WO2018198968A1 - Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same - Google Patents

Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same Download PDF

Info

Publication number
WO2018198968A1
WO2018198968A1 PCT/JP2018/016295 JP2018016295W WO2018198968A1 WO 2018198968 A1 WO2018198968 A1 WO 2018198968A1 JP 2018016295 W JP2018016295 W JP 2018016295W WO 2018198968 A1 WO2018198968 A1 WO 2018198968A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic composite
chemical strengthening
chemically strengthened
less
Prior art date
Application number
PCT/JP2018/016295
Other languages
French (fr)
Japanese (ja)
Inventor
谷田 正道
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019514465A priority Critical patent/JPWO2018198968A1/en
Publication of WO2018198968A1 publication Critical patent/WO2018198968A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay

Definitions

  • the present invention relates to a chemically strengthened glass ceramic composite, a chemically strengthened glass ceramic composite, and a method for producing the same.
  • a glass ceramic substrate made of a sintered body of a composition containing glass powder and ceramic powder is known as a wiring substrate used in electronic equipment.
  • a glass ceramic substrate is used by being mounted on an electronic device as a wiring substrate by forming a conductive pattern on the surface or inside, for example.
  • a glass ceramic substrate may be used as a housing for an electronic device such as a mobile phone without being particularly wired.
  • the glass-ceramic substrate is a brittle material for both glass and ceramics, which are the main components, and is inherently vulnerable to impacts and easily cracks. Therefore, conventionally, attempts have been made to improve the machinability of a glass ceramic substrate by mixing mica with glass having a predetermined composition (see, for example, Patent Documents 2 and 3).
  • the present invention has been made in order to solve the above-described problems, and has excellent machinability and can impart high strength, a glass-ceramic composite for chemical strengthening, and chemical strengthening using the same
  • An object of the present invention is to provide a glass ceramic composite and a method for producing the same.
  • the glass-ceramic composite for chemical strengthening of the present invention is a glass-ceramic composite for chemical strengthening in which mica powder is dispersed in a glass matrix, and the glass constituting the glass matrix is a mol% in terms of oxide.
  • SiO 2 is 40 to 65%
  • Al 2 O 3 is more than 8.0% and 21.0% or less
  • B 2 O 3 is more than 5% and 40% or less
  • B 2 O 3 and SiO 2 in the glass have a SiO 2 / B 2 O 3 ratio of 1 to 13.
  • the glass-ceramic composite for chemical strengthening of the present invention preferably contains 15 to 50% by volume of mica powder with respect to the total volume of the glass-ceramic composite for chemical strengthening.
  • the glass matrix preferably has a crystallinity of 15% or less.
  • the chemical-strengthening glass ceramic composite of the present invention preferably further contains a colored inorganic pigment.
  • the glass-ceramic composite for chemical strengthening of the present invention preferably has an infrared transmittance of 0.001% or less at a wavelength of 600 to 1000 nm when the thickness is 1 mm.
  • the glass-ceramic composite for chemical strengthening of the present invention is plate-like and preferably machined.
  • the chemically strengthened glass ceramic composite of the present invention is a chemically strengthened glass ceramic composite that has been subjected to a chemical strengthening treatment, wherein mica powder is dispersed in a glass matrix, and the glass constituting the glass matrix is As an average composition of the glass matrix, SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0% and less than 21.0%, and B 2 O 3 is more than 5% in terms of mol% in terms of oxide. % Or less, 5 to 23% in total of at least one selected from Li 2 O, Na 2 O and K 2 O, and 0 to less than 2% of alkaline earth metal oxide.
  • the chemically tempered glass-ceramic composite of the present invention has at least one selected from Li 2 O, 0 to 6%, K 2 O, and Na 2 O as an average composition from the surface to 30 ⁇ m in terms of mol% in terms of oxide. It is preferable to contain 8 to 23% in total.
  • the three-point bending strength measured by a method in accordance with JIS C2141 is preferably 1.2 or more, with 1 before chemical strengthening.
  • the method for producing a chemically strengthened glass-ceramic composite according to the present invention includes glass particles and mica powder, and the content of the mica powder is 15 to 50% by volume with respect to the total of the glass particles and the mica powder.
  • the particles are in mol% in terms of oxide, SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0% and 21.0% or less, B 2 O 3 is more than 5% and 40% or less, Li 2 A step of obtaining a glass-ceramic composite for chemical strengthening by sintering a glass-ceramic composition containing 5 to 23% in total of one or more of O and Na 2 O and 0 to less than 2% of alkaline earth metal oxide And a step of obtaining a chemically strengthened glass-ceramic composite that has been chemically strengthened by subjecting the glass-ceramic composite for chemical strengthening to chemical strengthening.
  • the chemically strengthened glass-ceramic composite has a plate shape and includes a step of machining the chemically strengthened glass-ceramic composite.
  • the sign “ ⁇ ” represents a range including the numerical value on the left as the lower limit and the numerical value on the right as the upper limit.
  • the glass-ceramic composite for chemical strengthening of the present invention has excellent machinability and can impart high strength to the chemically strengthened glass-ceramic composite.
  • the method for producing a chemically strengthened glass ceramic composite of the present invention it is excellent in machinability and can impart high strength to the chemically strengthened glass ceramic composite.
  • the glass-ceramic composite for chemical strengthening according to this embodiment is a glass-ceramic composite for chemical strengthening in which mica powder is dispersed in a glass matrix.
  • the glass constituting the glass matrix is SiO 2 in an amount of 40 to 65% and Al 2 O 3 in excess of 8.0% and 21. 0% or less, B 2 O 3 in excess of 5% to 40% or less, one or more selected from Li 2 O and Na 2 O in total 5 to 23%, alkaline earth metal oxides 0 to less than 2% Including.
  • the glass-ceramic composite for chemical strengthening according to the present embodiment has excellent machinability, in which cracking and chipping (chipping) are hardly caused in machining such as cutting by dispersing mica powder in a glass matrix. Have.
  • the chemically strengthened glass-ceramic composite of this embodiment can be subjected to a chemical strengthening treatment, whereby a high-strength chemically strengthened glass-ceramic composite can be obtained.
  • the chemically strengthened glass-ceramic composite or the chemically strengthened glass-ceramic composite of the present embodiment has the above-mentioned preferable characteristics.
  • an electronic portable terminal, a medical device, a watch, a display device, a cosmetic case, an automobile interior part It can be effectively used as a structural material for various devices such as horticultural materials, dental materials, and glasses (a structural material such as a main component member or a partial component member of the device).
  • the chemically strengthened glass-ceramic composite or the chemically strengthened glass-ceramic composite of the present embodiment is, for example, lighter and higher in weight than a light metal such as general aluminum or titanium or an alloy thereof or general ceramics. It can have strength, gloss, high machinability and the like.
  • the mica powder imparts excellent machinability to the chemically strengthened glass ceramic composite while maintaining the strength of the chemically strengthened glass ceramic composite.
  • the mica powder is obtained by molding synthetic mica or natural mica into a powder form by pulverization or the like.
  • mica powder In addition to mica powder, talc and clay-based layered compound particles are also suitable for imparting machinability.
  • the mica powder by using mica powder, the mica The particle size and the like can be kept at an initial state without melting or decomposing the powder into glass. From the viewpoint of keeping the mica powder in the glass-ceramic composite for chemical strengthening in an initial state, it is more preferable that the mica powder does not have crystal water so as not to generate gas during sintering.
  • the average particle diameter (D50) of the mica powder is preferably 15 ⁇ m or less and more preferably 8 ⁇ m or less in terms of improving machinability.
  • the D50 of the mica powder is preferably 1 ⁇ m or more and more preferably 2 ⁇ m or more because it is difficult to impair workability.
  • D50 shown in this specification is a 50% average particle diameter in terms of volume obtained by a particle diameter measuring apparatus (manufactured by Nikkiso Co., Ltd., trade name: MT3100II) by a laser diffraction / scattering method.
  • Glass powder Next, each component of the glass powder in the glass ceramic composition used in the present embodiment will be described.
  • “%” represents an oxide-converted mol% unless otherwise specified.
  • SiO 2 serves as a glass network former and is an essential component for increasing chemical durability, particularly acid resistance. If the content of SiO 2 is 40% or more, sufficient acid resistance is ensured. On the other hand, if the content of SiO 2 is 65% or less, the softening point (hereinafter referred to as “Ts”) and the glass transition point (hereinafter referred to as “Tg”) of the glass are excessively increased. It is adjusted to an appropriate range.
  • the content of SiO 2 is preferably 43% or more, more preferably 45% or more, and further preferably 48% or more. Further, the content of SiO 2 is preferably 63% or less, more preferably 60% or less, and still more preferably 57% or less.
  • Al 2 O 3 is a component blended to increase the stability and chemical durability of the glass. In particular, it is an effective component for improving the strength when chemically strengthened, and is an essential component. Since the content of Al 2 O 3 is more than 8%, the strength improvement effect in the chemical strengthening treatment is sufficiently exhibited. On the other hand, since the content of Al 2 O 3 is 21% or less, a stable glass is obtained, and the glass is adjusted to an appropriate range without excessively increasing the softening point or glass transition point of the glass.
  • the content of Al 2 O 3 is preferably 9% or more. Further, the content of Al 2 O 3 is preferably 19% or less, more preferably 17% or less.
  • B 2 O 3 serves as a glass network former, and is an essential component particularly for increasing the sinterability of glass powder. Since the content of B 2 O 3 exceeds 5%, Ts is adjusted to an appropriate range without excessively increasing, and the sinterability of the glass powder is sufficiently maintained. On the other hand, since the content of B 2 O 3 is 40% or less, a stable glass is obtained and the chemical durability is sufficiently ensured.
  • the content of B 2 O 3 is preferably 10% or more, more preferably 15% or more. Further, the content of B 2 O 3 is preferably 30% or less, more preferably 25% or less.
  • the amount ratio of Li 2 O and Na 2 O is effective for controlling crystallization, and the molar ratio of Li 2 O / Na 2 O is preferably 0.35 to 4.
  • the molar ratio of Li 2 O / Na 2 O is more preferably 0.5 or more, further preferably 0.8 or more, still more preferably 1 or more, particularly preferably 1.5 or more, and most preferably 2 or more.
  • the molar ratio of Li 2 O / Na 2 O is more preferably 3.5 or less, and further preferably 3 or less.
  • the amount ratio of SiO 2 and B 2 O 3 is also effective for controlling both the improvement of the sinterability and the chemical durability of the glass in the process of forming the glass into a powder and molding it.
  • the molar ratio of SiO 2 / B 2 O 3 is preferably 1-13. When the molar ratio of SiO 2 / B 2 O 3 is an amount that satisfies the above molar ratio, both sinterability and chemical durability can be further achieved.
  • the molar ratio of SiO 2 / B 2 O 3 is more preferably 10 or less, further preferably 8 or less, and particularly preferably 5 or less.
  • alkaline earth metal oxides such as MgO, CaO, SrO and BaO promote crystallization and obtain a dense sintered body in the process of powdering, firing and sintering the glass. Becomes difficult. Further, since the glass is made brittle, chipping during machining such as cutting is promoted and bending strength is also lowered. Furthermore, the ion exchange at the time of chemical strengthening treatment is suppressed, and the strength improvement effect at the time of chemical strengthening is suppressed. For these reasons, the alkaline earth metal oxide is less than 2%.
  • the alkaline earth metal oxide is preferably 1.5% or less, more preferably 1% or less, and further preferably 0.5% or less.
  • the glass particles used in the present invention are prepared by mixing glass raw materials so as to be glass as described above, mixing them, producing glass by a melting method, and grinding the obtained glass by a dry grinding method or a wet grinding method. It is obtained by.
  • the wet pulverization method it is preferable to use water or ethyl alcohol as a solvent.
  • the pulverization may be performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
  • the average particle diameter (D50) of the glass particles is preferably 0.5 to 2 ⁇ m.
  • D50 of the glass particles is 0.5 ⁇ m or more, the glass particles are difficult to aggregate and are easy to handle, and are easily dispersed uniformly.
  • the D50 of the glass particles is 2 ⁇ m or less, an increase in Ts and occurrence of insufficient sintering can be suppressed.
  • D50 may be classified and adjusted as necessary after grinding, for example.
  • the glass ceramic composition used for obtaining the glass-ceramic composite for chemical strengthening of the present embodiment contains the above-described mica powder and glass particles. Further, the glass ceramic composition may contain a filler other than mica powder as long as the effects of the present invention are not impaired.
  • the content of mica powder is preferably 15 to 50% by volume with respect to the total volume of the glass ceramic composition.
  • the content of mica powder is 15% by volume or more, good machinability can be imparted to the glass-ceramic composite for chemical strengthening.
  • the content is 50% by volume or less, the glass ceramic composition is easily sintered, and a dense sintered body can be formed.
  • the content of mica powder in the chemically strengthened glass-ceramic composite can be equated with the content of mica powder in the glass-ceramic composition.
  • the content of mica powder is more preferably 20% by volume or more, and more preferably 45% by volume or less.
  • the glass ceramic composition used in the present embodiment may contain a filler other than mica powder in accordance with the use of the obtained glass ceramic composite for chemical strengthening within a range not impairing the effects of the present invention.
  • the filler include ceramic particles other than mica powder and colored inorganic pigments.
  • ceramic particles other than mica powder include silica, zirconia, titania, magnesia, mullite, aluminum nitride, regardless of the shape of flat alumina particles, powdered alumina particles, flat shapes, powders (irregular shapes), etc. And ceramic particles composed of silicon nitride, silicon carbide, forsterite, cordierite, and the like.
  • powdery alumina particles are preferable in that the sinterability can be improved, the surface can be easily damaged, and the bending strength of the glass-ceramic composite can be improved.
  • the amount of the ceramic particles other than the mica powder in the glass ceramic composition may be an amount that does not impair the effects of the present invention, specifically, an amount of 35% by volume or less with respect to the total amount of the glass ceramic composition. 25 volume% or less is more preferable, 20 volume% or less is more preferable, and 15 volume% or less is particularly preferable.
  • powdery alumina particles are preferable for imparting scratch resistance. Furthermore, in order to give a deep color tone and a highly transparent appearance, ceramic particles having a refractive index close to that of the glass powder in the glass ceramic composition are preferable, and powdered alumina particles are preferable.
  • the D50 of the powdered alumina particles is preferably 0.05 to 5 ⁇ m.
  • the dispersibility becomes good, so that excellent strength can be imparted to the glass-ceramic composite for chemical strengthening. Further, scratch resistance can be effectively imparted.
  • D50 of a powdery alumina particle is 5 micrometers or less, uniform intensity
  • the D50 of the powdered alumina particles is more preferably 0.1 ⁇ m or more, and further preferably 0.2 ⁇ m or more. Further, D50 is more preferably 3 ⁇ m or less, and further preferably 2 ⁇ m or less.
  • the colored inorganic pigment examples include metal oxides, particularly transition metal oxides.
  • oxides such as Cr, Mn, Fe, Co, Ni, Cu, Ti, Zr, and Sn, specifically, Cr 2
  • the black pigment for example, a metal oxide pigment containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, a composite metal oxide pigment of the metal group, TiO x or Examples thereof include a titanium black pigment represented by TiO x N y .
  • composite metal oxide pigments include, for example, Co—Fe—Cr black pigments, Co—Fe—Al black pigments, Cu—Cr—Mn black pigments, Mn—Bi black pigments, Mn -Y-based black pigment, Fe-Cr-based black pigment, Cr-Cu-based pigment, and Mn-Fe-based pigment can be used, and these can be used alone or in combination of two or more.
  • the glass-ceramic composite for chemical strengthening can be provided with an infrared concealment function.
  • the colored inorganic pigment having a high infrared hiding property include spinel crystals that are complex oxides of Cr, Mn, Fe, Co, Ni, and Cu.
  • D50 of the colored inorganic pigment is preferably 0.2 to 20 ⁇ m.
  • D50 is 0.2 ⁇ m or more, the dispersibility is good and uniform coloring is obtained.
  • D50 is 20 micrometers or less, local coloring is suppressed and uniform coloring is obtained.
  • D50 is more preferably 0.5 ⁇ m or more, and even more preferably 0.8 ⁇ m or more. Further, D50 is more preferably 15 ⁇ m or less, and further preferably 13 ⁇ m or less.
  • the content of the glass powder in the glass ceramic composition is a value obtained by subtracting from 100 the total amount of mica powder, other ceramic powder and colored inorganic pigment.
  • the glass powder content is preferably 50 to 85% by volume, more preferably 50 to 75% by volume.
  • the glass-ceramic composite for chemical strengthening is obtained by molding the above glass-ceramic composition into a green sheet and firing it. Moreover, it can also obtain by the method of baking this, after preparing the paste containing the above-mentioned glass ceramic composition.
  • a slurry is prepared by adding a binder and, if necessary, a plasticizer, a solvent, a dispersant and the like to the glass ceramic composition.
  • a plasticizer e.g., ethylene glycol dimethacrylate
  • a solvent e.g., ethylene glycol dimethacrylate
  • a dispersant e.g., sodium metabisulfite
  • the glass ceramic composition e.g., sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • binder for example, heat-burnable resins such as polyvinyl butyral, acrylic-methacrylic resin, cellulose resin, polyvinyl alcohol, epoxy resin, and cellulose resin can be suitably used.
  • plasticizer for example, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate and the like can be used.
  • solvent aromatic solvents such as toluene and xylene, glycol ester solvents such as propylene glycol methyl ether acetate, and alcohol solvents such as 2-propanol and 2-butanol can be used. It is preferable to use a mixture of an aromatic solvent or ester solvent and an alcohol solvent. Further, a dispersant can be used in combination.
  • the amount of each component in the slurry is 5 to 15 parts by weight of binder, 1 to 5 parts by weight of plasticizer, 2 to 6 parts by weight of dispersant, and 50 to 90 parts by weight of solvent with respect to 100 parts by weight of the glass ceramic composition. Part is preferred.
  • the green sheet molding method besides the above-described sheet method, a cast method such as a slip cast method or a gel cast method, an injection molding method, a powder press firing method, or the like can be applied.
  • a cast method such as a slip cast method or a gel cast method, an injection molding method, a powder press firing method, or the like can be applied.
  • the glass ceramic composition and the resin component (binder) are blended at a predetermined mass ratio, kneaded in a porcelain mortar or the like, and dispersed in a three-roll or the like to produce a paste.
  • Degreasing is performed, for example, by holding at a temperature of 400 to 600 ° C. for 1 to 10 hours.
  • the degreasing temperature is in the above range and the degreasing time is 1 hour or longer, the binder and the like can be sufficiently decomposed and removed. If the degreasing temperature is about 500 ° C. and the degreasing time is about 5 hours, the binder and the like can be sufficiently removed. However, if this time is exceeded, the productivity and the like may be lowered.
  • the firing temperature is adjusted according to the Ts of the glass powder and the crystallization temperature of the glass constituting the glass matrix.
  • the calcination temperature is set to a temperature not higher than the crystallization temperature of the glass of the glass matrix and 0 to 200 ° C. higher than Ts of the glass powder, preferably Ts + 50 to Ts + 150 ° C.
  • a temperature of 700 to 900 ° C. can be used as a firing temperature, and a firing temperature of 750 to 850 ° C. is particularly preferable.
  • the firing time can be adjusted to about 20 to 60 minutes. It is easy to obtain a dense sintered body within the range of the firing temperature and firing time. On the other hand, if the firing temperature is too high or the firing time is too long, the denseness of the chemically strengthened glass-ceramic composite may be lowered or the productivity may be lowered due to crystallization or foaming.
  • the crystallinity of the glass constituting the glass matrix is preferably 15% or less.
  • the crystallinity X (%) of the glass can be calculated from the X-ray diffraction spectrum of the chemically strengthened glass-ceramic composite powder measured by an X-ray diffractometer according to the following formula (1).
  • I (glass) indicates the maximum intensity of the X-ray diffraction peak of crystallized glass
  • I (Al 2 O 3 ) indicates the maximum intensity of the X-ray diffraction peak of alumina. Indicates. In measurement, CuK ⁇ rays can be used as characteristic X-rays.
  • the glass matrix is partially crystallized, cracks may develop from the boundary between the glass and the crystalline phase, which may reduce the strength.
  • sintering may not proceed and the denseness of the glass-ceramic composite for chemical strengthening may be lowered, and the softening point of the residual glass may be lowered, resulting in a binder component described later. May not be sufficiently decomposed and blackening may occur.
  • the dispersibility of the mica powder may be deteriorated and the blending amount may be restricted.
  • it is difficult to control the precipitation of crystals, and the strength of the glass-ceramic composite for chemical strengthening may vary due to variations in the precipitation of crystals.
  • the crystallized glass peak is not detected in X-ray diffraction and the crystallinity is 0%.
  • the glass matrix may contain a crystal phase up to a certain level. Specifically, as long as the crystallinity of the glass matrix is up to 15%, a crystal phase may be included, and the crystallinity is preferably 10% or less, more preferably 5% or less.
  • a glass-ceramic composite for chemical strengthening is produced in a stage where the binder component is sufficiently decomposed in the production process and controlled so that crystal precipitation occurs uniformly. It is.
  • the three-point bending strength of the glass-ceramic composite for chemical strengthening is preferably more than 100 MPa. By making the three-point bending strength of the glass-ceramic composite for chemical strengthening greater than 100 MPa, it is possible to improve machinability while imparting sufficient strength to the glass-ceramic composite for chemical strengthen.
  • the strength of the glass-ceramic composite for chemical strengthening is more preferably 120 MPa or more, and particularly preferably 150 MPa or more.
  • the three-point bending strength is more preferably 170 MPa or more, and most preferably 200 MPa or more.
  • piece bending strength in this specification means the 3 point
  • the content of each component in the glass-ceramic composite for chemical strengthening of the present embodiment hardly changes from the mixing ratio of each material when the glass-ceramic composite for chemical strengthening is produced by the above-described manufacturing method. Therefore, the mixing ratio of each material can be regarded as the content of each component in the chemically strengthened glass-ceramic composite.
  • the amount of mica powder relative to the glass matrix component in the chemically strengthened glass ceramic composite can be regarded as the content of mica powder in the glass ceramic composition.
  • the content of each component in the glass matrix can be regarded as the content of each component in the glass powder.
  • composition analysis method When directly analyzing the composition of the glass-ceramic composite for chemical strengthening, a method of calculating from the exclusive area of each component in an arbitrary cross section of the glass-ceramic composite for chemical strengthening can be used.
  • each raw material component is dispersed almost uniformly in the glass-ceramic composite for chemical strengthening when manufactured by the above-described manufacturing method. Therefore, the composition calculated from the exclusive area of each component in an arbitrary cross section can be regarded as the composition of the glass-ceramic composite for chemical strengthening to be analyzed.
  • the glass-ceramic composite for chemical strengthening is dissolved using an agent that dissolves only the glass matrix (for example, dilute hydrofluoric acid), the mass of the glass matrix and the mass of mica are measured, and the specific gravity is calculated from the obtained mass.
  • the composition can also be analyzed by a method of calculating the volume ratio using.
  • the glass-reinforced ceramic composite for chemical strengthening according to the present embodiment includes the above-described infrared shielding colored inorganic pigment as the colored inorganic pigment, the infrared transmittance can be extremely reduced.
  • Such an infrared shielding chemical-strengthening glass-ceramic composite has an infrared transmittance of 0.001% or less at a wavelength of 600 to 1000 nm when the thickness of the chemical-strengthening glass-ceramic composite is 1 mm. preferable.
  • the infrared-shielding glass-ceramic composite for chemical strengthening is suitable for applications such as packages and casings of vital sensing devices that use near-infrared sensors for measuring pulse, hemoglobin concentration in blood, blood oxygen concentration, and the like.
  • the infrared transmittance can be measured using a spectrophotometer.
  • a spectrophotometer for example, SolidSpec-3700 manufactured by Shimadzu Corporation or LAMBDA950 or 1050 manufactured by PerkinElmer may be used.
  • the chemically strengthened glass-ceramic composite of the present embodiment is usually formed into the desired shape, for example, a plate shape, and further subjected to desired machining as required, as obtained above. Then, it can obtain by performing a chemical strengthening process.
  • the plate-shaped glass-ceramic composite for chemical strengthening can be obtained, for example, by the method for producing the green sheet.
  • Examples of the machining include drilling and the like such as making a hole in the chemically strengthened glass ceramic composite.
  • Na + of the surface layer of the glass-ceramic composite for chemical strengthening and K + in the molten salt, or Li + of the surface layer of the glass-ceramic composite for chemical strengthening, Na + and K + in the molten salt are used.
  • a method of immersing the chemically strengthened glass ceramic composite in a heated potassium nitrate (KNO 3 ) molten salt is given. It is done.
  • a Na 2 O molten salt should be used instead of the KNO 3 molten salt.
  • Can do It is also possible to use a mixture of NaNO 3 molten salt KNO 3 molten salt.
  • a surface compressive stress layer in which Na + or K +, which is a cation component of the strengthening salt, is concentrated on the surface is obtained by performing the above chemical strengthening treatment. It is formed.
  • the composition of the glass constituting the glass matrix after the chemical strengthening treatment is 40% to 65% of SiO 2 and 8% of Al 2 O 3 as the average composition of the glass matrix in terms of oxides. More than 0% to 21.0% or less, B 2 O 3 to more than 5% to 40%, one or more selected from Li 2 O, Na 2 O and K 2 O in total 5 to 23%, alkaline earth It is preferable that the metal oxide contains 0 to less than 2%.
  • the depth of the surface compressive stress layer in which Na + or K + is concentrated as described above is, for example, 30 ⁇ m or more.
  • the average composition in the surface compressive stress layer that is, the average composition from the surface to 30 ⁇ m is mol% in terms of oxide, 0 to 6% of Li 2 O, K 2 O and A composition containing 8 to 23% in total of at least one selected from Na 2 O is preferable.
  • the average composition of the glass matrix in the chemically strengthened glass-ceramic composite and the average composition from the surface to 30 ⁇ m are mirror-polished on the sample cross section of the chemically strengthened glass-ceramic composite after chemical strengthening, and energy dispersive X-ray spectroscopy (SEM- Quantitative analysis is performed by dividing the area with EDX), and the average composition over the entire surface of the glass matrix and 30 ⁇ m from the surface can be calculated using the analysis result.
  • the three-point bending strength of the chemically tempered glass ceramic composite of this embodiment can be over 250 MPa. By setting the three-point bending strength of the chemically strengthened glass ceramic composite to more than 250 MPa, the high strength of the chemically strengthened glass ceramic composite can be realized.
  • the three-point bending strength of the chemically strengthened glass ceramic composite is more preferably more than 300 MPa, and more preferably more than 350 MPa.
  • the glass-ceramic composite for chemical strengthening according to the present embodiment has a three-point bending strength improved by the chemical strengthening treatment because the glass matrix is made of glass having the above-described composition.
  • the ratio of the three-point bending strength before and after chemical strengthening is “three-point bending strength of chemically strengthened glass-ceramic composite (after chemical strengthening) / three-point bending strength of glass-ceramic composite for chemical strengthening (before chemical strengthening)” (below)
  • the ratio represented simply by “after chemical strengthening / before chemical strengthening”) is preferably 1.2 or more, and more preferably 1.5 or more. In this case, it is possible to obtain a chemically strengthened glass-ceramic composite having excellent strength while further improving the machinability before chemical strengthening.
  • composition analysis method, infrared transmittance The composition of the chemically strengthened glass-ceramic composite can also be regarded as the blending ratio of each raw material component, like the above-described chemically strengthened glass-ceramic composite. Moreover, you may analyze by the method similar to the said glass ceramic composite for chemical strengthening. Further, since the infrared transmittance hardly changes due to chemical strengthening, the infrared transmittance of the chemically strengthened glass-ceramic composite can be equated with that of the chemically strengthened glass-ceramic composite.
  • Ts and Tg were measured by the following methods. The results are shown in the lower column of Table 1.
  • the glass powder G12 was a non-melting defect which produced a cloudiness part in a part of obtained glass, and a homogeneous glass was not obtained.
  • Tg, Ts The first inflection point was measured as Tg [° C.] and the fourth inflection point was Ts [° C.] by DTA (Differential Thermal Analysis, differential thermal analysis).
  • Mica powder Fluorophlogopite powder (average particle size (D50): 5 ⁇ m) Alumina powder (A): Aluminum oxide powder (average particle size (D50): 0.5 ⁇ m) Alumina powder (B): Aluminum oxide powder (D50: 1.5 ⁇ m) Alumina powder (C): Aluminum oxide powder (D50: 0.2 ⁇ m) Alumina powder (D): Aluminum oxide powder (D50: 0.1 ⁇ m) Black pigment: complex oxide powder such as Cr, Mn, Fe, Co, Ni, Cu (average particle diameter (D50): 1 ⁇ m)
  • green sheets were produced as shown below.
  • 50 g of glass ceramic composition 15 g of organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol at a mass ratio of 4: 2: 2: 1), plasticizer (di-2-ethylhexyl phthalate) 2 0.5 g, 5 g of an acrylic-methacrylic copolymer resin as a binder, and 0.5 g of a dispersant were mixed and mixed to form a slurry.
  • This slurry was applied onto a PET film by a doctor blade method and dried. The gap of the doctor blade was adjusted so that the sheet had a thickness of 200 ⁇ m after firing to produce a green sheet.
  • the obtained green sheet was cut and cut into 50 mm squares (50 mm long and 50 mm wide) to obtain green sheets for evaluation.
  • the glass ceramic substrate for chemical strengthening obtained in each example was subjected to a three-point bending strength test in accordance with JIS C2141. That is, a load when one side of a glass-ceramic substrate for chemical strengthening is supported at two points and a load is gradually applied to an intermediate position between the two points on the side facing the substrate, and the glass-ceramic substrate for chemical strengthening is destroyed.
  • the three-point bending strength (MPa) was calculated based on this. The bending strength was measured at 30 points to determine an average value (average bending strength). The results are shown in the lower column of Tables 2-4.
  • the density of the glass-ceramic substrate for chemical strengthening was measured by the Archimedes method.
  • the Young's modulus of the glass-ceramic substrate for chemical strengthening was measured by an ultrasonic method (pulse echo overlap method).
  • the fracture toughness of the glass-ceramic substrate for chemical strengthening was measured in accordance with IF method (Indentation Fracture Method) of JIS R1607.
  • the glass ceramics for chemical strengthening of Examples 1 to 12 and Examples 20 to 27 obtained by sintering a glass ceramic composition containing glass powder having a predetermined composition and mica powder It can be seen that the composite has good machinability, and the chemical strengthening sufficiently improves the strength, and a chemically strengthened glass-ceramic composite with high strength is obtained.

Abstract

Provided are: a glass ceramic composite for chemical strengthening, said glass ceramic composite having exceptional machinability and being capable of imparting high strength; a chemically strengthened glass ceramic composite in which the glass ceramic composite is used; and a method for producing the chemically strengthened glass ceramic composite. A glass ceramic composite for chemical strengthening obtained by dispersing mica powder in a glass matrix, wherein, in the glass ceramic composite for chemical strengthening, the glass that constitutes the glass matrix includes the following, expressed in terms of the molar percentage of oxides: 40 to 65% of SiO2, more than 8.0% to no more than 21.0% of Al2O3, more than 5% to 40% of B2O3, a total of 5 to 23% of one or more species selected from Li2O and Na2O, and 0 to less than 2% of an alkaline earth metal oxide.

Description

化学強化用ガラスセラミックス複合体、化学強化ガラスセラミックス複合体及びその製造方法Chemically strengthened glass-ceramic composite, chemically strengthened glass-ceramic composite, and manufacturing method thereof
 本発明は、化学強化用ガラスセラミックス複合体、化学強化ガラスセラミックス複合体及びその製造方法に関する。 The present invention relates to a chemically strengthened glass ceramic composite, a chemically strengthened glass ceramic composite, and a method for producing the same.
 電子機器に使用される配線基板として、ガラス粉末とセラミックス粉末とを含む組成物の焼結体からなるガラスセラミックス基板が知られている。ガラスセラミックス基板は、例えば、その表面上や内部に導電パターンを形成して、配線基板として電子機器に実装されて用いられている。あるいは、特に配線が施されずに携帯電話等の電子機器用の筐体としてガラスセラミックス基板が使用されることもある。 2. Description of the Related Art A glass ceramic substrate made of a sintered body of a composition containing glass powder and ceramic powder is known as a wiring substrate used in electronic equipment. A glass ceramic substrate is used by being mounted on an electronic device as a wiring substrate by forming a conductive pattern on the surface or inside, for example. Alternatively, a glass ceramic substrate may be used as a housing for an electronic device such as a mobile phone without being particularly wired.
 近年、電子機器の小型化及び高機能化に伴い、ガラスセラミックス基板も薄型化が求められている。さらに、回路基板の複雑化及び微細化に伴って電極構造が複雑化しているため、ガラスセラミックス基板にかかる応力も大きくなっている。このため、従来よりも、高い強度を有するガラスセラミックス基板が求められるようになった。 In recent years, with the downsizing and higher functionality of electronic devices, glass ceramic substrates are also required to be thinner. Furthermore, since the electrode structure is complicated with the complexity and miniaturization of the circuit board, the stress applied to the glass ceramic substrate is also increased. For this reason, a glass ceramic substrate having higher strength than before has been demanded.
 例えば、特許文献1では、ガラスセラミックス基板の高強度化を目的として、ガラスマトリックス中にアスペクト比が3以上の扁平状アルミナ粒子を分散させ、さらに、ガラスセラミックス基板の内層部の熱膨張係数を表層部よりも大きくしたガラスセラミックス基板が提案されている。 For example, in Patent Document 1, for the purpose of increasing the strength of a glass ceramic substrate, flat alumina particles having an aspect ratio of 3 or more are dispersed in a glass matrix, and the thermal expansion coefficient of the inner layer portion of the glass ceramic substrate is determined as the surface layer. There has been proposed a glass ceramic substrate larger than the portion.
 ここで、ガラスセラミックス基板は、電子機器用の筐体等に用いる場合に、ドリルによって穴を設けるなど、機械加工が施される場合がある。そのため、優れた機械加工性を有するガラスセラミックス基板が求められている。 Here, when the glass ceramic substrate is used for a housing for an electronic device or the like, it may be subjected to machining such as providing a hole with a drill. Therefore, a glass ceramic substrate having excellent machinability is demanded.
 ところが、ガラスセラミックス基板は主成分であるガラス及びセラミックス共に脆性材料であり、本質的に衝撃に弱くクラックが発生し易い性質を有する。そのため、従来から、所定の組成のガラスにマイカを配合して、ガラスセラミックス基板の機械加工性を向上させる試みがなされている(例えば、特許文献2、3参照)。 However, the glass-ceramic substrate is a brittle material for both glass and ceramics, which are the main components, and is inherently vulnerable to impacts and easily cracks. Therefore, conventionally, attempts have been made to improve the machinability of a glass ceramic substrate by mixing mica with glass having a predetermined composition (see, for example, Patent Documents 2 and 3).
国際公開第2014/073604号International Publication No. 2014/073604 特開2005-97016号公報JP 2005-97016 A 特表2011-525471号公報Special table 2011-525471 gazette
 しかしながら、近年求められるような高い強度特性と優れた機械加工性を併せ持つガラスセラミックス基板は知られていない状況であった。 However, a glass ceramic substrate having both high strength characteristics and excellent machinability as required in recent years has not been known.
 本発明は、上記した課題を解決するためになされたものであって、優れた機械加工性を有し、高い強度を付与することのできる化学強化用ガラスセラミックス複合体、これを用いた化学強化ガラスセラミックス複合体及びその製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and has excellent machinability and can impart high strength, a glass-ceramic composite for chemical strengthening, and chemical strengthening using the same An object of the present invention is to provide a glass ceramic composite and a method for producing the same.
 本発明の化学強化用ガラスセラミックス複合体は、ガラスマトリックス中にマイカ粉末が分散されてなる化学強化用ガラスセラミックス複合体であって、前記ガラスマトリックスを構成するガラスは、酸化物換算のモル%で、SiOを40~65%、Alを8.0%を超え21.0%以下、Bを5%を超え40%以下、LiO及びNaOから選ばれる1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含む。 The glass-ceramic composite for chemical strengthening of the present invention is a glass-ceramic composite for chemical strengthening in which mica powder is dispersed in a glass matrix, and the glass constituting the glass matrix is a mol% in terms of oxide. SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0% and 21.0% or less, B 2 O 3 is more than 5% and 40% or less, 1 selected from Li 2 O and Na 2 O 5 to 23% in total of seeds or more and 0 to less than 2% of alkaline earth metal oxide.
 本発明の化学強化用ガラスセラミックス複合体において、前記ガラス中の、LiOとNaOは、LiO/NaOが0.35~4であることが好ましい。 In the glass-ceramic composite for chemical strengthening of the present invention, Li 2 O and Na 2 O in the glass preferably have a Li 2 O / Na 2 O ratio of 0.35 to 4.
 本発明の化学強化用ガラスセラミックス複合体において、前記ガラス中のBとSiOは、SiO/Bが1~13であることが好ましい。 In the glass-ceramic composite for chemical strengthening of the present invention, it is preferable that B 2 O 3 and SiO 2 in the glass have a SiO 2 / B 2 O 3 ratio of 1 to 13.
 本発明の化学強化用ガラスセラミックス複合体は、前記化学強化用ガラスセラミックス複合体の全体積に対して、マイカ粉末を15~50体積%含むことが好ましい。 The glass-ceramic composite for chemical strengthening of the present invention preferably contains 15 to 50% by volume of mica powder with respect to the total volume of the glass-ceramic composite for chemical strengthening.
 本発明の化学強化用ガラスセラミックス複合体において、前記ガラスマトリックスは、結晶化度が15%以下であることが好ましい。 In the glass-ceramic composite for chemical strengthening of the present invention, the glass matrix preferably has a crystallinity of 15% or less.
 本発明の化学強化用ガラスセラミックス複合体は、さらに、着色無機顔料を含むことが好ましい。 The chemical-strengthening glass ceramic composite of the present invention preferably further contains a colored inorganic pigment.
 本発明の化学強化用ガラスセラミックス複合体は厚みを1mmにしたときに、波長600~1000nmの赤外線透過率が0.001%以下であることが好ましい。 The glass-ceramic composite for chemical strengthening of the present invention preferably has an infrared transmittance of 0.001% or less at a wavelength of 600 to 1000 nm when the thickness is 1 mm.
 本発明の化学強化用ガラスセラミックス複合体は板状であり、機械加工が施されていることが好ましい。 The glass-ceramic composite for chemical strengthening of the present invention is plate-like and preferably machined.
 本発明の化学強化ガラスセラミックス複合体は、化学強化処理を施された化学強化ガラスセラミックス複合体であって、ガラスマトリックス中にマイカ粉末が分散されてなり、前記ガラスマトリックスを構成するガラスは、前記ガラスマトリックスの平均組成として、酸化物換算のモル%で、SiOを40~65%、Alを8.0%を超え21.0%以下、Bを5%を超え40%以下、LiO、NaO及びKOから選ばれる1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含む。 The chemically strengthened glass ceramic composite of the present invention is a chemically strengthened glass ceramic composite that has been subjected to a chemical strengthening treatment, wherein mica powder is dispersed in a glass matrix, and the glass constituting the glass matrix is As an average composition of the glass matrix, SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0% and less than 21.0%, and B 2 O 3 is more than 5% in terms of mol% in terms of oxide. % Or less, 5 to 23% in total of at least one selected from Li 2 O, Na 2 O and K 2 O, and 0 to less than 2% of alkaline earth metal oxide.
 本発明の化学強化ガラスセラミックス複合体は、表面から30μmまでの平均組成として、酸化物換算のモル%で、LiOを0~6%、KO及びNaOから選ばれる1種以上を合計で8~23%含むことが好ましい。 The chemically tempered glass-ceramic composite of the present invention has at least one selected from Li 2 O, 0 to 6%, K 2 O, and Na 2 O as an average composition from the surface to 30 μm in terms of mol% in terms of oxide. It is preferable to contain 8 to 23% in total.
 本発明の化学強化ガラスセラミックス複合体において、JIS C2141に準拠した方法で測定される3点曲げ強度が、化学強化前を1として1.2以上であることが好ましい。 In the chemically strengthened glass-ceramic composite of the present invention, the three-point bending strength measured by a method in accordance with JIS C2141 is preferably 1.2 or more, with 1 before chemical strengthening.
 本発明の化学強化ガラスセラミックス複合体の製造方法は、ガラス粒子とマイカ粉末とを含み、前記ガラス粒子と前記マイカ粉末の合計に対する前記マイカ粉末の含有量が15~50体積%であり、前記ガラス粒子が酸化物換算のモル%で、SiOを40~65%、Alを8.0%を超え21.0%以下、Bを5%を超え40%以下、LiOとNaOのうち1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含むガラスセラミックス組成物を焼結して化学強化用ガラスセラミックス複合体を得る工程と、前記化学強化用ガラスセラミックス複合体に化学強化処理を施して化学強化された化学強化ガラスセラミックス複合体を得る工程とを有する。 The method for producing a chemically strengthened glass-ceramic composite according to the present invention includes glass particles and mica powder, and the content of the mica powder is 15 to 50% by volume with respect to the total of the glass particles and the mica powder. The particles are in mol% in terms of oxide, SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0% and 21.0% or less, B 2 O 3 is more than 5% and 40% or less, Li 2 A step of obtaining a glass-ceramic composite for chemical strengthening by sintering a glass-ceramic composition containing 5 to 23% in total of one or more of O and Na 2 O and 0 to less than 2% of alkaline earth metal oxide And a step of obtaining a chemically strengthened glass-ceramic composite that has been chemically strengthened by subjecting the glass-ceramic composite for chemical strengthening to chemical strengthening.
 本発明の化学強化ガラスセラミックス複合体の製造方法において、前記化学強化用ガラスセラミックス複合体は板状であり、前記化学強化用ガラスセラミックス複合体に機械加工を施す工程を有することが好ましい。 In the method for producing a chemically strengthened glass-ceramic composite according to the present invention, it is preferable that the chemically strengthened glass-ceramic composite has a plate shape and includes a step of machining the chemically strengthened glass-ceramic composite.
 なお、本明細書において、「~」の符号は、その左の数値を下限値として含み、右の数値を上限値として含む範囲を表す。 In the present specification, the sign “˜” represents a range including the numerical value on the left as the lower limit and the numerical value on the right as the upper limit.
 本発明の化学強化用ガラスセラミックス複合体によれば、優れた機械加工性を有し、化学強化ガラスセラミックス複合体に高い強度を付与することができる。
 本発明の化学強化ガラスセラミックス複合体の製造方法によれば、機械加工性に優れ、化学強化ガラスセラミックス複合体に高い強度を付与することができる。
According to the glass-ceramic composite for chemical strengthening of the present invention, it has excellent machinability and can impart high strength to the chemically strengthened glass-ceramic composite.
According to the method for producing a chemically strengthened glass ceramic composite of the present invention, it is excellent in machinability and can impart high strength to the chemically strengthened glass ceramic composite.
 以下、実施形態を詳細に説明する。
<化学強化用ガラスセラミックス複合体>
 本実施形態の化学強化用ガラスセラミックス複合体は、ガラスマトリックス中にマイカ粉末が分散されてなる化学強化用ガラスセラミックス複合体である。本実施形態の化学強化用ガラスセラミックス複合体において、ガラスマトリックスを構成するガラスは、酸化物換算のモル%で、SiOを40~65%、Alを8.0%を超え21.0%以下、Bを5%を超え40%以下、LiO及びNaOから選ばれる1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含む。
Hereinafter, embodiments will be described in detail.
<Glass ceramic composite for chemical strengthening>
The glass-ceramic composite for chemical strengthening according to this embodiment is a glass-ceramic composite for chemical strengthening in which mica powder is dispersed in a glass matrix. In the glass-ceramic composite for chemical strengthening of the present embodiment, the glass constituting the glass matrix is SiO 2 in an amount of 40 to 65% and Al 2 O 3 in excess of 8.0% and 21. 0% or less, B 2 O 3 in excess of 5% to 40% or less, one or more selected from Li 2 O and Na 2 O in total 5 to 23%, alkaline earth metal oxides 0 to less than 2% Including.
 本実施形態の化学強化用ガラスセラミックス複合体は、例えば、上記組成のガラスの粉末と、マイカ粉末の混合されたガラスセラミックス組成物を焼成することで得られる。この際、ガラスセラミックス組成物が含有するガラス粒子は、焼成に際して溶融し、マイカ粉末は該溶融ガラス中に分散した状態となる。これにより、ガラスマトリックス中にマイカ粉末が分散された化学強化用ガラスセラミックス複合体が得られる。 The glass-ceramic composite for chemical strengthening of the present embodiment can be obtained, for example, by firing a glass ceramic composition in which glass powder having the above composition and mica powder are mixed. At this time, the glass particles contained in the glass ceramic composition are melted during firing, and the mica powder is dispersed in the molten glass. Thereby, a glass-ceramic composite for chemical strengthening in which mica powder is dispersed in a glass matrix is obtained.
 本実施形態の化学強化用ガラスセラミックス複合体は、ガラスマトリックス中にマイカ粉末が分散されることで、切削加工などの機械加工において、割れや欠け(チッピング)が極めて生じにくい優れた機械加工性を有する。また、本実施形態の化学強化用ガラスセラミックス複合体は、化学強化処理を施すことができ、これにより高い強度の化学強化ガラスセラミックス複合体を得ることができる。 The glass-ceramic composite for chemical strengthening according to the present embodiment has excellent machinability, in which cracking and chipping (chipping) are hardly caused in machining such as cutting by dispersing mica powder in a glass matrix. Have. In addition, the chemically strengthened glass-ceramic composite of this embodiment can be subjected to a chemical strengthening treatment, whereby a high-strength chemically strengthened glass-ceramic composite can be obtained.
 更に、本実施形態の化学強化用ガラスセラミックス複合体又は化学強化ガラスセラミックス複合体は、原料のガラス粉末とセラミックス組成物の構成により様々な特性を調整することができる。例えば、密度などの物理的特性、曲げ強度、耐スクラッチ性、耐衝撃性、破壊靱性、ビッカース硬度、ヤング率などの力学的特性、色調、光透過特性、光反射特性、光沢、耐光性などの光学的特性、誘電率、誘電損失、電波透過性、絶縁抵抗などの電気的特性、熱膨張係数、耐熱性、熱伝導率などの熱的特性、耐薬品性、耐候性、防汚性、表面吸着、接着などの化学的特性を調整することができる。 Furthermore, the chemical strengthening glass-ceramic composite or the chemically strengthened glass-ceramic composite of the present embodiment can be adjusted in various properties depending on the composition of the raw glass powder and the ceramic composition. For example, physical properties such as density, bending strength, scratch resistance, impact resistance, fracture toughness, mechanical properties such as Vickers hardness, Young's modulus, color tone, light transmission characteristics, light reflection characteristics, gloss, light resistance, etc. Optical characteristics, dielectric constant, dielectric loss, radio wave transmission, insulation characteristics, electrical characteristics, thermal expansion coefficient, heat resistance, thermal conductivity, and other thermal characteristics, chemical resistance, weather resistance, antifouling, surface Chemical properties such as adsorption and adhesion can be adjusted.
 本実施形態の化学強化用ガラスセラミックス複合体又は化学強化ガラスセラミックス複合体は、上記好ましい特性を有することから、例えば、電子携帯端末、医療機器、時計、表示機器、化粧品筐体、自動車内装パーツ、園芸材料、歯科材料、メガネなどあらゆる機器の構造材料(当該機器の主要構成部材や一部構成部材等の構造材料)に有効的に使用できる。
 また、本実施形態の化学強化用ガラスセラミックス複合体又は化学強化ガラスセラミックス複合体は、例えば、一般のアルミニウムやチタンなどの軽量金属またはそれら合金や一般のセラミックスなどと比較して、さらに軽量、高強度、光沢性、高切削性等を併せ持つことができるものである。
The chemically strengthened glass-ceramic composite or the chemically strengthened glass-ceramic composite of the present embodiment has the above-mentioned preferable characteristics. For example, an electronic portable terminal, a medical device, a watch, a display device, a cosmetic case, an automobile interior part, It can be effectively used as a structural material for various devices such as horticultural materials, dental materials, and glasses (a structural material such as a main component member or a partial component member of the device).
Further, the chemically strengthened glass-ceramic composite or the chemically strengthened glass-ceramic composite of the present embodiment is, for example, lighter and higher in weight than a light metal such as general aluminum or titanium or an alloy thereof or general ceramics. It can have strength, gloss, high machinability and the like.
 以下、本実施形態の化学強化用ガラスセラミックス複合体が含有する各成分について説明する。 Hereinafter, each component contained in the glass ceramic composite for chemical strengthening of the present embodiment will be described.
(マイカ粉末)
 マイカ粉末は、化学強化用ガラスセラミックス複合体の強度を維持しつつ、化学強化用ガラスセラミックス複合体に優れた機械加工性を付与する。マイカ粉末は、合成マイカあるいは天然マイカを粉砕等により粉末状に成形して得られる。
(Mica powder)
The mica powder imparts excellent machinability to the chemically strengthened glass ceramic composite while maintaining the strength of the chemically strengthened glass ceramic composite. The mica powder is obtained by molding synthetic mica or natural mica into a powder form by pulverization or the like.
 マイカは、ケイ酸塩鉱物の1種であり雲母とも呼ばれる。マイカの化学組成はIM2~310で表わされる。Iは、K、Na、Ca、Ba、Rb、Cs、NH等であり、MはAl、Mg、Fe、Li、Ti、Mn、Cr、Zn、V等である。Tは、Si、Al、Fe(三価)、Be、B等であり、Aは、OH、F、Cl、O、S等である。 Mica is a kind of silicate mineral and is also called mica. The chemical composition of mica is represented by IM 2-3 T 4 O 10 A 2 . I is K, Na, Ca, Ba, Rb, Cs, NH 4 or the like, and M is Al, Mg, Fe, Li, Ti, Mn, Cr, Zn, V, or the like. T is Si, Al, Fe (trivalent), Be, B or the like, and A is OH, F, Cl, O, S or the like.
 本実施形態の化学強化用ガラスセラミックス複合体において、マイカとしては、フッ素金雲母(KMgAlSi10)、カリウム四珪素雲母(KMg2.5Si10)、ナトリウム四珪素雲母(NaMg2.5Si10)、ナトリウムヘクトライト(Na0.33Mg2.67Li0.33Si10)が好ましい。比重(g/mL)は、通常、フッ素金雲母が2.85、四ケイ素雲母が2.65程度である。フッ素金雲母の市販品としては、ミクロマイカMKシリーズ(製造元:片倉コープアグリ株式会社)、PDMシリーズ(製造元:トピー工業株式会社)等がある。 In the chemically strengthened glass-ceramic composite of this embodiment, as mica, fluorine phlogopite (KMg 3 AlSi 3 O 10 F 2 ), potassium tetrasilicon mica (KMg 2.5 Si 4 O 10 F 2 ), sodium tetra mica (NaMg 2.5 Si 4 O 10 F 2), sodium hectorite (Na 0.33 Mg 2.67 Li 0.33 Si 4 O 10 F 2) are preferred. Specific gravity (g / mL) is usually about 2.85 for fluorophlogopite and about 2.65 for tetrasilicon mica. Examples of commercially available products of fluorophlogopite include Micromica MK series (manufacturer: Katakura Corp. Agri Co., Ltd.), PDM series (manufacturer: Topy Industries, Ltd.), and the like.
 マイカ粉末以外に、タルクやクレイ系の層状化合物粒子も機械加工性の付与に好適であるが、マイカ粉末を用いることで、化学強化用ガラスセラミックス複合体の製造に際して焼結時の高温下、マイカ粉末がガラスへ融解したり、分解したりせずに、その粒径などが初期の状態を保つことができる。化学強化用ガラスセラミックス複合体中のマイカ粉末を初期の状態に保つ観点から、焼結時にガス発生をしないように、マイカ粉末は結晶水を持たないことがより好ましい。 In addition to mica powder, talc and clay-based layered compound particles are also suitable for imparting machinability. However, by using mica powder, the mica The particle size and the like can be kept at an initial state without melting or decomposing the powder into glass. From the viewpoint of keeping the mica powder in the glass-ceramic composite for chemical strengthening in an initial state, it is more preferable that the mica powder does not have crystal water so as not to generate gas during sintering.
 マイカ粉末の粒子径は小さいほうが、機械加工時のチッピングの大きさを小さくすることができる。そのため、機械加工性を向上させる点で、マイカ粉末の平均粒子径(D50)は、15μm以下が好ましく、8μm以下がより好ましい。マイカ粉末のD50は、作業性を損ない難い点で、1μm以上が好ましく、2μm以上がより好ましい。なお、本明細書中で示されるD50は、レーザ回折・散乱法による粒子径測定装置(日機装社製、商品名:MT3100II)により得られる体積換算の50%平均粒子径である。 ¡The smaller the mica powder particle size, the smaller the chipping size during machining. Therefore, the average particle diameter (D50) of the mica powder is preferably 15 μm or less and more preferably 8 μm or less in terms of improving machinability. The D50 of the mica powder is preferably 1 μm or more and more preferably 2 μm or more because it is difficult to impair workability. In addition, D50 shown in this specification is a 50% average particle diameter in terms of volume obtained by a particle diameter measuring apparatus (manufactured by Nikkiso Co., Ltd., trade name: MT3100II) by a laser diffraction / scattering method.
(ガラス粉末)
 次に、本実施形態で用いられるガラスセラミックス組成物中のガラス粉末の各成分について説明する。なお、ガラス組成の記載において「%」は、特に断りのない限り、酸化物換算のモル%表示を表す。
(Glass powder)
Next, each component of the glass powder in the glass ceramic composition used in the present embodiment will be described. In the description of the glass composition, “%” represents an oxide-converted mol% unless otherwise specified.
 SiOはガラスのネットワークフォーマとなり、化学的耐久性、とくに耐酸性を高くするために必須の成分である。SiOの含有量が40%以上であれば、耐酸性が十分に確保される。一方、SiOの含有量が65%以下であれば、ガラスの軟化点(以下、「Ts」と表記する。)やガラス転移点(以下、「Tg」と表記する。)が過度に高まることなく適度な範囲に調整される。SiOの含有量は好ましくは43%以上、より好ましくは45%以上、さらに好ましくは48%以上である。また、SiOの含有量は、好ましくは63%以下、より好ましくは60%以下、さらに好ましくは57%以下である。 SiO 2 serves as a glass network former and is an essential component for increasing chemical durability, particularly acid resistance. If the content of SiO 2 is 40% or more, sufficient acid resistance is ensured. On the other hand, if the content of SiO 2 is 65% or less, the softening point (hereinafter referred to as “Ts”) and the glass transition point (hereinafter referred to as “Tg”) of the glass are excessively increased. It is adjusted to an appropriate range. The content of SiO 2 is preferably 43% or more, more preferably 45% or more, and further preferably 48% or more. Further, the content of SiO 2 is preferably 63% or less, more preferably 60% or less, and still more preferably 57% or less.
 Alはガラスの安定性、化学的耐久性を高めるために配合される成分である。とくに化学強化処理をした時の強度向上に有効な成分であり、必須成分である。Alの含有量が8%超であるため、化学強化処理での強度向上効果が十分に発揮される。一方、Alの含有量が21%以下であるため、安定なガラスが得られ、ガラスの軟化点やガラス転移点が過度に高まることなく適度な範囲に調整される。Alの含有量は、好ましくは9%以上である。また、Alの含有量は、好ましくは19%以下、より好ましくは17%以下である。 Al 2 O 3 is a component blended to increase the stability and chemical durability of the glass. In particular, it is an effective component for improving the strength when chemically strengthened, and is an essential component. Since the content of Al 2 O 3 is more than 8%, the strength improvement effect in the chemical strengthening treatment is sufficiently exhibited. On the other hand, since the content of Al 2 O 3 is 21% or less, a stable glass is obtained, and the glass is adjusted to an appropriate range without excessively increasing the softening point or glass transition point of the glass. The content of Al 2 O 3 is preferably 9% or more. Further, the content of Al 2 O 3 is preferably 19% or less, more preferably 17% or less.
 Bはガラスのネットワークフォーマとなり、とくにガラス粉末の焼結性を高くするために必須の成分である。Bの含有量が5%を超えるため、Tsが過度に高まることなく適度な範囲に調整され、ガラス粉末の焼結性が十分に保たれる。一方、Bの含有量が40%以下であるため、安定なガラスが得られ、化学的耐久性も十分に確保される。Bの含有量は、好ましくは10%以上、より好ましくは15%以上である。また、Bの含有量は、好ましくは30%以下、より好ましくは25%以下である。 B 2 O 3 serves as a glass network former, and is an essential component particularly for increasing the sinterability of glass powder. Since the content of B 2 O 3 exceeds 5%, Ts is adjusted to an appropriate range without excessively increasing, and the sinterability of the glass powder is sufficiently maintained. On the other hand, since the content of B 2 O 3 is 40% or less, a stable glass is obtained and the chemical durability is sufficiently ensured. The content of B 2 O 3 is preferably 10% or more, more preferably 15% or more. Further, the content of B 2 O 3 is preferably 30% or less, more preferably 25% or less.
 LiOとNaOはともにガラスの高温粘性を低下させ、また、化学強化処理でのイオン交換を担う成分であり、必須成分である。LiO及びNaOから選ばれる1種以上を合計で5%以上含有するため、Tsが過度に高まることなく適度な範囲に調整され、ガラス粉末の焼結性が十分に保たれるとともに、化学強化処理での強度向上効果が十分に発揮される。一方、LiO及びNaOから選ばれる1種以上を合計で23%以下含有するため、安定なガラスが得られ、化学的耐久性も十分に確保される。ガラス中のLiO及びNaOから選ばれる1種以上の合計含有量は、7%以上が好ましく、10%以上がより好ましい。また、ガラス中のLiO及びNaOから選ばれる1種以上の合計含有量は19%以下が好ましく、17%以下がより好ましく、15%以下がさらに好ましい。 Both Li 2 O and Na 2 O are components that lower the high temperature viscosity of the glass and are responsible for ion exchange in the chemical strengthening treatment, and are essential components. Since one or more selected from Li 2 O and Na 2 O is contained in a total of 5% or more, Ts is adjusted to an appropriate range without excessively increasing, and the sinterability of the glass powder is sufficiently maintained. The strength improvement effect by the chemical strengthening treatment is sufficiently exhibited. On the other hand, containing 23% or less of one or more in total selected from Li 2 O and Na 2 O, stable glass is obtained, the chemical durability is sufficiently secured. The total content of one or more selected from Li 2 O and Na 2 O in the glass is preferably 7% or more, and more preferably 10% or more. Further, the total content of one or more selected from Li 2 O and Na 2 O in the glass is preferably 19% or less, more preferably 17% or less, and even more preferably 15% or less.
 ガラスを粉末化し、焼成し、焼結する過程において、結晶化を抑制することは緻密な焼結体を得るために、重要である。LiOとNaOの量比は結晶化の制御に有効であり、LiO/NaOのモル比が、0.35~4であることが好ましい。LiO/NaOのモル比が上記のモル比となる量であれば、ガラスの安定化がより一層促進され、焼成時に結晶化が抑制される。LiO/NaOのモル比は、0.5以上がより好ましく、0.8以上がさらに好ましく、1以上がよりさらに好ましく、1.5以上が特に好ましく、2以上がもっとも好ましい。また、LiO/NaOのモル比は、3.5以下がより好ましく、3以下がさらに好ましい。 In order to obtain a dense sintered body, it is important to suppress crystallization in the process of pulverizing, firing and sintering glass. The amount ratio of Li 2 O and Na 2 O is effective for controlling crystallization, and the molar ratio of Li 2 O / Na 2 O is preferably 0.35 to 4. When the molar ratio of Li 2 O / Na 2 O is an amount that satisfies the above molar ratio, glass stabilization is further promoted, and crystallization is suppressed during firing. The molar ratio of Li 2 O / Na 2 O is more preferably 0.5 or more, further preferably 0.8 or more, still more preferably 1 or more, particularly preferably 1.5 or more, and most preferably 2 or more. Further, the molar ratio of Li 2 O / Na 2 O is more preferably 3.5 or less, and further preferably 3 or less.
 また、SiOとBの量比も、ガラスを粉末にし、成形する過程においての焼結性の向上とガラスの化学耐久性を両立する制御に有効である。SiO/Bのモル比が、1~13であることが好ましい。SiO/Bのモル比が上記のモル比となる量であれば、焼結性と化学耐久性の両立がより一層図られる。SiO/Bのモル比は10以下がより好ましく、8以下がさらに好ましく、5以下が特に好ましい。 Further, the amount ratio of SiO 2 and B 2 O 3 is also effective for controlling both the improvement of the sinterability and the chemical durability of the glass in the process of forming the glass into a powder and molding it. The molar ratio of SiO 2 / B 2 O 3 is preferably 1-13. When the molar ratio of SiO 2 / B 2 O 3 is an amount that satisfies the above molar ratio, both sinterability and chemical durability can be further achieved. The molar ratio of SiO 2 / B 2 O 3 is more preferably 10 or less, further preferably 8 or less, and particularly preferably 5 or less.
 MgO、CaO、SrO、BaO等のアルカリ土類金属酸化物は本ガラス組成においては、ガラスを粉末化し、焼成し、焼結する過程において、結晶化を促進し、緻密な焼結体を得ることが難しくなる。また、ガラスを脆くするため、切削加工など機械加工時のチッピングを促進するとともに曲げ強度も低下させてしまう。さらに、化学強化処理時のイオン交換を抑制し、化学強化時の強度向上効果を抑制してしまう。これらの理由からアルカリ土類金属酸化物は2%未満にする。アルカリ土類金属酸化物は1.5%以下が好ましく、1%以下がより好ましく、0.5%以下がさらに好ましい。 In the present glass composition, alkaline earth metal oxides such as MgO, CaO, SrO and BaO promote crystallization and obtain a dense sintered body in the process of powdering, firing and sintering the glass. Becomes difficult. Further, since the glass is made brittle, chipping during machining such as cutting is promoted and bending strength is also lowered. Furthermore, the ion exchange at the time of chemical strengthening treatment is suppressed, and the strength improvement effect at the time of chemical strengthening is suppressed. For these reasons, the alkaline earth metal oxide is less than 2%. The alkaline earth metal oxide is preferably 1.5% or less, more preferably 1% or less, and further preferably 0.5% or less.
 なお、ガラス組成は、必ずしも上記成分のみからなるものに限定されず、Ts、Tg等の諸特性を満たす範囲で他の成分を含有できる。他の成分を含有する場合、その合計した含有量は10%以下が好ましい。他の成分として具体的には、ZrO等が挙げられる。他の成分の合計含有量は、8%以下がより好ましく、5%以下がさらに好ましく、3%以下が特に好ましい。 In addition, a glass composition is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as Ts and Tg, are satisfy | filled. When other components are contained, the total content is preferably 10% or less. Specific examples of other components include ZrO 2 . The total content of other components is more preferably 8% or less, further preferably 5% or less, and particularly preferably 3% or less.
 本発明に用いるガラス粒子は、上記したようなガラスとなるようにガラス原料を配合し、混合し、溶融法によってガラスを製造し、得られたガラスを乾式粉砕法や湿式粉砕法によって粉砕することで得られる。湿式粉砕法の場合、溶媒として水又はエチルアルコールを用いることが好ましい。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機を用いて行えばよい。 The glass particles used in the present invention are prepared by mixing glass raw materials so as to be glass as described above, mixing them, producing glass by a melting method, and grinding the obtained glass by a dry grinding method or a wet grinding method. It is obtained by. In the case of the wet pulverization method, it is preferable to use water or ethyl alcohol as a solvent. The pulverization may be performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
 ガラス粒子の平均粒子径(D50)は0.5~2μmが好ましい。ガラス粒子のD50が0.5μm以上であることで、ガラス粒子が凝集しにくく取り扱い易くなり、また、均一分散しやすくなる。一方、ガラス粒子のD50が2μm以下であることで、Tsの上昇や焼結不足の発生を抑制することができる。D50は、例えば粉砕後に必要に応じて分級して調整してもよい。 The average particle diameter (D50) of the glass particles is preferably 0.5 to 2 μm. When the D50 of the glass particles is 0.5 μm or more, the glass particles are difficult to aggregate and are easy to handle, and are easily dispersed uniformly. On the other hand, when the D50 of the glass particles is 2 μm or less, an increase in Ts and occurrence of insufficient sintering can be suppressed. D50 may be classified and adjusted as necessary after grinding, for example.
(ガラスセラミックス組成物)
 本実施形態の化学強化用ガラスセラミックス複合体を得るために用いるガラスセラミックス組成物は、上記したマイカ粉末とガラス粒子を含有する。また、ガラスセラミックス組成物は、本発明の効果を損なわない範囲で、マイカ粉末以外のフィラーを含有してもよい。
(Glass ceramic composition)
The glass ceramic composition used for obtaining the glass-ceramic composite for chemical strengthening of the present embodiment contains the above-described mica powder and glass particles. Further, the glass ceramic composition may contain a filler other than mica powder as long as the effects of the present invention are not impaired.
 マイカ粉末の含有量は、ガラスセラミックス組成物の全体積に対して、15~50体積%であることが好ましい。マイカ粉末の含有量が、15体積%以上であることで、化学強化用ガラスセラミックス複合体に良好な機械加工性を付与することができる。一方、50体積%以下であることで、ガラスセラミックス組成物が焼結しやすく、緻密な焼結体を形成することができる。なお、後述するように、化学強化用ガラスセラミックス複合体中のマイカ粉末の含有量は、ガラスセラミックス組成物中のマイカ粉末の含有量と同視できる。マイカ粉末の含有量は、20体積%以上がより好ましく、また、45体積%以下がより好ましい。 The content of mica powder is preferably 15 to 50% by volume with respect to the total volume of the glass ceramic composition. When the content of the mica powder is 15% by volume or more, good machinability can be imparted to the glass-ceramic composite for chemical strengthening. On the other hand, when the content is 50% by volume or less, the glass ceramic composition is easily sintered, and a dense sintered body can be formed. As will be described later, the content of mica powder in the chemically strengthened glass-ceramic composite can be equated with the content of mica powder in the glass-ceramic composition. The content of mica powder is more preferably 20% by volume or more, and more preferably 45% by volume or less.
 本実施形態で使用されるガラスセラミックス組成物には、本発明の効果を損なわない範囲で、得られる化学強化用ガラスセラミックス複合体の用途に応じて、マイカ粉末以外のフィラーを含有させることもできる。フィラーとしては、マイカ粉末以外のセラミックス粒子や、着色無機顔料等が挙げられる。 The glass ceramic composition used in the present embodiment may contain a filler other than mica powder in accordance with the use of the obtained glass ceramic composite for chemical strengthening within a range not impairing the effects of the present invention. . Examples of the filler include ceramic particles other than mica powder and colored inorganic pigments.
 マイカ粉末以外のセラミックス粒子として具体的には、扁平状アルミナ粒子、粉末状アルミナ粒子、扁平状、粉末(不定形)等の形状を特に問わない、シリカ、ジルコニア、チタニア、マグネシア、ムライト、窒化アルミニウム、窒化ケイ素、炭化ケイ素、フォルステライト、コージライト等からなるセラミックス粒子が挙げられる。なかでも、焼結性を向上させ、表面の傷つきやすさの低減とガラスセラミックス複合体の曲げ強度の向上を図ることができる点で、粉末状アルミナ粒子が好ましい。 Specific examples of ceramic particles other than mica powder include silica, zirconia, titania, magnesia, mullite, aluminum nitride, regardless of the shape of flat alumina particles, powdered alumina particles, flat shapes, powders (irregular shapes), etc. And ceramic particles composed of silicon nitride, silicon carbide, forsterite, cordierite, and the like. Among these, powdery alumina particles are preferable in that the sinterability can be improved, the surface can be easily damaged, and the bending strength of the glass-ceramic composite can be improved.
 ガラスセラミックス組成物における、マイカ粉末以外のセラミックス粒子の配合量としては、本発明の効果を損なわない量、具体的には、ガラスセラミックス組成物全量に対して35体積%以下の量であればよく、25体積%以下がより好ましく、20体積%以下がさらに好ましく、15体積%以下が特に好ましい。 The amount of the ceramic particles other than the mica powder in the glass ceramic composition may be an amount that does not impair the effects of the present invention, specifically, an amount of 35% by volume or less with respect to the total amount of the glass ceramic composition. 25 volume% or less is more preferable, 20 volume% or less is more preferable, and 15 volume% or less is particularly preferable.
 ガラスセラミックス組成物における、マイカ粉末以外のセラミックス粒子として、耐スクラッチ性を付与するには粉末状アルミナ粒子が好ましい。更に、深い色調や、透明性の高い外観を付与するには、ガラスセラミックス組成物中のガラス粉末と屈折率が近いセラミックス粒子が好ましく、粉末状アルミナ粒子が好ましい。 As the ceramic particles other than the mica powder in the glass ceramic composition, powdery alumina particles are preferable for imparting scratch resistance. Furthermore, in order to give a deep color tone and a highly transparent appearance, ceramic particles having a refractive index close to that of the glass powder in the glass ceramic composition are preferable, and powdered alumina particles are preferable.
 マイカ粉末以外のセラミックス粒子として粉末状アルミナ粒子を用いる場合、粉末状アルミナ粒子のD50は、0.05~5μmであることが好ましい。D50が0.05μm以上の場合、分散性が良好となるために化学強化用ガラスセラミックス複合体に優れた強度を付与することができる。また、耐スクラッチ性を有効に付与することができる。また、粉末状アルミナ粒子のD50が5μm以下の場合、化学強化用ガラスセラミックス複合体全体として均一な強度が得られ、加工性に優れる。粉末状アルミナ粒子のD50は、0.1μm以上がより好ましく、0.2μm以上がさらに好ましい。また、D50は、3μm以下がより好ましく、2μm以下がさらに好ましい。 When powdered alumina particles are used as ceramic particles other than mica powder, the D50 of the powdered alumina particles is preferably 0.05 to 5 μm. When D50 is 0.05 μm or more, the dispersibility becomes good, so that excellent strength can be imparted to the glass-ceramic composite for chemical strengthening. Further, scratch resistance can be effectively imparted. Moreover, when D50 of a powdery alumina particle is 5 micrometers or less, uniform intensity | strength is obtained as the whole glass ceramic composite for chemical strengthening, and it is excellent in workability. The D50 of the powdered alumina particles is more preferably 0.1 μm or more, and further preferably 0.2 μm or more. Further, D50 is more preferably 3 μm or less, and further preferably 2 μm or less.
 着色無機顔料としては、金属酸化物、特に遷移金属酸化物が挙げられ、例えば、Cr、Mn、Fe、Co、Ni、Cu、Ti、Zr及びSn等の酸化物、具体的には、Cr、Co、NiO、Fe及びMnO等を成分とする酸化物が挙げられる。 Examples of the colored inorganic pigment include metal oxides, particularly transition metal oxides. For example, oxides such as Cr, Mn, Fe, Co, Ni, Cu, Ti, Zr, and Sn, specifically, Cr 2 Examples thereof include oxides containing O 3 , Co 2 O 3 , NiO, Fe 2 O 3, MnO, and the like as components.
 Crの場合、緑色の色調が得られ、Feの場合、赤ないし赤褐色の色調が得られ、Coの場合、青色の色調が得られ、NiOの場合、灰色から褐色の色調が得られる。そして、これらの着色無機顔料を組み合わせることで、様々な色調が得られる。また、着色無機顔料としては、上記したもの以外にも、例えば、Ag、Au等の金属をコロイド化したものであってもよい。 In the case of Cr 2 O 3 , a green color tone is obtained, in the case of Fe 2 O 3 , a red to reddish brown color tone is obtained, in the case of Co 2 O 3 , a blue color tone is obtained, and in the case of NiO, from gray A brown color is obtained. Various color tones can be obtained by combining these colored inorganic pigments. Further, as the colored inorganic pigment, in addition to the above, for example, a colloidal metal such as Ag or Au may be used.
 特に、黒色顔料としては、例えば、Cr、Mn、Fe、Co、Ni、Cuからなる群から選ばれる少なくとも一種の金属を含む金属酸化物顔料、前記金属群の複合金属酸化物顔料、TiOもしくはTiOで表されるチタン系黒色顔料等が挙げられる。複合金属酸化物顔料としては、具体的には、例えば、Co-Fe-Cr系黒色顔料、Co-Fe-Al系黒色顔料、Cu-Cr-Mn系黒色顔料、Mn-Bi系黒色顔料、Mn-Y系黒色顔料、Fe-Cr系黒色顔料、Cr-Cu系顔料、Mn-Fe系顔料が使用でき、これらを単独又は2種以上を組み合わせて使用できる。 In particular, as the black pigment, for example, a metal oxide pigment containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, a composite metal oxide pigment of the metal group, TiO x or Examples thereof include a titanium black pigment represented by TiO x N y . Specific examples of composite metal oxide pigments include, for example, Co—Fe—Cr black pigments, Co—Fe—Al black pigments, Cu—Cr—Mn black pigments, Mn—Bi black pigments, Mn -Y-based black pigment, Fe-Cr-based black pigment, Cr-Cu-based pigment, and Mn-Fe-based pigment can be used, and these can be used alone or in combination of two or more.
 また、赤外線隠蔽性の高い着色無機顔料を含有させることにより、化学強化用ガラスセラミックス複合体に赤外隠蔽機能を持たせることもできる。赤外線隠蔽性の高い着色無機顔料としては、Cr、Mn、Fe、Co、Ni、Cuの複合酸化物であるスピネル系結晶等が挙げられる。 In addition, by incorporating a colored inorganic pigment having high infrared concealability, the glass-ceramic composite for chemical strengthening can be provided with an infrared concealment function. Examples of the colored inorganic pigment having a high infrared hiding property include spinel crystals that are complex oxides of Cr, Mn, Fe, Co, Ni, and Cu.
 ガラスセラミックス組成物における、着色無機顔料の含有量は、着色無機顔料の種類によっても異なるが、ガラスセラミック組成物中に1体積%以上が好ましい。着色無機顔料の割合を1体積%以上とすることで、化学強化用ガラスセラミックス複合体を効果的に着色できる。着色無機顔料の割合は、2体積%以上が好ましく、3体積%以上が好ましい。また、着色無機顔料の割合が過度に多くなると、強度が低下するおそれがあることから、15体積%以下が好ましく、13体積%以下がより好ましく、10体積%以下が特に好ましい。なお、着色無機顔料を複数併用する場合、着色無機顔料の合計した割合が上記範囲内となることが好ましい。 The content of the colored inorganic pigment in the glass ceramic composition varies depending on the type of the colored inorganic pigment, but is preferably 1% by volume or more in the glass ceramic composition. By setting the ratio of the colored inorganic pigment to 1% by volume or more, the glass-ceramic composite for chemical strengthening can be effectively colored. The proportion of the colored inorganic pigment is preferably 2% by volume or more, and more preferably 3% by volume or more. Moreover, since there exists a possibility that intensity | strength may fall when the ratio of a coloring inorganic pigment increases too much, 15 volume% or less is preferable, 13 volume% or less is more preferable, and 10 volume% or less is especially preferable. In addition, when using together a plurality of colored inorganic pigments, it is preferable that the total ratio of the colored inorganic pigments falls within the above range.
 着色無機顔料のD50は、0.2~20μmであることが好ましい。D50が0.2μm以上の場合、分散性が良好となるために均一な着色が得られる。また、D50が20μm以下の場合、局所的な着色が抑制されて均一な着色が得られる。D50は、0.5μm以上がより好ましく、0.8μm以上がさらに好ましい。また、D50は、15μm以下がより好ましく、13μm以下がさらに好ましい。 D50 of the colored inorganic pigment is preferably 0.2 to 20 μm. When D50 is 0.2 μm or more, the dispersibility is good and uniform coloring is obtained. Moreover, when D50 is 20 micrometers or less, local coloring is suppressed and uniform coloring is obtained. D50 is more preferably 0.5 μm or more, and even more preferably 0.8 μm or more. Further, D50 is more preferably 15 μm or less, and further preferably 13 μm or less.
 ガラスセラミックス組成物におけるガラス粉末の含有量は、マイカ粉末、それ以外のセラミックス粉末及び着色無機顔料の合計量を100から引いた値である。ガラス粉末の含有量は50~85体積%が好ましく、50~75体積%がより好ましい。 The content of the glass powder in the glass ceramic composition is a value obtained by subtracting from 100 the total amount of mica powder, other ceramic powder and colored inorganic pigment. The glass powder content is preferably 50 to 85% by volume, more preferably 50 to 75% by volume.
 化学強化用ガラスセラミックス複合体は、上記したガラスセラミックス組成物をグリーンシートに成型後、焼成して得られる。また、上記したガラスセラミックス組成物を含むペーストを調整後、これを焼成する方法で得ることもできる。 The glass-ceramic composite for chemical strengthening is obtained by molding the above glass-ceramic composition into a green sheet and firing it. Moreover, it can also obtain by the method of baking this, after preparing the paste containing the above-mentioned glass ceramic composition.
(グリーンシートの製造方法)
 まず、ガラスセラミックス組成物に、バインダーと、必要に応じて可塑剤、溶剤、分散剤等を添加してスラリーを調製する。なお、該スラリーにおいて、ガラスセラミックス組成物以外の成分は、焼成時に全て消失する成分である。
(Green sheet manufacturing method)
First, a slurry is prepared by adding a binder and, if necessary, a plasticizer, a solvent, a dispersant and the like to the glass ceramic composition. In the slurry, components other than the glass ceramic composition are all components that disappear during firing.
 バインダーとしては、例えば、ポリビニルブチラール、アクリル-メタクリル系樹脂、セルロース系樹脂、ポリビニルアルコール、エポキシ系樹脂、セルロース系樹脂等の加熱焼失性の樹脂を好適に使用できる。可塑剤としては、例えば、フタル酸ジブチル、フタル酸ジ-2-エチルヘキシル、フタル酸ブチルベンジル等を使用できる。また、溶剤としては、トルエン、キシレン等の芳香族系溶剤、プロピレングリコールメチルエーテルアセテート等のグリコールエステル系溶剤、2-プロパノール、2-ブタノール等のアルコール系溶剤を使用できる。芳香族系溶剤やエステル系溶剤とアルコール系溶剤を混合して用いることが好ましい。さらに、分散剤を併用することもできる。 As the binder, for example, heat-burnable resins such as polyvinyl butyral, acrylic-methacrylic resin, cellulose resin, polyvinyl alcohol, epoxy resin, and cellulose resin can be suitably used. As the plasticizer, for example, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate and the like can be used. As the solvent, aromatic solvents such as toluene and xylene, glycol ester solvents such as propylene glycol methyl ether acetate, and alcohol solvents such as 2-propanol and 2-butanol can be used. It is preferable to use a mixture of an aromatic solvent or ester solvent and an alcohol solvent. Further, a dispersant can be used in combination.
 スラリー中の各構成の配合量としては、ガラスセラミックス組成物100質量部に対して、バインダー5~15質量部、可塑剤1~5質量部、分散剤2~6質量部及び溶剤50~90質量部が好ましい。 The amount of each component in the slurry is 5 to 15 parts by weight of binder, 1 to 5 parts by weight of plasticizer, 2 to 6 parts by weight of dispersant, and 50 to 90 parts by weight of solvent with respect to 100 parts by weight of the glass ceramic composition. Part is preferred.
 次いで、得られたスラリーを、離形剤が塗布されたPETフィルム上に、例えばドクターブレードを用いて塗布してシート状に成形し、乾燥させることで、グリーンシートを製造する(シート法)。なお、スラリーからグリーンシートを成形する方法はロール成形法であってもよい。 Next, the obtained slurry is coated on a PET film coated with a release agent using, for example, a doctor blade, formed into a sheet, and dried to produce a green sheet (sheet method). The method for forming the green sheet from the slurry may be a roll forming method.
 また、グリーンシートの成型方法としては、上記したシート法以外にも、スリップキャスト法、ゲルキャスト法などのキャスト法、射出成型法、粉末プレス焼成法などが適用できる。 Further, as the green sheet molding method, besides the above-described sheet method, a cast method such as a slip cast method or a gel cast method, an injection molding method, a powder press firing method, or the like can be applied.
 化学強化用ガラスセラミックス複合体の製造に際して、グリーンシートは1枚を単層で用いても、複数枚を用いてもよい。グリーンシートの複数枚を積層する場合は、熱圧着によりこれらを一体化することができる。 In manufacturing the glass-ceramic composite for chemical strengthening, one green sheet may be used as a single layer or a plurality of sheets may be used. When laminating a plurality of green sheets, these can be integrated by thermocompression bonding.
(ペーストの製造方法)
 上記ガラスセラミックス組成物と樹脂成分(バインダー)とを所定の質量比で配合し、磁器乳鉢等で、混練を行い、三本ロール等にて分散を行って、ペーストを作製することができる。
(Paste manufacturing method)
The glass ceramic composition and the resin component (binder) are blended at a predetermined mass ratio, kneaded in a porcelain mortar or the like, and dispersed in a three-roll or the like to produce a paste.
(焼成方法)
 その後、上記で得られたグリーンシート又はペースト中のバインダー等のガラスセラミックス組成物以外の成分を分解、除去するための脱脂した後、焼成してガラスセラミックス組成物を焼結させ、化学強化用ガラスセラミックス複合体を得る。
(Baking method)
Then, after degreasing components for decomposing and removing components other than the glass ceramic composition such as the binder in the green sheet or paste obtained above, the glass ceramic composition is fired to sinter the glass for chemical strengthening. A ceramic composite is obtained.
 脱脂は、例えば、400~600℃の温度で1~10時間保持して行う。脱脂温度が上記範囲であり、脱脂時間が1時間以上であることで、バインダー等を十分に分解、除去することができる。脱脂温度を500℃程度とし、脱脂時間を5時間程度とすれば、十分にバインダー等を除去できるが、この時間を超えるとかえって生産性等が低下するおそれがある。 Degreasing is performed, for example, by holding at a temperature of 400 to 600 ° C. for 1 to 10 hours. When the degreasing temperature is in the above range and the degreasing time is 1 hour or longer, the binder and the like can be sufficiently decomposed and removed. If the degreasing temperature is about 500 ° C. and the degreasing time is about 5 hours, the binder and the like can be sufficiently removed. However, if this time is exceeded, the productivity and the like may be lowered.
 焼成温度は、上記ガラス粉末のTsと、ガラスマトリックスを構成するガラスの結晶化温度に合わせて調整される。通常、ガラスマトリックスのガラスの結晶化温度以下であって、かつガラス粉末のTsより0~200℃高い温度、好ましくはTs+50~Ts+150℃を焼成温度とする。 The firing temperature is adjusted according to the Ts of the glass powder and the crystallization temperature of the glass constituting the glass matrix. Usually, the calcination temperature is set to a temperature not higher than the crystallization temperature of the glass of the glass matrix and 0 to 200 ° C. higher than Ts of the glass powder, preferably Ts + 50 to Ts + 150 ° C.
 例えば、上記ガラス粉末のガラス組成を用いた場合、700~900℃の温度を焼成温度とでき、特に750~850℃の焼成温度が好ましい。焼成時間は、20~60分間程度に調整できる。上記焼成温度及び焼成時間の範囲であると、緻密な焼結体を得やすい。一方、焼成温度が高すぎたり、焼成時間が長すぎたりすると、結晶化や発泡等により、化学強化用ガラスセラミックス複合体の緻密性が低くなったり、生産性等が低下するおそれがある。 For example, when the glass composition of the glass powder is used, a temperature of 700 to 900 ° C. can be used as a firing temperature, and a firing temperature of 750 to 850 ° C. is particularly preferable. The firing time can be adjusted to about 20 to 60 minutes. It is easy to obtain a dense sintered body within the range of the firing temperature and firing time. On the other hand, if the firing temperature is too high or the firing time is too long, the denseness of the chemically strengthened glass-ceramic composite may be lowered or the productivity may be lowered due to crystallization or foaming.
 このような焼成の操作に際して、グリーンシート内でガラス粉末のみが溶融し、溶融したガラスがマイカ粉末の間の隙間を埋めて、ガラスマトリックス中にマイカ粉末が分散した、化学強化用ガラスセラミックス複合体が得られる。 During such a firing operation, only glass powder is melted in the green sheet, the melted glass fills the gaps between the mica powders, and the mica powder is dispersed in the glass matrix. Is obtained.
(結晶化度)
 本実施形態の化学強化用ガラスセラミックス複合体において、ガラスマトリックスを構成するガラスの結晶化度は15%以下であることが好ましい。ガラスの結晶化度X(%)は、X線回折装置により測定される化学強化用ガラスセラミックス複合体の粉末のX線回折スペクトルから下記(1)の計算式によって算出できる。
(Crystallinity)
In the chemically strengthened glass-ceramic composite of the present embodiment, the crystallinity of the glass constituting the glass matrix is preferably 15% or less. The crystallinity X (%) of the glass can be calculated from the X-ray diffraction spectrum of the chemically strengthened glass-ceramic composite powder measured by an X-ray diffractometer according to the following formula (1).
 X=I(glass)/{I(Al)+I(glass)}・100 …(1)
 式(1)中、I(glass)とは、結晶化ガラスのX線回析のピークの最高強度を示し、I(Al)とは、アルミナのX線回析のピークの最高強度を示す。なお、測定において、特性X線としてCuKα線を用いることができる。
X = I (glass) / {I (Al 2 O 3 ) + I (glass)} · 100 (1)
In formula (1), I (glass) indicates the maximum intensity of the X-ray diffraction peak of crystallized glass, and I (Al 2 O 3 ) indicates the maximum intensity of the X-ray diffraction peak of alumina. Indicates. In measurement, CuKα rays can be used as characteristic X-rays.
 ガラスマトリックスが部分的に結晶化すると、ガラスと結晶相との境界からクラックが進展し強度が低下するおそれがある。また、焼成中にガラスの結晶が析出すると、焼結が進まずに化学強化用ガラスセラミックス複合体の緻密性が低くなる場合があり、また、残留ガラスの軟化点が低下し、後述のバインダー成分の分解が十分に行えず黒色化が起こることがある。また、マイカ粉末の分散性が悪くなり配合量が制約を受けることがある。さらに、結晶の析出の制御は難しく、結晶の析出のバラツキに起因して、化学強化用ガラスセラミックス複合体の強度にバラツキが生じたりすることもある。 If the glass matrix is partially crystallized, cracks may develop from the boundary between the glass and the crystalline phase, which may reduce the strength. In addition, if glass crystals are precipitated during firing, sintering may not proceed and the denseness of the glass-ceramic composite for chemical strengthening may be lowered, and the softening point of the residual glass may be lowered, resulting in a binder component described later. May not be sufficiently decomposed and blackening may occur. In addition, the dispersibility of the mica powder may be deteriorated and the blending amount may be restricted. Furthermore, it is difficult to control the precipitation of crystals, and the strength of the glass-ceramic composite for chemical strengthening may vary due to variations in the precipitation of crystals.
 このような不具合を防ぐ観点から、上記焼成過程において形成されるガラスマトリックス中には、結晶が生じないことが好ましい。すなわち、X線回析において結晶化ガラスのピークが検出されない、結晶化度が0%の非晶質であることが好ましい。 From the viewpoint of preventing such inconveniences, it is preferable that no crystals are generated in the glass matrix formed in the firing process. That is, it is preferable that the crystallized glass peak is not detected in X-ray diffraction and the crystallinity is 0%.
 しかしながら、製造条件が十分に制御された環境において化学強化用ガラスセラミックス複合体が製造される場合には、ガラスマトリックス中に結晶相を一定のレベルまで含有してもよい。具体的には、ガラスマトリックスの結晶化度が15%までであれば結晶相を含んでもよく、結晶化度は10%以下が好ましく、5%以下がより好ましい。上記製造条件の一例としては、製造の過程においてバインダー成分の分解が十分になされた段階で、結晶の析出が均等に起こるように制御されて化学強化用ガラスセラミックス複合体が製造されるような場合である。 However, when the glass-ceramic composite for chemical strengthening is produced in an environment where the production conditions are sufficiently controlled, the glass matrix may contain a crystal phase up to a certain level. Specifically, as long as the crystallinity of the glass matrix is up to 15%, a crystal phase may be included, and the crystallinity is preferably 10% or less, more preferably 5% or less. As an example of the above production conditions, a glass-ceramic composite for chemical strengthening is produced in a stage where the binder component is sufficiently decomposed in the production process and controlled so that crystal precipitation occurs uniformly. It is.
(3点曲げ強度)
 化学強化用ガラスセラミックス複合体の3点曲げ強度は100MPa超であることが好ましい。化学強化用ガラスセラミックス複合体の3点曲げ強度を100MPa超とすることで、化学強化用ガラスセラミックス複合体に十分な強度を付与しつつ、機械加工性を向上させることができる。化学強化用ガラスセラミックス複合体の強度は120MPa以上がより好ましく、150MPa以上が特に好ましい。また、3点曲げ強度は、170MPa以上がさらに好ましく、200MPa以上がもっとも好ましい。なお、本明細書における3点曲げ強度とは、JIS C2141に準拠した方法で得られる3点曲げ強度をいう。
(3-point bending strength)
The three-point bending strength of the glass-ceramic composite for chemical strengthening is preferably more than 100 MPa. By making the three-point bending strength of the glass-ceramic composite for chemical strengthening greater than 100 MPa, it is possible to improve machinability while imparting sufficient strength to the glass-ceramic composite for chemical strengthen. The strength of the glass-ceramic composite for chemical strengthening is more preferably 120 MPa or more, and particularly preferably 150 MPa or more. The three-point bending strength is more preferably 170 MPa or more, and most preferably 200 MPa or more. In addition, the 3 point | piece bending strength in this specification means the 3 point | piece bending strength obtained by the method based on JISC2141.
 本実施形態の化学強化用ガラスセラミックス複合体における各成分の含有量は、上記製造方法で化学強化用ガラスセラミックス複合体を作成する際の各材料の混合割合からほとんど変化しない。そのため、各材料の混合割合を化学強化用ガラスセラミックス複合体における各成分の含有量とみなすることができる。例えば、化学強化用ガラスセラミックス複合体における、ガラスマトリックス成分に対するマイカ粉末の量はガラスセラミックス組成物におけるマイカ粉末の含有量と同視できる。また、ガラスマトリックスにおける各成分の含有量は、ガラス粉末における各成分の含有量と同視できる。 The content of each component in the glass-ceramic composite for chemical strengthening of the present embodiment hardly changes from the mixing ratio of each material when the glass-ceramic composite for chemical strengthening is produced by the above-described manufacturing method. Therefore, the mixing ratio of each material can be regarded as the content of each component in the chemically strengthened glass-ceramic composite. For example, the amount of mica powder relative to the glass matrix component in the chemically strengthened glass ceramic composite can be regarded as the content of mica powder in the glass ceramic composition. Further, the content of each component in the glass matrix can be regarded as the content of each component in the glass powder.
(組成分析方法)
 化学強化用ガラスセラミックス複合体の組成を直接分析する場合には、化学強化用ガラスセラミックス複合体の任意の断面における各成分の専有面積から算出する方法を用いることができる。本実施形態の化学強化用ガラスセラミックス複合体においては、上記製造方法で製造する場合、各原料成分は、化学強化用ガラスセラミックス複合体中にほぼ均一に分散される。そのため、任意の断面における各成分の専有面積から算出される組成を、分析対象の化学強化用ガラスセラミックス複合体の組成とみなすことができる。また、化学強化用ガラスセラミックス複合体を、ガラスマトリックスのみ溶解する薬剤(例えば、希フッ酸)を用いて溶解し、ガラスマトリックスの質量とマイカの質量を測定して、得られた質量から、比重を用いて体積割合を算出する方法で組成を分析することもできる。
(Composition analysis method)
When directly analyzing the composition of the glass-ceramic composite for chemical strengthening, a method of calculating from the exclusive area of each component in an arbitrary cross section of the glass-ceramic composite for chemical strengthening can be used. In the glass-ceramic composite for chemical strengthening of the present embodiment, each raw material component is dispersed almost uniformly in the glass-ceramic composite for chemical strengthening when manufactured by the above-described manufacturing method. Therefore, the composition calculated from the exclusive area of each component in an arbitrary cross section can be regarded as the composition of the glass-ceramic composite for chemical strengthening to be analyzed. In addition, the glass-ceramic composite for chemical strengthening is dissolved using an agent that dissolves only the glass matrix (for example, dilute hydrofluoric acid), the mass of the glass matrix and the mass of mica are measured, and the specific gravity is calculated from the obtained mass. The composition can also be analyzed by a method of calculating the volume ratio using.
(赤外線透過率)
 本実施形態の化学強化用ガラスセラミックス複合体は、着色無機顔料として、上記赤外線遮蔽性の着色無機顔料を含む場合、赤外線透過率を極めて低くすることができる。このような赤外線遮蔽性の化学強化用ガラスセラミックス複合体は、化学強化用ガラスセラミックス複合体の厚みを1mmとしたときに、波長600~1000nmの赤外線透過率が0.001%以下であることが好ましい。赤外線遮蔽性の化学強化用ガラスセラミックス複合体は脈拍、血液中のヘモグロビン濃度、血中酸素濃度などを測定する近赤外線センサーを利用するバイタルセンシング機器のパッケージ、筐体等の用途に好適である。なお、赤外透過率は分光光度計を用いて測定することができる。分光光度計としては、例えば、島津製作所製SolidSpec-3700やPerkinElmer社製LAMBDA950、1050などを用いればよい。
(Infrared transmittance)
When the glass-reinforced ceramic composite for chemical strengthening according to the present embodiment includes the above-described infrared shielding colored inorganic pigment as the colored inorganic pigment, the infrared transmittance can be extremely reduced. Such an infrared shielding chemical-strengthening glass-ceramic composite has an infrared transmittance of 0.001% or less at a wavelength of 600 to 1000 nm when the thickness of the chemical-strengthening glass-ceramic composite is 1 mm. preferable. The infrared-shielding glass-ceramic composite for chemical strengthening is suitable for applications such as packages and casings of vital sensing devices that use near-infrared sensors for measuring pulse, hemoglobin concentration in blood, blood oxygen concentration, and the like. The infrared transmittance can be measured using a spectrophotometer. As the spectrophotometer, for example, SolidSpec-3700 manufactured by Shimadzu Corporation or LAMBDA950 or 1050 manufactured by PerkinElmer may be used.
<化学強化ガラスセラミックス複合体及びその製造方法>
 本実施形態の化学強化ガラスセラミックス複合体は、通常、上記で得られた化学強化用ガラスセラミックス複合体を所望の形状、例えば板状に形成し、さらに必要に応じて所望の機械加工を施し、その後、化学強化処理を施して得ることができる。
<Chemically tempered glass ceramic composite and its manufacturing method>
The chemically strengthened glass-ceramic composite of the present embodiment is usually formed into the desired shape, for example, a plate shape, and further subjected to desired machining as required, as obtained above. Then, it can obtain by performing a chemical strengthening process.
 板状の化学強化用ガラスセラミックス複合体は、例えば、上記グリーンシートを製造する方法で得ることができる。機械加工としては、ドリル等を用い、化学強化用ガラスセラミックス複合体に穴をあける等の加工が挙げられる。 The plate-shaped glass-ceramic composite for chemical strengthening can be obtained, for example, by the method for producing the green sheet. Examples of the machining include drilling and the like such as making a hole in the chemically strengthened glass ceramic composite.
 化学強化処理の方法としては化学強化用ガラスセラミックス複合体の表層のNaと溶融塩中のK、又は化学強化用ガラスセラミックス複合体表層のLiと溶融塩中のNa及びKをイオン交換できるものであれば、特に限定されない。たとえば、化学強化用ガラスセラミックス複合体表層のNaと溶融塩中のKをイオン交換する場合、加熱された硝酸カリウム(KNO)溶融塩に化学強化用ガラスセラミックス複合体を浸漬する方法が挙げられる。化学強化用ガラスセラミックス複合体の表層のLi及びNaと溶融塩中のNa及びKをイオン交換する場合には、上記KNO溶融塩に代えて、NaO溶融塩を用いることができる。また、KNO溶融塩にNaNO溶融塩を混合して用いてもよい。 As a method of chemical strengthening treatment, Na + of the surface layer of the glass-ceramic composite for chemical strengthening and K + in the molten salt, or Li + of the surface layer of the glass-ceramic composite for chemical strengthening, Na + and K + in the molten salt are used. There is no particular limitation as long as ion exchange is possible. For example, in the case where ion exchange is performed between Na + on the surface layer of the chemically strengthened glass ceramic composite and K + in the molten salt, a method of immersing the chemically strengthened glass ceramic composite in a heated potassium nitrate (KNO 3 ) molten salt is given. It is done. When ion exchange is performed on Li + and Na + on the surface layer of the glass-ceramic composite for chemical strengthening and Na + and K + in the molten salt, a Na 2 O molten salt should be used instead of the KNO 3 molten salt. Can do. It is also possible to use a mixture of NaNO 3 molten salt KNO 3 molten salt.
 化学強化処理の条件は、化学強化用ガラスセラミックス複合体の厚さや大きさによっても異なるが、化学強化用ガラスセラミックス複合体を350~550℃の溶融塩に0.5~20時間浸漬させることが典型的である。また、化学強化ガラスセラミックス複合体の強度をさらに向上させるため、化学強化用ガラスセラミックス複合体を溶融塩に浸漬後、水洗し、さらに溶融塩に浸漬して2段階の化学強化処理を行ってもよい。 The conditions of the chemical strengthening treatment vary depending on the thickness and size of the glass-ceramic composite for chemical strengthening, but the glass-ceramic composite for chemical strengthening may be immersed in a molten salt at 350 to 550 ° C. for 0.5 to 20 hours. Typical. Further, in order to further improve the strength of the chemically strengthened glass ceramic composite, the chemical strengthening glass ceramic composite is immersed in a molten salt, washed with water, and further immersed in the molten salt to perform a two-step chemical strengthening treatment. Good.
 このようにして得られる化学強化ガラスセラミックス複合体において、上記化学強化処理が施されることで、表面に強化塩の陽イオン成分であるNa又はKが濃化された表面圧縮応力層が形成される。化学強化処理が施された後の、ガラスマトリックスを構成するガラスの組成は、ガラスマトリックスの平均組成として、酸化物換算のモル%で、SiOを40~65%、Alを8.0%を超え21.0%以下、Bを5%を超え40%以下、LiO、NaO及びKOから選ばれる1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含むことが好ましい。 In the thus obtained chemically strengthened glass-ceramic composite, a surface compressive stress layer in which Na + or K +, which is a cation component of the strengthening salt, is concentrated on the surface is obtained by performing the above chemical strengthening treatment. It is formed. The composition of the glass constituting the glass matrix after the chemical strengthening treatment is 40% to 65% of SiO 2 and 8% of Al 2 O 3 as the average composition of the glass matrix in terms of oxides. More than 0% to 21.0% or less, B 2 O 3 to more than 5% to 40%, one or more selected from Li 2 O, Na 2 O and K 2 O in total 5 to 23%, alkaline earth It is preferable that the metal oxide contains 0 to less than 2%.
 また、上記でNa又はKが濃化された表面圧縮応力層の深さは、例えば30μm以上である。化学強化ガラスセラミックス複合体における、この表面圧縮応力層中の平均組成、すなわち、表面から30μmまでの平均組成は、酸化物換算のモル%で、LiOを0~6%、KO及びNaOから選ばれる1種以上を合計で8~23%含む組成であることが好ましい。 Moreover, the depth of the surface compressive stress layer in which Na + or K + is concentrated as described above is, for example, 30 μm or more. In the chemically strengthened glass ceramic composite, the average composition in the surface compressive stress layer, that is, the average composition from the surface to 30 μm is mol% in terms of oxide, 0 to 6% of Li 2 O, K 2 O and A composition containing 8 to 23% in total of at least one selected from Na 2 O is preferable.
 化学強化ガラスセラミックス複合体におけるガラスマトリックスの平均組成及び表面から30μmまでの平均組成は、化学強化後の化学強化ガラスセラミックス複合体のサンプル断面を鏡面研磨し、エネルギー分散型X線分光法(SEM-EDX)にてエリアを区切って定量分析を行い、分析結果を使用して表面から30μm及びガラスマトリックス全域にわたる平均組成として算出することができる。 The average composition of the glass matrix in the chemically strengthened glass-ceramic composite and the average composition from the surface to 30 μm are mirror-polished on the sample cross section of the chemically strengthened glass-ceramic composite after chemical strengthening, and energy dispersive X-ray spectroscopy (SEM- Quantitative analysis is performed by dividing the area with EDX), and the average composition over the entire surface of the glass matrix and 30 μm from the surface can be calculated using the analysis result.
(3点曲げ強度)
 本実施形態の化学強化ガラスセラミックス複合体の3点曲げ強度は250MPa超を得ることができる。化学強化ガラスセラミックス複合体の3点曲げ強度を250MPa超とすることで、化学強化ガラスセラミックス複合体の高い強度を実現することができる。化学強化ガラスセラミックス複合体の3点曲げ強度は300MPa超であることがより好ましく、350MPa超がより好ましい。
(3-point bending strength)
The three-point bending strength of the chemically tempered glass ceramic composite of this embodiment can be over 250 MPa. By setting the three-point bending strength of the chemically strengthened glass ceramic composite to more than 250 MPa, the high strength of the chemically strengthened glass ceramic composite can be realized. The three-point bending strength of the chemically strengthened glass ceramic composite is more preferably more than 300 MPa, and more preferably more than 350 MPa.
(強度比)
 本実施形態の化学強化用ガラスセラミックス複合体はガラスマトリックスが上記した組成のガラスからなることで、化学強化処理によって3点曲げ強度が向上する。化学強化前後の3点曲げ強度の比は、「化学強化ガラスセラミックス複合体(化学強化後)の3点曲げ強度/化学強化用ガラスセラミックス複合体(化学強化前)の3点曲げ強度」(以下、単に「化学強化後/化学強化前」という。)で表わされる比で1.2以上であることが好ましく、1.5以上であることがより好ましい。この場合には、化学強化前の機械加工性をより向上させつつ、優れた強度の化学強化ガラスセラミックス複合体を得ることができる。
(Strength ratio)
The glass-ceramic composite for chemical strengthening according to the present embodiment has a three-point bending strength improved by the chemical strengthening treatment because the glass matrix is made of glass having the above-described composition. The ratio of the three-point bending strength before and after chemical strengthening is “three-point bending strength of chemically strengthened glass-ceramic composite (after chemical strengthening) / three-point bending strength of glass-ceramic composite for chemical strengthening (before chemical strengthening)” (below) The ratio represented simply by “after chemical strengthening / before chemical strengthening”) is preferably 1.2 or more, and more preferably 1.5 or more. In this case, it is possible to obtain a chemically strengthened glass-ceramic composite having excellent strength while further improving the machinability before chemical strengthening.
(組成分析方法、赤外線透過率)
 化学強化ガラスセラミックス複合体の組成についても、上記化学強化用ガラスセラミックス複合体と同様、各原料成分の配合割合と同視することができる。また、上記化学強化用ガラスセラミックス複合体と同様の方法で分析してもよい。また、赤外線透過率は、化学強化によってほとんど変化しないため、化学強化ガラスセラミックス複合体の赤外線透過率は、化学強化用ガラスセラミックス複合体のそれと同視することができる。
(Composition analysis method, infrared transmittance)
The composition of the chemically strengthened glass-ceramic composite can also be regarded as the blending ratio of each raw material component, like the above-described chemically strengthened glass-ceramic composite. Moreover, you may analyze by the method similar to the said glass ceramic composite for chemical strengthening. Further, since the infrared transmittance hardly changes due to chemical strengthening, the infrared transmittance of the chemically strengthened glass-ceramic composite can be equated with that of the chemically strengthened glass-ceramic composite.
 上記した本実施形態の化学強化用ガラスセラミックス複合体によれば、優れた機械加工性を有し、化学強化によって得られる化学強化ガラスセラミックス複合体に高い強度を付与することができる。また、本発明の化学強化ガラスセラミックス複合体の製造方法によれば、機械加工性に優れ、化学強化ガラスセラミックス複合体に高い強度を付与することができる。 According to the glass-ceramic composite for chemical strengthening of the present embodiment described above, it has excellent machinability and can impart high strength to the chemically strengthened glass-ceramic composite obtained by chemical strengthening. Moreover, according to the manufacturing method of the chemically strengthened glass ceramic composite of this invention, it is excellent in machinability and can give high intensity | strength to a chemically strengthened glass ceramic composite.
 以下、実施例を参照して具体的に説明する。本発明は以下の実施例に限定されない。
[実施例;例1~12及び例20~27、比較例;例13~19]
<ガラス粉末の製造>
 表1に示す割合(酸化物換算のモル百分率)のガラスとなるように各ガラス原料を配合、混合して原料混合物とし、この原料混合物を白金ルツボに入れて1500~1700℃で90分間溶融した。溶融物をステンレス製の水冷ロールに通過させ0.3~1.0mmの薄片状のガラスを得、その後、ボールミルにて平均粒子径(D50)を2μmに粉砕して各組成のガラス粉末G1~G12を得た。
Hereinafter, specific description will be given with reference to examples. The present invention is not limited to the following examples.
[Examples: Examples 1 to 12 and Examples 20 to 27, Comparative Examples; Examples 13 to 19]
<Manufacture of glass powder>
Each glass raw material was blended and mixed to obtain a glass having a ratio (mole percentage in terms of oxide) shown in Table 1, and the raw material mixture was put into a platinum crucible and melted at 1500 to 1700 ° C. for 90 minutes. . The melt is passed through a stainless steel water-cooled roll to obtain a flaky glass having a thickness of 0.3 to 1.0 mm. Thereafter, the average particle size (D50) is pulverized to 2 μm by a ball mill to obtain glass powders G1 to G1 of each composition. G12 was obtained.
 得られたガラス粉末G1~G12についてそれぞれ、次の方法でTs、Tgを測定した。結果を表1の下欄に示す。なお、ガラス粉末G12は得られたガラスの一部に白濁部を生じ、均質なガラスが得られない、未融不良であった。 For the obtained glass powders G1 to G12, Ts and Tg were measured by the following methods. The results are shown in the lower column of Table 1. In addition, the glass powder G12 was a non-melting defect which produced a cloudiness part in a part of obtained glass, and a homogeneous glass was not obtained.
(Tg、Ts)
 DTA(Differential Thermal Analysis、示差熱分析)により、第一変曲点をTg[℃]、第四変曲点をTs[℃]、として測定した。
(Tg, Ts)
The first inflection point was measured as Tg [° C.] and the fourth inflection point was Ts [° C.] by DTA (Differential Thermal Analysis, differential thermal analysis).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ガラス粉末に混合するフィラーとしてはそれぞれ次のものを用いた。
 マイカ粉末:フッ素金雲母の粉末(平均粒子径(D50):5μm)
 アルミナ粉末(A):酸化アルミニウム粉末(平均粒子径(D50):0.5μm)
 アルミナ粉末(B):酸化アルミニウム粉末(D50:1.5μm)
 アルミナ粉末(C):酸化アルミニウム粉末(D50:0.2μm)
 アルミナ粉末(D):酸化アルミニウム粉末(D50:0.1μm)
 黒色顔料:Cr、Mn、Fe、Co、Ni、Cuなどの複合酸化物粉末(平均粒子径(D50):1μm)
The following were used as fillers to be mixed with the glass powder.
Mica powder: Fluorophlogopite powder (average particle size (D50): 5 μm)
Alumina powder (A): Aluminum oxide powder (average particle size (D50): 0.5 μm)
Alumina powder (B): Aluminum oxide powder (D50: 1.5 μm)
Alumina powder (C): Aluminum oxide powder (D50: 0.2 μm)
Alumina powder (D): Aluminum oxide powder (D50: 0.1 μm)
Black pigment: complex oxide powder such as Cr, Mn, Fe, Co, Ni, Cu (average particle diameter (D50): 1 μm)
<化学強化用ガラスセラミックス基板の製造>
 次いで、表2~4に示すように、ガラス粉末と、フィラーとしての、マイカ粉末、アルミナ粉末、黒色顔料とを所定の割合(体積(vol)%)で配合し混合して、ガラスセラミックス組成物を得た。
<Manufacture of glass-ceramic substrates for chemical strengthening>
Next, as shown in Tables 2 to 4, glass powder and mica powder, alumina powder, and black pigment as fillers are blended in a predetermined ratio (volume%) and mixed to obtain a glass ceramic composition. Got.
 上記で得られたガラスセラミックス組成物を用いて、それぞれ以下に示すようにしてグリーンシートを製造した。ガラスセラミックス組成物50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダーとしてのアクリルーメタクリル共重合樹脂5g、及び分散剤0.5gをそれぞれ配合し、混合してスラリーとした。このスラリーをPETフィルム上にドクターブレード法により塗布し乾燥させた。ドクターブレードのギャップは、シートが焼成後に200μmになる厚みになるように調整してグリーンシートを製造した。得られたグリーンシートを切断し、50mm角(縦50mm横50mm)に切断し、評価用のグリーンシートを得た。 Using the glass ceramic composition obtained above, green sheets were produced as shown below. 50 g of glass ceramic composition, 15 g of organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol at a mass ratio of 4: 2: 2: 1), plasticizer (di-2-ethylhexyl phthalate) 2 0.5 g, 5 g of an acrylic-methacrylic copolymer resin as a binder, and 0.5 g of a dispersant were mixed and mixed to form a slurry. This slurry was applied onto a PET film by a doctor blade method and dried. The gap of the doctor blade was adjusted so that the sheet had a thickness of 200 μm after firing to produce a green sheet. The obtained green sheet was cut and cut into 50 mm squares (50 mm long and 50 mm wide) to obtain green sheets for evaluation.
 このようにして得られたグリーンシートを4枚重ね合わせ、連続焼成炉にて450℃で2時間保持することでバインダー等のガラスセラミックス組成物以外の成分を分解、除去した後、表2~4に示す焼成温度で45分(0.75時間)保持して焼成を行った。こうして、各例の化学強化用ガラスセラミックス基板(厚さ約800μm)を得た。 Four green sheets thus obtained were superposed and held at 450 ° C. for 2 hours in a continuous firing furnace to decompose and remove components other than the glass ceramic composition such as a binder, and then Tables 2 to 4 were used. The firing temperature was maintained at 45 minutes (0.75 hour) for firing. In this way, a glass ceramic substrate for chemical strengthening (thickness: about 800 μm) of each example was obtained.
<評価>
 上記各例で得られた各化学強化用ガラスセラミックス基板について、以下に示す評価を行った。
<Evaluation>
The following evaluations were performed on each chemically strengthened glass ceramic substrate obtained in each of the above examples.
(3点曲げ強度)
 各例で得られた化学強化用ガラスセラミックス基板について、JIS C2141に準拠する3点曲げ強度試験を行った。すなわち、化学強化用ガラスセラミックス基板の一辺を2点で支持し、これと対向する辺における上記2点の中間位置に徐々に加重を加えて、化学強化用ガラスセラミックス基板が破壊されたときの荷重を測定し、これに基づいて3点曲げ強度(MPa)を算出した。当該曲げ強度を30点測定して平均値(平均曲げ強度)を求めた。結果を、表2~4の下欄に示す。
(3-point bending strength)
The glass ceramic substrate for chemical strengthening obtained in each example was subjected to a three-point bending strength test in accordance with JIS C2141. That is, a load when one side of a glass-ceramic substrate for chemical strengthening is supported at two points and a load is gradually applied to an intermediate position between the two points on the side facing the substrate, and the glass-ceramic substrate for chemical strengthening is destroyed. The three-point bending strength (MPa) was calculated based on this. The bending strength was measured at 30 points to determine an average value (average bending strength). The results are shown in the lower column of Tables 2-4.
(機械加工性)
 化学強化用ガラスセラミックス基板にドリルで鑽孔し、チッピング発生の度合いを評価した。結果を、表2~4の下欄に、チッピングを光学顕微鏡で観察し、チッピングの最大長さが、0.1mm以下であった場合には、機械加工性が良好と判断して○、0.1mmを超える場合には、機械加工性が不良と判断して×と表記した。
(Machinability)
A glass ceramic substrate for chemical strengthening was drilled with a drill, and the degree of chipping was evaluated. The results are shown in the lower columns of Tables 2 to 4. When the chipping was observed with an optical microscope and the maximum chipping length was 0.1 mm or less, it was judged that the machinability was good. In the case of exceeding 1 mm, the machinability was judged to be poor and indicated as x.
(密度)
 化学強化用ガラスセラミックス基板の密度は、アルキメデス法により測定した。
(density)
The density of the glass-ceramic substrate for chemical strengthening was measured by the Archimedes method.
(ヤング率)
 化学強化用ガラスセラミックス基板のヤング率は、超音波法(パルスエコーオーバーラップ法)により測定した。
(破壊靭性)
 化学強化用ガラスセラミックス基板の破壊靭性は、JIS R1607のIF法(Indentation Fracture Method)に準拠して測定した。
(Young's modulus)
The Young's modulus of the glass-ceramic substrate for chemical strengthening was measured by an ultrasonic method (pulse echo overlap method).
(Fracture toughness)
The fracture toughness of the glass-ceramic substrate for chemical strengthening was measured in accordance with IF method (Indentation Fracture Method) of JIS R1607.
<化学強化ガラスセラミックス基板の製造>
 上記で得られた各例の化学強化用ガラスセラミックス基板を、表2~4に示す強化温度に保持して溶融した強化塩(KNO溶融塩又はNaNO溶融塩)に、それぞれ表2~4に示す時間(1時間~8時間)浸漬して化学強化処理を行い、化学強化ガラスセラミックス基板を得た。また、例25、27については、表4に示すようにKNO溶融塩とNaNO溶融塩を順に使用して、2段階の化学強化処理を行った。
<Manufacture of chemically strengthened glass ceramic substrate>
The glass-ceramic substrates for chemical strengthening of the respective examples obtained above were melted in the strengthening salts (KNO 3 molten salt or NaNO 3 molten salt) held at the strengthening temperatures shown in Tables 2 to 4, respectively. Chemical strengthening treatment was performed by immersing in the time shown in (1 to 8 hours) to obtain a chemically strengthened glass ceramic substrate. Further, for examples 25 and 27, using a KNO 3 molten salt and NaNO 3 molten salt as shown in Table 4 were sequentially subjected to chemical strengthening treatment of two stages.
<評価>
 上記各例で得られた化学強化ガラスセラミックス基板を水洗後、以下に示す評価を行った。
<Evaluation>
The chemically tempered glass ceramic substrate obtained in each of the above examples was washed with water and then evaluated as follows.
(3点曲げ強度)
 上記と同様にして、化学強化ガラスセラミックス基板の3点曲げ強度(平均曲げ強度)を測定した。結果を、表2~4の下欄に示す。
(破壊靭性)
 上記と同様にして、化学強化ガラスセラミックス基板の破壊靭性を測定した。
(3-point bending strength)
In the same manner as described above, the three-point bending strength (average bending strength) of the chemically strengthened glass ceramic substrate was measured. The results are shown in the lower column of Tables 2-4.
(Fracture toughness)
In the same manner as described above, the fracture toughness of the chemically strengthened glass ceramic substrate was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2~4に示されるとおり、所定の組成のガラス粉末とマイカ粉末を含むガラスセラミックス組成物を焼結して得られる例1~12及び例20~27(実施例)の化学強化用ガラスセラミックス複合体では、機械加工性が良好であり、化学強化を施すことで、十分に強度が向上し、高い強度の化学強化ガラスセラミックス複合体が得られたことが分かる。 As shown in Tables 2 to 4, the glass ceramics for chemical strengthening of Examples 1 to 12 and Examples 20 to 27 (Examples) obtained by sintering a glass ceramic composition containing glass powder having a predetermined composition and mica powder It can be seen that the composite has good machinability, and the chemical strengthening sufficiently improves the strength, and a chemically strengthened glass-ceramic composite with high strength is obtained.
 これに対し、例13~19(比較例)の化学強化用ガラスセラミックス複合体では、機械加工性が劣るか、化学強化後の強度が不十分であることが分かる。 On the other hand, it can be seen that the glass-ceramic composites for chemical strengthening of Examples 13 to 19 (comparative examples) have poor machinability or insufficient strength after chemical strengthening.

Claims (13)

  1.  ガラスマトリックス中にマイカ粉末が分散されてなる化学強化用ガラスセラミックス複合体であって、
     前記ガラスマトリックスを構成するガラスは、
     酸化物換算のモル%で、SiOを40~65%、Alを8.0を超え21.0%以下、Bを5%を超え40%以下、LiO及びNaOから選ばれる1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含む化学強化用ガラスセラミックス複合体。
    A glass-ceramic composite for chemical strengthening in which mica powder is dispersed in a glass matrix,
    The glass constituting the glass matrix is
    In mol% in terms of oxide, SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0 and 21.0% or less, B 2 O 3 is more than 5% and 40% or less, Li 2 O and Na A glass-ceramic composite for chemical strengthening comprising 5 to 23% in total of at least one selected from 2 O and 0 to less than 2% of an alkaline earth metal oxide.
  2.  前記ガラス中の、LiOとNaOは、LiO/NaOが0.35~4である請求項1に記載の化学強化用ガラスセラミックス複合体。 The glass-ceramic composite for chemical strengthening according to claim 1, wherein Li 2 O and Na 2 O in the glass have a Li 2 O / Na 2 O ratio of 0.35 to 4.
  3.  前記ガラス中のBとSiOは、SiO/Bが1~13である請求項1又は2に記載の化学強化用ガラスセラミックス複合体。 The glass-ceramic composite for chemical strengthening according to claim 1 or 2, wherein B 2 O 3 and SiO 2 in the glass have a SiO 2 / B 2 O 3 ratio of 1 to 13.
  4.  前記化学強化用ガラスセラミックス複合体の全体積に対して、マイカ粉末を15~50体積%含む請求項1~3のいずれかに記載の化学強化用ガラスセラミックス複合体。 The glass ceramic composite for chemical strengthening according to any one of claims 1 to 3, comprising 15 to 50% by volume of mica powder with respect to the total volume of the glass ceramic composite for chemical strengthening.
  5.  前記ガラスマトリックスは、結晶化度が15%以下であることを特徴とする請求項1~4のいずれかに記載の化学強化用ガラスセラミックス複合体。 The glass-ceramic composite for chemical strengthening according to any one of claims 1 to 4, wherein the glass matrix has a crystallinity of 15% or less.
  6.  さらに、着色無機顔料を含む請求項1~5のいずれかに記載の化学強化用ガラスセラミックス複合体。 The glass-ceramic composite for chemical strengthening according to any one of claims 1 to 5, further comprising a colored inorganic pigment.
  7.  前記化学強化用ガラスセラミックス複合体の厚みを1mmにしたときに、波長600~1000nmの赤外線透過率が0.001%以下である請求項1~6のいずれかに記載の化学強化用ガラスセラミックス複合体。 The glass ceramic composite for chemical strengthening according to any one of claims 1 to 6, wherein an infrared transmittance at a wavelength of 600 to 1000 nm is 0.001% or less when the thickness of the glass ceramic composite for chemical strengthening is 1 mm. body.
  8.  前記化学強化用ガラスセラミックス複合体は板状であり、機械加工が施されている請求項1~7のいずれかに記載の化学強化用ガラスセラミックス複合体。 The glass-ceramic composite for chemical strengthening according to any one of claims 1 to 7, wherein the glass-ceramic composite for chemical strengthening has a plate shape and is machined.
  9.  化学強化処理を施された化学強化ガラスセラミックス複合体であって、
     ガラスマトリックス中にマイカ粉末が分散されてなり、
     前記ガラスマトリックスを構成するガラスは、前記ガラスマトリックスの平均組成として、
     酸化物換算のモル%で、SiOを40~65%、Alを8.0を超え21.0%以下、Bを5%を超え40%以下、LiO、NaO及びKOから選ばれる1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含む、化学強化ガラスセラミックス複合体。
    A chemically strengthened glass ceramic composite that has been subjected to a chemical strengthening treatment,
    Mica powder is dispersed in a glass matrix,
    The glass constituting the glass matrix is, as an average composition of the glass matrix,
    In mol% in terms of oxide, SiO 2 is 40 to 65%, Al 2 O 3 is more than 8.0 and 21.0% or less, B 2 O 3 is more than 5% and 40% or less, Li 2 O, Na A chemically strengthened glass-ceramic composite containing a total of 5 to 23% of one or more selected from 2 O and K 2 O and 0 to less than 2% of an alkaline earth metal oxide.
  10.  前記化学強化ガラスセラミックス複合体の表面から30μmまでの平均組成として、
     酸化物換算のモル%で、LiOを0~6%、KO及びNaOから選ばれる1種以上を合計で8~23%含む、請求項9に記載の化学強化ガラスセラミックス複合体。
    As an average composition from the surface of the chemically strengthened glass ceramic composite to 30 μm,
    The chemically strengthened glass-ceramic composite according to claim 9, comprising 0 to 6% of Li 2 O and 8 to 23% in total of at least one selected from K 2 O and Na 2 O in terms of mol% in terms of oxide. body.
  11.  前記化学強化ガラスセラミックス複合体の、JIS C2141に準拠した方法で測定される3点曲げ強度が、化学強化前を1として1.2以上である、請求項9又は10に記載の化学強化ガラスセラミックス複合体。 The chemically strengthened glass ceramics according to claim 9 or 10, wherein a three-point bending strength of the chemically strengthened glass ceramic composite measured by a method in accordance with JIS C2141 is 1.2 or more, with 1 before chemical strengthening. Complex.
  12.  ガラス粒子とマイカ粉末とを含み、前記ガラス粒子と前記マイカ粉末の合計に対する前記マイカ粉末の含有量が15~50体積%であり、前記ガラス粒子が酸化物換算のモル%で、SiOを40~65%、Alを8.0を超え21.0%以下、Bを5%を超え40%以下、LiOとNaOのうち1種以上を合計で5~23%、アルカリ土類金属酸化物を0~2%未満含むガラスセラミックス組成物を焼結して化学強化用ガラスセラミックス複合体を得る工程と、
     前記化学強化用ガラスセラミックス複合体に化学強化処理を施して化学強化された化学強化ガラスセラミックス複合体を得る工程と
    を有する化学強化ガラスセラミックス複合体の製造方法。
    Glass particles and mica powder, the content of the mica powder with respect to the total of the glass particles and mica powder is 15 to 50% by volume, the glass particles are mol% in terms of oxide, and SiO 2 is 40%. ~ 65%, Al 2 O 3 more than 8.0 and 21.0% or less, B 2 O 3 more than 5% and 40% or less, and one or more of Li 2 O and Na 2 O in total 5 ~ Sintering a glass ceramic composition containing 23% alkaline earth metal oxide and less than 0-2% to obtain a glass-ceramic composite for chemical strengthening;
    And a step of obtaining a chemically strengthened glass ceramic composite that has been chemically strengthened by subjecting the glass ceramic composite for chemical strengthening to chemical strengthening.
  13.  前記化学強化用ガラスセラミックス複合体は板状であり、
     前記化学強化用ガラスセラミックス複合体に機械加工を施す工程を有する請求項12に記載の化学強化ガラスセラミックス複合体の製造方法。
    The chemical strengthening glass-ceramic composite is plate-shaped,
    The method for producing a chemically strengthened glass ceramic composite according to claim 12, further comprising a step of machining the chemically strengthened glass ceramic composite.
PCT/JP2018/016295 2017-04-27 2018-04-20 Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same WO2018198968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514465A JPWO2018198968A1 (en) 2017-04-27 2018-04-20 Glass-ceramic composite for chemical strengthening, glass-ceramic composite with chemical strengthening and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-088638 2017-04-27
JP2017088638 2017-04-27
JP2017113685 2017-06-08
JP2017-113685 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018198968A1 true WO2018198968A1 (en) 2018-11-01

Family

ID=63920418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016295 WO2018198968A1 (en) 2017-04-27 2018-04-20 Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2018198968A1 (en)
TW (1) TW201843121A (en)
WO (1) WO2018198968A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115721565A (en) * 2022-12-05 2023-03-03 北京赢冠口腔医疗科技股份有限公司 Tooth veneer cutting porcelain, preparation method thereof and tooth veneer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097016A (en) * 2003-09-22 2005-04-14 Mitsui Kozan Material Kk High strength glass/fluorine phlogopite-based machinable ceramic and its production method
JP2013529172A (en) * 2010-05-26 2013-07-18 コーニング インコーポレイテッド Variable temperature / continuous ion exchange process
JP2014234341A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Glass member
JP2015086078A (en) * 2013-10-28 2015-05-07 日本電気硝子株式会社 Glass, glass powder, composite powder and glass plate with colored layer
WO2016094262A1 (en) * 2014-12-11 2016-06-16 Corning Incorporated X-ray induced coloration in glass or glass-ceramic articles
WO2016134677A1 (en) * 2015-02-28 2016-09-01 Schott Glass Technologies (Suzhou) Co. Ltd. Machinable and chemically toughenable glass ceramic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097016A (en) * 2003-09-22 2005-04-14 Mitsui Kozan Material Kk High strength glass/fluorine phlogopite-based machinable ceramic and its production method
JP2013529172A (en) * 2010-05-26 2013-07-18 コーニング インコーポレイテッド Variable temperature / continuous ion exchange process
JP2014234341A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Glass member
JP2015086078A (en) * 2013-10-28 2015-05-07 日本電気硝子株式会社 Glass, glass powder, composite powder and glass plate with colored layer
WO2016094262A1 (en) * 2014-12-11 2016-06-16 Corning Incorporated X-ray induced coloration in glass or glass-ceramic articles
WO2016134677A1 (en) * 2015-02-28 2016-09-01 Schott Glass Technologies (Suzhou) Co. Ltd. Machinable and chemically toughenable glass ceramic

Also Published As

Publication number Publication date
TW201843121A (en) 2018-12-16
JPWO2018198968A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
TWI808058B (en) Glass ceramics, articles comprising the same, and methods of making the same
EP3717423B1 (en) Black lithium silicate glass ceramics
US9586860B2 (en) Method of making three dimensional glass ceramic article
JP4590866B2 (en) Glass ceramic composition
WO2013133300A1 (en) Glass ceramic body, laminate, housing for portable electronic equipment, and portable electronic equipment
TW201542482A (en) Opaque colored glass-ceramics comprising nepheline crystal phases
JP5365975B2 (en) Crystallized glass article and method for producing the same
TW201509848A (en) Ion exchangeable glass, glass-ceramics and methods for making the same
JP6663026B2 (en) Modified black spinel pigments for glass and ceramic enamel applications
WO2009086724A1 (en) Low temperature co-fired ceramic powder, special raw material and application thereof
JP6229661B2 (en) Glass ceramic substrate and casing for portable electronic device using the substrate
WO2018198968A1 (en) Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same
JP2019182719A (en) Reinforced crystallized glass
JP2015117170A (en) Glass for coating metal and metal member having glass layer attached thereto
CN116332514A (en) Copper-containing lithium silicate glass ceramics
JP4229045B2 (en) Electronic circuit board and lead-free glass for producing electronic circuit board
JP2020066559A (en) Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite and method for manufacturing the same
KR101683400B1 (en) High-strength low temperature co-fired ceramic composition
CN114127032B (en) Laminated member
TW201627246A (en) Glass powder, composite powder, and low expansion substrate with decorative layer
JP6048665B2 (en) Glass ceramic materials and glass ceramics
KR20080103642A (en) Process for preparing a glaze composition and the composition obtained thereby
JPH0873261A (en) Glass-ceramic composite material and its production
JP2011046600A (en) Glass ceramic sintered compact, method for manufacturing the same, photocatalytic functional member and hydrophilic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791973

Country of ref document: EP

Kind code of ref document: A1