoductase component and an oxygen atom supplied from molecular oxygen, Protocatechuic acid, formaldehyde and water are produced.
  • the vanillic acid / demethylase / oxygenase component has Rieske [2Fe-2S] iron-sulfur domain (W7-V107, PROSITE entry no. PS51296) in its amino acid sequence, and C and H (C47, H49) in the domain , C66, H69) are related to the Fe—S bond.
  • the vanB gene is not particularly limited as long as it is a gene that expresses a vanillate / demethylase / oxidoreductase component (vanillate demethylase oxidoreductase component), and examples thereof include a gene having the base sequence of SEQ ID NO: 26.
  • Examples of the vanillic acid / demethylase / oxidoreductase component include VanB (accession no. Q88GI5) derived from Pseudomonas putida KT2440.
  • the vanillic acid / demethylase / oxidoreductase component is known as one of the oxidoreductases that extract electrons from NADH or NADPH and transfer them to an oxygenase (oxygenase).
  • the vanillic acid / demethylase / oxidoreductase component transmits NADH or NADPH-derived electrons to VanA which is a vanillic acid / demethylase / oxygenase component.
  • the vanillic acid / demethylase / oxidoreductase component has 2Fe-2S ferredoxin type iron-sulfer binding domain (G229-I316, PROSITE entry no. PS51085) in its amino acid sequence, and C in the amino acid sequence 5 (C26) , C270, C273, and C303) are involved in the Fe—S bond.
  • vanillic acid / demethylase / oxidoreductase components include NAD-binding domain (L109-D201, Pfammentry nono. PF00175) and Ferredoxinreductasetype FAD-BindingPrindoMindPrindoMinder PS 51384).
  • the host microorganism preferably has a desA gene and a ligM gene on the chromosome.
  • the host microorganism does not have the desA gene and the ligM gene on the chromosome, it is preferable to insert the desA gene and the ligM gene into the transformed microorganism.
  • the gene to be inserted may not be completely the same as the gene originally possessed by the organism having the gene (that is, the wild type gene), and at least the protein that is expressed by the wild type gene (that is, the wild type protein), As long as it is a gene that expresses a protein having similar enzymatic properties, it may be a DNA having a base sequence that hybridizes with a base sequence complementary to the base sequence of the wild-type gene under stringent conditions. Good.
  • base sequence that hybridizes under stringent conditions refers to a colony hybridization method, plaque hybridization method, Southern blot hybridization method using a DNA having a base sequence of a wild-type gene as a probe. It means the base sequence of DNA obtained by using.
  • stringent conditions in the present specification is a condition in which a specific hybrid signal is clearly distinguished from a non-specific hybrid signal.
  • the hybridization system used, the type of probe, and the sequence It depends on the length.
  • Such conditions can be determined by changing the hybridization temperature, washing temperature and salt concentration. For example, when a non-specific hybrid signal is strongly detected, the specificity can be increased by raising the hybridization and washing temperature and, if necessary, lowering the washing salt concentration. If no specific hybrid signal is detected, the hybrid can be stabilized by lowering the hybridization and washing temperatures and, if necessary, raising the washing salt concentration.
  • a DNA probe is used as a probe, and hybridization is 5 ⁇ SSC, 1.0% (w / v), a blocking reagent for nucleic acid hybridization (Roche Diagnostics) , 0.1% (w / v) N-lauroyl sarcosine, 0.02% (w / v) SDS, overnight (about 8 to 16 hours). Washing is performed using 0.1 to 0.5 ⁇ SSC, 0.1% (w / v) SDS, preferably 0.1 ⁇ SSC, 0.1% (w / v) SDS, twice for 15 minutes. Do.
  • the temperature for performing hybridization and washing is 65 ° C or higher, preferably 68 ° C or higher.
  • the DNA having a base sequence that hybridizes under stringent conditions for example, using a DNA having a base sequence of a wild-type gene derived from a colony or plaque or a filter on which the DNA fragment is immobilized, After hybridization at 40 ° C. to 75 ° C. in the presence of DNA obtained by hybridization under the above stringent conditions or 0.5 M to 2.0 M NaCl, preferably 0.7 to 1 After hybridization at 65 ° C in the presence of 0.0 M NaCl, 0.1 to 1 ⁇ SSC solution (1 ⁇ SSC solution is 150 mM sodium chloride, 15 mM sodium citrate) at 65 ° C.
  • DNA containing a base sequence that hybridizes under stringent conditions include DNA having a certain sequence identity with a base sequence of a DNA having a base sequence of a wild-type gene used as a probe. 80% or more, preferably 85% or more, more preferably 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more , 98% or more or 99% or more, more preferably 99.5% or more of DNA having sequence identity.
  • the upper limit of the sequence identity is not particularly limited, and is typically 100%.
  • the base sequence that hybridizes with the base sequence complementary to the base sequence of the wild type gene under stringent conditions is, for example, 1 to several, preferably 1 to 50, more preferably, in the base sequence of the wild type gene. 1 to 30, more preferably 1 to 20, still more preferably 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 base deletions, substitutions, additions, etc.
  • base deletion means that there is a deletion or disappearance in the base in the sequence
  • base replacement means that the base in the sequence is replaced with another base
  • “Addition of a base” means that a new base is added to be inserted.
  • the protein encoded by the base sequence that hybridizes with the base sequence complementary to the base sequence of the wild-type gene under stringent conditions is 1 to several in the amino acid sequence of the protein encoded by the base sequence of the wild-type gene. Although it is likely to be a protein having an amino acid sequence having deletion, substitution, addition, etc. of individual amino acids, it has the same enzyme activity as the protein encoded by the base sequence of the wild-type gene.
  • a protein having the same or similar enzymatic properties as the wild-type protein has an amino acid sequence having a deletion, substitution, addition, etc. of one to several amino acids in the amino acid sequence of the wild-type protein It may consist of.
  • the range of “1 to several” in the “deletion, substitution and addition of one to several amino acids” of the amino acid sequence is not particularly limited, but for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20, preferably 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 About 1, more preferably about 1, 2, 3, 4 or 5.
  • amino acid deletion means deletion or disappearance of an amino acid residue in the sequence
  • amino acid substitution means that an amino acid residue in the sequence is replaced with another amino acid residue.
  • “Addition of amino acid” means that a new amino acid residue is added to the sequence.
  • a specific embodiment of “deletion, substitution, addition of 1 to several amino acids” includes an embodiment in which one to several amino acids are replaced with another chemically similar amino acid.
  • a case where a certain hydrophobic amino acid is substituted with another hydrophobic amino acid a case where a certain polar amino acid is substituted with another polar amino acid having the same charge, and the like can be mentioned.
  • Such chemically similar amino acids are known in the art for each amino acid.
  • Specific examples include non-polar (hydrophobic) amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • Examples of polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine.
  • Examples of the basic amino acid having a positive charge include arginine, histidine, and lysine.
  • Examples of acidic amino acids having a negative charge include aspartic acid and glutamic acid.
  • amino acid sequences having a deletion, substitution, addition, etc. of one to several amino acids in the amino acid sequence of the wild type protein include amino acid sequences having a certain sequence identity with the amino acid sequence of the wild type protein. For example, 80% or more, preferably 85% or more, more preferably 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% with the amino acid sequence of the wild-type protein As mentioned above, amino acid sequences having sequence identity of 97% or more, 98% or more, or 99% or more, and more preferably 99.5% or more can be mentioned.
  • the upper limit of the sequence identity is not particularly limited, and is typically 100%.
  • the method for determining the sequence identity of the base sequence or amino acid sequence is not particularly limited.
  • the amino acid sequence of the wild type gene or the wild type protein expressed by the wild type gene and the target base It is obtained by aligning sequences and amino acid sequences and using a program for calculating the coincidence ratio between the sequences.
  • Each of the above methods can be generally used for searching a sequence showing sequence identity from a database.
  • Genetyx network version version 12.0. 1 Genetics
  • This method is based on the Lipman-Pearson method (Science 227: 1435-1441, 1985; the entire description of this document is incorporated herein by reference).
  • CDS or ORF a region encoding a protein
  • the gene to be inserted is derived from a microorganism or the like carrying the gene to be inserted.
  • Examples of the organism derived from the gene to be inserted include microorganisms that can produce muconic acid from protocatechuic acid, microorganisms that can grow by assimilating protocatechuic acid, and the like.
  • organisms from which genes are inserted include sphingo such as Sphingobium species, Sphingomonas species, Novosphingobium aromaticibolans, Alter erythrobacter species, and erythrobacter for ligM gene and desA gene.
  • sphingo such as Sphingobium species, Sphingomonas species, Novosphingobium aromaticibolans, Alter erythrobacter species, and erythrobacter for ligM gene and desA gene.
  • Microorganisms such as monads, Arthrobacter castelli, Arthrobacter species such as Arthrobacter sp., Microbacteriaceae such as Leifsonia sp.
  • Micrococcidae microorganisms such as Gangotriensis, Citrococcus sp., Tersicoccus sp. ⁇ Microbacteriaceae microorganisms such as Spices, etc .;
  • CatA gene Pseudomonas petitda, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas rennekei and Acinetobacter calcoaceticus, Acinetobacter radioresistence microorganisms Rhodococcus microorganisms such as Opacas, Rhodococcus pyridiniboras, Rhodococcus rhodochrous, etc .; for aroY and kpdB genes, Klebsiella microorganisms such as Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella quasi pneumoniae, and Enterobacter cloacaeros enthusiata Enter
  • the organism from which the inserted gene is derived is not particularly limited, but the gene expressed in the transformed microorganism is not inactivated by the growth conditions of the host microorganism, or is transformed by inserting the gene so as to exhibit activity.
  • a host microorganism to be converted or a microorganism having similar growth conditions to the host microorganism is preferable.
  • the gene to be deleted and inserted can be inserted into various known vectors. Furthermore, this vector can be introduced into a suitable known host microorganism to produce a transformant (transformed microorganism) having the gene deleted or inserted.
  • the gene to be deleted is preferably one in which the whole or a part of the wild-type gene is altered in its structure due to destruction, deletion, substitution, insertion or the like.
  • the inserted gene is preferably a gene that expresses the same or similar protein as the wild-type gene.
  • a transformation and a transformant include a transduction and a transductant, respectively.
  • chromosomal DNA or mRNA can be extracted from an organism derived from a wild-type gene associated with a gene to be deleted or inserted or various microorganisms by a conventional method, for example, a method described in a reference technical document.
  • CDNA can be synthesized using the extracted mRNA as a template.
  • a chromosomal DNA or cDNA library can be prepared using the chromosomal DNA or cDNA thus obtained.
  • the gene to be inserted can be obtained by cloning using a chromosomal DNA or cDNA of a derived organism having a wild-type gene related to the gene as a template.
  • the wild-type gene-derived organisms are as described above, and specific examples include Sphingobium sp. SYK-6, Pseudomonas putida KT 2440, and Klebsiella pneumoniae sub-species, depending on the type of gene. Examples include, but are not limited to, Pneumonier A170-40.
  • chromosomal DNA fraction is extracted from the cell fragments by a conventional method.
  • a commercially available chromosomal DNA extraction kit such as DNeasy Blood & TissueKit (Qiagen) can be used.
  • chromosomal DNA and genomic DNA are synonymous.
  • the DNA is amplified by performing a polymerase chain reaction (PCR) using a chromosomal DNA as a template and a synthetic primer complementary to the 5 'end sequence and the 3' end sequence.
  • the primer is not particularly limited as long as it can amplify a DNA fragment containing a gene to be inserted. Examples thereof include primers represented by SEQ ID NOs: 11 and 12, which are designed with reference to the genome sequence of Pseudomonas putida KT2440 strain as an amplifying catA gene. In addition, when such a primer is used, the target gene full length can be amplified.
  • DNA containing a target gene fragment is amplified by screening a target gene clone from a shotgun library, or by appropriate PCR such as Inverse PCR, Nested PCR, 5′RACE method, or 3′RACE method. These can be ligated to obtain DNA containing the full-length target gene.
  • the method for obtaining a gene to be deleted or inserted is not particularly limited as described above, and it is possible to construct a gene using, for example, a chemical synthesis method without using a genetic engineering technique.
  • Confirmation of the base sequence in the amplification product amplified by PCR or the chemically synthesized gene can be performed, for example, as follows.
  • a DNA whose sequence is to be confirmed is inserted into an appropriate vector according to a normal method to produce a recombinant DNA.
  • known or commercially available kits such as In-Fusion HD Cloning Kit (Takara Bio), TA Cloning Kit (Invitrogen), etc .; pAK405 (Andreas Kaczmarczzyk et al., Applied and Environmental Micro10, Bio201, 78 ) 3774-3777; the entire description of this document is incorporated herein by reference.), PMCL200 (see Gene, vol.
  • plasmid vectors such as pUC119 (Takara Bio), pUC18 (Takara Bio), pBR322 (Takara Bio); known or commercially available bacteriophage vectors such as ⁇ EMBL3 (Stratagene) Etc. can be used.
  • the recombinant DNA is introduced into, for example, Escherichia coli , preferably E. coli JM109 (Takara Bio) or E. coli DH5 ⁇ (Takara Bio). Then, the recombinant DNA contained in the obtained transformant can be purified using QIAGEN Plasmid Mini Kit (Qiagen) or the like.
  • the sequence analysis apparatus used for determining the base sequence is not particularly limited, and examples thereof include Li-COR MODEL 4200L Sequencer (Aloka), 370 DNA Sequence System (PerkinElmer), and CEQ2000XL DNA Analysis System (Beckman). Can be mentioned. Based on the determined base sequence, the amino acid sequence of the translated protein can be known.
  • Recombinant vector (recombinant DNA) containing a gene to be deleted or inserted is obtained by linking PCR amplification products containing the gene to be deleted or inserted and various vectors in such a manner that the gene can be deleted or expressed. Can be constructed.
  • the recombinant vector is deleted because the gene in the recombinant vector is replaced with the gene in the host microorganism by homologous recombination by introducing the recombinant vector into the host microorganism. It is preferable to include regions upstream and downstream of the gene.
  • a method for producing a recombinant vector containing a gene to be inserted is, for example, excising a DNA fragment containing any of the genes to be inserted with an appropriate restriction enzyme and cleaving the DNA fragment with an appropriate restriction enzyme.
  • the plasmid vector thus constructed can be constructed by ligation using a commercially available recombinant vector production kit such as In-Fusion HD Cloning Kit (Takara Bio Inc.).
  • a DNA fragment containing a gene having a sequence homologous to a plasmid vector added to both ends and a plasmid-derived DNA fragment amplified by inverse PCR are commercially available, such as In-Fusion HD Cloning Kit (Takara Bio Inc.). It can be obtained by ligation using a recombinant vector preparation kit.
  • a recombinant vector containing a gene to be deleted or inserted includes at least a gene to be deleted or inserted and a gene (base sequence) derived from a plasmid vector.
  • the recombinant vector include a recombinant vector containing a catA gene and an aroY gene; a recombinant vector containing a catA gene, an aroY gene and a kpdB gene.
  • the recombinant vector can contain a vanA gene and a vanB gene in addition to the catA gene, aroY gene and kpdB gene.
  • the recombinant vector may contain a gene other than the genes described above as long as it does not interfere with the solution of the problem of the present invention.
  • the recombinant vector preferably includes a heterologous gene or heterologous nucleic acid sequence.
  • the heterologous gene is not particularly limited as long as it is not naturally occurring in the host microorganism (for example, a synthetic gene that does not depend on the nucleic acid sequence derived from the host microorganism, or an organism in which the inserted gene and the derived organism are different). Examples include genes derived from organisms such as other microorganisms different from host microorganisms, plants, animals, and viruses.
  • heterologous gene when the host microorganism is a Pseudomonas microorganism include, but are not limited to, a DNA fragment derived from pUC118, such as a lactose promoter region (Plac).
  • a DNA fragment derived from pUC118 such as a lactose promoter region (Plac).
  • a method for producing a transformed microorganism is not particularly limited, and examples thereof include a method of inserting into a host microorganism in such a manner that gene deletion or insertion is realized according to a conventional method. Specifically, a DNA construct in which any of the inserted genes is inserted between an expression-inducing promoter and a terminator is prepared, and then a host microorganism is transformed with the DNA construct. A converted microorganism is obtained. Alternatively, a transformed microorganism that lacks the gene can be obtained by preparing a DNA construct that includes the gene to be deleted and regions upstream and downstream of the gene, and then transforming the host microorganism with the DNA construct. In the present specification, recombinant vectors prepared for transforming host microorganisms are collectively referred to as DNA constructs.
  • the method for introducing the DNA construct into the host microorganism is not particularly limited.
  • the DNA construct is introduced into the host microorganism so that the introduced DNA construct autonomously proliferates to express the gene, as known to those skilled in the art.
  • Method Examples include a method of directly inserting a DNA construct into the chromosome of a host microorganism by utilizing homologous recombination.
  • the DNA construct is ligated between sequences upstream and downstream of the recombination site on the chromosome. Can be inserted into the genome of the host microorganism.
  • the vector-host system used for the production of the transformed microorganism is not particularly limited as long as it is a system in which the inserted gene can be expressed or a gene on the chromosome can be deleted in the host microorganism.
  • pJB866- Sphingomonad family microorganism system pKT230 (Gene, vol. 16, p237-247, 1981; the entire description of this document is incorporated herein by reference)-a sphingomonad family microorganism system.
  • the DNA construct containing the gene to be inserted does not introduce into the chromosome of the host microorganism, and autonomously amplifies and expresses the gene to be inserted, but expresses the gene to be inserted in the form introduced into the chromosome of the host microorganism. Or either.
  • the DNA construct may include a marker gene to allow selection of transformed cells.
  • the marker gene is not particularly limited, and examples thereof include drug resistance genes for drugs such as kanamycin, tetracycline, ampicillin, and carbenicillin.
  • the marker gene may be included in the middle of the deleted gene or so as to replace the deleted gene.
  • the DNA construct containing the gene to be inserted is not limited to a promoter and terminator that allow the gene to be expressed in the host microorganism, and other regulatory sequences (for example, cis involved in transcription control such as an operator). An array, etc.).
  • Examples of one embodiment of the DNA construct include, but are not limited to, the pTS082 plasmid vector, the pTS084 plasmid vector, and the pTS079 plasmid vector described in the Examples described later.
  • a method for transformation into a sphingomonad family microorganism a method known to those skilled in the art can be appropriately selected, and for example, electroporation (electroporation) method, junction transfer method and the like can be performed.
  • an appropriate medium is used according to the host microorganism and marker gene to be used.
  • the Sphingobium sp. Strain SYK-6 is used as the host microorganism and the kanamycin and tetracycline resistance genes are used as the marker genes
  • selection and growth of the transformed microorganism can be achieved by, for example, transforming the transformed microorganism into these drugs. It can be carried out by culturing in an LB medium containing
  • Confirmation that a transformed microorganism has been produced can be achieved by, for example, transforming the transformed microorganism under conditions where only the transformed microorganism lacking the gene can survive or under conditions where only the transformed microorganism expressing the inserted gene can survive. It can be achieved by culturing and the like. In addition, by culturing the transformed microorganism and then confirming that the amount of muconic acid in the culture obtained after culturing is larger than the amount of muconic acid in the culture of the host microorganism cultured under the same conditions, etc. It can be confirmed that a transformed microorganism has been produced.
  • Confirmation that a transformed microorganism has been produced can be obtained by extracting chromosomal DNA from the transformed microorganism, performing PCR using this as a template, and generating a PCR product that can be amplified when transformation occurs. You may carry out by confirming a characteristic, a base sequence, etc.
  • PCR is performed with a combination of a forward primer for the promoter base sequence of the gene to be deleted or inserted and a reverse primer for the base sequence of the marker gene to confirm that a product of the expected length is generated.
  • the host microorganism is not particularly limited as long as it is a sphingomonad family microorganism having a protocatechuate-degrading enzyme gene on a chromosome and assimilating an aromatic compound derived from syringyl lignin, for example, protocatechuate degradation It is a sphingomonad family microorganism having an enzyme gene and growing using syringic acid and syringaldehyde.
  • Such a sphingomonad family microorganism is preferably a sphingomonado family microorganism capable of degrading protocatechuic acid, and sphingomonado that assimilates syringic acid or syringaldehyde even if the protocatechuate degrading enzyme is deleted. More preferred are family microorganisms, and sphingomonad family microorganisms having ligA gene and ligB gene on the chromosome are more preferred. Specific preferred embodiments of the host microorganism include Sphingobium sp. SYK-6 strain, Sphingobium sp.
  • 66-54 strain Sphingomonas hengshuiensis WHSC-8 strain, Novosphingobium strain Novosphingium sp.
  • a sphingomonad family microorganism such as PP1Y strain, Novosphingobium sp.
  • AAP93 strain more preferably ligA gene and ligB gene on the chromosome, and syringic acid and syringaldehyde Sphingobium species to be utilized SYK-6.
  • genes to be deleted or inserted Specific examples of the ligA gene, the ligB gene, and the ligM gene as the genes to be deleted or inserted are the ligA gene, the ligB gene, and the ligM gene possessed by the Sphingobium species SYK-6 strain. Nos. 19 to 20 and 24. Specific examples of the catA gene, vanA gene, and vanB gene are the catA gene, vanA gene, and vanB gene possessed by Pseudomonas putida KT2440, and the base sequences thereof are those described in SEQ ID NOs: 21 and 25 to 26, respectively. .
  • aroY gene is the aroY gene possessed by the Klebsiella pneumoniae subspecies pneumoniae A170-40 strain, and the nucleotide sequence is as set forth in SEQ ID NO: 22.
  • a specific example of the kpdB gene is the kpdB gene possessed by Klebsiella pneumoniae, subspices pneumoniae NBRC14940, and the nucleotide sequence thereof is shown in SEQ ID NO: 23.
  • the amino acid sequences of proteins expressed by these genes are those described in SEQ ID NOs: 27 to 34, respectively.
  • a method for obtaining a gene to be deleted or inserted from a microorganism other than Sphingobium sp., Pseudomonas putida, Klebsiella pneumoniae is not particularly limited.
  • Nucleotide sequences of the gene and ligM gene (SEQ ID NOs: 19 to 20 and 24); Pseudomonas putida, nucleotide sequences of the catA gene, vanA gene and vanB gene (SEQ ID NOs: 21 and 25 to 26) possessed by the KT2440 strain; Klebsiella pneumoniae Subspecies pneumoniae A170-40 aroY gene nucleotide sequence (SEQ ID NO: 22); Klebsiella pneumoniae subspecies pneumoniae NBRC14940 strain kpd By performing a BLAST homology search on genomic DNA sequences of other microorganisms based on the base sequence of the gene (SEQ ID NO: 23), and identifying a gene having a base sequence with high sequence identity to the above base sequence Obtainable.
  • a protein having an amino acid sequence having a high sequence identity with the amino acid sequence (SEQ ID NO: 27 to 34) of the protein expressed by the gene is specified, and a gene that expresses the protein is identified. It can be obtained by specifying.
  • the reason why the obtained gene corresponds to a gene to be deleted or inserted is that the derived organism is transformed as a host microorganism by the obtained gene, and the production amount of muconic acid is enhanced compared to the host microorganism. I can confirm.
  • the gene to be inserted may be a gene whose codon, secondary structure, GC content and the like are optimized for expression in the host microorganism.
  • One specific aspect of the transformed microorganism (1) is that the host microorganism is a sphingobium species SYK-6 strain, a sphingobium species 66-54 strain, a sphingomonas hengshuiensis WHSC-8 strain, a nobosphingo A sphingomonad family microorganism selected from the group consisting of Bium sp. PP1Y strain and Novosphingobium sp.
  • AAP93 strain wherein at least one gene selected from the group consisting of ligA gene and ligB gene on the chromosome is present
  • Another specific embodiment of the transformed microorganism (1) is a transformed sphingomonad microorganism that expresses the inserted vanA gene and vanB gene in the transformed sphingomonad family microorganism.
  • these transformed sphingomonad family microorganisms may express the ligM gene.
  • the ligA gene and / or ligB gene on the chromosome is deleted, the inserted catA gene is expressed, and the inserted aroY gene, aroY gene and kpdB gene are
  • aromatic compounds derived from guaiacyl lignin such as vanillic acid and p-hydroxyphenyl such as 4-hydroxybenzoic acid, which are impossible with the transformed microorganism described in Non-Patent Document 1
  • Growth and muconic acid production are possible using lignin-derived aromatic compounds and syringyl lignin-derived aromatic compounds such as syringic acid as a carbon source.
  • a more preferable embodiment of the transformed microorganism is a transformed microorganism that expresses further inserted vanA gene and vanB gene.
  • transformed microorganism (1) examples include SME257 / pTS084 strain described in Examples described later, but are not limited thereto.
  • the host microorganism is Sphingobiium species SYK-6, Sphingobiium species 66-54, Sphingomonas Hengshuiensis WHSC-8, Novosphingo Bium sp., A sphingomonad family microorganism selected from the group consisting of PP1Y strain and Novosphingobium sp. Strain AAP93, wherein at least one gene selected from the group consisting of ligA gene and ligB gene on the chromosome is present The transformed sphingomonad family microorganism which has been deleted.
  • Such a transformed microorganism (2) has at least an embodiment in which the ligA gene and / or the ligB gene on the chromosome is deleted, so that an aromatic compound derived from guaiacyl lignin such as vanillic acid or 4-hydroxy Growth and production of protocatechuic acid are possible using an aromatic compound derived from p-hydroxyphenyl lignin such as benzoic acid and an aromatic compound derived from syringyl lignin such as syringic acid as a carbon source.
  • transformed microorganism (2) examples include the SME257 strain described in Examples described later, but are not limited thereto.
  • Protocatechuic acid is a precursor of muconic acid and also a precursor of protocatechuic acid-2,3-, 3,4-, 4,5-ring-cleaving metabolites. Among these metabolites, for example, 2 Some have uses as synthetic resin raw materials such as -pyrone-4,6-dicarboxylic acid (for example, Japanese Patent No. 4658244; the entire description of this document is incorporated herein by reference). Protocatechuic acid is also used as a synthetic raw material for pharmaceuticals, agricultural chemicals, fragrances and the like.
  • JP 2010-207094 uses Pseudomonas putida as a host microorganism, pcaHG gene on chromosome and protocatechuate 5-position oxidase gene.
  • a transformed microorganism that is disrupted or mutated and expresses the inserted tpaK gene, tpaAa gene, tpaAb gene, tpaB gene, and tpaC gene is produced, and the transformed microorganism is grown with glucose, and then protocatechuic acid with terephthalic acid Is described.
  • JP2010-207094 does not produce protocatechuic acid from lignin or a lignin-derived aromatic compound.
  • the transformed microorganism described in JP2010-207094 cannot metabolize aromatic compounds derived from syringyl lignin, such as syringic acid.
  • the production method of one embodiment of the present invention includes an aromatic compound derived from guaiacyl lignin such as vanillic acid and an aromatic compound derived from syringyl lignin such as syringic acid and syringaldehyde. At least a step of obtaining muconic acid by acting on the transformed microorganism (1). At this time, an aromatic compound derived from p-hydroxyphenyl lignin such as 4-hydroxybenzoic acid is used in the transformed microorganism (1) together with the aromatic compound derived from guaiacyl lignin or instead of the aromatic compound derived from guaiacyl lignin. You may make it act.
  • a method for producing muconic acid includes an aromatic compound derived from guaiacyl lignin such as vanillic acid and an aromatic compound derived from syringyl lignin such as syringic acid. At least a step of obtaining protocatechuic acid by acting on the transformed microorganism (2). At this time, an aromatic compound derived from p-hydroxyphenyl lignin such as 4-hydroxybenzoic acid is used in the transformed microorganism (2) together with the aromatic compound derived from guaiacyl lignin or instead of the aromatic compound derived from guaiacyl lignin. You may make it act.
  • the method of allowing the lignin-derived aromatic compound to act on the transformed microorganism is a method in which the lignin-derived aromatic compound and the transformed microorganism are brought into contact with each other and muconic acid or protocatechuic acid can be produced by the enzyme of the transformed microorganism.
  • the transformed microorganism is cultured under various culture conditions suitable for the transformed microorganism using a medium containing an aromatic compound derived from lignin and suitable for the growth of the transformed microorganism.
  • a method for producing muconic acid or protocatechuic acid may be mentioned.
  • the culture method is not particularly limited, and examples thereof include a solid culture method and a liquid culture method performed under aerated conditions.
  • the order of contact between the aromatic compound derived from guaiacyl lignin, the aromatic compound derived from p-hydroxyphenyl lignin and the aromatic compound derived from syringyl lignin and the transformed microorganism is not particularly limited, but derived from syringyl lignin Contacting the transformed microorganism with an aromatic compound derived from guaiacyl lignin and / or an aromatic compound derived from p-hydroxyphenyl lignin next to the aromatic compound, an aromatic compound derived from syringyl lignin and an aroma derived from guaiacyl lignin It is preferable to simultaneously act on the transformed microorganism with the aromatic compound and / or the aromatic compound derived from p-hydroxyphenyl lignin.
  • any of a synthetic medium and a natural medium can be used as long as it contains a normal medium for culturing host microorganisms, that is, a carbon source, a nitrogen source, an inorganic substance, and other nutrients in an appropriate ratio. Since the host microorganism is a sphingomonadaceae microorganism, a Wx minimal medium or the like as described in Examples described later can be used, but it is not particularly limited.
  • the carbon source an aromatic compound derived from lignin, another carbon source such as sugar or organic acid, or a combination thereof can be used.
  • the medium component preferably contains a component necessary for activation of an enzyme involved in the production of muconic acid or protocatechuic acid, for example, Fe 2+ .
  • Iron ions, magnesium ions and the like can be added to the medium as compounds, but they may be added as mineral-containing materials.
  • the aromatic compound derived from lignin is not particularly limited as long as it is an aromatic compound that can be derived from lignin of any one of guaiacyl lignin, syringyl lignin and p-hydroxyphenyl lignin, and for example, guaiacyl lignin, for example.
  • compounds corresponding to degradation products of syringyl lignin and p-hydroxyphenyl lignin such as p-coumaric acid, ferulic acid, syringic acid, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, etc. Is mentioned.
  • Aromatic compounds derived from lignin include compounds that are modeled on lignin, such as guaiacylglycerol- ⁇ -guaiacyl ether.
  • the lignin-derived aromatic compound is preferably a biomass containing lignin or one obtained by subjecting the biomass to pretreatment and extracted, but may be chemically synthesized and purified regardless of the biomass. .
  • the lignin-derived aromatic compound can be used alone or in combination of two or more.
  • the biomass containing lignin (hereinafter sometimes referred to as lignocellulose) is not particularly limited, and examples thereof include natural products such as grass and trees, those obtained by processing these natural products, and agricultural waste. Specific examples include woody biomass such as conifers and hardwoods. For example, hardwood is known to contain a large amount of syringyl lignin.
  • Lignocellulose can be, for example, in the form of a solid, suspension, or liquid depending on the presence or absence of pretreatment.
  • a suspension obtained by adding pulverized lignocellulose to a liquid can be used.
  • the lignocellulose may be a lignin extract.
  • a powdered lignocellulose is lignin so that it becomes 0.1% W / V to 50% W / V, preferably 1% W / V to 20% W / V.
  • the lignin extract is obtained by subjecting the suspension to 10 ° C. to 150 ° C., preferably 20 ° C. to 130 ° C., more preferably 20 ° C. to 80 ° C., for several hours to several days, preferably 1 hour to 6 days.
  • a solid lignin extract obtained by subjecting to an extraction treatment and then removing the solid from the liquid lignin extract obtained by removing solids from the extraction treatment liquid and evaporating the solvent to dryness. It may be.
  • a lignin extract is not specifically limited, For example, the following methods etc. are mentioned. That is, 2M NaOH 50 mL, degreased birch wood powder 1.5 g, and nitrobenzene 3 mL were placed in a stainless steel vessel of a small autoclave apparatus (pressure-resistant glass industry, portable reactor TVS-1) and stirred at 500 rpm for 2.5 at 170 ° C. Processing time. Cool to 60 ° C. or lower, and collect the supernatant by centrifugation (6,000 g, 10 min). The obtained supernatant is subjected to diethyl ether extraction three times (recovering the aqueous layer).
  • Solvents suitable for extraction and treatment of lignin are not particularly limited, and examples thereof include water, low molecular alcohols such as dioxane, methanol, and isopropanol, nitrobenzene, diethyl ether, and dimethylformamide.
  • Culture conditions for sphingomonad microorganisms commonly known by those skilled in the art may be employed.
  • the initial pH of the medium is adjusted to 5 to 10
  • the culture temperature is 20 ° C. to 40 ° C.
  • the culture time is several times. Time to several days, preferably 1 to 7 days, more preferably 2 to 5 days, etc. can be set as appropriate.
  • the culture means is not particularly limited, and aeration stirring deep culture, shaking culture, stationary culture and the like can be employed.
  • the dissolved oxygen concentration is not particularly limited, but the enzyme activities of VanA and VanB expressed by the vanA gene and vanB gene are reduced.
  • the culture medium and culture conditions As an example of the culture medium and culture conditions, as described in the examples described later, using Wx minimal medium containing syringic acid and vanillic acid as a carbon source at 30 ° C. and 180 rpm for 1 to 5 days. Examples include shaking culture and stirring culture.
  • the carbon source and other components can be added as appropriate after the start of culture.
  • the method for obtaining muconic acid or protocatechuic acid from the culture after completion of the culture is not particularly limited. Since muconic acid or protocatechuic acid accumulates in the culture solution, the cells and culture supernatant are separated from the culture by normal solid-liquid separation operations such as filtration and centrifugation, and the column is removed from the collected culture supernatant. Muconic acid or protocatechuic acid is extracted by solid phase extraction or solvent extraction using a solvent in which muconic acid or protocatechuic acid is soluble.
  • the extraction solvent is not particularly limited as long as muconic acid or protocatechuic acid can be dissolved, and examples thereof include organic solvents such as methanol, ethanol, isopropanol, and acetone; hydrous organic solvents obtained by mixing these organic solvents and water, and the like. Can be mentioned.
  • extraction temperature is not specifically limited, For example, it can set from room temperature to 100 degreeC.
  • the method for extracting muconic acid include, for example, the method of Vardon et al. (Green chemistry, vol. 18, p3397-3413, 2016; the entire description of the document is incorporated herein by reference) and the like.
  • the method may be partially changed. Specifically, activated carbon (12.5% (w / v), 100 mesh) is added to the culture supernatant and stirred for 1 hour. The activated carbon is removed by suction filtration, and the filtrate is recovered. Hydrochloric acid is added to the collected filtrate to adjust the pH to 2, and the mixture is allowed to stand overnight at 4 ° C.
  • the precipitate is collected by suction filtration, and the precipitate is washed with ion exchange water, then collected by suction filtration, and dried under reduced pressure. Suspend the dried solid in ethanol, remove unnecessary substances by suction filtration, and collect the filtrate. The filtrate is dried under reduced pressure using an evaporator to obtain purified muconic acid.
  • hydrochloric acid is added to the culture supernatant to adjust the pH to approximately 2, and then extraction can be performed with an organic solvent such as ethyl acetate.
  • organic solvent such as ethyl acetate.
  • Examples include a method of obtaining protocatechuic acid by recrystallization of the obtained extract or using an ion exchange resin.
  • the qualitative or quantitative analysis of muconic acid or protocatechuic acid is not particularly limited, and can be performed by, for example, HPLC.
  • HPLC HPLC separation conditions
  • the HPLC separation conditions can be performed under the conditions described in the examples described later.
  • muconic acid or protocatechuic acid can be obtained in high yield.
  • muconic acid can be obtained with a yield of 93% (versus the theoretical yield) by culturing for 35 hours; 5 mM p-hydroxybenzoic acid and 5 mM syringic acid.
  • muconic acid When carbon is used as a carbon source, muconic acid can be obtained in a yield of 75% (versus the theoretical yield) by culturing for 35 hours; 16.5 mg / L of muconic acid can be obtained; when 5 mM vanillic acid and 5 mM syringic acid are used as a carbon source, protocatechuic acid can be obtained with a yield of 83% (versus the theoretical yield) by culturing for 42 hours. Yes; when 5mM p-hydroxybenzoic acid and 5mM syringic acid are used as carbon sources, protocatechuic acid can be obtained in 75% yield (versus the theoretical yield) after 30 hours of culture. Rukoto can.
  • the muconic acid and protocatechuic acid obtained using the transformed microorganism and the production method of one embodiment of the present invention can be converted into various industrially useful compounds, for example, surfactants, flame retardants, UV It can be used as a raw material for muconic acid derivatives that can be expected to be used as light stabilizers, thermosetting plastics, coating agents and the like.
  • adipic acid which is one of muconic acid derivatives, is actually used as nylon 66 (one of polyamides).
  • Protocatechuic acid can be used as a raw material for producing muconic acid, and can also be used as a synthetic raw material for pharmaceuticals, agricultural chemicals, fragrances and the like.
  • Protocatechuic acid is also a precursor of protocatechuic acid-2,3-, 3,4-, 4,5-ring-cleavage metabolites.
  • these metabolites for example, 2-pyrone-4,6-
  • Some have a use as a synthetic resin raw material such as dicarboxylic acid (for example, Japanese Patent No. 4658244; the entire description of this document is incorporated herein by reference).
  • Sphingobium sp. SME257 strain which is a mutant strain in which the protocatechuate 4,5-dioxygenase gene (ligAB gene) was disrupted from Sphingobium species SYK-6 strain, was prepared. .
  • the obtained DNA fragment and pAK405 plasmid DNA previously digested with BamHI were ligated using In-Fusion HD Cloning Kit (Takara Bio Inc.) to obtain pAKDligAB plasmid DNA.
  • the Sphingobiium species SYK-6 strain was transformed by the triple parental conjugation method.
  • the transformant was selected as a Nal-Km resistant strain capable of growing on an LB agar medium containing 12.5 mg / L of nalidixic acid (Nal) and 50 mg / L of kanamycin (Km).
  • the obtained Nal-Km resistant strain was inoculated into an LB liquid medium containing Nal 12.5 mg / L and streptomycin (Sm) 100 mg / L, and cultured with shaking at 30 ° C. for 48 hours.
  • the obtained culture broth was smeared on an LB agar medium containing 100 mg / L of Sm, and statically cultured at 30 ° C. for 72 hours.
  • Genomic DNA was extracted from each of the grown colonies, and then a transformant lacking the ligAB gene on the genomic DNA was screened as Sphingobiium sp. Strain SME257 by PCR.
  • PCA Protocatechuic acid production using syringic acid (SA) and vanillic acid (VA) as carbon sources
  • SA syringic acid
  • VA vanillic acid
  • the obtained culture broth was washed with Wx buffer (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 ⁇ 12H 2 O 9.8 g / L and (NH 4 ) 2 SO 4 1 g / L), Wx minimal medium containing 5 mM VA, 5 mM SA and 1 g / L Tryptone (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 ⁇ 12H 2 O 9.8 g / L, (NH 4 ) 2 SO 4 1 g / L , MgSO 4 ⁇ 7H 2 O 0.1g / L, FeSO 4 ⁇ 7H 2 O 9.5mg / L, MgO 10.75mg / L, CaCO 3 2mg / L, ZnSO 4 ⁇ 7H 2 O 1.44mg / L, MnSO 4 ⁇ 4H 2 O 1.12mg / L, CuSO 4 ⁇ 5H 2 O 0.25mg / L, CoSO 4 ⁇ 7H 2 O 0.
  • the optical density (OD) of the culture solution was measured at regular intervals, and the concentrations of SA, VA and PCA were measured for the culture supernatant obtained by further centrifuging the culture solution.
  • the wavelength of 600 nm was used for OD measurement, and the OD600 value was measured using GeneQuant 100 (GE Healthcare Japan Co., Ltd.).
  • the concentrations of SA, VA and PCA were measured using a high performance liquid chromatograph (Nihon Waters Co., Ltd.).
  • the column used was TSKgel ODS-140HTP column (diameter 2.1 mm, length 100 mm, particle size 2.3 ⁇ m; Tosoh Corporation) and kept at 30 ° C.
  • Table 1 shows a summary of the measurement results of OD600 value, SA concentration, VA concentration, and PCA concentration after 0, 6, 18, 30, and 42 hours of culture time.
  • the OD600 of the culture solution was measured at regular intervals, and the concentrations of SA, HBA and PCA were measured for the culture supernatant obtained by further centrifuging the culture solution.
  • the OD600 measurement and the SA, HBA, and ccMA concentration measurements were performed in the same manner as described in 2 above.
  • Table 2 shows a summary of the measurement results of OD600 value, SA concentration, HBA concentration, and PCA concentration after 0, 6, 18, and 30 hours of culture time.
  • Sphingobium sp. SME257 strain is transformed with pTS084 plasmid DNA, which is a plasmid expressing aroY gene, kpdB gene, catA gene, vanA gene and vanB gene, and SME257 / pTS084 strain is prepared. did.
  • Klebsiella pneumoniae subspecies pneumoniae ( Klebsiella pneumoniae subspecies pneumoniae ) A partial fragment of the genomic DNA of A170-40 strain was used as a template, and PCR was performed by PCR using a primer set consisting of primers 5 and 6 of SEQ ID NOs: 5 and 6. An about 1.5 kbp DNA fragment containing the acid decarboxylase (aroY) gene was obtained. The obtained DNA fragment was digested with KpnI and cloned into pMCL200 plasmid DNA previously digested with KpnI to obtain pTS036 plasmid DNA.
  • Klebsiella pneumoniae sub-species pneumoniae DNA of NBRC14190 strain was used as a template by PCR using the primer set of primers 7 and 8 of SEQ ID NOS: 7 and 8, 4-hydroxybenzoic acid decarboxylase subunit B (4 -A DNA fragment of about 0.6 kbp containing a hydroxylbenzoate decarboxylase subunit B (kpdB) gene was amplified. Both ends of the amplified DNA fragment were subjected to a blunting treatment, then digested with XbaI, and then ligated to a preblunted pTS036 plasmid DNA to obtain pTS052 plasmid DNA. The pTS052 plasmid DNA was obtained by selecting as a clone in which the aroY gene contained in the pTS036 plasmid DNA and the kpdB gene were linked in the forward direction.
  • a DNA fragment of about 2.2 kbp containing the aroY gene and the kpdB gene was amplified by PCR using pTS052 plasmid DNA as a template and a primer set consisting of primers 9 and 10 of SEQ ID NOs: 9 and 10.
  • the amplified DNA fragment was ligated to pJB866 plasmid DNA previously digested with BamHI and EcoRI using Infusion HD Cloning Kit to obtain pTS074 plasmid DNA.
  • Pseudomonas putida Pseudomonas putida
  • catechol 1,2-dioxygenase catechol 1,2 was obtained by PCR using a genomic DNA of the KT2440 strain as a template and a primer set consisting of primers 11 and 12 of SEQ ID NOs: 11 and 12.
  • -Dioxygenase; catA A DNA fragment of about 1.0 kbp containing the gene was obtained. The obtained DNA fragment was ligated to pTS074 plasmid DNA previously digested with SacI using Infusion HD Cloning Kit to obtain pTS079 plasmid DNA.
  • a DNA fragment of about 200 bp containing a lactose promoter region (Plac) was obtained by PCR using pUC118 plasmid DNA as a template and a primer set consisting of primers 13 and 14 of SEQ ID NOs: 13 and 14.
  • the obtained DNA fragment was cloned into the NotI site of pTS079 plasmid DNA using Infusion HD Cloning Kit to obtain pTS082 plasmid DNA.
  • vanillate demethylase oxygenase component vanA
  • vanillate -About 2.0 kbp DNA fragment containing a demethylase oxidoreductase component vanillate demethylase oxidoreductase component; vanB
  • the obtained DNA fragment was digested with SacI and SmaI and ligated with pQE30 plasmid DNA previously digested with SacI and SmaI to obtain pKY001 plasmid DNA.
  • a DNA fragment of about 2.0 kbp containing the vanA gene and the vanB gene was amplified by PCR using pKY001 plasmid DNA as a template and a primer set consisting of primers 17 and 18 of SEQ ID NOs: 17 and 18.
  • the amplified DNA fragment was ligated using pTS082 plasmid DNA previously digested with NotI and Infusion HD Cloning Kit to obtain pTS084 plasmid DNA.
  • the SME257 / pTS084 strain was produced by transforming the Sphingobiium species SME257 strain.
  • the obtained culture broth was washed with Wx buffer (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 ⁇ 12H 2 O 9.8 g / L and (NH 4 ) 2 SO 4 1 g / L), Wx minimal medium containing 12.5 mg / L of Tc, 5 mM VA, 5 mM SA and 1 g / L Tryptone (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 ⁇ 12H 2 O 9.8 g / L, (NH 4 ) 2 SO 4 1g / L, MgSO 4 ⁇ 7H 2 O 0.1g / L, FeSO 4 ⁇ 7H 2 O 9.5mg / L, MgO 10.75mg / L, CaCO 3 2mg / L, ZnSO 4 ⁇ 7H 2 O 1.44mg / L, MnSO 4 ⁇ 4H 2 O 1.12mg / L, CuSO 4 ⁇ 5H 2 O 0.25mg / L, CoSO
  • the OD600 of the culture solution was measured at regular intervals, and the concentrations of SA, VA and ccMA were measured for the culture supernatant obtained by further centrifuging the culture solution. OD600 measurement and SA, VA, and ccMA concentration measurements were performed in the same manner as described in 2 above.
  • Table 3 summarizes the measurement results of OD600 value, SA concentration, VA concentration and ccMA concentration after 0, 5, 10, 20 and 35 hours of culture time.
  • the OD600 of the culture solution was measured at regular time intervals, and the concentrations of SA, HBA and ccMA were measured for the culture supernatant obtained by centrifuging the culture solution.
  • the OD600 measurement and the SA, HBA, and ccMA concentration measurements were performed in the same manner as described in 2 above.
  • Table 4 summarizes the measurement results of OD600 value, SA concentration, HBA concentration and ccMA concentration after 0, 5, 10, 20 and 35 hours of culture time.
  • Diethyl ether extract obtained as an ether layer was evaluated as ccMA production in a Wx medium supplemented with a white birch lignin-derived aromatic compound and a white birch arginine-derived aromatic compound aqueous solution (pH ⁇ 9) as a carbon source.
  • SME257 / pTS084 strain was inoculated into 10 mL of LB liquid medium containing 12.5 mg / L of Tc and cultured with shaking at 30 ° C. for 36 hours.
  • the obtained culture solution was washed with Wx buffer, then inoculated into 10 mL of Wx minimal medium containing 12.5 mg / L of Tc and 0.1 g / L of Tryptone, and 5 ⁇ L of an aqueous solution of shiraka barignin-derived aromatic compound was added as a carbon source.
  • 5 ⁇ L of a white birch arginine-derived aromatic compound aqueous solution was added.
  • the OD600 of the culture solution was measured at regular intervals, and the ccMA concentration was measured for the culture supernatant obtained by centrifuging the culture solution.
  • the concentration of ccMA was measured in the same manner as described in 2 above, and the separation conditions in the high performance liquid chromatograph were equilibrated with 99% solvent A and 1% solvent B, and 3 minutes after starting the analysis. 6 minutes later, the proportion of solvent B is increased to 25%, then the proportion of solvent B is increased to 99% over 1 minute and held for 1 minute, and then the proportion of solvent B is increased to 1% over 1 minute. Lowered to.
  • the mobile phase flow rate was 0.5 mL / min and the measurement wavelength was 260 nm for ccMA.
  • Table 5 summarizes the measurement results of the ccMA concentration after 0, 12, 24 and 48 hours of culture time.
  • sequences listed in the sequence listing are as follows: [SEQ ID NO: 1] Primer 1 ATCCGCCCTAGTGGACGAATGGTCCTCTCTTTAGTGATTTCG [SEQ ID NO: 2] Primer 2 CGACTCTAGAGGATCAGATTTCGGACGACGAGATCC [SEQ ID NO: 3] Primer 3 TCGTCCACTAGGGCGGATCGACATTC [SEQ ID NO: 4] Primer 4 CGGTACCCGGGGATCAGGTGCCGAGCGGCCCG [SEQ ID NO: 5] Primer 5 AGCTGGTACCATTAAAGAGGAGAAATTAACTATGACCGCACCGATTCAG [SEQ ID NO: 6] Primer 6 AGCTGGTACCTTATTTTGCGCTACCCTGGTT [SEQ ID NO: 7] Primer 7 AGCTGAATTCATTAAAGAGGAGAAATTAACTATGAAACTGATTATTGGGATGACG [SEQ ID NO: 8] Primer 8 AGCTTCTAGATTATTCGATCTCCTGTGCAAAT [SEQ ID NO
  • muconic acid and protocatechuic acid can be obtained from a biomass containing an aromatic compound derived from syringyl lignin or a hardwood derived syringyl lignin.
  • Muconic acid and protocatechuic acid can be converted into various industrially useful compounds, such as surfactants, flame retardants, UV light stabilizers, thermosetting plastics, coating agents, pharmaceuticals, agricultural chemicals, fragrances, etc. It can be used as a raw material.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The purpose of the present invention is to provide: a microorganism which enables the production of muconic acid with good economic efficiency and high yield using a syringyllignin-rich biomass as a raw material; and a method for producing muconic acid using the microorganism. The purpose can be achieved by: a transgenic microorganism of which a host microorganism is a microorganism belonging to the family Sphingomonad, having a protocatechuic acid degrading enzyme gene on the chromosome thereof and capable of utilizing a syringyllignin-derived aromatic compound and in which the protocatechuic acid degrading enzyme gene on the chromosome is deleted, inserted catA gene can be expressed and inserted aroY gene or aroY gene and inserted kpdB gene can also be expressed; a method for producing muconic acid using the transgenic microorganism; and others.

Description

形質転換微生物及びその利用Transformed microorganism and use thereof 関連出願の相互参照Cross-reference of related applications
本出願は、2017年4月25日出願の日本特願2017-86595号の優先権を主張し、その全記載は、ここに開示として援用される。 This application claims the priority of Japanese Patent Application No. 2017-86595 filed on Apr. 25, 2017, the entire description of which is incorporated herein by reference.
本発明は、ムコン酸又はプロトカテク酸が生産可能な形質転換微生物及び該形質転換微生物を利用したムコン酸又はプロトカテク酸の製造方法に関する。特に、本発明は、シリンギルリグニン由来の芳香族化合物と、グアイアシルリグニン由来の芳香族化合物及び/又はp-ヒドロキシフェニルリグニン由来の芳香族化合物とを含むバイオマスを炭素源として増殖及びムコン酸又はプロトカテク酸の生産が可能な形質転換微生物に関する。 The present invention relates to a transformed microorganism capable of producing muconic acid or protocatechuic acid, and a method for producing muconic acid or protocatechuic acid using the transformed microorganism. In particular, the present invention is a method for growing and muconic acid using a biomass containing an aromatic compound derived from syringyl lignin, an aromatic compound derived from guaiacyl lignin and / or an aromatic compound derived from p-hydroxyphenyl lignin as a carbon source, or The present invention relates to a transformed microorganism capable of producing protocatechuic acid.
リグニンは植物の維管束細胞壁成分として存在する無定形高分子物質であって、フェニルプロパン系の構成単位が複雑に縮合したものであり、メトキシ基を含有することが化学構造上の大きな特徴になっている。リグニンは木質化した植物細胞を相互に膠着し、組織を強化する働きをしており、木材中に約18~36%、草本中には約15~25%存在する。そこで、木材を有効利用するために、リグニンを分解し、有用化合物を得ようとする試みが種々なされている。 Lignin is an amorphous polymer that exists as a component of plant vascular cell walls. It is a complex condensation of phenylpropane-based structural units, and the main feature of its chemical structure is the inclusion of methoxy groups. ing. Lignin has a function of sticking woody plant cells to each other and strengthening the tissue, and is present in about 18 to 36% in wood and about 15 to 25% in herbs. Therefore, in order to effectively use wood, various attempts have been made to decompose lignin and obtain useful compounds.
一方、cis,cis-ムコン酸(以下、単にムコン酸とよぶ場合がある。)は、分子内に二重結合及びカルボキシ基が2個あることにより、反応性が高い化合物である。ムコン酸を出発物質とする種々のムコン酸誘導体が知られており、例えば、ラクトン、スルホン、ポリアミド、ポリエステル、チオエステル、付加ポリマーなどが挙げられる。このようなムコン酸誘導体は、様々な用途を有するものとして知られており、例えば、界面活性剤、難燃剤、UV光安定化剤、熱硬化性プラスチック、コーティング剤などとして使用され得る。 On the other hand, cis, cis-muconic acid (hereinafter sometimes simply referred to as muconic acid) is a highly reactive compound due to two double bonds and carboxy groups in the molecule. Various muconic acid derivatives starting from muconic acid are known, and examples include lactone, sulfone, polyamide, polyester, thioester, and addition polymer. Such muconic acid derivatives are known to have various uses, and can be used as, for example, surfactants, flame retardants, UV light stabilizers, thermosetting plastics, coating agents and the like.
このように、ムコン酸は、種々の用途に供されるところ、リグニンからムコン酸を製造することができれば、資源の再生が達成され、非常に有用である。そこで、リグニン又はリグニンに由来する物質から、ムコン酸を製造する方法が試みられている。特にこのような方法として、微生物を用いたバイオコンバージョンが研究されている。 As described above, muconic acid is used for various purposes, and if muconic acid can be produced from lignin, resource regeneration is achieved, which is very useful. Therefore, a method for producing muconic acid from lignin or a substance derived from lignin has been attempted. In particular, bioconversion using microorganisms has been studied as such a method.
例えば、下記非特許文献1(該文献の全記載はここに開示として援用される。)には、シュードモナス・プチダ(Pseudomonas putida)を宿主微生物として、染色体上のpcaH遺伝子及びpcaG遺伝子(以下、合わせてpcaHG遺伝子とよぶ場合がある。)並びにcatR遺伝子、catB遺伝子、catC遺伝子及びcatA遺伝子を破壊し、かつ、挿入したcatA遺伝子とaroY遺伝子とを、又はcatA遺伝子とaroY遺伝子とecdB遺伝子とを発現する形質転換微生物を作製し、該形質転換微生物をグルコースにより増殖させ、次いでp-クマル酸によりムコン酸を製造したことが記載されている。また、下記非特許文献2(該文献の全記載はここに開示として援用される。)には、スフィンゴビウム・スピーシーズ(Sphingobium species) SYK-6株がバニリン酸及びシリンガ酸を炭素源として増殖し得ることが記載されている。 For example, the following Non-Patent Document 1 (., Which is incorporated as disclosed herein entire disclosure of the document), the Pseudomonas putida and (Pseudomonas putida) as a host microorganism, pCAH gene and pcaG gene on chromosome (hereinafter combined And the catR gene, catB gene, catC gene and catA gene are disrupted, and the inserted catA gene and aroY gene, or the catA gene, aroY gene and ecdB gene are expressed. It is described that a transformed microorganism was produced, the transformed microorganism was grown with glucose, and then muconic acid was produced with p-coumaric acid. Further, in the following Non-Patent Document 2 (the entire description of which is incorporated herein by reference), the Sphingobium species SYK-6 strain is grown using vanillic acid and syringic acid as a carbon source. It is described that it can.
確かに、非特許文献1に記載の形質転換微生物は、p-クマル酸などのp-ヒドロキシフェニルリグニンに由来する芳香族化合物や、フェルラ酸などのグアイアシルリグニンに由来する芳香族化合物を代謝することができる。しかし、非特許文献1に記載の形質転換微生物は、シリンギルリグニンに由来する芳香族化合物、例えば、シリンガ酸を代謝することができない。したがって、非特許文献1に記載の形質転換微生物を用いては、シリンギルリグニンを多く含むバイオマスを原材料としてムコン酸を製造することが実質的にできないという問題がある。 Certainly, the transformed microorganism described in Non-Patent Document 1 metabolizes aromatic compounds derived from p-hydroxyphenyl lignin such as p-coumaric acid and aromatic compounds derived from guaiacyl lignin such as ferulic acid. be able to. However, the transformed microorganism described in Non-Patent Document 1 cannot metabolize aromatic compounds derived from syringyl lignin, such as syringic acid. Therefore, using the transformed microorganism described in Non-Patent Document 1, there is a problem that muconic acid cannot be substantially produced using biomass containing a large amount of syringyl lignin as a raw material.
また、非特許文献1に記載の形質転換微生物は、増殖のための炭素源として高価なグルコースを要求することから、非特許文献1に記載の形質転換微生物を用いるムコン酸の製造方法は経済性が悪いという問題がある。さらに、菌体増殖のためのグルコースと、ムコン酸生産の基質としてのp-クマル酸というように2種以上の炭素源が求められることから、これらの炭素源の総量を基準にして考えれば、非特許文献1に記載の形質転換微生物を用いるムコン酸の製造方法はムコン酸の収率が悪いという問題がある。 In addition, since the transformed microorganism described in Non-Patent Document 1 requires expensive glucose as a carbon source for growth, the method for producing muconic acid using the transformed microorganism described in Non-Patent Document 1 is economical. There is a problem that is bad. Furthermore, since two or more types of carbon sources are required, such as glucose for cell growth and p-coumaric acid as a substrate for muconic acid production, considering the total amount of these carbon sources, The method for producing muconic acid using the transformed microorganism described in Non-Patent Document 1 has a problem that the yield of muconic acid is poor.
一方、非特許文献2に記載のスフィンゴビウム・スピーシーズ SYK-6株によっては、バニリン酸及びシリンガ酸を炭素源としてムコン酸を製造することができない。 On the other hand, according to Sphingobiium species SYK-6 described in Non-Patent Document 2, muconic acid cannot be produced using vanillic acid and syringic acid as a carbon source.
そこで、本発明は、シリンギルリグニンを多く含むバイオマスを原材料とすることができ、経済性が良好であり、かつ、収率が高いムコン酸の製造を可能にする微生物及び該微生物を利用したムコン酸の製造方法を提供することを、発明が解決しようとする課題とする。 Accordingly, the present invention can use a biomass containing a large amount of syringyl lignin as a raw material, has good economic efficiency, and can produce muconic acid with a high yield, and mucon using the microorganism. An object of the present invention is to provide a method for producing an acid.
本発明者らは、上記課題の解決を試みようとして、まずはシリンギルリグニンを多く含むバイオマスからムコン酸を製造することができる微生物について鋭意検討した。 In an attempt to solve the above-mentioned problems, the present inventors have intensively studied a microorganism capable of producing muconic acid from biomass containing a large amount of syringyl lignin.
図1に、非特許文献1に記載の形質転換微生物の代謝経路を示す。図1に示すように、非特許文献1に記載の形質転換微生物は、宿主微生物がプロトカテク酸・3,4-開裂経路を経た分解を行うシュードモナス・プチダである。このことより、非特許文献1に記載の形質転換微生物によって効率よくムコン酸を製造しようとした場合、宿主微生物の染色体上のpcaHG遺伝子及びcatB遺伝子を欠失させ、さらに挿入したaroY遺伝子を発現させなければならない。こうすることによってはじめて、p-クマル酸などのp-ヒドロキシフェニルリグニン由来の芳香族化合物やフェルラ酸などのグアイアシルリグニン由来の芳香族化合物をプロトカテク酸に一旦は収束して、ムコン酸へと変換することができるようになる。 FIG. 1 shows the metabolic pathway of the transformed microorganism described in Non-Patent Document 1. As shown in FIG. 1, the transformed microorganism described in Non-Patent Document 1 is Pseudomonas putida in which the host microorganism undergoes degradation through the protocatechuic acid • 3,4-cleavage pathway. From this, when trying to efficiently produce muconic acid by the transformed microorganism described in Non-Patent Document 1, the pcaHG gene and catB gene on the chromosome of the host microorganism are deleted, and the inserted aroY gene is expressed. There must be. This is the first time that an aromatic compound derived from p-hydroxyphenyl lignin such as p-coumaric acid or an aromatic compound derived from guaiacyl lignin such as ferulic acid converges to protocatechuic acid and is converted to muconic acid. Will be able to.
しかし、図1に示されていないように、非特許文献1に記載の形質転換微生物は、シリンガ酸などのシリンギルリグニンに由来する芳香族化合物をプロトカテク酸やムコン酸へと代謝することができず、さらにこれらを利用して増殖することもできない。また、非特許文献1に記載の形質転換微生物は、染色体上のpcaHG遺伝子を欠失していることから、微生物の増殖のために、グルコースなどのリグニン由来の芳香族化合物以外の基質を必要とする。 However, as shown in FIG. 1, the transformed microorganism described in Non-Patent Document 1 can metabolize aromatic compounds derived from syringyl lignin such as syringic acid into protocatechuic acid and muconic acid. Furthermore, they cannot be propagated using these. In addition, since the transformed microorganism described in Non-Patent Document 1 lacks the pcaHG gene on the chromosome, a substrate other than lignin-derived aromatic compounds such as glucose is required for the growth of the microorganism. To do.
そこで、本発明者らは、鋭意検討を重ねたところ、シリンガ酸などのシリンギルリグニンに由来する芳香族化合物を代謝することができるスフィンゴモナド(Sphingomonad)科微生物に着眼するに至った。そして、本発明者らは、スフィンゴモナド科微生物の染色体上のプロトカテク酸・4,5-ジオキシゲナーゼ遺伝子を破壊した後、別途、外来遺伝子として挿入したaroY遺伝子、kpdB遺伝子、catA遺伝子などを発現する形質転換微生物を創作することに成功した。そして、驚くべきことに、本発明者らが作製した形質転換微生物は、シリンガ酸などのシリンギルリグニンに由来する芳香族化合物を利用して増殖する、すなわち、シリンギルリグニンに由来する芳香族化合物を資化することができつつも、グアイアシルリグニンやp-ヒドロキシフェニルリグニンに由来する芳香族化合物を利用してムコン酸を製造し得ることを見出した。このようにして、本発明者らは、本発明者らが作製した形質転換微生物を用いて、シリンギルリグニン、グアイアシルリグニン、p-ヒドロキシフェニルリグニンといった様々なタイプのリグニンに由来する芳香族化合物からムコン酸を製造する方法を創作することに成功した。 Accordingly, the present inventors have made intensive studies, which resulted in the focusing on sphingomyelin monad (Sphingomonad) family microorganism capable of metabolizing aromatic compounds from syringyl lignin such syringic acid. The present inventors then disrupted the protocatechuate-4,5-dioxygenase gene on the chromosome of the sphingomonad family microorganism, and then expressed the aroY gene, kpdB gene, catA gene, etc. inserted separately as foreign genes. Succeeded in creating transformed microorganisms. Surprisingly, the transformed microorganism produced by the present inventors grows using an aromatic compound derived from syringyl lignin such as syringic acid, that is, an aromatic compound derived from syringyl lignin. It has been found that muconic acid can be produced using an aromatic compound derived from guaiacyl lignin and p-hydroxyphenyl lignin. In this way, the present inventors can use the transformed microorganisms produced by the present inventors to use aromatic compounds derived from various types of lignin such as syringyl lignin, guaiacyl lignin, and p-hydroxyphenyl lignin. Succeeded in creating a method for producing muconic acid from
さらに驚くべきことに、本発明者らが作製した形質転換微生物を用いる方法は、これらのリグニン由来の芳香族化合物を炭素源として用いながらも、グルコース及びリグニン由来の芳香族化合物を基質として必要とする非特許文献1などに記載の形質転換微生物を用いる方法と比べて、ムコン酸の収率について同程度又はそれ以上であることを見出した。 Surprisingly, the method using the transformed microorganisms produced by the present inventors requires the use of these lignin-derived aromatic compounds as carbon sources, but also uses glucose and lignin-derived aromatic compounds as substrates. It has been found that the yield of muconic acid is comparable or higher compared to the method using a transformed microorganism described in Non-Patent Document 1 or the like.
本発明者らは、ムコン酸を製造し得る形質転換微生物を応用して、ムコン酸の中間体であるプロトカテク酸を製造し得る形質転換微生物を作製し、さらに該形質転換微生物を用いて、シリンギルリグニン、グアイアシルリグニン、p-ヒドロキシフェニルリグニンといった様々なタイプのリグニンに由来する芳香族化合物からプロトカテク酸を製造する方法を創作することに成功した。 The present inventors apply a transformed microorganism capable of producing muconic acid to produce a transformed microorganism capable of producing protocatechuic acid, which is an intermediate of muconic acid, and further, using the transformed microorganism, We have succeeded in creating a method for producing protocatechuic acid from aromatic compounds derived from various types of lignin such as gill lignin, guaiacyl lignin and p-hydroxyphenyl lignin.
リグニン由来の芳香族化合物は、廃資材などのバイオマスから得ることができる。特に、広葉樹にはシリンギルリグニンが多く含まれている。そこで、我が国に多く繁茂する広葉樹に由来するバイオマスは非常に安価に入手できることから、本発明者らが作製した形質転換微生物を用いるムコン酸やプロトカテク酸の製造方法は、非特許文献1に記載の形質転換微生物を用いる方法などと比べて経済的に有利な方法である。本発明は、これらの知見及び成功例に基づき完成された発明である。 The lignin-derived aromatic compound can be obtained from biomass such as waste materials. In particular, hardwood is rich in syringyl lignin. Therefore, since the biomass derived from broad-leaved broad-leaved trees that are prosperous in Japan can be obtained at a very low cost, a method for producing muconic acid and protocatechuic acid using a transformed microorganism produced by the present inventors is described in Non-Patent Document 1. This is an economically advantageous method compared to a method using a transformed microorganism. The present invention has been completed based on these findings and successful examples.
したがって、本発明の一態様によれば、以下の(1)~(6)の形質転換微生物が提供される。
(1)宿主微生物が染色体上にプロトカテク酸分解酵素遺伝子を有し、かつ、シリンギルリグニン由来の芳香族化合物を資化するスフィンゴモナド(Sphingomonad)科微生物であり、
染色体上にある該プロトカテク酸分解酵素遺伝子が欠失しており、
挿入されたcatA遺伝子を発現し、かつ、
挿入されたaroY遺伝子又はaroY遺伝子及びkpdB遺伝子を発現する、
形質転換微生物。
(2)挿入された前記aroY遺伝子、前記kpdB遺伝子及び前記catA遺伝子は、同一プロモーターの制御下にある、(1)に記載の形質転換微生物。
(3)前記形質転換微生物は、挿入されたvanA遺伝子及びvanB遺伝子をさらに発現する、(1)~(2)のいずれか1項に記載の形質転換微生物。
(4)挿入された前記aroY遺伝子、前記kpdB遺伝子、前記catA遺伝子、前記vanA遺伝子及び前記vanB遺伝子は、同一プロモーターの制御下にある、(3)に記載の形質転換微生物。
(5)前記プロトカテク酸分解酵素遺伝子が、ligA遺伝子、ligB遺伝子、pcaG遺伝子、pcaH遺伝子及びpraA遺伝子からなる群から選ばれる遺伝子である、(1)~(4)のいずれか1項に記載の形質転換微生物。
(6)前記宿主微生物が、スフィンゴビウム・スピーシーズ(Sphingobium species)SYK-6株である、(1)~(5)のいずれか1項に記載の形質転換微生物。
Therefore, according to one aspect of the present invention, the following transformed microorganisms (1) to (6) are provided.
(1) the host microorganism has a protocatechuic acid degrading enzyme gene on a chromosome, and a Sphingomonas monad (Sphingomonad) family microorganism assimilates aromatic compounds from syringyl lignin,
The protocatechuate degrading enzyme gene on the chromosome is deleted,
Expressing the inserted catA gene, and
Expressing the inserted aroY gene or aroY gene and kpdB gene;
Transformed microorganisms.
(2) The transformed microorganism according to (1), wherein the inserted aroY gene, the kpdB gene, and the catA gene are under the control of the same promoter.
(3) The transformed microorganism according to any one of (1) to (2), wherein the transformed microorganism further expresses the inserted vanA gene and vanB gene.
(4) The transformed microorganism according to (3), wherein the inserted aroY gene, the kpdB gene, the catA gene, the vanA gene, and the vanB gene are under the control of the same promoter.
(5) The protocatechuic acid degrading enzyme gene is a gene selected from the group consisting of a ligA gene, a ligB gene, a pcaG gene, a pcaH gene and a prA gene, according to any one of (1) to (4) Transformed microorganisms.
(6) The transformed microorganism according to any one of (1) to (5), wherein the host microorganism is a Sphingobiium species SYK-6 strain.
本発明の別の一態様によれば、以下(7)のムコン酸の製造方法が提供される。
(7)p-ヒドロキシフェニルリグニン由来の芳香族化合物及び/又はグアイアシルリグニン由来の芳香族化合物と、シリンギルリグニン由来の芳香族化合物とを、(1)~(6)のいずれか1項に記載の形質転換微生物に作用させることにより、ムコン酸を得る工程を含む、ムコン酸の製造方法。
According to another aspect of the present invention, there is provided the following method (7) for producing muconic acid.
(7) An aromatic compound derived from p-hydroxyphenyl lignin and / or an aromatic compound derived from guaiacyl lignin and an aromatic compound derived from syringyl lignin according to any one of (1) to (6) A method for producing muconic acid, comprising the step of obtaining muconic acid by acting on the transformed microorganism described above.
本発明の別の一態様によれば、以下(8)の形質転換微生物が提供される。
(8)宿主微生物が染色体上にプロトカテク酸分解酵素遺伝子を有し、かつ、シリンギルリグニン由来の芳香族化合物を資化するスフィンゴモナド科微生物であり、かつ、
染色体上にある該プロトカテク酸分解酵素遺伝子が欠失している、
形質転換微生物。
According to another aspect of the present invention, the following transformed microorganism (8) is provided.
(8) the host microorganism is a sphingomonad family microorganism having a protocatechuate degrading enzyme gene on a chromosome and assimilating an aromatic compound derived from syringyl lignin;
The protocatechuate degrading enzyme gene on the chromosome is deleted,
Transformed microorganisms.
本発明の別の一態様によれば、以下(9)のプロトカテク酸の製造方法が提供される。
(9)p-ヒドロキシフェニルリグニン由来の芳香族化合物及び/又はグアイアシルリグニン由来の芳香族化合物と、シリンギルリグニン由来の芳香族化合物とを、(8)に記載の形質転換微生物に作用させることにより、プロトカテク酸を得る工程を含む、プロトカテク酸の製造方法。
According to another one aspect | mode of this invention, the manufacturing method of the protocatechuic acid of the following (9) is provided.
(9) An aromatic compound derived from p-hydroxyphenyl lignin and / or an aromatic compound derived from guaiacyl lignin and an aromatic compound derived from syringyl lignin are allowed to act on the transformed microorganism described in (8). The manufacturing method of protocatechuic acid including the process of obtaining protocatechuic acid by this.
本発明の一態様の形質転換微生物及び本発明の一態様の製造方法によれば、従前の微生物を用いる方法では困難又は不可能であったシリンギルリグニンを多く含むバイオマスを原材料として、安価かつ収率を維持又は改善して、ムコン酸やプロトカテク酸を製造することができる。したがって、本発明の一態様の形質転換微生物及び本発明の一態様の製造方法によれば、様々なタイプのリグニンを含むバイオマスや我が国で比較的入手が容易なバイオマスの有効利用の一環として、工業的規模でのムコン酸やプロトカテク酸の製造が期待できる。 According to the transformed microorganism of one embodiment of the present invention and the production method of one embodiment of the present invention, a biomass containing a large amount of syringyl lignin, which has been difficult or impossible by the method using a conventional microorganism, is used as a raw material at low cost and in a low yield. Muconic acid and protocatechuic acid can be produced while maintaining or improving the rate. Therefore, according to the transformed microorganism of one embodiment of the present invention and the production method of one embodiment of the present invention, as part of effective utilization of biomass containing various types of lignin and biomass relatively easily available in Japan, Production of muconic acid and protocatechuic acid on a scale can be expected.
図1は、非特許文献1のFig.1に記載のシュードモナス・プチダの代謝経路の概要図である。FIG. 1 shows FIG. 1 is a schematic diagram of a metabolic pathway of Pseudomonas putida described in 1. FIG.
以下、本発明の一態様である形質転換微生物及び製造方法の詳細について説明するが、本発明の技術的範囲は本項目の事項によってのみに限定されるものではなく、本発明はその目的を達成する限りにおいて種々の態様をとり得る。 Hereinafter, the details of the transformed microorganism and the production method according to one aspect of the present invention will be described. However, the technical scope of the present invention is not limited only to the matters of this item, and the present invention achieves the object. As long as it does, various aspects can be taken.
(形質転換微生物の概要)
本発明の一態様である形質転換微生物は、宿主微生物の染色体上にある特定の遺伝子が欠失するように、宿主微生物を形質転換した微生物である。また、本発明の一態様である形質転換微生物は、さらに外来遺伝子として挿入したプロトカテク酸からのムコン酸の合成経路に関与する特定の遺伝子を発現するように、宿主微生物を形質転換しているか否かによって、2種類の態様がある。
(Overview of transformed microorganisms)
The transformed microorganism which is one embodiment of the present invention is a microorganism obtained by transforming a host microorganism so that a specific gene on the chromosome of the host microorganism is deleted. In addition, the transformed microorganism which is one embodiment of the present invention further transforms the host microorganism so as to express a specific gene involved in the muconic acid synthesis pathway from protocatechuic acid inserted as a foreign gene. There are two types of modes.
本明細書における「遺伝子の欠失」は、遺伝子が正常に転写されないこと、遺伝子の発現によって産生されるべきタンパク質が正常に翻訳されないことなどのように、遺伝子が正常に機能せずに遺伝子の発現が妨げられていることを意味する。遺伝子の欠失は、例えば、遺伝子の全部又は一部が破壊、欠損、置換、挿入などにより遺伝子の構造が変化することによって生じ得る。ただし、遺伝子の欠失は、遺伝子の構造に変化が生じずに、例えば、遺伝子の制御領域をブロックするなどの手段によって遺伝子の発現が抑えられることによっても生じ得る。 As used herein, “gene deletion” means that a gene does not function normally, such as a gene that is not normally transcribed or a protein that is to be produced by gene expression is not translated normally. It means that expression is prevented. Deletion of a gene can occur, for example, when the structure of the gene is changed due to destruction, deletion, substitution, insertion, or the like of all or part of the gene. However, gene deletion can also occur when gene expression is suppressed by means such as blocking the control region of a gene without causing a change in the structure of the gene.
本明細書における「遺伝子の発現」とは、転写や翻訳などを介して、遺伝子によってコードされるタンパク質が本来の構造や活性を有する態様で生産されることを意味する。また、本明細書における「遺伝子の過剰発現」とは、遺伝子が挿入されたことにより、宿主微生物が本来発現する量を超えて、該遺伝子によってコードされるタンパク質が生産されることを意味する。 As used herein, “gene expression” means that a protein encoded by a gene is produced in such a manner as to have an original structure or activity through transcription, translation, or the like. In addition, the term “overexpression of a gene” in the present specification means that a protein encoded by the gene is produced in excess of the amount originally expressed by the host microorganism by inserting the gene.
(欠失又は挿入する遺伝子)
形質転換微生物について、宿主微生物は染色体上にプロトカテク酸分解酵素遺伝子を有する。プロトカテク酸分解酵素遺伝子は、プロトカテク酸を分解する活性を有する酵素を発現する遺伝子であれば特に限定されないが、例えば、ligA遺伝子、ligB遺伝子、pcaG遺伝子、pcaH遺伝子及びpraA遺伝子などが挙げられる。これらの遺伝子のうち、形質転換微生物は、宿主微生物の染色体上にあるプロトカテク酸分解酵素遺伝子の一部又は全部が欠失している。
(Gene to be deleted or inserted)
For transformed microorganisms, the host microorganism has a protocatechuate degrading enzyme gene on the chromosome. The protocatechuic acid degrading enzyme gene is not particularly limited as long as it expresses an enzyme having an activity of degrading protocatechuic acid, and examples thereof include ligA gene, ligB gene, pcaG gene, pcaH gene, and prA gene. Among these genes, transformed microorganisms lack part or all of the protocatechuate degrading enzyme gene on the chromosome of the host microorganism.
ligA遺伝子及びligB遺伝子は、それぞれプロトカテク酸・4,5-ジオキシゲナーゼの小サブユニット及び大サブユニットを発現する遺伝子、又は一つのポリペプチドからなるプロトカテク酸・4,5-ジオキシゲナーゼを発現する遺伝子であれば特に限定されないが、例えば、それぞれ配列番号19及び20の塩基配列を有する遺伝子などが挙げられる。プロトカテク酸・4,5-ジオキシゲナーゼは、例えば、スフィンゴビウム・スピーシーズ(Sphingobium species) SYK-6株などが保有し、プロトカテク酸から4-カルボキシ-2-ヒドロキシムコン酸-6-セミアルデヒドを生成する反応を触媒する活性を有し、Fe2+を補因子として要求する。 The ligA gene and the ligB gene are genes that express the small and large subunits of protocatechuic acid and 4,5-dioxygenase, respectively, or genes that express protocatechuic acid and 4,5-dioxygenase consisting of a single polypeptide. If it is, it will not specifically limit, For example, the gene etc. which have the base sequence of sequence number 19 and 20, respectively are mentioned. Protocatechuic acid 4,5-dioxygenase, for example, possessed by Sphingobium species SYK-6, etc., produces 4-carboxy-2-hydroxymuconic acid-6-semialdehyde from protocatechuic acid It has an activity of catalyzing the reaction to be performed and requires Fe 2+ as a cofactor.
pcaH遺伝子及びpcaG遺伝子は、それぞれプロトカテク酸・3,4-ジオキシゲナーゼのβサブユニット及びαサブユニットを発現する遺伝子であれば特に限定されないが、例えば、それぞれ配列番号35及び36の塩基配列を有する遺伝子などが挙げられる。プロトカテク酸・3,4-ジオキシゲナーゼは、例えば、シュードモナス・プチダ(Pseudomonas putida) KT2440株などが保有し、プロトカテク酸から3-カルボキシムコン酸を生成する反応を触媒する活性を有し、Fe3+を補因子として要求する。 The pcaH gene and the pcaG gene are not particularly limited as long as they are genes that express the β subunit and α subunit of protocatechuate and 3,4-dioxygenase, respectively. For example, they have the nucleotide sequences of SEQ ID NOs: 35 and 36, respectively. Examples include genes. Protocatechuic acid • 3,4-dioxygenase is possessed by, for example, Pseudomonas putida KT2440 strain, and has an activity of catalyzing the reaction to produce 3-carboxymuconic acid from protocatechuic acid, and contains Fe 3+ Require as a cofactor.
praA遺伝子は、プロトカテク酸・2,3-ジオキシゲナーゼを発現する遺伝子であれば特に限定されないが、例えば、配列番号37の塩基配列を有する遺伝子などが挙げられる。プロトカテク酸・2,3-ジオキシゲナーゼは、例えば、パエニバシラス・スピーシーズ(Paenibacillus species) JJ-1b株などが保有し、プロトカテク酸から5-カルボキシ―2-ヒドロキシムコン酸-6-セミアルデヒドを生成する反応を触媒する活性を有する。 The prA gene is not particularly limited as long as it is a gene that expresses protocatechuic acid-2,3-dioxygenase, and examples thereof include a gene having the base sequence of SEQ ID NO: 37. Protocatechuic acid-2,3-dioxygenase is, for example, possessed by Paenibacillus species JJ-1b and the like, and produces 5-carboxy-2-hydroxymuconic acid-6-semialdehyde from protocatechuic acid. Has the activity of catalyzing
本発明の一態様の形質転換微生物(以下、形質転換微生物(1)とよぶ。)は、挿入されたcatA遺伝子を発現する。形質転換微生物(1)は、さらに挿入されたaroY遺伝子又はaroY遺伝子及びkpdB遺伝子を発現する。一方で、本発明の別の一態様の形質転換微生物(以下、形質転換微生物(2)とよぶ。)は、catA遺伝子、aroY遺伝子及びkpdB遺伝子のいずれも挿入されていない。すなわち、形質転換微生物(2)は、プロトカテク酸からムコン酸を製造することが実質的にできない。本明細書では、形質転換微生物(1)及び(2)をまとめて指すときには、単に「形質転換微生物」とよぶ。 The transformed microorganism of one embodiment of the present invention (hereinafter referred to as transformed microorganism (1)) expresses the inserted catA gene. The transformed microorganism (1) further expresses the inserted aroY gene or aroY gene and kpdB gene. On the other hand, none of the catA gene, the aroY gene, and the kpdB gene is inserted into the transformed microorganism of another embodiment of the present invention (hereinafter referred to as transformed microorganism (2)). That is, the transformed microorganism (2) cannot substantially produce muconic acid from protocatechuic acid. In the present specification, when the transformed microorganisms (1) and (2) are collectively referred to, they are simply referred to as “transformed microorganisms”.
catA遺伝子は、カテコール・1,2-ジオキシゲナーゼ(Catechol 1,2-dioxygenase)を発現する遺伝子であれば特に限定されないが、例えば、配列番号21の塩基配列を有する遺伝子などが挙げられる。カテコール・1,2-ジオキシゲナーゼ(EC1.13.11.1)は、1,2-ジヒドロキシベンゼン・1,2-ジオキシゲナーゼなどともよばれる。カテコール・1,2-ジオキシゲナーゼは、例えば、シュードモナス・プチダ(Pseudomonas putida) KT2440株が保有し、カテコールからcis,cis-ムコン酸を生成する反応を触媒する活性を有し、Fe3+を補因子として要求する。 The catA gene is not particularly limited as long as it is a gene that expresses catechol 1,2-dioxygenase, and examples thereof include a gene having the base sequence of SEQ ID NO: 21. Catechol 1,2-dioxygenase (EC 1.13.11.1) is also called 1,2-dihydroxybenzene 1,2-dioxygenase and the like. Catechol 1,2-dioxygenase is possessed by, for example, Pseudomonas putida KT2440 strain, has an activity of catalyzing the reaction of generating cis, cis-muconic acid from catechol, and co-factors Fe 3+ As request.
カテコール・1,2-ジオキシゲナーゼのアミノ酸配列(accession no.Q88I35)中にIntradiol dioxygenaseドメインを有する。該ドメインは [LIVMF]-x-G-x-[LIVM]-x(4)-[GS]-x(2)-[LIVMA]-x(4)-[LIVM]-[DE]-[LIVMFYC]-x(6)-G-x-[FY](Prosite entry no.P00083)からなり、配列中のYが補因子であるFe3+の結合に関わる。カテコール・1,2-ジオキシゲナーゼのアミノ酸配列中のL137からY165が上記ドメインに相当する。 Intradiol dioxygenase domain is contained in the amino acid sequence of catechol 1,2-dioxygenase (accession no. Q88I35). The domain is [LIVMF] -xGx- [LIVM] -x (4)-[GS] -x (2)-[LIVMA] -x (4)-[LIVM]-[DE]-[LIVFMFYC ] -X (6) -Gx- [FY] (Prosite entry no. P00083), and Y in the sequence is related to the binding of Fe 3+ as a cofactor. L137 to Y165 in the amino acid sequence of catechol 1,2-dioxygenase correspond to the above domain.
aroY遺伝子は、プロトカテク酸・デカルボキシラーゼを発現する遺伝子であれば特に限定されないが、例えば、配列番号22の塩基配列を有する遺伝子などが挙げられる。プロトカテク酸・デカルボキシラーゼ(EC 4.1.1.63)は、3,4-ジヒドロキシ安息香酸・カルボキシリアーゼ(3,4-dihydroxybenzoate carboxy-lyase)ともよばれる。プロトカテク酸・デカルボキシラーゼは、プロトカテク酸からカテコールを生成する反応を触媒する酵素であれば、特に限定されない。なお、3-O-メチルガリック酸から3-メトキシカテコールを生成する反応やガリック酸からピロガロールを生成する反応を触媒する活性を有する酵素についても、プロトカテク酸・デカルボキシラーゼとして使用できる可能性がある。また、バニリン酸脱炭酸酵素や4-ヒドロキシ安息香酸の脱炭酸酵素についても、プロトカテク酸を脱炭酸する可能性があることから、プロトカテク酸・デカルボキシラーゼとして使用できる可能性がある。プロトカテク酸・デカルボキシラーゼは、構造上は、UbiDドメイン(Domain architechture ID 10487953)を含むタンパク質群(UbiD スーパーファミリー)に分類される。 The aroY gene is not particularly limited as long as it is a gene that expresses protocatechuic acid / decarboxylase, and examples thereof include a gene having the base sequence of SEQ ID NO: 22. Protocatechuic acid decarboxylase (EC 4.1.1.63) is also called 3,4-dihydroxybenzoate carboxy-lyase. Protocatechuic acid / decarboxylase is not particularly limited as long as it is an enzyme that catalyzes a reaction for producing catechol from protocatechuic acid. An enzyme having an activity of catalyzing a reaction for producing 3-methoxycatechol from 3-O-methylgallic acid or a reaction for producing pyrogallol from gallic acid may be used as protocatechuic acid / decarboxylase. In addition, vanillic acid decarboxylase and 4-hydroxybenzoic acid decarboxylase may also be used as protocatechuic acid / decarboxylase because protocatechuic acid may be decarboxylated. Protocatechuic acid decarboxylase is structurally classified into a protein group (UbiD superfamily) containing a UbiD domain (Domain architecture ID 10487953).
プロトカテク酸・デカルボキシラーゼの具体例としては、クレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ(Klebsiella pneumoniae subsp.pneumoniae) A170-40株(ATCC 25597株)に由来するタンパク質(accession no.AB479384;AB479384タンパク質)などが挙げられる。AB479384タンパク質のアミノ酸配列と配列同一性の高いアミノ酸配列を有するタンパク質としては、Enterobacter cloacae MBRL1077株由来のprotocatechuate decarboxylase(accession no.AMJ70686;配列同一性 87.2%)、E.cloacae e1026株由来のprotocatechuate decarboxylase(accession no.CZU76022;配列同一性 85.7%)などのprotocatechuate decarboxylaseとして登録されているタンパク質などが挙げられるが、これらに限定されない。これらの酵素は、補因子としてMn2+、プレニル化フラビンモノヌクレオチド(prenylated flavin mononucleotide;prenyl-FMN)を要求する一連の酵素群として特徴付けられる。 Examples of protocatechuic acid decarboxylase, Klebsiella pneumoniae subsp. Pneumoniae (Klebsiella pneumoniae subsp pneumoniae.) Protein from A170-40 strain (ATCC twenty-five thousand five hundred and ninety-seven strain) (accession no.AB479384; AB479384 protein) etc. Can be mentioned. As a protein having an amino acid sequence having high amino acid sequence with the amino acid sequence of AB479384 protein, protocaterate decarboxylase derived from Enterobacter cloacae MBRL1077 (accession no. AMJ70686; sequence identity 87.2%), E. coli. Examples include, but are not limited to, proteins registered as protocatechuate decarboxylase such as protocatechuate decarboxylase (accession no. CZU76022; sequence identity 85.7%) derived from cloacae e1026 strain. These enzymes are characterized as a series of enzymes that require Mn 2+ , prenylated flavin mononucleotide (prenyl-FMN) as cofactors.
kpdB遺伝子は、フラビン・プレニルトランスフェラーゼを発現する遺伝子であれば特に限定されないが、例えば、4-ヒドロキシ安息香酸・デカルボキシラーゼ・サブユニットBを発現する遺伝子などが挙げられ、具体的には配列番号23の塩基配列を有する遺伝子などが挙げられる。UbiXファミリーの中にPhenolic acid(hydroxyarylic acid)decarboxylase subunitBがあり、その一つが4-ヒドロキシ安息香酸・デカルボキシラーゼ・サブユニットBである。なお、Phenolic acid decarboxylaseの中には、AroYやFdc(酵母由来のFerulic acid decarboxylase)のようにホモオリゴマーの酵素もあれば、4-ヒドロキシ安息香酸・デカルボキシラーゼやバニリン酸・デカルボキシラーゼのようにBCDサブユニットからなるヘテロオリゴマーの酵素がある。 The kpdB gene is not particularly limited as long as it is a gene that expresses flavin / prenyltransferase, and examples thereof include a gene that expresses 4-hydroxybenzoic acid / decarboxylase / subunit B. Specifically, SEQ ID NO: 23 And a gene having the nucleotide sequence of Among the UbiX family is Phenolic acid (hydroxylylic acid) decarboxylase subunit B, one of which is 4-hydroxybenzoic acid, decarboxylase, subunit B. In addition, among the phenolic acid decarboxylase, there are homo-oligomeric enzymes such as AroY and Fdc (ferric acid decarboxylase derived from yeast), and BCD such as 4-hydroxybenzoic acid / decarboxylase and vanillic acid / decarboxylase. There are hetero-oligomeric enzymes consisting of subunits.
フラビン・プレニルトランスフェラーゼは、ジメチルアリル一リン酸(DMAP)からジメチルアリル構造をフラビンモノヌクレオチド(FMN)のフラビン骨格へと結合し、prenyl-FMNを合成する反応を触媒する。 Flavin prenyltransferase catalyzes the reaction of synthesizing prenyl-FMN by binding a dimethylallyl structure from dimethylallyl monophosphate (DMAP) to the flavin backbone of flavin mononucleotide (FMN).
4-ヒドロキシ安息香酸・デカルボキシラーゼ・サブユニットBは、フラボプロテイン、UbiX/Pad1ファミリーに分類される酵素であることから、そのアミノ酸配列は、例えば、E.coli K-12株由来のFlavin prenyltransferase(UbiX)のアミノ酸配列(accession no.P0AG03)と配列同一性が50%であり;S.cerevisiae S288c由来のFlavin prenyltransferase(Pad1)のアミノ酸配列(accession no.P33751)と配列同一性が39.8%であり;B.subtilis 168株由来のPhenolic acid decarboxylase subunit B(BcdB)のアミノ酸配列(accession no.P94404)と配列同一性が54.5%である。White MDらの文献(Nature,522:502-506,2015;該文献の全記載はここに開示として援用される。)により、UbiXのアミノ酸配列中にFMNの結合に関わるS37及びR123、DMAPの結合に関わるY153及びR169が同定され、KpdBなどのUbiX/Pad1ファミリーに分類されるタンパク質のアミノ酸配列にもこれらFMN及びDMAPの結合に関わるアミノ酸残基が保存されている。 Since 4-hydroxybenzoic acid / decarboxylase / subunit B is an enzyme classified into the flavoprotein, UbiX / Pad1 family, the amino acid sequence thereof is, for example, E. coli . amino acid sequence sequence identity with (accession no.P0AG03) of coli K-12 strain derived from Flavin prenyltransferase (UbiX) is 50%; S. cerevisiae S288c derived amino acid sequence of Flavin prenyltransferase (Pad1) of (accession no.P33751) and sequence identity is 39.8%; B. It has 54.5% sequence identity with the amino acid sequence (accession no. P94404) of Phenolic acid decarboxylase subunit B (BcdB) derived from subtilis 168 strain. According to White MD et al. (Nature, 522: 502-506, 2015; the entire description is incorporated herein by reference), S37 and R123, which are involved in FMN binding in the amino acid sequence of UbiX, Y153 and R169 involved in the binding were identified, and the amino acid residues involved in the binding of FMN and DMAP are also conserved in the amino acid sequences of proteins classified into the UbiX / Pad1 family such as KpdB.
形質転換微生物(1)について、宿主微生物はシリンガ酸やシリンガアルデヒドなどのシリンギルリグニン由来の芳香族化合物を炭素源として増殖する(資化する)能力を有する。宿主微生物がシリンガ酸やシリンガアルデヒドなどのシリンギル核を有する芳香族化合物を唯一の炭素源として利用して増殖する能力を有するためには、宿主微生物は染色体上にシリンガ酸・デメチラーゼ遺伝子(例えばdesA)、3-O-メチルガリック酸・3,4-ジオキシゲナーゼ遺伝子(例えばdesZ)、3-O-メチルガリック酸・デメチラーゼ遺伝子(例えばvanAB、ligM)、2-ピロン―4,6-ジカルボン酸・ヒドロラーゼ遺伝子(例えばligI)、ガリック酸・ジオキシゲナーゼ遺伝子(例えばdesB)、4-オキサロメサコン酸・トートメラーゼ(例えばligU)、4-オキサロメサコン酸・ヒドラターゼ遺伝子(例えばligJ)、4-カルボキシ-4-ヒドロキシ-2-オキソアジピン酸・アルドラーゼ遺伝子(例えばligK)、オキサロ酢酸・デカルボキシラーゼ遺伝子(例えばligK)など、シリンガ酸をピルビン酸へと代謝するための酵素を生産する遺伝子を有することが好ましい。 With respect to the transformed microorganism (1), the host microorganism has the ability to grow (utilize) an aromatic compound derived from syringyl lignin such as syringic acid and syringaldehyde as a carbon source. In order for a host microorganism to have the ability to grow using an aromatic compound having a syringyl nucleus such as syringic acid or syringaldehyde as a sole carbon source, the host microorganism has a syringate / demethylase gene (eg desA on the chromosome). ), 3-O-methylgallic acid · 3,4-dioxygenase gene (eg desZ), 3-O-methylgallic acid · demethylase gene (eg vanAB, ligM), 2-pyrone-4,6-dicarboxylic acid · Hydrolase gene (eg ligI), gallic acid / dioxygenase gene (eg desB), 4-oxalomesaconic acid / tautomerase (eg ligU), 4-oxalomesaconic acid / hydratase gene (eg ligJ), 4-carboxy-4-hydroxy- 2-oxoadipic acid, al Hydrolase gene (e.g. ligK), such as oxaloacetate decarboxylase gene (e.g. ligK), it is preferable to have a gene that produces an enzyme for metabolism of syringic acid to pyruvate.
上記遺伝子のうち、例えば、desA遺伝子は、シリンガ酸・デメチラーゼ(Syringate O-demethylase)を発現する遺伝子であれば特に限定されないが、例えば、配列番号38の塩基配列を有する遺伝子などが挙げられる。シリンガ酸・デメチラーゼは、例えば、スフィンゴビウム・スピーシーズ SYK-6株などが保有し、シリンガ酸から3-O-メチルガリック酸を生成する反応を触媒する活性を有する。 Among the above genes, for example, the desA gene is not particularly limited as long as it is a gene that expresses syringate O-demethylase, and examples thereof include a gene having the base sequence of SEQ ID NO: 38. The syringic acid demethylase is possessed by, for example, Sphingobium sp. Strain SYK-6 and has an activity of catalyzing a reaction for producing 3-O-methylgallic acid from syringic acid.
また、前記VanABは、シリンガ酸を3-O-メチルガリック酸に変換することができるので、シリンガ酸・デメチラーゼとしても使用することができる。 In addition, VanAB can convert syringic acid into 3-O-methylgallic acid, and thus can also be used as syringic acid / demethylase.
また、宿主微生物は、染色体上に、プロトカテク酸分解酵素遺伝子に加えて、バニリン酸脱メチル化酵素を発現する遺伝子を有することが好ましい。宿主微生物がバニリン酸脱メチル化酵素を発現する遺伝子を染色体上に有していない場合は、バニリン酸脱メチル化酵素を発現する遺伝子を形質転換微生物(1)に挿入することが好ましい。バニリン酸脱メチル化酵素を発現する遺伝子は特に限定されないが、例えば、ligM遺伝子、vanA遺伝子及びvanB遺伝子などが挙げられる。 The host microorganism preferably has a gene expressing vanillate demethylase in addition to the protocatechuate degrading enzyme gene on the chromosome. When the host microorganism does not have a gene expressing vanillate demethylase on the chromosome, it is preferable to insert a gene expressing vanillate demethylase into the transformed microorganism (1). A gene that expresses vanillate demethylase is not particularly limited, and examples thereof include a ligM gene, a vanA gene, and a vanB gene.
ligM遺伝子は、テトラヒドロ葉酸依存型バニリン酸/3-O-メチルガリック酸・O-デメチラーゼ(tetrahydrofolate-dependent vanillate/3-O-methylgallate O-demethylase)を発現する遺伝子であれば特に限定されないが、例えば、配列番号24の塩基配列を有する遺伝子などが挙げられる。 The ligM gene is not particularly limited as long as it is a gene that expresses tetrahydrofolate-dependent vanillic acid / 3-O-methylgallic acid / O-demethylase (tetrahydrofolate-dependent vanillate / 3-O-methylgallate O-demethylase). And a gene having the base sequence of SEQ ID NO: 24.
vanA遺伝子は、バニリン酸・デメチラーゼ・オキシゲナーゼ成分(vanillate demethylase oxygenase component)を発現する遺伝子であれば特に限定されないが、例えば、配列番号25の塩基配列を有する遺伝子などが挙げられる。 The vanA gene is not particularly limited as long as it is a gene that expresses a vanillate / demethylase / oxygenase component (vanillate demethylase oxygenase component), and examples thereof include a gene having the base sequence of SEQ ID NO: 25.
バニリン酸・デメチラーゼ・オキシゲナーゼ成分(EC 1.14.13.82)としては、例えば、シュードモナス・プチダ KT2440株由来のVanA(accession no.Q88GI6)などが挙げられる。バニリン酸・デメチラーゼ・オキシゲナーゼ成分は、Oxidoreductase componentを介して供給されるNADH又はNADPH由来の電子と、分子状酸素から供給される酸素原子とを利用して、バニリン酸のメチルエーテル結合を開裂し、プロトカテク酸、ホルムアルデヒド及び水を生成する。 Examples of the vanillic acid / demethylase / oxygenase component (EC 1.14.13.82) include VanA (accession no. Q88GI6) derived from Pseudomonas putida KT2440. The vanillic acid / demethylase / oxygenase component cleaves the methyl ether bond of vanillic acid using an NADH or NADPH-derived electron supplied via Oxidoductase component and an oxygen atom supplied from molecular oxygen, Protocatechuic acid, formaldehyde and water are produced.
バニリン酸・デメチラーゼ・オキシゲナーゼ成分は、そのアミノ酸配列中にRieske[2Fe-2S]iron-sulfur domain(W7-V107,PROSITE entry no.PS51296)を有し、該ドメイン中のC及びH(C47,H49,C66,H69)がFe-Sの結合に関わる。 The vanillic acid / demethylase / oxygenase component has Rieske [2Fe-2S] iron-sulfur domain (W7-V107, PROSITE entry no. PS51296) in its amino acid sequence, and C and H (C47, H49) in the domain , C66, H69) are related to the Fe—S bond.
vanB遺伝子は、バニリン酸・デメチラーゼ・オキドレダクターゼ成分(vanillate demethylase oxidoreductase component)を発現する遺伝子であれば特に限定されないが、例えば、配列番号26の塩基配列を有する遺伝子などが挙げられる。 The vanB gene is not particularly limited as long as it is a gene that expresses a vanillate / demethylase / oxidoreductase component (vanillate demethylase oxidoreductase component), and examples thereof include a gene having the base sequence of SEQ ID NO: 26.
バニリン酸・デメチラーゼ・オキドレダクターゼ成分(EC 1.14.13.82)としては、例えば、シュードモナス・プチダ KT2440株由来のVanB(accession no.Q88GI5)などが挙げられる。バニリン酸・デメチラーゼ・オキドレダクターゼ成分は、NADH又はNADPHから電子を抜き取り、酸素添加酵素(オキシゲナーゼ)へと伝達する酸化還元酵素の一つとして知られている。バニリン酸・デメチラーゼ・オキドレダクターゼ成分はバニリン酸・デメチラーゼ・オキシゲナーゼ成分であるVanAにNADH又はNADPH由来の電子を伝達する。 Examples of the vanillic acid / demethylase / oxidoreductase component (EC 1.14.13.82) include VanB (accession no. Q88GI5) derived from Pseudomonas putida KT2440. The vanillic acid / demethylase / oxidoreductase component is known as one of the oxidoreductases that extract electrons from NADH or NADPH and transfer them to an oxygenase (oxygenase). The vanillic acid / demethylase / oxidoreductase component transmits NADH or NADPH-derived electrons to VanA which is a vanillic acid / demethylase / oxygenase component.
バニリン酸・デメチラーゼ・オキドレダクターゼ成分は、そのアミノ酸配列中に、2Fe-2S Ferredoxin type iron-sulfer binding domain(G229-I316、PROSITE entry no.PS51085)を有し、該アミノ酸配列中のC(C265、C270、C273、C303)がFe-Sの結合に関わる。また、バニリン酸・デメチラーゼ・オキドレダクターゼ成分は、そのアミノ酸配列中に、NAD-binding domain(L109-D201,Pfam entry no.PF00175)及びFerredoxin reductase type FAD-binding domain(M1-A101、PROSITE entory no.PS51384)を有する。 The vanillic acid / demethylase / oxidoreductase component has 2Fe-2S ferredoxin type iron-sulfer binding domain (G229-I316, PROSITE entry no. PS51085) in its amino acid sequence, and C in the amino acid sequence 5 (C26) , C270, C273, and C303) are involved in the Fe—S bond. In addition, vanillic acid / demethylase / oxidoreductase components include NAD-binding domain (L109-D201, Pfammentry nono. PF00175) and Ferredoxinreductasetype FAD-BindingPrindoMindPrindoMinder PS 51384).
形質転換微生物について、宿主微生物が染色体上にdesA遺伝子とligM遺伝子を有することが好ましい。また、宿主微生物がdesA遺伝子とligM遺伝子を染色体上に有していない場合は、desA遺伝子とligM遺伝子を形質転換微生物に挿入することが好ましい。 For the transformed microorganism, the host microorganism preferably has a desA gene and a ligM gene on the chromosome. When the host microorganism does not have the desA gene and the ligM gene on the chromosome, it is preferable to insert the desA gene and the ligM gene into the transformed microorganism.
挿入する遺伝子は、遺伝子を有する由来生物が本来保有する遺伝子(すなわち、野生型遺伝子)と完全に同一でなくともよく、少なくとも野生型遺伝子が発現するタンパク質(すなわち、野生型タンパク質)と同一の、又は近似する酵素学的性質を有するタンパク質を発現する遺伝子である限り、野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列を有するDNAなどであってもよい。 The gene to be inserted may not be completely the same as the gene originally possessed by the organism having the gene (that is, the wild type gene), and at least the protein that is expressed by the wild type gene (that is, the wild type protein), As long as it is a gene that expresses a protein having similar enzymatic properties, it may be a DNA having a base sequence that hybridizes with a base sequence complementary to the base sequence of the wild-type gene under stringent conditions. Good.
本明細書における「ストリンジェントな条件下でハイブリダイズする塩基配列」とは、野生型遺伝子の塩基配列を有するDNAをプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、サザンブロットハイブリダイゼーション法などを用いることにより得られるDNAの塩基配列を意味する。 The term “base sequence that hybridizes under stringent conditions” in the present specification refers to a colony hybridization method, plaque hybridization method, Southern blot hybridization method using a DNA having a base sequence of a wild-type gene as a probe. It means the base sequence of DNA obtained by using.
本明細書における「ストリンジェントな条件」とは、特異的なハイブリッドのシグナルが非特異的なハイブリッドのシグナルと明確に識別される条件であり、使用するハイブリダイゼーションの系と、プローブの種類、配列及び長さによって異なる。そのような条件は、ハイブリダイゼーションの温度を変えること、洗浄の温度及び塩濃度を変えることにより決定可能である。例えば、非特異的なハイブリッドのシグナルまで強く検出されてしまう場合には、ハイブリダイゼーション及び洗浄の温度を上げるとともに、必要により洗浄の塩濃度を下げることにより特異性を上げることができる。また、特異的なハイブリッドのシグナルも検出されない場合には、ハイブリダイゼーション及び洗浄の温度を下げるとともに、必要により洗浄の塩濃度を上げることにより、ハイブリッドを安定化させることができる。 The term “stringent conditions” in the present specification is a condition in which a specific hybrid signal is clearly distinguished from a non-specific hybrid signal. The hybridization system used, the type of probe, and the sequence It depends on the length. Such conditions can be determined by changing the hybridization temperature, washing temperature and salt concentration. For example, when a non-specific hybrid signal is strongly detected, the specificity can be increased by raising the hybridization and washing temperature and, if necessary, lowering the washing salt concentration. If no specific hybrid signal is detected, the hybrid can be stabilized by lowering the hybridization and washing temperatures and, if necessary, raising the washing salt concentration.
ストリンジェントな条件の具体例としては、例えば、プローブとしてDNAプローブを用い、ハイブリダイゼーションは、5×SSC、1.0%(w/v) 核酸ハイブリダイゼーション用ブロッキング試薬(ロシュ・ダイアグノスティクス社)、0.1%(w/v) N-ラウロイルサルコシン、0.02%(w/v) SDSを用い、一晩(8~16時間程度)で行う。洗浄は、0.1~0.5×SSC、0.1%(w/v) SDS、好ましくは0.1×SSC 、0.1%(w/v) SDSを用い、15分間、2回行う。ハイブリダイゼーション及び洗浄を行う温度は65℃以上、好ましくは68℃以上である。 As a specific example of stringent conditions, for example, a DNA probe is used as a probe, and hybridization is 5 × SSC, 1.0% (w / v), a blocking reagent for nucleic acid hybridization (Roche Diagnostics) , 0.1% (w / v) N-lauroyl sarcosine, 0.02% (w / v) SDS, overnight (about 8 to 16 hours). Washing is performed using 0.1 to 0.5 × SSC, 0.1% (w / v) SDS, preferably 0.1 × SSC, 0.1% (w / v) SDS, twice for 15 minutes. Do. The temperature for performing hybridization and washing is 65 ° C or higher, preferably 68 ° C or higher.
また、ストリンジェントな条件下でハイブリダイズする塩基配列を有するDNAとしては、例えば、コロニー若しくはプラーク由来の野生型遺伝子の塩基配列を有するDNA又は該DNAの断片を固定化したフィルターを用いて、上記したストリンジェントな条件下でハイブリダイゼーションすることによって得られるDNAや0.5M~2.0MのNaCl存在下にて、40℃~75℃でハイブリダイゼーションを実施した後、好ましくは0.7~1.0MのNaCl存在下にて、65℃でハイブリダイゼーションを実施した後、0.1~1×SSC溶液(1×SSC溶液は、150mM 塩化ナトリウム、15mM クエン酸ナトリウム)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAなどを挙げることができる。プローブの調製やハイブリダイゼーションの方法は、Molecular Cloning:A laboratory Manual,2nd-Ed.,Cold Spring Harbor Laboratory,Cold Spring Harbor,NY.,1989、Current Protocols in Molecular Biology,Supplement 1-38,John Wiley&Sons,1987-1997(以下、これらの文献を参考技術文献とよぶ場合がある。該文献の全記載はここに開示として援用される。)などに記載されている方法に準じて実施することができる。なお、当業者であれば、このようなバッファーの塩濃度や温度などの条件に加えて、その他のプローブ濃度、プローブ長さ、反応時間などの諸条件を加味して、野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列を有するDNAを得るための条件を適宜設定することができる。 In addition, as the DNA having a base sequence that hybridizes under stringent conditions, for example, using a DNA having a base sequence of a wild-type gene derived from a colony or plaque or a filter on which the DNA fragment is immobilized, After hybridization at 40 ° C. to 75 ° C. in the presence of DNA obtained by hybridization under the above stringent conditions or 0.5 M to 2.0 M NaCl, preferably 0.7 to 1 After hybridization at 65 ° C in the presence of 0.0 M NaCl, 0.1 to 1 × SSC solution (1 × SSC solution is 150 mM sodium chloride, 15 mM sodium citrate) at 65 ° C. DNA that can be identified by washing the filter with The Probe preparation and hybridization methods are described in Molecular Cloning: A laboratory Manual, 2nd-Ed. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. , 1989, Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons, 1987-1997 (hereinafter these documents may be referred to as reference technical documents. The entire description of these documents is incorporated herein by reference. ) And the like. In addition to the conditions such as the salt concentration and temperature of the buffer, those skilled in the art will consider other conditions such as probe concentration, probe length, reaction time, etc. Conditions for obtaining a DNA having a base sequence that hybridizes under stringent conditions with a complementary base sequence can be appropriately set.
ストリンジェントな条件下でハイブリダイズする塩基配列を含むDNAとしては、プローブとして使用する野生型遺伝子の塩基配列を有するDNAの塩基配列と一定以上の配列同一性を有するDNAが挙げられ、例えば、野生型遺伝子の塩基配列と80%以上、好ましくは85%以上、より好ましくは90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上又は99%以上、さらに好ましくは99.5%以上の配列同一性を有するDNAが挙げられる。該配列同一性の上限は特に限定されず、典型的には100%である。 Examples of DNA containing a base sequence that hybridizes under stringent conditions include DNA having a certain sequence identity with a base sequence of a DNA having a base sequence of a wild-type gene used as a probe. 80% or more, preferably 85% or more, more preferably 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more , 98% or more or 99% or more, more preferably 99.5% or more of DNA having sequence identity. The upper limit of the sequence identity is not particularly limited, and is typically 100%.
野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列としては、例えば、野生型遺伝子の塩基配列において1から数個、好ましくは1から50個、より好ましくは1から30個、さらに好ましくは1から20個、なおさらに好ましくは1、2、3、4、5、6、7、8、9又は10個程度の塩基の欠失、置換、付加などを有する塩基配列を含む。ここで、「塩基の欠失」とは配列中の塩基に欠落又は消失があることを意味し、「塩基の置換」は配列中の塩基が別の塩基に置き換えられていることを意味し、「塩基の付加」とは新たな塩基が挿入するように付け加えられていることを意味する。 The base sequence that hybridizes with the base sequence complementary to the base sequence of the wild type gene under stringent conditions is, for example, 1 to several, preferably 1 to 50, more preferably, in the base sequence of the wild type gene. 1 to 30, more preferably 1 to 20, still more preferably 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 base deletions, substitutions, additions, etc. The base sequence which has. Here, “base deletion” means that there is a deletion or disappearance in the base in the sequence, and “base replacement” means that the base in the sequence is replaced with another base, “Addition of a base” means that a new base is added to be inserted.
野生型遺伝子の塩基配列に相補的な塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列によってコードされるタンパク質は、野生型遺伝子の塩基配列によってコードされるタンパク質が有するアミノ酸配列において1から数個のアミノ酸の欠失、置換、付加などを有するアミノ酸配列を有するタンパク質である蓋然性があるが、野生型遺伝子の塩基配列によってコードされるタンパク質と同じ酵素活性を有するものである。 The protein encoded by the base sequence that hybridizes with the base sequence complementary to the base sequence of the wild-type gene under stringent conditions is 1 to several in the amino acid sequence of the protein encoded by the base sequence of the wild-type gene. Although it is likely to be a protein having an amino acid sequence having deletion, substitution, addition, etc. of individual amino acids, it has the same enzyme activity as the protein encoded by the base sequence of the wild-type gene.
野生型タンパク質と同一の、又は近似する酵素学的性質を有するタンパク質は、そのアミノ酸配列が、野生型タンパク質が有するアミノ酸配列において1から数個のアミノ酸の欠失、置換、付加などを有するアミノ酸配列からなるものであってもよい。ここで、アミノ酸配列の「1から数個のアミノ酸の欠失、置換、付加」における「1から数個」の範囲は特に限定されないが、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19又は20個、好ましくは1、2、3、4、5、6、7、8、9又は10個程度、より好ましくは1、2、3、4又は5個程度を意味する。また、「アミノ酸の欠失」とは配列中のアミノ酸残基の欠落又は消失を意味し、「アミノ酸の置換」は配列中のアミノ酸残基が別のアミノ酸残基に置き換えられていることを意味し、「アミノ酸の付加」とは配列中に新たなアミノ酸残基が挿入するように付け加えられていることを意味する。 A protein having the same or similar enzymatic properties as the wild-type protein has an amino acid sequence having a deletion, substitution, addition, etc. of one to several amino acids in the amino acid sequence of the wild-type protein It may consist of. Here, the range of “1 to several” in the “deletion, substitution and addition of one to several amino acids” of the amino acid sequence is not particularly limited, but for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20, preferably 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 About 1, more preferably about 1, 2, 3, 4 or 5. In addition, “amino acid deletion” means deletion or disappearance of an amino acid residue in the sequence, and “amino acid substitution” means that an amino acid residue in the sequence is replaced with another amino acid residue. “Addition of amino acid” means that a new amino acid residue is added to the sequence.
「1から数個のアミノ酸の欠失、置換、付加」の具体的な態様としては、1から数個のアミノ酸が別の化学的に類似したアミノ酸で置き換えられた態様がある。例えば、ある疎水性アミノ酸を別の疎水性アミノ酸に置換する場合、ある極性アミノ酸を同じ電荷を有する別の極性アミノ酸に置換する場合などを挙げることができる。このような化学的に類似したアミノ酸は、アミノ酸毎に当該技術分野において知られている。具体例を挙げると、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニンなどが挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システインなどが挙げられる。陽電荷をもつ塩基性アミノ酸としては、アルギニン、ヒスチジン、リジンなどが挙げられる。また、負電荷をもつ酸性アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。 A specific embodiment of “deletion, substitution, addition of 1 to several amino acids” includes an embodiment in which one to several amino acids are replaced with another chemically similar amino acid. For example, a case where a certain hydrophobic amino acid is substituted with another hydrophobic amino acid, a case where a certain polar amino acid is substituted with another polar amino acid having the same charge, and the like can be mentioned. Such chemically similar amino acids are known in the art for each amino acid. Specific examples include non-polar (hydrophobic) amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine. Examples of polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine. Examples of the basic amino acid having a positive charge include arginine, histidine, and lysine. Examples of acidic amino acids having a negative charge include aspartic acid and glutamic acid.
野生型タンパク質が有するアミノ酸配列において1から数個のアミノ酸の欠失、置換、付加などを有するアミノ酸配列としては、野生型タンパク質が有するアミノ酸配列と一定以上の配列同一性を有するアミノ酸配列が挙げられ、例えば、野生型タンパク質が有するアミノ酸配列と80%以上、好ましくは85%以上、より好ましくは90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上又は99%以上、さらに好ましくは99.5%以上の配列同一性を有するアミノ酸配列などが挙げられる。該配列同一性の上限は特に限定されず、典型的には100%である。 Examples of amino acid sequences having a deletion, substitution, addition, etc. of one to several amino acids in the amino acid sequence of the wild type protein include amino acid sequences having a certain sequence identity with the amino acid sequence of the wild type protein. For example, 80% or more, preferably 85% or more, more preferably 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% with the amino acid sequence of the wild-type protein As mentioned above, amino acid sequences having sequence identity of 97% or more, 98% or more, or 99% or more, and more preferably 99.5% or more can be mentioned. The upper limit of the sequence identity is not particularly limited, and is typically 100%.
(配列同一性を算出するための手段)
塩基配列やアミノ酸配列の配列同一性を求める方法は特に限定されないが、例えば、通常知られる方法を利用して、野生型遺伝子や野生型遺伝子が発現する野生型タンパク質のアミノ酸配列と対象となる塩基配列やアミノ酸配列とをアラインメントし、両者の配列の一致率を算出するためのプログラムを用いることにより求められる。
(Means for calculating sequence identity)
The method for determining the sequence identity of the base sequence or amino acid sequence is not particularly limited. For example, by using a commonly known method, the amino acid sequence of the wild type gene or the wild type protein expressed by the wild type gene and the target base It is obtained by aligning sequences and amino acid sequences and using a program for calculating the coincidence ratio between the sequences.
2つの塩基配列やアミノ酸配列における一致率を算出するためのプログラムとしては、例えば、Karlin及びAltschulのアルゴリズム(Proc.Natl.Acad.Sci.USA 87:2264-2268、1990;Proc.Natl.Acad.Sci.USA 90:5873-5877、1993;該文献の全記載はここに開示として援用される。)が知られており、このアルゴリズムを用いたBLASTプログラムがAltschulなどによって開発されている(J.Mol.Biol.215:403-410、1990;該文献の全記載はここに開示として援用される。)。さらに、BLASTより感度よく配列同一性を決定するプログラムであるGapped BLASTも知られている(Nucleic Acids Res.25:3389-3402、1997;該文献の全記載はここに開示として援用される。)。したがって、当業者は例えば上記のプログラムを利用して、与えられた配列に対し、高い配列同一性を示す配列をデータベース中から検索することができる。これらは、例えば、米国National Center for Biotechnology Informationのインターネット上のウェブサイト(http://blast.ncbi.nlm.nih.gov/Blast.cgi)において利用可能である。 As a program for calculating the coincidence rate between two base sequences and amino acid sequences, for example, the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990; Proc. Natl. Acad. Sci. USA 90: 5873-5877, 1993; the entire description of this document is incorporated herein by reference), and a BLAST program using this algorithm has been developed by Altschul et al. Mol. Biol. 215: 403-410, 1990; the entire description of this document is hereby incorporated by reference.) Furthermore, Gapped BLAST, which is a program for determining sequence identity with higher sensitivity than BLAST, is also known (Nucleic Acids Res. 25: 3389-3402, 1997; the entire description of this document is incorporated herein by reference). . Therefore, a person skilled in the art can search, for example, a sequence showing high sequence identity from a database using a program described above. These can be used, for example, on the website of the US National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
上記の各方法は、データベース中から配列同一性を示す配列を検索するために通常的に用いられ得るが、個別の配列の配列同一性を決定する手段としては、Genetyxネットワーク版 version 12.0.1(ジェネティックス社)のホモロジー解析を用いることもできる。この方法は、Lipman-Pearson法(Science 227:1435-1441、1985;該文献の全記載はここに開示として援用される。)に基づくものである。塩基配列の配列同一性を解析する際は、可能であればタンパク質をコードしている領域(CDS又はORF)を用いる。 Each of the above methods can be generally used for searching a sequence showing sequence identity from a database. As a means for determining the sequence identity of individual sequences, Genetyx network version version 12.0. 1 (Genetics) homology analysis can also be used. This method is based on the Lipman-Pearson method (Science 227: 1435-1441, 1985; the entire description of this document is incorporated herein by reference). When analyzing the sequence identity of a base sequence, a region encoding a protein (CDS or ORF) is used if possible.
(挿入する遺伝子の由来)
挿入する遺伝子は、挿入する遺伝子を保有する微生物などに由来する。挿入する遺伝子の由来生物としては、例えば、プロトカテク酸からムコン酸を製造することができる微生物やプロトカテク酸を資化することによって増殖可能な微生物などが挙げられる。
(The origin of the gene to be inserted)
The gene to be inserted is derived from a microorganism or the like carrying the gene to be inserted. Examples of the organism derived from the gene to be inserted include microorganisms that can produce muconic acid from protocatechuic acid, microorganisms that can grow by assimilating protocatechuic acid, and the like.
挿入する遺伝子の由来生物の具体例としては、ligM遺伝子及びdesA遺伝子についてはスフィンゴビウム・スピーシーズ、スフィンゴモナス・スピーシーズ、ノボスフィンゴビウム・アロマティシボランス、オルターエリスロバクター・スピーシーズ、エリスロバクターといったスフィンゴモナド目微生物やアルスロバクター・カステリ、アルスロバクター・スピーシーズといったアルスロバクター属微生物、レイフソニア・スピーシーズといったマイクロバクテリ科微生物、コクリア・ポラリス、コクリア・スピーシーズ、ネオマイクロコッカス・エスツアリ、ペニグルタミシバクター・ガンゴトリエンシス、シトロコッカス・スピーシーズ、テルシコッカス・スピーシーズといったマイクロコッカス科微生物、マイクロバクテリウム・スピーシーズといったマイクロバクテリア科微生物など;catA遺伝子についてはシュードモナス・プチダ、シュードモナス・エルギノーサ、シュードモナス・フルオレッセンス、シュードモナス・レイネケイといったシュードモナス属微生物やアシネトバクター・カルコアセチカス、アシネトバクター・ラジオレシステンスといったアシネトバクター属微生物、ロドコッカス・オパカス、ロドコッカス・ピリジニボラス、ロドコッカス・ロドクロウスなどロドコッカス属微生物など;aroY遺伝子及びkpdB遺伝子についてはクレブシエラ・ニューモニエ、クレブシエラ・オキシトカ、クレブシエラ・クアシニューモニエといったクレブシエラ属微生物やエンテロバクター・クロアカ、エンテロバクター・アエロゲネスといったエンテロバクター属微生物、セディメントバクター・ヒドロキシベンゾイカスなど;vanA遺伝子及びvanB遺伝子についてはシュードモナス・プチダ、シュードモナス・フルオレセンス、シュードモナス・レジノボランス、シュードモナス・エルギノーサといったシュードモナス属微生物やコマモナス・テストステロニ、コマモナス・チオオキシダンスといったコマモナス属微生物、アセトバクタ―・パツツリアヌス、アセトバクタ―・アセチ、アセトバクタ―・トロピカリスといったアセトバクタ―属微生物などが挙げられるが、これらに限定されない。 Specific examples of organisms from which genes are inserted include sphingo such as Sphingobium species, Sphingomonas species, Novosphingobium aromaticibolans, Alter erythrobacter species, and erythrobacter for ligM gene and desA gene. Microorganisms such as monads, Arthrobacter castelli, Arthrobacter species such as Arthrobacter sp., Microbacteriaceae such as Leifsonia sp. Micrococcidae microorganisms such as Gangotriensis, Citrococcus sp., Tersicoccus sp.・ Microbacteriaceae microorganisms such as Spices, etc .; For the catA gene, Pseudomonas petitda, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas rennekei and Acinetobacter calcoaceticus, Acinetobacter radioresistence microorganisms Rhodococcus microorganisms such as Opacas, Rhodococcus pyridiniboras, Rhodococcus rhodochrous, etc .; for aroY and kpdB genes, Klebsiella microorganisms such as Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella quasi pneumoniae, and Enterobacter cloacaeros enthusiata Enterobacter microorganisms, Cediment bacter hydroxybenzoicus, etc .; for the vanA gene and vanB gene, Pseudomonas microorganisms such as Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas renonovans, Pseudomonas aeruginosa, Comamonas testosteroni, Comamonas thiooxy Examples include, but are not limited to, microorganisms of the genus Comamonas such as dance, microorganisms of the genus Acetobacter such as Acetobacter patsulianus, Acetobacter aceti, Acetobacter tropicalis, and the like.
上記のとおり、挿入する遺伝子の由来生物は特に限定されないが、形質転換微生物において発現される遺伝子が宿主微生物の生育条件によって不活化せず、又は活性を示すために、遺伝子を挿入することによって形質転換すべき宿主微生物や宿主微生物と生育条件が近似する微生物であることが好ましい。 As described above, the organism from which the inserted gene is derived is not particularly limited, but the gene expressed in the transformed microorganism is not inactivated by the growth conditions of the host microorganism, or is transformed by inserting the gene so as to exhibit activity. A host microorganism to be converted or a microorganism having similar growth conditions to the host microorganism is preferable.
(遺伝子工学的手法による遺伝子のクローニング)
欠失及び挿入する遺伝子は、適当な公知の各種ベクター中に挿入することができる。さらに、このベクターを適当な公知の宿主微生物に導入して、遺伝子を欠失した、又は遺伝子を挿入した形質転換体(形質転換微生物)を作製できる。欠失する遺伝子は野生型遺伝子の全部又は一部が破壊、欠損、置換、挿入などにより遺伝子の構造が変化したものであることが好ましい。挿入する遺伝子は、野生型遺伝子と同一又は近似するタンパク質を発現する遺伝子であることが好ましい。
(Cloning of genes using genetic engineering techniques)
The gene to be deleted and inserted can be inserted into various known vectors. Furthermore, this vector can be introduced into a suitable known host microorganism to produce a transformant (transformed microorganism) having the gene deleted or inserted. The gene to be deleted is preferably one in which the whole or a part of the wild-type gene is altered in its structure due to destruction, deletion, substitution, insertion or the like. The inserted gene is preferably a gene that expresses the same or similar protein as the wild-type gene.
欠失及び挿入する遺伝子の取得方法、これらの遺伝子の塩基配列やこれらの遺伝子が発現するタンパク質のアミノ酸配列に関する情報の取得方法、各種ベクターの製造方法や形質転換微生物の作製方法などは、当業者にとって適宜選択することができる。また、本明細書では、形質転換や形質転換体にはそれぞれ形質導入や形質導入体を包含する。欠失及び挿入する遺伝子のクローニングの一例を非限定的に後述する。 Those skilled in the art can obtain methods for obtaining genes to be deleted and inserted, methods for obtaining information on the base sequences of these genes and amino acid sequences of proteins expressed by these genes, methods for producing various vectors, methods for producing transformed microorganisms, etc. Can be selected as appropriate. Moreover, in this specification, a transformation and a transformant include a transduction and a transductant, respectively. An example of cloning of the gene to be deleted and inserted will be described later without limitation.
例えば、欠失又は挿入する遺伝子に関連する野生型遺伝子を有する由来生物や種々の微生物から、常法、例えば、参考技術文献に記載の方法により、染色体DNAやmRNAを抽出することができる。抽出したmRNAを鋳型としてcDNAを合成することができる。このようにして得られた染色体DNAやcDNAを用いて、染色体DNAやcDNAのライブラリーを作製することができる。 For example, chromosomal DNA or mRNA can be extracted from an organism derived from a wild-type gene associated with a gene to be deleted or inserted or various microorganisms by a conventional method, for example, a method described in a reference technical document. CDNA can be synthesized using the extracted mRNA as a template. A chromosomal DNA or cDNA library can be prepared using the chromosomal DNA or cDNA thus obtained.
例えば、挿入する遺伝子は、該遺伝子に関連する野生型遺伝子を有する由来生物の染色体DNAやcDNAを鋳型としたクローニングにより得ることができる。野生型遺伝子の由来生物は上記したとおりのものであり、具体的な例としては、遺伝子の種類によって、スフィンゴビウム・スピーシーズ SYK-6株、シュードモナス・プチダ KT2440株及びクレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ A170-40株などを挙げることができるが、これらに限定されない。例えば、シュードモナス・プチダ KT2440株を培養し、得られた菌体から水分を取り除き、液体窒素中で冷却しながら乳鉢などを用いて物理的に磨砕することにより細かい粉末状の菌体片とし、該菌体片から通常の方法により染色体DNA画分を抽出する。染色体DNA抽出操作には、DNeasy Blood & TissueKit(キアゲン社)などの市販の染色体DNA抽出キットなどが利用できる。本明細書において、染色体DNAとゲノムDNAとは同義である。 For example, the gene to be inserted can be obtained by cloning using a chromosomal DNA or cDNA of a derived organism having a wild-type gene related to the gene as a template. The wild-type gene-derived organisms are as described above, and specific examples include Sphingobium sp. SYK-6, Pseudomonas putida KT 2440, and Klebsiella pneumoniae sub-species, depending on the type of gene. Examples include, but are not limited to, Pneumonier A170-40. For example, Pseudomonas putida KT2440 strain is cultured, water is removed from the obtained bacterial cells, and it is physically ground using a mortar while cooling in liquid nitrogen to obtain fine powdered bacterial cell pieces. A chromosomal DNA fraction is extracted from the cell fragments by a conventional method. For the chromosomal DNA extraction operation, a commercially available chromosomal DNA extraction kit such as DNeasy Blood & TissueKit (Qiagen) can be used. In this specification, chromosomal DNA and genomic DNA are synonymous.
次いで、染色体DNAを鋳型として、5’末端配列及び3’末端配列に相補的な合成プライマーを用いてポリメラーゼ連鎖反応(polymerase chain reaction;PCR)を行うことにより、DNAを増幅する。プライマーとしては、挿入する遺伝子を含むDNA断片の増幅が可能であれば特に限定されない。その例としては、catA遺伝子を増幅するものとして、シュードモナス・プチダ KT2440株のゲノム配列を参考として設計した配列番号11及び12で表されるプライマーなどが挙げられる。なお、このようなプライマーを用いると、目的遺伝子全長が増幅できる。別の方法として、ショットガンライブラリーからの目的遺伝子クローンのスクリーニングや、Inverse PCR、Nested PCR、5’RACE法、3’RACE法などの適当なPCRにより、目的の遺伝子断片を含むDNAを増幅させ、これらを連結させて全長の目的遺伝子を含むDNAを得ることなどができる。 Next, the DNA is amplified by performing a polymerase chain reaction (PCR) using a chromosomal DNA as a template and a synthetic primer complementary to the 5 'end sequence and the 3' end sequence. The primer is not particularly limited as long as it can amplify a DNA fragment containing a gene to be inserted. Examples thereof include primers represented by SEQ ID NOs: 11 and 12, which are designed with reference to the genome sequence of Pseudomonas putida KT2440 strain as an amplifying catA gene. In addition, when such a primer is used, the target gene full length can be amplified. As another method, DNA containing a target gene fragment is amplified by screening a target gene clone from a shotgun library, or by appropriate PCR such as Inverse PCR, Nested PCR, 5′RACE method, or 3′RACE method. These can be ligated to obtain DNA containing the full-length target gene.
また、欠失又は挿入する遺伝子を取得する方法は、上記したとおりに特に限定されず、遺伝子工学的手法によらなくとも、例えば、化学合成法を用いて遺伝子を構築することが可能である。 In addition, the method for obtaining a gene to be deleted or inserted is not particularly limited as described above, and it is possible to construct a gene using, for example, a chemical synthesis method without using a genetic engineering technique.
PCRにより増幅された増幅産物や化学合成した遺伝子における塩基配列の確認は、例えば、次のように行うことができる。まず、配列を確認したいDNAを通常の方法に準じて適当なベクターに挿入して組換え体DNAを作製する。ベクターへのクローニングには、In-Fusion HD Cloning Kit(タカラバイオ社)、TA Cloning Kit(インビトロジェン社)などの公知又は市販のキット;pAK405(Andreas Kaczmarczykら、Applied and Environmental Microbiology,2012, 78(10)3774-3777;該文献の全記載はここに開示として援用される。)、pMCL200(Gene,vol.162,p157-158,1995を参照;該文献の全記載はここに開示として援用される。)、pJB866(Plasmid,vol.38,p35-51,1997を参照;該文献の全記載はここに開示として援用される。)、pUC118(タカラバイオ社)、pQE30(キアゲン社)、pUC4K(Gene,vol.19、p259-268、1982を参照;該文献の全記載はここに開示として援用される。)、pEX18Amp(Gene,vol.212,p77-86,1998を参照;該文献の全記載はここに開示として援用される。)、pPS858(Gene,vol.212,p77-86,1998を参照;該文献の全記載はここに開示として援用される。)、pUC119(タカラバイオ社)、pUC18(タカラバイオ社)、pBR322(タカラバイオ社)などの公知又は市販のプラスミドベクター;λEMBL3(ストラタジーン社)などの公知又は市販のバクテリオファージベクターなどが使用できる。 Confirmation of the base sequence in the amplification product amplified by PCR or the chemically synthesized gene can be performed, for example, as follows. First, a DNA whose sequence is to be confirmed is inserted into an appropriate vector according to a normal method to produce a recombinant DNA. For cloning into vectors, known or commercially available kits such as In-Fusion HD Cloning Kit (Takara Bio), TA Cloning Kit (Invitrogen), etc .; pAK405 (Andreas Kaczmarczzyk et al., Applied and Environmental Micro10, Bio201, 78 ) 3774-3777; the entire description of this document is incorporated herein by reference.), PMCL200 (see Gene, vol. 162, p157-158, 1995; the entire description of this document is incorporated herein by reference) PJB866 (Plasmid, vol. 38, p35-51, 1997; the entire description of which is incorporated herein by reference), pUC118 (taka Bio), pQE30 (Qiagen), pUC4K (Gene, vol. 19, p259-268, 1982; the entire description of this document is incorporated herein by reference), pEX18Amp (Gene, vol. 212, See p77-86, 1998; the entire description of this document is incorporated herein by reference.), pPS858 (see Gene, vol. 212, p77-86, 1998; the full description of this document is hereby incorporated by reference) ), Known or commercially available plasmid vectors such as pUC119 (Takara Bio), pUC18 (Takara Bio), pBR322 (Takara Bio); known or commercially available bacteriophage vectors such as λEMBL3 (Stratagene) Etc. can be used.
構築した組換え体DNAを大量に得たい場合は、組換え体DNAを、例えば、大腸菌(Escherichia coli)、好ましくは大腸菌 JM109株(タカラバイオ社)や大腸菌 DH5α株(タカラバイオ社)などに導入して形質転換し、次いで得られた形質転換体に含まれる組換え体DNAを、QIAGEN Plasmid Mini Kit(キアゲン社)などを用いて精製することができる。 When a large amount of the constructed recombinant DNA is to be obtained, the recombinant DNA is introduced into, for example, Escherichia coli , preferably E. coli JM109 (Takara Bio) or E. coli DH5α (Takara Bio). Then, the recombinant DNA contained in the obtained transformant can be purified using QIAGEN Plasmid Mini Kit (Qiagen) or the like.
組換え体DNAに挿入されている各遺伝子の塩基配列の決定は、ジデオキシ法(Methods in Enzymology、101、20-78、1983などを参照;該文献の全記載はここに開示として援用される。)などにより行う。塩基配列の決定の際に使用する配列解析装置は特に限定されないが、例えば、Li-COR MODEL 4200Lシークエンサー(アロカ社)、370DNAシークエンスシステム(パーキンエルマー社)、CEQ2000XL DNAアナリシスシステム(ベックマン社)などが挙げられる。そして、決定された塩基配列を元に、翻訳されるタンパク質のアミノ酸配列を知り得る。 For the determination of the base sequence of each gene inserted into the recombinant DNA, see the dideoxy method (Methods in Enzymology, 101, 20-78, 1983, etc.); the entire description of this document is incorporated herein by reference. ) Etc. The sequence analysis apparatus used for determining the base sequence is not particularly limited, and examples thereof include Li-COR MODEL 4200L Sequencer (Aloka), 370 DNA Sequence System (PerkinElmer), and CEQ2000XL DNA Analysis System (Beckman). Can be mentioned. Based on the determined base sequence, the amino acid sequence of the translated protein can be known.
(遺伝子を含む組換えベクターの構築)
欠失又は挿入する遺伝子を含む組換えベクター(組換え体DNA)は、欠失又は挿入する遺伝子を含むPCR増幅産物と各種ベクターとを、遺伝子の欠失又は発現が可能な形で結合することにより構築することができる。なお、欠失する遺伝子の場合は、組換えベクターを宿主微生物に導入して、相同組換えによって、組換えベクター中の遺伝子が宿主微生物中の遺伝子に置き換わるために、組換えベクターは欠失する遺伝子の上流及び下流の領域を含むことが好ましい。
(Construction of recombinant vectors containing genes)
Recombinant vector (recombinant DNA) containing a gene to be deleted or inserted is obtained by linking PCR amplification products containing the gene to be deleted or inserted and various vectors in such a manner that the gene can be deleted or expressed. Can be constructed. In the case of a deleted gene, the recombinant vector is deleted because the gene in the recombinant vector is replaced with the gene in the host microorganism by homologous recombination by introducing the recombinant vector into the host microorganism. It is preferable to include regions upstream and downstream of the gene.
非限定的な例として挿入する遺伝子を含む組換えベクターを作製する方法は、例えば、適当な制限酵素で挿入する遺伝子のいずれかを含むDNA断片を切り出し、該DNA断片を適当な制限酵素で切断したプラスミドベクターとを、In-Fusion HD Cloning Kit(タカラバイオ社)などの市販の組換えベクター作製キットなどを用いて連結することにより構築することができる。または、プラスミドベクターと相同的な配列を両末端に付加した遺伝子を含むDNA断片と、インバースPCRにより増幅したプラスミド由来のDNA断片とを、In-Fusion HD Cloning Kit(タカラバイオ社)などの市販の組換えベクター作製キットを用いて連結させることにより得ることができる。 As a non-limiting example, a method for producing a recombinant vector containing a gene to be inserted is, for example, excising a DNA fragment containing any of the genes to be inserted with an appropriate restriction enzyme and cleaving the DNA fragment with an appropriate restriction enzyme. The plasmid vector thus constructed can be constructed by ligation using a commercially available recombinant vector production kit such as In-Fusion HD Cloning Kit (Takara Bio Inc.). Alternatively, a DNA fragment containing a gene having a sequence homologous to a plasmid vector added to both ends and a plasmid-derived DNA fragment amplified by inverse PCR are commercially available, such as In-Fusion HD Cloning Kit (Takara Bio Inc.). It can be obtained by ligation using a recombinant vector preparation kit.
欠失又は挿入する遺伝子を含む組換えベクターは、欠失又は挿入する遺伝子とプラスミドベクター由来の遺伝子(塩基配列)とを少なくとも含む。組換えベクターの一例としては、catA遺伝子及びaroY遺伝子を含む組換えベクター;catA遺伝子、aroY遺伝子及びkpdB遺伝子を含む組換えベクターなどが挙げられる。組換えベクターは、catA遺伝子、aroY遺伝子及びkpdB遺伝子に加えて、vanA遺伝子及びvanB遺伝子を含むことができる。また、組換えベクターは、上記した遺伝子以外の遺伝子を、本発明の課題解決を妨げない限りに含むものであってもよい。 A recombinant vector containing a gene to be deleted or inserted includes at least a gene to be deleted or inserted and a gene (base sequence) derived from a plasmid vector. Examples of the recombinant vector include a recombinant vector containing a catA gene and an aroY gene; a recombinant vector containing a catA gene, an aroY gene and a kpdB gene. The recombinant vector can contain a vanA gene and a vanB gene in addition to the catA gene, aroY gene and kpdB gene. In addition, the recombinant vector may contain a gene other than the genes described above as long as it does not interfere with the solution of the problem of the present invention.
組換えベクターは、異種遺伝子又は異種核酸配列を含むことが好ましい。異種遺伝子は宿主微生物に本来的に存在しない(not naturally occuring)遺伝子であれば特に限定されず、例えば、宿主微生物由来の核酸配列に依拠しない合成遺伝子、挿入する遺伝子と由来生物が相違する生物に由来する遺伝子、宿主微生物と相違する他の微生物、植物、動物、ウイルスなどの生物に由来する遺伝子などが挙げられる。宿主微生物がシュードモナス属微生物である場合の異種遺伝子の具体例としては、pUC118由来のDNA断片、例えば、ラクトースプロモーター領域(Plac)などが挙げられるが、これに限定されない。 The recombinant vector preferably includes a heterologous gene or heterologous nucleic acid sequence. The heterologous gene is not particularly limited as long as it is not naturally occurring in the host microorganism (for example, a synthetic gene that does not depend on the nucleic acid sequence derived from the host microorganism, or an organism in which the inserted gene and the derived organism are different). Examples include genes derived from organisms such as other microorganisms different from host microorganisms, plants, animals, and viruses. Specific examples of the heterologous gene when the host microorganism is a Pseudomonas microorganism include, but are not limited to, a DNA fragment derived from pUC118, such as a lactose promoter region (Plac).
(形質転換微生物の作製方法)
形質転換微生物の作製方法は特に限定されず、例えば、常法に従って、遺伝子の欠失又は挿入が実現する態様で宿主微生物に挿入する方法などが挙げられる。具体的には、挿入する遺伝子のいずれかを発現誘導プロモーター及びターミネーターの間に挿入したDNAコンストラクトを作製し、次いで該DNAコンストラクトによって宿主微生物を形質転換することなどにより、挿入する遺伝子を発現する形質転換微生物が得られる。又は、欠失する遺伝子並びに該遺伝子の上流及び下流の領域を含むDNAコンストラクトを作製し、次いで該DNAコンストラクトによって宿主微生物を形質転換することなどにより、遺伝子を欠失する形質転換微生物が得られる。本明細書では、宿主微生物を形質転換するために作製された組換えベクターをDNAコンストラクトと総称してよぶ。
(Method for producing transformed microorganism)
A method for producing a transformed microorganism is not particularly limited, and examples thereof include a method of inserting into a host microorganism in such a manner that gene deletion or insertion is realized according to a conventional method. Specifically, a DNA construct in which any of the inserted genes is inserted between an expression-inducing promoter and a terminator is prepared, and then a host microorganism is transformed with the DNA construct. A converted microorganism is obtained. Alternatively, a transformed microorganism that lacks the gene can be obtained by preparing a DNA construct that includes the gene to be deleted and regions upstream and downstream of the gene, and then transforming the host microorganism with the DNA construct. In the present specification, recombinant vectors prepared for transforming host microorganisms are collectively referred to as DNA constructs.
DNAコンストラクトを宿主微生物に導入する方法は特に限定されないが、例えば、当業者に知られているとおりである、導入したDNAコンストラクトが自律的に増殖して遺伝子を発現するように宿主微生物に導入する方法;相同組換えを利用することによりDNAコンストラクトを宿主微生物の染色体上に直接的に挿入する方法などが挙げられる。 The method for introducing the DNA construct into the host microorganism is not particularly limited. For example, the DNA construct is introduced into the host microorganism so that the introduced DNA construct autonomously proliferates to express the gene, as known to those skilled in the art. Method: Examples include a method of directly inserting a DNA construct into the chromosome of a host microorganism by utilizing homologous recombination.
挿入する遺伝子を含むDNAコンストラクトを宿主微生物に導入する方法として、相同組換えを利用する方法では、染色体上の組換え部位の上流領域及び下流領域と相同な配列の間に、DNAコンストラクトを連結し、宿主微生物のゲノム中に挿入することができる。 In a method using homologous recombination as a method for introducing a DNA construct containing a gene to be inserted into a host microorganism, the DNA construct is ligated between sequences upstream and downstream of the recombination site on the chromosome. Can be inserted into the genome of the host microorganism.
形質転換微生物の作製に用いられるベクター-宿主系は、宿主微生物中において、挿入する遺伝子が発現し得る系又は染色体上の遺伝子が欠失し得る系であれば特に限定されないが、例えば、pJB866-スフィンゴモナド科微生物の系、pKT230(Gene,vol.16,p237-247,1981;該文献の全記載はここに開示として援用される。)-スフィンゴモナド科微生物の系などが挙げられる。 The vector-host system used for the production of the transformed microorganism is not particularly limited as long as it is a system in which the inserted gene can be expressed or a gene on the chromosome can be deleted in the host microorganism. For example, pJB866- Sphingomonad family microorganism system, pKT230 (Gene, vol. 16, p237-247, 1981; the entire description of this document is incorporated herein by reference)-a sphingomonad family microorganism system.
挿入する遺伝子を含むDNAコンストラクトは、宿主微生物の染色体に導入しない形で、自律的に増幅して、挿入する遺伝子を発現しても、宿主微生物の染色体に導入した形で挿入する遺伝子を発現しても、どちらでもよい。 The DNA construct containing the gene to be inserted does not introduce into the chromosome of the host microorganism, and autonomously amplifies and expresses the gene to be inserted, but expresses the gene to be inserted in the form introduced into the chromosome of the host microorganism. Or either.
DNAコンストラクトには、形質転換された細胞を選択することを可能にするためのマーカー遺伝子が含まれていてもよい。マーカー遺伝子は特に限定されず、例えば、カナマイシン、テトラサイクリン、アンピシリン、カルベニシリンなどの薬剤に対する薬剤耐性遺伝子などが挙げられる。マーカー遺伝子は、欠失する遺伝子の途中に、又は欠失する遺伝子に置換するように含まれていてもよい。 The DNA construct may include a marker gene to allow selection of transformed cells. The marker gene is not particularly limited, and examples thereof include drug resistance genes for drugs such as kanamycin, tetracycline, ampicillin, and carbenicillin. The marker gene may be included in the middle of the deleted gene or so as to replace the deleted gene.
挿入する遺伝子を含むDNAコンストラクトは、遺伝子の種類によっては、宿主微生物中で遺伝子を発現することを可能にするプロモーター及びターミネーターに加えて、その他の制御配列(例えば、オペレーターなどの転写制御に関わるシス配列など)を含むことができる。 Depending on the type of gene, the DNA construct containing the gene to be inserted is not limited to a promoter and terminator that allow the gene to be expressed in the host microorganism, and other regulatory sequences (for example, cis involved in transcription control such as an operator). An array, etc.).
DNAコンストラクトの一実施態様は、例えば、後述する実施例に記載があるpTS082プラスミドベクター、pTS084プラスミドベクター及びpTS079プラスミドベクターなどが挙げられるが、これらに限定されない。 Examples of one embodiment of the DNA construct include, but are not limited to, the pTS082 plasmid vector, the pTS084 plasmid vector, and the pTS079 plasmid vector described in the Examples described later.
スフィンゴモナド科微生物への形質転換方法としては、当業者に知られる方法を適宜選択することができ、例えば、エレクトロポレーション(電気穿孔)法、接合伝達法などによって実施できる。 As a method for transformation into a sphingomonad family microorganism, a method known to those skilled in the art can be appropriately selected, and for example, electroporation (electroporation) method, junction transfer method and the like can be performed.
形質転換微生物を選択及び増殖させるための培地は、用いる宿主微生物とマーカー遺伝子とに応じて適切なものを用いる。例えば、宿主微生物としてスフィンゴビウム・スピーシーズ SYK-6株を用い、マーカー遺伝子としてカナマイシン及びテトラサイクリンの耐性遺伝子を用いた場合は、形質転換微生物の選択及び増殖は、例えば、形質転換微生物をこれらの薬剤を含むLB培地で培養することなどによって実施できる。 As a medium for selecting and growing transformed microorganisms, an appropriate medium is used according to the host microorganism and marker gene to be used. For example, when the Sphingobium sp. Strain SYK-6 is used as the host microorganism and the kanamycin and tetracycline resistance genes are used as the marker genes, selection and growth of the transformed microorganism can be achieved by, for example, transforming the transformed microorganism into these drugs. It can be carried out by culturing in an LB medium containing
形質転換微生物が作製されたことの確認は、例えば、遺伝子の欠失した形質転換微生物のみが生存し得る条件や挿入する遺伝子を発現する形質転換微生物のみが生存し得る条件下で形質転換微生物を培養することなどにより達成し得る。また、形質転換微生物を培養し、次いで培養後に得られた培養物におけるムコン酸の量が、同じ条件下で培養した宿主微生物の培養物におけるムコン酸の量よりも大きいことを確認することなどにより、形質転換微生物が作製されたことを確認することができる。 Confirmation that a transformed microorganism has been produced can be achieved by, for example, transforming the transformed microorganism under conditions where only the transformed microorganism lacking the gene can survive or under conditions where only the transformed microorganism expressing the inserted gene can survive. It can be achieved by culturing and the like. In addition, by culturing the transformed microorganism and then confirming that the amount of muconic acid in the culture obtained after culturing is larger than the amount of muconic acid in the culture of the host microorganism cultured under the same conditions, etc. It can be confirmed that a transformed microorganism has been produced.
形質転換微生物が作製されたことの確認は、形質転換微生物から染色体DNAを抽出し、これを鋳型としてPCRを行い、形質転換が起きた場合に増幅が可能なPCR産物が生じることやPCR産物の特性や塩基配列を確認することなどにより行ってもよい。 Confirmation that a transformed microorganism has been produced can be obtained by extracting chromosomal DNA from the transformed microorganism, performing PCR using this as a template, and generating a PCR product that can be amplified when transformation occurs. You may carry out by confirming a characteristic, a base sequence, etc.
例えば、欠失又は挿入する遺伝子のプロモーターの塩基配列に対するフォワードプライマーと、マーカー遺伝子の塩基配列に対するリバースプライマーとの組み合わせでPCRを行い、想定の長さの産物が生じることを確認する。 For example, PCR is performed with a combination of a forward primer for the promoter base sequence of the gene to be deleted or inserted and a reverse primer for the base sequence of the marker gene to confirm that a product of the expected length is generated.
相同組換えにより形質転換を行う場合には、用いた上流側の相同領域より上流に位置するフォワードプライマーと、用いた下流側の相同領域より下流に位置するリバースプライマーとの組み合わせでPCRを行い、相同組換えが起きた場合に想定される長さの産物が生じることを確認することが好ましい。  When performing transformation by homologous recombination, perform PCR with a combination of a forward primer located upstream from the upstream homologous region used and a reverse primer located downstream from the downstream homologous region used, It is preferable to confirm that a product of the expected length is produced when homologous recombination occurs.
(宿主微生物)
宿主微生物は、染色体上にプロトカテク酸分解酵素遺伝子を有し、かつ、シリンギルリグニン由来の芳香族化合物を資化するスフィンゴモナド科微生物であれば特に限定されず、例えば、染色体上にプロトカテク酸分解酵素遺伝子を有し、かつ、シリンガ酸及びシリンガアルデヒドを利用して増殖するスフィンゴモナド科微生物である。このようなスフィンゴモナド科微生物としては、プロトカテク酸を分解することができるスフィンゴモナド科微生物であることが好ましく、プロトカテク酸分解酵素を欠失してもシリンガ酸又はシリンガアルデヒドを資化するスフィンゴモナド科微生物であることがより好まく、染色体上にligA遺伝子及びligB遺伝子を有するスフィンゴモナド科微生物がさらに好ましい。宿主微生物の具体的な好ましい態様は、スフィンゴビウム・スピーシーズ SYK-6株、スフィンゴビウム・スピーシーズ 66-54株、スフィンゴモナス・ヘングシュイエンシス(Sphingomonas hengshuiensis) WHSC-8株、ノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.) PP1Y株、ノボスフィンゴビウム・スピーシーズ AAP93株といったスフィンゴモナド科微生物であり、より好ましくは染色体上にligA遺伝子及びligB遺伝子を有し、かつ、シリンガ酸及びシリンガアルデヒドを資化するスフィンゴビウム・スピーシーズ SYK-6株である。
(Host microorganism)
The host microorganism is not particularly limited as long as it is a sphingomonad family microorganism having a protocatechuate-degrading enzyme gene on a chromosome and assimilating an aromatic compound derived from syringyl lignin, for example, protocatechuate degradation It is a sphingomonad family microorganism having an enzyme gene and growing using syringic acid and syringaldehyde. Such a sphingomonad family microorganism is preferably a sphingomonado family microorganism capable of degrading protocatechuic acid, and sphingomonado that assimilates syringic acid or syringaldehyde even if the protocatechuate degrading enzyme is deleted. More preferred are family microorganisms, and sphingomonad family microorganisms having ligA gene and ligB gene on the chromosome are more preferred. Specific preferred embodiments of the host microorganism include Sphingobium sp. SYK-6 strain, Sphingobium sp. 66-54 strain, Sphingomonas hengshuiensis WHSC-8 strain, Novosphingobium strain Novosphingium sp. A sphingomonad family microorganism such as PP1Y strain, Novosphingobium sp. AAP93 strain, more preferably ligA gene and ligB gene on the chromosome, and syringic acid and syringaldehyde Sphingobium species to be utilized SYK-6.
(欠失又は挿入する遺伝子の具体例)
欠失又は挿入する遺伝子として、ligA遺伝子、ligB遺伝子及びligM遺伝子の具体例は、スフィンゴビウム・スピーシーズ SYK-6株が保有するligA遺伝子、ligB遺伝子及びligM遺伝子であり、それぞれの塩基配列は配列番号19~20及び24に記載のものである。catA遺伝子、vanA遺伝子及びvanB遺伝子の具体例は、シュードモナス・プチダ KT2440株が保有するcatA遺伝子、vanA遺伝子及びvanB遺伝子であり、それぞれの塩基配列は配列番号21及び25~26に記載のものである。aroY遺伝子の具体例は、クレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ A170-40株が保有するaroY遺伝子であり、塩基配列は配列番号22に記載のものである。kpdB遺伝子の具体例は、クレブシエラ・ニューモニエ・サブスピーシズ・ニューモニエ NBRC14940株が保有するkpdB遺伝子であり、塩基配列は配列番号23に記載のものである。また、これらの遺伝子が発現するタンパク質のアミノ酸配列は、それぞれ配列番号27~34に記載のものである。
(Specific examples of genes to be deleted or inserted)
Specific examples of the ligA gene, the ligB gene, and the ligM gene as the genes to be deleted or inserted are the ligA gene, the ligB gene, and the ligM gene possessed by the Sphingobium species SYK-6 strain. Nos. 19 to 20 and 24. Specific examples of the catA gene, vanA gene, and vanB gene are the catA gene, vanA gene, and vanB gene possessed by Pseudomonas putida KT2440, and the base sequences thereof are those described in SEQ ID NOs: 21 and 25 to 26, respectively. . A specific example of the aroY gene is the aroY gene possessed by the Klebsiella pneumoniae subspecies pneumoniae A170-40 strain, and the nucleotide sequence is as set forth in SEQ ID NO: 22. A specific example of the kpdB gene is the kpdB gene possessed by Klebsiella pneumoniae, subspices pneumoniae NBRC14940, and the nucleotide sequence thereof is shown in SEQ ID NO: 23. The amino acid sequences of proteins expressed by these genes are those described in SEQ ID NOs: 27 to 34, respectively.
スフィンゴビウム・スピーシーズ、シュードモナス・プチダ、クレブシエラ・ニューモニエ以外の微生物から欠失又は挿入する遺伝子を得る方法は特に限定されないが、例えば、スフィンゴビウム・スピーシーズ SYK-6株が保有するligA遺伝子、ligB遺伝子及びligM遺伝子の塩基配列(配列番号19~20及び24);シュードモナス・プチダ KT2440株が保有するcatA遺伝子、vanA遺伝子及びvanB遺伝子の塩基配列(配列番号21及び25~26);クレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ A170-40株が保有するaroY遺伝子の塩基配列(配列番号22);クレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ NBRC14940株が保有するkpdB遺伝子の塩基配列(配列番号23)に基づいて、その他の微生物のゲノムDNA配列に対してBLAST相同性検索を行って、上記塩基配列と配列同一性の高い塩基配列を有する遺伝子を特定することにより得ることができる。また、その他の微生物の総タンパク質を基に、上記遺伝子が発現するタンパク質のアミノ酸配列(配列番号27~34)と配列同一性の高いアミノ酸配列を有するタンパク質を特定し、該タンパク質を発現する遺伝子を特定することにより得ることができる。得られた遺伝子が欠失又は挿入する遺伝子に相当することは、得られた遺伝子により由来生物を宿主微生物として形質転換し、宿主微生物に比してムコン酸の生産量が増強されていることで確認できる。 A method for obtaining a gene to be deleted or inserted from a microorganism other than Sphingobium sp., Pseudomonas putida, Klebsiella pneumoniae is not particularly limited. For example, the ligA gene, ligB possessed by Sphingobium sp. Nucleotide sequences of the gene and ligM gene (SEQ ID NOs: 19 to 20 and 24); Pseudomonas putida, nucleotide sequences of the catA gene, vanA gene and vanB gene (SEQ ID NOs: 21 and 25 to 26) possessed by the KT2440 strain; Klebsiella pneumoniae Subspecies pneumoniae A170-40 aroY gene nucleotide sequence (SEQ ID NO: 22); Klebsiella pneumoniae subspecies pneumoniae NBRC14940 strain kpd By performing a BLAST homology search on genomic DNA sequences of other microorganisms based on the base sequence of the gene (SEQ ID NO: 23), and identifying a gene having a base sequence with high sequence identity to the above base sequence Obtainable. Further, based on the total protein of other microorganisms, a protein having an amino acid sequence having a high sequence identity with the amino acid sequence (SEQ ID NO: 27 to 34) of the protein expressed by the gene is specified, and a gene that expresses the protein is identified. It can be obtained by specifying. The reason why the obtained gene corresponds to a gene to be deleted or inserted is that the derived organism is transformed as a host microorganism by the obtained gene, and the production amount of muconic acid is enhanced compared to the host microorganism. I can confirm.
スフィンゴビウム・スピーシーズ SYK-6株、スフィンゴビウム・スピーシーズ 66-54株、スフィンゴモナス・ヘングシュイエンシス WHSC-8株、ノボスフィンゴビウム・スピーシーズ PP1Y株及びノボスフィンゴビウム・スピーシーズ AAP93株はゲノム構成が近似していることから、これらそれぞれが有する遺伝子を挿入することにより、相互に形質転換できる蓋然性がある。例えば、スフィンゴビウム・スピーシーズ SYK-6株から得られた遺伝子を、宿主微生物としてスフィンゴビウム・スピーシーズ 66-54株、スフィンゴモナス・ヘングシュイエンシス WHSC-8株、ノボスフィンゴビウム・スピーシーズ PP1Y株及びノボスフィンゴビウム・スピーシーズ AAP93株に導入して形質転換することができる。また、スフィンゴビウム・スピーシーズ SYK-6株から得られた遺伝子を、宿主微生物としてシュードモナス属微生物、クレブシエラ属微生物、エンテロバクター属微生物、大腸菌などに導入して、発現させることも可能である。なお、挿入する遺伝子は、宿主微生物に発現させるために、コドン、二次構造、GC含量などを最適化した遺伝子であってもよい。 Sphingobiium species SYK-6, Sphingobium species 66-54, Sphingomonas Hengshuiensis WHSC-8, Novosphingobium species PP1Y and Novosfingobium species AAP93 Since the genome structures are similar, there is a probability that they can be transformed into each other by inserting the genes they have. For example, the genes obtained from Sphingobium sp. Strain SYK-6 are used as host microorganisms, Sphingobium sp. Sp. 66-54 strain, Sphingomonas Hengshuiensis WHSC-8 strain, Novosphingobium sp. Strain and Novosphingobium sp. AAP93 strain can be transformed. It is also possible to introduce a gene obtained from Sphingobium sp. Strain SYK-6 into a Pseudomonas microorganism, Klebsiella microorganism, Enterobacter microorganism, Escherichia coli or the like as a host microorganism for expression. The gene to be inserted may be a gene whose codon, secondary structure, GC content and the like are optimized for expression in the host microorganism.
(形質転換微生物の一実施態様)
形質転換微生物(1)の具体的一態様は、宿主微生物がスフィンゴビウム・スピーシーズ SYK-6株、スフィンゴビウム・スピーシーズ 66-54株、スフィンゴモナス・ヘングシュイエンシス WHSC-8株、ノボスフィンゴビウム・スピーシーズ PP1Y株及びノボスフィンゴビウム・スピーシーズ AAP93株からなる群から選ばれるスフィンゴモナド科微生物であって、染色体上にあるligA遺伝子及びligB遺伝子からなる群から選ばれる少なくとも1種の遺伝子が欠失し、挿入されたcatA遺伝子を発現し、かつ、挿入されたaroY遺伝子又はaroY遺伝子及びkpdB遺伝子を発現する、形質転換スフィンゴモナド科微生物である。また、形質転換微生物(1)の別の具体的一態様は、該形質転換スフィンゴモナド科微生物において、挿入されたvanA遺伝子及びvanB遺伝子を発現する、形質転換スフィンゴモナド科微生物である。なお、これらの形質転換スフィンゴモナド科微生物は、染色体上にligM遺伝子を有する場合、ligM遺伝子を発現するものであってもよい。
(One embodiment of transformed microorganism)
One specific aspect of the transformed microorganism (1) is that the host microorganism is a sphingobium species SYK-6 strain, a sphingobium species 66-54 strain, a sphingomonas hengshuiensis WHSC-8 strain, a nobosphingo A sphingomonad family microorganism selected from the group consisting of Bium sp. PP1Y strain and Novosphingobium sp. AAP93 strain, wherein at least one gene selected from the group consisting of ligA gene and ligB gene on the chromosome is present A transformed sphingomonad family microorganism that is deleted, expresses the inserted catA gene, and expresses the inserted aroY gene or aroY gene and kpdB gene. Another specific embodiment of the transformed microorganism (1) is a transformed sphingomonad microorganism that expresses the inserted vanA gene and vanB gene in the transformed sphingomonad family microorganism. In addition, when these transformed sphingomonad family microorganisms have a ligM gene on a chromosome, they may express the ligM gene.
このような形質転換微生物(1)は、染色体上にあるligA遺伝子及び/又はligB遺伝子が欠失し、挿入されたcatA遺伝子を発現し、かつ、挿入されたaroY遺伝子又はaroY遺伝子及びkpdB遺伝子が発現するという態様を少なくともとることにより、非特許文献1に記載の形質転換微生物では不可能である、バニリン酸などのグアイアシルリグニン由来の芳香族化合物や4-ヒドロキシ安息香酸などのp-ヒドロキシフェニルリグニン由来の芳香族化合物と、シリンガ酸などのシリンギルリグニン由来の芳香族化合物とを炭素源として、増殖及びムコン酸の製造が可能である。後述する実施例に記載があるとおり、形質転換微生物のより好ましい態様は、さらに挿入されたvanA遺伝子及びvanB遺伝子を発現する形質転換微生物である。 In such a transformed microorganism (1), the ligA gene and / or ligB gene on the chromosome is deleted, the inserted catA gene is expressed, and the inserted aroY gene, aroY gene and kpdB gene are By taking at least the mode of expression, aromatic compounds derived from guaiacyl lignin such as vanillic acid and p-hydroxyphenyl such as 4-hydroxybenzoic acid, which are impossible with the transformed microorganism described in Non-Patent Document 1, Growth and muconic acid production are possible using lignin-derived aromatic compounds and syringyl lignin-derived aromatic compounds such as syringic acid as a carbon source. As described in the examples described later, a more preferable embodiment of the transformed microorganism is a transformed microorganism that expresses further inserted vanA gene and vanB gene.
形質転換微生物(1)の具体的態様は、後述する実施例に記載があるSME257/pTS084株などであるが、これらに限定されない。 Specific examples of the transformed microorganism (1) include SME257 / pTS084 strain described in Examples described later, but are not limited thereto.
形質転換微生物(2)の具体的一態様は、宿主微生物がスフィンゴビウム・スピーシーズ SYK-6株、スフィンゴビウム・スピーシーズ 66-54株、スフィンゴモナス・ヘングシュイエンシス WHSC-8株、ノボスフィンゴビウム・スピーシーズ PP1Y株及びノボスフィンゴビウム・スピーシーズ AAP93株からなる群から選ばれるスフィンゴモナド科微生物であって、染色体上にあるligA遺伝子及びligB遺伝子からなる群から選ばれる少なくとも1種の遺伝子が欠失した、前記形質転換スフィンゴモナド科微生物である。 One specific aspect of the transformed microorganism (2) is that the host microorganism is Sphingobiium species SYK-6, Sphingobiium species 66-54, Sphingomonas Hengshuiensis WHSC-8, Novosphingo Bium sp., A sphingomonad family microorganism selected from the group consisting of PP1Y strain and Novosphingobium sp. Strain AAP93, wherein at least one gene selected from the group consisting of ligA gene and ligB gene on the chromosome is present The transformed sphingomonad family microorganism which has been deleted.
このような形質転換微生物(2)は、染色体上にあるligA遺伝子及び/又はligB遺伝子が欠失したという態様を少なくともとることにより、バニリン酸などのグアイアシルリグニン由来の芳香族化合物や4-ヒドロキシ安息香酸などのp-ヒドロキシフェニルリグニン由来の芳香族化合物と、シリンガ酸などのシリンギルリグニン由来の芳香族化合物とを炭素源として、増殖及びプロトカテク酸の製造が可能である。 Such a transformed microorganism (2) has at least an embodiment in which the ligA gene and / or the ligB gene on the chromosome is deleted, so that an aromatic compound derived from guaiacyl lignin such as vanillic acid or 4-hydroxy Growth and production of protocatechuic acid are possible using an aromatic compound derived from p-hydroxyphenyl lignin such as benzoic acid and an aromatic compound derived from syringyl lignin such as syringic acid as a carbon source.
形質転換微生物(2)の具体的態様は、後述する実施例に記載があるSME257株などであるが、これらに限定されない。 Specific examples of the transformed microorganism (2) include the SME257 strain described in Examples described later, but are not limited thereto.
プ ロトカテク酸はムコン酸の前駆体であるとともに、プロトカテク酸・2,3-、3,4-、4,5-環開裂代謝産物の前駆体でもあり、該代謝産物の中には、例えば2-ピロン-4,6-ジカルボン酸(例えば、特許第4658244号;該文献の全記載はここに開示として援用される。)などの合成樹脂原料としての用途を有するものもある。また、プロトカテク酸は、医薬、農薬、香料などに対する合成原料としての用途もある。 Protocatechuic acid is a precursor of muconic acid and also a precursor of protocatechuic acid-2,3-, 3,4-, 4,5-ring-cleaving metabolites. Among these metabolites, for example, 2 Some have uses as synthetic resin raw materials such as -pyrone-4,6-dicarboxylic acid (for example, Japanese Patent No. 4658244; the entire description of this document is incorporated herein by reference). Protocatechuic acid is also used as a synthetic raw material for pharmaceuticals, agricultural chemicals, fragrances and the like.
なお、特開2010-207094号公報(該文献の全記載はここに開示として援用される。)には、シュードモナス・プチダを宿主微生物として、染色体上のpcaHG遺伝子並びにプロトカテク酸5位酸化酵素遺伝子を破壊又は変異させ、かつ、挿入したtpaK遺伝子とtpaAa遺伝子とtpaAb遺伝子とtpaB遺伝子とtpaC遺伝子とを発現する形質転換微生物を作製し、該形質転換微生物をグルコースにより増殖させ、次いでテレフタル酸によりプロトカテク酸を製造したことが記載されている。しかし、特開2010-207094号公報には、リグニン又はリグニン由来の芳香族化合物によりプロトカテク酸を製造していない。実際、特開2010-207094号公報に記載の形質転換微生物は、シリンギルリグニンに由来する芳香族化合物、例えば、シリンガ酸を代謝することはできない。 JP 2010-207094 (the entire description of which is incorporated herein by reference) uses Pseudomonas putida as a host microorganism, pcaHG gene on chromosome and protocatechuate 5-position oxidase gene. A transformed microorganism that is disrupted or mutated and expresses the inserted tpaK gene, tpaAa gene, tpaAb gene, tpaB gene, and tpaC gene is produced, and the transformed microorganism is grown with glucose, and then protocatechuic acid with terephthalic acid Is described. However, Japanese Patent Application Laid-Open No. 2010-207094 does not produce protocatechuic acid from lignin or a lignin-derived aromatic compound. In fact, the transformed microorganism described in JP2010-207094 cannot metabolize aromatic compounds derived from syringyl lignin, such as syringic acid.
(製造方法)
本発明の一態様の製造方法(以下、製造方法(1)とよぶ。)は、バニリン酸といったグアイアシルリグニン由来の芳香族化合物とシリンガ酸やシリンガアルデヒドといったシリンギルリグニン由来の芳香族化合物とを、形質転換微生物(1)に作用させることにより、ムコン酸を得る工程を少なくとも含む。この際、グアイアシルリグニン由来の芳香族化合物とともに、又はグアイアシルリグニン由来の芳香族化合物に代えて、4-ヒドロキシ安息香酸といったp-ヒドロキシフェニルリグニン由来の芳香族化合物を形質転換微生物(1)に作用させてもよい。
(Production method)
The production method of one embodiment of the present invention (hereinafter referred to as production method (1)) includes an aromatic compound derived from guaiacyl lignin such as vanillic acid and an aromatic compound derived from syringyl lignin such as syringic acid and syringaldehyde. At least a step of obtaining muconic acid by acting on the transformed microorganism (1). At this time, an aromatic compound derived from p-hydroxyphenyl lignin such as 4-hydroxybenzoic acid is used in the transformed microorganism (1) together with the aromatic compound derived from guaiacyl lignin or instead of the aromatic compound derived from guaiacyl lignin. You may make it act.
本発明の別の一態様のムコン酸の製造方法(以下、製造方法(2)とよぶ。)は、バニリン酸といったグアイアシルリグニン由来の芳香族化合物とシリンガ酸といったシリンギルリグニン由来の芳香族化合物とを、形質転換微生物(2)に作用させることにより、プロトカテク酸を得る工程を少なくとも含む。この際、グアイアシルリグニン由来の芳香族化合物とともに、又はグアイアシルリグニン由来の芳香族化合物に代えて、4-ヒドロキシ安息香酸といったp-ヒドロキシフェニルリグニン由来の芳香族化合物を形質転換微生物(2)に作用させてもよい。 In another embodiment of the present invention, a method for producing muconic acid (hereinafter referred to as production method (2)) includes an aromatic compound derived from guaiacyl lignin such as vanillic acid and an aromatic compound derived from syringyl lignin such as syringic acid. At least a step of obtaining protocatechuic acid by acting on the transformed microorganism (2). At this time, an aromatic compound derived from p-hydroxyphenyl lignin such as 4-hydroxybenzoic acid is used in the transformed microorganism (2) together with the aromatic compound derived from guaiacyl lignin or instead of the aromatic compound derived from guaiacyl lignin. You may make it act.
本明細書では、製造方法(1)及び(2)をまとめて指すときには、単に「製造方法」とよぶ。 In this specification, when the manufacturing methods (1) and (2) are collectively referred to, they are simply referred to as “manufacturing methods”.
リグニン由来の芳香族化合物を形質転換微生物に作用させる方法は、リグニン由来の芳香族化合物と形質転換微生物とが接触して、形質転換微生物が有する酵素によってムコン酸又はプロトカテク酸が生産できる方法であれば特に限定されないが、例えば、リグニン由来の芳香族化合物を含有し、かつ、形質転換微生物の生育に適した培地を用いて、形質転換微生物に適した各種培養条件下で形質転換微生物を培養することによって、ムコン酸又はプロトカテク酸を製造する方法などが挙げられる。培養方法は特に限定されず、例えば、通気条件下で行う固体培養法や液体培養法などが挙げられる。なお、グアイアシルリグニン由来の芳香族化合物、p-ヒドロキシフェニルリグニン由来の芳香族化合物及びシリンギルリグニン由来の芳香族化合物と形質転換微生物との接触の順序は特に限定されないが、シリンギルリグニン由来の芳香族化合物に次いでグアイアシルリグニン由来の芳香族化合物及び/又はp-ヒドロキシフェニルリグニン由来の芳香族化合物を形質転換微生物に接触させること、シリンギルリグニン由来の芳香族化合物とグアイアシルリグニン由来の芳香族化合物及び/又はp-ヒドロキシフェニルリグニン由来の芳香族化合物とを同時に形質転換微生物に作用させることのいずれかが好ましい。 The method of allowing the lignin-derived aromatic compound to act on the transformed microorganism is a method in which the lignin-derived aromatic compound and the transformed microorganism are brought into contact with each other and muconic acid or protocatechuic acid can be produced by the enzyme of the transformed microorganism. Although not particularly limited, for example, the transformed microorganism is cultured under various culture conditions suitable for the transformed microorganism using a medium containing an aromatic compound derived from lignin and suitable for the growth of the transformed microorganism. Depending on the case, a method for producing muconic acid or protocatechuic acid may be mentioned. The culture method is not particularly limited, and examples thereof include a solid culture method and a liquid culture method performed under aerated conditions. The order of contact between the aromatic compound derived from guaiacyl lignin, the aromatic compound derived from p-hydroxyphenyl lignin and the aromatic compound derived from syringyl lignin and the transformed microorganism is not particularly limited, but derived from syringyl lignin Contacting the transformed microorganism with an aromatic compound derived from guaiacyl lignin and / or an aromatic compound derived from p-hydroxyphenyl lignin next to the aromatic compound, an aromatic compound derived from syringyl lignin and an aroma derived from guaiacyl lignin It is preferable to simultaneously act on the transformed microorganism with the aromatic compound and / or the aromatic compound derived from p-hydroxyphenyl lignin.
培地は、宿主微生物を培養する通常の培地、すなわち、炭素源、窒素源、無機物、その他の栄養素を適切な割合で含有するものであれば、合成培地及び天然培地のいずれでも使用できる。宿主微生物はスフィンゴモナド科微生物であることから、後述する実施例に記載があるようなWx最少培地などを利用することができるが、特に限定されない。炭素源は、リグニン由来の芳香族化合物、糖や有機酸などのその他の炭素源又はこれらの組み合わせを用いることができる。ただし、培地成分には、ムコン酸又はプロトカテク酸の製造に関与する酵素の活性化に必要な成分、例えば、Fe2+が含まれることが好ましい。鉄イオン、マグネシウムイオンなどを化合物として培地に添加することができるが、ミネラル含有物として添加してもよい。 As the medium, any of a synthetic medium and a natural medium can be used as long as it contains a normal medium for culturing host microorganisms, that is, a carbon source, a nitrogen source, an inorganic substance, and other nutrients in an appropriate ratio. Since the host microorganism is a sphingomonadaceae microorganism, a Wx minimal medium or the like as described in Examples described later can be used, but it is not particularly limited. As the carbon source, an aromatic compound derived from lignin, another carbon source such as sugar or organic acid, or a combination thereof can be used. However, the medium component preferably contains a component necessary for activation of an enzyme involved in the production of muconic acid or protocatechuic acid, for example, Fe 2+ . Iron ions, magnesium ions and the like can be added to the medium as compounds, but they may be added as mineral-containing materials.
リグニン由来の芳香族化合物は、グアイアシルリグニン、シリンギルリグニン及びp-ヒドロキシフェニルリグニンのいずれかのリグニン並びにこれらのリグニンから誘導し得る芳香族化合物であれば特に限定されないが、例えば、グアイアシルリグニン、シリンギルリグニン及びp-ヒドロキシフェニルリグニンの分解物に相当する化合物などが挙げられ、具体的には、p-クマル酸、フェルラ酸、シリンガ酸、p-ヒドロキシ安息香酸、バニリン酸、プロトカテク酸などが挙げられる。リグニン由来の芳香族化合物は、リグニンのモデル化合物とされている化合物、例えば、グアイアシルグリセロール-β-グアイアシルエーテルなどを含む。リグニン由来の芳香族化合物は、リグニンを含むバイオマスや該バイオマスを前処理に供して抽出したものであることが好ましいが、該バイオマスとは関係なく化学的に合成及び精製したものであってもよい。リグニン由来の芳香族化合物は、上記したものの1種を単独で、又は2種以上を組み合わせて使用できる。 The aromatic compound derived from lignin is not particularly limited as long as it is an aromatic compound that can be derived from lignin of any one of guaiacyl lignin, syringyl lignin and p-hydroxyphenyl lignin, and for example, guaiacyl lignin, for example. And compounds corresponding to degradation products of syringyl lignin and p-hydroxyphenyl lignin, such as p-coumaric acid, ferulic acid, syringic acid, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, etc. Is mentioned. Aromatic compounds derived from lignin include compounds that are modeled on lignin, such as guaiacylglycerol-β-guaiacyl ether. The lignin-derived aromatic compound is preferably a biomass containing lignin or one obtained by subjecting the biomass to pretreatment and extracted, but may be chemically synthesized and purified regardless of the biomass. . The lignin-derived aromatic compound can be used alone or in combination of two or more.
リグニンを含むバイオマス(以下、リグノセルロースとよぶ場合がある。)は特に限定されないが、例えば、草や木などの天然物、これら天然物に処理を加えて得られるもの、農業廃棄物などが挙げられるが、具体的には針葉樹や広葉樹などの木質系のバイオマスなどが挙げられる。例えば、広葉樹は、シリンギルリグニンを多く含むことが知られている。 The biomass containing lignin (hereinafter sometimes referred to as lignocellulose) is not particularly limited, and examples thereof include natural products such as grass and trees, those obtained by processing these natural products, and agricultural waste. Specific examples include woody biomass such as conifers and hardwoods. For example, hardwood is known to contain a large amount of syringyl lignin.
リグノセルロースは、前処理の有無などによって、例えば、固体状、懸濁状、液体状などであり得る。例えば、リグノセルロースを粉砕したものを液体に加えて得られる懸濁液とすることもできる。 Lignocellulose can be, for example, in the form of a solid, suspension, or liquid depending on the presence or absence of pretreatment. For example, a suspension obtained by adding pulverized lignocellulose to a liquid can be used.
リグノセルロースは、リグニン抽出物であってもよい。リグニン抽出物としては、例えば、リグノセルロースの粉末化したものを、0.1%W/V~50%W/V、好ましくは1%W/V~20%W/Vとなるように、リグニンの抽出に適した溶媒中に懸濁した懸濁液などが挙げられる。また、リグニン抽出物は、該懸濁液を10℃~150℃、好ましくは20℃~130℃、より好ましくは20℃~80℃で、数時間~数日間、好ましくは1時間~6日間の抽出処理に供し、次いで抽出処理液から固形分を除いた液体状のリグニン抽出物、又は液体状のリグニン抽出物から溶媒を留去し、乾固することにより得られる、固体状のリグニン抽出物などであってもよい。 The lignocellulose may be a lignin extract. As the lignin extract, for example, a powdered lignocellulose is lignin so that it becomes 0.1% W / V to 50% W / V, preferably 1% W / V to 20% W / V. Suspension suspended in a solvent suitable for extraction of the above. Further, the lignin extract is obtained by subjecting the suspension to 10 ° C. to 150 ° C., preferably 20 ° C. to 130 ° C., more preferably 20 ° C. to 80 ° C., for several hours to several days, preferably 1 hour to 6 days. A solid lignin extract obtained by subjecting to an extraction treatment and then removing the solid from the liquid lignin extract obtained by removing solids from the extraction treatment liquid and evaporating the solvent to dryness. It may be.
リグニン抽出物の調製方法は特に限定されないが、例えば、以下の方法などが挙げられる。すなわち、小型オートクレーブ装置(耐圧硝子工業株式会社、ポータブルリアクター TVS-1)のステンレスベッセルに2M NaOH 50mL、脱脂シラカバ木粉 1.5g、ニトロベンゼン 3mLを入れ、500rpmで攪拌しながら170℃で2.5時間処理する。60℃以下まで放冷し、遠心分離(6,000g、10min)により上清を回収する。得られた上清を、ジエチルエーテル抽出を3回繰り返す(水層を回収)。水層を塩酸で酸性化した後、ジエチルエーテル抽出を3回繰り返す(エーテル層を回収)。エーテル層に硫酸ナトリウムを加え、冷蔵庫内で一晩脱水処理する。エーテル層を回収し、抽出物を減圧乾固する。エーテル抽出物を、水酸化ナトリウムを加えながらイオン交換水に溶解し(pH≒9)、シラカバリグニン由来の芳香族化合物溶液とする。 Although the preparation method of a lignin extract is not specifically limited, For example, the following methods etc. are mentioned. That is, 2M NaOH 50 mL, degreased birch wood powder 1.5 g, and nitrobenzene 3 mL were placed in a stainless steel vessel of a small autoclave apparatus (pressure-resistant glass industry, portable reactor TVS-1) and stirred at 500 rpm for 2.5 at 170 ° C. Processing time. Cool to 60 ° C. or lower, and collect the supernatant by centrifugation (6,000 g, 10 min). The obtained supernatant is subjected to diethyl ether extraction three times (recovering the aqueous layer). After acidifying the aqueous layer with hydrochloric acid, extraction with diethyl ether is repeated three times (the ether layer is recovered). Add sodium sulfate to the ether layer and dehydrate in the refrigerator overnight. The ether layer is collected and the extract is evaporated to dryness. The ether extract is dissolved in ion-exchanged water with addition of sodium hydroxide (pH≈9) to obtain an aromatic compound solution derived from white birch lignin.
リグニンの抽出や処理に適した溶媒は特に限定されず、例えば、水、ジオキサン、メタノール、イソプロパノールなどの低分子アルコール、ニトロベンゼン、ジエチルエーテル、ジメチルホルムアミドなどが挙げられる。 Solvents suitable for extraction and treatment of lignin are not particularly limited, and examples thereof include water, low molecular alcohols such as dioxane, methanol, and isopropanol, nitrobenzene, diethyl ether, and dimethylformamide.
培養条件は、当業者により通常知られるスフィンゴモナド科微生物の培養条件を採用すればよく、例えば、培地の初発pHは5~10に調整し、培養温度は20℃~40℃、培養時間は数時間~数日間、好ましくは1~7日間、より好ましくは2~5日間など、適宜設定することができる。培養手段は特に限定されず、通気撹拌深部培養、振盪培養、静置培養などを採用することができる。ただし、desA遺伝子が発現するDesAの酵素活性及びligM遺伝子が発現するLigMの酵素活性を利用する場合、溶存酸素濃度は特に限定されないが、vanA遺伝子及びvanB遺伝子が発現するVanA及びVanBの酵素活性を利用する場合は溶存酸素が十分になるような条件下で培養することが好ましい。例えば、培地及び培養条件の一例として、後述する実施例に記載があるとおりの、炭素源としてシリンガ酸及びバニリン酸を含有するWx最少培地を用いた、30℃、180rpmでの1~5日間の振盪培養や撹拌培養などが挙げられる。なお、炭素源その他の成分は、培養開始後に適宜追加することができる。 Culture conditions for sphingomonad microorganisms commonly known by those skilled in the art may be employed. For example, the initial pH of the medium is adjusted to 5 to 10, the culture temperature is 20 ° C. to 40 ° C., and the culture time is several times. Time to several days, preferably 1 to 7 days, more preferably 2 to 5 days, etc. can be set as appropriate. The culture means is not particularly limited, and aeration stirring deep culture, shaking culture, stationary culture and the like can be employed. However, when utilizing the enzyme activity of DesA expressed by the desA gene and the enzyme activity of LigM expressed by the ligM gene, the dissolved oxygen concentration is not particularly limited, but the enzyme activities of VanA and VanB expressed by the vanA gene and vanB gene are reduced. When used, it is preferable to culture under conditions that provide sufficient dissolved oxygen. For example, as an example of the culture medium and culture conditions, as described in the examples described later, using Wx minimal medium containing syringic acid and vanillic acid as a carbon source at 30 ° C. and 180 rpm for 1 to 5 days. Examples include shaking culture and stirring culture. The carbon source and other components can be added as appropriate after the start of culture.
培養終了後に培養物からムコン酸又はプロトカテク酸を取得する方法は特に限定されない。ムコン酸又はプロトカテク酸は培養液中に蓄積することから、培養物から濾過、遠心分離などの通常の固液分離操作により菌体と培養上清とを分離し、回収した培養上清からカラムを用いた固相抽出やムコン酸又はプロトカテク酸が可溶性のある溶媒を用いた溶媒抽出などによりムコン酸又はプロトカテク酸を抽出する。 The method for obtaining muconic acid or protocatechuic acid from the culture after completion of the culture is not particularly limited. Since muconic acid or protocatechuic acid accumulates in the culture solution, the cells and culture supernatant are separated from the culture by normal solid-liquid separation operations such as filtration and centrifugation, and the column is removed from the collected culture supernatant. Muconic acid or protocatechuic acid is extracted by solid phase extraction or solvent extraction using a solvent in which muconic acid or protocatechuic acid is soluble.
抽出溶媒はムコン酸又はプロトカテク酸が溶解するものであれば特に限定されず、例えば、メタノール、エタノール、イソプロパノール、アセトンなどの有機溶媒;これらの有機溶媒と水とを混合させた含水有機溶媒などが挙げられる。抽出温度は特に限定されないが、例えば、室温から100℃に設定することができる。 The extraction solvent is not particularly limited as long as muconic acid or protocatechuic acid can be dissolved, and examples thereof include organic solvents such as methanol, ethanol, isopropanol, and acetone; hydrous organic solvents obtained by mixing these organic solvents and water, and the like. Can be mentioned. Although extraction temperature is not specifically limited, For example, it can set from room temperature to 100 degreeC.
ムコン酸の抽出方法の具体的一態様としては、例えば、Vardonらの方法(Green chemistry,vol.18,p3397-3413,2016;該文献の全記載はここに開示として援用される。)や該方法を一部変更した方法などが挙げられる。具体的には、培養上清に活性炭(12.5%(w/v)、100メッシュ)を添加し、1時間攪拌する。吸引ろ過により活性炭を除去し、ろ液を回収する。回収したろ液に塩酸を加え、pH≒2に調製した後、4℃で一晩静置する。吸引ろ過により沈殿物を回収し、沈殿物はイオン交換水で洗浄した後、吸引ろ過により回収し、減圧乾燥する。乾燥した固体をエタノールに懸濁し、吸引ろ過により不要物を除去し、ろ液を回収する。ろ液をエバポレーターで減圧乾固して、精製ムコン酸を得る。 Specific embodiments of the method for extracting muconic acid include, for example, the method of Vardon et al. (Green chemistry, vol. 18, p3397-3413, 2016; the entire description of the document is incorporated herein by reference) and the like. For example, the method may be partially changed. Specifically, activated carbon (12.5% (w / v), 100 mesh) is added to the culture supernatant and stirred for 1 hour. The activated carbon is removed by suction filtration, and the filtrate is recovered. Hydrochloric acid is added to the collected filtrate to adjust the pH to 2, and the mixture is allowed to stand overnight at 4 ° C. The precipitate is collected by suction filtration, and the precipitate is washed with ion exchange water, then collected by suction filtration, and dried under reduced pressure. Suspend the dried solid in ethanol, remove unnecessary substances by suction filtration, and collect the filtrate. The filtrate is dried under reduced pressure using an evaporator to obtain purified muconic acid.
プロトカテク酸の抽出方法の一態様としては、例えば、培養上清に塩酸を加え、pH≒2に調製した後、酢酸エチル等の有機溶媒によって抽出することが出来る。得られた抽出物を再結晶化またはイオン交換樹脂を用いることによってプロトカテク酸を得る方法が挙げられる。 As one aspect of the method for extracting protocatechuic acid, for example, hydrochloric acid is added to the culture supernatant to adjust the pH to approximately 2, and then extraction can be performed with an organic solvent such as ethyl acetate. Examples include a method of obtaining protocatechuic acid by recrystallization of the obtained extract or using an ion exchange resin.
ムコン酸若しくはプロトカテク酸の定性的又は定量的分析は特に限定されず、例えば、HPLCなどにより行うことができる。HPLC分離条件は当業者であれば適宜選択することができ、例えば、後述する実施例に記載がある条件で実施できる。 The qualitative or quantitative analysis of muconic acid or protocatechuic acid is not particularly limited, and can be performed by, for example, HPLC. Those skilled in the art can appropriately select the HPLC separation conditions, and for example, the HPLC separation conditions can be performed under the conditions described in the examples described later.
形質転換微生物を用いれば、ムコン酸又はプロトカテク酸を高収率で得ることができる。例えば、5mM バニリン酸及び5mM シリンガ酸を炭素源とした場合は35時間の培養で93%の収率(対理論収量)でムコン酸を得ることができ;5mM p-ヒドロキシ安息香酸及び5mM シリンガ酸を炭素源とした場合は35時間の培養で75%の収率(対理論収量)でムコン酸を得ることができ;シラカバリグニン由来芳香族化合物水溶液を炭素源とした場合は48時間の培養で16.5mg/Lのムコン酸を得ることができ;5mM バニリン酸及び5mM シリンガ酸を炭素源とした場合は42時間の培養で83%の収率(対理論収量)でプロトカテク酸を得ることができ;5mM p-ヒドロキシ安息香酸及び5mM シリンガ酸を炭素源とした場合は30時間の培養で75%の収率(対理論収量)でプロトカテク酸を得ることができる。 If a transformed microorganism is used, muconic acid or protocatechuic acid can be obtained in high yield. For example, when 5 mM vanillic acid and 5 mM syringic acid are used as a carbon source, muconic acid can be obtained with a yield of 93% (versus the theoretical yield) by culturing for 35 hours; 5 mM p-hydroxybenzoic acid and 5 mM syringic acid. When carbon is used as a carbon source, muconic acid can be obtained in a yield of 75% (versus the theoretical yield) by culturing for 35 hours; 16.5 mg / L of muconic acid can be obtained; when 5 mM vanillic acid and 5 mM syringic acid are used as a carbon source, protocatechuic acid can be obtained with a yield of 83% (versus the theoretical yield) by culturing for 42 hours. Yes; when 5mM p-hydroxybenzoic acid and 5mM syringic acid are used as carbon sources, protocatechuic acid can be obtained in 75% yield (versus the theoretical yield) after 30 hours of culture. Rukoto can.
本発明の製造方法では、本発明の目的を達成し得る限り、上記した工程の前段若しくは後段又は工程中に、種々の工程や操作を加入することができる。 In the production method of the present invention, as long as the object of the present invention can be achieved, various processes and operations can be added before or after the above-described process.
(ムコン酸及びプロトカテク酸の用途)
本発明の一態様の形質転換微生物や製造方法を利用して得られたムコン酸及びプロトカテク酸は、種々の産業上有用な化合物に変換することができ、例えば、界面活性剤、難燃剤、UV光安定化剤、熱硬化性プラスチック、コーティング剤などとしての利用が期待できるムコン酸誘導体の原料として利用することができる。具体的には、ムコン酸誘導体の一つであるアジピン酸は、ナイロン66(ポリアミドの一つ)として現実に利用されている。プロトカテク酸は、ムコン酸を製造するための原材料となり得るとともに、医薬、農薬、香料等の合成原料としての用途もある。また、プロトカテク酸は、プロトカテク酸・2,3-、3,4-、4,5-環開裂代謝産物の前駆体でもあり、該代謝産物の中には、例えば2-ピロン―4,6-ジカルボン酸(例えば、特許第4658244号;該文献の全記載はここに開示として援用される。)など合成樹脂原料としての用途を有するものもある。
(Use of muconic acid and protocatechuic acid)
The muconic acid and protocatechuic acid obtained using the transformed microorganism and the production method of one embodiment of the present invention can be converted into various industrially useful compounds, for example, surfactants, flame retardants, UV It can be used as a raw material for muconic acid derivatives that can be expected to be used as light stabilizers, thermosetting plastics, coating agents and the like. Specifically, adipic acid, which is one of muconic acid derivatives, is actually used as nylon 66 (one of polyamides). Protocatechuic acid can be used as a raw material for producing muconic acid, and can also be used as a synthetic raw material for pharmaceuticals, agricultural chemicals, fragrances and the like. Protocatechuic acid is also a precursor of protocatechuic acid-2,3-, 3,4-, 4,5-ring-cleavage metabolites. Among these metabolites, for example, 2-pyrone-4,6- Some have a use as a synthetic resin raw material such as dicarboxylic acid (for example, Japanese Patent No. 4658244; the entire description of this document is incorporated herein by reference).
以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の課題を解決し得る限り、本発明は種々の態様をとることができる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples, and the present invention can take various modes as long as the problems of the present invention can be solved. it can.
[1.Sphingobium sp.SME257株の作製]
以下の手順により、スフィンゴビウム・スピーシーズ(Sphingobium species)SYK-6株からプロトカテク酸 4,5-ジオキシゲナーゼ遺伝子(ligAB遺伝子)を破壊した変異株である、スフィンゴビウム・スピーシーズ SME257株を作製した。
[1. Sphingobium sp. Production of SME257 strain]
By the following procedure, Sphingobium sp. SME257 strain, which is a mutant strain in which the protocatechuate 4,5-dioxygenase gene (ligAB gene) was disrupted from Sphingobium species SYK-6 strain, was prepared. .
スフィンゴビウム・スピーシーズ SYK-6株のゲノムDNAを鋳型として、配列番号1及び2のプライマー1及び2からなるプライマーセット並びに配列番号3及び4のプライマー3及び4からなるプライマーセットを用いたPCR法によって、プロトカテク酸・4,5-ジオキシゲナーゼ・小サブユニット(protocatechuate 4,5-dioxygenase;ligA)遺伝子の上流領域及びプロトカテク酸・4,5-ジオキシゲナーゼ・大サブユニット(protocatechuate 4,5-dioxygenase;ligB)遺伝子下流領域を得た。 PCR method using a primer set consisting of primers 1 and 2 of SEQ ID NOS: 1 and 2 and a primer set consisting of primers 3 and 4 of SEQ ID NOS: 3 and 4 using the genomic DNA of Sphingobium species SYK-6 as a template The protocatechuic acid 4,5-dioxygenase small subunit (protocatechuate 4,5-dioxygenase; ligA) gene upstream region and the protocatechuic acid 4,5-dioxygenase large subunit (protocatechuate 4,5-dioxygenase) LigB) A downstream region of the gene was obtained.
得られたDNA断片と、予めBamHIで消化したpAK405プラスミドDNAとを、In-Fusion HD Cloning Kit(タカラバイオ株式会社)を用いて連結することによって、pAKDligABプラスミドDNAを得た。 The obtained DNA fragment and pAK405 plasmid DNA previously digested with BamHI were ligated using In-Fusion HD Cloning Kit (Takara Bio Inc.) to obtain pAKDligAB plasmid DNA.
pAKDligABプラスミドDNAを用いて、三親接合法により、スフィンゴビウム・スピーシーズ SYK-6株を形質転換した。形質転換体は、ナリジクス酸(Nal) 12.5mg/L及びカナマイシン(Km) 50mg/Lを含むLB寒天培地上で生育可能であるNal-Km耐性株として選抜した。得られたNal-Km耐性株を、Nal 12.5mg/L及びストレプトマイシン(Sm) 100mg/Lを含むLB液体培地に接種し、30℃で48時間振盪培養した。 Using the pAKDligAB plasmid DNA, the Sphingobiium species SYK-6 strain was transformed by the triple parental conjugation method. The transformant was selected as a Nal-Km resistant strain capable of growing on an LB agar medium containing 12.5 mg / L of nalidixic acid (Nal) and 50 mg / L of kanamycin (Km). The obtained Nal-Km resistant strain was inoculated into an LB liquid medium containing Nal 12.5 mg / L and streptomycin (Sm) 100 mg / L, and cultured with shaking at 30 ° C. for 48 hours.
得られた培養液をSm 100mg/Lを含むLB寒天培地上に塗抹し、30℃で72時間静置培養した。生育した複数のコロニーから、ゲノムDNAをそれぞれ抽出し、次いでPCR法によって、ゲノムDNA上のligAB遺伝子が欠失している形質転換体を、スフィンゴビウム・スピーシーズ SME257株としてスクリーニングした。 The obtained culture broth was smeared on an LB agar medium containing 100 mg / L of Sm, and statically cultured at 30 ° C. for 72 hours. Genomic DNA was extracted from each of the grown colonies, and then a transformant lacking the ligAB gene on the genomic DNA was screened as Sphingobiium sp. Strain SME257 by PCR.
[2.シリンガ酸(SA)及びバニリン酸(VA)を炭素源としたプロトカテク酸(PCA)生産]
SME257株をLB液体培地 10mLに接種し、30℃で36時間振盪培養した。得られた培養液をWx緩衝液(KHPO 1.7g/L、NaHPO・12HO 9.8g/L及び(NHSO 1g/L)で洗浄した後、5mM VA、5mM SA及び1g/L Tryptoneを含むWx最少培地(KHPO 1.7g/L、NaHPO・12HO 9.8g/L、(NHSO 1g/L、MgSO・7HO 0.1g/L、FeSO・7HO 9.5mg/L、MgO 10.75mg/L、CaCO 2mg/L、ZnSO・7HO 1.44mg/L、MnSO・4HO 1.12mg/L、CuSO・5HO 0.25mg/L、CoSO・7HO 0.28mg/L、HBO 0.06mg/L及び12N HCl 51.3μL/L) 10mLに接種し、30℃で振盪培養した。
[2. Protocatechuic acid (PCA) production using syringic acid (SA) and vanillic acid (VA) as carbon sources]
SME257 strain was inoculated into 10 mL of LB liquid medium and cultured with shaking at 30 ° C. for 36 hours. The obtained culture broth was washed with Wx buffer (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 · 12H 2 O 9.8 g / L and (NH 4 ) 2 SO 4 1 g / L), Wx minimal medium containing 5 mM VA, 5 mM SA and 1 g / L Tryptone (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 · 12H 2 O 9.8 g / L, (NH 4 ) 2 SO 4 1 g / L , MgSO 4 · 7H 2 O 0.1g / L, FeSO 4 · 7H 2 O 9.5mg / L, MgO 10.75mg / L, CaCO 3 2mg / L, ZnSO 4 · 7H 2 O 1.44mg / L, MnSO 4 · 4H 2 O 1.12mg / L, CuSO 4 · 5H 2 O 0.25mg / L, CoSO 4 · 7H 2 O 0.28mg / L, H 3 BO 3 0.06mg / L and 12N HCl 51. Inoculated into μL / L) 10mL, and cultured with shaking at 30 ° C..
培養開始後、一定時間毎に、培養液の光学密度(optical density;OD)を測定し、さらに培養液を遠心分離して得た培養上清について、SA、VA及びPCAの濃度を測定した。 After the start of culture, the optical density (OD) of the culture solution was measured at regular intervals, and the concentrations of SA, VA and PCA were measured for the culture supernatant obtained by further centrifuging the culture solution.
OD測定には600nmの波長を使用し、GeneQuant 100(GEヘルスケア・ジャパン株式会社)を用いてOD600値を測定した。SA、VA及びPCAの濃度は、高速液体クロマトグラフ(Acquity ultraperformance liquid chromatography system;日本ウォーターズ株式会社)を用いて測定した。カラムはTSKgel ODS-140HTP column(径 2.1mm、長さ 100mm、粒径 2.3μm;東ソー株式会社)を使用し、30℃で保温した。勾配(グラジエント)溶離モード(溶媒A:99.9%(v/v)HO、0.1%(v/v)HCOOH、溶媒B:99.9%(v/v)CHCN、0.1%(v/v)HCOOH)を使用し、溶媒Aを99%、溶媒Bを1%で平衡化した後、分析を開始して3分後から6分後にかけて溶媒Bの割合を25%まで上昇させ、次いで1分かけて溶媒Bの割合を1%まで低下させた。移動相の流速は0.5mL/minとし、測定波長はSAについて270nmとし、VA及びPCAについて260nmとした。 The wavelength of 600 nm was used for OD measurement, and the OD600 value was measured using GeneQuant 100 (GE Healthcare Japan Co., Ltd.). The concentrations of SA, VA and PCA were measured using a high performance liquid chromatograph (Nihon Waters Co., Ltd.). The column used was TSKgel ODS-140HTP column (diameter 2.1 mm, length 100 mm, particle size 2.3 μm; Tosoh Corporation) and kept at 30 ° C. Gradient elution mode (solvent A: 99.9% (v / v) H 2 O, 0.1% (v / v) HCOOH, solvent B: 99.9% (v / v) CH 3 CN, 0.1% (v / v) HCOOH), equilibrated with 99% solvent A and 1% solvent B, and after 3 to 6 minutes from the start of the analysis, Increasing to 25%, then reducing the proportion of solvent B to 1% over 1 minute. The mobile phase flow rate was 0.5 mL / min, the measurement wavelength was 270 nm for SA, and 260 nm for VA and PCA.
培養時間0、6、18、30及び42時間後のOD600値、SA濃度、VA濃度及びPCA濃度の測定結果をまとめたものを表1に示す。 Table 1 shows a summary of the measurement results of OD600 value, SA concentration, VA concentration, and PCA concentration after 0, 6, 18, 30, and 42 hours of culture time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1が示すとおり、SME257株は、SAを利用して増殖し、かつ、VAからPCAを経時的に生産した(理論収量に対する収率は83%)。 As Table 1 shows, the SME257 strain grew using SA and produced PCA from VA over time (83% yield relative to the theoretical yield).
[3.SA及び4-ヒドロキシ安息香酸(HBA)を炭素源としたPCA生産]
SME257株を、LB液体培地 10mLに接種し、30℃で36時間振盪培養した。得られた培養液をWx緩衝液で洗浄した後、5mM HBA、5mM SA及び1g/L Tryptoneを含むWx最少培地10mLに接種し、30℃で振盪培養した。
[3. PCA production using SA and 4-hydroxybenzoic acid (HBA) as carbon source]
SME257 strain was inoculated into 10 mL of LB liquid medium and cultured with shaking at 30 ° C. for 36 hours. The obtained culture broth was washed with Wx buffer, then inoculated into 10 mL of Wx minimal medium containing 5 mM HBA, 5 mM SA and 1 g / L Tryptone, and cultured at 30 ° C. with shaking.
培養開始後、一定時間毎に、培養液のOD600を測定し、さらに培養液を遠心分離して得た培養上清について、SA、HBA及びPCAの濃度を測定した。OD600測定並びにSA、HBA及びccMAの濃度測定は上記2に記載の方法と同様に行った。 After initiation of the culture, the OD600 of the culture solution was measured at regular intervals, and the concentrations of SA, HBA and PCA were measured for the culture supernatant obtained by further centrifuging the culture solution. The OD600 measurement and the SA, HBA, and ccMA concentration measurements were performed in the same manner as described in 2 above.
培養時間0、6、18及び30時間後のOD600値、SA濃度、HBA濃度及びPCA濃度の測定結果をまとめたものを表2に示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows a summary of the measurement results of OD600 value, SA concentration, HBA concentration, and PCA concentration after 0, 6, 18, and 30 hours of culture time.
Figure JPOXMLDOC01-appb-T000002
表2が示すとおり、SME257株は、SAを利用して増殖し、かつ、HBAからPCAを経時的に生産した(理論収量に対する収率は75%)。 As Table 2 shows, SME257 strain grew using SA and produced PCA from HBA over time (75% yield over theoretical yield).
[4.SME257/pTS084株の作製]
以下の手順により、aroY遺伝子、kpdB遺伝子、catA遺伝子、vanA遺伝子及びvanB遺伝子を発現するプラスミドであるpTS084プラスミドDNAを用いて、スフィンゴビウム・スピーシーズ SME257株を形質転換し、SME257/pTS084株を作製した。
[4. Production of SME257 / pTS084 strain]
According to the following procedure, Sphingobium sp. SME257 strain is transformed with pTS084 plasmid DNA, which is a plasmid expressing aroY gene, kpdB gene, catA gene, vanA gene and vanB gene, and SME257 / pTS084 strain is prepared. did.
クレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ(Klebsiella pneumoniae subspecies pneumoniae) A170-40株のゲノムDNAの部分断片を鋳型として、配列番号5及び6のプライマー5及び6からなるプライマーセットを用いたPCR法によって、プロトカテク酸・デカルボキシラーゼ(protocatechuate decarboxylase;aroY)遺伝子を含む約1.5kbpのDNA断片を得た。得られたDNA断片をKpnIで消化し、予めKpnIで消化したpMCL200プラスミドDNAにクローニングすることにより、pTS036プラスミドDNAを得た。 Klebsiella pneumoniae subspecies pneumoniae ( Klebsiella pneumoniae subspecies pneumoniae ) A partial fragment of the genomic DNA of A170-40 strain was used as a template, and PCR was performed by PCR using a primer set consisting of primers 5 and 6 of SEQ ID NOs: 5 and 6. An about 1.5 kbp DNA fragment containing the acid decarboxylase (aroY) gene was obtained. The obtained DNA fragment was digested with KpnI and cloned into pMCL200 plasmid DNA previously digested with KpnI to obtain pTS036 plasmid DNA.
クレブシエラ・ニューモニエ・サブスピーシーズ・ニューモニエ NBRC14190株のDNAを鋳型として、配列番号7及び8のプライマー7及び8のプライマーセットを用いたPCR法によって、4-ヒドロキシ安息香酸・デカルボキシラーゼ・サブユニットB(4-hydroxybenzoate decarboxylase subunit B;kpdB)遺伝子を含む約0.6kbpのDNA断片を増幅した。増幅したDNA断片の両末端を平滑化処理に供し、次いでXbaIで消化した後、予め平滑化処理したpTS036プラスミドDNAに連結することにより、pTS052プラスミドDNAを得た。pTS052プラスミドDNAとしては、pTS036プラスミドDNAに含まれるaroY遺伝子と順方向にkpdB遺伝子が連結されたクローンとして選択して得た。 Klebsiella pneumoniae sub-species pneumoniae DNA of NBRC14190 strain was used as a template by PCR using the primer set of primers 7 and 8 of SEQ ID NOS: 7 and 8, 4-hydroxybenzoic acid decarboxylase subunit B (4 -A DNA fragment of about 0.6 kbp containing a hydroxylbenzoate decarboxylase subunit B (kpdB) gene was amplified. Both ends of the amplified DNA fragment were subjected to a blunting treatment, then digested with XbaI, and then ligated to a preblunted pTS036 plasmid DNA to obtain pTS052 plasmid DNA. The pTS052 plasmid DNA was obtained by selecting as a clone in which the aroY gene contained in the pTS036 plasmid DNA and the kpdB gene were linked in the forward direction.
pTS052プラスミドDNAを鋳型として、配列番号9及び10のプライマー9及び10からなるプライマーセットを用いたPCR法により、aroY遺伝子及びkpdB遺伝子を含む約2.2kbpのDNA断片を増幅した。増幅したDNA断片を、予めBamHI及びEcoRIで消化したpJB866プラスミドDNAにInfusion HD Cloning Kitを用いて連結することにより、pTS074プラスミドDNAを得た。 A DNA fragment of about 2.2 kbp containing the aroY gene and the kpdB gene was amplified by PCR using pTS052 plasmid DNA as a template and a primer set consisting of primers 9 and 10 of SEQ ID NOs: 9 and 10. The amplified DNA fragment was ligated to pJB866 plasmid DNA previously digested with BamHI and EcoRI using Infusion HD Cloning Kit to obtain pTS074 plasmid DNA.
シュードモナス・プチダ(Pseudomonas putida) KT2440株のゲノムDNAを鋳型として、配列番号11及び12のプライマー11及び12からなるプライマーセットを用いたPCR法により、カテコール・1,2-ジオキシゲナーゼ(catechol 1,2-dioxygenase;catA)遺伝子を含む約1.0kbpのDNA断片を得た。得られたDNA断片を、予めSacIで消化したpTS074プラスミドDNAにInfusion HD Cloning Kitを用いて連結することにより、pTS079プラスミドDNAを得た。 Pseudomonas putida ( Pseudomonas putida ) A catechol 1,2-dioxygenase (catechol 1,2) was obtained by PCR using a genomic DNA of the KT2440 strain as a template and a primer set consisting of primers 11 and 12 of SEQ ID NOs: 11 and 12. -Dioxygenase; catA) A DNA fragment of about 1.0 kbp containing the gene was obtained. The obtained DNA fragment was ligated to pTS074 plasmid DNA previously digested with SacI using Infusion HD Cloning Kit to obtain pTS079 plasmid DNA.
pUC118プラスミドDNAを鋳型として、配列番号13及び14のプライマー13及び14からなるプライマーセットを用いたPCR法によって、ラクトースプロモーター領域(Plac)を含む約200bpのDNA断片を得た。得られたDNA断片を、pTS079プラスミドDNAのNotIサイトにInfusion HD Cloning Kitを用いてクローニングすることにより、pTS082プラスミドDNAを得た。 A DNA fragment of about 200 bp containing a lactose promoter region (Plac) was obtained by PCR using pUC118 plasmid DNA as a template and a primer set consisting of primers 13 and 14 of SEQ ID NOs: 13 and 14. The obtained DNA fragment was cloned into the NotI site of pTS079 plasmid DNA using Infusion HD Cloning Kit to obtain pTS082 plasmid DNA.
シュードモナス・プチダ KT2440株のゲノムDNAを鋳型として、配列番号15及び16のプライマー15及び16からなるプライマーセットを用いたPCR法によって、バニレート・デメチラーゼ・オキシゲナーゼ成分(vanillate demethylase oxygenase component;vanA)遺伝子及びバニレート・デメチラーゼ・オキシドレダクターゼ成分(vanillate demethylase oxidoreductase component;vanB)遺伝子を含む約2.0kbpのDNA断片を得た。得られたDNA断片を、SacI及びSmaIで消化し、予めSacI及びSmaIで消化したpQE30プラスミドDNAと連結することにより、pKY001プラスミドDNAを得た。 Pseudomonas putida KT2440 genomic DNA as a template, and a PCR method using a primer set consisting of primers 15 and 16 of SEQ ID NOS: 15 and 16, vanillate demethylase oxygenase component (vanA) gene and vanillate -About 2.0 kbp DNA fragment containing a demethylase oxidoreductase component (vanillate demethylase oxidoreductase component; vanB) gene was obtained. The obtained DNA fragment was digested with SacI and SmaI and ligated with pQE30 plasmid DNA previously digested with SacI and SmaI to obtain pKY001 plasmid DNA.
pKY001プラスミドDNAを鋳型として、配列番号17及び18のプライマー17及び18からなるプライマーセットを用いたPCR法により、vanA遺伝子及びvanB遺伝子を含む約2.0kbpのDNA断片を増幅した。増幅したDNA断片を、予めNotIで消化したpTS082プラスミドDNAとInfusion HD Cloning Kitを用いて連結することにより、pTS084プラスミドDNAを得た。 A DNA fragment of about 2.0 kbp containing the vanA gene and the vanB gene was amplified by PCR using pKY001 plasmid DNA as a template and a primer set consisting of primers 17 and 18 of SEQ ID NOs: 17 and 18. The amplified DNA fragment was ligated using pTS082 plasmid DNA previously digested with NotI and Infusion HD Cloning Kit to obtain pTS084 plasmid DNA.
得られたpTS084プラスミドDNAを用いて、スフィンゴビウム・スピーシーズ SME257株を形質転換することにより、SME257/pTS084株を作製した。 Using the obtained pTS084 plasmid DNA, the SME257 / pTS084 strain was produced by transforming the Sphingobiium species SME257 strain.
[5.SA及びVAを炭素源としたcis,cis-ムコン酸(ccMA)生産]
SME257/pTS084株を、テトラサイクリン(Tc) 12.5mg/Lを含むLB液体培地 10mLに接種し、30℃で36時間振盪培養した。得られた培養液をWx緩衝液(KHPO 1.7g/L、NaHPO・12HO 9.8g/L及び(NHSO 1g/L)で洗浄した後、Tc 12.5mg/L、5mM VA、5mM SA及び1g/L Tryptoneを含むWx最少培地(KHPO 1.7g/L、NaHPO・12HO 9.8g/L、(NHSO 1g/L、MgSO・7HO 0.1g/L、FeSO・7HO 9.5mg/L、MgO 10.75mg/L、CaCO 2mg/L、ZnSO・7HO 1.44mg/L、MnSO・4HO 1.12mg/L、CuSO・5HO 0.25mg/L、CoSO・7HO 0.28mg/L、HBO 0.06mg/L及び12N HCl 51.3μL/L) 10mLに接種し、30℃で振盪培養した。
[5. Production of cis, cis-muconic acid (ccMA) using SA and VA as carbon sources]
SME257 / pTS084 strain was inoculated into 10 mL of LB liquid medium containing 12.5 mg / L of tetracycline (Tc), and cultured with shaking at 30 ° C. for 36 hours. The obtained culture broth was washed with Wx buffer (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 · 12H 2 O 9.8 g / L and (NH 4 ) 2 SO 4 1 g / L), Wx minimal medium containing 12.5 mg / L of Tc, 5 mM VA, 5 mM SA and 1 g / L Tryptone (KH 2 PO 4 1.7 g / L, Na 2 HPO 4 · 12H 2 O 9.8 g / L, (NH 4 ) 2 SO 4 1g / L, MgSO 4 · 7H 2 O 0.1g / L, FeSO 4 · 7H 2 O 9.5mg / L, MgO 10.75mg / L, CaCO 3 2mg / L, ZnSO 4 · 7H 2 O 1.44mg / L, MnSO 4 · 4H 2 O 1.12mg / L, CuSO 4 · 5H 2 O 0.25mg / L, CoSO 4 · 7H 2 O 0.28mg / L, H 3 BO 3 0.06mg / L and And 12N HCl (51.3 μL / L) was inoculated into 10 mL, and cultured at 30 ° C. with shaking.
培養開始後、一定時間毎に、培養液のOD600を測定し、さらに培養液を遠心分離して得た培養上清について、SA、VA及びccMAの濃度を測定した。OD600測定並びにSA、VA及びccMAの濃度測定は上記2に記載の方法と同様に行った。 After initiation of the culture, the OD600 of the culture solution was measured at regular intervals, and the concentrations of SA, VA and ccMA were measured for the culture supernatant obtained by further centrifuging the culture solution. OD600 measurement and SA, VA, and ccMA concentration measurements were performed in the same manner as described in 2 above.
培養時間0、5、10、20及び35時間後のOD600値、SA濃度、VA濃度及びccMA濃度の測定結果をまとめたものを表3に示す。 Table 3 summarizes the measurement results of OD600 value, SA concentration, VA concentration and ccMA concentration after 0, 5, 10, 20 and 35 hours of culture time.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表3が示すとおり、SME257/pTS084株は、SAを利用して増殖し、かつ、VAからccMAを経時的に生産した(理論収量に対する収率は93%)。 As Table 3 shows, the SME257 / pTS084 strain grew using SA, and produced ccMA over time from VA (yield with respect to the theoretical yield was 93%).
[6.SA及びHBAを炭素源としたccMA生産]
SME257/pTS084株を、Tc 12.5mg/Lを含むLB液体培地 10mLに接種し、30℃で36時間振盪培養した。得られた培養液をWx緩衝液で洗浄した後、Tc 12.5mg/L、5mM HBA、5mM SA及び1g/L Tryptoneを含むWx最少培地10mLに接種し、30℃で振盪培養した。
[6. CcMA production using SA and HBA as carbon sources]
SME257 / pTS084 strain was inoculated into 10 mL of LB liquid medium containing 12.5 mg / L of Tc, and cultured with shaking at 30 ° C. for 36 hours. The obtained culture solution was washed with Wx buffer, then inoculated into 10 mL of Wx minimal medium containing 12.5 mg / L of Tc, 5 mM HBA, 5 mM SA and 1 g / L Tryptone, and cultured at 30 ° C. with shaking.
培養開始後、一定時間毎に、培養液のOD600を測定し、さらに培養液を遠心分離して得た培養上清について、SA、HBA及びccMAの濃度を測定した。OD600測定並びにSA、HBA及びccMAの濃度測定は上記2に記載の方法と同様に行った。 After initiation of the culture, the OD600 of the culture solution was measured at regular time intervals, and the concentrations of SA, HBA and ccMA were measured for the culture supernatant obtained by centrifuging the culture solution. The OD600 measurement and the SA, HBA, and ccMA concentration measurements were performed in the same manner as described in 2 above.
培養時間0、5、10、20及び35時間後のOD600値、SA濃度、HBA濃度及びccMA濃度の測定結果をまとめたものを表4に示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 summarizes the measurement results of OD600 value, SA concentration, HBA concentration and ccMA concentration after 0, 5, 10, 20 and 35 hours of culture time.
Figure JPOXMLDOC01-appb-T000004
表4が示すとおり、SME257/pTS084株は、SAを利用して増殖し、かつ、HBAからccMAを経時的に生産した(理論収量に対する収率は75%)。 As Table 4 shows, SME257 / pTS084 strain was grown using SA, and ccMA was produced from HBA over time (yield based on theoretical yield was 75%).
[7.シラカバリグニン由来芳香族化合物を炭素源としたccMA生産]
常法に従い、シラカバ木粉をアルコール-ベンゼン抽出処理に供し、次いで処理後のシラカバ木粉1.5gをアルカリニトロベンゼン酸化分解処理及びジエチルエーテル抽出処理に供した(木質科学実験マニュアル、日本木材学会編、文永堂出版を参照;該文献の全記載はここに開示として援用される。)。ニトロベンゼン酸化分解後のアルカリ溶液をジエチルエーテル抽出処理し、得られた水層を酸性化処理に供し、さらにジエチルエーテル抽出処理に供した。エーテル層として得られたジエチルエーテル抽出物をシラカバリグニン由来芳香族化合物とし、シラカバリグニン由来芳香族化合物水溶液(pH≒9)を炭素源として添加したWx培地におけるccMA生産を評価した。
[7. Production of ccMA using birch lignin-derived aromatic compound as a carbon source]
According to a conventional method, birch wood flour was subjected to an alcohol-benzene extraction treatment, and then 1.5 g of the treated birch wood flour was subjected to alkali nitrobenzene oxidative decomposition treatment and diethyl ether extraction treatment (wood science experiment manual, edited by the Japan Wood Society) , See Buneidou Publishing; the full description of this document is hereby incorporated by reference.) The alkaline solution after nitrobenzene oxidative decomposition was subjected to diethyl ether extraction treatment, and the resulting aqueous layer was subjected to acidification treatment and further to diethyl ether extraction treatment. Diethyl ether extract obtained as an ether layer was evaluated as ccMA production in a Wx medium supplemented with a white birch lignin-derived aromatic compound and a white birch arginine-derived aromatic compound aqueous solution (pH≈9) as a carbon source.
SME257/pTS084株を、Tc 12.5mg/Lを含むLB液体培地 10mLに接種し、30℃で36時間振盪培養した。得られた培養液をWx緩衝液で洗浄した後、Tc 12.5mg/L及び0.1g/L Tryptoneを含むWx最少培地10mLに接種し、炭素源としてシラカバリグニン由来芳香族化合物水溶液 5μLを添加し、30℃で振盪培養した。培養4時間毎にシラカバリグニン由来芳香族化合物水溶液 5μLを追添加した。 SME257 / pTS084 strain was inoculated into 10 mL of LB liquid medium containing 12.5 mg / L of Tc and cultured with shaking at 30 ° C. for 36 hours. The obtained culture solution was washed with Wx buffer, then inoculated into 10 mL of Wx minimal medium containing 12.5 mg / L of Tc and 0.1 g / L of Tryptone, and 5 μL of an aqueous solution of shiraka barignin-derived aromatic compound was added as a carbon source. And cultured with shaking at 30 ° C. Every 4 hours of cultivation, 5 μL of a white birch arginine-derived aromatic compound aqueous solution was added.
培養開始後、一定時間毎に、培養液のOD600を測定し、さらに培養液を遠心分離して得た培養上清について、ccMA濃度を測定した。ccMAの濃度測定は上記2に記載の方法と同様に行い、高速液体クロマトグラフでの分離条件は溶媒Aを99%、溶媒Bを1%で平衡化した後、分析を開始して3分後から6分後にかけて溶媒Bの割合を25%まで上昇させ、次いで1分かけて溶媒Bの割合を99%まで上昇させて1分間保持し、その後、1分かけて溶媒Bの割合を1%まで低下させた。移動相の流速は0.5mL/minとし、測定波長はccMAについて260nmとした。 After initiation of the culture, the OD600 of the culture solution was measured at regular intervals, and the ccMA concentration was measured for the culture supernatant obtained by centrifuging the culture solution. The concentration of ccMA was measured in the same manner as described in 2 above, and the separation conditions in the high performance liquid chromatograph were equilibrated with 99% solvent A and 1% solvent B, and 3 minutes after starting the analysis. 6 minutes later, the proportion of solvent B is increased to 25%, then the proportion of solvent B is increased to 99% over 1 minute and held for 1 minute, and then the proportion of solvent B is increased to 1% over 1 minute. Lowered to. The mobile phase flow rate was 0.5 mL / min and the measurement wavelength was 260 nm for ccMA.
培養時間0、12、24及び48時間後のccMA濃度の測定結果をまとめたものを表5に示す。 Table 5 summarizes the measurement results of the ccMA concentration after 0, 12, 24 and 48 hours of culture time.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
表5が示すとおり、SME257/pTS084株は、シラカバリグニン由来芳香族化合物を利用して増殖し、かつ、ccMAを経時的に生産した。 As Table 5 shows, the SME257 / pTS084 strain grew using a birch lignin-derived aromatic compound and produced ccMA over time.
配列表に記載の配列は以下のとおりである:
[配列番号1]プライマー1
ATCCGCCCTAGTGGACGAATGGTCCTCTCTTTAGTGATTTCG
[配列番号2]プライマー2
CGACTCTAGAGGATCAGATTTCGGACGACGAGATCC
[配列番号3]プライマー3
TCGTCCACTAGGGCGGATCGACATTC
[配列番号4]プライマー4
CGGTACCCGGGGATCAGGTGCCGAGCGGCCCG
[配列番号5]プライマー5
AGCTGGTACCATTAAAGAGGAGAAATTAACTATGACCGCACCGATTCAG
[配列番号6]プライマー6
AGCTGGTACCTTATTTTGCGCTACCCTGGTT
[配列番号7]プライマー7
AGCTGAATTCATTAAAGAGGAGAAATTAACTATGAAACTGATTATTGGGATGACG
[配列番号8]プライマー8
AGCTTCTAGATTATTCGATCTCCTGTGCAAAT
[配列番号9]プライマー9
GAAGCTTCGTGGATCATTAAAGAGGAGAAATTAACTATGACCGCACCGATT
[配列番号10]プライマー10
ACGTCTCGAGGAATTCTTATTCGATCTCCTGTGCAAAT
[配列番号11]プライマー11
CGGCCGCGGTACCAGTTAAAGAGGAGAAATTAACTATGACCGTGA
[配列番号12]プライマー12
CTAGATACCTAGGTGTCAGCCCTCCTGCAACGCC
[配列番号13]プライマー13
ATGTGAATTGCGGCCAGCGCCCAATACGCAAACC
[配列番号14]プライマー14
ACTGGTACCGCGGCCGCGTAATCATGGTCATAGCTGTTTC
[配列番号15]プライマー15
ATGCGAGCTCATGTACCCCAAAAACACCT
[配列番号16]プライマー16
ATGCCCGGGTCAGATGTCCAGCACCAGCA
[配列番号17]プライマー17
CATGATTACGCGGCCATTAAAGAGGAGAAATTAAC
[配列番号18]プライマー18
ACTGGTACCGCGGCCTCAGATGTCCAGCACCAGCA
[配列番号19]ligA遺伝子
ATGACCGAGAAGAAAGAGAGAATCGACGTTCACGCCTATCTCGCCGAGTTTGACGACATTCCCGGCACCCGCGTGTTCACCGCCCAGCGCGCGCGCAAGGGCTATAATCTCAACCAGTTCGCGATGAGCCTGATGAAGGCCGAGAACCGCGAGCGGTTCAAGGCCGACGAGAGCGCCTATCTGGACGAGTGGAACCTCACGCCCGCCGCCAAGGCCGCCGTGCTGGCCCGCGACTACAATGCGATGATCGACGAGGGCGGGAATGTCTATTTCCTGTCCAAGCTGTTCTCGACCGACGGCAAGAGCTTCCAGTTCGCCGCCGGCTCGATGACCGGCATGACTCAGGAAGAATATGCACAGATGATGATCGATGGCGGCCGTTCGCCCGCGGGTGTGCGCTCGATCAAGGGAGGCTACTGA
[配列番号20]ligB遺伝子
ATGGCACGCGTTACCACGGGCATCACGTCCAGCCACATTCCCGCGCTCGGCGCGGCCATCCAGACCGGCACCAGCGACAATGATTACTGGGGCCCGGTGTTCAAGGGCTACCAGCCGATCCGCGACTGGATCAAGCAGCCCGGCAACATGCCGGACGTCGTGATCCTGGTCTATAACGACCATGCCTCGGCCTTCGACATGAACATCATCCCGACCTTCGCGATCGGCTGCGCGGAAACGTTCAAGCCCGCCGACGAGGGATGGGGCCCGCGCCCGGTGCCCGACGTGAAGGGCCATCCGGACCTTGCCTGGCACATCGCCCAGAGCCTGATCCTCGACGAGTTCGACATGACCATCATGAACCAGATGGACGTCGATCATGGCTGCACCGTGCCGCTCTCGATGATCTTCGGCGAGCCCGAGGAATGGCCGTGCAAGGTCATCCCCTTCCCGGTCAATGTCGTCACTTATCCGCCGCCGTCGGGCAAGCGCTGCTTCGCGCTCGGTGACAGCATCCGCGCCGCGGTCGAGAGCTTCCCGGAAGACCTCAACGTCCATGTCTGGGGCACCGGCGGCATGAGCCACCAGCTTCAGGGCCCGCGCGCCGGCCTCATCAACAAGGAGTTCGACCTGAACTTCATCGACAAGCTGATCAGCGACCCCGAGGAGCTGAGCAAGATGCCGCACATCCAGTATCTGCGCGAAAGCGGATCGGAAGGCATCGAGCTGGTCATGTGGCTCATCATGCGCGGCGCGCTGCCGGAGAAGGTGCGGGATCTCTACACCTTCTATCACATCCCGGCCTCCAACACCGCGCTCGGCGCGATGATCCTGCAGCCGGAGGAGACCGCAGGTACACCGCTCGAACCGCGCAAGGTGATGAGCGGACACAGCCTGGCCCAGGCCTGA
[配列番号21]catA遺伝子
ATGACCGTGAAAATTTCCCACACTGCCGACATTCAAGCCTTCTTCAACCGGGTAGCTGGCCTGGACCATGCCGAAGGAAACCCGCGCTTCAAGCAGATCATTCTGCGCGTGCTGCAAGACACCGCCCGCCTGATCGAAGACCTGGAGATTACCGAGGACGAGTTCTGGCACGCCGTCGACTACCTCAACCGCCTGGGCGGCCGTAACGAGGCAGGCCTGCTGGCTGCTGGCCTGGGTATCGAGCACTTCCTCGACCTGCTGCAGGATGCCAAGGATGCCGAAGCCGGCCTTGGCGGCGGCACCCCGCGCACCATCGAAGGCCCGTTGTACGTTGCCGGGGCGCCGCTGGCCCAGGGCGAAGCGCGCATGGACGACGGCACTGACCCAGGCGTGGTGATGTTCCTTCAGGGCCAGGTGTTCGATGCCGACGGCAAGCCGTTGGCCGGTGCCACCGTCGACCTGTGGCACGCCAATACCCAGGGCACCTATTCGTACTTCGATTCGACCCAGTCCGAGTTCAACCTGCGTCGGCGTATCATCACCGATGCCGAGGGCCGCTACCGCGCGCGCTCGATCGTGCCGTCCGGGTATGGCTGCGACCCGCAGGGCCCAACCCAGGAATGCCTGGACCTGCTCGGCCGCCACGGCCAGCGCCCGGCGCACGTGCACTTCTTCATCTCGGCACCGGGGCACCGCCACCTGACCACGCAGATCAACTTTGCTGGCGACAAGTACCTGTGGGACGACTTTGCCTATGCCACCCGCGACGGGCTGATCGGCGAACTGCGTTTTGTCGAGGATGCGGCGGCGGCGCGCGACCGCGGTGTGCAAGGCGAGCGCTTTGCCGAGCTGTCATTCGACTTCCGCTTGCAGGGTGCCAAGTCGCCTGACGCCGAGGCGCGAAGCCATCGGCCGCGGGCGTTGCAGGAGGGCTGA
[配列番号22]aroY遺伝子
ATGACCGCACCGATTCAGGATCTGCGCGACGCCATCGCGCTGCTGCAACAGCATGACAATCAGTATCTCGAAACCGATCATCCGGTTGACCCTAACGCCGAGCTGGCCGGTGTTTATCGCCATATCGGCGCGGGCGGCACCGTGAAGCGCCCCACCCGCATCGGGCCGGCGATGATGTTTAACAATATTAAGGGTTATCCACACTCGCGCATTCTGGTGGGTATGCACGCCAGCCGCCAGCGGGCCGCGCTGCTGCTGGGCTGCGAAGCCTCGCAGCTGGCCCTTGAAGTGGGTAAGGCGGTGAAAAAACCGGTCGCGCCGGTGGTCGTCCCGGCCAGCAGCGCCCCCTGCCAGGAACAGATCTTTCTGGCCGACGATCCGGATTTTGATTTGCGCACCCTGCTTCCGGCGCCCACCAACACCCCTATCGACGCCGGCCCCTTCTTCTGCCTGGGCCTGGCGCTGGCCAGCGATCCCGTCGACGCCTCGCTGACCGACGTCACCATCCACCGCTTGTGCGTCCAGGGCCGGGATGAGCTGTCGATGTTTCTTGCCGCCGGCCGCCATATCGAAGTGTTTCGCCAAAAGGCCGAGGCCGCCGGCAAACCGCTGCCGATAACCATCAATATGGGTCTCGATCCGGCCATCTATATTGGCGCCTGCTTCGAAGCCCCTACCACGCCGTTCGGCTATAATGAGCTGGGCGTCGCCGGCGCGCTGCGTCAACGTCCGGTGGAGCTGGTTCAGGGCGTCAGCGTCCCGGAGAAAGCCATCGCCCGCGCCGAGATCGTTATCGAAGGTGAGCTGTTGCCTGGCGTGCGCGTCAGAGAGGATCAGCACACCAATAGCGGCCACGCGATGCCGGAATTTCCTGGCTACTGCGGCGGCGCTAATCCGTCGCTGCCGGTAATCAAAGTCAAAGCAGTGACCATGCGAAACAATGCGATTCTGCAGACCCTGGTGGGACCGGGGGAAGAGCATACCACCCTCGCCGGCCTGCCAACGGAAGCCAGTATCTGGAATGCCGTCGAGGCCGCCATTCCGGGCTTTTTACAAAATGTCTACGCCCACACCGCGGGTGGCGGTAAGTTCCTCGGGATCCTGCAGGTGAAAAAACGTCAACCCGCCGATGAAGGCCGGCAGGGGCAGGCCGCGCTGCTGGCGCTGGCGACCTATTCCGAGCTAAAAAATATTATTCTGGTTGATGAAGATGTCGACATCTTTGACAGCGACGATATCCTGTGGGCGATGACCACCCGCATGCAGGGGGACGTCAGCATTACGACAATCCCCGGCATTCGCGGTCACCAGCTGGATCCGTCCCAGACGCCGGAATACAGCCCGTCGATCCGTGGAAATGGCATCAGCTGCAAGACCATTTTTGACTGCACGGTCCCCTGGGCGCTGAAATCGCACTTTGAGCGCGCGCCGTTTGCCGACGTCGATCCGCGTCCGTTTGCACCGGAGTATTTCGCCCGGCTGGAAAAAAACCAGGGTAGCGCAAAATAA
[配列番号23]kpdB遺伝子
ATGAAACTGATTATTGGGATGACGGGGGCCACCGGGGCACCGCTTGGGGTGGCATTGCTGCAGGCGCTGCGCGATATGCCGGAGGTGGAAACCCATCTGGTGATGTCGAAATGGGCCAAAACCACCATCGAGCTGGAAACGCCCTGGACGGCGCGCGAAGTGGCCGCGCTGGCGGACTTTTCCCACAGCCCGGCAGACCAGGCCGCCACCATCTCATCCGGTTCATTTCGTACCGACGGCATGATCGTTATTCCCTGCAGTATGAAAACGCTTGCAGGCATTCGCGCGGGTTATGCCGAAGGACTGGTGGGCCGCGCGGCGGACGTGGTGCTCAAAGAGGGGCGCAAGCTGGTGTTGGTCCCGCGGGAAATGCCGCTCAGCACGATCCATCTGGAGAACATGCTGGCGCTGTCCCGCATGGGCGTGGCGATGGTCCCGCCGATGTCAGCTTACTACAACCACCCGGAGACGGTTGACGATATCACCAATCATATCGTCACCCGGGTGCTGGATCAGTTTGGCCTCGACTATCACAAAGCGCGCCGCTGGAACGGCTTGCGCACGGCAGAACAATTTGCACAGGAGATCGAATAA
[配列番号24]ligM遺伝子
ATGTCGGCACCTACCAATCTTGAACAAGTGCTTGCCGCCGGCGGCAACACCGTCGAAATGCTGCGCAACAGCCAGATCGGTGCCTATGTGTATCCGGTGGTGGCGCCGGAATTCTCCAACTGGCGCACCGAGCAGTGGGCATGGCGCAATTCGGCAGTGCTCTTCGACCAGACCCACCACATGGTCGACCTCTACATCCGTGGCAAGGACGCGCTGAAGCTGCTCTCCGACACGATGATCAACTCGCCCAAGGGCTGGGAGCCCAACAAGGCGAAGCAGTACGTGCCCGTGACGCCTTATGGCCATGTCATCGGCGACGGCATCATCTTCTACCTCGCCGAGGAAGAGTTCGTGTATGTCGGCCGCGCGCCGGCCGCCAACTGGCTGATGTATCATGCGCAGACCGGCGGTTATAACGTCGACATCGTGCATGACGACCGCTCGCCGAGCCGCCCGATGGGCAAGCCGGTGCAGCGCATCTCCTGGCGCTTCCAGATCCAGGGCCCGAAGGCCTGGGACGTGATCGAGAAGCTGCACGGCGGCACGCTCGAGAAGCTCAAATTCTTCAACATGGCCGAGATGAACATCGCCGGTATGAAGATCCGCACCCTGCGTCACGGCATGGCCGGCGCGCCGGGTCTCGAGATCTGGGGTCCCTACGAAACCCAGGAGAAGGCCCGCAACGCGATCCTCGAGGCAGGCAAGGAATTCGGCCTCATCCCGGTCGGTTCGCGCGCCTATCCGTCCAACACGCTGGAATCCGGCTGGATCCCGAGCCCGCTGCCGGCCATCTACACCGGCGACAAGCTCAAGGCCTATCGCGAGTGGCTGCCGGCCAACAGCTATGAGGCGAGCGGCGCCATCGGCGGTTCGTTCGTGTCCAGCAACATCGAGGACTATTACGTCAATCCCTACGAGATCGGCTATGGTCCCTTCGTGAAGTTCGACCACGACTTCATCGGCCGCGACGCTCTCGAGGCGATCGACCCGGCCACGCAGCGCAAGAAGGTCACGCTGGCCTGGAACGGCGACGACATGGCGAAGATCTACGCTTCGCTGTTCGACACCGAGGCCGACGCGCACTACAAGTTCTTCGACCTGCCGCTGGCCAATTATGCCAACACCAACGCCGACGCCGTGCTCGACGCGGCCGGCAACGTGGTCGGCATGTCGATGTTCACCGGCTATTCCTACAACGAGAAGCGCGCGCTTTCGCTCGCGACGATCGACCACGAGATCCCCGTCGGCACCGAGCTGACGGTCCTGTGGGGCGAGGAAAATGGCGGTACGCGCAAGACCACGGTCGAGCCGCACAAGCAGATGGCCGTGCGCGCCGTCGTGAGCCCGGTCCCCTATTCGGTGACCGCGCGCGAGACGTACGAAGGCGGCTGGCGCAAGGCTGCCGTCACGGCCTGA
[配列番号25]vanA遺伝子
ATGTACCCCAAAAACACCTGGTACGTCGCCTGCACCCCCGATGAGATCGCCACCAAACCCCTGGGCCGGCAGATCTGCGGGGAAAAAATCGTGTTCTACCGCGCCCGCGAGAACCAAGTAGCCGCCGTCGAGGACTTCTGCCCGCACCGCGGCGCACCGTTGTCGTTGGGCTATGTCGAGGACGGCAACCTGGTGTGCGGCTACCACGGCCTGGTGATGGGTTGCGACGGCAAGACCGTGTCGATGCCGGGCCAACGGGTGCGTGGCTTCCCCTGCAACAAGACCTTTGCGGCCGTCGAGCGCTATGGCTTCATCTGGGTCTGGCCCGGTGACCAGGCGCAGGCCGACCCGGCGCTGATTCCGCATCTGGAATGGGCGGTGAGTGATGAGTGGGCCTACGGCGGCGGGCTGTTCCACATCGGTTGCGACTACCGCCTGATGATCGACAACCTCATGGACCTCACCCATGAAACCTATGTGCACGCCTCCAGCATCGGCCAGAAGGAGATCGACGAGGCACCGCCGGTCACCACCGTCACCGGCGACGAAGTGGTCACCGCCCGGCACATGGAAAACATCATGGCGCCACCGTTCTGGCGCATGGCCTTGCGTGGCAATGGCCTGGCCGACGATGTACCAGTGGACCGCTGGCAGATCTGCCGTTTCACCCCACCTAGCCATGTGCTGATCGAAGTGGGTGTAGCGCATGCCGGCAAGGGCGGCTACCACGCCGAGGCACAGCATAAGGCGTCGAGCATCGTGGTCGACTTCATCACCCCTGAGAGCGATACCTCTATCTGGTACTTCTGGGGCATGGCGCGCAACTTCGCTGCGCACGACCAGACCCTGACCGACAACATTCGTGAGGGCCAGGGCAAGATTTTCAGCGAAGACCTGGAAATGCTCGAACGCCAGCAGCAGAACCTGCTGGCCCACCCCGAGCGCAACTTGCTGAAGCTGAATATCGACGCCGGCGGCGTGCAGTCACGCAAAGTGCTGGAGCGGATCATCGCCCAAGAGCGTGCGCCGCAGCCGCAACTGATCGCCACCAGCGCCAACCCTGCCTGA
[配列番号26]vanB遺伝子
ATGATCGATGCCGTAGTGGTATCCCGTAACGATGAAGCGCAGGGTATCTGCAGCTTCGAGCTGGCCGCGGCAGATGGCAGCCTGCTGCCGGCGTTCAGCGCCGGCGCCCATATCGACGTGCACCTGCCCGACGGGCTGGTGCGCCAGTATTCGCTGTGCAACCACCCCGAAGAACGCCATCGCTATCTGATTGGCGTACTCAACGACCCGGCTTCGCGGGGCGGTTCTCGTAGCCTGCACGAACAGGTGCAAGCCGGTGCCCGGCTGCGTATCAGTGCGCCGCGCAACCTGTTCCCGCTGGCCGAGGGTGCGCAGCGCAGTTTGCTGTTTGCTGGCGGTATCGGCATTACCCCAATCCTGTGCATGGCCGAGCAGCTGTCCGACAGCGGCCAGGCCTTCGAGCTGCACTACTGTGCCCGCTCCAGCGAGCGTGCGGCGTTTGTCGAGCGGATCCGCAGCGCGCCGTTCGCTGATCGGCTGTTCGTGCATTTTGACGAGCAGCCGGAAACGGCGCTGGACATCGCCCAGGTGCTGGGCAACCCGCAAGATGATGTGCACCTGTATGTATGCGGGCCCGGCGGGTTCATGCAGCATGTGCTGGACAGCGCGAAGGGGCTGGGCTGGCAGGAGGCCAACCTGCACCGCGAGTACTTCGCCGCAGCACCGGTGGATGCCAGCAACGATGGCAGTTTCGCGGTGCAGGTGGGCAGCACGGGACAGGTGTTCGAGGTGCCAGCCGACCGGACCGTGGTGCAGGTGCTGGAAGAGAATGGTATCGAGATCGCCATGTCGTGCGAGCAGGGTATTTGCGGCACCTGCCTGACACGCGTGCTGCAGGGCACACCGGACCATCGCGATCTGTTTCTCACCGAAGAGGAACAGGCCCTGAACGATCAGTTCACGCCCTGCTGCTCGCGCTCGAAGACGCCGCTGCTGGTGCTGGACATCTGA
[配列番号27]LigA
MTEKKERIDVHAYLAEFDDIPGTRVFTAQRARKGYNLNQFAMSLMKAENRERFKADESAYLDEWNLTPAAKAAVLARDYNAMIDEGGNVYFLSKLFSTDGKSFQFAAGSMTGMTQEEYAQMMIDGGRSPAGVRSIKGG
[配列番号28]LigB
MARVTTGITSSHIPALGAAIQTGTSDNDYWGPVFKGYQPIRDWIKQPGNMPDVVILVYNDHASAFDMNIIPTFAIGCAETFKPADEGWGPRPVPDVKGHPDLAWHIAQSLILDEFDMTIMNQMDVDHGCTVPLSMIFGEPEEWPCKVIPFPVNVVTYPPPSGKRCFALGDSIRAAVESFPEDLNVHVWGTGGMSHQLQGPRAGLINKEFDLNFIDKLISDPEELSKMPHIQYLRESGSEGVELVMWLIMRGALPEKVRDLYTFYHIPASNTALGAMILQPEETAGTPLEPRKVMSGHSLAQA
[配列番号29]CatA
MTVKISHTADIQAFFNRVAGLDHAEGNPRFKQIILRVLQDTARLIEDLEITEDEFWHAVDYLNRLGGRNEAGLLAAGLGIEHFLDLLQDAKDAEAGLGGGTPRTIEGPLYVAGAPLAQGEARMDDGTDPGVVMFLQGQVFDADGKPLAGATVDLWHANTQGTYSYFDSTQSEFNLRRRIITDAEGRYRARSIVPSGYGCDPQGPTQECLDLLGRHGQRPAHVHFFISAPGHRHLTTQINFAGDKYLWDDFAYATRDGLIGELRFVEDAAAARDRGVQGERFAELSFDFRLQGAKSPDAEARSHRPRALQEG
[配列番号30]AroY
MTAPIQDLRDAIALLQQHDNQYLETDHPVDPNAELAGVYRHIGAGGTVKRPTRIGPAMMFNNIKGYPHSRILVGMHASRQRAALLLGCEASQLALEVGKAVKKPVAPVVVPASSAPCQEQIFLADDPDFDLRTLLPAPTNTPIDAGPFFCLGLALASDPVDASLTDVTIHRLCVQGRDELSMFLAAGRHIEVFRQKAEAAGKPLPITINMGLDPAIYIGACFEAPTTPFGYNELGVAGALRQRPVELVQGVSVPEKAIARAEIVIEGELLPGVRVREDQHTNSGHAMPEFPGYCGGANPSLPVIKVKAVTMRNNAILQTLVGPGEEHTTLAGLPTEASIWNAVEAAIPGFLQNVYAHTAGGGKFLGILQVKKRQPADEGRQGQAALLALATYSELKNIILVDEDVDIFDSDDILWAMTTRMQGDVSITTIPGIRGHQLDPSQTPEYSPSIRGNGISCKTIFDCTVPWALKSHFERAPFADVDPRPFAPEYFARLEKNQGSAK
[配列番号31]KpdB
MKLIIGMTGATGAPLGVALLQALRDMPEVETHLVMSKWAKTTIELETPWTAREVAALADFSHSPADQAATISSGSFRTDGMIVIPCSMKTLAGIRAGYAEGLVGRAADVVLKEGRKLVLVPREMPLSTIHLENMLALSRMGVAMVPPMPAYYNHPETVDDITNHIVTRVLDQFGLDYHKARRWNGLRTAEQFAQEIE
[配列番号32]LigM
MSAPTNLEQVLAAGGNTVEMLRNSQIGAYVYPVVAPEFSNWRTEQWAWRNSAVLFDQTHHMVDLYIRGKDALKLLSDTMINSPKGWEPNKAKQYVPVTPYGHVIGDGIIFYLAEEEFVYVGRAPAANWLMYHAQTGGYNVDIVHDDRSPSRPMGKPVQRISWRFQIQGPKAWDVIEKLHGGTLEKLKFFNMAEMNIAGMKIRTLRHGMAGAPGLEIWGPYETQEKARNAILEAGKEFGLIPVGSRAYPSNTLESGWIPSPLPAIYTGDKLKAYREWLPANSYEASGAIGGSFVSSNIEDYYVNPYEIGYGPFVKFDHDFIGRDALEAIDPATQRKKVTLAWNGDDMAKIYASLFDTEADAHYKFFDLPLANYANTNADAVLDAAGNVVGMSMFTGYSYNEKRALSLATIDHEIPVGTELTVLWGEENGGTRKTTVEPHKQMAVRAVVSPVPYSVTARETYEGGWRKAAVTA
[配列番号33]VanA
MYPKNTWYVACTPDEIATKPLGRQICGEKIVFYRARENQVAAVEDFCPHRGAPLSLGYVEDGNLVCGYHGLVMGCDGKTVSMPGQRVRGFPCNKTFAAVERYGFIWVWPGDQAQADPALIPHLEWAVSDEWAYGGGLFHIGCDYRLMIDNLMDLTHETYVHASSIGQKEIDEAPPVTTVTGDEVVTARHMENIMAPPFWRMALRGNGLADDVPVDRWQICRFTPPSHVLIEVGVAHAGKGGYHAEAQHKASSIVVDFITPESDTSIWYFWGMARNFAAHDQTLTDNIREGQGKIFSEDLEMLERQQQNLLAHPERNLLKLNIDAGGVQSRKVLERIIAQERAPQPQLIATSANPA
[配列番号34]VanB
MIDAVVVSRNDEAQGICSFELAAADGSLLPAFSAGAHIDVHLPDGLVRQYSLCNHPEERHRYLIGVLNDPASRGGSRSLHEQVQAGARLRISAPRNLFPLAEGAQRSLLFAGGIGITPILCMAEQLSDSGQAFELHYCARSSERAAFVERIRSAPFADRLFVHFDEQPETALDIAQVLGNPQDDVHLYVCGPGGFMQHVLDSAKGLGWQEANLHREYFAAAPVDASNDGSFAVQVGSTGQVFEVPADRTVVQVLEENGIEIAMSCEQGICGTCLTRVLQGTPDHRDLFLTEEEQALNDQFTPCCSRSKTPLLVLDI
[配列番号35]pcaH遺伝子
ATGCCCGCCCAGGACAACAGCCGCTTCGTGATCCGTGATCGCAACTGGCACCCTAAAGCCCTTACGCCTGACTACAAGACCTCCGTTGCCCGCTCGCCGCGCCAGGCACTGGTCAGCATTCCGCAGTCGATCAGCGAAACCACTGGTCCGGACTTTTCCCATCTGGGCTTCGGCGCCCACGACCATGACCTGCTGCTGAACTTCAATAACGGTGGCCTGCCCATTGGCGAGCGCATCATCGTCGCCGGCCGTGTCGTCGACCAGTACGGCAAGCCTGTGCCGAACACTTTGGTGGAGATGTGGCAAGCCAACGCCGGCGGCCGCTATCGCCACAAGAACGATCGCTACCTGGCGCCCCTGGACCCGAACTTCGGTGGTGTTGGGCGGTGTCTGACCGACCGTGACGGCTATTACAGCTTCCGCACCATCAAGCCGGGCCCGTACCCATGGCGCAACGGCCCGAACGACTGGCGCCCGGCGCATATCCACTTCGCCATCAGCGGCCCATCGATCGCCACCAAGCTGATCACCCAGTTGTACTTCGAAGGTGACCCGCTGATCCCGATGTGCCCGATCGTCAAGTCGATCGCCAACCCGCAAGCCGTGCAGCAGTTGATCGCCAAGCTCGACATGAGCAACGCCAACCCGATGGACTGCCTGGCCTACCGCTTTGACATCGTGCTGCGCGGCCAGCGCAAGACCCACTTCGAAAACTGCTGA
[配列番号36]pcaG遺伝子
ATGCCAATCGAACTGCTGCCGGAAACCCCTTCGCAGACTGCCGGCCCCTACGTGCACATCGGCCTGGCCCTGGAAGCCGCCGGCAACCCGACCCGCGACCAGGAAATCTGGAACTGCCTGGCCAAGCCAGACGCCCCGGGCGAGCACATTCTGCTGATCGGCCACGTATATGACGGAAACGGCCACCTGGTGCGCGACTCGTTCCTGGAAGTGTGGCAGGCCGACGCCAACGGTGAGTACCAGGATGCCTACAACCTGGAAAACGCCTTCAACAGCTTTGGCCGCACGGCTACCACCTTCGATGCCGGTGAGTGGACGCTGCAAACGGTCAAGCCGGGTGTGGTGAACAACGCTGCTGGCGTGCCGATGGCGCCGCACATCAACATCAGCCTGTTTGCCCGTGGCATCAACATCCACCTGCACACGCGCCTGTATTTCGATGATGAGGCCCAGGCCAATGCCAAGTGCCCGGTGCTCAACCTGATCGAGCAGCCGCAGCGGCGTGAAACCTTGATTGCCAAGCGTTGCGAAGTGGATGGGAAGACGGCGTACCGCTTTGATATCCGCATTCAGGGGGAAGGGGAGACCGTCTTCTTCGACTTCTGA
[配列番号37]praA遺伝子
ATGTCACTGGAAATGGCTTTGTTAGCCGCGCATGTCCCAAGCATTTGTCATGAATCTAATGTGCCTGATTTCCAACAGGATTTGGTCAAGGGGCTGAAGCAGATGCGGGACCGCATCAACGAGCTTCAGACAGATGTGATTTTGCTGATGTCCTGCCACTTTCCGGCAACCTTTCATCACTATGTGGATGCAACACCGCGGCATACCGGCATATTAACGGCGATGGAGTGTCCGGATCTGATCTCGGACGTACCGTATGACTATCCTGGGGATGAGGAGCTGGCGCGTAAGCTGGTAACCGCGGGCCAAGAGGCAGGCCTTCCCATCGTGGAGATCAATGATCCGACTTACATTTGGGATTACGGTACCGTCGTTCCGCTGCGGTACTTGGTTCCGAACCAAGACAAATCGGTCATCAGCTTGTCGGTATGCTGGGCTTCCAGCCTGGAGGAATCGTACCAGTGGGGCGTTCAAATCGGCAAGGTGCTGAGGGAAAGCGAGAAGCGGGCGGTGTTCATCAGCAGCGGCGCTTTATCTCACAACTTGGTCCGGGGACGTCACCATATGCCGAGCCGCTCCGAGCAAGCCATGGATAACCAATTCATCGAATATTTACTGAACGGAGATTATAACGCTGCCCGTGAAATGCTAAACCAATATGCGCGTATTGCGGGTGTGGAATCCGGAGGACGCCATCTGGCCGCCTTGCTGGGTGTGCTGGATGATAAGCAGCGCGCCGAGTTTTGGGGATACGGCCAATCTTCCGGCAGCGGCAACGCCATTATCTCGTTTGTATCATGA
[配列番号38]desA遺伝子
ATGGCGAAAAGTCTTCAAGATGTGCTGGACAATGCCGGAAATGCAGTCGATTTCCTGCGCAACCAGCAGACCGGCCCGAACGTCTATCCCGGCGTCCCGGCGGAATATTCCAACTGGCGCAACGAGCAGCGCGCATGGGCCAAGACCGCCGTGCTCTTCAACCAGAGCTACCACATGGTCGAGCTGATGGTCGAAGGCCCCGACGCCTTCGCCTTCCTCAACTATCTCGGCATCAACAGCTTCAAGAACTTCGCGCCCGGCAAGGCCAAGCAGTGGGTTCCGGTGACGGCCGAGGGCTATGTCATCGGCGACGTGATCCTGTTCTATCTCGCCGAGAACCAGTTCAACCTCGTCGGCCGCGCGCCGGCCATCGAGTGGGCCGAGTTCCATGCCGCCACCGGCAAGTGGAACGTGACGCTCACCCGTGACGAGCGCACCGCGCTGCGCACCGACGGCGTGCGTCGCCACTATCGCTTCCAGCTGCAGGGCCCCAACGCCATGGCGATCCTAACGGACGCGATGGGCCAGACCCCGCCGGACCTCAAATTCTTCAACATGGCGGACATCCAGATCGCCGGGAAGACCGTCGGCGCGCTGCGTCACGGCATGGCCGGTCAGCCGGGCTATGAGCTCTATGGTCCCTGGGCGGATTATGAGGCGGTTCATTCGGCGCTGGTCGCGGCCGGCAAGAACCATGGGCTGGCGCTCGTCGGCGGCCGTGCCTATTCGTCCAACACGCTGGAATCCGGCTGGGTGCCCTCGCCGTTCCCGGGCTATCTCTTCGGCGAAGGCTCGGCCGACTTCCGCAAGTGGGCCGGCGAGAACAGCTATGGCGCCAAGTGCTCCATCGGCGGTTCCTATGTGCCCGAGAGCCTGGAAGGCTATGGCCTGACGCCCTGGGACATCGGCTATGGCATCATCGTCAAGTTCGACCATGACTTCATCGGCAAGGAAGCGCTGGAGAAGATGGCGAACGAGCCGCACCTCGAGAAGGTGACGCTGGCGCTGGACGACGAGGACATGCTGCGCGTGATGAGCAGCTATTTCTCGGACTCCGGTCGTGCGAAATATTTCGAGTTCCCGAGCGCGGTCTACTCGATGCACCCCTATGACTCGGTGCTGGTCGACGGCAAGCATGTCGGCGTCTCGACCTGGGTCGGCTACTCGTCGAACGAGGGCAAGATGCTCACGCTCGCGATGATCGATCCCAAATATGCCAAGCCCGGCACGGAAGTCTCGCTGCTCTGGGGCGAGCCCAATGGCGGCACCTCCAAGCCGACCGTCGAGCCGCACGAGCAGACGGAGATCAAGGCGGTCGTGGCGCCGGTGCCGTACTCGGCCGTGGCGCGCACGGGCTATGCCGACAGCTGGCGCACCAAGAAGGCCTGA
The sequences listed in the sequence listing are as follows:
[SEQ ID NO: 1] Primer 1
ATCCGCCCTAGTGGACGAATGGTCCTCTCTTTAGTGATTTCG
[SEQ ID NO: 2] Primer 2
CGACTCTAGAGGATCAGATTTCGGACGACGAGATCC
[SEQ ID NO: 3] Primer 3
TCGTCCACTAGGGCGGATCGACATTC
[SEQ ID NO: 4] Primer 4
CGGTACCCGGGGATCAGGTGCCGAGCGGCCCG
[SEQ ID NO: 5] Primer 5
AGCTGGTACCATTAAAGAGGAGAAATTAACTATGACCGCACCGATTCAG
[SEQ ID NO: 6] Primer 6
AGCTGGTACCTTATTTTGCGCTACCCTGGTT
[SEQ ID NO: 7] Primer 7
AGCTGAATTCATTAAAGAGGAGAAATTAACTATGAAACTGATTATTGGGATGACG
[SEQ ID NO: 8] Primer 8
AGCTTCTAGATTATTCGATCTCCTGTGCAAAT
[SEQ ID NO: 9] Primer 9
GAAGCTTCGTGGATCATTAAAGAGGAGAAATTAACTATGACCGCACCGATT
[SEQ ID NO: 10] Primer 10
ACGTCTCGAGGAATTCTTATTCGATCTCCTGTGCAAAT
[SEQ ID NO: 11] Primer 11
CGGCCGCGGTACCAGTTAAAGAGGAGAAATTAACTATGACCGTGA
[SEQ ID NO: 12] Primer 12
CTAGATACCTAGGTGTCAGCCCTCCTGCAACGCC
[SEQ ID NO: 13] Primer 13
ATGTGAATTGCGGCCAGCGCCCAATACGCAAACC
[SEQ ID NO: 14] Primer 14
ACTGGTACCGCGGCCGCGTAATCATGGTCATAGCTGTTTC
[SEQ ID NO: 15] Primer 15
ATGCGAGCTCATGTACCCCAAAAACACCT
[SEQ ID NO: 16] Primer 16
ATGCCCGGGTCAGATGTCCAGCACCAGCA
[SEQ ID NO: 17] Primer 17
CATGATTACGCGGCCATTAAAGAGGAGAAATTAAC
[SEQ ID NO: 18] Primer 18
ACTGGTACCGCGGCCTCAGATGTCCAGCACCAGCA
[SEQ ID NO: 19] ligA gene
ATGACCGAGAAGAAAGAGAGAATCGACGTTCACGCCTATCTCGCCGAGTTTGACGACATTCCCGGCACCCGCGTGTTCACCGCCCAGCGCGCGCGCAAGGGCTATAATCTCAACCAGTTCGCGATGAGCCTGATGAAGGCCGAGAACCGCGAGCGGTTCAAGGCCGACGAGAGCGCCTATCTGGACGAGTGGAACCTCACGCCCGCCGCCAAGGCCGCCGTGCTGGCCCGCGACTACAATGCGATGATCGACGAGGGCGGGAATGTCTATTTCCTGTCCAAGCTGTTCTCGACCGACGGCAAGAGCTTCCAGTTCGCCGCCGGCTCGATGACCGGCATGACTCAGGAAGAATATGCACAGATGATGATCGATGGCGGCCGTTCGCCCGCGGGTGTGCGCTCGATCAAGGGAGGCTACTGA
[SEQ ID NO: 20] ligB gene

[SEQ ID NO: 21] catA gene

[SEQ ID NO: 22] aroY gene

[SEQ ID NO: 23] kpdB gene

[SEQ ID NO: 24] ligM gene

[SEQ ID NO: 25] vanA gene

[SEQ ID NO: 26] vanB gene

[SEQ ID NO: 27] LigA
MTEKKERIDVHAYLAEFDDIPGTRVFTAQRARKGYNLNQFAMSLMKAENRERFKADESAYLDEWNLTPAAKAAVLARDYNAMIDEGGNVYFLSKLFSTDGKSFQFAAGSMTGMTQEEYAQMMIDGGRSPAGVRSIKGG
[SEQ ID NO: 28] LigB
MARVTTGITSSHIPALGAAIQTGTSDNDYWGPVFKGYQPIRDWIKQPGNMPDVVILVYNDHASAFDMNIIPTFAIGCAETFKPADEGWGPRPVPDVKGHPDLAWHIAQSLILDEFDMTIMNQMDVDHGCTVPLSMIFGEPEEWPCKVIPFPVNVVTYPPPSGKRCFALGDSIRAAVESFPEDLNVHVWGTGGMSHQLQGPRAGLINKEFDLNFIDKLISDPEELSKMPHIQYLRESGSEGVELVMWLIMRGALPEKVRDLYTFYHIPASNTALGAMILQPEETAGTPLEPRKVMSGHSLAQA
[SEQ ID NO: 29] CatA
MTVKISHTADIQAFFNRVAGLDHAEGNPRFKQIILRVLQDTARLIEDLEITEDEFWHAVDYLNRLGGRNEAGLLAAGLGIEHFLDLLQDAKDAEAGLGGGTPRTIEGPLYVAGAPLAQGEARMDDGTDPGVVMFLQGQVFDADGKPLAGATVDLWHANTQGTYSYFDSTQSEFNLRRRIITDAEGRYRARSIVPSGYGCDPQGPTQECLDLLGRHGQRPAHVHFFISAPGHRHLTTQINFAGDKYLWDDFAYATRDGLIGELRFVEDAAAARDRGVQGERFAELSFDFRLQGAKSPDAEARSHRPRALQEG
[SEQ ID NO: 30] AroY
MTAPIQDLRDAIALLQQHDNQYLETDHPVDPNAELAGVYRHIGAGGTVKRPTRIGPAMMFNNIKGYPHSRILVGMHASRQRAALLLGCEASQLALEVGKAVKKPVAPVVVPASSAPCQEQIFLADDPDFDLRTLLPAPTNTPIDAGPFFCLGLALASDPVDASLTDVTIHRLCVQGRDELSMFLAAGRHIEVFRQKAEAAGKPLPITINMGLDPAIYIGACFEAPTTPFGYNELGVAGALRQRPVELVQGVSVPEKAIARAEIVIEGELLPGVRVREDQHTNSGHAMPEFPGYCGGANPSLPVIKVKAVTMRNNAILQTLVGPGEEHTTLAGLPTEASIWNAVEAAIPGFLQNVYAHTAGGGKFLGILQVKKRQPADEGRQGQAALLALATYSELKNIILVDEDVDIFDSDDILWAMTTRMQGDVSITTIPGIRGHQLDPSQTPEYSPSIRGNGISCKTIFDCTVPWALKSHFERAPFADVDPRPFAPEYFARLEKNQGSAK
[SEQ ID NO: 31] KpdB
MKLIIGMTGATGAPLGVALLQALRDMPEVETHLVMSKWAKTTIELETPWTAREVAALADFSHSPADQAATISSGSFRTDGMIVIPCSMKTLAGIRAGYAEGLVGRAADVVLKEGRKLVLVPREMPLSTIHLENMLALSRMGVAMVPPMPAYYNHPETVDDITNHAETRVLDQGLGLRTQLD
[SEQ ID NO: 32] LigM
MSAPTNLEQVLAAGGNTVEMLRNSQIGAYVYPVVAPEFSNWRTEQWAWRNSAVLFDQTHHMVDLYIRGKDALKLLSDTMINSPKGWEPNKAKQYVPVTPYGHVIGDGIIFYLAEEEFVYVGRAPAANWLMYHAQTGGYNVDIVHDDRSPSRPMGKPVQRISWRFQIQGPKAWDVIEKLHGGTLEKLKFFNMAEMNIAGMKIRTLRHGMAGAPGLEIWGPYETQEKARNAILEAGKEFGLIPVGSRAYPSNTLESGWIPSPLPAIYTGDKLKAYREWLPANSYEASGAIGGSFVSSNIEDYYVNPYEIGYGPFVKFDHDFIGRDALEAIDPATQRKKVTLAWNGDDMAKIYASLFDTEADAHYKFFDLPLANYANTNADAVLDAAGNVVGMSMFTGYSYNEKRALSLATIDHEIPVGTELTVLWGEENGGTRKTTVEPHKQMAVRAVVSPVPYSVTARETYEGGWRKAAVTA
[SEQ ID NO: 33] VanA
MYPKNTWYVACTPDEIATKPLGRQICGEKIVFYRARENQVAAVEDFCPHRGAPLSLGYVEDGNLVCGYHGLVMGCDGKTVSMPGQRVRGFPCNKTFAAVERYGFIWVWPGDQAQADPALIPHLEWAVSDEWAYGGGLFHIGCDYRLMIDNLMDLTHETYVHASSIGQKEIDEAPPVTTVTGDEVVTARHMENIMAPPFWRMALRGNGLADDVPVDRWQICRFTPPSHVLIEVGVAHAGKGGYHAEAQHKASSIVVDFITPESDTSIWYFWGMARNFAAHDQTLTDNIREGQGKIFSEDLEMLERQQQNLLAHPERNLLKLNIDAGGVQSRKVLERIIAQERAPQPQLIATSANPA
[SEQ ID NO: 34] VanB
MIDAVVVSRNDEAQGICSFELAAADGSLLPAFSAGAHIDVHLPDGLVRQYSLCNHPEERHRYLIGVLNDPASRGGSRSLHEQVQAGARLRISAPRNLFPLAEGAQRSLLFAGGIGITPILCMAEQLSDSGQAFELHYCARSSERAAFVERIRSAPFADRLFVHFDEQPETALDIAQVLGNPQDDVHLYVCGPGGFMQHVLDSAKGLGWQEANLHREYFAAAPVDASNDGSFAVQVGSTGQVFEVPADRTVVQVLEENGIEIAMSCEQGICGTCLTRVLQGTPDHRDLFLTEEEQALNDQFTPCCSRSKTPLLVLDI
[SEQ ID NO: 35] pcaH gene

[SEQ ID NO: 36] pcaG gene

[SEQ ID NO: 37] prA gene

[SEQ ID NO: 38] desA gene
ATGGCGAAAAGTCTTCAAGATGTGCTGGACAATGCCGGAAATGCAGTCGATTTCCTGCGCAACCAGCAGACCGGCCCGAACGTCTATCCCGGCGTCCCGGCGGAATATTCCAACTGGCGCAACGAGCAGCGCGCATGGGCCAAGACCGCCGTGCTCTTCAACCAGAGCTACCACATGGTCGAGCTGATGGTCGAAGGCCCCGACGCCTTCGCCTTCCTCAACTATCTCGGCATCAACAGCTTCAAGAACTTCGCGCCCGGCAAGGCCAAGCAGTGGGTTCCGGTGACGGCCGAGGGCTATGTCATCGGCGACGTGATCCTGTTCTATCTCGCCGAGAACCAGTTCAACCTCGTCGGCCGCGCGCCGGCCATCGAGTGGGCCGAGTTCCATGCCGCCACCGGCAAGTGGAACGTGACGCTCACCCGTGACGAGCGCACCGCGCTGCGCACCGACGGCGTGCGTCGCCACTATCGCTTCCAGCTGCAGGGCCCCAACGCCATGGCGATCCTAACGGACGCGATGGGCCAGACCCCGCCGGACCTCAAATTCTTCAACATGGCGGACATCCAGATCGCCGGGAAGACCGTCGGCGCGCTGCGTCACGGCATGGCCGGTCAGCCGGGCTATGAGCTCTATGGTCCCTGGGCGGATTATGAGGCGGTTCATTCGGCGCTGGTCGCGGCCGGCAAGAACCATGGGCTGGCGCTCGTCGGCGGCCGTGCCTATTCGTCCAACACGCTGGAATCCGGCTGGGTGCCCTCGCCGTTCCCGGGCTATCTCTTCGGCGAAGGCTCGGCCGACTTCCGCAAGTGGGCCGGCGAGAACAGCTATGGCGCCAAGTGCTCCATCGGCGGTTCCTATGTGCCCGAGAGCCTGGAAGGCTATGGCCTGACGCCCTGGGACATCGGCTATGGCATCATCGTCAAGTTCGACCATGACTTCATCGGCAAGGAAGCGCTGGAGAAGATGGCGAACGAGCCGCACCTCGAGAAGGTGACGC TGGCGCTGGACGACGAGGACATGCTGCGCGTGATGAGCAGCTATTTCTCGGACTCCGGTCGTGCGAAATATTTCGAGTTCCCGAGCGCGGTCTACTCGATGCACCCCTATGACTCGGTGCTGGTCGACGGCAAGCATGTCGGCGTCTCGACCTGGGTCGGCTACTCGTCGAACGAGGGCAAGATGCTCACGCTCGCGATGATCGATCCCAAATATGCCAAGCCCGGCACGGAAGTCTCGCTGCTCTGGGGCGAGCCCAATGGCGGCACCTCCAAGCCGACCGTCGAGCCGCACGAGCAGACGGAGATCAAGGCGGTCGTGGCGCCGGTGCCGTACTCGGCCGTGGCGCGCACGGGCTATGCCGACAGCTGGCGCACCAAGAAGGCCTGA
本発明の一態様の形質転換微生物や製造方法によって、シリンギルリグニン由来の芳香族化合物や広葉樹由来のシリンギルリグニンを含むバイオマスなどから、ムコン酸やプロトカテク酸が得られる。ムコン酸やプロトカテク酸は、種々の産業上有用な化合物に変換することができ、例えば、界面活性剤、難燃剤、UV光安定化剤、熱硬化性プラスチック、コーティング剤、医薬品、農薬、香料などの原料として利用することができる。 According to the transformed microorganism and the production method of one embodiment of the present invention, muconic acid and protocatechuic acid can be obtained from a biomass containing an aromatic compound derived from syringyl lignin or a hardwood derived syringyl lignin. Muconic acid and protocatechuic acid can be converted into various industrially useful compounds, such as surfactants, flame retardants, UV light stabilizers, thermosetting plastics, coating agents, pharmaceuticals, agricultural chemicals, fragrances, etc. It can be used as a raw material.

Claims (9)

  1. 宿主微生物が染色体上にプロトカテク酸分解酵素遺伝子を有し、かつ、シリンギルリグニン由来の芳香族化合物を資化するスフィンゴモナド(Sphingomonad)科微生物であり、
    染色体上にある該プロトカテク酸分解酵素遺伝子が欠失しており、
    挿入されたcatA遺伝子を発現し、かつ、
    挿入されたaroY遺伝子又はaroY遺伝子及びkpdB遺伝子を発現する、
    形質転換微生物。
    Host microorganism has a protocatechuic acid degrading enzyme gene on a chromosome, and a Sphingomonas monad (Sphingomonad) family microorganism assimilates aromatic compounds from syringyl lignin,
    The protocatechuate degrading enzyme gene on the chromosome is deleted,
    Expressing the inserted catA gene, and
    Expressing the inserted aroY gene or aroY gene and kpdB gene;
    Transformed microorganisms.
  2. 挿入された前記aroY遺伝子、前記kpdB遺伝子及び前記catA遺伝子は、同一プロモーターの制御下にある、請求項1に記載の形質転換微生物。 The transformed microorganism according to claim 1, wherein the inserted aroY gene, the kpdB gene, and the catA gene are under the control of the same promoter.
  3. 前記形質転換微生物は、挿入されたvanA遺伝子及びvanB遺伝子をさらに発現する、請求項1に記載の形質転換微生物。 The transformed microorganism according to claim 1, wherein the transformed microorganism further expresses the inserted vanA gene and vanB gene.
  4. 挿入された前記aroY遺伝子、前記kpdB遺伝子、前記catA遺伝子、前記vanA遺伝子及び前記vanB遺伝子は、同一プロモーターの制御下にある、請求項3に記載の形質転換微生物。 The transformed microorganism according to claim 3, wherein the inserted aroY gene, the kpdB gene, the catA gene, the vanA gene and the vanB gene are under the control of the same promoter.
  5. 前記プロトカテク酸分解酵素遺伝子が、ligA遺伝子、ligB遺伝子、pcaG遺伝子、pcaH遺伝子及びpraA遺伝子からなる群から選ばれる遺伝子である、請求項1に記載の形質転換微生物。 The transformed microorganism according to claim 1, wherein the protocatechuate degrading enzyme gene is a gene selected from the group consisting of a ligA gene, a ligB gene, a pcaG gene, a pcaH gene and a prA gene.
  6. 前記宿主微生物が、スフィンゴビウム・スピーシーズ(Sphingobium species) SYK-6株である、請求項1に記載の形質転換微生物。 The transformed microorganism according to claim 1, wherein the host microorganism is Sphingobium species SYK-6 strain.
  7. p-ヒドロキシフェニルリグニン由来の芳香族化合物及び/又はグアイアシルリグニン由来の芳香族化合物と、シリンギルリグニン由来の芳香族化合物とを、請求項1~6のいずれか1項に記載の形質転換微生物に作用させることにより、ムコン酸を得る工程を含む、ムコン酸の製造方法。 The transformed microorganism according to any one of claims 1 to 6, wherein an aromatic compound derived from p-hydroxyphenyl lignin and / or an aromatic compound derived from guaiacyl lignin and an aromatic compound derived from syringyl lignin are used. A method for producing muconic acid, which comprises a step of obtaining muconic acid by acting on the above.
  8. 宿主微生物が染色体上にプロトカテク酸分解酵素遺伝子を有し、かつ、シリンギルリグニン由来の芳香族化合物を資化するスフィンゴモナド科微生物であり、かつ、
    染色体上にある該プロトカテク酸分解酵素遺伝子が欠失している、
    形質転換微生物。
    The host microorganism is a sphingomonad family microorganism having a protocatechuate degrading enzyme gene on a chromosome and assimilating an aromatic compound derived from syringyl lignin; and
    The protocatechuate degrading enzyme gene on the chromosome is deleted,
    Transformed microorganisms.
  9. p-ヒドロキシフェニルリグニン由来の芳香族化合物及び/又はグアイアシルリグニン由来の芳香族化合物と、シリンギルリグニン由来の芳香族化合物とを、請求項8に記載の形質転換微生物に作用させることにより、プロトカテク酸を得る工程を含む、プロトカテク酸の製造方法。
     

     
     
    A protocatechu by treating a transformed microorganism according to claim 8 with an aromatic compound derived from p-hydroxyphenyl lignin and / or an aromatic compound derived from guaiacyl lignin and an aromatic compound derived from syringyl lignin. A method for producing protocatechuic acid, comprising a step of obtaining an acid.



PCT/JP2018/016675 2017-04-25 2018-04-24 Transgenic microorganism and use thereof WO2018199112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514547A JP7067706B2 (en) 2017-04-25 2018-04-24 Transformed microorganisms and their utilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086595 2017-04-25
JP2017-086595 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018199112A1 true WO2018199112A1 (en) 2018-11-01

Family

ID=63919071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016675 WO2018199112A1 (en) 2017-04-25 2018-04-24 Transgenic microorganism and use thereof

Country Status (2)

Country Link
JP (1) JP7067706B2 (en)
WO (1) WO2018199112A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317760A (en) * 2019-07-22 2019-10-11 肇庆学院 One plant of PAHs- heavy-metal composite pollution degradation/adhered bacteria and its application in environmental pollution reparation
WO2023090378A1 (en) * 2021-11-16 2023-05-25 花王株式会社 Production method for dihydroxyphenylalanine
WO2023190564A1 (en) * 2022-03-29 2023-10-05 国立研究開発法人理化学研究所 Method for producing methacrylic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207094A (en) * 2009-03-06 2010-09-24 Genaris Inc Method for producing protocatechuic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207094A (en) * 2009-03-06 2010-09-24 Genaris Inc Method for producing protocatechuic acid

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ABE, T. ET AL.: "A Tetrahydrofolate-Dependent O-Demethylase, LigM, Is Crucial for Catabolism of Vanillate and Syringate in Sphingomonas paucimobilis SYK-6", JOURNAL OF BACTERIOLOGY, vol. 187, no. 6, 15 March 2005 (2005-03-15), pages 2030 - 2037, XP055537134 *
JOHNSON, C. W. ET AL.: "Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity", METABOLIC ENGINEERING COMMUNICATIONS, vol. 3, 2016, pages 111 - 119, XP055537131 *
KAMINURA, N. ET AL.: "A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde", SCIENTIFIC REPORTS, vol. 7, no. 44422, 15 March 2017 (2017-03-15), pages 1 - 12, XP055537139 *
KIKUCHI, AKIHIRO ET AL.: "Production of muconic acid using lignin-derived phenols as raw materials", LECTURE ABSTRACTS OF THE CONFERENCE OF JAPAN SOCIETY OF BIOSCIENCE, BIOTECHNOLOGY , AND AGROCHEMISTRY, 2016 *
SONOKI, T. ET AL.: "Glucose-Free cis, cis-Muconic Acid Production via New Metabolic Design Corresponding to the Heterogeneity of lignin", ACS SUSTAINABLE CHEM. ENG., vol. 6, 4 December 2017 (2017-12-04), pages 1256 - 1264, XP055537141 *
SONOKI, TOMONORI ET AL.: "Muconic acid production from lignin without glucose", BIOSCIENCE & INDUSTRY, vol. 76, 2018, pages 139 - 141 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317760A (en) * 2019-07-22 2019-10-11 肇庆学院 One plant of PAHs- heavy-metal composite pollution degradation/adhered bacteria and its application in environmental pollution reparation
CN110317760B (en) * 2019-07-22 2020-09-29 肇庆学院 PAHs-heavy metal combined pollution degrading/adsorbing bacterium and application thereof in environmental pollution remediation
WO2023090378A1 (en) * 2021-11-16 2023-05-25 花王株式会社 Production method for dihydroxyphenylalanine
WO2023190564A1 (en) * 2022-03-29 2023-10-05 国立研究開発法人理化学研究所 Method for producing methacrylic acid

Also Published As

Publication number Publication date
JP7067706B2 (en) 2022-05-16
JPWO2018199112A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP7049408B2 (en) A promoter system whose expression is induced by 3-hydroxypropionic acid and a biological production method of 3-hydroxypropionic acid using the promoter system.
US10612006B2 (en) Method for producing aldehyde
EP2025759B1 (en) Method for production of glycolic acid by enhancing the synthesis of coenzyme
WO2018199112A1 (en) Transgenic microorganism and use thereof
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
JP5142268B2 (en) Improved gallic acid synthase and method for producing gallic acid
Ryu et al. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1
KR101163542B1 (en) Methods of preparing for Biotransformed Vanillin from Isoeugenol
JP2009065839A (en) Method for producing gallic acid
JP7385870B2 (en) Muconic acid-producing transformed microorganisms and their use
WO2018199111A1 (en) Transgenic microorganism capable of producing muconic acid, and use thereof
JP7083124B2 (en) Muconic acid-producing transformed microorganisms and their utilization
WO2022210236A1 (en) Vanillic-acid-producing transformed microorganism and use of same
JP5789366B2 (en) Novel styrene monooxygenase, method for producing the same, and method for producing optically active styrene oxide using the same
JP6682274B2 (en) Method for producing dihydroxynaphthalene
JP2006500005A (en) Use of xylene monooxygenase for the oxidation of substituted polycyclic aromatic compounds
JP5866604B2 (en) Novel microorganism and method for producing 2,3-dihydroxybenzoic acid and salicylic acid using the same
JP2009291171A (en) METHOD FOR PRODUCING 1alpha,25-DIHYDROXYVITAMIN D
JP5678356B2 (en) Method for producing phenolic acid
JP2024517485A (en) Biosynthesis of phenylpropanoid compounds
JP2023160200A (en) Method for producing biomass-derived muconic acid
JP5935225B2 (en) Method for producing phenylpropane compound using enzyme
WO2015119281A1 (en) Method for producing phenyl propane-based compound intermediate using enzymes
JP2011211978A (en) Aromatic hydroxylase gene and production method of phenol derivative using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792229

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019514547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792229

Country of ref document: EP

Kind code of ref document: A1