WO2018198949A1 - Wavelength converting element, light-emitting device, and illumination device - Google Patents

Wavelength converting element, light-emitting device, and illumination device Download PDF

Info

Publication number
WO2018198949A1
WO2018198949A1 PCT/JP2018/016230 JP2018016230W WO2018198949A1 WO 2018198949 A1 WO2018198949 A1 WO 2018198949A1 JP 2018016230 W JP2018016230 W JP 2018016230W WO 2018198949 A1 WO2018198949 A1 WO 2018198949A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
conversion element
phosphor particles
conversion member
Prior art date
Application number
PCT/JP2018/016230
Other languages
French (fr)
Japanese (ja)
Inventor
高瀬 裕志
山中 一彦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019514451A priority Critical patent/JP7028863B2/en
Publication of WO2018198949A1 publication Critical patent/WO2018198949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present disclosure relates to a wavelength conversion element, and a light emitting device and an illumination device including the same.
  • FIG. 25 is a schematic view of a conventional light emitting device.
  • the light emitting device 1063 disclosed in Patent Document 1 includes an excitation light source 1070, an excitation light condensing lens 1139, a wavelength conversion element (phosphor wheel 1071) to which a phosphor layer 1131 is attached, and a light guide device 1075. Composed.
  • the phosphor layer 1131 is attached to the substrate 1130 through the reflective layer 1138.
  • the base material 1130 is formed of a heat transfer member such as a copper plate, and a reflective layer 1138 formed by silver vapor deposition or the like is provided thereon.
  • the reflective layer 1138 reflects the excitation light and the light generated by the phosphor.
  • the excitation light emitted from the excitation light source 1070 is condensed by the excitation light condensing lens and irradiated to the phosphor layer 1131.
  • the excitation light is absorbed by the phosphor in the phosphor layer 1131. Accordingly, the phosphor emits fluorescence. This fluorescence is guided to the light guide device 1075.
  • the light emitting device 1063 that obtains the emitted light by irradiating the phosphor layer with the excitation light disclosed in Patent Document 1
  • the light having a high light density is irradiated on the wavelength conversion element.
  • the temperature rises locally in the region where the excitation light of the phosphor layer 1131 is irradiated.
  • Such an increase in the temperature of the phosphor layer causes a rapid decrease in the conversion efficiency of the phosphor and damage to the wavelength conversion element.
  • an object of the present disclosure is to provide a wavelength conversion element that can sufficiently convert excitation light into fluorescence and that has increased mechanical strength, and a light-emitting device and an illumination apparatus that include the wavelength conversion element.
  • one aspect of the wavelength conversion element includes a support member having a support surface and a wavelength conversion member disposed above the support surface, and the wavelength conversion member includes: A radiation surface located on the opposite side of the support surface, the radiation surface including a peripheral region including a peripheral edge of the radial surface and a central region surrounded by the peripheral region, and at least a part of the peripheral region; Has a first apex protruding from the central region in a direction away from the support surface, and the radiation surface is inclined to the support surface side from the first apex toward the central region. It has an inclined part.
  • the linear expansion coefficients of the support member and the wavelength conversion member may be different.
  • the stress applied to the wavelength conversion member along with the temperature change of the wavelength conversion element is relieved, and the wavelength conversion member can be prevented from peeling off from the support member.
  • the thinner the wavelength conversion member the more the temperature increase of the wavelength conversion member can be suppressed. Therefore, in the wavelength conversion element of the present disclosure, if the central region where the film thickness of the wavelength conversion member is thin is irradiated with excitation light, the excitation light can be sufficiently converted to fluorescence by suppressing the temperature increase of the wavelength conversion member.
  • the wavelength conversion member is supported against changes in the environmental temperature of the wavelength conversion element and temperature changes when the wavelength conversion element emits light.
  • the peeling from the member can be suppressed. That is, in the wavelength conversion element according to the present embodiment, the mechanical strength can be increased.
  • the central region may include a flat portion having a gentler inclination than the first inclined portion.
  • a plurality of minute convex portions may be formed on the radiation surface of the first inclined portion.
  • the arrangement region in which the wavelength conversion member of the support surface is arranged may be a flat surface.
  • the film thickness at the first top of the wavelength conversion member may be larger than the film thickness at the central region.
  • the film thickness of the wavelength conversion member in the central region may be 15 ⁇ m or more and 35 ⁇ m or less.
  • the wavelength conversion member may include a plurality of first phosphor particles made of the same material in the central region and the first top portion.
  • the wavelength conversion member may include a transparent binder that binds the plurality of first phosphor particles.
  • the wavelength conversion member may include a plurality of scattering particles combined with the transparent binder.
  • the total volume of the plurality of first phosphor particles may be 35% or more and 62% or less with respect to the volume of the wavelength conversion member.
  • the total cross-sectional area of the plurality of first phosphor particles is 40% or more with respect to the cross-sectional area of the wavelength conversion member. It may be 80% or less.
  • a plurality of minute convex portions are formed on the radiation surface of the first inclined portion, and at least a part of the plurality of minute convex portions is the A part of the plurality of first phosphor particles may be formed by projecting on the radiation surface.
  • the wavelength conversion member includes second phosphor particles different from the plurality of first phosphor particles, and the plurality of first phosphor particles includes Ce.
  • the peripheral region is disposed at a position opposite to the central region with respect to the first top portion, and from the central region in a direction away from the support surface.
  • the radiating surface may have a second inclined portion inclined toward the support surface from the second top portion toward the central region.
  • the first top portion may be higher in height from the support surface than the second top portion.
  • the wavelength conversion member in the top view of the support surface, has an elongated shape, and the first top portion is a longitudinal direction of the wavelength conversion member. It may be arranged at an end portion in a direction perpendicular to.
  • a reflection member disposed between the wavelength conversion member and the support member may be further provided.
  • the support member may include silicon (Si), silicon carbide (SiC), sapphire (Al 2 O 3 ), aluminum nitride (AlN), or diamond.
  • one mode of the wavelength conversion element includes a support member having a support surface and a wavelength conversion member disposed above the support surface, and the wavelength conversion member generates first fluorescence.
  • a plurality of first fluorescent particles, and a plurality of first fluorescent particles which are bonded to the transparent binder and are different from the plurality of first phosphor particles and the plurality of second phosphor particles.
  • the body particles include (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ⁇ x1 ⁇ 1) in which Ce is activated, and the plurality of second phosphor particles are activated in Ce (La 1-x2, Y x2) 3 Si 6 N 11 (0 ⁇ x2 ⁇ 1, x1 ⁇ x ) Including the.
  • the wavelength conversion member includes the first phosphor particles and the second phosphor particles that emit fluorescence having different spectra, it is possible to adjust the mixing ratio of each particle to more freely emit light.
  • the chromaticity coordinates can be adjusted.
  • the scattering particles may include a metal oxide or nitride.
  • the median diameters of the plurality of first phosphor particles and the plurality of second phosphor particles may be 2 ⁇ m or more and 30 ⁇ m or less.
  • the median diameters of the plurality of first phosphor particles and the plurality of second phosphor particles may be 3 ⁇ m or more and 9 ⁇ m or less.
  • one aspect of the light emitting device is a light emitting device including the wavelength conversion element and an excitation light source that irradiates the wavelength conversion element with excitation light, and the luminance of light emitted from the light emission apparatus is 1000 cd / mm 2 or more.
  • one mode of the light emitting device is a light emitting device including the wavelength conversion element and an excitation light source that irradiates the wavelength conversion element with excitation light, and the excitation light is on the second top side.
  • the wavelength conversion member wavelength-converts the excitation light.
  • one aspect of the illumination device may include the light-emitting device and a light projecting member that emits projection light when incident light is emitted from the light-emitting device.
  • the excitation light is a straight line orthogonal to the optical axis of the excitation light at a position where the excitation light is incident on the wavelength conversion member, and includes a straight line parallel to the support surface,
  • the projection light may be emitted from the plane toward the excitation light source with respect to a plane perpendicular to the support surface.
  • a wavelength conversion element that can sufficiently convert excitation light into fluorescence and that has increased mechanical strength, and a light-emitting device and an illumination apparatus that include the wavelength conversion element.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the wavelength conversion element of the first embodiment.
  • FIG. 2 is a diagram illustrating the shape of the support surface of the wavelength conversion element according to Embodiment 1 in a top view.
  • FIG. 3 is a photograph of a cross section of the wavelength conversion element according to the first embodiment observed with a scanning electron microscope.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the lighting apparatus according to Embodiment 1.
  • FIG. 5 is an enlarged view of the vicinity of the wavelength conversion element of the light emitting device according to the first embodiment.
  • FIG. 6 is a diagram illustrating optical characteristics of the wavelength conversion element according to the first embodiment.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the wavelength conversion element of the first embodiment.
  • FIG. 2 is a diagram illustrating the shape of the support surface of the wavelength conversion element according to Embodiment 1 in a top view.
  • FIG. 3 is a photograph of a cross section of the wavelength conversion
  • FIG. 7 is a graph showing the measurement result of the luminance of the emitted light emitted from the wavelength conversion member according to the first embodiment.
  • FIG. 8 is a graph showing measurement results of each surface shape when the wavelength conversion member of the wavelength conversion element according to Embodiment 1 is manufactured by three different methods.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the first modification of the first embodiment.
  • FIG. 10 is a schematic diagram illustrating the configuration of the light emitting device and the lighting device according to the second modification of the first embodiment.
  • FIG. 11 is a top view showing the configuration of the wavelength conversion element according to the second modification of the first embodiment.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the second embodiment.
  • FIG. 13 is a photograph of a cross section of the wavelength conversion element according to the second embodiment observed with a scanning electron microscope.
  • FIG. 14 is a graph showing a spectrum of emitted light when the wavelength conversion element according to Embodiment 2 is irradiated with excitation light having a peak wavelength of 447 nm.
  • FIG. 15 is a graph showing changes in chromaticity coordinates of emitted light when the ratio between the first phosphor particles and the scattering particles is changed in the wavelength conversion element according to the second embodiment.
  • FIG. 16 is a graph showing the results of measuring the peak wavelength dependence of the excitation light in the chromaticity coordinates of the emitted light in the wavelength conversion element according to the second embodiment.
  • FIG. 17 is a diagram illustrating a refractive index and a thermal conductivity of a material that can constitute the wavelength conversion member.
  • 18 shows the temperature of the quantum efficiency of the La 3 Si 6 N 11 : Ce phosphor used in the wavelength conversion member according to Embodiment 3 and the Y 3 Al 5 O 12 : Ce phosphor used in Embodiment 1.
  • FIG. 19 is a diagram showing the characteristics of a light emitting device equipped with the wavelength conversion element according to the third embodiment.
  • FIG. 20 is a graph showing the results of measuring the luminance distribution of the light emitting region on the phosphor surface when the drive current of the semiconductor light emitting device of the light emitting device according to Embodiment 3 is 2.3 amperes.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the fourth embodiment.
  • FIG. 22 is a graph showing the spectral characteristics of the emitted light of the light emitting device using the wavelength conversion element according to the fourth embodiment.
  • FIG. 23 is a diagram illustrating a change in chromaticity coordinates of emitted light when the configuration of the wavelength conversion element is changed in the light emitting device including the wavelength conversion element according to the fourth embodiment.
  • FIG. 24A is a schematic cross-sectional view showing the configuration of the lighting apparatus according to Embodiment 5.
  • FIG. 24B is an enlarged cross-sectional view of the wavelength conversion element according to Embodiment 5 and its surroundings.
  • FIG. 24C is a schematic perspective view illustrating the illumination apparatus according to Embodiment 5 and a projection image projected from the illumination apparatus.
  • FIG. 24D is a photograph showing the shape of the wavelength conversion member according to Embodiment 5.
  • FIG. 24E is a graph showing a first measurement result of the film thickness of the wavelength conversion element according to Embodiment 5.
  • FIG. 24F is a graph showing a second measurement result of the film thickness of the wavelength conversion element according to the fifth embodiment.
  • FIG. 24G is a graph showing a third measurement result of the film thickness of the wavelength conversion element according to Embodiment 5.
  • FIG. 24H is a graph showing a color distribution in the light emitting region of the wavelength conversion element according to the fifth embodiment.
  • FIG. 25A is a schematic cross-sectional view showing the irradiation direction of the wavelength conversion element and the excitation light in the light emitting device according to Embodiment 6.
  • FIG. 25B is a graph showing a luminance distribution of the wavelength conversion element of the light-emitting device according to Embodiment 6.
  • FIG. 25C is a table showing an outline of experimental results of the light-emitting device according to Embodiment 6.
  • FIG. 26 is a diagram illustrating a configuration of a conventional light emitting device.
  • the term “upward” does not indicate the upward direction (vertically upward) in absolute space recognition, but is a term defined by a relative positional relationship based on the stacking order in the stacking configuration.
  • the term “above” means not only when two components are spaced apart from each other and another component is present between the two components, but the two components are in close contact with each other. It is also applied to the case where two components are in contact with each other.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1 according to the present embodiment.
  • the wavelength conversion element 1 according to the present embodiment is an element including a support member 2 having a support surface 2a and a wavelength conversion member 40 disposed above the support surface 2a.
  • the support member 2 is a member that supports the wavelength conversion member 40.
  • the support member 2 has a plate shape and supports the wavelength conversion member 40 via the reflection member 3 disposed on the planar support surface 2a.
  • the support member 2 functions as a heat sink that dissipates heat generated by the wavelength conversion member 40.
  • the wavelength conversion member 40 includes a plurality of first phosphor particles 41 that absorb the excitation light 84 and emit fluorescence, and a transparent binder 42 that binds the plurality of first phosphor particles 41.
  • the wavelength conversion member 40 has a joint surface 7 located on the support surface 2a side and a radiation surface 6 located on the opposite side of the support surface.
  • the radiation surface 6 is opposed to the bonding surface 7 and includes the radiation surface 6 on which the excitation light 84 is incident and the emission light 95 is emitted.
  • a region facing the bonding surface 7 is an arrangement region 2d where the wavelength conversion member 40 is arranged. In the present embodiment, the arrangement region 2d is a plane.
  • the outgoing light 95 including the first outgoing light 85 and the second outgoing light 91 is emitted from the radiation surface 6 of the wavelength conversion member 40.
  • the first outgoing light 85 is scattered excitation light 84.
  • the second emitted light 91 is fluorescence obtained by converting the wavelength of the excitation light 84.
  • the radiation surface 6 of the wavelength conversion member 40 includes a plurality of minute convex portions 5a and a plurality of minute concave portions 5b.
  • the radiation surface 6 includes a peripheral region 6a including the peripheral edges E1 and E2 of the radiation surface 6, and a central region 6b surrounded by the peripheral region 6a. At least a part of the peripheral region 6a has a first apex P1 that protrudes from the central region 6b in a direction away from the support surface 2a.
  • the radiation surface 6 has a first inclined portion S1 that is inclined toward the support surface 2a from the first top P1 toward the central region 6b.
  • the radiating surface 6 is formed with a large number of microscopic irregularities microscopically, but when viewed macroscopically, the radiating surface 6 is inclined to the support surface 2a side from the first top P1 toward the central region 6b. It has 1 inclined part S1.
  • the wavelength conversion member 40 includes a plurality of first phosphor particles 41 made of the same material in the central region 6b and the first apex P1.
  • a plurality of minute convex portions 5a are formed on the radiation surface 6 in the first inclined portion S1.
  • the micro convex part 5a here is a convex part detected when a radiation surface 6 is microscopically seen.
  • the dimension of the minute projection 5a in the direction parallel to the support surface 2a is 50% or less of the film thickness of the wavelength conversion member 40.
  • the central region 6b includes a flat portion F1 whose inclination is gentler than that of the first inclined portion S1.
  • the flat portion F1 is a part of the central region 6b, but the entire central region 6b may be the flat portion F1.
  • the peripheral region 6a may include the flat portion F1.
  • the flat portion F1 referred to here may be formed with minute irregularities, as long as it is macroscopically flat.
  • the flat part F ⁇ b> 1 may include unevenness whose dimension in the direction parallel to the support surface 2 a is about 50% or less of the film thickness of the wavelength conversion member 40.
  • the peripheral region 6a is disposed at a position opposite to the first top portion P1 with respect to the central region 6b, and protrudes from the central region 6b in a direction away from the support surface 2a. It has a top P2.
  • the radiation surface 6 has a second inclined portion S2 that is inclined toward the support surface 2a from the second top portion P2 toward the central region 6b.
  • the film thickness of the wavelength conversion member 40 is thicker than the central region 6b in the vicinity of the first top portion P1 and the second top portion P2 of the peripheral region 6a. That is, a concave shape is formed from the first top portion P1 to the second top portion P2.
  • the film thickness d e is the first apex P1 of the wavelength conversion member 40, larger than the thickness d c in the central region 6b (d e> d c) .
  • the height from the support surface 2a to the first top portion P1 is higher than the height from the support surface 2a to the second top portion P2.
  • the excitation light 84 is incident on the central region 6 b of the wavelength conversion member 40 obliquely. Therefore, as in the present embodiment, when the height from the support surface 2a to the first top P1 is higher than the height from the support surface 2a to the second top P2, the excitation light 84 is transmitted from the second top P2 side.
  • the excitation light 84 can be reduced from being blocked by the peripheral region 6 a of the wavelength conversion member 40. Therefore, it is possible to increase the proportion of the component incident on the central region 6b in the excitation light 84. That is, the utilization efficiency of the excitation light 84 can be increased.
  • the first apex P1 protruding from the central region 6b is formed in one peripheral region 6a (the peripheral region 6a on the right side in FIG. 1). It is formed.
  • the radiating surface 6 has a third inclined portion S3 that sharply inclines toward the support surface 2a from the first top portion P1 toward the peripheral edge E1 of the radiating surface 6.
  • a second apex P2 is formed in the same manner.
  • the radiating surface 6 has a fourth inclined portion S4 that sharply inclines toward the support surface 2a from the second top portion P2 toward the peripheral edge E2 of the radiating surface 6.
  • the reflection member 3 is a member that is disposed between the wavelength conversion member 40 and the support member 2 and reflects at least one of excitation light and fluorescence.
  • the reflection member 3 is a reflection film formed on the support surface 2 a of the support member 2.
  • excitation light 84 emitted from an excitation light source (not shown) is incident on the radiation surface 6 of the wavelength conversion member 40.
  • laser light is used as the excitation light 84.
  • the excitation light 84 is light having a high light density in which light having strong light intensity is converged in a predetermined small region.
  • most of the excitation light 84 incident on the wavelength conversion element 1 is incident on the excitation region 150 that is a part of the central region 6 b of the radiation surface 6.
  • the excitation light 84 incident on the excitation region 150 is incident on the first phosphor particles 41 or the transparent binder 42 of the wavelength conversion member 40.
  • there are interfaces of media having different refractive indexes that is, an interface between air and the wavelength conversion member 40 and an interface between the first phosphor particles 41 and the transparent binder 42. Exists.
  • the excitation light 84 incident on the wavelength conversion member 40 is irregularly reflected or multiple-reflected inside and on the radiation surface 6 of the wavelength conversion member 40, and a part of the excitation light 84 is the first outgoing light 85 (shown in FIG. 1).
  • the light is emitted from the wavelength conversion member 40 as a solid line arrow).
  • the first outgoing light 85 is irregularly reflected or multiply reflected by the radiation surface 6 of the wavelength converting member 40 and the interface existing inside. Therefore, the directivity of the excitation light 84 made of laser light is reduced in the first outgoing light 85. Therefore, the wavelength conversion element 1 can radiate the first outgoing light 85 as light whose outgoing direction is omnidirectional. That is, in the wavelength conversion element 1 according to the present embodiment, a sufficient scattering action can be ensured.
  • a part of the excitation light 84 is absorbed by the first phosphor particles 41 and is emitted as wavelength-converted fluorescence.
  • This fluorescent light is irregularly reflected or multiple-reflected directly or on the interface between the first phosphor particles 41 and the transparent binder 42, and then the second emitted light 91 (see FIG. 1) from the radiation surface 6 of the wavelength conversion member 40. Radiated as a dashed arrow).
  • the outgoing light 95 which is a mixed light in which the first outgoing light 85 and the second outgoing light 91 are mixed is emitted.
  • the region where the emitted light 95 is emitted is from the light emitting region 151 that is larger than the excitation region 150 because both the first emitted light 85 and the second emitted light 91 are multiple-reflected within the wavelength conversion member 40. Emitted.
  • the reflection member 3 is disposed on the support surface 2 a of the support member 2, and the wavelength conversion member 40 is disposed on the surface of the reflection member 3.
  • the reflection member 3 includes a first reflection film 3b mainly made of metal, a second reflection film 3c mainly made of a dielectric multilayer film, and an adhesion layer 3a for closely attaching the support member 2 and the first reflection film 3b. including.
  • the wavelength conversion member 40 includes a plurality of first phosphor particles 41 and a transparent binder 42 that bonds the plurality of first phosphor particles 41.
  • the plurality of first phosphor particles 41 may be dispersed in the transparent binder 42.
  • the wavelength of the excitation light is, if it is 490nm or less of blue light above 420 nm, cerium (Ce) is activated (Y x Gd 1-x) 3 (Al y Ga 1-y ) Yttrium-aluminum-garnet (YAG) -based phosphors such as 5 O 12 (0.5 ⁇ x ⁇ 1, 0.5 ⁇ y ⁇ 1) can be used.
  • the median diameter D50 of the 1st fluorescent substance particle 41 contained in a wavelength conversion member is 2 micrometers or more and 30 micrometers or less, for example.
  • the film thickness of the wavelength conversion member 40 is 2 micrometers or more and 50 micrometers or less in the excitation area
  • the first phosphor particles 41 As other materials constituting the first phosphor particles 41, europium (Eu) activated ⁇ -SiAlON, Eu activated (Ba, Sr) Si 2 O 2 N 2, etc., depending on the wavelength of light emitted from the phosphor. Can be used. At this time, when the first phosphor particles 41 convert the excitation light 84 into the second emitted light 91, the heat generated in the first phosphor particles 41 is quickly exhausted to the support member 2; It is composed of a material having a high rate, for example, a material having 5 W / mK or more.
  • the transparent binder 42 may be formed of a transparent material having a large refractive index difference from the first phosphor particles 41. Thereby, the light scattering effect at the interface between the first phosphor particles 41 and the transparent binder 42 can be enhanced.
  • the material for forming the transparent binder 42 is, for example, a transparent material mainly composed of silicon (Si) and oxygen (O), and examples thereof include glass, silsesquioxane, and silicone.
  • the heat generated in the first phosphor particles 41 is quickly supplied to the support member 2.
  • the plurality of first phosphor particles 41 having a higher thermal conductivity than the transparent binder 42 are arranged close to each other.
  • a transparent binder 42 is filled between the plurality of first phosphor particles 41.
  • the area of the interface is preferably as large as possible.
  • the structure may be such that the adjacent first phosphor particles 41 are close to each other but separated by the wavelength of the excitation light 84 or more, and the transparent binder 42 is filled therebetween. At this time, there is no problem even if the adjacent first phosphor particles 41 are in contact with each other.
  • the material forming the support member 2 is a material having a high thermal conductivity and a small difference in thermal expansion coefficient from that of the transparent binder 42 in order to more efficiently absorb the heat generated in the wavelength conversion element 1. Also good.
  • the material forming the support member 2 may be a material having a thermal conductivity of 20 W / mK or more and a thermal expansion coefficient of 1 ⁇ 10 ⁇ 5 / K or less.
  • the support member 2 may include silicon (Si), silicon carbide (SiC), sapphire (Al 2 O 3 ), aluminum nitride (AlN), diamond, or the like.
  • the support member 2 may be a semiconductor crystal substrate or a ceramic substrate made of these materials.
  • the reflecting member 3 has a high reflectance in the spectrum of the excitation light 84 and the spectrum of the fluorescence generated in the first phosphor particles 41. That is, among the excitation light 84 incident on the wavelength conversion member 40 and the first emission light 85 and the second emission light 91 generated by the wavelength conversion member 40, the light that has reached the reflection member 3 is efficiently converted into the wavelength conversion member 40. It has a function of reflecting to the side. Therefore, the first reflective film 3b is specifically formed using a metal film such as aluminum (Al), silver (Ag), silver alloy, platinum (Pt). The second reflective film 3c is formed as a multilayer film using a dielectric film such as SiO 2 , Al 2 O 3 , ZrO 2 , or TiO 2 .
  • a dielectric film such as SiO 2 , Al 2 O 3 , ZrO 2 , or TiO 2 .
  • the support surface 2a of the support member 2 on which the reflecting member 3 is formed may be a flat and mirror-finished surface.
  • the reflecting member 3 formed on the support surface 2a can be formed of a flat film. Therefore, the 1st emitted light 85 and the 2nd emitted light 91 which reached
  • a wafer-like member as a base of the support member 2 is prepared.
  • a wafer that is a silicon substrate having a diameter of 3 inches and a thickness of 0.38 mm is prepared as the support member 2.
  • the silicon substrate the one on which the support surface 2a side is processed into a mirror surface and a flat surface by mechanochemical polishing is used.
  • the reflective member 3 is formed by sequentially forming the adhesion layer 3a, the first reflective film 3b, and the second reflective film 3c on the support surface 2a, which is one main surface of the support member 2, by an evaporation method or the like.
  • the reflecting member 3 includes, in order from the support member 2 side, an adhesion layer 3a made of Al 2 O 3 having a thickness of 127 nm and Ni having a thickness of 27 nm, and Ag having a thickness of 150 nm.
  • first reflecting film 3b and includes a second reflecting layer 3c having a thickness is Al 2 O 3 and the thickness of 75nm is SiO 2 and the thickness of 25nm made of TiO 2 Metropolitan of 28nm.
  • the second reflective film 3c has both functions of a surface protective layer for protecting the first reflective film 3b and a reflective layer for suppressing light absorption in the first reflective film 3b made of metal. .
  • the adhesion layer 3 a suppresses the reflection member 3 from being peeled from the support member 2 in a dicing process when a wafer described later is divided into individual wavelength conversion elements 1.
  • a screen mesh printing mask in which a plurality of predetermined openings are formed is disposed above the support surface 2 a of the support member 2.
  • the openings are two-dimensionally formed at a pitch of 2 mm to 10 mm in the plane.
  • a 3.5 mm pitch product and a 5 mm pitch product were produced.
  • the screen mesh printing mask is formed by weaving metal fibers such as stainless steel or synthetic fibers such as polyester, for example.
  • the shape of the wavelength conversion member 40 can be freely formed by using a shape that matches the shape of the desired wavelength conversion member 40 as the shape of the opening. Further, the thickness of the screen mesh printing mask can be set according to the desired film thickness of the wavelength conversion member 40 of the wavelength conversion element 1.
  • a phosphor paste in which the first phosphor particles 41 are mixed with the raw material constituting the transparent binder 42 dissolved in an organic solvent is produced.
  • the median diameter of the first phosphor particles 41 was changed as a parameter, and the phosphor paste was changed. Make it.
  • a transparent material whose main component is polymethylsilsesquioxane is used as the transparent binder 42.
  • the phosphor paste a material obtained by dispersing a plurality of the first phosphor particles 41 in a transparent binder in which silsesquioxane is dissolved in an organic solvent is used. At this time, an organic solvent having a low boiling point with respect to the temperature in the high temperature curing step described later is selected. Then, after the high temperature curing step, the mixing ratio is determined so that the ratio between the first phosphor particles 41 and the transparent binder 42 becomes a desired value. The amount of the organic solvent is determined so that the above-described phosphor paste has a desired viscosity.
  • the phosphor paste manufactured in the above process is injected into the opening of the screen mesh printing mask above the wafer. At this time, the phosphor paste is disposed so as to sufficiently fill the opening.
  • the printing mask is removed, and the wafer on which a plurality of phosphor pastes are formed in a predetermined pattern is heated in a high temperature furnace or the like, for example, at a temperature of about 200 ° C. for about 2 hours.
  • a high temperature furnace or the like for example, at a temperature of about 200 ° C. for about 2 hours.
  • the raw materials of the transparent binder in the phosphor paste are condensed, and a wafer-like wavelength conversion element in which the plurality of first phosphor particles 41 are fixed in the transparent binder 42 is formed.
  • the wavelength conversion element 1 manufactured in this way will be described with reference to FIG.
  • FIG. 2 is a diagram showing the shape of the support surface 2a of the wavelength conversion element 1 according to the present embodiment in a top view.
  • FIG. 2 includes a photograph (a) in a top view of a part of the wavelength conversion element 1 manufactured using the above manufacturing process, and an enlarged plan view of one wavelength conversion element 1 shown in the photograph (a). b).
  • the shapes of the wavelength conversion member 40 and the support member 2 in the wavelength conversion element 1 are schematically shown.
  • the frame shown with a broken line in a photograph (a) and a top view (b) shows the outline of the supporting member 2 after being separated into pieces so that it may mention later.
  • a plurality of wavelength conversion members 40 are formed on a wafer using a screen mesh printing mask in which circular openings having a diameter of 2.6 mm are formed at a pitch of 3.7 mm.
  • the wafer on which a plurality of wavelength conversion members 40 having a film thickness of 2 ⁇ m or more and 50 ⁇ m or less produced by the above process are fixed is divided by dicing. Specifically, it is divided at a pitch of 3.7 mm using a dicing blade having a blade width of 0.2 mm. At this time, since the divided portion having a width of 0.2 mm corresponding to the thickness of the dicing blade is cut by the dicing blade, the 3.5 mm square wavelength conversion element 1 as shown in the plan view (b) of FIG. 2 is manufactured.
  • the wavelength conversion element 1 in which the wavelength conversion member 40 having a film thickness of 2 ⁇ m or more and 50 ⁇ m or less is formed on the support member 2 by the above manufacturing method can be easily manufactured.
  • FIG. 3 is a photograph of a cross section of the wavelength conversion element 1 according to the present embodiment observed with a scanning electron microscope (SEM).
  • FIG. 3 shows a cross section taken along line III-III shown in FIG.
  • FIG. 3 shows a cross-sectional photograph (a) and an enlarged photograph (b) in which a part thereof is enlarged.
  • the enlarged photograph (b) is an enlarged photograph of the broken-line frame part of the cross-sectional photograph (a).
  • the embedding resin shown in FIG. 3 is a resin used for observation with a scanning electron microscope, and is not a component of the wavelength conversion element 1.
  • the peripheral portion of the support member 2 is exposed from the wavelength conversion member 40 in a top view of the support surface 2 a. That is, in the wavelength conversion element 1, the arrangement region of the wavelength conversion member 40 is formed to be smaller than the outer shape of the support member 2.
  • the wavelength conversion element 1 in this way, when the wavelength conversion element 1 is used as, for example, a component of a light emitting device, a region where the wavelength conversion member 40 around the wavelength conversion element 1 is not formed is formed by a collet or the like. By chucking and carrying, it can be easily fixed at a place where the wavelength conversion element 1 is disposed, such as a base of a light emitting device.
  • the wavelength conversion element 1 includes a support member 2 that is a silicon substrate, a reflection member 3 composed of a silver film, a dielectric multilayer film, and the like disposed on the support member 2, and a reflection member. 3 is provided with a wavelength conversion member 40 disposed on the surface 3.
  • the wavelength conversion member 40 includes a plurality of first phosphor particles 41 and a transparent binder 42 made of silsesquioxane. In the example shown in FIG. 3, the film thickness of the wavelength conversion member 40 was about 20 ⁇ m.
  • the first phosphor particles 41 are dispersed in the transparent binder 42, but the adjacent first phosphor particles 41 are close to each other.
  • the heat generated in the first phosphor particles 41 can be efficiently conducted to the support member 2 through the adjacent first phosphor particles 41. That is, the heat generated in the first phosphor particles 41 can be mainly conducted to the support member 2 through the first phosphor particles 41 having a higher thermal conductivity than the transparent binder 42.
  • a plurality of minute convex portions 5 a are formed on the surface (radiation surface 6) of the wavelength conversion member 40. At least a part of the plurality of minute protrusions 5 a is formed by a part of the plurality of first phosphor particles 41 protruding on the radiation surface 6. That is, the minute convex part 5a along the surface of the first phosphor particle 41 is formed.
  • a minute recess 5b is formed beside the minute protrusion 5a.
  • the excitation light 84 can be efficiently scattered.
  • gentle irregularities are formed at intervals of about 5 to 10 particles.
  • the period of this gentle unevenness that is, the interval between adjacent convex portions or the interval between adjacent concave portions is larger than 50% of the average film thickness of the concave and convex portions of the wavelength conversion member 40 and about 5 times or less.
  • the excitation light 84 can be scattered more efficiently by forming the rough irregularities on the surface of the wavelength conversion member in comparison with the minute irregularities.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the illumination device 201 according to the present embodiment.
  • the illumination device 201 includes a light emitting device 101 and a light projecting member 220.
  • the light projecting member 220 is an optical member that emits the projection light 96 when the emitted light 95 from the light emitting device 101 is incident thereon.
  • the light projecting member 220 is a curved mirror such as a parabolic mirror.
  • the light emitting device 101 mainly includes the above-described wavelength conversion element 1, the semiconductor light emitting device 110, and the condensing optical member 120.
  • the base 50 is a housing made of a metal such as an aluminum alloy.
  • the semiconductor light emitting device 110 is an excitation light source that irradiates the wavelength conversion element with excitation light.
  • the semiconductor light emitting device 110 is, for example, a TO-CAN type semiconductor laser, and is connected to the printed circuit board 160.
  • a semiconductor light emitting device 111 is mounted on the semiconductor light emitting device 110.
  • the semiconductor light emitting device 110 is inserted into an opening formed on the bottom surface of the base 50.
  • the emitted light 81 emitted from the semiconductor light emitting element 111 is emitted upward in FIG.
  • the condensing optical member 120 includes a lens 120a and a reflective optical element 120b having a reflective surface.
  • the lens 120 a and the reflective optical element 120 b are disposed above the semiconductor light emitting device 110.
  • the light emitting device 101 further includes a printed circuit board 160 on which a photodetector 130 is mounted.
  • the printed circuit board 160 is disposed on the bottom surface side of the base 50, and a connector 170 for connection to an external circuit is connected to the printed circuit board 160.
  • the semiconductor light emitting device 111 is a multimode laser having an optical waveguide width of 10 ⁇ m or more.
  • the reflective optical element 120b is, for example, a reflective mirror on which a plurality of concave mirror surfaces are formed. With this configuration, the outgoing light 81 emitted upward in FIG. 4 from the semiconductor light emitting element 111 becomes parallel light from the lens 120a and enters the reflective optical element 120b. The outgoing light 81 incident on the reflective optical element 120b is reflected downward by the concave mirror surface of the reflective optical element 120b in FIG.
  • the excitation light 84 irradiated to the wavelength conversion element 1 is partly converted by the wavelength conversion member 40 of the wavelength conversion element 1, and the first emission light 85 made of scattered light and the second emission made of fluorescence. It becomes the emitted light 95 comprised with the incident light 91, and is radiate
  • FIG. 1 the excitation light 84 irradiated to the wavelength conversion element 1 is partly converted by the wavelength conversion member 40 of the wavelength conversion element 1, and the first emission light 85 made of scattered light and the second emission made of fluorescence. It becomes the emitted light 95 comprised with the incident light 91, and is radiate
  • the emitted light 95 emitted from the light emitting device 101 is emitted from the illumination device 201 as projection light 96 that is substantially parallel light by the light projecting member 220.
  • the light emitting device 101 includes a connector 170.
  • the connector 170 is a connector that can be connected to an external circuit. As a result, electric power can be applied to the semiconductor light emitting device 110 and the printed circuit board 160 from the outside.
  • the light emitting device 101 further includes a photodetector 130 such as a photodiode.
  • the photodetector 130 is mounted on the printed circuit board 160. Thereby, the light from the wavelength conversion element 1 is received, and a detection signal indicating the light emission state of the light emitting device 101 can be output to the outside.
  • the translucent member 140 which is a cover glass, for example is arrange
  • the translucent member 140 is attached to a holder 53 formed of a metal such as aluminum, like the base 50, and is fixed so as to cover the wavelength conversion element 1 and the condensing optical member 120 fixed to the base 50. . Thereby, the condensing optical member 120 and the wavelength conversion element 1 which comprise the light-emitting device 101 can be protected.
  • the semiconductor light emitting device 110 and the condensing optical member 120 are disposed above the printed circuit board 160 used for electrical wiring, and obliquely above the wavelength conversion element 1 disposed below.
  • the excitation light 84 can be incident from the above. Therefore, the light emitting device 101 can be thinned.
  • the excitation light 84 is obliquely incident on the radiation surface 6 from the second apex P2 side, and the wavelength conversion member 40 converts the wavelength of the excitation light 84.
  • the excitation light 84 is incident in the direction from the second apex P2 side toward the first apex P1, so that the excitation light 84 can be reduced from being blocked by the peripheral region 6a of the wavelength conversion member 40. Therefore, it is possible to increase the proportion of the component incident on the central region 6b in the excitation light 84. That is, the utilization efficiency of the excitation light 84 can be increased.
  • the beam shape of the excitation light 84 is shaped using the reflective optical element 120b. With this configuration, the light intensity distribution of the excitation light 84 irradiated to the wavelength conversion element 1 can be made uniform.
  • the projection light 96 is emitted in a direction almost opposite to the direction in which the excitation light 84 enters the wavelength conversion member 40. In other words, it is a straight line perpendicular to the optical axis of the excitation light 84 at a position where the excitation light 84 is incident on the wavelength conversion member 40, and includes a straight line parallel to the support surface and perpendicular to the support surface 2a.
  • the projection light 96 is emitted from the plane PV toward the excitation light source (semiconductor light emitting device 110).
  • the light emitting device 101 emits light using the semiconductor light emitting device 110 which is a semiconductor laser device and the wavelength conversion element 1 including a phosphor. For this reason, light with a high brightness
  • FIG. 5 is an enlarged view of the vicinity of the wavelength conversion element 1 of the light emitting device 101 shown in FIG.
  • the wavelength conversion element 1 has a rectangular support member 2 in a top view of the support surface 2a. And the wavelength conversion member 40 is formed on the reflection member 3 of the support surface 2a.
  • the base 50 of the light emitting device 101 is formed with a storage portion 50a having a rectangular shape when viewed from the top and having a concave shape that is slightly larger than the outer shape of the support member 2. And the wavelength conversion element 1 is fixed to the bottom face of the storage part 50a.
  • the wavelength conversion element 1 is fixed to the base 50 with an adhesive member 55.
  • an adhesive resin mainly containing silicone resin, epoxy resin, or the like, or solder mainly containing AuSn, SnAgCu, or the like can be used.
  • the light shielding cover 51 is disposed on the upper part of the storage unit 50a in the base 50 in which the wavelength conversion element 1 is stored.
  • the light shielding cover 51 is formed with an opening for allowing the excitation light 84 and the outgoing light 95 to pass therethrough, and is formed of a black metal plate. Specifically, it is a stainless steel plate painted black, or an aluminum alloy plate whose surface is black anodized.
  • the light shielding cover 51 is disposed so as to cover at least a part of the peripheral region 6 a in the wavelength conversion member 40 of the wavelength conversion element 1.
  • the light shielding cover 51 is firmly fixed to the base 50 with screws 52, for example.
  • the excitation light 84 is applied to the region of the support surface 2a of the wavelength conversion element 1 where the wavelength conversion member 40 is not formed, and the generation of stray light is suppressed.
  • the emitted light 95 emitted from the wavelength conversion member 40 in the direction of the side wall 50b of the storage unit 50a is attenuated by multiple reflection in the space between the storage unit 50a and the light shielding cover 51. As a result, stray light can be suppressed from being included in the projection light 96 of the illumination device.
  • the wavelength conversion member 40 of the wavelength conversion element 1 has a concave shape in which the central region 6b is thin and the peripheral region 6a is thicker than the central region 6b. For this reason, when manufacturing the light-emitting device 101, it can suppress that the light shielding cover 51 contacts the light emission area
  • part or all of the space between the side surface of the support member 2 and the storage portion 50a may be filled with the adhesive member 55. Thereby, the heat transmitted from the wavelength conversion member 40 to the support member 2 can be more effectively conducted to the base 50.
  • the wavelength conversion element 1 according to the present embodiment and the light emitting device 101 using the wavelength conversion element 1 can emit outgoing light with high luminance.
  • Such a light emitting device 101 can realize a lighting device 201 with high luminous intensity when the lighting device 201 is configured using a small light projecting member 220. Therefore, the light emitting device 101 according to the present embodiment is suitable as a light source used for a vehicle headlamp or the like.
  • the experimental data was evaluated by mounting the wavelength conversion element 1 on the light emitting device 101 shown in FIG. About the brightness
  • the method for measuring the surface temperature is not limited to thermography, and may be other methods.
  • the light emitting device 101 includes a semiconductor light emitting device 110 for irradiating the wavelength conversion element 1 with excitation light 84.
  • the reflection optical element 120b for shaping the beam of the excitation light 84 irradiated to the wavelength conversion element 1 is also provided.
  • the wavelength conversion element 1 and the semiconductor light emitting device 110 are firmly fixed to the base 50 with a material having high thermal conductivity in order to dissipate generated heat to the outside.
  • the wavelength conversion element 1 fixed to the base 50 is irradiated with excitation light 84 obliquely with respect to the radiation surface 6 as shown in FIG.
  • the excitation light 84 is laser light having a peak wavelength of 430 nm or more and 470 nm or less. A part of the excitation light 84 irradiated on the radiation surface 6 is absorbed by the first phosphor particles 41 of the wavelength conversion member 40, converted into fluorescence that is light of another wavelength, and emitted from the radiation surface 6 in all directions.
  • the second emitted light 91 is emitted.
  • the light that is not absorbed by the first phosphor particles 41 is reflected on the surface or inside of the wavelength conversion member 40 and is emitted from the wavelength conversion member 40 to the first outgoing light 85. Is emitted as.
  • the light reflected inside the wavelength conversion member 40 is multiple-reflected by the plurality of first phosphor particles 41 and is emitted from the radiation surface 6 of the wavelength conversion member 40. For this reason, the light reflected inside the wavelength conversion member 40 is radiated as first outgoing light 85 radiated in all directions from the radiation surface 6 of the wavelength conversion member 40.
  • the light that is reflected near the radiation surface 6 of the wavelength conversion member 40 or near the radiation surface 6 and is emitted as the first outgoing light 85 is also a minute convex portion, a minute concave portion of the radiation surface 6 of the wavelength conversion member 40, Alternatively, the light is diffused and radiated at the interface between the first phosphor particles 41 and the transparent binder 42 existing in the vicinity of the radiation surface 6. For this reason, the light reflected at or near the radiation surface 6 and emitted as the first outgoing light 85 is also emitted from the radiation surface 6 of the wavelength conversion member 40 in all directions.
  • the wavelength conversion member 40 has a concave shape in which the thickness of the central region 6b is thinner than the maximum film thickness of the peripheral region 6a. And the center area
  • the flat portion F ⁇ b> 1 near the bottom surface of the concave shape may be set to be larger than the excitation region 150 of the excitation light 84 and the light emission region 151 of the emitted light 95. Thereby, the chromaticity distribution of the outgoing light 95 emitted from the wavelength conversion member 40 can be made uniform.
  • the wavelength conversion member 40 can emit the emitted light 95 made of white light with a small chromaticity distribution bias.
  • FIG. 6 is a diagram showing optical characteristics of the wavelength conversion element 1 according to the present embodiment.
  • the graph (a) in FIG. 6 is a diagram showing the temperature dependence of the quantum efficiency of Ce-activated Y 3 Al 5 O 12 phosphor particles used as the first phosphor particles 41.
  • the quantum efficiency of the Ce-activated Y 3 Al 5 O 12 phosphor particles decreases as the temperature increases, and when the temperature exceeds 150 ° C., the quantum efficiency starts to decrease rapidly.
  • the graph (b) of FIG. 6 irradiates the wavelength conversion member 40 with the excitation light 84, the excitation light scattered and reflected by the wavelength conversion member 40, and the excitation light 84 is absorbed and converted by the wavelength conversion member 40 and emitted. It is a figure for demonstrating the chromaticity coordinate of the emitted light 95 (white light) which is the mixed color light formed by mixing the fluorescence which is.
  • an excitation light source that emits outgoing light that is blue laser light with chromaticity coordinates of (0.161, 0.014) and fluorescence with chromaticity coordinates of (0.426, 0.547).
  • YAG phosphor particles
  • Graphs (c) and (e) in FIG. 6 show the excitation converted into a square shape with a light output of about 3.2 watts and an irradiation range of about 0.7 mm on the wavelength conversion element 1 according to the present embodiment. It is the result of measuring the relationship between the thickness of the light emitting region portion of the wavelength conversion member 40 and the peak temperature of the surface of the wavelength conversion member 40 when the light 84 is incident.
  • the graph (c) in FIG. 6 shows the result of comparison when the median diameter D50 of the first phosphor particles is 3 ⁇ m, 4 ⁇ m, 6 ⁇ m, and 9 ⁇ m.
  • the volume ratio between the first phosphor particles 41 and the transparent binder 42 was set to 45:65.
  • the measurement was performed by changing the volume ratio of the first phosphor particles 41 and the transparent binder 42 while setting the median diameter D50 of the first phosphor particles 41 to 6 ⁇ m. 38%, 45%, 55%, and 65% described in the figure are the ratios of the transparent binder 42 to the wavelength conversion member 40. That is, when the volume Vb of the transparent binder and the volume Vf of the first phosphor particles are used, the ratio is represented by Vb / (Vf + Vb).
  • the phosphor conversion efficiency decreases as the temperature of the phosphor particles increases. In particular, when the temperature is 150 ° C. or higher, the conversion efficiency rapidly decreases. In such a case, the amount of heat generated in the wavelength conversion member 40 increases abruptly, causing quenching in phosphor conversion, and the light emitting device hardly emits light. For example, when the external environment changes and the temperature of the phosphor particles increases significantly, the light emitting device may not emit light. In the graphs (c) and (e) of FIG. 6, when the thickness of the wavelength conversion member 40 is 35 ⁇ m or less, the peak temperature of the surface temperature of the wavelength conversion member 40 is 150 ° C. or less. Therefore, in the light emitting device 101 according to the present embodiment, the wavelength conversion member 40 may have a thickness of 35 ⁇ m or less so that the wavelength conversion element 1 can stably emit high-luminance white light.
  • the target of chromaticity coordinates of white light is (0.317, 0.327). Therefore, the target range is the range where the x value of the chromaticity coordinates is 0.30 or more and 0.35 or less, which is a correlated color temperature close to the white light of the target.
  • the x value of the chromaticity coordinates decreases as the thickness of the wavelength conversion member 40 decreases, and the x value increases as it increases in thickness. That is, as the thickness of the wavelength conversion member 40 becomes thinner, the white light becomes more bluish and as the thickness becomes thicker, the white light becomes more yellowish.
  • the excitation light 84 is radiated without being sufficiently converted into fluorescence by the wavelength conversion member 40, so that the ratio of the first outgoing light 85 in the outgoing light 95 is increased. This is because the ratio of the second emitted light 91 is higher.
  • the thickness of the wavelength conversion member 40 is increased, most of the excitation light 84 is converted into fluorescence by the wavelength conversion member 40, so that the ratio of the second emission light 91 in the emission light 95 is the first. This is because the ratio of the outgoing light 85 becomes higher.
  • the first outgoing light 85 emitted from the wavelength conversion member 40 is light that is emitted after the excitation light 84 is irregularly reflected or multiple-reflected at the interface between the first phosphor particles 41 and the transparent binder 42.
  • a part of the first outgoing light 85 includes the excitation light 84 that reaches the reflection member 3 and is reflected in the process of irregular reflection or multiple reflection.
  • graphs (d) and (f) of FIG. 6 when the thickness of the wavelength conversion member 40 exceeds 15 ⁇ m, the chromaticity x of the chromaticity coordinate of the emitted light 95 with respect to the film thickness of the wavelength conversion member 40 increases. The rate will be moderate. This is presumably because the ratio of the excitation light 84 in which the first outgoing light 85 does not reach the reflecting member 3 in the process of irregular reflection or multiple reflection becomes dominant.
  • the thickness of the wavelength conversion member 40 when the thickness of the wavelength conversion member 40 is smaller than 15 ⁇ m, the chromaticity x of the chromaticity coordinate of the outgoing light 95 is rapidly lowered as the thickness is reduced. This is because the excitation light 84 is emitted from the light emitting region 151 with almost no irregular reflection and multiple reflection inside the wavelength conversion member 40. Therefore, in order to stably adjust the chromaticity coordinates of the outgoing light 95, the thickness of the wavelength conversion member 40 may be 15 ⁇ m or more.
  • the range where the x value of the chromaticity coordinates is 0.30 or more and 0.35 or less is the target range.
  • the thickness of the wavelength conversion member 40 may be 15 ⁇ m or more.
  • the film thickness in the central region 6b of the wavelength conversion member 40 is in the range of 15 ⁇ m or more and 35 ⁇ m or less from the viewpoint of the surface temperature of the wavelength conversion member 40 and the viewpoint of the chromaticity of the emitted light 95. May be. Further, as shown in graphs (c) to (f) of FIG. 6, when the median diameter D50 of the first phosphor particles 41 is 3 ⁇ m or more and 9 ⁇ m or less, the film thickness of the wavelength conversion member 40 is 15 ⁇ m or more and 35 ⁇ m or less. Can be set by range.
  • the total volume (that is, volume ratio) of the first phosphor particles 41 can be set to 38% or more and 62% or less with respect to the volume of the wavelength conversion member 40.
  • the total cross-sectional area of the first phosphor particles 41 is about 40% to 80% with respect to the cross-sectional area of the wavelength conversion member 40.
  • FIG. 7 is a graph showing the measurement result of the luminance of the outgoing light 95 emitted from the wavelength conversion member 40 according to the present embodiment.
  • the graph (a) in FIG. 7 shows the result of measuring the relationship between the drive current applied to the semiconductor light emitting device 110 used for emitting the excitation light 84 and the luminance peak value in the emission region of the emitted light 95.
  • the graph (a) of FIG. 7 used the wavelength conversion member 40 with a film thickness of 42 micrometers together with the result of the light-emitting device using the wavelength conversion member 40 with a film thickness of 20 micrometers according to the present embodiment.
  • the result of the light-emitting device of the comparative example is shown.
  • the wavelength conversion element 1 is irradiated with excitation light 84 having a peak wavelength of 446 nm at an environmental temperature (Ta) of 25 ° C. and an optical output of about 3.2 watts at a drive current (I f ) of 2.3 A. did.
  • the luminance peak value is saturated at a driving current of about 2 amperes. That is, at a driving current of about 2 amperes or more, the luminance peak value hardly increases even if the driving current is increased.
  • the temperature of the first phosphor particles 41 of the wavelength conversion member 40 is increased along with the surface temperature of the wavelength conversion member 40. This is considered to be because the conversion efficiency of the first phosphor particles 41 is drastically decreased.
  • the luminance peak of the emitted light 95 increases as the driving current increases even when the driving current is 2 amperes or more, and a light emitting device exceeding the peak luminance of 1000 cd / mm 2 can be realized.
  • a graph (b) in FIG. 7 shows a luminance distribution in the light emitting region 151 of the wavelength conversion element 1 when the driving current is 2.3 amperes. As shown in the graph (b) of FIG. 7, the width of the light emitting region 151 is about 0.8 mm, and the luminance of the emitted light 95 is 1000 cd / mm 2 or more in the high luminance region of the luminance distribution.
  • the luminance is 1000 cd / mm 2 or more, and a flat region is obtained with a width of 0.2 mm or more. That is, a light emitting device having a flat luminance distribution and a high luminance light emitting region 151 can be realized.
  • FIG. 8 is a graph showing measurement results of each surface shape when the wavelength conversion member 40 of the wavelength conversion element 1 according to Embodiment 1 is manufactured by three different methods.
  • the graph (a1) in FIG. 8 shows that the opening of the screen mesh printing mask is a circular opening having a diameter of 2.6 mm, the thickness is 62 ⁇ m, and the volume ratio between the first phosphor particles 41 and the transparent binder 42 is 60%. : 40% phosphor paste printed.
  • the opening of the screen mesh printing mask is a circular opening having a diameter of 2.6 mm, the thickness is 41 ⁇ m, and the volume ratio between the first phosphor particles 41 and the transparent binder 42 is 60%. : 40% phosphor paste printed.
  • the graph (C1) in FIG. 8 shows that the opening of the screen mesh printing mask is a rectangular opening with a width of 3.4 mm, the thickness is 62 ⁇ m, and the volume ratio between the first phosphor particles 41 and the transparent binder 42 is 40%. : 60% printed.
  • Graphs (a2), (b2), and (c2) in FIG. 8 are graphs obtained by adding a scale to indicate the sizes of the graphs (a1), (b1), and (c1), respectively, and tracing them.
  • the mesh used here may be, for example, a mesh formed of a material not containing Fe.
  • a mesh formed of a material containing Fe fine powder of Fe is mixed in the wavelength conversion member, and a part of the first emitted light or the second emitted light is absorbed and the efficiency is lowered.
  • the film thickness of the central region of the wavelength conversion member 40 is 44 ⁇ m, and the wavelength conversion member 40 has a convex shape whose central region is thicker than the peripheral region.
  • the change in the film thickness of the wavelength conversion member 40 in the vicinity of the light emitting region is small, but since the film thickness is thick, the temperature of the wavelength conversion member 40 is increased, and it is difficult to increase the luminance of the light emitting device.
  • the wavelength conversion member 40 has a film thickness in the central region of about 20 ⁇ m or more and 24 ⁇ m or less, and the temperature increase of the wavelength conversion member 40 can be suppressed.
  • the film thickness may change in the range of 20 ⁇ m to 24 ⁇ m in the light emitting region, chromaticity unevenness in the light emitting region of the emitted light may occur.
  • the film thickness of the central region of the wavelength conversion member 40 is 18 ⁇ m, and the film thickness of the peripheral region is 24 ⁇ m.
  • the wavelength conversion member 40 has a concave shape. For this reason, while making the film thickness of the center area
  • the linear expansion coefficients of the support member 2 and the wavelength conversion member 40 are different.
  • the wavelength conversion member 40 is thicker, the stress applied to the wavelength conversion member 40 with the temperature change of the wavelength conversion element 1 is alleviated, and the wavelength conversion member is prevented from peeling off from the support member. be able to.
  • the wavelength conversion member 40 is thick in the vicinity of the central region that emits fluorescence and the wavelength conversion member 40 is thin. A peripheral part is provided.
  • the mechanical strength can be increased. Further, by increasing the film thickness of the peripheral region 6a, it is possible to increase the heat radiation efficiency from the central region 6b that is relatively high temperature to the peripheral region 6a.
  • the shape of the wavelength conversion member 40 a concave shape having a thin film thickness in the central region as shown in the graphs (c1) and (c2) of FIG. 8 is optimal. Further, in the wavelength conversion element 1 shown in the graphs (c1) and (c2) of FIG. 8, the film thickness of the wavelength conversion member 40 including the peripheral region is 35 ⁇ m or less. Therefore, the temperature rise of the wavelength conversion member 40 can be suppressed regardless of where the excitation light 84 is irradiated on the wavelength conversion member 40.
  • the wavelength conversion member is not affected even if the excitation light 84 is irradiated to a place other than the central region of the wavelength conversion member 40. Deterioration caused by a temperature increase of 40 can be suppressed.
  • the wavelength conversion member 40 as shown in the graphs (c1) and (c2) of FIG. 8 appropriately changes the volume ratio of the first phosphor particles 41 and the transparent binder 42 according to the dimensions of the wavelength conversion member. It can be realized by adjusting.
  • the scanning direction of the squeegee in the fluorescent paste printing process also affects the shape of the wavelength conversion member 40. For example, in the wavelength conversion member 40 shown in the graphs (b1) and (b2) in FIG. 8, the squeegee is scanned from the left side to the right side in the drawing in the fluorescent paste printing process for forming the wavelength conversion member 40. For this reason, it is considered that the film thickness at the right end of the wavelength conversion member 40 is the largest because the amount of the phosphor paste increases at the end of the print mask opening on the scanning end point side of the fluorescent paste printing process.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1B according to this modification.
  • the thickness d c of the central region 6b of the wavelength conversion member 40B is in the range of 15 ⁇ m or 35 ⁇ m or less in the same manner as the first embodiment.
  • this modification only a part of the film thickness of the peripheral region 6a of the wavelength conversion member 40B is thicker than the film thickness of the central region 6b.
  • the maximum film thickness d e2 of the right peripheral area 6a shown in FIG. 9 is larger than the film thickness d c of the center area (d e2 > d c ), and the maximum film thickness of the left peripheral area 6a is the film thickness is about the same as the thickness d c of the central region 6b.
  • the light shielding cover 51 is placed in the central region 6b (or flat) of the wavelength conversion member 40. Contact with the part F1) can be suppressed.
  • the wavelength conversion element 1B having such a configuration can be manufactured by adjusting the shape of the screen mesh printing mask and the scanning condition of the squeegee as shown in the graphs (b1) and (b2) of FIG. .
  • FIG. 10 is a schematic diagram illustrating the configuration of the light emitting device 101B and the illumination device 201B according to the present modification.
  • FIG. 11 is a top view showing the configuration of the wavelength conversion element 1C of the present modification.
  • the illumination device 201B mainly includes a light emitting device 101B that emits an emitted light 95 that is white light, a light projecting member 220, dichroic mirrors 314B and 314R, three image display elements 350B, 350G, and 350R, and a projection. A lens 365.
  • the illumination device 201B further includes reflection mirrors 331R, 332R, 331B, and 332B, and a dichroic prism 360.
  • the light projecting member 220 converts the emitted light 95 into projection light 96 that is parallel light.
  • the dichroic mirror 314B is a mirror that reflects only blue light in the projection light 96 that is white light and transmits green light and red light.
  • the dichroic mirror 314B is a mirror that reflects only red light and transmits green light among green light and red light transmitted through the dichroic mirror 314B.
  • Image display elements 350B, 350G, and 350R are optical elements that superimpose blue, green, and red video information, respectively.
  • each image display element includes a liquid crystal panel element.
  • the reflection mirrors 331R and 332R are mirrors that reflect red light.
  • the reflection mirrors 331B and 332B are mirrors that reflect blue light.
  • the dichroic prism 360 is an optical element that combines and outputs incident blue light, green light, and red light.
  • the projection lens 365 is a lens that projects the combined light 385 incident from the dichroic prism 360.
  • the light emitting device 101B mainly includes a light source unit 320, a condensing optical member 120, and a wavelength conversion element 1C.
  • the light source unit 320 includes a heat sink 325 and a plurality of excitation light sources arranged on the heat sink.
  • the light source unit 320 includes, for example, three semiconductor light emitting devices 110 as a plurality of excitation light sources, as shown in FIG.
  • Each of the three semiconductor light emitting devices 110 is, for example, a nitride semiconductor laser device having an optical output of 4 watts and a central wavelength of the emission wavelength in the vicinity of 445 nm.
  • the semiconductor light emitting device 110 is a device in which a nitride semiconductor laser element is mounted on a TO-CAN package.
  • the semiconductor light emitting device 110 further includes a lens 120a that is a collimating lens fixed to the TO-CAN package.
  • the emitted light emitted from the nitride semiconductor laser element of the semiconductor light emitting device 110 becomes collimated light by the lens 120a and enters the condenser lens 120c. Then, the excitation light 84 having a total optical output of 12 watts collected by the condenser lens 120c is directed to the wavelength conversion element 1C.
  • the condensing optical member 120 includes the lens 120a and the condensing lens 120c.
  • the wavelength conversion element 1 ⁇ / b> C is a phosphor wheel in this modification, and has a disk-shaped support member 2 made of an aluminum alloy plate, for example, as shown in FIG. 11.
  • a wavelength conversion member 40 ⁇ / b> C is formed in a ring shape in the outer peripheral region of the support surface 2 a of the support member 2.
  • first phosphor particles made of Ce-activated Y 3 (Al, Ga) 5 O 12 phosphor are mixed and fixed to a transparent binder 42 such as silsesquioxane.
  • a transparent binder 42 such as silsesquioxane.
  • the wavelength conversion member 40C of the wavelength conversion element 1C has a thickness of 15 ⁇ m or more and 35 ⁇ m or less in the excitation region 150 irradiated with the excitation light 84 as described in the first embodiment.
  • region of the wavelength conversion member 40C is thick compared with the film thickness of a center area
  • the peripheral region of the wavelength conversion member 40C includes a ring-shaped region including the inner peripheral edge 40i of the ring-shaped wavelength conversion member 40C shown in FIG. 11 and a ring-shaped region including the outer peripheral edge 40e.
  • the central region is a region between the peripheral region including the inner peripheral edge 40i and the peripheral region including the outer peripheral edge 40e.
  • the wavelength conversion member 40C may have a configuration in which the film thickness of the entire region is in the range of 15 ⁇ m to 35 ⁇ m, and the central region of the wavelength conversion member 40C is thinner than the peripheral region.
  • the rotation shaft 191 of the rotation mechanism 190 is connected to the center of the support member 2 of the wavelength conversion element 1C having such a configuration.
  • the wavelength conversion element 1C rotates as the rotation mechanism 190 rotates.
  • the excitation light 84 is condensed on the excitation region 150 of the wavelength conversion member 40C by the condenser lens 120c.
  • the excitation light 84 condensed on the wavelength conversion member 40C has the first emission light 85 which is the excitation light 84 scattered by the first phosphor particles 41 and the transparent binder 42 included in the wavelength conversion member 40C.
  • the light emitted from the light emitting device 101B is emitted as emitted light 95, which is white light mixed with the second emitted light 91, which is fluorescence converted in wavelength by the first phosphor particles 41.
  • the wavelength conversion element 1C prevents the rotation mechanism 190 from continuing to irradiate the excitation light 84 to a specific position of the wavelength conversion member 40C.
  • the temperature rise in the light emitting region can be suppressed, so that the emitted light 95 with higher luminance can be emitted.
  • the emitted light 95 becomes projection light 96 that is parallel light by the light projecting member 220 that is a condenser lens, and is converted into projection light 389 that is image light by the following operation inside the illumination device 201B.
  • the projection light 96 is separated by the dichroic mirror 314B into blue light 379B having a main wavelength band of 430 nm or more and 500 nm or less and yellow light 379Y as the remaining light.
  • the blue light 379B is reflected by the reflection mirrors 331B and 332B, passes through a polarizing element (not shown), becomes polarized light, and enters the image display element 350B.
  • the yellow light 379Y is separated by the dichroic mirror 314R into green light 379G having a main wavelength band of 500 nm to 580 nm and red light 379R having a main wavelength band of 580 nm to 660 nm.
  • the red light 379R is reflected by the reflection mirrors 331R and 332R, passes through a polarizing element (not shown), becomes polarized light, and enters the image display element 350R.
  • Green light 379G passes through a polarizing element (not shown) to become polarized light and enters the image display element 350G.
  • the blue light 379B, the green light 379G, and the red light 379R incident on the image display elements 350B, 350G, and 350R are respectively signal light on which video information is superimposed by each image display element and a polarization element (not shown) on the emission side.
  • the signal lights 380B, 380G, and 380R are applied to the dichroic prism 360 and combined to become the combined light 385. By passing the combined light 385 through a projection lens, it is possible to obtain projection light 389 that is image light.
  • the excitation light 84 emitted from the semiconductor light emitting device 110 and applied to the wavelength conversion member 40C has an optical output of 10 W or more and is applied to an area having an area of 1 mm 2 or less in the excitation region 150.
  • the light density of the excitation light in the excitation region 150 is set so that the light density peak is at least 17 W / mm 2 or more.
  • the film thickness of the wavelength conversion member 40C in the light emitting region 151 is in the range of 15 ⁇ m to 35 ⁇ m.
  • the excitation light 84 can be converted into the outgoing light 95 while suppressing a temperature rise, and therefore, for example, conversion can be performed with a conversion efficiency of 200 lm / W. Therefore, a light emitting device that emits emitted light 95 having a luminance peak of 1000 cd / mm 2 or more can be easily realized.
  • a light-emitting device that converts and emits light emitted from a semiconductor light-emitting device such as a semiconductor laser device using a fluorescent material
  • saturation of conversion efficiency in the fluorescent material is suppressed, and a high-luminance light-emitting device Can be provided.
  • the wavelength conversion element according to the present embodiment is different from the wavelength conversion element 1 according to Embodiment 1 in that the wavelength conversion member includes scattering particles other than the first phosphor particles.
  • the wavelength conversion element according to the present embodiment will be described with reference to the drawings with a focus on differences from the wavelength conversion element 1 according to the first embodiment.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1D according to the present embodiment.
  • the wavelength conversion member 40D of the wavelength conversion element 1D according to the present embodiment includes a plurality of scattering particles that are combined with the transparent binder 42 in addition to the first phosphor particles 41 and the transparent binder 42.
  • the median diameter D50 is less 30 ⁇ m or 2 [mu] m, for example (Y x Gd 1-x) 3 (Al y Ga 1-y) 5 O 12: Ce (0.
  • a phosphor such as 5 ⁇ x ⁇ 1, 0.5 ⁇ y ⁇ 1) is used.
  • the transparent binder 42 that binds the first phosphor particles 41 for example, a transparent material such as dimethyl silicone, silsesquioxane, or low melting point glass can be used.
  • silsesquioxane for example, polymethylsilsesquioxane can be used.
  • the scattering particles 43 non-light-emitting particles composed of a material with little mediation with respect to excitation light and fluorescence with a median diameter D50 of 0.3 ⁇ m to 18 ⁇ m are mixed.
  • the scattering particles 43 for example, a transparent material having a high thermal conductivity and a large refractive index difference from the transparent binder 42 is used.
  • the scattering particles may include a metal oxide or nitride.
  • the scattering particles 43 are formed of Al 2 O 3 , TiO 2 , ZrO 2 , ZnO, BN, or the like.
  • the volume ratio of the scattering particles 43 to the first phosphor particles 41 is, for example, 10 vol% or more and 90 vol% or less.
  • the thickness of the wavelength conversion member 40D as in the first embodiment, the thickness d c of the center region is thinner than the maximum thickness d e of the peripheral region, the wavelength conversion member 40D, the film thickness of the entire area 15 ⁇ m It is in the range of 35 ⁇ m or less.
  • a void 45 may be provided inside the wavelength conversion member 40D.
  • voids 45 are formed in the wavelength conversion member 40D and in the vicinity of the interface between the wavelength conversion member 40D and the reflection member 3.
  • the chromaticity coordinates of the outgoing light 95 can be freely designed according to the spectrum of the excitation light 84. Specifically, the chromaticity is changed for each light emitting device using the wavelength conversion element 1D by changing the ratio of the first phosphor particles 41 and the scattering particles 43 of the wavelength conversion member 40D according to the spectrum of the excitation light 84. Coordinates can be adjusted. That is, even if the variation of the spectrum of the excitation light 84 occurs in each semiconductor light emitting device due to the variation in the structure of the semiconductor light emitting device that emits the excitation light 84, the scattering included in the first phosphor particles 41 according to the spectrum of the excitation light 84. The chromaticity coordinates can be adjusted by adjusting the ratio of the particles.
  • the wavelength conversion element 1D of the present embodiment will be described in detail with reference to FIGS.
  • a Y 3 Al 5 O 12 : Ce phosphor having a median diameter D50 of 6 ⁇ m is used as the first phosphor particles 41.
  • Polymethylsilsesquioxane is used as the transparent binder 42 that fixes the first phosphor particles 41.
  • the scattering particles 43 which are non-light emitting particles Al 2 O 3 particles having a median diameter D50 of 3 ⁇ m are mixed.
  • Al 2 O 3 has a refractive index of 1.77 and a large refractive index difference from silsesquioxane having a refractive index of 1.5.
  • the thermal conductivity of Al 2 O 3 is as high as 30 W / mK. With this configuration, the light scattering property inside the wavelength conversion member 40D can be improved, and the thermal conductivity of the wavelength conversion member 40D can be increased.
  • a void 45 may be further formed inside the wavelength conversion member 40D.
  • Such a void 45 is formed by mixing the first phosphor particles 41 made of Y 3 Al 5 O 12 : Ce and the transparent binder 42 made of polysilsesquioxane to form a phosphor paste. Compared with the 1st fluorescent substance particle 41 and the scattering particle
  • the ratio Vb / (Vf + Vs) of the volume Vb of the transparent binder 42 that is silsesquioxane to the total volume (Vf + Vs) of the volume Vf of the first phosphor particles 41 and the volume Vs of the scattering particles 43. Is 40% or less.
  • a phosphor paste composed of a transparent binder 42 dissolved in an organic solvent, the first phosphor particles 41 and the scattering particles 43 is formed on the support member 2 and then subjected to high temperature annealing at about 200 ° C. As a result, the organic solvent in the paste is vaporized.
  • FIG. 13 is a photograph of a cross section of the wavelength conversion element 1D according to the present embodiment observed with a scanning electron microscope.
  • FIG. 3 shows a cross-sectional photograph (a) and an enlarged photograph (b) in which a part thereof is enlarged.
  • the enlarged photograph (b) is an enlarged photograph of the broken-line frame part of the cross-sectional photograph (a).
  • the reflection member 3 is formed on the support member 2 which is a silicon substrate, and the wavelength conversion member 40D is fixed thereon.
  • the film thickness of the wavelength conversion member 40D is 24 ⁇ m, and the first phosphor particles 41 and the scattering particles 43 are dispersed in the transparent binder 42 inside the wavelength conversion member 40D.
  • voids 45 are scattered in the inside of the wavelength conversion member 40 ⁇ / b> D and the interface with the reflection member 3.
  • the wavelength conversion member 40D in which the first phosphor particles 41 and the scattering particles 43 are dispersed in the transparent binder 42 and the voids 45 are scattered can be easily obtained. realizable.
  • the excitation light 84 that has entered the inside of the wavelength conversion member 40D can be more efficiently scattered and extracted from the wavelength conversion member 40D.
  • the excitation light is effectively reduced while reducing energy loss due to excitation light and fluorescence incident on the metal surface. , Can scatter fluorescence.
  • the wavelength conversion member 40D of the present embodiment includes scattering particles 43 that are non-light emitting particles. By changing the volume ratio of the scattering particles 43 in the wavelength conversion member 40D, the chromaticity coordinates of the emitted light 95 can be easily adjusted.
  • Semiconductor light-emitting devices which are semiconductor laser devices composed of nitride semiconductors, have slight individual differences in the wavelength of the emitted light. Therefore, in a light-emitting device using a semiconductor light-emitting device, there is an individual difference in the chromaticity of the emitted light. Can occur. Therefore, a method for adjusting the chromaticity of the emitted light by changing the ratio of the first phosphor particles 41 and the scattering particles 43 in the wavelength conversion member 40D mixed with the scattering particles 43 will be described with reference to FIGS. explain.
  • FIG. 14 is a graph showing a spectrum of the emitted light 95 when the wavelength conversion element 1D according to the present embodiment is irradiated with the excitation light 84 having a peak wavelength of 447 nm.
  • the first output light 85 has a sharp peak at a wavelength of 447 nm
  • the second output light 91 has a broad peak from a wavelength of 500 nm to 700 nm.
  • a spectrum 10 times the intensity of the second emitted light 91 is indicated by a broken line.
  • FIG. 15 is a graph showing changes in the chromaticity coordinates of the emitted light 95 when the ratio between the first phosphor particles 41 and the scattering particles 43 is changed in the wavelength conversion element 1 according to the present embodiment.
  • YAG Ce phosphor particles having a median diameter D50 of 6 ⁇ m were used as the first phosphor particles 41, and Al 2 O 3 particles having a median diameter D50 of 3 ⁇ m were used as the scattering particles.
  • Silsesquioxane was used as the transparent binder 42.
  • the ratio Vb / (Vf + Vs + Vb) of the volume Vb of the transparent binder 42 to the sum of the volume Vf of the first phosphor particles 41, the volume Vs of the scattering particles 43, and the volume Vb of the transparent binder 42 is set to 35%.
  • Six types of wavelength conversion elements 1D in which the volume ratio Vf / (Vf + Vs) between the first phosphor particles 41 and the scattering particles 43 is 76%, 73%, 69%, 65%, 61%, and 51%, respectively. was made.
  • each wavelength conversion element 1D was irradiated with laser light having a peak wavelength of 447 nm as excitation light 84, and the chromaticity coordinates of the emitted light 95 were plotted in FIG.
  • the continuous line shown in FIG. 15 shows the locus
  • the chromaticity coordinates x and y can be increased, that is, shifted to white light close to yellow. Further, by increasing the scattering particles 43, the chromaticity coordinates x and y can be reduced, that is, shifted to white light close to blue.
  • the volume ratio of the first phosphor particles 41 and the scattering particles 43 is set to 61%. Output light can be obtained. Therefore, the chromaticity coordinate of the emitted light can be easily set to the predetermined chromaticity coordinate by changing the volume ratio of the first phosphor particles 41 and the scattering particles 43.
  • the chromaticity coordinates of the emitted light from the light emitting device can be adjusted by adjusting the structure according to the peak wavelength of the excitation light 84. This adjustment method will be described with reference to FIG.
  • FIG. 16 is a graph showing the result of measuring the peak wavelength dependence of the excitation light of the chromaticity coordinates of the emitted light 95 in the wavelength conversion element 1D according to the present embodiment.
  • the volume ratio Vf / (Vf + Vs) between the first phosphor particles 41 and the scattering particles 43 is 76%, 73%, 69%, 65%, 61%, which is the same as that shown in FIG.
  • the change of the chromaticity coordinate y was plotted using those having the peak wavelengths of the excitation light 84 of 438 nm, 441 nm, 444 nm, 447 nm, and 451 nm.
  • the chromaticity y of the chromaticity coordinates is set to 0.327, even if the peak wavelength of the excitation light changes from about 440 nm to about 447 nm, the ratio of the scattering particles 43 is increased.
  • the predetermined chromaticity coordinates can be set.
  • the effect of scattering light can be enhanced by increasing the refractive index difference between the transparent binder, the first phosphor particles, and the scattering particles.
  • propagation of light inside the wavelength conversion member 40D can be suppressed.
  • the emitted light 95 can be emitted from the light emitting region 151 having substantially the same area as the excitation region 150.
  • the scattering of light is enhanced by forming a void 45 in the wavelength conversion member 40D.
  • the area of the light emitting region 151 can be made closer to the area of the excitation region 150.
  • a light emitting region 151 having a luminance of 200 cd / mm 2 or more exists over a width of about 0.7 mm. That is, the same light emitting region 151 as the excitation region 150 can be realized.
  • the luminance is 1000 cd / mm 2 or more and a uniform region can be realized over a width of 0.2 mm or more.
  • Embodiment 3 Next, the wavelength conversion element and the light emitting device according to Embodiment 3 will be described.
  • the wavelength conversion element and the light emitting device according to the present embodiment are different from the first and second embodiments in the material constituting the wavelength conversion member, and are identical in other points.
  • the wavelength conversion element and the light-emitting device according to the present embodiment will be described with reference to the drawings with a focus on differences from the first and second embodiments.
  • FIG. 17 is a diagram showing the refractive index and the thermal conductivity of the material that can constitute the wavelength conversion member 40.
  • FIG. 17 shows the refractive index for light having a wavelength of 550 nm.
  • the phosphor material a phosphor that absorbs blue light with a wavelength of about 430 nm to 470 nm and emits yellow fluorescence with a wavelength range of about 520 nm to 650 nm was examined.
  • FIG. 17 shows (Y x Gd 1-x ) 3 (Al y Ga 1-y ) 5 O 12 : Ce (0.5 ⁇ x ⁇ 1, 0.5 ⁇ y ⁇ 1) among these phosphors.
  • Y 3 Al 5 O 12 which is a central base material of the phosphor material represented by the formula (2) and a phosphor material represented by (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 ⁇ x ⁇ 1) La 3 Si 6 N 11 , which is a central base material, is shown.
  • materials used for the scattering particles 43 Al 2 O 3 , TiO 2 , ZnO and BN are shown. Silsesquioxane, dimethyl silicone and low melting point glass are shown as materials used as the transparent binder 42.
  • the material constituting the wavelength conversion member may be a material having high thermal conductivity. Further, in order to suppress the excitation light incident on the wavelength conversion member 40 from propagating in the lateral direction in the wavelength conversion member 40, the refractive index difference between the phosphor particles and the transparent binder, the scattering particles and the transparent binder. The refractive index difference between and may be large.
  • the phosphor material in terms Y 3 Al 5 O 12: Ce phosphor or La 3 Si 6 N 11: may be any of the Ce phosphor.
  • the scattering particles may be any of Al 2 O 3 , ZnO, and BN.
  • FIG. 18 shows the temperature of the quantum efficiency of the La 3 Si 6 N 11 : Ce phosphor used in the wavelength conversion member according to the present embodiment and the Y 3 Al 5 O 12 : Ce phosphor used in the first embodiment. It is a figure which shows dependency.
  • the quantum efficiency shown in FIG. 18 is the efficiency of irradiating the phosphor with an excitation wavelength of 450 nm and converting it to fluorescence.
  • FIG. 18 shows relative values as the quantum efficiency when the quantum efficiency when the environmental temperature (Ta) is 25 ° C. is 100%.
  • La 3 Si 6 N 11 : Ce has a lower rate of decrease in quantum efficiency at higher temperatures. Therefore, La 3 Si 6 N 11 : Ce used in the wavelength conversion member according to the present embodiment is more suitable as a material constituting the wavelength conversion member of the light-emitting device having a high light density of excitation light.
  • FIG. 19 is a diagram showing characteristics of a light emitting device equipped with the wavelength conversion element according to the present embodiment.
  • (La 0.84 Y 0.16 ) 3 Si 6 N 11 : Ce having a median diameter D50 of 9 ⁇ m is used as the first phosphor particles 41, and the median diameter D50 is 3 ⁇ m.
  • Al 2 O 3 particles were used as the scattering particles 43.
  • the composition ratio of the first phosphor particles, the scattering particles, and the transparent binder is a volume ratio in the step of forming the wavelength conversion member, and the ratio of the first phosphor particles: scattering particles: transparent binder is 18%: 22. %: It was set to be 60%.
  • the same structure as Embodiment 1 shown in FIG.4 and FIG.5 was used as a structure of the wavelength conversion element 1 and the light-emitting device 101 which were used when measuring the characteristic.
  • the film thickness of the wavelength conversion member 40 of the wavelength conversion element 1 was about 25 ⁇ m in the vicinity of the light emitting region 151.
  • FIG. 19 is a graph plotting the luminance peak value of the light emitting region 151 of the wavelength conversion member with respect to the current applied to the semiconductor light emitting device 110 in the light emitting device 101 described above.
  • the environmental temperature (Ta) of the light emitting device 101 was set to 85 ° C.
  • the light emitting device of the comparative example using the YAG: Ce phosphor as the first phosphor particles shown in FIG. 7 and the wavelength conversion member having a film thickness of 42 ⁇ m operates at an environmental temperature (Ta) of 85 ° C.
  • Ta environmental temperature
  • the YAG: Ce phosphor is used as the first phosphor particle
  • the characteristics when the light emitting device according to the first embodiment using the wavelength conversion member 40 with a film thickness of 20 ⁇ m is operated at an environmental temperature of 85 ° C. are also shown. It is shown.
  • the light-emitting device of Embodiment 1 has a high luminance increase rate with respect to an increase in driving current even at a driving current of 2 A or more, and the peak value of luminance reaches 800 cd / mm 2 or more.
  • the rate of increase in luminance decreased and was saturated at less than 900 cd / mm 2 . This is because the temperature of the wavelength conversion member 40 rises due to the heat that the wavelength conversion member 40 receives from the environment and the heat that is generated when the excitation light 84 is converted into the second emitted light 91, so that the quantum efficiency is drastically increased. It is thought that it falls.
  • the decrease in quantum efficiency with respect to the temperature rise is small (La x Y 1-x ) 3 Si 6 N 11 : Ce (0 ⁇ x ⁇ 1)
  • a phosphor is used. Therefore, it reached 800 cd / mm 2 or more at an environmental temperature of 85 ° C. and a driving current of 2 amperes, and further, there was no luminance saturation even at a driving current of more than that, reaching 900 cd / mm 2 or more at a driving current of 2.3 amperes.
  • FIG. 20 is a graph showing the result of measuring the luminance distribution of the light emitting region 151 on the phosphor surface when the driving current of the semiconductor light emitting device 110 of the light emitting device 101 is 2.3 amperes in the luminance measurement of FIG. is there.
  • the luminance distribution when the environmental temperature is 25 ° C. is also shown by a dotted line.
  • the luminance distribution at the environmental temperature of 85 ° C. is lower by about 20% than the luminance distribution at the environmental temperature of 25 ° C. This is mainly due to the temperature dependence of the semiconductor light emitting device and not due to a decrease in the quantum efficiency of the wavelength conversion element. Therefore, it is possible to further increase the luminance by appropriately controlling the temperature of the semiconductor light emitting device. .
  • a light-emitting device capable of high-intensity operation at high luminance with a luminance peak value of 900 cd / mm 2 or higher can be realized even at an environmental temperature of 85 ° C.
  • a light emitting device is most suitable for a lighting device that requires high temperature operation, for example, a vehicle headlamp.
  • Embodiment 4 Next, the wavelength conversion element according to Embodiment 4 will be described.
  • a conventional light emitting device such as the light emitting device described in Patent Document 1
  • the chromaticity coordinates of the emitted light are regulated by the type of phosphor contained in the phosphor layer, so the chromaticity coordinates of the emitted light are adjusted. Difficult to do. Therefore, in the present embodiment, a wavelength conversion element and a light-emitting device that can increase the degree of freedom in adjusting the chromaticity coordinates of emitted light will be described.
  • the wavelength conversion element according to the present embodiment is different from the wavelength conversion element according to Embodiment 3 in that the wavelength conversion member includes the second phosphor particles in addition to the first phosphor particles, and other points. Match in hereinafter, the wavelength conversion element according to the present embodiment will be described with reference to FIGS.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1F according to the present embodiment.
  • the wavelength conversion element 1F according to the present embodiment includes a support member 2 having a support surface 2a and a wavelength conversion member 40F arranged above the support surface 2a, and the wavelength conversion member 40F. Includes a plurality of first phosphor particles 41 that generate first fluorescence and a plurality of second phosphor particles 44 that generate second fluorescence having a spectrum different from that of the first fluorescence.
  • the wavelength conversion member 40F is further coupled to the transparent binder 42 that couples the plurality of first phosphor particles 41 and the plurality of second phosphor particles 44, the transparent binder 42, and the plurality of first fluorescence particles. It includes scattering particles 43 that are different from the body particles 41 and the plurality of second phosphor particles 44.
  • both the first phosphor particles 41 and the second phosphor particles 44 have the same basic composition formula with a median diameter D50 of 2 ⁇ m or more and 30 ⁇ m or less (that is, the same And phosphor materials having different composition ratios.
  • the median diameter D50 of the first phosphor particles 41 and the second phosphor particles 44 may be 3 ⁇ m or more and 9 ⁇ m or less.
  • a specific basic composition formula representing the first phosphor particles 41 and the second phosphor particles 44 is, for example, (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 ⁇ x ⁇ 1) is there.
  • the plurality of first phosphor particles 41 includes Ce-activated (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ⁇ x1 ⁇ 1)
  • the plurality of second phosphor particles 44 includes , And Ce activated (La 1-x2 , Y x2 ) 3 Si 6 N 11 (0 ⁇ x2 ⁇ 1, x1 ⁇ x2).
  • the wavelength conversion member 40F includes scattering particles 43 that are non-light emitting particles that do not absorb excitation light.
  • the scattering efficiency of the scattering particles 43 is higher when the median diameter D50 of the scattering particles 43 is closer to the median diameter of each phosphor particle. For this reason, the median diameter D50 of the scattering particles 43 is, for example, not less than 0.3 ⁇ m and not more than 18 ⁇ m.
  • the wavelength conversion member 40F includes the first phosphor particles 41, the scattering particles 43, and the second phosphor particles 44 having a composition different from that of the first phosphor particles 41. To disperse. According to such a wavelength conversion member 40F, the chromaticity coordinates of the emitted light can be adjusted more freely by adjusting the mixing ratio of each particle.
  • the wavelength conversion element 1F of the present embodiment in the wavelength conversion member 40F, La 3 Si 6 N 11 : Ce having a median diameter of 12 ⁇ m is used as the first phosphor particles 41, and the median diameter is 9 ⁇ m (La) as the second phosphor particles 44. 0.84 Y 0.16 ) 3 Si 6 N 11 : Ce was used.
  • the scattering particles 43 Al 2 O 3 having a median diameter D50 of 3 ⁇ m was used.
  • the transparent binder 42 for fixing the first phosphor particles 41, the second phosphor particles 44, and the scattering particles 43 a transparent material mainly containing polymethylsilsesquioxane was used.
  • the ratio Vf / (Vf + Vf2) between the volume Vf of the first phosphor particles 41 and the volume Vf2 of the second phosphor particles 44 is larger than 0% and smaller than 100%. Further, the ratio Vs / (Vf + Vf2 + Vs) of the volume Vs of the scattering particles 43 to the volume of the phosphor particles is 10% or more and 90% or less.
  • FIG. 22 is a graph showing the spectral characteristics of the emitted light of the light emitting device using the wavelength conversion element 1F according to the present embodiment.
  • the same basic composition formula (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 A phosphor satisfying ⁇ x ⁇ 1) is used.
  • the 2nd emitted light 91 which is the fluorescence which has the substantially same spectrum shape as each single spectrum shape of the 1st fluorescent substance particle 41 and the 2nd fluorescent substance particle 44 is radiate
  • the relationship between the drive current (I f ) and the luminance of the semiconductor light emitting device was also almost the same as the relationship in the light emitting device according to Embodiment 3 indicated by white circles in FIG.
  • FIG. 23 is a diagram illustrating a change in chromaticity coordinates of emitted light when the configuration of the wavelength conversion element 1F is changed in the light emitting device in which the wavelength conversion element 1F according to Embodiment 4 is mounted.
  • the chromaticity coordinates of the first outgoing light 85 that is the scattered light of the excitation light having the peak wavelength of 445 nm are denoted by reference numeral 85.
  • the chromaticity coordinates of fluorescence emitted from the first phosphor particles 41 composed of La 3 Si 6 N 11 : Ce are indicated by reference numeral 91a.
  • the film thickness in the light emitting region 151 of the wavelength conversion member was about 25 ⁇ m.
  • the chromaticity coordinates of the emitted light 95 were measured by mounting a wavelength conversion element on the light emitting device 101 shown in FIG.
  • the chromaticity coordinates 95a, 95b and 95c in the enlarged view on the right side of FIG. 23 are the chromaticity coordinates of the emitted light emitted from the wavelength conversion elements corresponding to the above (a), (b) and (c), respectively.
  • the chromaticity coordinates on the chromaticity diagram can be freely adjusted in the x-axis and y-axis directions by changing the ratio of the three types of particles of the first phosphor particles, the second phosphor particles, and the scattering particles. it can. That is, even when a large number of light emitting devices are produced, only three types of particles, the first phosphor particles, the second phosphor particles, and the scattering particles, should be prepared in order to obtain desired chromaticity coordinates.
  • a region A shown in FIG. 23 is a chromaticity region of a vehicle headlamp defined by Japanese Industrial Standards JIS D 5500.
  • first phosphor particles, second phosphor particles, and scattering particles are prepared, and their ratios are adjusted to produce a wavelength conversion member and a wavelength conversion element. Thereby, it is possible to freely obtain the chromaticity of the shaded area portion within the chromaticity area defined by the above-mentioned standard.
  • the scattering particles 43 included in the wavelength conversion member 40 also have an effect of improving the chromaticity uniformity of the emitted light in the light emitting region.
  • the presence of the scattering particles 43 makes it possible to mix the first fluorescence emitted from the first phosphor particles 41 and the second fluorescence emitted from the second phosphor particles 44 by scattering. Therefore, the emitted light with uniform chromaticity can be emitted from the light emitting region of the wavelength conversion member 40.
  • the median diameter D50 of the first phosphor particles 41 and the second phosphor particles 44 is (La x Y 1-x ) 3 Si 6 N 11 having a median diameter D50 of 2 ⁇ m to 30 ⁇ m.
  • (Y x Gd 1-x ) 3 (Al y Ga 1-y) 5 O 12: Ce (0.5 ⁇ x ⁇ 1, 0.5 ⁇ y ⁇ 1) or the like can be used.
  • a material other than silsesquioxane may be used as the transparent binder.
  • the transparent binder 42 by forming the transparent binder 42 with a material mainly composed of inorganic materials such as SiO 2 , Al 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , TiO 2 , AlN, BN, BaO, and the like.
  • the wavelength conversion element 1 having high reliability can be realized.
  • the scattering particles 43 included in the wavelength conversion member 40F are not limited to Al 2 O 3 but may be fine particles such as SiO 2 , TiO 2 , and ZnO depending on the use of the light emitting device.
  • BN boron nitride
  • diamond by mixing fine particles of boron nitride (BN) or diamond with high thermal conductivity, the light scattering property of the wavelength conversion member 40F is enhanced, and heat from the phosphor material is efficiently transferred to the support member. Can do.
  • Embodiment 5 a light emitting device and a lighting device according to Embodiment 5 will be described.
  • the light-emitting device and the illumination device according to the present embodiment irradiate the surface of the wavelength conversion member with excitation light using a movable mirror unit between the semiconductor light-emitting device 110 and the wavelength conversion element 1.
  • it is different from the light emitting device 101 and the illumination device 201 according to Embodiment 1.
  • the light-emitting device and the lighting device according to the present embodiment will be described with reference to the drawings with a focus on differences from the light-emitting device 101 and the lighting device 201 according to the first embodiment.
  • FIG. 24A is a schematic cross-sectional view showing the configuration of the illumination device 201C according to the present embodiment.
  • the illumination device 201C includes a light emitting device 101C, a light projecting member 220, and a fourth base 221.
  • the light emitting device 101 ⁇ / b> C is a light source that emits outgoing light 95 from the wavelength conversion element 1.
  • the illuminating device 201 ⁇ / b> C converts the emitted light 95 into the projection light 96 that is highly directional light by the light projecting member 220 and emits it.
  • the light emitting device 101C includes the wavelength conversion element 1, the semiconductor light emitting device 110, and the lens 120a as in the first embodiment.
  • the light emitting device 101C includes a movable mirror unit 520 in the optical path between the lens 120a and the wavelength conversion element 1.
  • the movable mirror unit 520 includes a movable mirror 520a that is a mirror that can change at least one of a position and a posture, and a holder 520b that holds the movable mirror 520a by a support unit (not shown).
  • the movable mirror 520a is fixed so that the mirror surface is parallel to the Dy1 direction inclined in the Dz direction with respect to the Dy direction shown in FIG. 24A.
  • the support portion is a support member that extends in the Dy1 direction in FIG. 24A, such as a torsion bar, and can tilt the movable mirror 520a in a direction that rotates around the Dy1 direction as a central axis.
  • the inclination angle of the movable mirror 520a with respect to the holder 520b can be changed by using an electrostatic force or electromagnetic force between the movable mirror 520a and the holder 520b.
  • the semiconductor light emitting device 110 is fixed to the second base 550, and the second base 550 is fixed to the base 50.
  • the movable mirror unit 520 is fixed to the third base 540, and the third base 540 is fixed to the base 50.
  • a printed circuit board 160 is disposed on the bottom surface side of the base 50. Further, the second printed circuit board 160b to which the semiconductor light emitting device 110 is connected, the wiring of the movable mirror unit 520, and the connector 170 for connection to an external circuit are connected to the printed circuit board 160.
  • the outgoing light emitted from the semiconductor light emitting device 110 is condensed by the lens 120 a to become outgoing light 83.
  • the outgoing light 83 is reflected by the movable mirror 520a and then irradiated to the wavelength conversion element 1 as the excitation light 84.
  • the excitation light 84 irradiated to the wavelength conversion element 1 is partly wavelength-converted to fluorescence by the wavelength conversion member 40 of the wavelength conversion element 1, and the second emission light 91 composed of fluorescence and the second light composed of the scattered light of the excitation light 84.
  • the emitted light 95 is composed of one emitted light 85 and is emitted from the light emitting device 101C.
  • the light emitting device 101C includes a connector 170.
  • the connector 170 is a connector that can be connected to an external circuit. Electric power can be applied from the outside to the printed circuit board 160 connected to the movable mirror unit 520 and the semiconductor light emitting device 110 via the connector 170.
  • the light emission pattern of the emitted light 95 emitted from the wavelength conversion element 1 can be set more freely.
  • the light projecting member 220 constituting the illumination device 201C is a lens in the present embodiment.
  • the light projecting member 220 is held on the fourth base 221 and attached to the base 50 on the wavelength conversion element 1 side of the light emitting device 101C.
  • FIG. 24B is an enlarged cross-sectional view of the wavelength conversion element 1 according to the present embodiment and its surroundings.
  • FIG. 24B also shows a top view of the wavelength conversion member 40 of the wavelength conversion element 1 according to the present embodiment. Note that the enlarged cross-sectional view of FIG. 24B corresponds to a cross section taken along line XXIVB-XXIVB shown in the top view of FIG. 24B.
  • the top view of FIG. 24B shows the irradiation region 84a of the excitation light 84 at a certain time.
  • the irradiation region 84a can be moved, that is, scanned in the Sx1 direction or the Sx2 direction by changing the tilt direction of the movable mirror 520a.
  • the wavelength conversion element 1 can emit light as an apparent light emitting region, which is the scanning region 84w that is the scanning range. .
  • the scanning region 84w In time, it is possible to set a region where the excitation light 84 is irradiated and a region where the excitation light 84 is not irradiated. That is, the non-irradiation region can be created by turning off the power applied to the semiconductor light emitting device 110 in an arbitrary tilt direction of the movable mirror 520a.
  • FIG. 24C is a schematic perspective view showing the illumination device 201C according to the present embodiment and a projection image 99 projected from the illumination device 201C.
  • the illumination device 201C can form a non-irradiation region 599 at an arbitrary position of the projection image 99 formed on the projection target 199.
  • the non-irradiation region 599 can be freely arranged in the projection range. For this reason, when the lighting device 201C of the present embodiment is used for a vehicle headlamp, it can be applied to an adaptive driving beam (Adaptive Driving Beam).
  • Adaptive Driving Beam Adaptive Driving Beam
  • FIG. 24D is a photograph showing the shape of the wavelength conversion member 40 according to the present embodiment. More specifically, in FIG. 24D, for example, the reflecting member 3 is formed on the support surface 2a of the wafer-like support member 2 which is a silicon substrate, and a plurality of the reflection members 3 are further formed thereon by using screen printing in the same manner as in the first embodiment. It is a photograph of a part of what formed the wavelength conversion member 40 of. FIG. 24D also shows a schematic top view in which the wavelength conversion member 40 is enlarged.
  • the wavelength conversion member 40 has a length in the horizontal direction (that is, the longitudinal direction) in FIG. (Direction) has a rectangular shape with a length of 3 mm, and is formed at a pitch of 15 mm in the horizontal direction and a pitch of 4 mm in the vertical direction. Therefore, after forming the wavelength conversion member 40, the wavelength conversion element 1 is manufactured by cutting the wafer-like support member 2 at a predetermined pitch.
  • FIGS. 24E to 24G are graphs showing the measurement results of the film thickness of the wavelength conversion element 1 according to the present embodiment.
  • 24E to 24G show the film thicknesses of the cross sections along the XXIVE-XXIVE line, XXIVF-XXIVF line, and XXIVG-XXIVG line shown in FIG. 24D, respectively.
  • the film thickness of the central region is about 20 ⁇ m as in the first embodiment, and the film thickness of the peripheral region is slightly thicker than that of the central region.
  • the wavelength conversion member 40 has a concave shape.
  • the film thickness of the wavelength converting member 40 is as constant as about 20 ⁇ m. Therefore, the wavelength conversion member 40 according to the present embodiment has a long shape in the top view of the support surface 2a, and the first top portion described in the first embodiment is the longitudinal direction of the wavelength conversion member 40. It is arrange
  • the film thickness of the wavelength conversion member 40 can be made constant with respect to the major axis direction of the scanning region 84w shown in FIG. 24B.
  • the minor axis direction of the scanning region 84w by making it concave, the chromaticity change is small, and the wavelength conversion member 40 is peeled from the support member 2 with respect to the temperature change of the wavelength conversion element. Can be suppressed.
  • FIG. 24H is a graph showing a simulation result of the color distribution in the light emitting region of the wavelength conversion element 1 based on the film thickness distribution of the wavelength conversion member 40 described above.
  • the horizontal axis indicates the position, and the vertical axis indicates the chromaticity x. As shown in FIG. 24H, it can be seen that a light emitting device having a small color distribution in a wide light emitting region can be realized.
  • FIG. 25A is a schematic cross-sectional view showing the irradiation direction of the wavelength conversion element 1F and the excitation light 84 in the light emitting device according to the present embodiment. As shown in FIG.
  • the excitation light 84 is irradiated from two directions, one diagonally upper side and the other diagonally upper side of the wavelength conversion element 1F according to the fourth embodiment.
  • the wavelength conversion element 1F is irradiated with excitation light from two directions along two optical paths that are symmetrical with respect to a plane that passes through the excitation region of the excitation light 84 and is orthogonal to the support surface 2a. .
  • FIG. 25B is a graph showing a luminance distribution in the light emitting region of the wavelength conversion element 1F according to the present embodiment.
  • FIG. 25C is a table showing an outline of experimental results of the light-emitting device according to this embodiment. 25B and 25C show experimental results when the wavelength conversion element 1F is irradiated with excitation light 84 having an optical output of 3.5 W from two directions. That is, in this experiment, the wavelength conversion element 1F was irradiated with excitation light 84 having a total light output of 7 W. At this time, the diameter of the light emitting region was adjusted to be about 1 mm.
  • the wavelength conversion member in the light emitting region having a peak luminance exceeding 1000 cd / mm 2 and 125 ° C. of 150 ° C. or lower A surface temperature of 40 could be realized.
  • FIG. 25C when a region having a luminance of 1 / e 2 or more of the peak luminance is set as the light emitting region size, the direction in the direction parallel to the paper surface of FIG. 25A (the direction parallel to the plane including the excitation light).
  • the width of the light emitting region was 0.9 mm, and the width of the light emitting region in the direction perpendicular to the paper surface of FIG.
  • 25A (the direction perpendicular to the plane containing the excitation light) was 1.1 mm. From this light emitting region, a light flux of 1000 lm or more could be emitted. This luminous flux is very high as a luminous flux from the minute light emitting region as described above.
  • the light emitting device that irradiates the wavelength conversion element 1F with a plurality of excitation lights, it is possible to radiate a large amount of emitted light while maintaining the surface temperature of the wavelength conversion element 1F below a predetermined temperature. it can.
  • the top formed in a plane parallel to the paper surface of FIG. 25A is formed in the direction perpendicular to the paper surface through the excitation region.
  • the top may be the first top, and the height of the second top from the support surface 2a may be lower than the height of the first top from the support surface 2a.
  • the height from the support surface 2a of the second top portion disposed in the plane including the excitation light 84 is set to the height of the first top support surface 2a disposed in the plane that passes through the excitation region and is perpendicular to the plane. You may make it lower than the height from. With this configuration, it is possible to suppress a part of the excitation light 84 from being kicked at the second top portion.
  • the scattering particle 43 may be any material that has little absorption with respect to excitation light and fluorescence and that scatters excitation light, and may be, for example, a white resin.
  • the wavelength conversion member 40F according to the fourth embodiment includes the shape characteristics of the wavelength conversion member 40 according to the first embodiment, but the configuration of the wavelength conversion member 40F according to the fourth embodiment is not limited to this. . That is, the wavelength conversion member 40F according to the fourth embodiment may not have the shape as the wavelength conversion member 40 according to the first embodiment. For example, the film thickness of the wavelength conversion member 40F may be substantially constant over the entire region.
  • the wavelength conversion element of the present disclosure suppresses the temperature increase of the wavelength conversion member with respect to excitation light having a high light density, and can easily adjust the chromaticity coordinates of the emitted light.
  • a light emitting device using an element can easily emit high-luminance outgoing light. Therefore, the wavelength conversion element of the present disclosure and the light emitting device using the same are useful in various illumination devices such as vehicles, ships, train headlights, projector light sources, spotlight light sources, and medical light sources.

Abstract

A wavelength converting element (1) comprises: a support member (2) having a support surface (2a); and a wavelength converting member (40) that is disposed above the support surface (2a). The wavelength converting member (40) has a radiating surface (6) that is located on the opposite side from the support surface (2a). The radiating surface (6) includes a peripheral region (6a) that includes the periphery of the radiating surface (6) and a central region (6b) that is surrounded by the peripheral region (6a). At least part of the peripheral region (6a) has a first apex (P1) that protrudes from the central region (6b) in a direction away from the support surface (2a). The radiating surface (6) has a first inclined section (S1) that is inclined toward the support surface (2a) in the direction from the first apex (P1) toward the central region (6b).

Description

波長変換素子、発光装置及び照明装置Wavelength conversion element, light emitting device, and illumination device
 本開示は、波長変換素子、並びに、これを備える発光装置及び照明装置に関する。 The present disclosure relates to a wavelength conversion element, and a light emitting device and an illumination device including the same.
 従来、励起光源及び波長変換素子を用いた発光装置が提案されている(例えば、特許文献1参照)。この種の発光装置として、特許文献1に開示された発光装置について、図25を用いて説明する。図25は、従来の発光装置の概略図である。 Conventionally, a light-emitting device using an excitation light source and a wavelength conversion element has been proposed (see, for example, Patent Document 1). As this type of light-emitting device, a light-emitting device disclosed in Patent Document 1 will be described with reference to FIG. FIG. 25 is a schematic view of a conventional light emitting device.
 特許文献1に開示された発光装置1063は、励起光源1070と、励起光集光レンズ1139と、蛍光体の層1131が取り付けられた波長変換素子(蛍光体ホイール1071)と導光装置1075とで構成される。 The light emitting device 1063 disclosed in Patent Document 1 includes an excitation light source 1070, an excitation light condensing lens 1139, a wavelength conversion element (phosphor wheel 1071) to which a phosphor layer 1131 is attached, and a light guide device 1075. Composed.
 蛍光体ホイール1071において、蛍光体の層1131は反射層1138を介して基材1130に取り付けられる。基材1130は、銅板などの伝熱部材で形成され、その上に銀蒸着などにより構成される反射層1138が設けられる。反射層1138は、励起光及び蛍光体で生成される光を反射する。 In the phosphor wheel 1071, the phosphor layer 1131 is attached to the substrate 1130 through the reflective layer 1138. The base material 1130 is formed of a heat transfer member such as a copper plate, and a reflective layer 1138 formed by silver vapor deposition or the like is provided thereon. The reflective layer 1138 reflects the excitation light and the light generated by the phosphor.
 励起光源1070から射出された励起光は、励起光集光レンズにより集光され、蛍光体の層1131に照射される。そして、励起光は、蛍光体の層1131の蛍光体によって吸収される。これに伴い蛍光体は蛍光を出射する。この蛍光は導光装置1075に導かれる。 The excitation light emitted from the excitation light source 1070 is condensed by the excitation light condensing lens and irradiated to the phosphor layer 1131. The excitation light is absorbed by the phosphor in the phosphor layer 1131. Accordingly, the phosphor emits fluorescence. This fluorescence is guided to the light guide device 1075.
 このとき、基材1130として銅板等の伝熱部材を用いることで、蛍光体の層で発した熱を伝熱部材全体に熱を分散して効果的に放熱を行うことが提案されている。 At this time, by using a heat transfer member such as a copper plate as the base material 1130, it has been proposed to dissipate heat effectively by distributing the heat generated in the phosphor layer to the entire heat transfer member.
特開2010-85740号公報JP 2010-85740 A
 特許文献1に開示されている励起光を蛍光体の層に照射して出射光を得る発光装置1063において、より高輝度な出射光を出射させるため、高光密度の光を波長変換素子に照射させた場合、蛍光体の層1131の励起光が照射される領域において、局所的に温度が上昇する。このような蛍光体の層の温度の上昇は、蛍光体の変換効率の急激な低下、及び、波長変換素子の破損の原因となる。 In the light emitting device 1063 that obtains the emitted light by irradiating the phosphor layer with the excitation light disclosed in Patent Document 1, in order to emit the emitted light with higher luminance, the light having a high light density is irradiated on the wavelength conversion element. In this case, the temperature rises locally in the region where the excitation light of the phosphor layer 1131 is irradiated. Such an increase in the temperature of the phosphor layer causes a rapid decrease in the conversion efficiency of the phosphor and damage to the wavelength conversion element.
 そこで本開示は、励起光を十分に蛍光に変換でき、かつ、機械的強度が高められた波長変換素子、並びに、当該波長変換素子を備える発光装置及び照明装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a wavelength conversion element that can sufficiently convert excitation light into fluorescence and that has increased mechanical strength, and a light-emitting device and an illumination apparatus that include the wavelength conversion element.
 上記課題を解決するために、本開示に係る波長変換素子の一態様は、支持面を有する支持部材と、前記支持面の上方に配置される波長変換部材とを備え、前記波長変換部材は、前記支持面の反対側に位置する放射面を有し、前記放射面は、前記放射面の周縁を含む周縁領域と、前記周縁領域に囲まれる中央領域とを含み、前記周縁領域の少なくとも一部は、前記支持面から遠ざかる向きに前記中央領域より突出している第1頂部を有し、前記放射面は、前記第1頂部から前記中央領域に向かって前記支持面側に傾斜している第1傾斜部を有する。 In order to solve the above problem, one aspect of the wavelength conversion element according to the present disclosure includes a support member having a support surface and a wavelength conversion member disposed above the support surface, and the wavelength conversion member includes: A radiation surface located on the opposite side of the support surface, the radiation surface including a peripheral region including a peripheral edge of the radial surface and a central region surrounded by the peripheral region, and at least a part of the peripheral region; Has a first apex protruding from the central region in a direction away from the support surface, and the radiation surface is inclined to the support surface side from the first apex toward the central region. It has an inclined part.
 このように、支持部材上に波長変換部材を固着させた波長変換素子において、支持部材と波長変換部材との線膨張係数が異なり得る。このような場合、波長変換部材の膜厚が厚い方が、波長変換素子の温度変化に伴って波長変換部材に加わる応力が緩和され、波長変換部材が支持部材から剥がれることを抑制することができる。 As described above, in the wavelength conversion element in which the wavelength conversion member is fixed on the support member, the linear expansion coefficients of the support member and the wavelength conversion member may be different. In such a case, when the wavelength conversion member is thicker, the stress applied to the wavelength conversion member along with the temperature change of the wavelength conversion element is relieved, and the wavelength conversion member can be prevented from peeling off from the support member. .
 一方、波長変換部材の膜厚が薄い方が波長変換部材の温度上昇を抑制できる。したがって、本開示の波長変換素子においては、波長変換部材の膜厚が薄い中央領域に励起光を照射すれば、波長変換部材の温度上昇を抑制することで励起光を十分に蛍光に変換できる。 On the other hand, the thinner the wavelength conversion member, the more the temperature increase of the wavelength conversion member can be suppressed. Therefore, in the wavelength conversion element of the present disclosure, if the central region where the film thickness of the wavelength conversion member is thin is irradiated with excitation light, the excitation light can be sufficiently converted to fluorescence by suppressing the temperature increase of the wavelength conversion member.
 また中央領域の周辺に波長変換部材の膜厚が厚い周辺部を設けることで、波長変換素子の環境温度変化や、波長変換素子を発光させたときの温度変化に対して、波長変換部材の支持部材からの剥がれなどを抑制することができる。つまり、本実施の形態に係る波長変換素子においては、機械的強度を高めることができる。 In addition, by providing a peripheral portion with a thick wavelength conversion member around the central region, the wavelength conversion member is supported against changes in the environmental temperature of the wavelength conversion element and temperature changes when the wavelength conversion element emits light. The peeling from the member can be suppressed. That is, in the wavelength conversion element according to the present embodiment, the mechanical strength can be increased.
 また、本開示に係る波長変換素子の一態様において、前記中央領域は、前記第1傾斜部より傾斜が緩やかな平坦部を含んでもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the central region may include a flat portion having a gentler inclination than the first inclined portion.
 また、本開示に係る波長変換素子の一態様において、前記第1傾斜部における前記放射面には、複数の微小凸部が形成されていてもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, a plurality of minute convex portions may be formed on the radiation surface of the first inclined portion.
 また、本開示に係る波長変換素子の一態様において、前記支持面の前記波長変換部材が配置される配置領域は平面であってもよい。 Moreover, in one aspect of the wavelength conversion element according to the present disclosure, the arrangement region in which the wavelength conversion member of the support surface is arranged may be a flat surface.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材の前記第1頂部における膜厚は、前記中央領域における膜厚よりも厚くてもよい。 Also, in one aspect of the wavelength conversion element according to the present disclosure, the film thickness at the first top of the wavelength conversion member may be larger than the film thickness at the central region.
 また、本開示に係る波長変換素子の一態様において、前記中央領域における前記波長変換部材の膜厚は、15μm以上35μm以下であってもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the film thickness of the wavelength conversion member in the central region may be 15 μm or more and 35 μm or less.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材は、前記中央領域と前記第1頂部とにおいて、同一材料からなる複数の第1蛍光体粒子を含んでもよい。 Moreover, in one aspect of the wavelength conversion element according to the present disclosure, the wavelength conversion member may include a plurality of first phosphor particles made of the same material in the central region and the first top portion.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材は、前記複数の第1蛍光体粒子を結合する透明結合材を含んでもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the wavelength conversion member may include a transparent binder that binds the plurality of first phosphor particles.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材は、前記透明結合材と結合する複数の散乱粒子を含んでもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the wavelength conversion member may include a plurality of scattering particles combined with the transparent binder.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材の体積に対して、前記複数の第1蛍光体粒子の総体積は35%以上62%以下であってもよい。 Moreover, in one aspect of the wavelength conversion element according to the present disclosure, the total volume of the plurality of first phosphor particles may be 35% or more and 62% or less with respect to the volume of the wavelength conversion member.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材の断面において、前記波長変換部材の断面積に対して、前記複数の第1蛍光体粒子の断面積の合計は40%以上80%以下であってもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, in the cross section of the wavelength conversion member, the total cross-sectional area of the plurality of first phosphor particles is 40% or more with respect to the cross-sectional area of the wavelength conversion member. It may be 80% or less.
 また、本開示に係る波長変換素子の一態様において、前記第1傾斜部における前記放射面には、複数の微小凸部が形成されており、前記複数の微小凸部の少なくとも一部は、前記複数の第1蛍光体粒子のうちの一部が前記放射面において突出することにより形成されていてもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, a plurality of minute convex portions are formed on the radiation surface of the first inclined portion, and at least a part of the plurality of minute convex portions is the A part of the plurality of first phosphor particles may be formed by projecting on the radiation surface.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材は、前記複数の第1蛍光体粒子とは異なる第2蛍光体粒子を含み、前記複数の第1蛍光体粒子は、Ceが賦活された(YGd1-x(AlGa1-y12(0.5≦x≦1、0.5≦y≦1)、又はCeが賦活された(La1-x1,Yx1Si11(0≦x1≦1)を含み、前記第2蛍光体粒子は、Ceが賦活された(La1-x2,Yx2Si11(0≦x2≦1、x1≠x2)を含んでもよい。 In the aspect of the wavelength conversion element according to the present disclosure, the wavelength conversion member includes second phosphor particles different from the plurality of first phosphor particles, and the plurality of first phosphor particles includes Ce. There were activated (Y x Gd 1-x) 3 (Al y Ga 1-y) 5 O 12 (0.5 ≦ x ≦ 1,0.5 ≦ y ≦ 1), or Ce have been activated (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ≦ x1 ≦ 1), and the second phosphor particles are activated with Ce (La 1-x2 , Y x2 ) 3 Si 6 N 11 ( 0 ≦ x2 ≦ 1, x1 ≠ x2) may be included.
 また、本開示に係る波長変換素子の一態様において、前記周縁領域は、前記第1頂部とは前記中央領域に対して反対側の位置に配置され、前記支持面から遠ざかる向きに前記中央領域よりも突出している第2頂部を有し、前記放射面は、前記第2頂部から前記中央領域に向かって前記支持面側に傾斜している第2傾斜部を有してもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the peripheral region is disposed at a position opposite to the central region with respect to the first top portion, and from the central region in a direction away from the support surface. And the radiating surface may have a second inclined portion inclined toward the support surface from the second top portion toward the central region.
 また、本開示に係る波長変換素子の一態様において、前記第1頂部は、前記第2頂部より前記支持面からの高さが高くてもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the first top portion may be higher in height from the support surface than the second top portion.
 また、本開示に係る波長変換素子の一態様において、前記支持面の上面視において、前記波長変換部材は、長尺状の形状を有し、前記第1頂部は、前記波長変換部材の長手方向に垂直な方向の端部に配置されてもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, in the top view of the support surface, the wavelength conversion member has an elongated shape, and the first top portion is a longitudinal direction of the wavelength conversion member. It may be arranged at an end portion in a direction perpendicular to.
 また、本開示に係る波長変換素子の一態様において、前記波長変換部材と前記支持部材との間に配置される反射部材をさらに備えてもよい。 Moreover, in one aspect of the wavelength conversion element according to the present disclosure, a reflection member disposed between the wavelength conversion member and the support member may be further provided.
 また、本開示に係る波長変換素子の一態様において、前記支持部材は、シリコン(Si)、シリコンカーバイド(SiC)、サファイア(Al)、窒化アルミニウム(AlN)又はダイヤモンドを含んでもよい。 In the aspect of the wavelength conversion element according to the present disclosure, the support member may include silicon (Si), silicon carbide (SiC), sapphire (Al 2 O 3 ), aluminum nitride (AlN), or diamond.
 また、本開示に係る波長変換素子の一態様は、支持面を有する支持部材と、前記支持面の上方に配置される波長変換部材とを備え、前記波長変換部材は、第1蛍光を発生する複数の第1蛍光体粒子と、前記第1蛍光と異なるスペクトルの第2蛍光を発生する複数の第2蛍光体粒子と、前記複数の第1蛍光体粒子と前記複数の第2蛍光体粒子とを結合する透明結合材と、前記透明結合材と結合し、かつ、前記複数の第1蛍光体粒子及び前記複数の第2蛍光体粒子とは異なる散乱粒子とを含み、前記複数の第1蛍光体粒子は、Ceが賦活された(La1-x1,Yx1Si11(0≦x1≦1)を含み、前記複数の第2蛍光体粒子は、Ceが賦活された(La1-x2,Yx2Si11(0≦x2≦1、x1≠x2)を含む。 Moreover, one mode of the wavelength conversion element according to the present disclosure includes a support member having a support surface and a wavelength conversion member disposed above the support surface, and the wavelength conversion member generates first fluorescence. A plurality of first phosphor particles, a plurality of second phosphor particles generating second fluorescence having a spectrum different from that of the first fluorescence, the plurality of first phosphor particles, and the plurality of second phosphor particles. A plurality of first fluorescent particles, and a plurality of first fluorescent particles which are bonded to the transparent binder and are different from the plurality of first phosphor particles and the plurality of second phosphor particles. The body particles include (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ≦ x1 ≦ 1) in which Ce is activated, and the plurality of second phosphor particles are activated in Ce (La 1-x2, Y x2) 3 Si 6 N 11 (0 ≦ x2 ≦ 1, x1 ≠ x ) Including the.
 このように、波長変換部材が、互いに異なるスペクトルの蛍光を出射する第1蛍光体粒子と第2蛍光体粒子とを含むため、各粒子の混合比を調整することで、より自由に出射光の色度座標を調整することができる。 Thus, since the wavelength conversion member includes the first phosphor particles and the second phosphor particles that emit fluorescence having different spectra, it is possible to adjust the mixing ratio of each particle to more freely emit light. The chromaticity coordinates can be adjusted.
 また、本開示に係る波長変換素子の一態様において、前記散乱粒子は、金属の酸化物又は窒化物を含んでもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the scattering particles may include a metal oxide or nitride.
 また、本開示に係る波長変換素子の一態様において、前記複数の第1蛍光体粒子及び前記複数の第2蛍光体粒子のメジアン径は、2μm以上30μm以下であってもよい。 Moreover, in one aspect of the wavelength conversion element according to the present disclosure, the median diameters of the plurality of first phosphor particles and the plurality of second phosphor particles may be 2 μm or more and 30 μm or less.
 また、本開示に係る波長変換素子の一態様において、前記複数の第1蛍光体粒子及び前記複数の第2蛍光体粒子のメジアン径は、3μm以上9μm以下であってもよい。 Further, in one aspect of the wavelength conversion element according to the present disclosure, the median diameters of the plurality of first phosphor particles and the plurality of second phosphor particles may be 3 μm or more and 9 μm or less.
 また、本開示に係る発光装置の一態様は、前記波長変換素子と、前記波長変換素子に励起光を照射する励起光源とを備える発光装置であって、前記発光装置からの出射光の輝度は1000cd/mm以上である。 In addition, one aspect of the light emitting device according to the present disclosure is a light emitting device including the wavelength conversion element and an excitation light source that irradiates the wavelength conversion element with excitation light, and the luminance of light emitted from the light emission apparatus is 1000 cd / mm 2 or more.
 また、本開示に係る発光装置の一態様は、前記波長変換素子と、前記波長変換素子に励起光を照射する励起光源とを備える発光装置であって、前記励起光は、前記第2頂部側から前記放射面に対して斜めに入射し、前記波長変換部材は、前記励起光を波長変換する。 Moreover, one mode of the light emitting device according to the present disclosure is a light emitting device including the wavelength conversion element and an excitation light source that irradiates the wavelength conversion element with excitation light, and the excitation light is on the second top side. The wavelength conversion member wavelength-converts the excitation light.
 また、本開示に係る照明装置の一態様は、前記発光装置と、前記発光装置からの出射光が入射され、投影光を出射する投光部材とを備えてもよい。 Moreover, one aspect of the illumination device according to the present disclosure may include the light-emitting device and a light projecting member that emits projection light when incident light is emitted from the light-emitting device.
 また、本開示に係る照明装置の一態様において、前記励起光が前記波長変換部材に入射する位置において前記励起光の光軸に直交する直線であって、前記支持面と平行な直線を含み、前記支持面と垂直な平面に対して、前記投影光は、前記平面より前記励起光源側に出射されてもよい。 Further, in one aspect of the illumination device according to the present disclosure, the excitation light is a straight line orthogonal to the optical axis of the excitation light at a position where the excitation light is incident on the wavelength conversion member, and includes a straight line parallel to the support surface, The projection light may be emitted from the plane toward the excitation light source with respect to a plane perpendicular to the support surface.
 本開示によれば、励起光を十分に蛍光に変換でき、かつ、機械的強度が高められた波長変換素子、並びに、当該波長変換素子を備える発光装置及び照明装置を提供できる。 According to the present disclosure, it is possible to provide a wavelength conversion element that can sufficiently convert excitation light into fluorescence and that has increased mechanical strength, and a light-emitting device and an illumination apparatus that include the wavelength conversion element.
図1は、実施の形態1の波長変換素子の構成を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing the configuration of the wavelength conversion element of the first embodiment. 図2は、実施の形態1に係る波長変換素子の支持面の上面視における形状を示す図である。FIG. 2 is a diagram illustrating the shape of the support surface of the wavelength conversion element according to Embodiment 1 in a top view. 図3は、実施の形態1に係る波長変換素子の断面を走査型電子顕微鏡で観察した写真である。FIG. 3 is a photograph of a cross section of the wavelength conversion element according to the first embodiment observed with a scanning electron microscope. 図4は、実施の形態1に係る照明装置の構成を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing the configuration of the lighting apparatus according to Embodiment 1. 図5は、実施の形態1に係る発光装置の波長変換素子近傍の拡大図である。FIG. 5 is an enlarged view of the vicinity of the wavelength conversion element of the light emitting device according to the first embodiment. 図6は、実施の形態1に係る波長変換素子の光学特性を示す図である。FIG. 6 is a diagram illustrating optical characteristics of the wavelength conversion element according to the first embodiment. 図7は、実施の形態1に係る波長変換部材から出射される出射光の輝度の測定結果を示すグラフである。FIG. 7 is a graph showing the measurement result of the luminance of the emitted light emitted from the wavelength conversion member according to the first embodiment. 図8は、実施の形態1に係る波長変換素子の波長変換部材を三つの異なる方法によって製造した場合の各表面形状の測定結果を示すグラフである。FIG. 8 is a graph showing measurement results of each surface shape when the wavelength conversion member of the wavelength conversion element according to Embodiment 1 is manufactured by three different methods. 図9は、実施の形態1の変形例1に係る波長変換素子の構成を示す模式的な断面図である。FIG. 9 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the first modification of the first embodiment. 図10は、実施の形態1の変形例2に係る発光装置と照明装置の構成を説明する模式的な図である。FIG. 10 is a schematic diagram illustrating the configuration of the light emitting device and the lighting device according to the second modification of the first embodiment. 図11は、実施の形態1の変形例2に係る波長変換素子の構成を示す上面図である。FIG. 11 is a top view showing the configuration of the wavelength conversion element according to the second modification of the first embodiment. 図12は、実施の形態2に係る波長変換素子の構成を示す模式的な断面図である。FIG. 12 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the second embodiment. 図13は、実施の形態2に係る波長変換素子の断面を走査型電子顕微鏡で観察した写真である。FIG. 13 is a photograph of a cross section of the wavelength conversion element according to the second embodiment observed with a scanning electron microscope. 図14は、実施の形態2に係る波長変換素子にピーク波長が447nmの励起光を照射した場合の出射光のスペクトルを示すグラフである。FIG. 14 is a graph showing a spectrum of emitted light when the wavelength conversion element according to Embodiment 2 is irradiated with excitation light having a peak wavelength of 447 nm. 図15は、実施の形態2に係る波長変換素子において、第1蛍光体粒子と散乱粒子との比率を変化させた場合の出射光の色度座標の変化を示したグラフである。FIG. 15 is a graph showing changes in chromaticity coordinates of emitted light when the ratio between the first phosphor particles and the scattering particles is changed in the wavelength conversion element according to the second embodiment. 図16は、実施の形態2に係る波長変換素子において、出射光の色度座標の励起光のピーク波長依存性を測定した結果を示すグラフである。FIG. 16 is a graph showing the results of measuring the peak wavelength dependence of the excitation light in the chromaticity coordinates of the emitted light in the wavelength conversion element according to the second embodiment. 図17は、波長変換部材を構成し得る材料の屈折率及び熱伝導率を示す図である。FIG. 17 is a diagram illustrating a refractive index and a thermal conductivity of a material that can constitute the wavelength conversion member. 図18は、実施の形態3に係る波長変換部材で用いるLaSi11:Ce蛍光体と、実施の形態1で用いたYAl12:Ce蛍光体との量子効率の温度依存性を示す図である。18 shows the temperature of the quantum efficiency of the La 3 Si 6 N 11 : Ce phosphor used in the wavelength conversion member according to Embodiment 3 and the Y 3 Al 5 O 12 : Ce phosphor used in Embodiment 1. FIG. It is a figure which shows dependency. 図19は、実施の形態3に係る波長変換素子を搭載した発光装置の特性を示す図である。FIG. 19 is a diagram showing the characteristics of a light emitting device equipped with the wavelength conversion element according to the third embodiment. 図20は、実施の形態3に係る発光装置の半導体発光装置の駆動電流が2.3アンペアであるときの、蛍光体表面の発光領域の輝度分布を測定した結果を示すグラフである。FIG. 20 is a graph showing the results of measuring the luminance distribution of the light emitting region on the phosphor surface when the drive current of the semiconductor light emitting device of the light emitting device according to Embodiment 3 is 2.3 amperes. 図21は、実施の形態4に係る波長変換素子の構成を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the fourth embodiment. 図22は、実施の形態4に係る波長変換素子を用いた発光装置の出射光のスペクトル特性を示すグラフである。FIG. 22 is a graph showing the spectral characteristics of the emitted light of the light emitting device using the wavelength conversion element according to the fourth embodiment. 図23は、実施の形態4に係る波長変換素子を搭載した発光装置において、波長変換素子の構成を変化させた場合の出射光の色度座標の変化を示す図である。FIG. 23 is a diagram illustrating a change in chromaticity coordinates of emitted light when the configuration of the wavelength conversion element is changed in the light emitting device including the wavelength conversion element according to the fourth embodiment. 図24Aは、実施の形態5に係る照明装置の構成を示す模式的な断面図である。FIG. 24A is a schematic cross-sectional view showing the configuration of the lighting apparatus according to Embodiment 5. 図24Bは、実施の形態5に係る波長変換素子及びその周辺の拡大断面図である。FIG. 24B is an enlarged cross-sectional view of the wavelength conversion element according to Embodiment 5 and its surroundings. 図24Cは、実施の形態5に係る照明装置、及び、照明装置から投影される投影像を示す模式的な斜視図である。FIG. 24C is a schematic perspective view illustrating the illumination apparatus according to Embodiment 5 and a projection image projected from the illumination apparatus. 図24Dは、実施の形態5に係る波長変換部材の形状を示す写真である。FIG. 24D is a photograph showing the shape of the wavelength conversion member according to Embodiment 5. 図24Eは、実施の形態5に係る波長変換素子の膜厚の第1の測定結果を示すグラフである。FIG. 24E is a graph showing a first measurement result of the film thickness of the wavelength conversion element according to Embodiment 5. 図24Fは、実施の形態5に係る波長変換素子の膜厚の第2の測定結果を示すグラフである。FIG. 24F is a graph showing a second measurement result of the film thickness of the wavelength conversion element according to the fifth embodiment. 図24Gは、実施の形態5に係る波長変換素子の膜厚の第3の測定結果を示すグラフである。FIG. 24G is a graph showing a third measurement result of the film thickness of the wavelength conversion element according to Embodiment 5. 図24Hは、実施の形態5に係る波長変換素子の発光領域における色分布を示したグラフである。FIG. 24H is a graph showing a color distribution in the light emitting region of the wavelength conversion element according to the fifth embodiment. 図25Aは、実施の形態6に係る発光装置における波長変換素子及び励起光の照射方向を示す模式的な断面図である。FIG. 25A is a schematic cross-sectional view showing the irradiation direction of the wavelength conversion element and the excitation light in the light emitting device according to Embodiment 6. 図25Bは、実施の形態6に係る発光装置の波長変換素子の輝度分布を示すグラフである。FIG. 25B is a graph showing a luminance distribution of the wavelength conversion element of the light-emitting device according to Embodiment 6. 図25Cは、実施の形態6に係る発光装置の実験結果の概要を示す表である。FIG. 25C is a table showing an outline of experimental results of the light-emitting device according to Embodiment 6. 図26は、従来の発光装置の構成を説明する図である。FIG. 26 is a diagram illustrating a configuration of a conventional light emitting device.
 以下、各実施の形態について図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の独立請求項に記載されていない構成要素については、任意の構成要素として説明される。図面は、模式的又は概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。実質的に同じ部分を表す場合であっても、図面により寸法や比率が異なって表される場合もある。実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, each embodiment will be described with reference to the drawings. Note that each of the embodiments described below shows a specific example of the present disclosure. Therefore, numerical values, shapes, materials, components, and arrangement positions and connection forms of the components shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims of the present disclosure are described as arbitrary constituent elements. The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Even in the case where substantially the same part is represented, the dimensions and ratio may be represented differently depending on the drawing. In some cases, duplicate descriptions for substantially the same configuration may be omitted.
 また、本明細書において、「上方」という用語は、絶対的な空間認識における上方向(鉛直上方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。 Also, in this specification, the term “upward” does not indicate the upward direction (vertically upward) in absolute space recognition, but is a term defined by a relative positional relationship based on the stacking order in the stacking configuration. Used as In addition, the term “above” means not only when two components are spaced apart from each other and another component is present between the two components, but the two components are in close contact with each other. It is also applied to the case where two components are in contact with each other.
 (実施の形態1)
 以下、実施の形態1に係る波長変換素子について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the wavelength conversion element according to Embodiment 1 will be described with reference to the drawings.
 [基本構成]
 図1は、本実施の形態に係る波長変換素子1の構成を示す模式的な断面図である。本実施の形態に係る波長変換素子1は、図1に示すように、支持面2aを有する支持部材2と、支持面2aの上方に配置される波長変換部材40とを備える素子である。
[Basic configuration]
FIG. 1 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1 according to the present embodiment. As shown in FIG. 1, the wavelength conversion element 1 according to the present embodiment is an element including a support member 2 having a support surface 2a and a wavelength conversion member 40 disposed above the support surface 2a.
 支持部材2は、波長変換部材40を支持する部材である。本実施の形態では、支持部材2は、板状の形状を有し、平面状の支持面2aに配置された反射部材3を介して波長変換部材40を支持する。支持部材2は、波長変換部材40で発生した熱を放散するヒートシンクとして機能する。 The support member 2 is a member that supports the wavelength conversion member 40. In the present embodiment, the support member 2 has a plate shape and supports the wavelength conversion member 40 via the reflection member 3 disposed on the planar support surface 2a. The support member 2 functions as a heat sink that dissipates heat generated by the wavelength conversion member 40.
 波長変換部材40は、励起光84を吸収して蛍光を放射する複数の第1蛍光体粒子41と、複数の第1蛍光体粒子41を結合する透明結合材42とを含む。波長変換部材40は、支持面2a側に位置する接合面7と、支持面の反対側に位置する放射面6とを有する。放射面6は、接合面7と対向し、励起光84が入射され、出射光95を放射する放射面6を備える。支持面2aのうち、接合面7と対向する領域が、波長変換部材40が配置される配置領域2dである。本実施の形態では、配置領域2dは、平面である。 The wavelength conversion member 40 includes a plurality of first phosphor particles 41 that absorb the excitation light 84 and emit fluorescence, and a transparent binder 42 that binds the plurality of first phosphor particles 41. The wavelength conversion member 40 has a joint surface 7 located on the support surface 2a side and a radiation surface 6 located on the opposite side of the support surface. The radiation surface 6 is opposed to the bonding surface 7 and includes the radiation surface 6 on which the excitation light 84 is incident and the emission light 95 is emitted. Of the support surface 2a, a region facing the bonding surface 7 is an arrangement region 2d where the wavelength conversion member 40 is arranged. In the present embodiment, the arrangement region 2d is a plane.
 波長変換部材40の放射面6から第1出射光85と第2出射光91とを含む出射光95が放射される。第1出射光85は、散乱された励起光84である。第2出射光91は、励起光84が波長変換された蛍光である。また、波長変換部材40の放射面6は、複数の微小凸部5a及び複数の微小凹部5bを備える。 The outgoing light 95 including the first outgoing light 85 and the second outgoing light 91 is emitted from the radiation surface 6 of the wavelength conversion member 40. The first outgoing light 85 is scattered excitation light 84. The second emitted light 91 is fluorescence obtained by converting the wavelength of the excitation light 84. Moreover, the radiation surface 6 of the wavelength conversion member 40 includes a plurality of minute convex portions 5a and a plurality of minute concave portions 5b.
 放射面6は、放射面6の周縁E1及びE2を含む周縁領域6aと、周縁領域6aに囲まれる中央領域6bとを含む。周縁領域6aの少なくとも一部は、支持面2aから遠ざかる向きに中央領域6bより突出している第1頂部P1を有する。放射面6は、第1頂部P1から中央領域6bに向かって支持面2a側に傾斜している第1傾斜部S1を有する。なお、放射面6は、微視的には微小な多数の凹凸が形成されているが、巨視的に見れば第1頂部P1から中央領域6bに向かって支持面2a側に傾斜している第1傾斜部S1を有する。波長変換部材40は、中央領域6bと第1頂部P1とにおいて、同一材料からなる複数の第1蛍光体粒子41を含む。 The radiation surface 6 includes a peripheral region 6a including the peripheral edges E1 and E2 of the radiation surface 6, and a central region 6b surrounded by the peripheral region 6a. At least a part of the peripheral region 6a has a first apex P1 that protrudes from the central region 6b in a direction away from the support surface 2a. The radiation surface 6 has a first inclined portion S1 that is inclined toward the support surface 2a from the first top P1 toward the central region 6b. The radiating surface 6 is formed with a large number of microscopic irregularities microscopically, but when viewed macroscopically, the radiating surface 6 is inclined to the support surface 2a side from the first top P1 toward the central region 6b. It has 1 inclined part S1. The wavelength conversion member 40 includes a plurality of first phosphor particles 41 made of the same material in the central region 6b and the first apex P1.
 本実施の形態では、第1傾斜部S1における放射面6には、複数の微小凸部5aが形成されている。なお、ここでいう微小凸部5aは、放射面6を微視的に見た場合に多数検知される凸部である。微小凸部5aの支持面2aに平行な方向の寸法は、波長変換部材40の膜厚の50%以下である。また、中央領域6bは、第1傾斜部S1より傾斜が緩やかな平坦部F1を含む。なお、図1に示す例では、平坦部F1は、中央領域6bの一部であるが、中央領域6b全体が平坦部F1であってもよい。また、周縁領域6aが平坦部F1を含んでもよい。また、ここでいう平坦部F1には、微小な凹凸が形成されていてもよく、巨視的に平坦であればよい。例えば、平坦部F1は、支持面2aに平行な方向の寸法が波長変換部材40の膜厚の50%以下程度の凹凸を含んでもよい。 In the present embodiment, a plurality of minute convex portions 5a are formed on the radiation surface 6 in the first inclined portion S1. In addition, the micro convex part 5a here is a convex part detected when a radiation surface 6 is microscopically seen. The dimension of the minute projection 5a in the direction parallel to the support surface 2a is 50% or less of the film thickness of the wavelength conversion member 40. Further, the central region 6b includes a flat portion F1 whose inclination is gentler than that of the first inclined portion S1. In the example shown in FIG. 1, the flat portion F1 is a part of the central region 6b, but the entire central region 6b may be the flat portion F1. Further, the peripheral region 6a may include the flat portion F1. Further, the flat portion F1 referred to here may be formed with minute irregularities, as long as it is macroscopically flat. For example, the flat part F <b> 1 may include unevenness whose dimension in the direction parallel to the support surface 2 a is about 50% or less of the film thickness of the wavelength conversion member 40.
 また、本実施の形態では、周縁領域6aは、第1頂部P1とは中央領域6bに対して反対側の位置に配置され、支持面2aから遠ざかる向きに中央領域6bよりも突出している第2頂部P2を有する。放射面6は、第2頂部P2から中央領域6bに向かって支持面2a側に傾斜している第2傾斜部S2を有する。 In the present embodiment, the peripheral region 6a is disposed at a position opposite to the first top portion P1 with respect to the central region 6b, and protrudes from the central region 6b in a direction away from the support surface 2a. It has a top P2. The radiation surface 6 has a second inclined portion S2 that is inclined toward the support surface 2a from the second top portion P2 toward the central region 6b.
 以上のように、本実施の形態では、波長変換部材40の膜厚は、周縁領域6aの第1頂部P1及び第2頂部P2付近において中央領域6bよりも厚い。つまり、第1頂部P1から第2頂部P2にかけて凹状の形状が形成されている。図1に示すように、波長変換部材40の第1頂部P1における膜厚dは、中央領域6bにおける膜厚dよりも厚い(d>d)。 As described above, in the present embodiment, the film thickness of the wavelength conversion member 40 is thicker than the central region 6b in the vicinity of the first top portion P1 and the second top portion P2 of the peripheral region 6a. That is, a concave shape is formed from the first top portion P1 to the second top portion P2. As shown in FIG. 1, the film thickness d e is the first apex P1 of the wavelength conversion member 40, larger than the thickness d c in the central region 6b (d e> d c) .
 本実施の形態では、支持面2aから第1頂部P1までの高さが、支持面2aから第2頂部P2までの高さより高い。ここで、後述するように、励起光84は、波長変換部材40の中央領域6bに斜めに入射される。このため、本実施の形態のように、支持面2aから第1頂部P1までの高さが、支持面2aから第2頂部P2までの高さより高い場合、励起光84を第2頂部P2側から第1頂部P1に向かう方向に入射することで、励起光84が波長変換部材40の周縁領域6aによって遮られることを軽減できる。したがって、励起光84のうち、中央領域6bに入射される成分の割合を高めることができる。つまり、励起光84の利用効率を高めることができる。 In the present embodiment, the height from the support surface 2a to the first top portion P1 is higher than the height from the support surface 2a to the second top portion P2. Here, as will be described later, the excitation light 84 is incident on the central region 6 b of the wavelength conversion member 40 obliquely. Therefore, as in the present embodiment, when the height from the support surface 2a to the first top P1 is higher than the height from the support surface 2a to the second top P2, the excitation light 84 is transmitted from the second top P2 side. By being incident in the direction toward the first apex P <b> 1, the excitation light 84 can be reduced from being blocked by the peripheral region 6 a of the wavelength conversion member 40. Therefore, it is possible to increase the proportion of the component incident on the central region 6b in the excitation light 84. That is, the utilization efficiency of the excitation light 84 can be increased.
 図1に示す波長変換部材40においては、中央領域6bを通る断面において、上述のとおり、一方の周縁領域6a(図1の右側の周縁領域6a)に中央領域6bより突出する第1頂部P1が形成される。放射面6は、第1頂部P1から放射面6の周縁E1に向かって、支持面2a側に急激に傾斜する第3傾斜部S3を有する。他方の周縁領域6a(図1の左側の周縁領域6a)には、同様に第2頂部P2が形成される。放射面6は、第2頂部P2から放射面6の周縁E2に向かって、支持面2a側に急激に傾斜する第4傾斜部S4を有する。 In the wavelength conversion member 40 shown in FIG. 1, in the cross section passing through the central region 6b, as described above, the first apex P1 protruding from the central region 6b is formed in one peripheral region 6a (the peripheral region 6a on the right side in FIG. 1). It is formed. The radiating surface 6 has a third inclined portion S3 that sharply inclines toward the support surface 2a from the first top portion P1 toward the peripheral edge E1 of the radiating surface 6. In the other peripheral area 6a (the peripheral area 6a on the left side in FIG. 1), a second apex P2 is formed in the same manner. The radiating surface 6 has a fourth inclined portion S4 that sharply inclines toward the support surface 2a from the second top portion P2 toward the peripheral edge E2 of the radiating surface 6.
 反射部材3は、波長変換部材40と支持部材2との間に配置され、励起光及び蛍光の少なくとも一方を反射する部材である。本実施の形態では、反射部材3は、支持部材2の支持面2aに形成された反射膜である。 The reflection member 3 is a member that is disposed between the wavelength conversion member 40 and the support member 2 and reflects at least one of excitation light and fluorescence. In the present embodiment, the reflection member 3 is a reflection film formed on the support surface 2 a of the support member 2.
 以上に述べた構成を備える波長変換素子1の機能について説明する。本実施の形態に係る波長変換素子1では、波長変換部材40の放射面6に、図示しない励起光源より出射された励起光84が入射する。本実施の形態では、励起光84としてレーザ光を用いる。このとき励起光84は所定の小さい領域に強い光強度の光が収束された光密度の高い光である。図1においては、波長変換素子1に入射される励起光84のうち、放射面6の中央領域6bの一部である励起領域150に大部分が入射される。 The function of the wavelength conversion element 1 having the above-described configuration will be described. In the wavelength conversion element 1 according to the present embodiment, excitation light 84 emitted from an excitation light source (not shown) is incident on the radiation surface 6 of the wavelength conversion member 40. In the present embodiment, laser light is used as the excitation light 84. At this time, the excitation light 84 is light having a high light density in which light having strong light intensity is converged in a predetermined small region. In FIG. 1, most of the excitation light 84 incident on the wavelength conversion element 1 is incident on the excitation region 150 that is a part of the central region 6 b of the radiation surface 6.
 励起領域150に入射した励起光84は、波長変換部材40の第1蛍光体粒子41又は透明結合材42に入射する。なお、波長変換部材40の放射面6及び内部には、屈折率の異なる媒体の界面、つまり、空気と波長変換部材40との界面及び第1蛍光体粒子41と透明結合材42との界面が存在する。このため、波長変換部材40に入射した励起光84は、波長変換部材40の放射面6及び内部で乱反射又は多重反射されて、一部の励起光84は第1出射光85(図1に示す実線の矢印)として波長変換部材40から放射される。このとき第1出射光85は、波長変換部材40の放射面6及び内部に存在する界面により乱反射又は多重反射されている。そのため、第1出射光85は、レーザ光からなる励起光84の指向性が低減されている。したがって、波長変換素子1は第1出射光85を出射方向が全方位となる光として放射させることができる。つまり、本実施の形態に係る波長変換素子1においては、十分な散乱作用を確保できる。 The excitation light 84 incident on the excitation region 150 is incident on the first phosphor particles 41 or the transparent binder 42 of the wavelength conversion member 40. In addition, on the radiation surface 6 and inside of the wavelength conversion member 40, there are interfaces of media having different refractive indexes, that is, an interface between air and the wavelength conversion member 40 and an interface between the first phosphor particles 41 and the transparent binder 42. Exists. For this reason, the excitation light 84 incident on the wavelength conversion member 40 is irregularly reflected or multiple-reflected inside and on the radiation surface 6 of the wavelength conversion member 40, and a part of the excitation light 84 is the first outgoing light 85 (shown in FIG. 1). The light is emitted from the wavelength conversion member 40 as a solid line arrow). At this time, the first outgoing light 85 is irregularly reflected or multiply reflected by the radiation surface 6 of the wavelength converting member 40 and the interface existing inside. Therefore, the directivity of the excitation light 84 made of laser light is reduced in the first outgoing light 85. Therefore, the wavelength conversion element 1 can radiate the first outgoing light 85 as light whose outgoing direction is omnidirectional. That is, in the wavelength conversion element 1 according to the present embodiment, a sufficient scattering action can be ensured.
 一方、励起光84の一部は、第1蛍光体粒子41によって吸収され、波長変換された蛍光となり放射される。この蛍光は、直接、又は、第1蛍光体粒子41と透明結合材42との界面等に乱反射又は多重反射された後、波長変換部材40の放射面6から第2出射光91(図1に示す破線の矢印)として放射される。 On the other hand, a part of the excitation light 84 is absorbed by the first phosphor particles 41 and is emitted as wavelength-converted fluorescence. This fluorescent light is irregularly reflected or multiple-reflected directly or on the interface between the first phosphor particles 41 and the transparent binder 42, and then the second emitted light 91 (see FIG. 1) from the radiation surface 6 of the wavelength conversion member 40. Radiated as a dashed arrow).
 したがって、波長変換素子1の放射面6からは、第1出射光85と第2出射光91が混合した混合光である出射光95が出射される。このとき出射光95が出射する領域は、第1出射光85及び第2出射光91のいずれも波長変換部材40内で多重反射されるため、励起領域150よりも大きい領域である発光領域151から出射される。 Therefore, from the radiation surface 6 of the wavelength conversion element 1, the outgoing light 95 which is a mixed light in which the first outgoing light 85 and the second outgoing light 91 are mixed is emitted. At this time, the region where the emitted light 95 is emitted is from the light emitting region 151 that is larger than the excitation region 150 because both the first emitted light 85 and the second emitted light 91 are multiple-reflected within the wavelength conversion member 40. Emitted.
 以下、必須ではない任意の構成要素を含め、より具体的な実施の形態について説明を行う。 Hereinafter, more specific embodiments including optional components that are not essential will be described.
 図1に示すように、波長変換素子1において、支持部材2の支持面2aには反射部材3が配置されており、反射部材3の表面に波長変換部材40が配置されている。反射部材3は、主に金属からなる第1反射膜3bと、主に誘電体多層膜からなる第2反射膜3cと、支持部材2と第1反射膜3bを密着させるための密着層3aとを含む。 As shown in FIG. 1, in the wavelength conversion element 1, the reflection member 3 is disposed on the support surface 2 a of the support member 2, and the wavelength conversion member 40 is disposed on the surface of the reflection member 3. The reflection member 3 includes a first reflection film 3b mainly made of metal, a second reflection film 3c mainly made of a dielectric multilayer film, and an adhesion layer 3a for closely attaching the support member 2 and the first reflection film 3b. including.
 波長変換部材40は、複数の第1蛍光体粒子41と、複数の第1蛍光体粒子41とを結合する透明結合材42とを含む。複数の第1蛍光体粒子41は透明結合材42中に分散されていてもよい。 The wavelength conversion member 40 includes a plurality of first phosphor particles 41 and a transparent binder 42 that bonds the plurality of first phosphor particles 41. The plurality of first phosphor particles 41 may be dispersed in the transparent binder 42.
 第1蛍光体粒子41として、励起光の波長が、420nm以上490nm以下の青色光である場合は、セリウム(Ce)が賦活された(YGd1-x(AlGa1-y12(0.5≦x≦1、0.5≦y≦1)などのイットリウム・アルミニウム・ガーネット(YAG)系の蛍光体を用いることができる。そして、波長変換部材に含まれる第1蛍光体粒子41のメジアン径D50は、例えば2μm以上30μm以下である。またこのような第1蛍光体粒子41を用いる場合、波長変換部材40の膜厚は、例えば、励起領域150において、2μm以上50μm以下である。 As the first phosphor particles 41, the wavelength of the excitation light is, if it is 490nm or less of blue light above 420 nm, cerium (Ce) is activated (Y x Gd 1-x) 3 (Al y Ga 1-y ) Yttrium-aluminum-garnet (YAG) -based phosphors such as 5 O 12 (0.5 ≦ x ≦ 1, 0.5 ≦ y ≦ 1) can be used. And the median diameter D50 of the 1st fluorescent substance particle 41 contained in a wavelength conversion member is 2 micrometers or more and 30 micrometers or less, for example. Moreover, when using such 1st fluorescent substance particle 41, the film thickness of the wavelength conversion member 40 is 2 micrometers or more and 50 micrometers or less in the excitation area | region 150, for example.
 第1蛍光体粒子41を構成する材料としては、その他、蛍光体から放射させる光の波長に応じて、ユーロピウム(Eu)賦活α―SiAlON、Eu賦活(Ba、Sr)Si等を用いることができる。このとき、第1蛍光体粒子41は、励起光84を第2出射光91に変換する際に、第1蛍光体粒子41で発生する熱を速やかに支持部材2に排熱するため、熱伝導率の高い材料、例えば5W/mK以上である材料で構成される。 As other materials constituting the first phosphor particles 41, europium (Eu) activated α-SiAlON, Eu activated (Ba, Sr) Si 2 O 2 N 2, etc., depending on the wavelength of light emitted from the phosphor. Can be used. At this time, when the first phosphor particles 41 convert the excitation light 84 into the second emitted light 91, the heat generated in the first phosphor particles 41 is quickly exhausted to the support member 2; It is composed of a material having a high rate, for example, a material having 5 W / mK or more.
 透明結合材42は、第1蛍光体粒子41との屈折率差が大きい透明材料で形成されてもよい。これにより、第1蛍光体粒子41と透明結合材42との界面における光の散乱効果を高めることができる。透明結合材42を形成する材料は、例えば、シリコン(Si)と酸素(O)を主成分とした透明材料であり、ガラス、シルセスキオキサン、シリコーンなどが例として挙げられる。 The transparent binder 42 may be formed of a transparent material having a large refractive index difference from the first phosphor particles 41. Thereby, the light scattering effect at the interface between the first phosphor particles 41 and the transparent binder 42 can be enhanced. The material for forming the transparent binder 42 is, for example, a transparent material mainly composed of silicon (Si) and oxygen (O), and examples thereof include glass, silsesquioxane, and silicone.
 波長変換部材40の中において、複数の第1蛍光体粒子41は、励起光84を第2出射光91に変換する際に、第1蛍光体粒子41で発生する熱を速やかに支持部材2に排熱できる構成を有してもよい。具体的には、透明結合材42よりも熱伝導率の高い複数の第1蛍光体粒子41は互いに近接して配置される。そして、複数の第1蛍光体粒子41の間に透明結合材42が充填されている。このとき、励起光84を第1蛍光体粒子41と透明結合材42との界面で散乱させるため、界面の面積は大きいほどよい。したがって、隣り合う第1蛍光体粒子41は、近接しながらも励起光84の波長以上に離れており、その間に透明結合材42が充填される構成であってもよい。このとき、隣り合う第1蛍光体粒子41は一部が接触しても問題はない。 In the wavelength conversion member 40, when the plurality of first phosphor particles 41 convert the excitation light 84 into the second emission light 91, the heat generated in the first phosphor particles 41 is quickly supplied to the support member 2. You may have the structure which can exhaust heat. Specifically, the plurality of first phosphor particles 41 having a higher thermal conductivity than the transparent binder 42 are arranged close to each other. A transparent binder 42 is filled between the plurality of first phosphor particles 41. At this time, since the excitation light 84 is scattered at the interface between the first phosphor particles 41 and the transparent binder 42, the area of the interface is preferably as large as possible. Therefore, the structure may be such that the adjacent first phosphor particles 41 are close to each other but separated by the wavelength of the excitation light 84 or more, and the transparent binder 42 is filled therebetween. At this time, there is no problem even if the adjacent first phosphor particles 41 are in contact with each other.
 支持部材2を形成する材料は、波長変換素子1で発生した熱をより効率的に吸収するために、熱伝導率が高く、かつ、透明結合材42と熱膨張係数差が小さい材料であってもよい。例えば、支持部材2を形成する材料は、熱伝導率は20W/mK以上で、熱膨張係数が1×10-5/K以下の材料であってもよい。具体的には、支持部材2は、シリコン(Si)、シリコンカーバイド(SiC)、サファイア(Al)、窒化アルミニウム(AlN)又はダイヤモンドなど含んでもよい。また、支持部材2は、これらの材料からなる半導体結晶基板又はセラミック基板などであってもよい。 The material forming the support member 2 is a material having a high thermal conductivity and a small difference in thermal expansion coefficient from that of the transparent binder 42 in order to more efficiently absorb the heat generated in the wavelength conversion element 1. Also good. For example, the material forming the support member 2 may be a material having a thermal conductivity of 20 W / mK or more and a thermal expansion coefficient of 1 × 10 −5 / K or less. Specifically, the support member 2 may include silicon (Si), silicon carbide (SiC), sapphire (Al 2 O 3 ), aluminum nitride (AlN), diamond, or the like. The support member 2 may be a semiconductor crystal substrate or a ceramic substrate made of these materials.
 反射部材3は、例えば、励起光84のスペクトル及び第1蛍光体粒子41で発生する蛍光のスペクトルに高い反射率を有する。つまり、波長変換部材40に入射した励起光84や、波長変換部材40で生成された第1出射光85及び第2出射光91のうち、反射部材3に到達した光を効率良く波長変換部材40側に反射させる機能を有する。したがって、第1反射膜3bは、具体的には、アルミニウム(Al)、銀(Ag)、銀合金、プラチナ(Pt)などの金属膜を用いて形成される。また、第2反射膜3cは、SiO、Al、ZrO、TiOなどの誘電体膜を用いて多層膜として形成される。 For example, the reflecting member 3 has a high reflectance in the spectrum of the excitation light 84 and the spectrum of the fluorescence generated in the first phosphor particles 41. That is, among the excitation light 84 incident on the wavelength conversion member 40 and the first emission light 85 and the second emission light 91 generated by the wavelength conversion member 40, the light that has reached the reflection member 3 is efficiently converted into the wavelength conversion member 40. It has a function of reflecting to the side. Therefore, the first reflective film 3b is specifically formed using a metal film such as aluminum (Al), silver (Ag), silver alloy, platinum (Pt). The second reflective film 3c is formed as a multilayer film using a dielectric film such as SiO 2 , Al 2 O 3 , ZrO 2 , or TiO 2 .
 そして、反射部材3が形成される支持部材2の支持面2aは、平面でかつ鏡面に加工されていてもよい。これにより支持面2a上に形成される反射部材3を平坦な膜で構成することができる。したがって、反射部材3に到達した第1出射光85及び第2出射光91を効率よく反射させることができる。 And the support surface 2a of the support member 2 on which the reflecting member 3 is formed may be a flat and mirror-finished surface. Thereby, the reflecting member 3 formed on the support surface 2a can be formed of a flat film. Therefore, the 1st emitted light 85 and the 2nd emitted light 91 which reached | attained the reflection member 3 can be reflected efficiently.
 [詳細構成及び製造方法]
 続いて、波長変換素子1の具体的な形状及び寸法について製造方法も加えて説明する。なお、波長変換素子1の製造方法については、必須ではない方法も含めて、具体的に説明する。
[Detailed configuration and manufacturing method]
Next, a specific shape and size of the wavelength conversion element 1 will be described with a manufacturing method. In addition, about the manufacturing method of the wavelength conversion element 1, including the method which is not essential, it demonstrates concretely.
 まず、支持部材2の元となるウエハ状の部材を準備する。本実施の形態では、支持部材2として直径が3インチで厚さが0.38mmのシリコン基板であるウエハを準備する。シリコン基板として、支持面2a側が、メカノケミカルポリッシングにより鏡面でかつ平面に加工されたものを用いる。 First, a wafer-like member as a base of the support member 2 is prepared. In the present embodiment, a wafer that is a silicon substrate having a diameter of 3 inches and a thickness of 0.38 mm is prepared as the support member 2. As the silicon substrate, the one on which the support surface 2a side is processed into a mirror surface and a flat surface by mechanochemical polishing is used.
 続いて、支持部材2の一方の主面である支持面2aに、蒸着方法などにより、密着層3a、第1反射膜3b及び第2反射膜3cを順に成膜することによって反射部材3を形成する。より具体的には、反射部材3は、支持部材2側から順に、厚さが127nmのAlと厚さが27nmのNiとからなる密着層3a、厚さが150nmのAgである第1反射膜3b、及び、厚さが75nmのAlと厚さが25nmのSiOと厚さが28nmのTiOとからなる第2反射膜3cを含む。第2反射膜3cは、第1反射膜3bを保護するための表面保護層と、金属で構成される第1反射膜3bでの光吸収を抑制するための反射層との両方の機能を有する。また密着層3aは、後述に記載するウエハを個片の波長変換素子1に分割する際のダイシング工程において、支持部材2から反射部材3が剥離するのを抑制する。 Subsequently, the reflective member 3 is formed by sequentially forming the adhesion layer 3a, the first reflective film 3b, and the second reflective film 3c on the support surface 2a, which is one main surface of the support member 2, by an evaporation method or the like. To do. More specifically, the reflecting member 3 includes, in order from the support member 2 side, an adhesion layer 3a made of Al 2 O 3 having a thickness of 127 nm and Ni having a thickness of 27 nm, and Ag having a thickness of 150 nm. first reflecting film 3b, and includes a second reflecting layer 3c having a thickness is Al 2 O 3 and the thickness of 75nm is SiO 2 and the thickness of 25nm made of TiO 2 Metropolitan of 28nm. The second reflective film 3c has both functions of a surface protective layer for protecting the first reflective film 3b and a reflective layer for suppressing light absorption in the first reflective film 3b made of metal. . In addition, the adhesion layer 3 a suppresses the reflection member 3 from being peeled from the support member 2 in a dicing process when a wafer described later is divided into individual wavelength conversion elements 1.
 続いて、支持部材2の支持面2aの上方に、所定の開口部が複数形成されたスクリーンメッシュ印刷マスクを配置する。このとき開口部は、面内に2mm以上10mm以下のピッチで2次元に形成される。本実施の形態においては、3.5mmのピッチのものと、5mmのピッチのものとを作製した。例えば、5mmのピッチでは、直径3インチの範囲内に100個程度の開口部が形成される。スクリーンメッシュ印刷マスクは、例えば、ステンレスなどの金属繊維、又は、ポリエステルなどの合成繊維を織って形成されている。メッシュの網目を通過させて印刷することで、メタルなどの開口マスクに比べて通過するペーストの体積が小さくなるので、印刷で薄膜を形成することできる。また、開口部の形状として、所望の波長変換部材40の形状に合わせたものを用いることで、波長変換部材40の形状を自由に形成することができる。また、スクリーンメッシュ印刷マスクの厚さは、波長変換素子1の波長変換部材40の所望の膜厚に応じて設定することができる。 Subsequently, a screen mesh printing mask in which a plurality of predetermined openings are formed is disposed above the support surface 2 a of the support member 2. At this time, the openings are two-dimensionally formed at a pitch of 2 mm to 10 mm in the plane. In the present embodiment, a 3.5 mm pitch product and a 5 mm pitch product were produced. For example, at a pitch of 5 mm, about 100 openings are formed within a diameter of 3 inches. The screen mesh printing mask is formed by weaving metal fibers such as stainless steel or synthetic fibers such as polyester, for example. By printing through the mesh of the mesh, the volume of the paste that passes is smaller than that of an opening mask made of metal or the like, so that a thin film can be formed by printing. Moreover, the shape of the wavelength conversion member 40 can be freely formed by using a shape that matches the shape of the desired wavelength conversion member 40 as the shape of the opening. Further, the thickness of the screen mesh printing mask can be set according to the desired film thickness of the wavelength conversion member 40 of the wavelength conversion element 1.
 続いて、透明結合材42を構成する原材料を有機溶媒に溶かしたものに第1蛍光体粒子41を混合させた蛍光体ペーストを作製する。このとき、メジアン径D50がそれぞれ3、4、6、9μmのCe賦活YAl12蛍光体を用いて、第1蛍光体粒子41のメジアン径をパラメーターとして変化させて、蛍光体ペーストを作製する。また、本実施の形態に係る波長変換部材40では、透明結合材42として、主成分がポリメチルシルセスキオキサンである透明材料を用いた。したがって、蛍光体ペーストとしては、有機溶媒にシルセスキオキサンを溶かした透明結合材に、上記の第1蛍光体粒子41を複数、分散させたものを用いた。このとき有機溶媒は、後述の高温硬化工程における温度に対して沸点が低いものを選択する。そして、高温硬化工程後に、第1蛍光体粒子41と透明結合材42の比率が所望の値になるように混合比が決定される。また、有機溶媒の分量は、前述の蛍光体ペーストが所望の粘度になるように決定される。 Subsequently, a phosphor paste in which the first phosphor particles 41 are mixed with the raw material constituting the transparent binder 42 dissolved in an organic solvent is produced. At this time, using Ce-activated Y 3 Al 5 O 12 phosphors with median diameters D50 of 3, 4, 6, and 9 μm, respectively, the median diameter of the first phosphor particles 41 was changed as a parameter, and the phosphor paste was changed. Make it. In the wavelength conversion member 40 according to the present embodiment, a transparent material whose main component is polymethylsilsesquioxane is used as the transparent binder 42. Therefore, as the phosphor paste, a material obtained by dispersing a plurality of the first phosphor particles 41 in a transparent binder in which silsesquioxane is dissolved in an organic solvent is used. At this time, an organic solvent having a low boiling point with respect to the temperature in the high temperature curing step described later is selected. Then, after the high temperature curing step, the mixing ratio is determined so that the ratio between the first phosphor particles 41 and the transparent binder 42 becomes a desired value. The amount of the organic solvent is determined so that the above-described phosphor paste has a desired viscosity.
 続いて、上記の工程において製造した蛍光体ペーストを、ウエハの上方のスクリーンメッシュ印刷マスクの開口部に注入する。このとき、蛍光体ペーストは開口部を十分に満たすように配置する。 Subsequently, the phosphor paste manufactured in the above process is injected into the opening of the screen mesh printing mask above the wafer. At this time, the phosphor paste is disposed so as to sufficiently fill the opening.
 続いて、スキージで開口部から溢れた不要な蛍光体ペーストを除去するとともに、スクリーンメッシュ印刷マスクをウエハの支持面2aに押し付けて離すことで、開口部に充填された蛍光体ペーストを支持面2aに転写する。 Subsequently, unnecessary phosphor paste overflowing from the opening with a squeegee is removed, and the screen mesh printing mask is pressed against the support surface 2a of the wafer to release it, so that the phosphor paste filled in the opening is supported on the support surface 2a. Transcript to.
 続いて、印刷マスクを取り外し、所定のパターンで複数の蛍光体ペーストが表面に形成されたウエハを、高温炉等によって、例えば、約200℃の温度下で、約2時間、加熱する。この高温硬化工程により、蛍光体ペースト中の透明結合材の原材料が縮合し、透明結合材42内に複数の第1蛍光体粒子41が固着されたウエハ状の波長変換素子が形成される。このようにして製造された波長変換素子1について図2を用いて説明する。 Subsequently, the printing mask is removed, and the wafer on which a plurality of phosphor pastes are formed in a predetermined pattern is heated in a high temperature furnace or the like, for example, at a temperature of about 200 ° C. for about 2 hours. By this high temperature curing process, the raw materials of the transparent binder in the phosphor paste are condensed, and a wafer-like wavelength conversion element in which the plurality of first phosphor particles 41 are fixed in the transparent binder 42 is formed. The wavelength conversion element 1 manufactured in this way will be described with reference to FIG.
 図2は、本実施の形態に係る波長変換素子1の支持面2aの上面視における形状を示す図である。図2には、上記の製造工程を用いて製造した波長変換素子1の一部の上面視における写真(a)と、写真(a)に示される一つの波長変換素子1を拡大した平面図(b)とが示される。平面図(b)には、波長変換素子1における波長変換部材40及び支持部材2の形状が模式的に示されている。なお、写真(a)及び平面図(b)において破線で示される枠は、後述するように個片化された後の支持部材2の輪郭を示す。 FIG. 2 is a diagram showing the shape of the support surface 2a of the wavelength conversion element 1 according to the present embodiment in a top view. FIG. 2 includes a photograph (a) in a top view of a part of the wavelength conversion element 1 manufactured using the above manufacturing process, and an enlarged plan view of one wavelength conversion element 1 shown in the photograph (a). b). In the plan view (b), the shapes of the wavelength conversion member 40 and the support member 2 in the wavelength conversion element 1 are schematically shown. In addition, the frame shown with a broken line in a photograph (a) and a top view (b) shows the outline of the supporting member 2 after being separated into pieces so that it may mention later.
 本実施の形態では、スクリーンメッシュ印刷マスクとしては、直径2.6mmの円形の開口部が3.7mmのピッチで形成されたものを用いて、ウエハ上に波長変換部材40を複数形成した。 In the present embodiment, a plurality of wavelength conversion members 40 are formed on a wafer using a screen mesh printing mask in which circular openings having a diameter of 2.6 mm are formed at a pitch of 3.7 mm.
 次に、上記工程により作製した膜厚が2μm以上50μm以下の波長変換部材40が複数個固着されたウエハは、ダイシングにより分割される。具体的にはブレード幅0.2mmのダイシングブレードを用いて、3.7mmピッチで分割する。このときダイシングブレードの厚さに対応する幅0.2mmの分割部分が、ダイシングブレードによって削られるため、図2の平面図(b)に示すような3.5mm角の波長変換素子1が製造される。 Next, the wafer on which a plurality of wavelength conversion members 40 having a film thickness of 2 μm or more and 50 μm or less produced by the above process are fixed is divided by dicing. Specifically, it is divided at a pitch of 3.7 mm using a dicing blade having a blade width of 0.2 mm. At this time, since the divided portion having a width of 0.2 mm corresponding to the thickness of the dicing blade is cut by the dicing blade, the 3.5 mm square wavelength conversion element 1 as shown in the plan view (b) of FIG. 2 is manufactured. The
 上記の製造方法により支持部材2上に、膜厚が2μm以上50μm以下の波長変換部材40が形成された波長変換素子1を容易に製造することができる。 The wavelength conversion element 1 in which the wavelength conversion member 40 having a film thickness of 2 μm or more and 50 μm or less is formed on the support member 2 by the above manufacturing method can be easily manufactured.
 このようにして製造された波長変換素子1の特徴について図2及び図3を用いてより詳しく説明する。図3は、本実施の形態に係る波長変換素子1の断面を走査型電子顕微鏡(SEM)で観察した写真である。図3においては、図2に示すIII-III線における断面が示されている。なお、図3には、断面写真(a)とその一部を拡大した拡大写真(b)とが示されている。拡大写真(b)は、断面写真(a)の破線枠部を拡大した写真である。なお、図3に示す包埋樹脂は、走査型電子顕微鏡での観察のために用いられる樹脂であり、波長変換素子1の構成要素ではない。 The characteristics of the wavelength conversion element 1 manufactured in this way will be described in more detail with reference to FIGS. FIG. 3 is a photograph of a cross section of the wavelength conversion element 1 according to the present embodiment observed with a scanning electron microscope (SEM). FIG. 3 shows a cross section taken along line III-III shown in FIG. FIG. 3 shows a cross-sectional photograph (a) and an enlarged photograph (b) in which a part thereof is enlarged. The enlarged photograph (b) is an enlarged photograph of the broken-line frame part of the cross-sectional photograph (a). The embedding resin shown in FIG. 3 is a resin used for observation with a scanning electron microscope, and is not a component of the wavelength conversion element 1.
 図2に示すように、支持面2aの上面視において、支持部材2の周縁部は波長変換部材40から露出している。つまり、波長変換素子1において、波長変換部材40の配置領域は支持部材2の外形よりも小さくなるように形成される。このように波長変換素子1が形成されることにより、波長変換素子1を例えば発光装置の部品として用いる場合に、波長変換素子1の周辺の波長変換部材40が形成されていない領域をコレットなどでチャックし、搬送することで、発光装置の基台等の、波長変換素子1を配置する場所に容易に固定できる。 As shown in FIG. 2, the peripheral portion of the support member 2 is exposed from the wavelength conversion member 40 in a top view of the support surface 2 a. That is, in the wavelength conversion element 1, the arrangement region of the wavelength conversion member 40 is formed to be smaller than the outer shape of the support member 2. By forming the wavelength conversion element 1 in this way, when the wavelength conversion element 1 is used as, for example, a component of a light emitting device, a region where the wavelength conversion member 40 around the wavelength conversion element 1 is not formed is formed by a collet or the like. By chucking and carrying, it can be easily fixed at a place where the wavelength conversion element 1 is disposed, such as a base of a light emitting device.
 また、図3に示すように波長変換素子1は、シリコン基板である支持部材2と、支持部材2上に配置される銀膜、誘電体多層膜などで構成される反射部材3と、反射部材3上に配置される波長変換部材40とを備える。波長変換部材40は、複数の第1蛍光体粒子41と、シルセスキオキサンで構成される透明結合材42とからなる。図3に示す例では、波長変換部材40の膜厚は約20μmであった。また、第1蛍光体粒子41は透明結合材42内に分散されているが、隣り合う第1蛍光体粒子41同士は近接する。このように配置することで、第1蛍光体粒子41で発生した熱を隣り合う第1蛍光体粒子41を介して効率良く支持部材2に伝導させることができる。つまり、主に、透明結合材42より熱伝導率が高い第1蛍光体粒子41を介して、第1蛍光体粒子41で発生した熱を支持部材2に伝導させることができる。また、波長変換部材40の表面(放射面6)には複数の微小凸部5aが形成されている。複数の微小凸部5aの少なくとも一部は、複数の第1蛍光体粒子41のうちの一部が放射面6において突出することにより形成されている。つまり、第1蛍光体粒子41の表面に沿った微小凸部5aが形成される。微小凸部5aの横に微小凹部5bが形成される。このように波長変換部材40の表面に微小な凹凸を形成することで、励起光84を効率良く散乱させることができる。さらに、図3の断面写真(a)に示すように、粒子数5個から10個分程度の間隔でなだらかな凹凸も形成される。このなだらかな凹凸の周期、つまり、隣り合う凸部間の間隔又は隣り合う凹部間の間隔は、波長変換部材40の当該凹凸部の平均膜厚の50%より大きく、5倍以下程度である。このように、微小な凹凸と比較的なだらかな凹凸を波長変換部材表面に形成することで、励起光84をより効率良く散乱させることができる。 As shown in FIG. 3, the wavelength conversion element 1 includes a support member 2 that is a silicon substrate, a reflection member 3 composed of a silver film, a dielectric multilayer film, and the like disposed on the support member 2, and a reflection member. 3 is provided with a wavelength conversion member 40 disposed on the surface 3. The wavelength conversion member 40 includes a plurality of first phosphor particles 41 and a transparent binder 42 made of silsesquioxane. In the example shown in FIG. 3, the film thickness of the wavelength conversion member 40 was about 20 μm. The first phosphor particles 41 are dispersed in the transparent binder 42, but the adjacent first phosphor particles 41 are close to each other. By arranging in this way, the heat generated in the first phosphor particles 41 can be efficiently conducted to the support member 2 through the adjacent first phosphor particles 41. That is, the heat generated in the first phosphor particles 41 can be mainly conducted to the support member 2 through the first phosphor particles 41 having a higher thermal conductivity than the transparent binder 42. A plurality of minute convex portions 5 a are formed on the surface (radiation surface 6) of the wavelength conversion member 40. At least a part of the plurality of minute protrusions 5 a is formed by a part of the plurality of first phosphor particles 41 protruding on the radiation surface 6. That is, the minute convex part 5a along the surface of the first phosphor particle 41 is formed. A minute recess 5b is formed beside the minute protrusion 5a. Thus, by forming minute irregularities on the surface of the wavelength conversion member 40, the excitation light 84 can be efficiently scattered. Furthermore, as shown in the cross-sectional photograph (a) of FIG. 3, gentle irregularities are formed at intervals of about 5 to 10 particles. The period of this gentle unevenness, that is, the interval between adjacent convex portions or the interval between adjacent concave portions is larger than 50% of the average film thickness of the concave and convex portions of the wavelength conversion member 40 and about 5 times or less. In this way, the excitation light 84 can be scattered more efficiently by forming the rough irregularities on the surface of the wavelength conversion member in comparison with the minute irregularities.
 [発光装置及び照明装置]
 続いて実施の形態1に係る波長変換素子を用いた発光装置及び照明装置について図4を用いて詳細に説明する。図4は、本実施の形態に係る照明装置201の構成を示す模式的な断面図である。
[Light emitting device and lighting device]
Next, a light-emitting device and an illumination device using the wavelength conversion element according to Embodiment 1 will be described in detail with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the configuration of the illumination device 201 according to the present embodiment.
 図4に示すように、本実施の形態に係る照明装置201は、発光装置101と、投光部材220とを備える。 As shown in FIG. 4, the illumination device 201 according to the present embodiment includes a light emitting device 101 and a light projecting member 220.
 投光部材220は、発光装置101からの出射光95が入射され投影光96を出射する光学部材である。本実施の形態では、投光部材220は、パラボリックミラーなどの曲面ミラーである。 The light projecting member 220 is an optical member that emits the projection light 96 when the emitted light 95 from the light emitting device 101 is incident thereon. In the present embodiment, the light projecting member 220 is a curved mirror such as a parabolic mirror.
 本実施の形態に係る発光装置101は、主に、上述の波長変換素子1と、半導体発光装置110と、集光光学部材120とを備える。 The light emitting device 101 according to the present embodiment mainly includes the above-described wavelength conversion element 1, the semiconductor light emitting device 110, and the condensing optical member 120.
 発光装置101において、半導体発光装置110と、波長変換素子1とは基台50に固定される。基台50は、アルミニウム合金などの金属で構成される筐体である。 In the light emitting device 101, the semiconductor light emitting device 110 and the wavelength conversion element 1 are fixed to the base 50. The base 50 is a housing made of a metal such as an aluminum alloy.
 半導体発光装置110は、波長変換素子に励起光を照射する励起光源である。本実施の形態において、半導体発光装置110は、例えば、TO-CANタイプの半導体レーザであり、プリント回路板160に接続される。半導体発光装置110には、半導体発光素子111が実装される。半導体発光装置110は、基台50の底面に形成された開口部に挿入される。半導体発光素子111から出射される出射光81は、図4の上方に出射される。 The semiconductor light emitting device 110 is an excitation light source that irradiates the wavelength conversion element with excitation light. In the present embodiment, the semiconductor light emitting device 110 is, for example, a TO-CAN type semiconductor laser, and is connected to the printed circuit board 160. A semiconductor light emitting device 111 is mounted on the semiconductor light emitting device 110. The semiconductor light emitting device 110 is inserted into an opening formed on the bottom surface of the base 50. The emitted light 81 emitted from the semiconductor light emitting element 111 is emitted upward in FIG.
 集光光学部材120は、レンズ120aと、反射面を有する反射光学素子120bとで構成される。そして、レンズ120aと反射光学素子120bとは、半導体発光装置110の上方に配置される。 The condensing optical member 120 includes a lens 120a and a reflective optical element 120b having a reflective surface. The lens 120 a and the reflective optical element 120 b are disposed above the semiconductor light emitting device 110.
 発光装置101は、さらに光検出器130が実装されたプリント回路板160を備える。プリント回路板160は基台50の底面側に配置され、プリント回路板160には外部回路との接続用のコネクタ170が接続される。 The light emitting device 101 further includes a printed circuit board 160 on which a photodetector 130 is mounted. The printed circuit board 160 is disposed on the bottom surface side of the base 50, and a connector 170 for connection to an external circuit is connected to the printed circuit board 160.
 半導体発光素子111は、光導波路の幅が10μm以上のマルチモードレーザである。反射光学素子120bは、例えば、複数の凹型ミラー面が形成された反射ミラーである。この構成により半導体発光素子111から図4における上向きに出射した出射光81は、レンズ120aより平行光となり、反射光学素子120bに入射する。反射光学素子120bに入射した出射光81は、反射光学素子120bの凹型ミラー面で図4における下向きに反射し、波長変換素子1に斜め上方から照射する励起光84となる。つまり、波長変換素子1に照射された励起光84は、波長変換素子1の波長変換部材40で一部の光が変換され、散乱光からなる第1出射光85と、蛍光からなる第2出射光91とで構成される出射光95となり発光装置101から出射される。 The semiconductor light emitting device 111 is a multimode laser having an optical waveguide width of 10 μm or more. The reflective optical element 120b is, for example, a reflective mirror on which a plurality of concave mirror surfaces are formed. With this configuration, the outgoing light 81 emitted upward in FIG. 4 from the semiconductor light emitting element 111 becomes parallel light from the lens 120a and enters the reflective optical element 120b. The outgoing light 81 incident on the reflective optical element 120b is reflected downward by the concave mirror surface of the reflective optical element 120b in FIG. That is, the excitation light 84 irradiated to the wavelength conversion element 1 is partly converted by the wavelength conversion member 40 of the wavelength conversion element 1, and the first emission light 85 made of scattered light and the second emission made of fluorescence. It becomes the emitted light 95 comprised with the incident light 91, and is radiate | emitted from the light-emitting device 101. FIG.
 発光装置101から出射された出射光95は、投光部材220で、ほぼ平行光である投影光96となり照明装置201から出射される。 The emitted light 95 emitted from the light emitting device 101 is emitted from the illumination device 201 as projection light 96 that is substantially parallel light by the light projecting member 220.
 上記の発光装置101は、コネクタ170を備える。コネクタ170は、外部回路との接続が可能なコネクタである。これにより半導体発光装置110及びプリント回路板160に外部から電力を印加することができる。発光装置101はさらにフォトダイオードなどの光検出器130を備える。光検出器130は、プリント回路板160上に実装される。これにより波長変換素子1からの光を受光して、発光装置101の発光状態を示す検出信号を外部へ出力できる。また、波長変換素子1の上部に、例えばカバーガラスである透光部材140が配置される。透光部材140は、基台50と同様にアルミニウムなどの金属で形成されたホルダ53に取り付けられ、基台50に固定された波長変換素子1や集光光学部材120を覆うように固定される。これにより、発光装置101を構成する集光光学部材120及び波長変換素子1を保護することができる。本実施の形態に係る発光装置101は、半導体発光装置110と集光光学部材120とを、電気配線に用いるプリント回路板160の上方に配置し、下方に配置された波長変換素子1に斜め上方から励起光84を入射することができる。このため発光装置101を、薄型化できる。 The light emitting device 101 includes a connector 170. The connector 170 is a connector that can be connected to an external circuit. As a result, electric power can be applied to the semiconductor light emitting device 110 and the printed circuit board 160 from the outside. The light emitting device 101 further includes a photodetector 130 such as a photodiode. The photodetector 130 is mounted on the printed circuit board 160. Thereby, the light from the wavelength conversion element 1 is received, and a detection signal indicating the light emission state of the light emitting device 101 can be output to the outside. Moreover, the translucent member 140 which is a cover glass, for example is arrange | positioned on the wavelength conversion element 1 upper part. The translucent member 140 is attached to a holder 53 formed of a metal such as aluminum, like the base 50, and is fixed so as to cover the wavelength conversion element 1 and the condensing optical member 120 fixed to the base 50. . Thereby, the condensing optical member 120 and the wavelength conversion element 1 which comprise the light-emitting device 101 can be protected. In the light emitting device 101 according to the present embodiment, the semiconductor light emitting device 110 and the condensing optical member 120 are disposed above the printed circuit board 160 used for electrical wiring, and obliquely above the wavelength conversion element 1 disposed below. The excitation light 84 can be incident from the above. Therefore, the light emitting device 101 can be thinned.
 また、励起光84は、第2頂部P2側から放射面6に対して斜めに入射し、波長変換部材40は、励起光84を波長変換する。このように、励起光84を第2頂部P2側から第1頂部P1に向かう方向に入射することで、励起光84が波長変換部材40の周縁領域6aによって遮られることを軽減できる。したがって、励起光84のうち、中央領域6bに入射される成分の割合を高めることができる。つまり、励起光84の利用効率を高めることができる。 Further, the excitation light 84 is obliquely incident on the radiation surface 6 from the second apex P2 side, and the wavelength conversion member 40 converts the wavelength of the excitation light 84. As described above, the excitation light 84 is incident in the direction from the second apex P2 side toward the first apex P1, so that the excitation light 84 can be reduced from being blocked by the peripheral region 6a of the wavelength conversion member 40. Therefore, it is possible to increase the proportion of the component incident on the central region 6b in the excitation light 84. That is, the utilization efficiency of the excitation light 84 can be increased.
 また、上記構成において、反射光学素子120bを用いて、励起光84のビーム形状を整形する。この構成により、波長変換素子1に照射される励起光84の光強度分布を均一にすることができる。 In the above configuration, the beam shape of the excitation light 84 is shaped using the reflective optical element 120b. With this configuration, the light intensity distribution of the excitation light 84 irradiated to the wavelength conversion element 1 can be made uniform.
 また、本実施の形態では、図4に示すように、励起光84が、波長変換部材40に入射する向きに対して、ほぼ逆向きに投影光96が出射される。言い換えると、励起光84が波長変換部材40に入射する位置において励起光84の光軸に直交する直線であって、支持面と平行な直線を含み、支持面2aと垂直な平面PVに対して、投影光96は、平面PVより励起光源(半導体発光装置110)側に出射される。 In the present embodiment, as shown in FIG. 4, the projection light 96 is emitted in a direction almost opposite to the direction in which the excitation light 84 enters the wavelength conversion member 40. In other words, it is a straight line perpendicular to the optical axis of the excitation light 84 at a position where the excitation light 84 is incident on the wavelength conversion member 40, and includes a straight line parallel to the support surface and perpendicular to the support surface 2a. The projection light 96 is emitted from the plane PV toward the excitation light source (semiconductor light emitting device 110).
 さらに、発光装置101は半導体レーザ装置である半導体発光装置110と蛍光体を含む波長変換素子1を用いて発光させる。このため、発光ダイオードなどを用いる場合より、波長変換素子1から輝度が高い光を出射することができる。そして投光部材220を用いて、発光装置101からの出射光を遠方に照射できる。 Further, the light emitting device 101 emits light using the semiconductor light emitting device 110 which is a semiconductor laser device and the wavelength conversion element 1 including a phosphor. For this reason, light with a high brightness | luminance can be radiate | emitted from the wavelength conversion element 1 rather than the case where a light emitting diode etc. are used. Then, the light emitted from the light emitting device 101 can be irradiated far away using the light projecting member 220.
 [波長変換素子の固定]
 本実施の形態に係る発光装置101において、波長変換素子1の固定部付近の詳細な構成を、図面を用いて説明する。図5は、図4に示す発光装置101の波長変換素子1近傍の拡大図である。
[Fixing of wavelength conversion element]
In the light emitting device 101 according to the present embodiment, a detailed configuration near the fixed portion of the wavelength conversion element 1 will be described with reference to the drawings. FIG. 5 is an enlarged view of the vicinity of the wavelength conversion element 1 of the light emitting device 101 shown in FIG.
 波長変換素子1は、支持面2aの上面視において矩形の支持部材2を有する。そして波長変換部材40が、支持面2aの反射部材3上に形成される。 The wavelength conversion element 1 has a rectangular support member 2 in a top view of the support surface 2a. And the wavelength conversion member 40 is formed on the reflection member 3 of the support surface 2a.
 発光装置101の基台50には、上面視で矩形の形状であり、支持部材2の外形よりも一回り大きい凹形状の格納部50aが形成される。そして、格納部50aの底面に波長変換素子1が固定される。 The base 50 of the light emitting device 101 is formed with a storage portion 50a having a rectangular shape when viewed from the top and having a concave shape that is slightly larger than the outer shape of the support member 2. And the wavelength conversion element 1 is fixed to the bottom face of the storage part 50a.
 波長変換素子1は基台50に接着部材55により固着される。接着部材55は、例えば、シリコーン樹脂、エポキシ樹脂などを主に含む接着樹脂、AuSn、SnAgCuなどを主に含む半田を用いることができる。 The wavelength conversion element 1 is fixed to the base 50 with an adhesive member 55. For the adhesive member 55, for example, an adhesive resin mainly containing silicone resin, epoxy resin, or the like, or solder mainly containing AuSn, SnAgCu, or the like can be used.
 さらに本実施の形態に係る発光装置101においては、基台50における波長変換素子1を格納した格納部50aの上部に遮光カバー51が配置される。遮光カバー51は励起光84及び出射光95を通過させるための開口部が形成され、表面が黒色の金属の板で構成される。具体的には、黒塗装したステンレス板、又は、表面に黒色アルマイト加工したアルミ合金板である。遮光カバー51は、波長変換素子1の波長変換部材40における周縁領域6aの少なくとも一部を覆うように配置される。遮光カバー51は、例えばネジ52で基台50に強固に固定される。これにより励起光84が波長変換素子1の支持面2aにおける波長変換部材40が形成されていない領域に照射され、迷光が発生するのを抑制する。 Furthermore, in the light emitting device 101 according to the present embodiment, the light shielding cover 51 is disposed on the upper part of the storage unit 50a in the base 50 in which the wavelength conversion element 1 is stored. The light shielding cover 51 is formed with an opening for allowing the excitation light 84 and the outgoing light 95 to pass therethrough, and is formed of a black metal plate. Specifically, it is a stainless steel plate painted black, or an aluminum alloy plate whose surface is black anodized. The light shielding cover 51 is disposed so as to cover at least a part of the peripheral region 6 a in the wavelength conversion member 40 of the wavelength conversion element 1. The light shielding cover 51 is firmly fixed to the base 50 with screws 52, for example. As a result, the excitation light 84 is applied to the region of the support surface 2a of the wavelength conversion element 1 where the wavelength conversion member 40 is not formed, and the generation of stray light is suppressed.
 また、波長変換部材40から格納部50aの側壁50bの方向に出射した出射光95は、格納部50aと遮光カバー51との間の空間を多重反射して、減衰する。この結果、照明装置の投影光96に迷光が含まれるのを抑制することができる。 The emitted light 95 emitted from the wavelength conversion member 40 in the direction of the side wall 50b of the storage unit 50a is attenuated by multiple reflection in the space between the storage unit 50a and the light shielding cover 51. As a result, stray light can be suppressed from being included in the projection light 96 of the illumination device.
 さらに波長変換素子1の波長変換部材40は、中央領域6bの厚さが薄く、周縁領域6aの厚さが中央領域6bよりも厚い凹形状を有する。このため発光装置101を製造する際に、遮光カバー51が波長変換部材40の中央領域6bに位置する発光領域に接触することを抑制することができる。つまり、遮光カバー51が波長変換部材40に近づいても、波長変換部材40の中央領域6bよりも先に周縁領域6aに接触するため、波長変換部材40の中央領域6bの平坦部F1にある発光領域151に接触しにくい。このため、波長変換素子1の出射光95の光学特性が低下することを抑制できる。 Furthermore, the wavelength conversion member 40 of the wavelength conversion element 1 has a concave shape in which the central region 6b is thin and the peripheral region 6a is thicker than the central region 6b. For this reason, when manufacturing the light-emitting device 101, it can suppress that the light shielding cover 51 contacts the light emission area | region located in the center area | region 6b of the wavelength conversion member 40. FIG. That is, even when the light shielding cover 51 approaches the wavelength conversion member 40, the light emission in the flat portion F <b> 1 of the central region 6 b of the wavelength conversion member 40 is brought into contact with the peripheral region 6 a before the central region 6 b of the wavelength conversion member 40. It is difficult to contact the region 151. For this reason, it can suppress that the optical characteristic of the emitted light 95 of the wavelength conversion element 1 falls.
 また、本実施の形態においては支持部材2の側面と格納部50aとの間の一部又は全部を、接着部材55で埋めてもよい。これにより波長変換部材40から支持部材2に伝わる熱をより効果的に基台50に伝導させることができる。 In the present embodiment, part or all of the space between the side surface of the support member 2 and the storage portion 50a may be filled with the adhesive member 55. Thereby, the heat transmitted from the wavelength conversion member 40 to the support member 2 can be more effectively conducted to the base 50.
 上記のような構成により本実施の形態に係る波長変換素子1及びそれを用いた発光装置101において、高い輝度の出射光を出射させることができる。このような発光装置101は、小型の投光部材220を用いて照明装置201を構成した場合、高い光度の照明装置201を実現できる。したがって、本実施の形態に係る発光装置101は、車両の前照灯などに用いる光源として適している。 With the configuration as described above, the wavelength conversion element 1 according to the present embodiment and the light emitting device 101 using the wavelength conversion element 1 can emit outgoing light with high luminance. Such a light emitting device 101 can realize a lighting device 201 with high luminous intensity when the lighting device 201 is configured using a small light projecting member 220. Therefore, the light emitting device 101 according to the present embodiment is suitable as a light source used for a vehicle headlamp or the like.
 [動作及び効果]
 続いて、図面を用いて本実施の形態に係る波長変換素子1の動作及び効果について実験データに基づき説明する。
[Operation and effect]
Next, the operation and effect of the wavelength conversion element 1 according to this embodiment will be described based on experimental data with reference to the drawings.
 本実験データについては、図4に示される発光装置101に波長変換素子1を搭載して評価を行った。発光装置101からの出射光95の輝度、及び、波長変換素子1の表面温度については、図4に示す照明装置201から投光部材220を取り除いた状態で図4の上方からサーモグラフィーを用いて測定した。なお、表面温度の測定方法は、サーモグラフィーに限定されず、他の方法であってもよい。 The experimental data was evaluated by mounting the wavelength conversion element 1 on the light emitting device 101 shown in FIG. About the brightness | luminance of the emitted light 95 from the light-emitting device 101, and the surface temperature of the wavelength conversion element 1, it measured using the thermography from the upper direction of FIG. 4 in the state which removed the light projection member 220 from the illuminating device 201 shown in FIG. did. The method for measuring the surface temperature is not limited to thermography, and may be other methods.
 発光装置101は、波長変換素子1に励起光84を照射するための半導体発光装置110を備える。また波長変換素子1に照射される励起光84のビームを整形するための反射光学素子120bを備える。波長変換素子1及び半導体発光装置110は、それぞれ発生する熱を外部に放熱させるため基台50に熱伝導率の高い材料で強固に固定される。 The light emitting device 101 includes a semiconductor light emitting device 110 for irradiating the wavelength conversion element 1 with excitation light 84. The reflection optical element 120b for shaping the beam of the excitation light 84 irradiated to the wavelength conversion element 1 is also provided. The wavelength conversion element 1 and the semiconductor light emitting device 110 are firmly fixed to the base 50 with a material having high thermal conductivity in order to dissipate generated heat to the outside.
 基台50に固定された波長変換素子1には、図1に示すように、励起光84が放射面6に対して斜め方向に照射される。励起光84は、ピーク波長が430nm以上470nm以下のレーザ光である。放射面6に照射された励起光84の一部は、波長変換部材40の第1蛍光体粒子41に吸収され、別の波長の光である蛍光に変換され、放射面6から全方位に放射される第2出射光91として放射される。 The wavelength conversion element 1 fixed to the base 50 is irradiated with excitation light 84 obliquely with respect to the radiation surface 6 as shown in FIG. The excitation light 84 is laser light having a peak wavelength of 430 nm or more and 470 nm or less. A part of the excitation light 84 irradiated on the radiation surface 6 is absorbed by the first phosphor particles 41 of the wavelength conversion member 40, converted into fluorescence that is light of another wavelength, and emitted from the radiation surface 6 in all directions. The second emitted light 91 is emitted.
 一方、波長変換部材40に入射した光のうち、第1蛍光体粒子41に吸収されなかった光は、波長変換部材40の表面又は内部で反射されて、波長変換部材40から第1出射光85として放射される。このとき、波長変換部材40の内部で反射される光は、複数の第1蛍光体粒子41で多重反射して、波長変換部材40の放射面6から放射される。このため、波長変換部材40の内部で反射される光は、波長変換部材40の放射面6から全方位に放射される第1出射光85として放射される。一方、波長変換部材40の放射面6、又は、放射面6付近で反射され、第1出射光85として放射される光についても、波長変換部材40の放射面6の微小凸部、微小凹部、又は、放射面6の近傍に存在する第1蛍光体粒子41と透明結合材42との界面で乱反射されて放射される。このため、放射面6、又は、放射面6付近で反射され、第1出射光85として放射される光も波長変換部材40の放射面6から全方位に放射される。 On the other hand, of the light incident on the wavelength conversion member 40, the light that is not absorbed by the first phosphor particles 41 is reflected on the surface or inside of the wavelength conversion member 40 and is emitted from the wavelength conversion member 40 to the first outgoing light 85. Is emitted as. At this time, the light reflected inside the wavelength conversion member 40 is multiple-reflected by the plurality of first phosphor particles 41 and is emitted from the radiation surface 6 of the wavelength conversion member 40. For this reason, the light reflected inside the wavelength conversion member 40 is radiated as first outgoing light 85 radiated in all directions from the radiation surface 6 of the wavelength conversion member 40. On the other hand, the light that is reflected near the radiation surface 6 of the wavelength conversion member 40 or near the radiation surface 6 and is emitted as the first outgoing light 85 is also a minute convex portion, a minute concave portion of the radiation surface 6 of the wavelength conversion member 40, Alternatively, the light is diffused and radiated at the interface between the first phosphor particles 41 and the transparent binder 42 existing in the vicinity of the radiation surface 6. For this reason, the light reflected at or near the radiation surface 6 and emitted as the first outgoing light 85 is also emitted from the radiation surface 6 of the wavelength conversion member 40 in all directions.
 上記の結果、波長変換部材40の放射面6からは、全方位に放射される第1出射光85と第2出射光91とが混合された混合光である出射光95が放射される。このとき、波長変換部材40は、例えば、図1に示すように、中央領域6bの厚さが周縁領域6aの最大膜厚と比較して薄くなる凹形状を有する。そして凹形状の底面である中央領域6bは、厚さの変化が小さい平坦部F1を有する。また、凹形状の底面部付近の平坦部F1は、励起光84の励起領域150及び出射光95の発光領域151よりも大きくなるように設定されてもよい。これにより、波長変換部材40から放射される出射光95の色度分布を均一化できる。 As a result, from the radiation surface 6 of the wavelength conversion member 40, the emitted light 95, which is a mixed light in which the first emitted light 85 and the second emitted light 91 emitted in all directions are mixed, is emitted. At this time, for example, as shown in FIG. 1, the wavelength conversion member 40 has a concave shape in which the thickness of the central region 6b is thinner than the maximum film thickness of the peripheral region 6a. And the center area | region 6b which is a concave bottom face has the flat part F1 with a small change of thickness. Further, the flat portion F <b> 1 near the bottom surface of the concave shape may be set to be larger than the excitation region 150 of the excitation light 84 and the light emission region 151 of the emitted light 95. Thereby, the chromaticity distribution of the outgoing light 95 emitted from the wavelength conversion member 40 can be made uniform.
 この結果、第1出射光85を青色光、第2出射光91を黄色光とすると、波長変換部材40から、色度分布の偏りの小さい白色光からなる出射光95を放出させることができる。 As a result, when the first emitted light 85 is blue light and the second emitted light 91 is yellow light, the wavelength conversion member 40 can emit the emitted light 95 made of white light with a small chromaticity distribution bias.
 続いて図6を用いて、本実施の形態の波長変換素子1に、所定の光密度の励起光84を照射した場合の光学特性を説明する。図6は、本実施の形態に係る波長変換素子1の光学特性を示す図である。 Subsequently, optical characteristics when the wavelength conversion element 1 of the present embodiment is irradiated with excitation light 84 having a predetermined light density will be described with reference to FIG. FIG. 6 is a diagram showing optical characteristics of the wavelength conversion element 1 according to the present embodiment.
 まず、図6のグラフ(a)は、第1蛍光体粒子41として用いたCe賦活YAl12蛍光体粒子の量子効率の温度依存性を示す図である。Ce賦活YAl12蛍光体粒子の量子効率は温度が上昇するに従い低下し、150℃を超えると急激に量子効率が低下し始める。 First, the graph (a) in FIG. 6 is a diagram showing the temperature dependence of the quantum efficiency of Ce-activated Y 3 Al 5 O 12 phosphor particles used as the first phosphor particles 41. The quantum efficiency of the Ce-activated Y 3 Al 5 O 12 phosphor particles decreases as the temperature increases, and when the temperature exceeds 150 ° C., the quantum efficiency starts to decrease rapidly.
 図6のグラフ(b)は、励起光84を波長変換部材40に照射し、波長変換部材40で散乱反射された励起光と、波長変換部材40で励起光84が吸収及び変換されて出射される蛍光とが混合されてなる混色光である出射光95(白色光)の色度座標を説明するための図である。本実施の形態において、色度座標が(0.161,0.014)の青色レーザ光である出射光を出射する励起光源と,色度座標が(0.426,0.547)の蛍光を発する蛍光体粒子(YAG)を用いて実験した。したがって、図3のグラフ(b)において、色度座標が(0.161,0.014)と(0.426,0.547)とを結ぶ直線(混合光の軌跡)と、黒体輻射軌跡とが交差する色度座標である(0.317,0.327)を色度座標のターゲットとした。 The graph (b) of FIG. 6 irradiates the wavelength conversion member 40 with the excitation light 84, the excitation light scattered and reflected by the wavelength conversion member 40, and the excitation light 84 is absorbed and converted by the wavelength conversion member 40 and emitted. It is a figure for demonstrating the chromaticity coordinate of the emitted light 95 (white light) which is the mixed color light formed by mixing the fluorescence which is. In the present embodiment, an excitation light source that emits outgoing light that is blue laser light with chromaticity coordinates of (0.161, 0.014) and fluorescence with chromaticity coordinates of (0.426, 0.547). Experiments were performed using phosphor particles (YAG). Therefore, in the graph (b) of FIG. 3, a straight line (mixed light trajectory) connecting the chromaticity coordinates (0.161, 0.014) and (0.426, 0.547) and the black body radiation trajectory. The chromaticity coordinates (0.317, 0.327) that intersect with each other were used as chromaticity coordinate targets.
 図6のグラフ(c)及び(e)は、本実施の形態に係る波長変換素子1に、光出力が約3.2ワットで、照射範囲が一辺約0.7mmの正方形状に整形した励起光84を入射させた場合の、波長変換部材40の発光領域部分の厚さと、波長変換部材40の表面のピーク温度との関係を測定した結果である。図6のグラフ(c)においては、第1蛍光体粒子のメジアン径D50が3μm、4μm、6μm、9μmのときを比較した結果が示される。ここで第1蛍光体粒子41と透明結合材42との体積比率は、45:65とした。また図6のグラフ(e)においては、第1蛍光体粒子41のメジアン径D50を6μmとし、第1蛍光体粒子41と透明結合材42の体積比率を変化させて測定した。図中に記載している38%、45%、55%、65%は波長変換部材40に対する透明結合材42の比率である。つまり、透明結合材の体積Vb及び第1蛍光体粒子の体積Vfを用いると、Vb/(Vf+Vb)で表される比率である。 Graphs (c) and (e) in FIG. 6 show the excitation converted into a square shape with a light output of about 3.2 watts and an irradiation range of about 0.7 mm on the wavelength conversion element 1 according to the present embodiment. It is the result of measuring the relationship between the thickness of the light emitting region portion of the wavelength conversion member 40 and the peak temperature of the surface of the wavelength conversion member 40 when the light 84 is incident. The graph (c) in FIG. 6 shows the result of comparison when the median diameter D50 of the first phosphor particles is 3 μm, 4 μm, 6 μm, and 9 μm. Here, the volume ratio between the first phosphor particles 41 and the transparent binder 42 was set to 45:65. In the graph (e) of FIG. 6, the measurement was performed by changing the volume ratio of the first phosphor particles 41 and the transparent binder 42 while setting the median diameter D50 of the first phosphor particles 41 to 6 μm. 38%, 45%, 55%, and 65% described in the figure are the ratios of the transparent binder 42 to the wavelength conversion member 40. That is, when the volume Vb of the transparent binder and the volume Vf of the first phosphor particles are used, the ratio is represented by Vb / (Vf + Vb).
 つまり、これらの比率を、波長変換部材40に対する第1蛍光体粒子41の比率Vf/(Vf+Vb)に変換すると、それぞれ62%、55%、45%、35%となる。 That is, when these ratios are converted into the ratio Vf / (Vf + Vb) of the first phosphor particles 41 with respect to the wavelength conversion member 40, they are 62%, 55%, 45%, and 35%, respectively.
 前述のように、蛍光体粒子の温度が上昇すると蛍光体の変換効率が低下する。特に150℃以上になると、変換効率が急激に低下する。このような場合、波長変換部材40における発熱量が急激に増加し、蛍光体変換におけるクエンチを起こし、発光装置がほとんど発光しなくなる。例えば、外部環境が変化して蛍光体粒子の温度が大幅に上昇する場合、発光装置が発光しなくなるおそれがある。図6のグラフ(c)及び(e)において、波長変換部材40の厚さが35μm以下の場合は、波長変換部材40の表面温度のピーク温度は150℃以下である。したがって、本実施の形態に係る発光装置101において、波長変換素子1で安定的に高輝度の白色光を放射させるために、波長変換部材40の厚さは35μm以下であってもよい。 As described above, the phosphor conversion efficiency decreases as the temperature of the phosphor particles increases. In particular, when the temperature is 150 ° C. or higher, the conversion efficiency rapidly decreases. In such a case, the amount of heat generated in the wavelength conversion member 40 increases abruptly, causing quenching in phosphor conversion, and the light emitting device hardly emits light. For example, when the external environment changes and the temperature of the phosphor particles increases significantly, the light emitting device may not emit light. In the graphs (c) and (e) of FIG. 6, when the thickness of the wavelength conversion member 40 is 35 μm or less, the peak temperature of the surface temperature of the wavelength conversion member 40 is 150 ° C. or less. Therefore, in the light emitting device 101 according to the present embodiment, the wavelength conversion member 40 may have a thickness of 35 μm or less so that the wavelength conversion element 1 can stably emit high-luminance white light.
 一方、図6のグラフ(d)及び(f)については、図6のグラフ(c)及び(e)と同様に、波長変換部材40の構成を変化させた場合の、出射光95の光度の色度変化を示した図である。 On the other hand, for the graphs (d) and (f) in FIG. 6, as in the graphs (c) and (e) in FIG. 6, the luminous intensity of the emitted light 95 when the configuration of the wavelength conversion member 40 is changed. It is the figure which showed chromaticity change.
 前述のように、白色光の色度座標のターゲットは(0.317,0.327)である。そこで、ターゲットの白色光と近い相関色温度となる、色度座標のx値が0.30以上0.35以下の範囲をターゲット範囲とした。x値に関して、波長変換部材40の厚さが薄くなると色度座標のx値が低くなり、厚くなるとx値が高くなる。つまり波長変換部材40の厚さが薄くなるにしたがって、白色光がより青白くなり、厚くなるにしたがって、白色光がより黄色っぽくなる。これは、波長変換部材40の厚さが薄くなると励起光84が波長変換部材40で十分に蛍光に変換されずに放射されることにより、出射光95のうち、第1出射光85の比率が第2出射光91の比率より高くなるためである。一方で、波長変換部材40の厚さが厚くなると、励起光84が波長変換部材40で大部分が蛍光に変換されることにより、出射光95のうち、第2出射光91の比率が第1出射光85の比率より高くなるためである。 As described above, the target of chromaticity coordinates of white light is (0.317, 0.327). Therefore, the target range is the range where the x value of the chromaticity coordinates is 0.30 or more and 0.35 or less, which is a correlated color temperature close to the white light of the target. Regarding the x value, the x value of the chromaticity coordinates decreases as the thickness of the wavelength conversion member 40 decreases, and the x value increases as it increases in thickness. That is, as the thickness of the wavelength conversion member 40 becomes thinner, the white light becomes more bluish and as the thickness becomes thicker, the white light becomes more yellowish. This is because when the thickness of the wavelength conversion member 40 is reduced, the excitation light 84 is radiated without being sufficiently converted into fluorescence by the wavelength conversion member 40, so that the ratio of the first outgoing light 85 in the outgoing light 95 is increased. This is because the ratio of the second emitted light 91 is higher. On the other hand, when the thickness of the wavelength conversion member 40 is increased, most of the excitation light 84 is converted into fluorescence by the wavelength conversion member 40, so that the ratio of the second emission light 91 in the emission light 95 is the first. This is because the ratio of the outgoing light 85 becomes higher.
 波長変換部材40から出射される第1出射光85は、励起光84が第1蛍光体粒子41と透明結合材42の界面で乱反射又は多重反射されて出射する光である。また、第1出射光85の一部は、乱反射又は多重反射の過程で反射部材3に到達し反射された励起光84も含まれる。図6のグラフ(d)及び(f)に示すように、波長変換部材40の厚さが15μmを超えると、波長変換部材40の膜厚に対する出射光95の色度座標の色度xの増加率は緩やかになる。これは、第1出射光85が、乱反射又は多重反射の過程で反射部材3に到達しない励起光84の割合が支配的になるためと推察される。 The first outgoing light 85 emitted from the wavelength conversion member 40 is light that is emitted after the excitation light 84 is irregularly reflected or multiple-reflected at the interface between the first phosphor particles 41 and the transparent binder 42. In addition, a part of the first outgoing light 85 includes the excitation light 84 that reaches the reflection member 3 and is reflected in the process of irregular reflection or multiple reflection. As shown in graphs (d) and (f) of FIG. 6, when the thickness of the wavelength conversion member 40 exceeds 15 μm, the chromaticity x of the chromaticity coordinate of the emitted light 95 with respect to the film thickness of the wavelength conversion member 40 increases. The rate will be moderate. This is presumably because the ratio of the excitation light 84 in which the first outgoing light 85 does not reach the reflecting member 3 in the process of irregular reflection or multiple reflection becomes dominant.
 一方で波長変換部材40の厚さが15μmより小さい場合、出射光95の色度座標の色度xが厚さの減少に伴い急激に低下する。これは、励起光84が波長変換部材40の内部をほとんど乱反射及び多重反射せずに発光領域151から出射されるためである。したがって、出射光95の色度座標を安定的に調整するために、波長変換部材40の厚さは15μm以上であってもよい。 On the other hand, when the thickness of the wavelength conversion member 40 is smaller than 15 μm, the chromaticity x of the chromaticity coordinate of the outgoing light 95 is rapidly lowered as the thickness is reduced. This is because the excitation light 84 is emitted from the light emitting region 151 with almost no irregular reflection and multiple reflection inside the wavelength conversion member 40. Therefore, in order to stably adjust the chromaticity coordinates of the outgoing light 95, the thickness of the wavelength conversion member 40 may be 15 μm or more.
 上述したように、色度座標のx値が0.30以上0.35以下の範囲をターゲット範囲としている。このターゲット範囲を実現するために、図6のグラフ(d)及び(f)に示すように、波長変換部材40の厚さは15μm以上であってもよい。 As described above, the range where the x value of the chromaticity coordinates is 0.30 or more and 0.35 or less is the target range. In order to realize this target range, as shown in graphs (d) and (f) of FIG. 6, the thickness of the wavelength conversion member 40 may be 15 μm or more.
 上記の検討の結果から、波長変換部材40の中央領域6bにおける膜厚は、波長変換部材40の表面温度の観点と、出射光95の色度の観点とから、15μm以上35μm以下の範囲であってもよい。また、図6のグラフ(c)~(f)に示すように第1蛍光体粒子41のメジアン径D50を3μm以上9μm以下とする場合、波長変換部材40の膜厚は、15μm以上35μm以下の範囲で設定することができる。また、波長変換部材40の体積に対して、第1蛍光体粒子41の総体積(つまり、体積比率)は38%以上62%以下で設定することができる。このとき、図3に示すような波長変換部材40の断面において、波長変換部材40の断面積に対して、第1蛍光体粒子41の断面積の合計は40%以上80%以下程度となる。 As a result of the above examination, the film thickness in the central region 6b of the wavelength conversion member 40 is in the range of 15 μm or more and 35 μm or less from the viewpoint of the surface temperature of the wavelength conversion member 40 and the viewpoint of the chromaticity of the emitted light 95. May be. Further, as shown in graphs (c) to (f) of FIG. 6, when the median diameter D50 of the first phosphor particles 41 is 3 μm or more and 9 μm or less, the film thickness of the wavelength conversion member 40 is 15 μm or more and 35 μm or less. Can be set by range. Further, the total volume (that is, volume ratio) of the first phosphor particles 41 can be set to 38% or more and 62% or less with respect to the volume of the wavelength conversion member 40. At this time, in the cross section of the wavelength conversion member 40 as shown in FIG. 3, the total cross-sectional area of the first phosphor particles 41 is about 40% to 80% with respect to the cross-sectional area of the wavelength conversion member 40.
 上記実施の形態の効果を図7を用いて説明する。図7は、本実施の形態に係る波長変換部材40から出射される出射光95の輝度の測定結果を示すグラフである。図7のグラフ(a)は、励起光84を出射させるために用いた半導体発光装置110に印加した駆動電流と、出射光95の出射領域における輝度ピーク値の関係を測定した結果を示す。また、図7のグラフ(a)には、本実施の形態に係る膜厚が20μmの波長変換部材40を用いた発光装置の結果と併せて、膜厚が42μmの波長変換部材40を用いた比較例の発光装置の結果を示している。本測定では、環境温度(Ta)25℃のときピーク波長が446nmで、駆動電流(I)2.3Aのとき光出力が約3.2ワットの励起光84を、波長変換素子1に照射した。 The effect of the said embodiment is demonstrated using FIG. FIG. 7 is a graph showing the measurement result of the luminance of the outgoing light 95 emitted from the wavelength conversion member 40 according to the present embodiment. The graph (a) in FIG. 7 shows the result of measuring the relationship between the drive current applied to the semiconductor light emitting device 110 used for emitting the excitation light 84 and the luminance peak value in the emission region of the emitted light 95. Moreover, the graph (a) of FIG. 7 used the wavelength conversion member 40 with a film thickness of 42 micrometers together with the result of the light-emitting device using the wavelength conversion member 40 with a film thickness of 20 micrometers according to the present embodiment. The result of the light-emitting device of the comparative example is shown. In this measurement, the wavelength conversion element 1 is irradiated with excitation light 84 having a peak wavelength of 446 nm at an environmental temperature (Ta) of 25 ° C. and an optical output of about 3.2 watts at a drive current (I f ) of 2.3 A. did.
 比較例の発光装置においては、駆動電流2アンペア程度で、輝度ピーク値が飽和する。つまり、駆動電流2アンペア程度以上においては、駆動電流を増加させても輝度ピーク値はほぼ増加しなくなる。これは上述したように、比較例の発光装置では、駆動電流に伴って励起光84のパワーが増大すると、波長変換部材40の表面温度とともに、波長変換部材40の第1蛍光体粒子41の温度が上昇し、第1蛍光体粒子41の変換効率が急激に低下しているためと考えられる。一方で、本実施の形態の波長変換素子1においては、駆動電流2アンペア以上でも駆動電流の増加とともに出射光95の輝度ピークが増加し、ピーク輝度1000cd/mmを超える発光装置を実現できた。図7のグラフ(b)は駆動電流2.3アンペアのときの波長変換素子1の発光領域151における輝度分布を示す。図7のグラフ(b)に示すように、発光領域151の幅は約0.8mmで、輝度分布の高輝度領域では、出射光95の輝度が1000cd/mm以上である。しかも輝度が、1000cd/mm以上で、かつ、平坦な領域が、0.2mm以上の幅において得られる。つまり、輝度分布が平坦で、かつ、高輝度な発光領域151を有する発光装置を実現できた。 In the light emitting device of the comparative example, the luminance peak value is saturated at a driving current of about 2 amperes. That is, at a driving current of about 2 amperes or more, the luminance peak value hardly increases even if the driving current is increased. As described above, in the light emitting device of the comparative example, when the power of the excitation light 84 increases with the drive current, the temperature of the first phosphor particles 41 of the wavelength conversion member 40 is increased along with the surface temperature of the wavelength conversion member 40. This is considered to be because the conversion efficiency of the first phosphor particles 41 is drastically decreased. On the other hand, in the wavelength conversion element 1 of the present embodiment, the luminance peak of the emitted light 95 increases as the driving current increases even when the driving current is 2 amperes or more, and a light emitting device exceeding the peak luminance of 1000 cd / mm 2 can be realized. . A graph (b) in FIG. 7 shows a luminance distribution in the light emitting region 151 of the wavelength conversion element 1 when the driving current is 2.3 amperes. As shown in the graph (b) of FIG. 7, the width of the light emitting region 151 is about 0.8 mm, and the luminance of the emitted light 95 is 1000 cd / mm 2 or more in the high luminance region of the luminance distribution. In addition, the luminance is 1000 cd / mm 2 or more, and a flat region is obtained with a width of 0.2 mm or more. That is, a light emitting device having a flat luminance distribution and a high luminance light emitting region 151 can be realized.
 続いて、波長変換素子1の表面形状の形態例について図8を用いて詳細に説明する。図8は、実施の形態1に係る波長変換素子1の波長変換部材40を三つの異なる方法によって製造した場合の各表面形状の測定結果を示すグラフである。図8のグラフ(a1)は、スクリーンメッシュ印刷マスクの開口部が直径2.6mmの円開口で、厚さを62μmとし、第1蛍光体粒子41と透明結合材42との体積比率が60%:40%となるような蛍光体ペーストを印刷したものである。図8のグラフ(b1)は、スクリーンメッシュ印刷マスクの開口部が直径2.6mmの円開口で、厚さを41μmとし、第1蛍光体粒子41と透明結合材42との体積比率が60%:40%となる蛍光体ペーストを印刷したものである。図8のグラフ(C1)は、スクリーンメッシュ印刷マスクの開口部が幅3.4mmの矩形開口で、厚さを62μmとし、第1蛍光体粒子41と透明結合材42との体積比率を40%:60%として印刷したものである。図8のグラフ(a2)、(b2)及び(c2)は、それぞれ、グラフ(a1)、(b1)及び(c1)のサイズを示すために目盛を追加し、トレースしたグラフである。 Subsequently, an example of the shape of the surface shape of the wavelength conversion element 1 will be described in detail with reference to FIG. FIG. 8 is a graph showing measurement results of each surface shape when the wavelength conversion member 40 of the wavelength conversion element 1 according to Embodiment 1 is manufactured by three different methods. The graph (a1) in FIG. 8 shows that the opening of the screen mesh printing mask is a circular opening having a diameter of 2.6 mm, the thickness is 62 μm, and the volume ratio between the first phosphor particles 41 and the transparent binder 42 is 60%. : 40% phosphor paste printed. The graph (b1) in FIG. 8 shows that the opening of the screen mesh printing mask is a circular opening having a diameter of 2.6 mm, the thickness is 41 μm, and the volume ratio between the first phosphor particles 41 and the transparent binder 42 is 60%. : 40% phosphor paste printed. The graph (C1) in FIG. 8 shows that the opening of the screen mesh printing mask is a rectangular opening with a width of 3.4 mm, the thickness is 62 μm, and the volume ratio between the first phosphor particles 41 and the transparent binder 42 is 40%. : 60% printed. Graphs (a2), (b2), and (c2) in FIG. 8 are graphs obtained by adding a scale to indicate the sizes of the graphs (a1), (b1), and (c1), respectively, and tracing them.
 なお、ここで用いられるメッシュは、例えば、Feを含まない材料で形成されたメッシュであってもよい。Feを含む材料で形成されたメッシュで印刷した場合、Feの微粉が波長変換部材中に混入し、第1出射光もしくは第2出射光の一部が吸収され効率が低下する。Feを含まない材料で形成されたメッシュを用いることで上記の効率の低下を抑制することができる。 Note that the mesh used here may be, for example, a mesh formed of a material not containing Fe. When printing is performed with a mesh formed of a material containing Fe, fine powder of Fe is mixed in the wavelength conversion member, and a part of the first emitted light or the second emitted light is absorbed and the efficiency is lowered. By using a mesh formed of a material that does not contain Fe, the above-described decrease in efficiency can be suppressed.
 図8のグラフ(a1)及び(a2)に示す結果において、波長変換部材40の中央領域の膜厚が44μmであり、波長変換部材40は中央領域が周縁領域よりも厚い凸形状を有する。この場合、前述のように発光領域付近における波長変換部材40の膜厚変化は小さいが、膜厚が厚いため波長変換部材40の温度が上昇し、発光装置の高輝度化が難しかった。 In the results shown in the graphs (a1) and (a2) of FIG. 8, the film thickness of the central region of the wavelength conversion member 40 is 44 μm, and the wavelength conversion member 40 has a convex shape whose central region is thicker than the peripheral region. In this case, as described above, the change in the film thickness of the wavelength conversion member 40 in the vicinity of the light emitting region is small, but since the film thickness is thick, the temperature of the wavelength conversion member 40 is increased, and it is difficult to increase the luminance of the light emitting device.
 図8のグラフ(b1)及び(b2)に示す結果においては、波長変換部材40は中央領域の膜厚が20μm以上24μm以下程度であり、波長変換部材40の温度上昇を抑制できる。しかしながら、発光領域内において、膜厚が20μmから24μmの範囲で変化する可能性があるため、出射光の発光領域の色度ムラが発生する可能性がある。 In the results shown in the graphs (b1) and (b2) of FIG. 8, the wavelength conversion member 40 has a film thickness in the central region of about 20 μm or more and 24 μm or less, and the temperature increase of the wavelength conversion member 40 can be suppressed. However, since the film thickness may change in the range of 20 μm to 24 μm in the light emitting region, chromaticity unevenness in the light emitting region of the emitted light may occur.
 一方で、図8のグラフ(c1)及び(c2)に示す結果においては、波長変換部材40の中央領域の膜厚が18μmであり、周縁領域の膜厚が24μmとなる。このように、波長変換部材40は、凹形状を有する。このため、波長変換部材40の中央領域の膜厚を35μm以下とするとともに、中央領域の膜厚の変化を抑制できる。したがって、発光領域における波長変換部材40の温度上昇を抑制することで励起光を十分に蛍光に変換でき、かつ、発光領域内における出射光の色度ムラを抑制できる。 On the other hand, in the results shown in the graphs (c1) and (c2) of FIG. 8, the film thickness of the central region of the wavelength conversion member 40 is 18 μm, and the film thickness of the peripheral region is 24 μm. Thus, the wavelength conversion member 40 has a concave shape. For this reason, while making the film thickness of the center area | region of the wavelength conversion member 40 into 35 micrometers or less, the change of the film thickness of a center area | region can be suppressed. Therefore, by suppressing the temperature rise of the wavelength conversion member 40 in the light emitting region, the excitation light can be sufficiently converted to fluorescence, and the chromaticity unevenness of the emitted light in the light emitting region can be suppressed.
 さらに本実施の形態においては、支持部材2上に波長変換部材40を固着させた波長変換素子1において、支持部材2と波長変換部材40との線膨張係数が異なる。このような場合、波長変換部材40の膜厚が厚い方が、波長変換素子1の温度変化に伴って波長変換部材40に加わる応力が緩和され、波長変換部材が支持部材から剥がれることを抑制することができる。図8のグラフ(b1)、(b2)、(c1)及び(c2)においては、蛍光を放射し、波長変換部材40の膜厚が薄い中央領域の周辺に波長変換部材40の膜厚が厚い周辺部を設けている。このため、波長変換素子1の環境温度変化や、波長変換素子1を発光させたときの温度変化に対して、波長変換部材40の支持部材2からの剥がれなどを抑制することができる。つまり、本実施の形態に係る波長変換素子1においては、機械的強度高めることができる。また、周縁領域6aの膜厚を厚くすることで、比較的高温となる中央領域6bから周縁領域6aへの放熱効率を高めることもできる。 Further, in the present embodiment, in the wavelength conversion element 1 in which the wavelength conversion member 40 is fixed on the support member 2, the linear expansion coefficients of the support member 2 and the wavelength conversion member 40 are different. In such a case, when the wavelength conversion member 40 is thicker, the stress applied to the wavelength conversion member 40 with the temperature change of the wavelength conversion element 1 is alleviated, and the wavelength conversion member is prevented from peeling off from the support member. be able to. In the graphs (b1), (b2), (c1), and (c2) of FIG. 8, the wavelength conversion member 40 is thick in the vicinity of the central region that emits fluorescence and the wavelength conversion member 40 is thin. A peripheral part is provided. For this reason, peeling of the wavelength conversion member 40 from the support member 2 can be suppressed with respect to changes in the environmental temperature of the wavelength conversion element 1 and temperature changes when the wavelength conversion element 1 is caused to emit light. That is, in the wavelength conversion element 1 according to the present embodiment, the mechanical strength can be increased. Further, by increasing the film thickness of the peripheral region 6a, it is possible to increase the heat radiation efficiency from the central region 6b that is relatively high temperature to the peripheral region 6a.
 したがって、波長変換部材40の形状としては、図8のグラフ(c1)及び(c2)に示すような中央領域において膜厚が薄い凹形状が最適である。そして、さらに図8のグラフ(c1)及び(c2)に示す波長変換素子1においては、周縁領域も含めて、波長変換部材40の膜厚が35μm以下である。したがって、励起光84が波長変換部材40のいずれの場所に照射されても、波長変換部材40の温度上昇を抑制することができる。このため、発光装置の製造時に、励起光84が照射される励起領域の位置を調整する場合などに、励起光84が波長変換部材40の中央領域以外のところに照射されても、波長変換部材40の温度上昇に起因する劣化を抑制することができる。 Therefore, as the shape of the wavelength conversion member 40, a concave shape having a thin film thickness in the central region as shown in the graphs (c1) and (c2) of FIG. 8 is optimal. Further, in the wavelength conversion element 1 shown in the graphs (c1) and (c2) of FIG. 8, the film thickness of the wavelength conversion member 40 including the peripheral region is 35 μm or less. Therefore, the temperature rise of the wavelength conversion member 40 can be suppressed regardless of where the excitation light 84 is irradiated on the wavelength conversion member 40. For this reason, when adjusting the position of the excitation region irradiated with the excitation light 84 at the time of manufacturing the light emitting device, the wavelength conversion member is not affected even if the excitation light 84 is irradiated to a place other than the central region of the wavelength conversion member 40. Deterioration caused by a temperature increase of 40 can be suppressed.
 なお、図8のグラフ(c1)及び(c2)に示すような波長変換部材40は、第1蛍光体粒子41と透明結合材42との体積比率などを波長変換部材の寸法などに応じて適宜調整することによって実現できる。また、蛍光ペースト印刷工程におけるスキージの走査の向きも波長変換部材40の形状に影響を与える。例えば、図8のグラフ(b1)及び(b2)に示す波長変換部材40においては、波長変換部材40を形成する蛍光ペースト印刷工程においてスキージが図中の左側から右側へ走査される。このため、蛍光ペースト印刷工程の走査終了点側の印刷マスク開口部端部において、蛍光体ペーストの量が多くなることで、波長変換部材40の右端の膜厚が最も厚くなったと考えられる。 In addition, the wavelength conversion member 40 as shown in the graphs (c1) and (c2) of FIG. 8 appropriately changes the volume ratio of the first phosphor particles 41 and the transparent binder 42 according to the dimensions of the wavelength conversion member. It can be realized by adjusting. In addition, the scanning direction of the squeegee in the fluorescent paste printing process also affects the shape of the wavelength conversion member 40. For example, in the wavelength conversion member 40 shown in the graphs (b1) and (b2) in FIG. 8, the squeegee is scanned from the left side to the right side in the drawing in the fluorescent paste printing process for forming the wavelength conversion member 40. For this reason, it is considered that the film thickness at the right end of the wavelength conversion member 40 is the largest because the amount of the phosphor paste increases at the end of the print mask opening on the scanning end point side of the fluorescent paste printing process.
 (実施の形態1の変形例1)
 続いて、実施の形態1の変形例1に係る波長変換素子について図面を用いて説明する。図9は本変形例に係る波長変換素子1Bの構成を示す模式的な断面図である。
(Modification 1 of Embodiment 1)
Subsequently, a wavelength conversion element according to Modification 1 of Embodiment 1 will be described with reference to the drawings. FIG. 9 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1B according to this modification.
 本変形例に係る波長変換素子1Bにおいては、波長変換部材40Bの中央領域6bの膜厚dが、実施の形態1と同様に15μm以上35μm以下の範囲である。一方、本変形例においては、波長変換部材40Bの周縁領域6aの一部の膜厚だけが中央領域6bの膜厚と比較して厚い。具体的には、図9において、図9に示す右側の周縁領域6aの最大膜厚de2が中央領域の膜厚dよりも大きく(de2>d)、左側の周縁領域6aの最大膜厚は、中央領域6bの膜厚dと同程度である。 In the wavelength conversion element 1B according to the present modified example, the thickness d c of the central region 6b of the wavelength conversion member 40B is in the range of 15μm or 35μm or less in the same manner as the first embodiment. On the other hand, in this modification, only a part of the film thickness of the peripheral region 6a of the wavelength conversion member 40B is thicker than the film thickness of the central region 6b. Specifically, in FIG. 9, the maximum film thickness d e2 of the right peripheral area 6a shown in FIG. 9 is larger than the film thickness d c of the center area (d e2 > d c ), and the maximum film thickness of the left peripheral area 6a is the film thickness is about the same as the thickness d c of the central region 6b.
 この構成により、波長変換素子1Bを図5に示すような発光装置101の格納部50aに固定し、遮光カバー51を配置する場合に、遮光カバー51が波長変換部材40の中央領域6b(又は平坦部F1)に接触するのを抑制することができる。 With this configuration, when the wavelength conversion element 1B is fixed to the storage unit 50a of the light emitting device 101 as shown in FIG. 5 and the light shielding cover 51 is disposed, the light shielding cover 51 is placed in the central region 6b (or flat) of the wavelength conversion member 40. Contact with the part F1) can be suppressed.
 このような構成の波長変換素子1Bは、図8のグラフ(b1)及び(b2)に示すように、スクリーンメッシュ印刷マスクの形状と、スキージの走査条件とを調整することにより製造することができる。 The wavelength conversion element 1B having such a configuration can be manufactured by adjusting the shape of the screen mesh printing mask and the scanning condition of the squeegee as shown in the graphs (b1) and (b2) of FIG. .
 (実施の形態1の変形例2)
 続いて、実施の形態1の変形例2に係る波長変換素子、発光装置及び照明装置について図面を用いて説明する。本変形例に係る波長変換素子、発光装置及び照明装置は、それぞれ図4に示す波長変換素子1、発光装置101及び照明装置201と構成が異なる。図10は、本変形例に係る発光装置101Bと照明装置201Bの構成を説明する模式的な図である。図11は、本変形例の波長変換素子1Cの構成を示す上面図である。
(Modification 2 of Embodiment 1)
Subsequently, a wavelength conversion element, a light-emitting device, and a lighting device according to Modification 2 of Embodiment 1 will be described with reference to the drawings. The wavelength conversion element, the light-emitting device, and the illumination device according to this modification are different from the wavelength conversion element 1, the light-emitting device 101, and the illumination device 201 shown in FIG. FIG. 10 is a schematic diagram illustrating the configuration of the light emitting device 101B and the illumination device 201B according to the present modification. FIG. 11 is a top view showing the configuration of the wavelength conversion element 1C of the present modification.
 照明装置201Bは、主に、白色光である出射光95を放射する発光装置101Bと、投光部材220と、ダイクロイックミラー314B及び314Rと、3枚の画像表示素子350B、350G及び350Rと、投影レンズ365とを備える。照明装置201Bは、さらに、反射ミラー331R、332R、331B及び332Bと、ダイクロイックプリズム360とを備える。 The illumination device 201B mainly includes a light emitting device 101B that emits an emitted light 95 that is white light, a light projecting member 220, dichroic mirrors 314B and 314R, three image display elements 350B, 350G, and 350R, and a projection. A lens 365. The illumination device 201B further includes reflection mirrors 331R, 332R, 331B, and 332B, and a dichroic prism 360.
 投光部材220は、出射光95を平行光である投影光96に変換する。ダイクロイックミラー314Bは、白色光である投影光96のうち青色光だけを反射し、緑色光及び赤色光を透過させるミラーである。ダイクロイックミラー314Bは、ダイクロイックミラー314Bを透過した緑色光及び赤色光のうち、赤色光だけを反射し、緑色光を透過させるミラーである。 The light projecting member 220 converts the emitted light 95 into projection light 96 that is parallel light. The dichroic mirror 314B is a mirror that reflects only blue light in the projection light 96 that is white light and transmits green light and red light. The dichroic mirror 314B is a mirror that reflects only red light and transmits green light among green light and red light transmitted through the dichroic mirror 314B.
 画像表示素子350B、350G及び350Rは、それぞれ青色、緑色及び赤色の映像情報を重畳する光学素子である。本実施の形態では、各画像表示素子は、液晶パネル素子を備える。 Image display elements 350B, 350G, and 350R are optical elements that superimpose blue, green, and red video information, respectively. In the present embodiment, each image display element includes a liquid crystal panel element.
 反射ミラー331R及び332Rは、赤色光を反射するミラーである。反射ミラー331B及び332Bは、青色光を反射するミラーである。ダイクロイックプリズム360は、入射される青色光、緑色光及び赤色光を合波して出力する光学素子である。 The reflection mirrors 331R and 332R are mirrors that reflect red light. The reflection mirrors 331B and 332B are mirrors that reflect blue light. The dichroic prism 360 is an optical element that combines and outputs incident blue light, green light, and red light.
 投影レンズ365は、ダイクロイックプリズム360から入射される合成光385を投影するレンズである。 The projection lens 365 is a lens that projects the combined light 385 incident from the dichroic prism 360.
 発光装置101Bは、主に光源ユニット320と、集光光学部材120と、波長変換素子1Cとを備える。光源ユニット320は、ヒートシンク325と、ヒートシンク上に配置される複数の励起光源とを備える。本変形例においては、光源ユニット320は、例えば、図10に示すように、複数の励起光源として三個の半導体発光装置110を備える。三個の半導体発光装置110の各々は、例えば、光出力が4ワットで、発光波長の中心波長が445nm付近にある窒化物半導体レーザ装置である。また半導体発光装置110は、TO-CANパッケージに窒化物半導体レーザ素子が実装された装置である。半導体発光装置110は、さらに、TO-CANパッケージに固定されたコリメートレンズであるレンズ120aを備える。 The light emitting device 101B mainly includes a light source unit 320, a condensing optical member 120, and a wavelength conversion element 1C. The light source unit 320 includes a heat sink 325 and a plurality of excitation light sources arranged on the heat sink. In the present modification, the light source unit 320 includes, for example, three semiconductor light emitting devices 110 as a plurality of excitation light sources, as shown in FIG. Each of the three semiconductor light emitting devices 110 is, for example, a nitride semiconductor laser device having an optical output of 4 watts and a central wavelength of the emission wavelength in the vicinity of 445 nm. The semiconductor light emitting device 110 is a device in which a nitride semiconductor laser element is mounted on a TO-CAN package. The semiconductor light emitting device 110 further includes a lens 120a that is a collimating lens fixed to the TO-CAN package.
 半導体発光装置110の窒化物半導体レーザ素子から出射した出射光は、レンズ120aによりコリメート光となり、集光レンズ120cに入射する。そして、集光レンズ120cに集められた合計12ワットの光出力の励起光84が、波長変換素子1Cに向かう。以上のように、集光光学部材120は、レンズ120aと、集光レンズ120cとで構成される。 The emitted light emitted from the nitride semiconductor laser element of the semiconductor light emitting device 110 becomes collimated light by the lens 120a and enters the condenser lens 120c. Then, the excitation light 84 having a total optical output of 12 watts collected by the condenser lens 120c is directed to the wavelength conversion element 1C. As described above, the condensing optical member 120 includes the lens 120a and the condensing lens 120c.
 波長変換素子1Cは、本変形例では蛍光体ホイールであり、例えば、図11に示すように、アルミ合金板で構成された、円板状の支持部材2を有する。そして支持部材2の支持面2aの外周領域に、リング状に波長変換部材40Cが形成される。 The wavelength conversion element 1 </ b> C is a phosphor wheel in this modification, and has a disk-shaped support member 2 made of an aluminum alloy plate, for example, as shown in FIG. 11. A wavelength conversion member 40 </ b> C is formed in a ring shape in the outer peripheral region of the support surface 2 a of the support member 2.
 波長変換部材40Cは、例えば、Ce賦活Y(Al、Ga)12蛍光体からなる第1蛍光体粒子が、シルセスキオキサンなどの透明結合材42に混合され、固着されている。なお、図10に示す波長変換素子1Cは、図11のX-X線における波長変換素子1Cの断面が示されている。 In the wavelength conversion member 40C, for example, first phosphor particles made of Ce-activated Y 3 (Al, Ga) 5 O 12 phosphor are mixed and fixed to a transparent binder 42 such as silsesquioxane. Note that the wavelength conversion element 1C shown in FIG. 10 shows a cross section of the wavelength conversion element 1C taken along the line XX of FIG.
 このとき、波長変換素子1Cの波長変換部材40Cの厚さは、実施の形態1で示したように励起光84が照射される励起領域150において、15μm以上35μm以下の厚さで構成される。そして、波長変換部材40Cの周縁領域の最大膜厚が中央領域の膜厚と比較して厚い。ここで波長変換部材40Cの周縁領域は、図11に示すリング状の波長変換部材40Cの内周縁40iを含むリング状の領域と、外周縁40eを含むリング状の領域とを含む。また、中央領域とは、内周縁40iを含む周縁領域と、外周縁40eを含む周縁領域との間の領域である。 At this time, the wavelength conversion member 40C of the wavelength conversion element 1C has a thickness of 15 μm or more and 35 μm or less in the excitation region 150 irradiated with the excitation light 84 as described in the first embodiment. And the maximum film thickness of the peripheral area | region of the wavelength conversion member 40C is thick compared with the film thickness of a center area | region. Here, the peripheral region of the wavelength conversion member 40C includes a ring-shaped region including the inner peripheral edge 40i of the ring-shaped wavelength conversion member 40C shown in FIG. 11 and a ring-shaped region including the outer peripheral edge 40e. The central region is a region between the peripheral region including the inner peripheral edge 40i and the peripheral region including the outer peripheral edge 40e.
 なお、本変形例でも、波長変換部材40Cは、全領域の膜厚が15μm以上35μm以下の範囲にあって、波長変換部材40Cの中央領域が周縁領域に対して薄い構成であってもよい。 In this modification as well, the wavelength conversion member 40C may have a configuration in which the film thickness of the entire region is in the range of 15 μm to 35 μm, and the central region of the wavelength conversion member 40C is thinner than the peripheral region.
 このような構成を有する波長変換素子1Cの支持部材2の中心には、回転機構190の回転軸191が接続されている。発光装置101Bの動作中には、波長変換素子1Cは、回転機構190の回転に伴って回転する。そして、励起光84は、集光レンズ120cにより波長変換部材40Cの励起領域150に集光される。このとき波長変換部材40Cに集光された励起光84は、波長変換部材40Cに含まれる第1蛍光体粒子41と透明結合材42とにより、散乱した励起光84である第1出射光85と、第1蛍光体粒子41で波長変換された蛍光である第2出射光91が混合された白色光である出射光95として発光装置101Bから出射される。 The rotation shaft 191 of the rotation mechanism 190 is connected to the center of the support member 2 of the wavelength conversion element 1C having such a configuration. During the operation of the light emitting device 101B, the wavelength conversion element 1C rotates as the rotation mechanism 190 rotates. Then, the excitation light 84 is condensed on the excitation region 150 of the wavelength conversion member 40C by the condenser lens 120c. At this time, the excitation light 84 condensed on the wavelength conversion member 40C has the first emission light 85 which is the excitation light 84 scattered by the first phosphor particles 41 and the transparent binder 42 included in the wavelength conversion member 40C. The light emitted from the light emitting device 101B is emitted as emitted light 95, which is white light mixed with the second emitted light 91, which is fluorescence converted in wavelength by the first phosphor particles 41.
 この構成において、波長変換素子1Cは、回転機構190により波長変換部材40Cの特定の位置に励起光84を照射し続けることを防止する。この結果、波長変換部材40Cにより強い励起光84が照射された場合においても、発光領域の温度上昇を抑制することができるため、より高い輝度の出射光95を出射することができる。 In this configuration, the wavelength conversion element 1C prevents the rotation mechanism 190 from continuing to irradiate the excitation light 84 to a specific position of the wavelength conversion member 40C. As a result, even when the strong excitation light 84 is irradiated by the wavelength conversion member 40C, the temperature rise in the light emitting region can be suppressed, so that the emitted light 95 with higher luminance can be emitted.
 出射光95は、集光レンズである投光部材220により平行光である投影光96となり、照明装置201Bの内部で以下の動作により映像光である投射光389へと変換される。まず、投影光96はダイクロイックミラー314Bで、主な波長帯域が430nm以上500nm以下である青色光379Bと、その残りの光である黄色光379Yとに分離される。青色光379Bは反射ミラー331B及び332Bで反射して、図示しない偏光素子を透過することで偏光となり画像表示素子350Bに入射する。一方、黄色光379Yは、ダイクロイックミラー314Rにて主な波長帯域が500nm以上580nm以下である緑色光379Gと、主な波長帯域が580nm以上660nm以下である赤色光379Rとに分離される。赤色光379Rは反射ミラー331R及び332Rで反射され、図示しない偏光素子を透過することで偏光となり画像表示素子350Rに入射する。緑色光379Gは図示しない偏光素子を透過することで偏光となり画像表示素子350Gに入射する。画像表示素子350B、350G及び350Rにそれぞれ入射した青色光379B、緑色光379G及び赤色光379Rは、各画像表示素子とその出射側にある図示しない偏光素子により、それぞれ映像情報が重畳された信号光380B、380G及び380Rとなる。信号光380B、380G及び380Rは、ダイクロイックプリズム360に照射され合波されることで合成光385なる。その合成光385を、投影レンズに通すことで映像光である投射光389を得ることができる。 The emitted light 95 becomes projection light 96 that is parallel light by the light projecting member 220 that is a condenser lens, and is converted into projection light 389 that is image light by the following operation inside the illumination device 201B. First, the projection light 96 is separated by the dichroic mirror 314B into blue light 379B having a main wavelength band of 430 nm or more and 500 nm or less and yellow light 379Y as the remaining light. The blue light 379B is reflected by the reflection mirrors 331B and 332B, passes through a polarizing element (not shown), becomes polarized light, and enters the image display element 350B. On the other hand, the yellow light 379Y is separated by the dichroic mirror 314R into green light 379G having a main wavelength band of 500 nm to 580 nm and red light 379R having a main wavelength band of 580 nm to 660 nm. The red light 379R is reflected by the reflection mirrors 331R and 332R, passes through a polarizing element (not shown), becomes polarized light, and enters the image display element 350R. Green light 379G passes through a polarizing element (not shown) to become polarized light and enters the image display element 350G. The blue light 379B, the green light 379G, and the red light 379R incident on the image display elements 350B, 350G, and 350R are respectively signal light on which video information is superimposed by each image display element and a polarization element (not shown) on the emission side. 380B, 380G and 380R. The signal lights 380B, 380G, and 380R are applied to the dichroic prism 360 and combined to become the combined light 385. By passing the combined light 385 through a projection lens, it is possible to obtain projection light 389 that is image light.
 上記構成において、半導体発光装置110から出射され、波長変換部材40Cに照射される励起光84は光出力が10W以上であり、励起領域150において面積1mm以下の領域に照射される。このとき、励起領域150における励起光の光密度は、光密度ピークが少なくとも17W/mm以上になるように設定される。ここで、発光領域151における波長変換部材40Cの膜厚は15μm以上35μm以下の範囲にある。上述のとおり、このような波長変換部材40Cによれば、温度上昇を抑制しながら励起光84を出射光95に変換させることができるため、例えば、変換効率200lm/Wで変換することができる。したがって、輝度ピーク1000cd/mm以上の出射光95を出射する発光装置を容易に実現することができる。 In the above configuration, the excitation light 84 emitted from the semiconductor light emitting device 110 and applied to the wavelength conversion member 40C has an optical output of 10 W or more and is applied to an area having an area of 1 mm 2 or less in the excitation region 150. At this time, the light density of the excitation light in the excitation region 150 is set so that the light density peak is at least 17 W / mm 2 or more. Here, the film thickness of the wavelength conversion member 40C in the light emitting region 151 is in the range of 15 μm to 35 μm. As described above, according to such a wavelength conversion member 40C, the excitation light 84 can be converted into the outgoing light 95 while suppressing a temperature rise, and therefore, for example, conversion can be performed with a conversion efficiency of 200 lm / W. Therefore, a light emitting device that emits emitted light 95 having a luminance peak of 1000 cd / mm 2 or more can be easily realized.
 以上のように、半導体レーザ装置などの半導体発光装置から出射される光を、蛍光体を用いて変換して放射する発光装置において、蛍光体における変換効率の飽和を抑制し、高輝度の発光装置を提供することができる。 As described above, in a light-emitting device that converts and emits light emitted from a semiconductor light-emitting device such as a semiconductor laser device using a fluorescent material, saturation of conversion efficiency in the fluorescent material is suppressed, and a high-luminance light-emitting device Can be provided.
 (実施の形態2)
 続いて、実施の形態2に係る波長変換素子につい説明する。本実施の形態に係る波長変換素子は、波長変換部材に第1蛍光体粒子以外の散乱粒子を含む点において、実施の形態1に係る波長変換素子1と相違する。以下、本実施の形態に係る波長変換素子について、実施の形態1に係る波長変換素子1との相違点を中心に図面を用いて説明する。
(Embodiment 2)
Next, the wavelength conversion element according to Embodiment 2 will be described. The wavelength conversion element according to the present embodiment is different from the wavelength conversion element 1 according to Embodiment 1 in that the wavelength conversion member includes scattering particles other than the first phosphor particles. Hereinafter, the wavelength conversion element according to the present embodiment will be described with reference to the drawings with a focus on differences from the wavelength conversion element 1 according to the first embodiment.
 図12は、本実施の形態に係る波長変換素子1Dの構成を示す模式的な断面図である。本実施の形態に係る波長変換素子1Dの波長変換部材40Dは、第1蛍光体粒子41及び透明結合材42に加えて、透明結合材42と結合する複数の散乱粒子を含む。 FIG. 12 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1D according to the present embodiment. The wavelength conversion member 40D of the wavelength conversion element 1D according to the present embodiment includes a plurality of scattering particles that are combined with the transparent binder 42 in addition to the first phosphor particles 41 and the transparent binder 42.
 波長変換部材40Dにおいて、第1蛍光体粒子41として、メジアン径D50が2μm以上30μm以下の、例えば(YGd1-x(AlGa1-y12:Ce(0.5≦x≦1、0.5≦y≦1)などの蛍光体を用いる。第1蛍光体粒子41を結合する透明結合材42として、例えば、ジメチルシリコーン、シルセスキオキサン、低融点ガラスなどの透明材料を用いることができる。シルセスキオキサンとしては、例えば、ポリメチルシルセスキオキサンなどを用いることができる。さらに散乱粒子43として、メジアン径D50が0.3μm以上18μm以下の励起光及び蛍光に対する吸収が少ない材料で構成される非発光粒子を混合させる。 In the wavelength conversion member 40D, as the first phosphor particles 41, the median diameter D50 is less 30μm or 2 [mu] m, for example (Y x Gd 1-x) 3 (Al y Ga 1-y) 5 O 12: Ce (0. A phosphor such as 5 ≦ x ≦ 1, 0.5 ≦ y ≦ 1) is used. As the transparent binder 42 that binds the first phosphor particles 41, for example, a transparent material such as dimethyl silicone, silsesquioxane, or low melting point glass can be used. As silsesquioxane, for example, polymethylsilsesquioxane can be used. Further, as the scattering particles 43, non-light-emitting particles composed of a material with little mediation with respect to excitation light and fluorescence with a median diameter D50 of 0.3 μm to 18 μm are mixed.
 散乱粒子43として、例えば、熱伝導率が高く、透明結合材42との屈折率差が大きい透明材料を用いる。散乱粒子は、金属の酸化物又は窒化物を含んでもよい。具体的には、散乱粒子43は、Al、TiO、ZrO、ZnO、BNなどで形成される。散乱粒子43の第1蛍光体粒子41に対する体積比率は、例えば、10vol%以上、90vol%以下である。 As the scattering particles 43, for example, a transparent material having a high thermal conductivity and a large refractive index difference from the transparent binder 42 is used. The scattering particles may include a metal oxide or nitride. Specifically, the scattering particles 43 are formed of Al 2 O 3 , TiO 2 , ZrO 2 , ZnO, BN, or the like. The volume ratio of the scattering particles 43 to the first phosphor particles 41 is, for example, 10 vol% or more and 90 vol% or less.
 波長変換部材40Dの膜厚について、実施の形態1と同様に、中央領域の膜厚dが周縁領域の最大膜厚dよりも薄く、波長変換部材40Dは、全領域の膜厚が15μm以上35μm以下の範囲にある。 The thickness of the wavelength conversion member 40D, as in the first embodiment, the thickness d c of the center region is thinner than the maximum thickness d e of the peripheral region, the wavelength conversion member 40D, the film thickness of the entire area 15μm It is in the range of 35 μm or less.
 さらに、波長変換部材40Dの内部に、ボイド45を設けてもよい。本実施の形態においては、波長変換部材40Dの内部、及び、波長変換部材40Dと反射部材3との界面付近にボイド45が形成される。 Furthermore, a void 45 may be provided inside the wavelength conversion member 40D. In the present embodiment, voids 45 are formed in the wavelength conversion member 40D and in the vicinity of the interface between the wavelength conversion member 40D and the reflection member 3.
 このように構成された波長変換素子1Dでは、励起光84のスペクトルに応じて、出射光95の色度座標を自由に設計できる。具体的には、励起光84のスペクトルに応じて、波長変換部材40Dの第1蛍光体粒子41と散乱粒子43との比率を変えることで、波長変換素子1Dを用いた発光装置ごとに色度座標を調整することができる。つまり、励起光84を出射する半導体発光装置の構造ばらつきにより半導体発光装置ごとに励起光84のスペクトルのばらつきが生じても、励起光84のスペクトルに応じて第1蛍光体粒子41に含まれる散乱粒子の比率を調整することで色度座標を調整することができる。以下、図12~図16を用いて本実施の形態の波長変換素子1Dについて詳細に説明する。 In the wavelength conversion element 1D configured as described above, the chromaticity coordinates of the outgoing light 95 can be freely designed according to the spectrum of the excitation light 84. Specifically, the chromaticity is changed for each light emitting device using the wavelength conversion element 1D by changing the ratio of the first phosphor particles 41 and the scattering particles 43 of the wavelength conversion member 40D according to the spectrum of the excitation light 84. Coordinates can be adjusted. That is, even if the variation of the spectrum of the excitation light 84 occurs in each semiconductor light emitting device due to the variation in the structure of the semiconductor light emitting device that emits the excitation light 84, the scattering included in the first phosphor particles 41 according to the spectrum of the excitation light 84. The chromaticity coordinates can be adjusted by adjusting the ratio of the particles. Hereinafter, the wavelength conversion element 1D of the present embodiment will be described in detail with reference to FIGS.
 本実施の形態に係る波長変換素子1Dの波長変換部材40Dにおいて、第1蛍光体粒子41としてメジアン径D50が6μmのYAl12:Ce蛍光体が用いられる。そして、第1蛍光体粒子41を固定する透明結合材42として、ポリメチルシルセスキオキサンが用いられる。非発光粒子である散乱粒子43として、メジアン径D50が3μmであるAl粒子が混合される。Alの屈折率は1.77であり、屈折率1.5のシルセスキオキサンとの屈折率差が大きい。また、Alの熱伝導率は30W/mKと高い。この構成により、波長変換部材40Dの内部での光散乱性を向上するとともに、波長変換部材40Dの熱伝導率を高くすることができる。 In the wavelength conversion member 40D of the wavelength conversion element 1D according to the present embodiment, a Y 3 Al 5 O 12 : Ce phosphor having a median diameter D50 of 6 μm is used as the first phosphor particles 41. Polymethylsilsesquioxane is used as the transparent binder 42 that fixes the first phosphor particles 41. As the scattering particles 43 which are non-light emitting particles, Al 2 O 3 particles having a median diameter D50 of 3 μm are mixed. Al 2 O 3 has a refractive index of 1.77 and a large refractive index difference from silsesquioxane having a refractive index of 1.5. Moreover, the thermal conductivity of Al 2 O 3 is as high as 30 W / mK. With this configuration, the light scattering property inside the wavelength conversion member 40D can be improved, and the thermal conductivity of the wavelength conversion member 40D can be increased.
 本実施の形態においては、さらに、波長変換部材40Dの内部にボイド45を形成してもよい。このようなボイド45は、YAl12:Ceからなる第1蛍光体粒子41と、ポリシルセスキオキサンからなる透明結合材42とを混合して蛍光体ペーストを構成する際に、第1蛍光体粒子41と散乱粒子43と比較し、透明結合材42の比率を少なくして高温硬化することで容易に構成できる。 In the present embodiment, a void 45 may be further formed inside the wavelength conversion member 40D. Such a void 45 is formed by mixing the first phosphor particles 41 made of Y 3 Al 5 O 12 : Ce and the transparent binder 42 made of polysilsesquioxane to form a phosphor paste. Compared with the 1st fluorescent substance particle 41 and the scattering particle | grains 43, it can comprise easily by reducing the ratio of the transparent binder 42 and hardening at high temperature.
 具体的には、第1蛍光体粒子41の体積Vfと散乱粒子43の体積Vsとの合計の体積(Vf+Vs)に対するシルセスキオキサンである透明結合材42の体積Vbの比率Vb/(Vf+Vs)を40%以下とする。そして、有機溶媒に溶かした透明結合材42と第1蛍光体粒子41と散乱粒子43とを混合した構成した蛍光体ペーストを支持部材2上に成膜した後、200℃程度の高温アニールを行うことで、ペースト中の有機溶媒を気化させる。 Specifically, the ratio Vb / (Vf + Vs) of the volume Vb of the transparent binder 42 that is silsesquioxane to the total volume (Vf + Vs) of the volume Vf of the first phosphor particles 41 and the volume Vs of the scattering particles 43. Is 40% or less. A phosphor paste composed of a transparent binder 42 dissolved in an organic solvent, the first phosphor particles 41 and the scattering particles 43 is formed on the support member 2 and then subjected to high temperature annealing at about 200 ° C. As a result, the organic solvent in the paste is vaporized.
 上記の方法により作製した波長変換素子1Dの断面構造について図13を用いて説明する。図13は、本実施の形態に係る波長変換素子1Dの断面を走査型電子顕微鏡で観察した写真である。図3には、断面写真(a)とその一部を拡大した拡大写真(b)とが示されている。拡大写真(b)は、断面写真(a)の破線枠部を拡大した写真である。 The cross-sectional structure of the wavelength conversion element 1D manufactured by the above method will be described with reference to FIG. FIG. 13 is a photograph of a cross section of the wavelength conversion element 1D according to the present embodiment observed with a scanning electron microscope. FIG. 3 shows a cross-sectional photograph (a) and an enlarged photograph (b) in which a part thereof is enlarged. The enlarged photograph (b) is an enlarged photograph of the broken-line frame part of the cross-sectional photograph (a).
 図13に示すように、シリコン基板である支持部材2上に反射部材3が形成され、その上に波長変換部材40Dが固着されている。波長変換部材40Dの膜厚は24μmであり、波長変換部材40Dの内部では、第1蛍光体粒子41と散乱粒子43とが、透明結合材42の中に分散されている。さらに波長変換部材40Dの内部及び反射部材3との界面にはボイド45が点在している。このように本実施の形態の製造方法により、透明結合材42内部に、第1蛍光体粒子41と散乱粒子43とを分散させ、かつ、ボイド45を点在させた波長変換部材40Dを容易に実現できる。 As shown in FIG. 13, the reflection member 3 is formed on the support member 2 which is a silicon substrate, and the wavelength conversion member 40D is fixed thereon. The film thickness of the wavelength conversion member 40D is 24 μm, and the first phosphor particles 41 and the scattering particles 43 are dispersed in the transparent binder 42 inside the wavelength conversion member 40D. Furthermore, voids 45 are scattered in the inside of the wavelength conversion member 40 </ b> D and the interface with the reflection member 3. As described above, according to the manufacturing method of the present embodiment, the wavelength conversion member 40D in which the first phosphor particles 41 and the scattering particles 43 are dispersed in the transparent binder 42 and the voids 45 are scattered can be easily obtained. realizable.
 波長変換素子1Dによれば、波長変換部材40Dの内部に侵入した励起光84をより効率的に散乱させて、波長変換部材40Dから取り出すことができる。また、ボイド45の一部は、誘電体である反射部材3の第2反射膜3cと接するため、金属表面に励起光及び蛍光が入射することによるエネルギーロスを低減しつつ、効果的に励起光、蛍光を散乱させることができる。 According to the wavelength conversion element 1D, the excitation light 84 that has entered the inside of the wavelength conversion member 40D can be more efficiently scattered and extracted from the wavelength conversion member 40D. In addition, since a part of the void 45 is in contact with the second reflective film 3c of the reflective member 3 which is a dielectric, the excitation light is effectively reduced while reducing energy loss due to excitation light and fluorescence incident on the metal surface. , Can scatter fluorescence.
 さらに本実施の形態の波長変換部材40Dには非発光粒子である散乱粒子43が含まれる。この散乱粒子43の、波長変換部材40Dにおける体積比率を変化させることで、容易に出射光95の色度座標を調整することができる。 Furthermore, the wavelength conversion member 40D of the present embodiment includes scattering particles 43 that are non-light emitting particles. By changing the volume ratio of the scattering particles 43 in the wavelength conversion member 40D, the chromaticity coordinates of the emitted light 95 can be easily adjusted.
 窒化物半導体で構成される半導体レーザ装置である半導体発光装置には、出射光の波長にわずかながら個体差があるため、半導体発光装置を用いた発光装置において、出射光の色度に個体差が発生し得る。そこで、散乱粒子43を混合した波長変換部材40Dにおいて、第1蛍光体粒子41と散乱粒子43との比率を変化させることで出射光の色度を調整する方法について図14及び図15を用いて説明する。 Semiconductor light-emitting devices, which are semiconductor laser devices composed of nitride semiconductors, have slight individual differences in the wavelength of the emitted light. Therefore, in a light-emitting device using a semiconductor light-emitting device, there is an individual difference in the chromaticity of the emitted light. Can occur. Therefore, a method for adjusting the chromaticity of the emitted light by changing the ratio of the first phosphor particles 41 and the scattering particles 43 in the wavelength conversion member 40D mixed with the scattering particles 43 will be described with reference to FIGS. explain.
 図14は、本実施の形態に係る波長変換素子1Dにピーク波長が447nmの励起光84を照射した場合の出射光95のスペクトルを示すグラフである。波長447nmに鋭いピークを有する第1出射光85と、波長500nmから700nmまでのブロードなピークを有する第2出射光91とで構成されている。なお、図14には、第2出射光91のスペクトル特性を示すために、第2出射光91の強度の10倍のスペクトルを破線で示している。 FIG. 14 is a graph showing a spectrum of the emitted light 95 when the wavelength conversion element 1D according to the present embodiment is irradiated with the excitation light 84 having a peak wavelength of 447 nm. The first output light 85 has a sharp peak at a wavelength of 447 nm, and the second output light 91 has a broad peak from a wavelength of 500 nm to 700 nm. In FIG. 14, in order to show the spectral characteristics of the second emitted light 91, a spectrum 10 times the intensity of the second emitted light 91 is indicated by a broken line.
 図15は、本実施の形態に係る波長変換素子1において、第1蛍光体粒子41と散乱粒子43との比率を変化させた場合の出射光95の色度座標の変化を示したグラフである。このとき、第1蛍光体粒子41としてメジアン径D50が6μmであるYAG:Ce蛍光体粒子を用い、散乱粒子はメジアン径D50が3μmであるAl粒子を用いた。透明結合材42としては、シルセスキオキサンを用いた。また、透明結合材42の体積Vbの、第1蛍光体粒子41の体積Vfと散乱粒子43の体積Vsと透明結合材42の体積Vbとの和に対する比率Vb/(Vf+Vs+Vb)を35%とした。そして、第1蛍光体粒子41と散乱粒子43との体積比率Vf/(Vf+Vs)が、それぞれ76%、73%、69%、65%、61%及び51%である6種類の波長変換素子1Dを作製した。そして、ピーク波長が447nmのレーザ光を励起光84として、それぞれの波長変換素子1Dに照射し、出射光95の色度座標を図15にプロットした。なお、図15に示す実線は、黒体輻射の軌跡を示す。 FIG. 15 is a graph showing changes in the chromaticity coordinates of the emitted light 95 when the ratio between the first phosphor particles 41 and the scattering particles 43 is changed in the wavelength conversion element 1 according to the present embodiment. . At this time, YAG: Ce phosphor particles having a median diameter D50 of 6 μm were used as the first phosphor particles 41, and Al 2 O 3 particles having a median diameter D50 of 3 μm were used as the scattering particles. Silsesquioxane was used as the transparent binder 42. The ratio Vb / (Vf + Vs + Vb) of the volume Vb of the transparent binder 42 to the sum of the volume Vf of the first phosphor particles 41, the volume Vs of the scattering particles 43, and the volume Vb of the transparent binder 42 is set to 35%. . Six types of wavelength conversion elements 1D in which the volume ratio Vf / (Vf + Vs) between the first phosphor particles 41 and the scattering particles 43 is 76%, 73%, 69%, 65%, 61%, and 51%, respectively. Was made. Then, each wavelength conversion element 1D was irradiated with laser light having a peak wavelength of 447 nm as excitation light 84, and the chromaticity coordinates of the emitted light 95 were plotted in FIG. In addition, the continuous line shown in FIG. 15 shows the locus | trajectory of black body radiation.
 この結果、第1蛍光体粒子41の比率を高くすることで色度座標x及びyを大きく、つまり黄色に近い白色光にシフトさせることができる。また散乱粒子43を多くすることで色度座標x及びyを小さく、つまり青色に近い白色光にシフトさせることができる。今、色度座標(0.317,0.327)を色度座標のターゲットとした場合、第1蛍光体粒子41と散乱粒子43の体積比率を61%とすることで所望の色度座標の出射光を得ることができる。したがって、第1蛍光体粒子41と散乱粒子43との体積比率を変化させることで容易に、出射光の色度座標を所定の色度座標に設定することができる。 As a result, by increasing the ratio of the first phosphor particles 41, the chromaticity coordinates x and y can be increased, that is, shifted to white light close to yellow. Further, by increasing the scattering particles 43, the chromaticity coordinates x and y can be reduced, that is, shifted to white light close to blue. Now, when the chromaticity coordinates (0.317, 0.327) are used as targets of the chromaticity coordinates, the volume ratio of the first phosphor particles 41 and the scattering particles 43 is set to 61%. Output light can be obtained. Therefore, the chromaticity coordinate of the emitted light can be easily set to the predetermined chromaticity coordinate by changing the volume ratio of the first phosphor particles 41 and the scattering particles 43.
 さらに本実施の形態の波長変換素子1Dでは、励起光84のピーク波長に応じて構造を調整することで、発光装置からの出射光の色度座標を調整することができる。この調整方法について、図16を用いて説明する。 Furthermore, in the wavelength conversion element 1D of the present embodiment, the chromaticity coordinates of the emitted light from the light emitting device can be adjusted by adjusting the structure according to the peak wavelength of the excitation light 84. This adjustment method will be described with reference to FIG.
 図16は、本実施の形態に係る波長変換素子1Dにおいて、出射光95の色度座標の励起光のピーク波長依存性を測定した結果を示すグラフである。このとき波長変換素子1Dは図15で示したものと同じ、第1蛍光体粒子41と散乱粒子43の体積比率Vf/(Vf+Vs)が、76%、73%、69%、65%、61%、51%ものを用いて、励起光84のピーク波長が、438nm、441nm、444nm、447nm、451nmであるものを用いて色度座標yの変化をプロットした。 FIG. 16 is a graph showing the result of measuring the peak wavelength dependence of the excitation light of the chromaticity coordinates of the emitted light 95 in the wavelength conversion element 1D according to the present embodiment. At this time, in the wavelength conversion element 1D, the volume ratio Vf / (Vf + Vs) between the first phosphor particles 41 and the scattering particles 43 is 76%, 73%, 69%, 65%, 61%, which is the same as that shown in FIG. The change of the chromaticity coordinate y was plotted using those having the peak wavelengths of the excitation light 84 of 438 nm, 441 nm, 444 nm, 447 nm, and 451 nm.
 図16に示すように、例えば、色度座標の色度yを0.327をターゲットとした場合、励起光のピーク波長が、凡そ440nmから凡そ447nmまで変化しても、散乱粒子43の比率を変化させることで出射光の色度座標を所定の色度座標に設定することできる。 As shown in FIG. 16, for example, when the chromaticity y of the chromaticity coordinates is set to 0.327, even if the peak wavelength of the excitation light changes from about 440 nm to about 447 nm, the ratio of the scattering particles 43 is increased. By changing the chromaticity coordinates of the emitted light, the predetermined chromaticity coordinates can be set.
 さらに、本実施の形態においては、透明結合材と第1蛍光体粒子及び散乱粒子との屈折率差を大きくすることで、光を散乱する効果を高めることができる。これにより、光の波長変換部材40D内部での伝搬を抑制することができる。この結果、励起領域150とほぼ同じ面積の発光領域151から出射光95を放射させることができる。本実施の形態においては、さらに波長変換部材40Dにボイド45を形成することで、光の散乱を増強させている。この結果、さらに発光領域151の面積を励起領域150の面積に近づけることができる。 Furthermore, in this embodiment, the effect of scattering light can be enhanced by increasing the refractive index difference between the transparent binder, the first phosphor particles, and the scattering particles. Thereby, propagation of light inside the wavelength conversion member 40D can be suppressed. As a result, the emitted light 95 can be emitted from the light emitting region 151 having substantially the same area as the excitation region 150. In the present embodiment, the scattering of light is enhanced by forming a void 45 in the wavelength conversion member 40D. As a result, the area of the light emitting region 151 can be made closer to the area of the excitation region 150.
 本実施の形態において、実施の形態1と同様に、放射面6における出射光95の輝度分布において、輝度が200cd/mm以上の発光領域151が、幅0.7mm程度にわたって存在する。つまり、励起領域150と同一の発光領域151を実現できる。そして、ピーク付近において、輝度は1000cd/mm以上で、かつ、0.2mm以上の幅にわたって均一な領域を実現できる。 In the present embodiment, as in the first embodiment, in the luminance distribution of the emitted light 95 on the radiation surface 6, a light emitting region 151 having a luminance of 200 cd / mm 2 or more exists over a width of about 0.7 mm. That is, the same light emitting region 151 as the excitation region 150 can be realized. In the vicinity of the peak, the luminance is 1000 cd / mm 2 or more and a uniform region can be realized over a width of 0.2 mm or more.
 (実施の形態3)
 続いて、実施の形態3に係る波長変換素子及び発光装置について説明する。本実施の形態に係る波長変換素子及び発光装置は、波長変換部材を構成する材料において、実施の形態1及び2と相違し、その他の点において一致する。以下、本実施の形態に係る波長変換素子及び発光装置について、実施の形態1及び2との相違点を中心に図面を用いて説明する。
(Embodiment 3)
Next, the wavelength conversion element and the light emitting device according to Embodiment 3 will be described. The wavelength conversion element and the light emitting device according to the present embodiment are different from the first and second embodiments in the material constituting the wavelength conversion member, and are identical in other points. Hereinafter, the wavelength conversion element and the light-emitting device according to the present embodiment will be described with reference to the drawings with a focus on differences from the first and second embodiments.
 本実施の形態においては、波長変換部材40に含まれる第1蛍光体粒子41を構成する材料として、(La1-xSi11:Ce(0.5≦x≦1)で表される蛍光体材料を用いる。図17は、波長変換部材40を構成し得る材料の屈折率及び熱伝導率を示す図である。なお、図17には、波長が550nmの光に対する屈折率が示されている。図17に示す材料のうち、蛍光体材料としては、波長430nm以上470nm以下程度の青色光を吸収して、波長範囲が520nm以上650nm以下程度の黄色の蛍光を出射する蛍光体を検討した。具体的には、(YGd1-x(AlGa1-y12:Ce(0.5≦x≦1、0.5≦y≦1)で示される蛍光体と、(La1-xSi11:Ce(0.5≦x≦1)で示される蛍光体と、(BaSr1-x)SiO:Eu(0≦x≦1)で示される蛍光体と、(BaSr1-x)Si:Eu(0≦x≦1)で示される蛍光体とを比較した。図17にはこれらの蛍光体のうち、(YGd1-x(AlGa1-y12:Ce(0.5≦x≦1、0.5≦y≦1)で示される蛍光体材料の中心母材であるYAl12と、(La1-xSi11:Ce(0.5≦x≦1)で示される蛍光体材料の中心母材であるLaSi11とが示されている。散乱粒子43として用いる材料としては、Al、TiO、ZnO及びBNが示されている。透明結合材42として用いる材料としてはシルセスキオキサン、ジメチルシリコーン及び低融点ガラスが示されている。波長変換部材を構成する材料としては、熱伝導率が高い材料であってもよい。また、波長変換部材40に入射した励起光が、波長変換部材40内を横方向に伝搬するのを抑制するために、蛍光体粒子と透明結合材との屈折率差、散乱粒子と透明結合材との屈折率差は大きくてもよい。この観点から蛍光体材料としてはYAl12:Ce蛍光体又はLaSi11:Ce蛍光体のいずれかであってもよい。散乱粒子としてはAl、ZnO、BNのいずれかであってもよい。 In the present embodiment, (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 ≦ x ≦ 1) is used as the material constituting the first phosphor particles 41 included in the wavelength conversion member 40. The phosphor material represented by is used. FIG. 17 is a diagram showing the refractive index and the thermal conductivity of the material that can constitute the wavelength conversion member 40. FIG. 17 shows the refractive index for light having a wavelength of 550 nm. Among the materials shown in FIG. 17, as the phosphor material, a phosphor that absorbs blue light with a wavelength of about 430 nm to 470 nm and emits yellow fluorescence with a wavelength range of about 520 nm to 650 nm was examined. Specifically, (Y x Gd 1-x ) 3 (Al y Ga 1-y) 5 O 12: a phosphor represented by Ce (0.5 ≦ x ≦ 1,0.5 ≦ y ≦ 1) , (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 ≦ x ≦ 1) and (Ba x Sr 1-x ) SiO 4 : Eu (0 ≦ x ≦ 1) ) And a phosphor represented by (Ba x Sr 1-x ) Si 2 O 2 N 2 : Eu (0 ≦ x ≦ 1) were compared. FIG. 17 shows (Y x Gd 1-x ) 3 (Al y Ga 1-y ) 5 O 12 : Ce (0.5 ≦ x ≦ 1, 0.5 ≦ y ≦ 1) among these phosphors. Y 3 Al 5 O 12 which is a central base material of the phosphor material represented by the formula (2) and a phosphor material represented by (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 ≦ x ≦ 1) La 3 Si 6 N 11 , which is a central base material, is shown. As materials used for the scattering particles 43, Al 2 O 3 , TiO 2 , ZnO and BN are shown. Silsesquioxane, dimethyl silicone and low melting point glass are shown as materials used as the transparent binder 42. The material constituting the wavelength conversion member may be a material having high thermal conductivity. Further, in order to suppress the excitation light incident on the wavelength conversion member 40 from propagating in the lateral direction in the wavelength conversion member 40, the refractive index difference between the phosphor particles and the transparent binder, the scattering particles and the transparent binder. The refractive index difference between and may be large. As the phosphor material in terms Y 3 Al 5 O 12: Ce phosphor or La 3 Si 6 N 11: may be any of the Ce phosphor. The scattering particles may be any of Al 2 O 3 , ZnO, and BN.
 以下、本実施の形態に係る波長変換部材の特性について、図18及び図19を用いて説明する。図18は、本実施の形態に係る波長変換部材で用いるLaSi11:Ce蛍光体と、実施の形態1で用いたYAl12:Ce蛍光体との量子効率の温度依存性を示す図である。図18に示す量子効率は、波長450nmの励起波長を蛍光体に照射し、蛍光に変換する効率である。なお、図18には、量子効率として、環境温度(Ta)が25℃ときの量子効率を100%とした場合の相対的な値が示されている。YAl12:Ce蛍光体と比較して、LaSi11:Ceの方が高い温度における量子効率の低下率が小さい。したがって、本実施の形態に係る波長変換部材において用いるLaSi11:Ceの方が、励起光の光密度が高い発光装置の波長変換部材を構成する材料として適している。 Hereinafter, the characteristics of the wavelength conversion member according to the present embodiment will be described with reference to FIGS. 18 and 19. FIG. 18 shows the temperature of the quantum efficiency of the La 3 Si 6 N 11 : Ce phosphor used in the wavelength conversion member according to the present embodiment and the Y 3 Al 5 O 12 : Ce phosphor used in the first embodiment. It is a figure which shows dependency. The quantum efficiency shown in FIG. 18 is the efficiency of irradiating the phosphor with an excitation wavelength of 450 nm and converting it to fluorescence. FIG. 18 shows relative values as the quantum efficiency when the quantum efficiency when the environmental temperature (Ta) is 25 ° C. is 100%. Compared with Y 3 Al 5 O 12 : Ce phosphor, La 3 Si 6 N 11 : Ce has a lower rate of decrease in quantum efficiency at higher temperatures. Therefore, La 3 Si 6 N 11 : Ce used in the wavelength conversion member according to the present embodiment is more suitable as a material constituting the wavelength conversion member of the light-emitting device having a high light density of excitation light.
 図19は、本実施の形態に係る波長変換素子を搭載した発光装置の特性を示す図である。本実施の形態に係る波長変換素子において、メジアン径D50が9μmの(La0.840.16Si11:Ceを第1蛍光体粒子41として用い、メジアン径D50が3μmのAl粒子を散乱粒子43として用いた。これらの第1蛍光体粒子41及び散乱粒子43を、主成分がシルセスキオキサンである透明結合材42に分散させた波長変換部材40を用いた。第1蛍光体粒子と散乱粒子と透明結合材との構成比率は、波長変換部材を構成する工程において、体積比率で、第1蛍光体粒子:散乱粒子:透明結合材の比率が18%:22%:60%となるように設定した。また、特性を測定する際に用いた波長変換素子1及び発光装置101の構成としては図4及び図5に示す実施の形態1と同じ構成を用いた。波長変換素子1の波長変換部材40の膜厚は、発光領域151付近において約25μmであった。 FIG. 19 is a diagram showing characteristics of a light emitting device equipped with the wavelength conversion element according to the present embodiment. In the wavelength conversion element according to the present embodiment, (La 0.84 Y 0.16 ) 3 Si 6 N 11 : Ce having a median diameter D50 of 9 μm is used as the first phosphor particles 41, and the median diameter D50 is 3 μm. Al 2 O 3 particles were used as the scattering particles 43. A wavelength conversion member 40 in which the first phosphor particles 41 and the scattering particles 43 are dispersed in a transparent binder 42 whose main component is silsesquioxane was used. The composition ratio of the first phosphor particles, the scattering particles, and the transparent binder is a volume ratio in the step of forming the wavelength conversion member, and the ratio of the first phosphor particles: scattering particles: transparent binder is 18%: 22. %: It was set to be 60%. Moreover, the same structure as Embodiment 1 shown in FIG.4 and FIG.5 was used as a structure of the wavelength conversion element 1 and the light-emitting device 101 which were used when measuring the characteristic. The film thickness of the wavelength conversion member 40 of the wavelength conversion element 1 was about 25 μm in the vicinity of the light emitting region 151.
 図19は、上述した発光装置101において、半導体発光装置110に印加する電流に対する、波長変換部材の発光領域151の輝度のピーク値をプロットしたグラフである。このとき発光装置101の環境温度(Ta)を85℃とした。 FIG. 19 is a graph plotting the luminance peak value of the light emitting region 151 of the wavelength conversion member with respect to the current applied to the semiconductor light emitting device 110 in the light emitting device 101 described above. At this time, the environmental temperature (Ta) of the light emitting device 101 was set to 85 ° C.
 図19においては、図7で示した第1蛍光体粒子としてYAG:Ce蛍光体を用い、膜厚が42μmの波長変換部材を用いた比較例の発光装置を環境温度(Ta)85℃で動作させた場合の特性も併せて示されている。同じく第1蛍光体粒子としてYAG:Ce蛍光体を用い、膜厚が20μmの波長変換部材40を用いた実施の形態1に係る発光装置を環境温度85℃で動作させた場合の特性も併せて示されている。比較例と比較して実施の形態1の発光装置は、駆動電流2A以上でも、駆動電流の増加に対する輝度の上昇率が高く輝度のピーク値は800cd/mm以上に達する。しかしながら、さらに駆動電流を増加させても輝度の上昇率が低下し、900cd/mm未満で飽和した。これは波長変換部材40が環境から受ける熱と、励起光84を第2出射光91に変換する際に発生する熱とによって、波長変換部材40の温度が上昇することで、量子効率が急激に低下するためと考えられる。一方で、本実施の形態に係る波長変換素子においては、第1蛍光体粒子として、温度上昇に対して量子効率の低下が少ない(La1-xSi11:Ce(0≦x≦1)蛍光体を用いている。したがって、環境温度85℃、駆動電流2アンペアで800cd/mm以上に達し、さらに、それ以上の駆動電流でも輝度の飽和がなく、駆動電流2.3アンペアで900cd/mm以上に達した。図20は、図19の輝度測定において、発光装置101の半導体発光装置110の駆動電流が2.3アンペアであるときの、蛍光体表面の発光領域151の輝度分布を測定した結果を示すグラフである。図20において、環境温度が25℃のときの輝度分布も点線で合わせて示されている。図20に示すように、環境温度25℃の輝度分布に対して、環境温度85℃の輝度分布においては、20%程度輝度が低い。これは半導体発光装置の温度依存性が主原因であり、波長変換素子の量子効率の低下が原因ではないため、半導体発光装置の温度を適切に制御することでさらに輝度を高めることが可能である。 In FIG. 19, the light emitting device of the comparative example using the YAG: Ce phosphor as the first phosphor particles shown in FIG. 7 and the wavelength conversion member having a film thickness of 42 μm operates at an environmental temperature (Ta) of 85 ° C. The characteristics are also shown. Similarly, the YAG: Ce phosphor is used as the first phosphor particle, and the characteristics when the light emitting device according to the first embodiment using the wavelength conversion member 40 with a film thickness of 20 μm is operated at an environmental temperature of 85 ° C. are also shown. It is shown. Compared with the comparative example, the light-emitting device of Embodiment 1 has a high luminance increase rate with respect to an increase in driving current even at a driving current of 2 A or more, and the peak value of luminance reaches 800 cd / mm 2 or more. However, even when the drive current was further increased, the rate of increase in luminance decreased and was saturated at less than 900 cd / mm 2 . This is because the temperature of the wavelength conversion member 40 rises due to the heat that the wavelength conversion member 40 receives from the environment and the heat that is generated when the excitation light 84 is converted into the second emitted light 91, so that the quantum efficiency is drastically increased. It is thought that it falls. On the other hand, in the wavelength conversion element according to the present embodiment, as the first phosphor particles, the decrease in quantum efficiency with respect to the temperature rise is small (La x Y 1-x ) 3 Si 6 N 11 : Ce (0 ≦ x ≦ 1) A phosphor is used. Therefore, it reached 800 cd / mm 2 or more at an environmental temperature of 85 ° C. and a driving current of 2 amperes, and further, there was no luminance saturation even at a driving current of more than that, reaching 900 cd / mm 2 or more at a driving current of 2.3 amperes. FIG. 20 is a graph showing the result of measuring the luminance distribution of the light emitting region 151 on the phosphor surface when the driving current of the semiconductor light emitting device 110 of the light emitting device 101 is 2.3 amperes in the luminance measurement of FIG. is there. In FIG. 20, the luminance distribution when the environmental temperature is 25 ° C. is also shown by a dotted line. As shown in FIG. 20, the luminance distribution at the environmental temperature of 85 ° C. is lower by about 20% than the luminance distribution at the environmental temperature of 25 ° C. This is mainly due to the temperature dependence of the semiconductor light emitting device and not due to a decrease in the quantum efficiency of the wavelength conversion element. Therefore, it is possible to further increase the luminance by appropriately controlling the temperature of the semiconductor light emitting device. .
 以上のように、本実施の形態においては、環境温度が85℃でも輝度のピーク値が900cd/mm以上の高輝度で高温動作が可能な発光装置を実現できる。このような発光装置は、高温動作が必要な照明装置、例えば、車両の前照灯などに最適である。 As described above, in this embodiment, a light-emitting device capable of high-intensity operation at high luminance with a luminance peak value of 900 cd / mm 2 or higher can be realized even at an environmental temperature of 85 ° C. Such a light emitting device is most suitable for a lighting device that requires high temperature operation, for example, a vehicle headlamp.
 (実施の形態4)
 続いて、実施の形態4に係る波長変換素子について説明する。特許文献1に記載された発光装置のような従来の発光装置においては、出射光の色度座標は蛍光体層に含まれる蛍光体の種類によって規制されるため、出射光の色度座標を調整することが難しい。そこで、本実施の形態では、出射光の色度座標の調整自由度を高めることができる波長変換素子及び発光装置について説明する。
(Embodiment 4)
Next, the wavelength conversion element according to Embodiment 4 will be described. In a conventional light emitting device such as the light emitting device described in Patent Document 1, the chromaticity coordinates of the emitted light are regulated by the type of phosphor contained in the phosphor layer, so the chromaticity coordinates of the emitted light are adjusted. Difficult to do. Therefore, in the present embodiment, a wavelength conversion element and a light-emitting device that can increase the degree of freedom in adjusting the chromaticity coordinates of emitted light will be described.
 本実施の形態に係る波長変換素子は、波長変換部材が第1蛍光体粒子に加えて、第2蛍光体粒子を含む点において、実施の形態3に係る波長変換素子と相違し、その他の点において一致する。以下、本実施の形態に係る波長変換素子について、図21~図23を用いて説明する。 The wavelength conversion element according to the present embodiment is different from the wavelength conversion element according to Embodiment 3 in that the wavelength conversion member includes the second phosphor particles in addition to the first phosphor particles, and other points. Match in Hereinafter, the wavelength conversion element according to the present embodiment will be described with reference to FIGS.
 図21は、本実施の形態に係る波長変換素子1Fの構成を示す模式的な断面図である。図21に示すように、本実施の形態に係る波長変換素子1Fは、支持面2aを有する支持部材2と、支持面2aの上方に配置される波長変換部材40Fとを備え、波長変換部材40Fは、第1蛍光を発生する複数の第1蛍光体粒子41と、第1蛍光と異なるスペクトルの第2蛍光を発生する複数の第2蛍光体粒子44とを備える。波長変換部材40Fは、さらに、複数の第1蛍光体粒子41と複数の第2蛍光体粒子44とを結合する透明結合材42と、透明結合材42と結合し、かつ、複数の第1蛍光体粒子41及び複数の第2蛍光体粒子44とは異なる散乱粒子43とを含む。 FIG. 21 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 1F according to the present embodiment. As shown in FIG. 21, the wavelength conversion element 1F according to the present embodiment includes a support member 2 having a support surface 2a and a wavelength conversion member 40F arranged above the support surface 2a, and the wavelength conversion member 40F. Includes a plurality of first phosphor particles 41 that generate first fluorescence and a plurality of second phosphor particles 44 that generate second fluorescence having a spectrum different from that of the first fluorescence. The wavelength conversion member 40F is further coupled to the transparent binder 42 that couples the plurality of first phosphor particles 41 and the plurality of second phosphor particles 44, the transparent binder 42, and the plurality of first fluorescence particles. It includes scattering particles 43 that are different from the body particles 41 and the plurality of second phosphor particles 44.
 本実施の形態では、第1蛍光体粒子41及び第2蛍光体粒子44のいずれの蛍光体粒子も、メジアン径D50が2μm以上30μm以下で、同一の基本組成式を有し(つまり、同一の構成元素を有し)、異なる組成比の蛍光体材料を用いる。なお、実施の形態1に係る第1蛍光体粒子41と同様に、第1蛍光体粒子41及び第2蛍光体粒子44のメジアン径D50を3μm以上9μm以下としてもよい。第1蛍光体粒子41及び第2蛍光体粒子44を表わす具体的な基本組成式は、例えば、(La1-xSi11:Ce(0.5≦x≦1)である。つまり、複数の第1蛍光体粒子41は、Ceが賦活された(La1-x1,Yx1Si11(0≦x1≦1)を含み、複数の第2蛍光体粒子44は、Ceが賦活された(La1-x2,Yx2Si11(0≦x2≦1、x1≠x2)を含む。 In the present embodiment, both the first phosphor particles 41 and the second phosphor particles 44 have the same basic composition formula with a median diameter D50 of 2 μm or more and 30 μm or less (that is, the same And phosphor materials having different composition ratios. As with the first phosphor particles 41 according to Embodiment 1, the median diameter D50 of the first phosphor particles 41 and the second phosphor particles 44 may be 3 μm or more and 9 μm or less. A specific basic composition formula representing the first phosphor particles 41 and the second phosphor particles 44 is, for example, (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 ≦ x ≦ 1) is there. That is, the plurality of first phosphor particles 41 includes Ce-activated (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ≦ x1 ≦ 1), and the plurality of second phosphor particles 44 includes , And Ce activated (La 1-x2 , Y x2 ) 3 Si 6 N 11 (0 ≦ x2 ≦ 1, x1 ≠ x2).
 さらに波長変換部材40Fは、励起光を吸収しない非発光粒子である散乱粒子43を含む。散乱粒子43のメジアン径D50が各蛍光体粒子のメジアン径と近い方が散乱粒子43の散乱効率が高い。このため、散乱粒子43のメジアン径D50を、例えば0.3μm以上18μm以下とする。 Furthermore, the wavelength conversion member 40F includes scattering particles 43 that are non-light emitting particles that do not absorb excitation light. The scattering efficiency of the scattering particles 43 is higher when the median diameter D50 of the scattering particles 43 is closer to the median diameter of each phosphor particle. For this reason, the median diameter D50 of the scattering particles 43 is, for example, not less than 0.3 μm and not more than 18 μm.
 本実施の形態に係る波長変換素子1Fのように、波長変換部材40Fに、第1蛍光体粒子41と、散乱粒子43と、第1蛍光体粒子41と異なる組成の第2蛍光体粒子44とを分散させる。このような波長変換部材40Fによれば、各粒子の混合比を調整することで、より自由に出射光の色度座標を調整することができる。 Like the wavelength conversion element 1F according to the present embodiment, the wavelength conversion member 40F includes the first phosphor particles 41, the scattering particles 43, and the second phosphor particles 44 having a composition different from that of the first phosphor particles 41. To disperse. According to such a wavelength conversion member 40F, the chromaticity coordinates of the emitted light can be adjusted more freely by adjusting the mixing ratio of each particle.
 以下、本実施の形態の波長変換素子1Fの具体的な構成について説明する。本実施の形態においては、波長変換部材40Fにおいて、第1蛍光体粒子41としてメジアン径が12μmのLaSi11:Ceを用い、第2蛍光体粒子44としてメジアン径が9μmの(La0.840.16Si11:Ceを用いた。そして、散乱粒子43としてはメジアン径D50が3μmのAlを用いた。第1蛍光体粒子41、第2蛍光体粒子44、散乱粒子43を固定する透明結合材42として、ポリメチルシルセスキオキサンを主に含む透明材料を用いた。 Hereinafter, a specific configuration of the wavelength conversion element 1F of the present embodiment will be described. In the present embodiment, in the wavelength conversion member 40F, La 3 Si 6 N 11 : Ce having a median diameter of 12 μm is used as the first phosphor particles 41, and the median diameter is 9 μm (La) as the second phosphor particles 44. 0.84 Y 0.16 ) 3 Si 6 N 11 : Ce was used. As the scattering particles 43, Al 2 O 3 having a median diameter D50 of 3 μm was used. As the transparent binder 42 for fixing the first phosphor particles 41, the second phosphor particles 44, and the scattering particles 43, a transparent material mainly containing polymethylsilsesquioxane was used.
 このとき、第1蛍光体粒子41の体積Vfと第2蛍光体粒子44の体積Vf2との比率Vf/(Vf+Vf2)は、0%より大きく、100%より小さい。また、散乱粒子43の体積Vsの蛍光体粒子の体積に対する比率Vs/(Vf+Vf2+Vs)は、10%以上、90%以下である。 At this time, the ratio Vf / (Vf + Vf2) between the volume Vf of the first phosphor particles 41 and the volume Vf2 of the second phosphor particles 44 is larger than 0% and smaller than 100%. Further, the ratio Vs / (Vf + Vf2 + Vs) of the volume Vs of the scattering particles 43 to the volume of the phosphor particles is 10% or more and 90% or less.
 図22は、本実施の形態に係る波長変換素子1Fを用いた発光装置の出射光のスペクトル特性を示すグラフである。本実施の形態に係る波長変換素子1Fの第1蛍光体粒子41及び第2蛍光体粒子44として、同一の基本組成式(La1-xSi11:Ce(0.5≦x≦1)である蛍光体を用いている。このため、第1蛍光体粒子41及び第2蛍光体粒子44のそれぞれ単体のスペクトル形状とほぼ同じスペクトル形状を有する蛍光である第2出射光91が、波長変換素子1Fから出射される。また、半導体発光装置の駆動電流(I)と輝度との関係についても、図19に白丸で示す実施の形態3に係る発光装置における関係とほぼ同じであった。 FIG. 22 is a graph showing the spectral characteristics of the emitted light of the light emitting device using the wavelength conversion element 1F according to the present embodiment. As the first phosphor particles 41 and the second phosphor particles 44 of the wavelength conversion element 1F according to the present embodiment, the same basic composition formula (La x Y 1-x ) 3 Si 6 N 11 : Ce (0.5 A phosphor satisfying ≦ x ≦ 1) is used. For this reason, the 2nd emitted light 91 which is the fluorescence which has the substantially same spectrum shape as each single spectrum shape of the 1st fluorescent substance particle 41 and the 2nd fluorescent substance particle 44 is radiate | emitted from the wavelength conversion element 1F. In addition, the relationship between the drive current (I f ) and the luminance of the semiconductor light emitting device was also almost the same as the relationship in the light emitting device according to Embodiment 3 indicated by white circles in FIG.
 図23は、実施の形態4に係る波長変換素子1Fを搭載した発光装置において、波長変換素子1Fの構成を変化させた場合の出射光の色度座標の変化を示す図である。図23の左側の色度図において、ピーク波長445nmの励起光の散乱光である第1出射光85の色度座標を、符号85で示す。また、LaSi11:Ceで構成される第1蛍光体粒子41から出射される蛍光の色度座標を符号91aで示す。そして、(La0.840.16Si11:Ceで構成される第2蛍光体粒子44から出射される蛍光の色度座標を符号91bで示す。したがって、波長変換部材を第1蛍光体粒子41と散乱粒子43と透明結合材42とで構成する場合の出射光95は、軌跡195a上のいずれかの座標にプロットされる。また、波長変換部材を第2蛍光体粒子44と散乱粒子43と透明結合材42とで構成する場合の出射光95は、軌跡195b上のいずれかの座標にプロットされる。 FIG. 23 is a diagram illustrating a change in chromaticity coordinates of emitted light when the configuration of the wavelength conversion element 1F is changed in the light emitting device in which the wavelength conversion element 1F according to Embodiment 4 is mounted. In the chromaticity diagram on the left side of FIG. 23, the chromaticity coordinates of the first outgoing light 85 that is the scattered light of the excitation light having the peak wavelength of 445 nm are denoted by reference numeral 85. Further, the chromaticity coordinates of fluorescence emitted from the first phosphor particles 41 composed of La 3 Si 6 N 11 : Ce are indicated by reference numeral 91a. Then, (La 0.84 Y 0.16) 3 Si 6 N 11: indicated by Ce second phosphor code 91b chromaticity coordinates of the fluorescence emitted from the particle 44 composed of. Therefore, the emitted light 95 in the case where the wavelength conversion member is composed of the first phosphor particles 41, the scattering particles 43, and the transparent binder 42 is plotted at any coordinate on the locus 195a. In addition, the emitted light 95 in the case where the wavelength conversion member is constituted by the second phosphor particles 44, the scattering particles 43, and the transparent binder 42 is plotted at any coordinate on the locus 195b.
 図23の右側の図は、左側の色度図の色度座標(0.33,0.33)付近を拡大したものである。 23 is an enlarged view of the vicinity of the chromaticity coordinates (0.33, 0.33) in the left chromaticity diagram.
 ここで、波長変換素子の波長変換部材の構成として、第1蛍光体粒子、第2蛍光体粒子、散乱粒子及び透明結合材の体積比率が以下の三種類である波長変換素子(a)~(c)を作成し、図23の右側の拡大図に示した。 Here, as a configuration of the wavelength conversion member of the wavelength conversion element, the wavelength conversion elements (a) to (a) to (a) to (a) having the following three types of volume ratios of the first phosphor particles, the second phosphor particles, the scattering particles, and the transparent binder. c) was created and shown in the enlarged view on the right side of FIG.
 (a)18:0:22:60
 (b)0:18:22:60
 (c)9:9:22:60
(A) 18: 0: 22: 60
(B) 0: 18: 22: 60
(C) 9: 9: 22: 60
 このとき、波長変換部材の発光領域151における膜厚はいずれも25μm程度であった。また、出射光95の色度座標は、図4に示した発光装置101に波長変換素子を搭載して測定した。 At this time, the film thickness in the light emitting region 151 of the wavelength conversion member was about 25 μm. The chromaticity coordinates of the emitted light 95 were measured by mounting a wavelength conversion element on the light emitting device 101 shown in FIG.
 図23の右側の拡大図の色度座標95a、95b及び95cがそれぞれ上記の(a)、(b)及び(c)に相当する波長変換素子から出射される出射光の色度座標である。このように、組成比が異なる同じ基本色の蛍光体を用いて、その混合比率を変えることで、励起光と蛍光とを結ぶ軌跡以外の方向に色度座標を調整することができる。つまり、第1蛍光体粒子、第2蛍光体粒子、散乱粒子の3種類の粒子の比率を変えることで、色度図上の色度座標をx軸、y軸方向に自由に調整することができる。つまり、発光装置を大量に生産する場合においても、所望の色度座標を得るために、第1蛍光体粒子、第2蛍光体粒子、散乱粒子の3種類の粒子のみ準備しておけばよい。 23. The chromaticity coordinates 95a, 95b and 95c in the enlarged view on the right side of FIG. 23 are the chromaticity coordinates of the emitted light emitted from the wavelength conversion elements corresponding to the above (a), (b) and (c), respectively. Thus, by using the same basic color phosphors having different composition ratios and changing the mixing ratio, the chromaticity coordinates can be adjusted in directions other than the locus connecting the excitation light and the fluorescence. In other words, the chromaticity coordinates on the chromaticity diagram can be freely adjusted in the x-axis and y-axis directions by changing the ratio of the three types of particles of the first phosphor particles, the second phosphor particles, and the scattering particles. it can. That is, even when a large number of light emitting devices are produced, only three types of particles, the first phosphor particles, the second phosphor particles, and the scattering particles, should be prepared in order to obtain desired chromaticity coordinates.
 より具体的には、図23に示す領域Aは、日本工業規格JIS D 5500で定められた車両用の前照灯の色度の領域である。この用途の発光装置を製造する場合には、第1蛍光体粒子、第2蛍光体粒子及び散乱粒子を準備し、それらの比率を調整して波長変換部材及び波長変換素子を作製する。これにより、前述の規格で定められた色度の領域内のうち、斜線領域部分の色度を自由に得ることができる。 More specifically, a region A shown in FIG. 23 is a chromaticity region of a vehicle headlamp defined by Japanese Industrial Standards JIS D 5500. When manufacturing a light-emitting device for this application, first phosphor particles, second phosphor particles, and scattering particles are prepared, and their ratios are adjusted to produce a wavelength conversion member and a wavelength conversion element. Thereby, it is possible to freely obtain the chromaticity of the shaded area portion within the chromaticity area defined by the above-mentioned standard.
 また、波長変換部材40に含まれる散乱粒子43には発光領域における出射光の色度の均一性を向上させるという効果もある。つまり、散乱粒子43が存在することで第1蛍光体粒子41から出射される第1蛍光と、第2蛍光体粒子44から出射される第2蛍光とを散乱することで混合することができる。したがって、波長変換部材40の発光領域から均一な色度の出射光を放射することができる。 Further, the scattering particles 43 included in the wavelength conversion member 40 also have an effect of improving the chromaticity uniformity of the emitted light in the light emitting region. In other words, the presence of the scattering particles 43 makes it possible to mix the first fluorescence emitted from the first phosphor particles 41 and the second fluorescence emitted from the second phosphor particles 44 by scattering. Therefore, the emitted light with uniform chromaticity can be emitted from the light emitting region of the wavelength conversion member 40.
 上記のような構成により、出射光の輝度が高く、発光領域における色度の均一性が高く、さらに色度の調整を容易に行うことができる発光装置を提供することができる。 With the configuration as described above, it is possible to provide a light emitting device that has high luminance of emitted light, high uniformity of chromaticity in a light emitting region, and can easily adjust chromaticity.
 なお、本実施の形態に係る波長変換部材40Fにおいて、第1蛍光体粒子41及び第2蛍光体粒子44としてメジアン径D50が2μm以上30μm以下の(La1-xSi11:Ce(0.5≦x≦1)を用いて説明したがこの限りではない。使用する発光装置に必要とされる出射光の輝度やスペクトルに応じて、(YGd1-x(AlGa1-y12:Ce(0.5≦x≦1、0.5≦y≦1)などを用いることができる。この場合、透明結合材としてシルセスキオキサン以外の材料を用いてもよい。例えば、SiO、Al、ZnO、Ta、Nb、TiO、AlN、BN、BaOなどの無機物を主に構成する材料で透明結合材42を構成することでより高い信頼性を有する波長変換素子1を実現できる。また、波長変換部材40Fに含まれる散乱粒子43は、発光装置の用途に応じて、Alに限らず、SiO、TiO、ZnOなどの微粒子を用いることができる。特に、熱伝導率の高い窒化ホウ素(BN)やダイヤモンドの微粒子を混合させることで、波長変換部材40Fの光散乱性を強めるとともに、蛍光体材料からの熱を効率よく支持部材に伝熱させることができる。 In the wavelength conversion member 40F according to the present embodiment, the median diameter D50 of the first phosphor particles 41 and the second phosphor particles 44 is (La x Y 1-x ) 3 Si 6 N 11 having a median diameter D50 of 2 μm to 30 μm. : Explained using Ce (0.5 ≦ x ≦ 1), but not limited thereto. Depending on the intensity and spectrum of the emitted light that is required for the light emitting device to be used, (Y x Gd 1-x ) 3 (Al y Ga 1-y) 5 O 12: Ce (0.5 ≦ x ≦ 1, 0.5 ≦ y ≦ 1) or the like can be used. In this case, a material other than silsesquioxane may be used as the transparent binder. For example, by forming the transparent binder 42 with a material mainly composed of inorganic materials such as SiO 2 , Al 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , TiO 2 , AlN, BN, BaO, and the like. The wavelength conversion element 1 having high reliability can be realized. Further, the scattering particles 43 included in the wavelength conversion member 40F are not limited to Al 2 O 3 but may be fine particles such as SiO 2 , TiO 2 , and ZnO depending on the use of the light emitting device. In particular, by mixing fine particles of boron nitride (BN) or diamond with high thermal conductivity, the light scattering property of the wavelength conversion member 40F is enhanced, and heat from the phosphor material is efficiently transferred to the support member. Can do.
 (実施の形態5)
 続いて実施の形態5に係る発光装置及び照明装置について説明する。本実施の形態に係る発光装置及び照明装置は、半導体発光装置110と波長変換素子1との間において、可動ミラーユニットを用いて励起光を波長変換部材の表面に対して走査しつつ照射する点が、実施の形態1に係る発光装置101及び照明装置201と相違する。以下、本実施の形態に係る発光装置及び照明装置について、実施の形態1に係る発光装置101及び照明装置201との相違点を中心に図面を用いて説明する。
(Embodiment 5)
Next, a light emitting device and a lighting device according to Embodiment 5 will be described. The light-emitting device and the illumination device according to the present embodiment irradiate the surface of the wavelength conversion member with excitation light using a movable mirror unit between the semiconductor light-emitting device 110 and the wavelength conversion element 1. However, it is different from the light emitting device 101 and the illumination device 201 according to Embodiment 1. Hereinafter, the light-emitting device and the lighting device according to the present embodiment will be described with reference to the drawings with a focus on differences from the light-emitting device 101 and the lighting device 201 according to the first embodiment.
 図24Aは、本実施の形態に係る照明装置201Cの構成を示す模式的な断面図である。 FIG. 24A is a schematic cross-sectional view showing the configuration of the illumination device 201C according to the present embodiment.
 図24Aに示すように、照明装置201Cは、発光装置101Cと、投光部材220と、第4基台221とを備える。発光装置101Cは、波長変換素子1から出射光95を出射させる光源である。照明装置201Cは、投光部材220により出射光95を指向性の強い光である投影光96に変換して出射する。 As shown in FIG. 24A, the illumination device 201C includes a light emitting device 101C, a light projecting member 220, and a fourth base 221. The light emitting device 101 </ b> C is a light source that emits outgoing light 95 from the wavelength conversion element 1. The illuminating device 201 </ b> C converts the emitted light 95 into the projection light 96 that is highly directional light by the light projecting member 220 and emits it.
 発光装置101Cは、実施の形態1と同様に波長変換素子1と、半導体発光装置110と、レンズ120aとを備える。本実施の形態においては、発光装置101Cは、レンズ120aと波長変換素子1との間の光路に、可動ミラーユニット520を備える。 The light emitting device 101C includes the wavelength conversion element 1, the semiconductor light emitting device 110, and the lens 120a as in the first embodiment. In the present embodiment, the light emitting device 101C includes a movable mirror unit 520 in the optical path between the lens 120a and the wavelength conversion element 1.
 可動ミラーユニット520は、位置及び姿勢の少なくとも一方を変動させ得るミラーである可動ミラー520aと、可動ミラー520aを図示しない支持部により保持するホルダ520bとで構成される。可動ミラー520aは、図24Aに示されるDy方向に対して、Dz方向に傾斜したDy1方向に対してミラー面が平行になるように固定される。支持部は、例えばトーションバーなどの、図24A中のDy1方向に伸びる支持部材であり、可動ミラー520aをDy1方向を中心軸として回転する方向に傾斜させることが可能である。可動ミラー520aのホルダ520bに対する傾斜角度は、ホルダ520bとの間の静電力又は電磁力を用いて変えられる。 The movable mirror unit 520 includes a movable mirror 520a that is a mirror that can change at least one of a position and a posture, and a holder 520b that holds the movable mirror 520a by a support unit (not shown). The movable mirror 520a is fixed so that the mirror surface is parallel to the Dy1 direction inclined in the Dz direction with respect to the Dy direction shown in FIG. 24A. The support portion is a support member that extends in the Dy1 direction in FIG. 24A, such as a torsion bar, and can tilt the movable mirror 520a in a direction that rotates around the Dy1 direction as a central axis. The inclination angle of the movable mirror 520a with respect to the holder 520b can be changed by using an electrostatic force or electromagnetic force between the movable mirror 520a and the holder 520b.
 半導体発光装置110は、第2基台550に固定され、第2基台550は基台50に固定される。可動ミラーユニット520は、第3基台540に固定され、第3基台540は基台50に固定される。 The semiconductor light emitting device 110 is fixed to the second base 550, and the second base 550 is fixed to the base 50. The movable mirror unit 520 is fixed to the third base 540, and the third base 540 is fixed to the base 50.
 発光装置101Cには、プリント回路板160が基台50の底面側に配置される。また、プリント回路板160には、半導体発光装置110が接続された第2プリント回路板160b、可動ミラーユニット520の配線、及び、外部回路との接続用のコネクタ170が接続される。 In the light emitting device 101C, a printed circuit board 160 is disposed on the bottom surface side of the base 50. Further, the second printed circuit board 160b to which the semiconductor light emitting device 110 is connected, the wiring of the movable mirror unit 520, and the connector 170 for connection to an external circuit are connected to the printed circuit board 160.
 半導体発光装置110から出射された出射光は、レンズ120aで集光され出射光83となる。出射光83は、可動ミラー520aで反射された後、励起光84として、波長変換素子1に照射される。 The outgoing light emitted from the semiconductor light emitting device 110 is condensed by the lens 120 a to become outgoing light 83. The outgoing light 83 is reflected by the movable mirror 520a and then irradiated to the wavelength conversion element 1 as the excitation light 84.
 波長変換素子1に照射された励起光84は、波長変換素子1の波長変換部材40で一部が蛍光に波長変換され、蛍光からなる第2出射光91及び励起光84の散乱光からなる第1出射光85で構成される出射光95となり発光装置101Cから出射される。 The excitation light 84 irradiated to the wavelength conversion element 1 is partly wavelength-converted to fluorescence by the wavelength conversion member 40 of the wavelength conversion element 1, and the second emission light 91 composed of fluorescence and the second light composed of the scattered light of the excitation light 84. The emitted light 95 is composed of one emitted light 85 and is emitted from the light emitting device 101C.
 上記の発光装置101Cは、コネクタ170を備える。コネクタ170は、外部回路との接続が可能なコネクタである。コネクタ170を介して可動ミラーユニット520と半導体発光装置110とに接続されるプリント回路板160に外部から電力を印加することができる。これにより半導体発光装置110と可動ミラーユニット520とに印加する電力調整することで、波長変換素子1から出射される出射光95の発光パターンをより自由に設定することができる。 The light emitting device 101C includes a connector 170. The connector 170 is a connector that can be connected to an external circuit. Electric power can be applied from the outside to the printed circuit board 160 connected to the movable mirror unit 520 and the semiconductor light emitting device 110 via the connector 170. Thus, by adjusting the power applied to the semiconductor light emitting device 110 and the movable mirror unit 520, the light emission pattern of the emitted light 95 emitted from the wavelength conversion element 1 can be set more freely.
 照明装置201Cを構成する投光部材220は、本実施の形態においては、レンズである。投光部材220は第4基台221に保持され、発光装置101Cの波長変換素子1側の基台50に取り付けられる。 The light projecting member 220 constituting the illumination device 201C is a lens in the present embodiment. The light projecting member 220 is held on the fourth base 221 and attached to the base 50 on the wavelength conversion element 1 side of the light emitting device 101C.
 続いて、波長変換素子1への励起光84の照射領域について図24Bを用いて説明する。図24Bは、本実施の形態に係る波長変換素子1及びその周辺の拡大断面図である。図24Bには、本実施の形態に係る波長変換素子1の波長変換部材40に対する上面図も併せて示されている。なお、図24Bの拡大断面図は、図24Bの上面図に示されるXXIVB-XXIVB線における断面に相当する。 Subsequently, an irradiation area of the excitation light 84 to the wavelength conversion element 1 will be described with reference to FIG. 24B. FIG. 24B is an enlarged cross-sectional view of the wavelength conversion element 1 according to the present embodiment and its surroundings. FIG. 24B also shows a top view of the wavelength conversion member 40 of the wavelength conversion element 1 according to the present embodiment. Note that the enlarged cross-sectional view of FIG. 24B corresponds to a cross section taken along line XXIVB-XXIVB shown in the top view of FIG. 24B.
 図24Bの上面図には、ある時点における励起光84の照射領域84aを示す。本実施の形態において照射領域84aは、可動ミラー520aの傾斜方向を変化させることで、照射領域84aをSx1方向又はSx2方向に移動、つまり走査させることができる。この照射領域84aを、人間の目の残像時間よりも十分短い時間で周期的に走査させることで、走査範囲である走査領域84wを見かけ上の発光領域として波長変換素子1を発光させることができる。 The top view of FIG. 24B shows the irradiation region 84a of the excitation light 84 at a certain time. In the present embodiment, the irradiation region 84a can be moved, that is, scanned in the Sx1 direction or the Sx2 direction by changing the tilt direction of the movable mirror 520a. By periodically scanning the irradiation region 84a in a time sufficiently shorter than the afterimage time of human eyes, the wavelength conversion element 1 can emit light as an apparent light emitting region, which is the scanning region 84w that is the scanning range. .
 このとき、走査領域84wの一部において、励起光84が照射されないように、半導体発光装置110と可動ミラーユニット520とに印加する電力とタイミングとを調整することで、走査領域84wにおいて、任意の時間において、励起光84を照射する領域と照射しない領域を設定することができる。つまり、可動ミラー520aの任意の傾斜方向において半導体発光装置110に印可する電力をオフにすることで、非照射領域を作ることができる。 At this time, by adjusting the power and timing applied to the semiconductor light emitting device 110 and the movable mirror unit 520 so that the excitation light 84 is not irradiated in a part of the scanning region 84w, the scanning region 84w In time, it is possible to set a region where the excitation light 84 is irradiated and a region where the excitation light 84 is not irradiated. That is, the non-irradiation region can be created by turning off the power applied to the semiconductor light emitting device 110 in an arbitrary tilt direction of the movable mirror 520a.
 図24Cは、本実施の形態に係る照明装置201C、及び、照明装置201Cから投影される投影像99を示す模式的な斜視図である。図24Cに示すように、照明装置201Cは、投影対象物199に形成される投影像99の任意の場所に非照射領域599を形成することができる。非照射領域599は、投影範囲中に自由に配置することできる。このため本実施の形態の照明装置201Cを車両の前照灯に用いた場合には、アダプティブ・ドライビング・ビーム(Adaptive Driving Beam)に適用することが可能になる。 FIG. 24C is a schematic perspective view showing the illumination device 201C according to the present embodiment and a projection image 99 projected from the illumination device 201C. As illustrated in FIG. 24C, the illumination device 201C can form a non-irradiation region 599 at an arbitrary position of the projection image 99 formed on the projection target 199. The non-irradiation region 599 can be freely arranged in the projection range. For this reason, when the lighting device 201C of the present embodiment is used for a vehicle headlamp, it can be applied to an adaptive driving beam (Adaptive Driving Beam).
 続いて、本実施の形態に用いる波長変換素子1の製造方法を、図24Dを用いて説明する。図24Dは、本実施の形態に係る波長変換部材40の形状を示す写真である。より詳しくは、図24Dは、例えばシリコン基板であるウエハ状の支持部材2の支持面2aに反射部材3を形成し、さらに、その上に、実施の形態1と同様にスクリーン印刷を用いて複数の波長変換部材40を形成したものの一部の写真である。なお、図24Dには、波長変換部材40を拡大した模式的な上面図も併せて示されている。 Then, the manufacturing method of the wavelength conversion element 1 used for this Embodiment is demonstrated using FIG. 24D. FIG. 24D is a photograph showing the shape of the wavelength conversion member 40 according to the present embodiment. More specifically, in FIG. 24D, for example, the reflecting member 3 is formed on the support surface 2a of the wafer-like support member 2 which is a silicon substrate, and a plurality of the reflection members 3 are further formed thereon by using screen printing in the same manner as in the first embodiment. It is a photograph of a part of what formed the wavelength conversion member 40 of. FIG. 24D also shows a schematic top view in which the wavelength conversion member 40 is enlarged.
 図24Dに示すように、本実施の形態に係る波長変換部材40は、支持面2aの上面視において、図24Dにおける横方向(つまり、長手方向)の長さが10mmで縦方向(つまり、幅方向)の長さが3mmの矩形形状を有し、横方向に15mmピッチ、縦方向に4mmピッチで形成されている。したがって、波長変換部材40を形成した後、ウエハ状の支持部材2を所定のピッチで切断することにより波長変換素子1が製造される。 As shown in FIG. 24D, the wavelength conversion member 40 according to the present embodiment has a length in the horizontal direction (that is, the longitudinal direction) in FIG. (Direction) has a rectangular shape with a length of 3 mm, and is formed at a pitch of 15 mm in the horizontal direction and a pitch of 4 mm in the vertical direction. Therefore, after forming the wavelength conversion member 40, the wavelength conversion element 1 is manufactured by cutting the wafer-like support member 2 at a predetermined pitch.
 続いて以上のような方法で製造された波長変換素子1の断面形状について図24E~図24Gを用いて説明する。図24E~図24Gは、本実施の形態に係る波長変換素子1の膜厚の測定結果を示すグラフである。図24E~図24Gには、それぞれ、図24Dに示されるXXIVE-XXIVE線、XXIVF-XXIVF線及びXXIVG-XXIVG線における断面の膜厚が示される。XXIVF-XXIVF線、XXIVG-XXIVG線においては、実施の形態1と同様に中央領域の膜厚が20μm程度であり、周縁領域の膜厚は中央領域よりも少し厚い。つまり、波長変換部材40は、凹形状を有する。また、XXIVE-XXIVE線においては、波長変換部材40の膜厚は20μm程度でほど一定である。したがって、本実施の形態に係る波長変換部材40は、支持面2aの上面視において、長尺状の形状を有し、実施の形態1で述べた第1頂部は、波長変換部材40の長手方向に垂直な方向の端部に配置される。 Next, the cross-sectional shape of the wavelength conversion element 1 manufactured by the above method will be described with reference to FIGS. 24E to 24G. 24E to 24G are graphs showing the measurement results of the film thickness of the wavelength conversion element 1 according to the present embodiment. 24E to 24G show the film thicknesses of the cross sections along the XXIVE-XXIVE line, XXIVF-XXIVF line, and XXIVG-XXIVG line shown in FIG. 24D, respectively. In the XXIVF-XXIVF line and the XXIVG-XXIVG line, the film thickness of the central region is about 20 μm as in the first embodiment, and the film thickness of the peripheral region is slightly thicker than that of the central region. That is, the wavelength conversion member 40 has a concave shape. In the XXIVE-XXIVE line, the film thickness of the wavelength converting member 40 is as constant as about 20 μm. Therefore, the wavelength conversion member 40 according to the present embodiment has a long shape in the top view of the support surface 2a, and the first top portion described in the first embodiment is the longitudinal direction of the wavelength conversion member 40. It is arrange | positioned at the edge part of a direction perpendicular | vertical to.
 このような構成の波長変換部材40においては、図24Bに示す走査領域84wの長軸方向に対して波長変換部材40の膜厚を一定とすることができる。一方で、走査領域84wの短軸方向に対しては、凹形状とすることで、色度変化が小さく、かつ、波長変換素子の温度変化に対して、波長変換部材40が支持部材2から剥離するのを抑制することができる。図24Hは、上記の波長変換部材40の膜厚分布に基づき波長変換素子1の発光領域における色分布のシミュレーション結果を示したグラフである。横軸が位置を示し、縦軸が色度xを示す。図24Hに示すように、広い発光領域において、色分布が小さい発光装置を実現できていることがわかる。 In the wavelength conversion member 40 having such a configuration, the film thickness of the wavelength conversion member 40 can be made constant with respect to the major axis direction of the scanning region 84w shown in FIG. 24B. On the other hand, with respect to the minor axis direction of the scanning region 84w, by making it concave, the chromaticity change is small, and the wavelength conversion member 40 is peeled from the support member 2 with respect to the temperature change of the wavelength conversion element. Can be suppressed. FIG. 24H is a graph showing a simulation result of the color distribution in the light emitting region of the wavelength conversion element 1 based on the film thickness distribution of the wavelength conversion member 40 described above. The horizontal axis indicates the position, and the vertical axis indicates the chromaticity x. As shown in FIG. 24H, it can be seen that a light emitting device having a small color distribution in a wide light emitting region can be realized.
 以上のような構成を有する発光装置101C及び照明装置201Cにおいても、実施の形態1に係る発光装置101及び照明装置201と同様の効果を奏することができる。また、本実施の形態では、可動ミラーユニットを用いて励起光を波長変換素子1上で走査するため、投影像99のパターンの自由度を高めることができる。 Also in the light emitting device 101C and the lighting device 201C having the above-described configuration, the same effects as those of the light emitting device 101 and the lighting device 201 according to Embodiment 1 can be obtained. Moreover, in this Embodiment, since excitation light is scanned on the wavelength conversion element 1 using a movable mirror unit, the freedom degree of the pattern of the projection image 99 can be raised.
 (実施の形態6)
 続いて実施の形態6に係る発光装置について図25A~図25Cを用いて説明する。上記の実施の形態において、発光装置の構成として、励起光は、波長変換素子の一方の斜め上方から照射される構成を示した。しかしながら、本実施の形態に係る発光装置においては、励起光を、複数の方向から照射することで、より光量の大きい光を波長変換素子から放射させることができる。図25Aは、本実施の形態に係る発光装置における波長変換素子1F及び励起光84の照射方向を示す模式的な断面図である。図25Aに示すように、本実施の形態では、励起光84を、実施の形態4に係る波長変換素子1Fの一方の斜め上方及び他方の斜め上方の二つの方向から照射する。図25Aに示す構成例では、励起光84の励起領域を通り支持面2aと直交する平面に対して対称な二つの光路に沿った二つの方向から励起光を波長変換素子1Fに照射している。
(Embodiment 6)
Next, a light-emitting device according to Embodiment 6 will be described with reference to FIGS. 25A to 25C. In the above embodiment, as the configuration of the light emitting device, the configuration in which the excitation light is irradiated from one diagonally upper side of the wavelength conversion element is shown. However, in the light emitting device according to the present embodiment, light having a larger amount of light can be emitted from the wavelength conversion element by irradiating excitation light from a plurality of directions. FIG. 25A is a schematic cross-sectional view showing the irradiation direction of the wavelength conversion element 1F and the excitation light 84 in the light emitting device according to the present embodiment. As shown in FIG. 25A, in the present embodiment, the excitation light 84 is irradiated from two directions, one diagonally upper side and the other diagonally upper side of the wavelength conversion element 1F according to the fourth embodiment. In the configuration example shown in FIG. 25A, the wavelength conversion element 1F is irradiated with excitation light from two directions along two optical paths that are symmetrical with respect to a plane that passes through the excitation region of the excitation light 84 and is orthogonal to the support surface 2a. .
 本構成例を用いて実施した実験結果について図25B及び図25Cを用いて説明する。図25Bは、本実施の形態に係る波長変換素子1Fの発光領域における輝度分布を示すグラフである。図25Cは、本実施の形態に係る発光装置の実験結果の概要を示す表である。図25B及び図25Cには、二つの方向からそれぞれ光出力3.5Wの励起光84を波長変換素子1Fに照射した場合の実験結果を示している。つまり、本実験では、合計7Wの光出力の励起光84を波長変換素子1Fに照射した。このとき、発光領域の直径が凡そ1mmとなるように調整した。この場合においても上記実施の形態1などと同様に、図25Bの発光領域の輝度分布に示すように、1000cd/mmを超えるピーク輝度と、125℃という150℃以下の発光領域における波長変換部材40の表面温度とを実現できた。このとき、図25Cに示すように、ピーク輝度の1/e以上の輝度の領域を発光領域サイズとすると、図25Aの紙面に平行な方向(励起光が含まれる平面に平行な方向)における発光領域の幅が0.9mmで、図25Aの紙面に垂直な方向(励起光が含まれる平面に垂直な方向)における発光領域の幅が1.1mmであった。この発光領域から、1000lm以上の光束を放射させることができた。この光束は、上述したような微小な発光領域から光束としては非常に高い。 Results of experiments performed using this configuration example will be described with reference to FIGS. 25B and 25C. FIG. 25B is a graph showing a luminance distribution in the light emitting region of the wavelength conversion element 1F according to the present embodiment. FIG. 25C is a table showing an outline of experimental results of the light-emitting device according to this embodiment. 25B and 25C show experimental results when the wavelength conversion element 1F is irradiated with excitation light 84 having an optical output of 3.5 W from two directions. That is, in this experiment, the wavelength conversion element 1F was irradiated with excitation light 84 having a total light output of 7 W. At this time, the diameter of the light emitting region was adjusted to be about 1 mm. Also in this case, as in the first embodiment, as shown in the luminance distribution of the light emitting region in FIG. 25B, the wavelength conversion member in the light emitting region having a peak luminance exceeding 1000 cd / mm 2 and 125 ° C. of 150 ° C. or lower A surface temperature of 40 could be realized. At this time, as shown in FIG. 25C, when a region having a luminance of 1 / e 2 or more of the peak luminance is set as the light emitting region size, the direction in the direction parallel to the paper surface of FIG. 25A (the direction parallel to the plane including the excitation light). The width of the light emitting region was 0.9 mm, and the width of the light emitting region in the direction perpendicular to the paper surface of FIG. 25A (the direction perpendicular to the plane containing the excitation light) was 1.1 mm. From this light emitting region, a light flux of 1000 lm or more could be emitted. This luminous flux is very high as a luminous flux from the minute light emitting region as described above.
 以上のように、波長変換素子1Fに複数の励起光を照射する発光装置によれば、波長変換素子1Fの表面温度を所定の温度以下に維持しつつ、大きい光量の放射光を放射させることができる。また、本実施の形態においては、波長変換素子1F周辺の頂部について、図25Aの紙面に平行な平面内に形成される頂部を第2頂部、励起領域を通り紙面に垂直な方向に形成される頂部を第1頂部とし、第2頂部の支持面2aからの高さを、第1頂部の支持面2aからの高さより低くしてもよい。言い換えると、励起光84が含まれる平面内に配置される第2頂部の支持面2aからの高さを、励起領域を通り当該平面に垂直な平面内に配置される第1頂部の支持面2aからの高さより低くしてもよい。この構成により、励起光84の一部が第2頂部において蹴られることを抑制することができる。 As described above, according to the light emitting device that irradiates the wavelength conversion element 1F with a plurality of excitation lights, it is possible to radiate a large amount of emitted light while maintaining the surface temperature of the wavelength conversion element 1F below a predetermined temperature. it can. Further, in the present embodiment, with respect to the top of the periphery of the wavelength conversion element 1F, the top formed in a plane parallel to the paper surface of FIG. 25A is formed in the direction perpendicular to the paper surface through the excitation region. The top may be the first top, and the height of the second top from the support surface 2a may be lower than the height of the first top from the support surface 2a. In other words, the height from the support surface 2a of the second top portion disposed in the plane including the excitation light 84 is set to the height of the first top support surface 2a disposed in the plane that passes through the excitation region and is perpendicular to the plane. You may make it lower than the height from. With this configuration, it is possible to suppress a part of the excitation light 84 from being kicked at the second top portion.
 上記の構成において、複数の励起光として2つの場合について説明したが、この限りではない。3以上の励起光を用いる場合においても同様の応用を実施することが可能である。 In the above configuration, two cases are described as a plurality of excitation lights, but this is not restrictive. The same application can be performed even when three or more excitation lights are used.
 (その他の変形例など)
 以上、本開示について、各実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲内に含まれる。
(Other variations)
As mentioned above, although this indication was explained based on each embodiment, this indication is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications conceived by those skilled in the art have been made in the present embodiment, and other forms constructed by combining some components in the embodiment are also within the scope of the present disclosure. Contained within.
 例えば、実施の形態2などでは、散乱粒子43として、透明材料を用いる例を示したが、散乱粒子43として透明材料以外の材料を用いてもよい。散乱粒子43を形成する材料は、励起光及び蛍光に対する吸収が少なく、かつ、励起光を散乱する材料であればよく、例えば、白色樹脂などであってもよい。 For example, in the second embodiment and the like, an example in which a transparent material is used as the scattering particle 43 is shown, but a material other than the transparent material may be used as the scattering particle 43. The material that forms the scattering particles 43 may be any material that has little absorption with respect to excitation light and fluorescence and that scatters excitation light, and may be, for example, a white resin.
 また、実施の形態4に係る波長変換部材40Fでは、実施の形態1に係る波長変換部材40の形状的な特徴を備えるが、実施の形態4に係る波長変換部材40Fの構成はこれに限定されない。つまり、実施の形態4に係る波長変換部材40Fは、実施の形態1に係る波長変換部材40のような形状を有していなくてもよい。例えば、波長変換部材40Fの膜厚は、全領域にわたってほぼ一定であってもよい。 Further, the wavelength conversion member 40F according to the fourth embodiment includes the shape characteristics of the wavelength conversion member 40 according to the first embodiment, but the configuration of the wavelength conversion member 40F according to the fourth embodiment is not limited to this. . That is, the wavelength conversion member 40F according to the fourth embodiment may not have the shape as the wavelength conversion member 40 according to the first embodiment. For example, the film thickness of the wavelength conversion member 40F may be substantially constant over the entire region.
 本開示の波長変換素子は、上述のとおり光密度の高い励起光に対して、波長変換部材の温度上昇を抑制するとともに、出射光の色度座標を容易に調整することができ、当該波長変換素子を用いた発光装置は、容易に高輝度の出射光を出射させることができる。そのため、本開示の波長変換素子及びそれを用いる発光装置は、車両や船舶、列車の前照灯、プロジェクタ用光源、スポットライト用光源、医療用光源などの各種照明装置などにおいて有用である。 As described above, the wavelength conversion element of the present disclosure suppresses the temperature increase of the wavelength conversion member with respect to excitation light having a high light density, and can easily adjust the chromaticity coordinates of the emitted light. A light emitting device using an element can easily emit high-luminance outgoing light. Therefore, the wavelength conversion element of the present disclosure and the light emitting device using the same are useful in various illumination devices such as vehicles, ships, train headlights, projector light sources, spotlight light sources, and medical light sources.
 1、1B、1C、1D、1F 波長変換素子
 2 支持部材
 2a 支持面
 2d 配置領域
 3 反射部材
 3a 密着層
 3b 第1反射膜
 3c 第2反射膜
 5a 微小凸部
 5b 微小凹部
 6 放射面
 6a 周縁領域
 6b 中央領域
 7 接合面
 40、40B、40C、40D、40F 波長変換部材
 41 第1蛍光体粒子
 42 透明結合材
 43 散乱粒子
 44 第2蛍光体粒子
 45 ボイド
 50 基台
 50a 格納部
 50b 側壁
 51 遮光カバー
 52 ネジ
 53、520b ホルダ
 55 接着部材
 81、83、95 出射光
 84 励起光
 85 第1出射光
 91 第2出射光
 96 投影光
 99 投影像
 101、101B、101C 発光装置
 110 半導体発光装置
 111 半導体発光素子
 120 集光光学部材
 120a レンズ
 120b 反射光学素子
 120c 集光レンズ
 130 光検出器
 140 透光部材
 150 励起領域
 151 発光領域
 160 プリント回路板
 160b 第2プリント回路板
 170 コネクタ
 190 回転機構
 191 回転軸
 199 投影対象物
 201、201B、201C 照明装置
 220 投光部材
 221 第4基台
 314B、314R ダイクロイックミラー
 320 光源ユニット
 325 ヒートシンク
 331B、332B、331R、332R 反射ミラー
 350B、350G、350R 画像表示素子
 360 ダイクロイックプリズム
 365 投影レンズ
 379B 青色光
 379Y 黄色光
 379G 緑色光
 379R 赤色光
 380B、380G、380R 信号光
 389 投射光
 520 可動ミラーユニット
 520a 可動ミラー
 540 第3基台
 550 第2基台
 599 非照射領域
 1063 発光装置 (光源装置)
 1070 励起光源
 1071 蛍光体ホイール
 1075 導光装置
 1130 基材
 1131 蛍光体の層
 1138 反射層
 1139 励起光集光レンズ
 P1 第1頂部
 S1 第1傾斜部
1, 1B, 1C, 1D, 1F Wavelength conversion element 2 Support member 2a Support surface 2d Arrangement region 3 Reflective member 3a Adhesion layer 3b First reflection film 3c Second reflection film 5a Minute convex portion 5b Minute concave portion 6 Radiation surface 6a Peripheral region 6b Central region 7 Bonding surface 40, 40B, 40C, 40D, 40F Wavelength conversion member 41 First phosphor particle 42 Transparent binder 43 Scattering particle 44 Second phosphor particle 45 Void 50 Base 50a Storage unit 50b Side wall 51 Shading cover 52 Screw 53, 520b Holder 55 Adhesive member 81, 83, 95 Emitted light 84 Excited light 85 First emitted light 91 Second emitted light 96 Projected light 99 Projected image 101, 101B, 101C Light emitting device 110 Semiconductor light emitting device 111 Semiconductor light emitting element 120 condensing optical member 120a lens 120b reflective optical element 120c condensing lens 1 DESCRIPTION OF SYMBOLS 0 Photodetector 140 Translucent member 150 Excitation area | region 151 Light emission area | region 160 Printed circuit board 160b 2nd printed circuit board 170 Connector 190 Rotating mechanism 191 Rotating shaft 199 Projection object 201, 201B, 201C Illuminating device 220 Light projecting member 221 4th Base 314B, 314R Dichroic mirror 320 Light source unit 325 Heat sink 331B, 332B, 331R, 332R Reflective mirror 350B, 350G, 350R Image display element 360 Dichroic prism 365 Projection lens 379B Blue light 379Y Yellow light 379G Green light 379R Red light 380 380R Signal light 389 Projection light 520 Movable mirror unit 520a Movable mirror 540 Third base 550 Second base 599 Non-irradiation area 1063 Light emitting device (Light source device)
1070 Excitation light source 1071 Phosphor wheel 1075 Light guide device 1130 Base material 1131 Phosphor layer 1138 Reflective layer 1139 Excitation light condensing lens P1 First apex S1 First inclined portion

Claims (26)

  1.  支持面を有する支持部材と、
     前記支持面の上方に配置される波長変換部材とを備え、
     前記波長変換部材は、前記支持面の反対側に位置する放射面を有し、
     前記放射面は、前記放射面の周縁を含む周縁領域と、前記周縁領域に囲まれる中央領域とを含み、
     前記周縁領域の少なくとも一部は、前記支持面から遠ざかる向きに前記中央領域より突出している第1頂部を有し、
     前記放射面は、前記第1頂部から前記中央領域に向かって前記支持面側に傾斜している第1傾斜部を有する
    波長変換素子。
    A support member having a support surface;
    A wavelength conversion member disposed above the support surface,
    The wavelength conversion member has a radiation surface located on the opposite side of the support surface;
    The radiation surface includes a peripheral region including a peripheral edge of the radiation surface, and a central region surrounded by the peripheral region,
    At least a portion of the peripheral region has a first top that protrudes from the central region in a direction away from the support surface;
    The wavelength conversion element, wherein the radiation surface includes a first inclined portion that is inclined toward the support surface from the first top toward the central region.
  2.  前記中央領域は、前記第1傾斜部より傾斜が緩やかな平坦部を含む
     請求項1に記載の波長変換素子。
    The wavelength conversion element according to claim 1, wherein the central region includes a flat portion whose inclination is gentler than that of the first inclined portion.
  3.  前記第1傾斜部における前記放射面には、複数の微小凸部が形成されている
     請求項1又は2に記載の波長変換素子。
    The wavelength conversion element according to claim 1, wherein a plurality of minute convex portions are formed on the radiation surface of the first inclined portion.
  4.  前記支持面の前記波長変換部材が配置される配置領域は平面である
     請求項1~3のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 1 to 3, wherein an arrangement region of the support surface where the wavelength conversion member is arranged is a flat surface.
  5.  前記波長変換部材の前記第1頂部における膜厚は、前記中央領域における膜厚よりも厚い
     請求項1~4のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 1 to 4, wherein a film thickness at the first top of the wavelength conversion member is thicker than a film thickness at the central region.
  6.  前記中央領域における前記波長変換部材の膜厚は、15μm以上35μm以下である
     請求項1~5のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 1 to 5, wherein a film thickness of the wavelength conversion member in the central region is not less than 15 袖 m and not more than 35 袖 m.
  7.  前記波長変換部材は、前記中央領域と前記第1頂部とにおいて、同一材料からなる複数の第1蛍光体粒子を含む
     請求項1~6のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 1 to 6, wherein the wavelength conversion member includes a plurality of first phosphor particles made of the same material in the central region and the first top portion.
  8.  前記波長変換部材は、前記複数の第1蛍光体粒子を結合する透明結合材を含む
     請求項7に記載の波長変換素子。
    The wavelength conversion element according to claim 7, wherein the wavelength conversion member includes a transparent binder that binds the plurality of first phosphor particles.
  9.  前記波長変換部材は、前記透明結合材と結合する複数の散乱粒子を含む
     請求項8に記載の波長変換素子。
    The wavelength conversion element according to claim 8, wherein the wavelength conversion member includes a plurality of scattering particles bonded to the transparent binder.
  10.  前記波長変換部材の体積に対して、前記複数の第1蛍光体粒子の総体積は35%以上62%以下である
     請求項7~9のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 7 to 9, wherein a total volume of the plurality of first phosphor particles is 35% or more and 62% or less with respect to a volume of the wavelength conversion member.
  11.  前記波長変換部材の断面において、前記波長変換部材の断面積に対して、前記複数の第1蛍光体粒子の断面積の合計は40%以上80%以下である
     請求項7~9のいずれか1項に記載の波長変換素子。
    The cross-sectional area of the wavelength conversion member is such that the total cross-sectional area of the plurality of first phosphor particles is 40% or more and 80% or less in the cross-section of the wavelength conversion member. The wavelength conversion element according to item.
  12.  前記第1傾斜部における前記放射面には、複数の微小凸部が形成されており、
     前記複数の微小凸部の少なくとも一部は、前記複数の第1蛍光体粒子のうちの一部が前記放射面において突出することにより形成されている
     請求項7~11のいずれか1項に記載の波長変換素子。
    A plurality of minute convex portions are formed on the radiation surface in the first inclined portion,
    The at least part of the plurality of minute convex portions is formed by projecting a part of the plurality of first phosphor particles on the radiation surface. Wavelength conversion element.
  13.  前記波長変換部材は、前記複数の第1蛍光体粒子とは異なる第2蛍光体粒子を含み、
     前記複数の第1蛍光体粒子は、Ceが賦活された(YGd1-x(AlGa1-y12(0.5≦x≦1、0.5≦y≦1)、又はCeが賦活された(La1-x1,Yx1Si11(0≦x1≦1)を含み、
     前記第2蛍光体粒子は、Ceが賦活された(La1-x2,Yx2Si11(0≦x2≦1、x1≠x2)を含む
     請求項7~12のいずれか1項に記載の波長変換素子。
    The wavelength conversion member includes second phosphor particles different from the plurality of first phosphor particles,
    Said plurality of first phosphor particles, Ce is activated (Y x Gd 1-x) 3 (Al y Ga 1-y) 5 O 12 (0.5 ≦ x ≦ 1,0.5 ≦ y ≦ 1) or (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ≦ x1 ≦ 1) in which Ce is activated,
    The second phosphor particles include Ce-activated (La 1-x2 , Y x2 ) 3 Si 6 N 11 (0 ≦ x2 ≦ 1, x1 ≠ x2). The wavelength conversion element as described in 2.
  14.  前記周縁領域は、
     前記第1頂部とは前記中央領域に対して反対側の位置に配置され、前記支持面から遠ざかる向きに前記中央領域よりも突出している第2頂部を有し、
     前記放射面は、前記第2頂部から前記中央領域に向かって前記支持面側に傾斜している第2傾斜部を有する
     請求項1~13のいずれか1項に記載の波長変換素子。
    The peripheral region is
    The first top portion is disposed at a position opposite to the central region, and has a second top portion protruding from the central region in a direction away from the support surface,
    The wavelength conversion element according to any one of claims 1 to 13, wherein the radiation surface includes a second inclined portion inclined toward the support surface from the second top portion toward the central region.
  15.  前記第1頂部は、前記第2頂部より前記支持面からの高さが高い
     請求項14に記載の波長変換素子。
    The wavelength conversion element according to claim 14, wherein the first top portion is higher in height from the support surface than the second top portion.
  16.  前記支持面の上面視において、前記波長変換部材は、長尺状の形状を有し、
     前記第1頂部は、前記波長変換部材の長手方向に垂直な方向の端部に配置される
     請求項1~15のいずれか1項に記載の波長変換素子。
    In the top view of the support surface, the wavelength conversion member has a long shape,
    The wavelength conversion element according to any one of claims 1 to 15, wherein the first top portion is disposed at an end portion in a direction perpendicular to a longitudinal direction of the wavelength conversion member.
  17.  前記波長変換部材と前記支持部材との間に配置される反射部材をさらに備える
     請求項1~16のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 1 to 16, further comprising a reflection member disposed between the wavelength conversion member and the support member.
  18.  前記支持部材は、シリコン(Si)、シリコンカーバイド(SiC)、サファイア(Al)、窒化アルミニウム(AlN)又はダイヤモンドを含む
     請求項1~17のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 1 to 17, wherein the support member includes silicon (Si), silicon carbide (SiC), sapphire (Al 2 O 3 ), aluminum nitride (AlN), or diamond.
  19.  支持面を有する支持部材と、
     前記支持面の上方に配置される波長変換部材とを備え、
     前記波長変換部材は、
     第1蛍光を発生する複数の第1蛍光体粒子と、
     前記第1蛍光と異なるスペクトルの第2蛍光を発生する複数の第2蛍光体粒子と、
     前記複数の第1蛍光体粒子と前記複数の第2蛍光体粒子とを結合する透明結合材と、
     前記透明結合材と結合し、かつ、前記複数の第1蛍光体粒子及び前記複数の第2蛍光体粒子とは異なる散乱粒子とを含み、
     前記複数の第1蛍光体粒子は、Ceが賦活された(La1-x1,Yx1Si11(0≦x1≦1)を含み、
     前記複数の第2蛍光体粒子は、Ceが賦活された(La1-x2,Yx2Si11(0≦x2≦1、x1≠x2)を含む
     波長変換素子。
    A support member having a support surface;
    A wavelength conversion member disposed above the support surface,
    The wavelength conversion member is
    A plurality of first phosphor particles generating first fluorescence;
    A plurality of second phosphor particles that generate second fluorescence having a spectrum different from that of the first fluorescence;
    A transparent binder for binding the plurality of first phosphor particles and the plurality of second phosphor particles;
    A scattering particle that binds to the transparent binder and is different from the plurality of first phosphor particles and the plurality of second phosphor particles;
    The plurality of first phosphor particles include Ce-activated (La 1-x1 , Y x1 ) 3 Si 6 N 11 (0 ≦ x1 ≦ 1),
    The wavelength conversion element, wherein the plurality of second phosphor particles include Ce-activated (La 1-x2 , Y x2 ) 3 Si 6 N 11 (0 ≦ x2 ≦ 1, x1 ≠ x2).
  20.  前記散乱粒子は、金属の酸化物又は窒化物を含む
     請求項19に記載の波長変換素子。
    The wavelength conversion element according to claim 19, wherein the scattering particles include a metal oxide or nitride.
  21.  前記複数の第1蛍光体粒子及び前記複数の第2蛍光体粒子のメジアン径は、2μm以上30μm以下である
     請求項19又は20に記載の波長変換素子。
    The wavelength conversion element according to claim 19 or 20, wherein a median diameter of the plurality of first phosphor particles and the plurality of second phosphor particles is 2 µm or more and 30 µm or less.
  22.  前記複数の第1蛍光体粒子及び前記複数の第2蛍光体粒子のメジアン径は、3μm以上9μm以下である
     請求項19~21のいずれか1項に記載の波長変換素子。
    The wavelength conversion element according to any one of claims 19 to 21, wherein a median diameter of the plurality of first phosphor particles and the plurality of second phosphor particles is 3 μm or more and 9 μm or less.
  23.  請求項1~22のいずれか1項に記載の波長変換素子と、
     前記波長変換素子に励起光を照射する励起光源とを備える発光装置であって、
     前記発光装置からの出射光の輝度は1000cd/mm以上である
     発光装置。
    The wavelength conversion element according to any one of claims 1 to 22,
    A light-emitting device comprising an excitation light source for irradiating the wavelength conversion element with excitation light,
    The luminance of the emitted light from the light emitting device is 1000 cd / mm 2 or more.
  24.  請求項15に記載の波長変換素子と、
     前記波長変換素子に励起光を照射する励起光源とを備える発光装置であって、
     前記励起光は、前記第2頂部側から前記放射面に対して斜めに入射し、
     前記波長変換部材は、前記励起光を波長変換する
     発光装置。
    The wavelength conversion element according to claim 15,
    A light-emitting device comprising an excitation light source for irradiating the wavelength conversion element with excitation light,
    The excitation light is incident obliquely with respect to the radiation surface from the second top side,
    The wavelength conversion member is a light emitting device that converts the wavelength of the excitation light.
  25.  請求項23又は24に記載の発光装置と、
     前記発光装置からの出射光が入射され、投影光を出射する投光部材とを備える
     照明装置。
    A light emitting device according to claim 23 or 24;
    An illumination device comprising: a light projecting member that receives light emitted from the light emitting device and emits projection light.
  26.  前記励起光が前記波長変換部材に入射する位置において前記励起光の光軸に直交する直線であって、前記支持面と平行な直線を含み、前記支持面と垂直な平面に対して、前記投影光は、前記平面より前記励起光源側に出射される
     請求項25に記載の照明装置。
    The projection is a straight line that is perpendicular to the optical axis of the excitation light at a position where the excitation light is incident on the wavelength conversion member and includes a straight line parallel to the support surface and perpendicular to the support surface. The illuminating device according to claim 25, wherein the light is emitted from the plane toward the excitation light source.
PCT/JP2018/016230 2017-04-27 2018-04-20 Wavelength converting element, light-emitting device, and illumination device WO2018198949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514451A JP7028863B2 (en) 2017-04-27 2018-04-20 Wavelength conversion element, light emitting device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762490777P 2017-04-27 2017-04-27
US62/490,777 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198949A1 true WO2018198949A1 (en) 2018-11-01

Family

ID=63918242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016230 WO2018198949A1 (en) 2017-04-27 2018-04-20 Wavelength converting element, light-emitting device, and illumination device

Country Status (2)

Country Link
JP (1) JP7028863B2 (en)
WO (1) WO2018198949A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597879B2 (en) 2020-09-30 2023-03-07 Nichia Corporation Wavelength converter and light emitting device
US11867380B2 (en) 2020-07-22 2024-01-09 Nichia Corporation Wavelength conversion member and light emitting device
US11959612B2 (en) 2022-04-26 2024-04-16 Hyundai Motor Company Chromaticity variable type road projection lamp system for vehicle and method of controlling road projection

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070445A (en) * 2005-09-06 2007-03-22 Sharp Corp Light emitting device
JP2012089316A (en) * 2010-10-19 2012-05-10 Stanley Electric Co Ltd Light source device, and lighting system
JP2012104814A (en) * 2010-10-15 2012-05-31 Mitsubishi Chemicals Corp White light-emitting device and lighting fixture
JP2012119170A (en) * 2010-12-01 2012-06-21 Stanley Electric Co Ltd Vehicular lamp fitting
JP2013112803A (en) * 2011-11-30 2013-06-10 Mitsubishi Chemicals Corp Nitride phosphor and production method thereof
JP2013162020A (en) * 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
JP2014072309A (en) * 2012-09-28 2014-04-21 Stanley Electric Co Ltd Light-emitting device for automobile headlamp and process of manufacturing the same
JP2014082225A (en) * 2011-07-25 2014-05-08 Sharp Corp Vehicle headlamp
JP2015155958A (en) * 2014-02-20 2015-08-27 セイコーエプソン株式会社 Illumination device and projector
JP2017041629A (en) * 2015-08-20 2017-02-23 日亜化学工業株式会社 Light-emitting device
JP2017076516A (en) * 2015-10-14 2017-04-20 シャープ株式会社 Light emitting device and lighting fixture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070445A (en) * 2005-09-06 2007-03-22 Sharp Corp Light emitting device
JP2012104814A (en) * 2010-10-15 2012-05-31 Mitsubishi Chemicals Corp White light-emitting device and lighting fixture
JP2012089316A (en) * 2010-10-19 2012-05-10 Stanley Electric Co Ltd Light source device, and lighting system
JP2012119170A (en) * 2010-12-01 2012-06-21 Stanley Electric Co Ltd Vehicular lamp fitting
JP2014082225A (en) * 2011-07-25 2014-05-08 Sharp Corp Vehicle headlamp
JP2013112803A (en) * 2011-11-30 2013-06-10 Mitsubishi Chemicals Corp Nitride phosphor and production method thereof
JP2013162020A (en) * 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
JP2014072309A (en) * 2012-09-28 2014-04-21 Stanley Electric Co Ltd Light-emitting device for automobile headlamp and process of manufacturing the same
JP2015155958A (en) * 2014-02-20 2015-08-27 セイコーエプソン株式会社 Illumination device and projector
JP2017041629A (en) * 2015-08-20 2017-02-23 日亜化学工業株式会社 Light-emitting device
JP2017076516A (en) * 2015-10-14 2017-04-20 シャープ株式会社 Light emitting device and lighting fixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11867380B2 (en) 2020-07-22 2024-01-09 Nichia Corporation Wavelength conversion member and light emitting device
US11597879B2 (en) 2020-09-30 2023-03-07 Nichia Corporation Wavelength converter and light emitting device
US11959612B2 (en) 2022-04-26 2024-04-16 Hyundai Motor Company Chromaticity variable type road projection lamp system for vehicle and method of controlling road projection

Also Published As

Publication number Publication date
JP7028863B2 (en) 2022-03-02
JPWO2018198949A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP7072037B2 (en) Light source device and lighting device
US10865955B1 (en) Wavelength conversion element and light emitting device
US10190733B2 (en) Light source device and illumination apparatus
US10975497B2 (en) Light emitting device
US8104923B2 (en) Light-emitting apparatus
JP6253392B2 (en) Light emitting device and light source for projector using the same
JP6538178B2 (en) Light emitting device
EP3475988B1 (en) Lighting system
KR20180107203A (en) Wavelength converting member, method of manufacturing the same, and light emitting device
JP2005268323A (en) Semiconductor light emitting device
WO2011016295A1 (en) Light emitting device and method for manufacturing light emitting device
JPWO2017077739A1 (en) Luminescent body, light emitting apparatus, lighting apparatus, and method of manufacturing luminous body
JP7028863B2 (en) Wavelength conversion element, light emitting device and lighting device
JP2018002912A (en) Sintered body and light-emitting device
JP2017120753A (en) Wavelength conversion member and light source device using the same
TW202021164A (en) Light emitting device with high near-field contrast ratio
JP7046917B2 (en) Wavelength conversion element and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791780

Country of ref document: EP

Kind code of ref document: A1