WO2018198810A1 - Method for producing silver nanoparticles having broad particle size distribution, and silver nanoparticles - Google Patents

Method for producing silver nanoparticles having broad particle size distribution, and silver nanoparticles Download PDF

Info

Publication number
WO2018198810A1
WO2018198810A1 PCT/JP2018/015455 JP2018015455W WO2018198810A1 WO 2018198810 A1 WO2018198810 A1 WO 2018198810A1 JP 2018015455 W JP2018015455 W JP 2018015455W WO 2018198810 A1 WO2018198810 A1 WO 2018198810A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
compound
silver nanoparticles
amine compound
carbon atoms
Prior art date
Application number
PCT/JP2018/015455
Other languages
French (fr)
Japanese (ja)
Inventor
亮 中浜
Original Assignee
御国色素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 御国色素株式会社 filed Critical 御国色素株式会社
Priority to JP2019514381A priority Critical patent/JP6837703B2/en
Publication of WO2018198810A1 publication Critical patent/WO2018198810A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a method for producing silver particles having a relatively large particle size and a wide particle size distribution, silver nanoparticles, and a silver compound-containing composition suitable for producing silver nanoparticles, which can be easily adjusted to a viscosity region suitable for screen printing. About.
  • Silver nanoparticles are sintered at low temperatures due to the melting point lowering properties of metal nanoparticles, and are therefore used as electrical wiring on a substrate and as a bonding material for power device semiconductors.
  • silver nanoparticles are fine, they tend to agglomerate and are easily fused due to a melting point drop.
  • fatty acids, alkylamines, and the like are often used.
  • silver nanoparticles coated with alkylamine or alkyldiamine are desorbed at a relatively low temperature, and silver nanoparticles that can be fired at a low temperature.
  • Patent Document 3 uses silver nanoparticles having a primary particle diameter of several nanometers to several tens of nanometers, and has a conductivity of 5 to 20 ⁇ m. A silver paint composition (ink) from which a silver coating film can be obtained has been reported.
  • Patent Document 4 when a sintered body is formed by containing silver particles having a particle diameter of 100 to 200 nm in an amount of 30% or more on the basis of the number of particles, the resistance can be reduced, and the water content is 5 to It is described that such silver particles can be obtained by inclusion in a 100 parts by weight reaction system.
  • silver nanoparticles are prepared by utilizing a complex formation reaction between a silver compound and an amine compound. Specifically, complex formation is performed in the absence of a solvent using silver oxalate and alkylamine or alkyldiamine.
  • complex formation in the absence of a solvent results in a solid material that does not flow, is difficult to stir, lacks system uniformity, and is locally accompanied by an exothermic reaction.
  • the complex formation reaction in an alcohol solvent promotes and assists the complex reaction, improves the agitation in the system, suppresses carbon dioxide generated suddenly by thermal decomposition, and improves quality and safety.
  • Patent Documents 5 to 7 A silver nanoparticle production method with improved resistance has been reported (Patent Documents 5 to 7).
  • Japanese Patent No. 5574761 JP 2012-162767 A Japanese Patent No. 6001861 Japanese Patent No. 5795096 Japanese Patent No. 5975440 Japanese Patent No. 6026565 JP 2016-132825 A Japanese Patent Laying-Open No. 2015-40319
  • Patent Document 3 only a coating film having a thickness that does not reach 8 ⁇ m is produced in the examples. Even if a conductive coating of 10 ⁇ m or more is created, silver particles are mainly composed of particles with a primary particle size of several tens of nanometers, so the amount of organic protective agent is large, and volume shrinkage occurs due to removal of the protective agent. It is low, and there is a high possibility of the occurrence of disconnection due to cracks.
  • the silver nanoparticle dispersion and the coating composition (ink) are used by being applied to a substrate, the conditions of the silver nanoparticles having a viscosity behavior suitable for applying to a substrate are sufficiently studied. It wasn't. For this reason, the actually obtained coating film may not have sufficient performance.
  • the viscosity can be increased by reducing the particle size or adding an organic binder. However, if the particle size is too small, the content of the surface protection material increases.
  • the present invention solves the above problems, and a method for producing silver nanoparticles in consideration of scale-up such as workability, safety, and environmental aspects, and a method for producing silver nanoparticles having a highly distributed particle size distribution range, and Another object of the present invention is to provide silver nanoparticles that can be easily adjusted to a viscosity suitable for various printing methods, particularly screen printing, and silver nanoparticle coating compositions.
  • the present inventor has intensively studied. As a result, by using a specific amino alcohol as an amine compound that can form a complex with a silver compound, the emission of alkylamine is suppressed, and it is environmentally friendly. At the same time, the resulting silver particles have excellent particle size and distribution. As a result, the present inventors have found that the obtained sintered coating film also has excellent performance, and reached the present invention. Furthermore, the silver particles having the specific amino alcohol bonded to the surface can surprisingly obtain a dispersion (paste) having a higher viscosity than the silver particles bonded to the conventional alkylamine. The viscosity can be adjusted by changing the type and amount. As a result, it was found that a silver coating composition having a viscosity range particularly suitable for screen printing can be obtained by suppressing the addition amount of an organic binder having a thickening effect.
  • the present invention includes the following inventions.
  • a silver compound (a) having thermal decomposability and an amine compound (b) capable of forming a complex with (a) are reacted in an organic solvent (c) to form a complex.
  • the manufacturing method of the silver nanoparticle characterized by being the following amino alcohols.
  • (b) is i) a branched primary amino alcohol having 3 to 4 carbon atoms, and (ii) an amine in which an amino group and a hydroxyl group are bonded via an alkyl chain having 2 carbon atoms.
  • a silver nanoparticle dispersion obtained by the method described in (9) above or a silver coating composition obtained by the method described in (10) above is applied onto a substrate and baked to form a silver conductive layer.
  • the manufacturing method of the silver electrically-conductive material including the process to do.
  • a composition comprising a thermally decomposable silver compound (a), an amine compound (b) capable of forming a complex with (a), and an organic solvent (c), wherein b) A silver compound-containing composition, which is an amino alcohol having 6 or less carbon atoms each having a primary amino group or a secondary amino group and a hydroxyl group.
  • Silver nanoparticles (18) The silver nanoparticle according to (17), wherein i) a branched primary amino alcohol having 3 to 4 carbon atoms, and (ii) an alkyl chain having 2 carbon atoms on the surface of the silver nanoparticle. Via the amine compound (b1) in which an amino group and a hydroxyl group are bonded, or (b1) and iii) a silver nanoparticle in which a linear secondary amino alcohol (b2) having 3 carbon atoms is bonded.
  • (23) A method for producing a silver conductive material comprising: applying a silver nanoparticle dispersion according to (21) above or a silver coating composition according to (22) above onto a substrate and baking to form a silver conductive layer. , It is.
  • the silver coating composition containing silver particles whose particle size is controlled according to the present invention can be sintered even in a low temperature region of 150 ° C. or less, and the resulting sintered body has a low resistance value close to that of bulk silver.
  • the present invention is a material that can form a silver wiring having a thickness of several to several tens of ⁇ m on a plastic substrate having a relatively low heat resistance such as PET or polypropylene by a printing method typified by screen printing, or conductive bonding. It can be expected to be used as a bonding material for electrical equipment that handles large currents such as materials and power devices.
  • the amount of amine compound used is less than that of the conventional synthesis method, and as an amine compound that forms a complex with a thermally decomposable silver compound, a specific carbon number of 4 or less.
  • amino alcohol By using amino alcohol, it is possible to further reduce the use of alkylamines that are highly burdened on the human body and the environment. Thus, a highly safe production method is provided in scaled-up industrial production.
  • FIG. 1 is an image of coordination model of aminoalcohol to silver atom (linear type), coordination model of aminoalcohol to silver atom (OH group approaching type), and coordination model of alkylamine to silver atom is there.
  • FIG. 2 is an image diagram of a silver adsorption model and silver particle growth.
  • FIG. 3 is a view showing an SEM photograph of the particles obtained in Example 1.
  • FIG. 4 is a SEM photograph of the particles obtained in Example 2.
  • FIG. 5 is a view showing an SEM photograph of the particles obtained in Example 3.
  • 6 is a SEM photograph of the particles obtained in Example 4.
  • FIG. 7 is a view showing an SEM photograph of the particles obtained in Example 5.
  • FIG. 8 is a SEM photograph of the particles obtained in Example 6.
  • FIG. 9 is a SEM photograph of the particles obtained in Example 7.
  • FIG. 10 is a view showing an SEM photograph of the particles obtained in Example 8.
  • FIG. 11 is a SEM photograph of the particles obtained in Example 9.
  • 12 is a SEM photograph of the particles obtained in Example 10.
  • FIG. 13 is a SEM photograph of the particles obtained in Example 11.
  • FIG. 14 is a view showing an SEM photograph of particles obtained in Comparative Example 1.
  • FIG. 15 is a view showing STEM photographs of the particles obtained in Comparative Examples 2 and 3.
  • FIG. FIG. 16 is a view showing an STEM photograph of the particles obtained in Comparative Example 4.
  • FIG. 17 is a diagram showing a particle size distribution histogram of the particles obtained in Example 1.
  • FIG. 18 is a graph showing a particle size distribution histogram of the particles obtained in Example 2.
  • FIG. 19 is a graph showing a particle size distribution histogram of the particles obtained in Example 3.
  • FIG. 20 is a diagram showing a particle size distribution histogram of the particles obtained in Example 4.
  • FIG. 21 is a graph showing a particle size distribution histogram of the particles obtained in Example 5.
  • FIG. 22 is a diagram showing a particle size distribution histogram of the particles obtained in Example 6.
  • FIG. 23 is a graph showing a particle size distribution histogram of the particles obtained in Example 7.
  • FIG. 24 is a diagram showing a particle size distribution histogram of the particles obtained in Example 8.
  • FIG. 25 is a diagram showing a particle size distribution histogram of the particles obtained in Example 9.
  • FIG. 26 is a diagram showing a particle size distribution histogram of the particles obtained in Example 10.
  • FIG. 27 is a diagram showing a particle size distribution histogram of the particles obtained in Example 11.
  • FIG. FIG. 28 is a diagram showing a particle size distribution histogram of particles obtained in Comparative Example 1.
  • FIG. 29 is a diagram showing a particle size distribution histogram of the particles obtained in Comparative Examples 2 and 3.
  • FIG. FIG. 30 is a diagram showing a particle size distribution histogram of particles obtained in Comparative Example 4.
  • FIG. 31 is a diagram showing an SEM photograph of the particles obtained in Example 12.
  • 32 is a SEM photograph of the particles obtained in Example 13.
  • FIG. 33 is a SEM photograph of the particles obtained in Example 14.
  • FIG. 34 is a SEM photograph of the particles obtained in Example 15.
  • FIG. 35 is a view showing an SEM photograph of the particles obtained in Comparative Example 5.
  • FIG. 36 is a diagram showing an SEM photograph of the particles obtained in Comparative Example 6.
  • FIG. 37 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 12.
  • FIG. 38 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 13.
  • FIG. 39 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 14.
  • 40 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 15.
  • FIG. 41 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Comparative Example 5.
  • FIG. 42 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Comparative Example 6.
  • FIG. 43 is a diagram showing a particle size distribution histogram of the particles obtained in Example 12.
  • FIG. 44 is a graph showing the particle size distribution histogram of the particles obtained in Example 13.
  • 45 is a graph showing the particle size distribution histogram of the particles obtained in Example 14.
  • FIG. 46 is a diagram showing a particle size distribution histogram of the particles obtained in Example 15.
  • 47 is a diagram showing a particle size distribution histogram of the particles obtained in Comparative Example 5.
  • FIG. FIG. 48 is a diagram showing a particle size distribution histogram of the particles obtained in Comparative Example 6.
  • FIG. 49 is a diagram showing viscosity comparison data of pastes prepared from the particles obtained in Examples 12 to 15 and Comparative Examples 5 and 6.
  • the present invention relates to a method for producing silver nanoparticles by reacting a thermally decomposable silver compound (a) with an amine compound (b) that forms a complex.
  • a thermally decomposable silver compound (a) with an amine compound (b) that forms a complex.
  • the amine compound (b) a primary amino group or a secondary class is used. It is characterized by the use of an amino alcohol having 6 amino acids and one hydroxyl group. By using such a specific amino alcohol, it is possible to have two adsorption models for silver particles, and thus easily obtain silver nanoparticles having a wide distribution and a relatively large particle size, Silver nanoparticles having a large particle diameter range of 200 to 500 nm can be easily synthesized, and the amount of the entire amine compound used can be reduced, which is excellent in the environment.
  • a silver compound having thermal decomposability is used as a starting material.
  • the silver compound having thermal decomposability refers to a silver compound that is complexed with the component (b) described later and thermally decomposes under heating conditions that are possible with ordinary equipment.
  • silver oxalate, silver nitrate, silver acetate, silver carbonate, silver oxide, silver nitrite, silver benzoate, silver cyanate, silver citrate, silver lactate and the like can be applied.
  • silver carbonate or silver oxalate (Ag 2 C 2 O 4 ) is particularly preferable.
  • Silver oxalate can be decomposed at a relatively low temperature without a reducing agent to produce silver particles. Further, carbon dioxide generated by the decomposition is released as a gas, so that no impurities remain in the solution.
  • the present invention is characterized in that the following compounds are used as amine compounds capable of forming a complex with the silver compound as component (b). That is, it is a C6 or less amino alcohol having one primary amino group or one secondary amino group and one hydroxyl group. Since these amine compounds can be dissolved in a polar solvent (especially an alcohol solvent), it is possible to form a complex with a silver compound in the presence of the polar solvent. As a result, it has the function of lowering the thermal decomposition temperature of the silver compound even in a polar solvent and making it possible to produce silver particles at a low temperature.
  • a polar solvent especially an alcohol solvent
  • Amino alcohols having 7 or more carbon atoms or amino alcohols having 2 or more hydroxyl groups are not suitable because many solid substances with low solubility in alcohol solvents are difficult to complex with silver compounds.
  • amino alcohols having two or more amino groups are too polar, the reduction reaction is stronger than the complex formation reaction, silver particles are likely to precipitate, and the particle size cannot be controlled substantially. It becomes difficult to obtain silver particles.
  • the component (b) of the present invention is characterized by having two adsorption models for silver particles. For this reason, the particle size of the obtained silver particles can be easily increased and has a wide distribution. It can also be made.
  • the amine compound (b) may be a primary amino group or an amino alcohol having 6 or less carbon atoms each having a primary amino group or a secondary amino group, and the skeleton may be linear or branched.
  • Examples of amino alcohol (b) satisfying the above conditions include methanolamine, ethanolamine, 1-amino-2-butanol, DL-1-amino-2-propanol, and 2-amino-2-methyl-1-propanol. (Hereinafter AMP), DL-2-amino-1-propanol, N-methylethanolamine, 3-amino-1-propanol, 4-amino-1-butanol, 5-amino-1-pentanol, 6-amino -1-hexanol is mentioned.
  • an amino alcohol having the following characteristics as the component (b). i) an amine compound (b1), which is a branched primary amino alcohol having 3 to 4 carbon atoms, and (ii) an amino group and a hydroxyl group are bonded via an alkyl chain having 2 carbon atoms, or iii) It is a linear secondary amino alcohol (b2) having 3 carbon atoms.
  • branched type means that a skeleton composed of carbon atoms and heteroatoms is branched rather than linear.
  • the amine compound (b1) one amino group and one hydroxyl group are bonded via an alkyl chain having 2 carbon atoms, and the positional relationship between the two functional groups is “a moderate amount capable of complexing with silver oxalate.
  • (b2) has the same positional relationship between the amino group and the hydroxyl group as (b1), but since the amino group is secondary, it has a structure with 3 carbon atoms in total, which is similar to (b1).
  • “appropriate polarity of amine compound capable of complexing with silver oxalate” and “realization of two adsorption models with silver particles” are compatible.
  • Examples of the amino alcohol (b1) that satisfies the above conditions include 1-amino-2-butanol, DL-1-amino-2-propanol, AMP, and DL-2-amino-1-propanol.
  • AMP is most preferable since it is easy to handle, complex formation easily occurs in the presence of a polar solvent such as an alcohol solvent, and silver particles having a large particle size and a wide particle size distribution can be easily obtained. Furthermore, by bonding to the silver surface, the effect of increasing the viscosity of the dispersion is excellent.
  • (b2) includes, for example, N-methylethanolamine.
  • the component (b) has no strong irritating odor like the conventionally used aliphatic hydrocarbon amine compounds, and is advantageous in terms of safety in handling. In addition, the amount of amine compound used is small. Specifically, by using the component (b), in order to promote the complex formation with the silver compound, the short-chain aliphatic hydrocarbon amine compound having 4 to 5 carbon atoms that has been used in the prior art is not used. However, the complex formation reaction with the silver compound can be sufficiently promoted. Therefore, even if an amine compound (d) other than the amino alcohol of component (b) described below is used in combination, the total amount of the aliphatic hydrocarbon amine compound can be reduced or eliminated. In addition, the above (b) component may use only 1 type, or may mix and use 2 or more types.
  • the mechanism by which silver nanoparticles having a large particle size and a wide distribution can be obtained by using an amine compound that forms a complex with component (b) described above is not completely clear.
  • the present inventor presumes as follows.
  • the complex formation between the amine compound and the silver compound is such that the amine compound is dissolved in the organic solvent (c), so that it reacts with the silver compound, and the unshared electron pair of the amino group of the amine compound enters the empty orbit of the silver atom. It is formed by coordination.
  • the amine compound used in the present invention is an amino alcohol and has a hydroxyl group.
  • this hydroxyl group is also polar and negatively charged like the amino group, it is considered that the hydroxyl group behaves easily toward a silver atom. Based on this property, it is considered that there are the following two models for the coordinate bonding state of the silver atom of the specific amino alcohol used in the present invention as the component (b). i) Similar to alkylamine, a model in which an amino group is coordinated to a silver atom and an alkyl chain is linearly oriented outward (dispersion medium side) (Fig. 1-1), ii) an amino group is coordinated to a silver atom It is a model (Fig. 1-2) in which the hydroxyl group also approaches the silver atom side and stabilizes.
  • the strength of the polarity of the amino group of the amine compound is related to three factors: i) the total number of carbon atoms in the amine compound, ii) the positional relationship between the amino group and the hydroxyl group, and iii) the three-dimensional structure of the amine compound. Conceivable. Specifically, when the number of carbon atoms is too large, complex formation itself hardly occurs (factor (i) above).
  • an amine compound other than the component (b) can be present when the complex of (a) and (b) is formed.
  • This compound has a molecular length of 5 mm or more, and has a function of giving an effect of dispersion stability of silver particles by a steric hindrance effect.
  • the length of the molecule here is the distance of the longest two atoms that do not contain hydrogen atoms, and the calculation conditions are density functional method, function ⁇ B97X-D, basis function 6-31 + G *, environment vacuum energy State In the ground state, it can be calculated by various molecular calculation software such as Spartan''16V1,1,0.
  • the length of the molecule is preferably 7 cm or more. However, if it is too long, the boiling point becomes high and it is difficult to remove, so it is preferably 8 mm or less.
  • an amine compound having a main chain (main skeleton) composed of 7 or more atoms including an amino group is preferable.
  • those in which the atoms constituting the amine compound are N, C and H, or those in which N, C, H and O are preferable are preferable.
  • the number of hydrocarbon groups bonded to the amino group of the amine compound is not limited. However, one or two primary amines or secondary amines are particularly preferable because they easily coordinate with silver. Examples of such component (d) include aliphatic hydrocarbon monoamines having 4 or more carbon atoms.
  • Aliphatic hydrocarbon monoamines having 4 or more carbon atoms are often used in the method of forming silver nanoparticles by forming a complex with a silver compound described in the prior art.
  • aliphatic hydrocarbon monoamines having 4 or more carbon atoms have a strong irritating odor and are at risk of being discharged at a high temperature together with carbon dioxide during the decomposition reaction
  • other amine compounds may be used. Specifically, it is an amine compound (alkoxyamine, alkyl ether amine, amino alcohol) having 4 or more carbon atoms and containing an oxygen atom.
  • the above-mentioned specific amino alcohol is used as the component (b), and an amine compound containing an oxygen atom as the component (d) is used except for the component (b).
  • an amine compound containing an oxygen atom as the component (d) is used except for the component (b).
  • the above component (d) include n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-ethylhexylamine and the like.
  • the alkoxyamine include 3-methoxypropylamine and 3-ethoxypropylamine.
  • the alkyl ether amine include JEFFAMINE M series, M-600, M-1000, M-2005, and M-2070 manufactured by HUNTSMAN.
  • amino alcohols include 4-amino-1-butanol, 5-amino-1-pentanol, and 6-amino-1-hexanol.
  • Other examples include diglycolamine.
  • alkylamine More preferable specific examples of the alkylamine include n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-ethylhexylamine and the like.
  • alkoxyamine examples include 3-methoxypropylamine and 3-ethoxypropylamine.
  • amino alcohols examples include 5-amino-1-pentanol and 6-amino-1-hexanol.
  • aminoethoxy include diglycolamine. More preferred are n-hexylamine and 3-ethoxypropylamine.
  • the above component (d) can be used alone or in combination of two or more.
  • the molar ratio (amine compound / silver atom of the silver compound) should be 0.7 to 2.0. It is preferable to adjust the amount of (b) + (d). More preferably, it is 0.7 to 1.5, still more preferably 0.7 to 1.3, and most preferably 0.7 to 1.3. By doing so, the particle size varies, and it is easy to obtain silver particles having a target particle size range.
  • the molar ratio of amine atom / silver compound silver atom is 2.0 or more.
  • silver particles can be obtained with a smaller amount of amine, so that the amount of amine discharged can be reduced. Therefore, the risk of the human body and environmental burden due to the release of amines outside the system can be reduced.
  • particles having a small particle size and a narrow distribution are easily synthesized, whereas in the present invention, silver particles having a wide distribution and a large particle size can be obtained.
  • organic solvent (c) In the present invention, the above-described complex formation reaction between the silver compound and the amine compound is performed in the presence of an organic solvent.
  • a solvent having a polar functional group is preferable. Specifically, alcohol solvents, ketone solvents, aldehyde solvents, amide solvents, ester solvents, nitrile solvents, ether solvents, glycols A solvent, a glycol ether solvent, a glycol ester solvent, and a glyme solvent are preferred.
  • alcohol solvents are preferable, and alcohols having 3 to 12 carbon atoms are particularly preferable.
  • n-propanol (boiling point bp: 97 ° C.), isopropanol (bp: 82 ° C.), n-butanol (bp: 117 ° C.), isobutanol (bp: 107.89 ° C.), sec-butanol (bp: 99.
  • a glyme-based solvent is also preferable.
  • those having a boiling point of 150 ° C. or more are easy to handle.
  • n-butanol, n-hexanol, n-decanol, diglyme are considered in consideration of the fact that the temperature of the thermal decomposition step of the complex compound to be performed later can be increased and the convenience in the post-treatment after the formation of the silver nanoparticles. Is preferred. These may be used alone or in combination of two or more.
  • the organic solvent has a weight ratio of 80 to 130 parts by weight (that is, a weight ratio of (c) / (a) of 0.8 to 100 parts by weight with respect to 100 parts by weight of the silver compound (a) for sufficient stirring operation of each component.
  • a weight ratio of (c) / (a) of 0.8 to 100 parts by weight with respect to 100 parts by weight of the silver compound (a) for sufficient stirring operation of each component is preferable. More preferably, it is 80 to 125 parts by weight.
  • the amine compound (b) or (d) and the silver compound (a) can take several forms in order to carry out the complex formation reaction between the silver compound and the amine compound in the presence of an organic solvent.
  • a solid silver compound and an organic solvent, particularly an alcohol solvent are mixed to obtain a silver compound-alcohol slurry, and then the amine compound (b) or (d) is added to the obtained silver compound-alcohol slurry.
  • the slurry represents a mixture in which a solid silver compound is dispersed in an organic solvent or a mixture of an organic solvent and an amine compound.
  • a solid silver compound is charged into a reaction vessel, and an organic solvent or a mixed solution of an organic solvent and an amine compound is added thereto to obtain a slurry.
  • a mixed solution of an organic solvent and an amine compound may be charged into a reaction vessel, and a silver compound may be added thereto.
  • silver oxalate has been reported to be explosive in the dry state. Therefore, when silver oxalate is used as the silver compound, it is preferable to use a wet state. This is because the explosiveness is remarkably lowered and handling is facilitated by making it wet. Therefore, water or the organic solvent described above may be mixed and used in a wet state.
  • aliphatic carboxylic acid is preferably used together with the amines, and can be added and used when the silver compound and the amine are mixed.
  • a saturated or unsaturated aliphatic carboxylic acid is used as the aliphatic carboxylic acid.
  • saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid
  • unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, and palmitoleic acid.
  • saturated or unsaturated aliphatic monocarboxylic acids having 8 to 18 carbon atoms are preferable. By setting the number of carbon atoms to 8 or more, when the carboxylic acid group is adsorbed on the surface of the silver particle, a space between the silver particle and other silver particles can be secured. In view of availability, easiness of removal during firing, etc., saturated or unsaturated aliphatic monocarboxylic acid compounds having up to 18 carbon atoms are usually preferred. In particular, octanoic acid, oleic acid and the like are preferably used. Among the aliphatic carboxylic acids, only one type may be used, or two or more types may be used in combination.
  • the aliphatic carboxylic acid may be used in an amount of, for example, about 0.05 to 10 moles, preferably 0.1 to 5 moles, more preferably, with respect to 1 mole of silver atoms in the starting silver compound. 0.5 to 2 moles may be used.
  • the amount of the aliphatic carboxylic acid is less than 0.05 mol with respect to 1 mol of the silver atom, the effect of controlling the particle diameter by adding the aliphatic carboxylic acid is weak.
  • the water content of the reaction system is preferably within a range of 20 wt% or less with respect to the silver compound. Especially preferably, it is 15 wt% or less.
  • the water content depends on the type of amine compound used for complex formation, if the water content is low, the particle size distribution of the resulting silver particles is uniform, and voids in the sintered body are produced, which is expected in the present invention. Effect may be difficult to express.
  • the water content is 20 wt% or more based on the silver compound, the silver particles become too coarse, and a portion where the particles are sintered and united is produced, which is not preferable.
  • the timing of adding water may be before the heating step, and may be added at any stage before the formation of the silver-amine complex or after the formation of the complex.
  • the weight ratio of the organic solvent (c) to water is preferably 0.03 to 0.3 as the weight ratio of water / organic solvent. More preferably, it is 0.1 to 0.25. In this range, it is particularly easy to obtain silver nanoparticles having the particle diameter and particle size distribution of the present invention described later.
  • the amine compound (b) that forms the complex and the amine compound (d) that functions as the protective agent are mixed in the polar solvent (c).
  • an aliphatic carboxylic acid and water can be added and mixed to prepare a liquid raw material necessary for the reaction. If there is a solid material at room temperature that is a liquid raw material, it can be appropriately heated and mixed.
  • the heating temperature is preferably 100 ° C. or lower, preferably 80 ° C. or lower, and more preferably 60 ° C. or lower.
  • the complexation and oxalic acid decomposition reaction will start first, and the silver nanoparticles will not be secured without ensuring uniformity in the system. May be generated.
  • the silver compound-containing composition of the present invention can be obtained by mixing the silver compound (a) and the liquid raw material. Or only a polar solvent and the said silver compound (a) may be mixed previously, and the said amine compound may be added later. Thus, the manufacturing method of this invention can be implemented using the silver compound containing composition of this invention obtained.
  • the silver compound-containing composition of the present invention is usually prepared in a slurry state. A silver compound, a predetermined amount of an amine mixed solution, or an aliphatic carboxylic acid and water as necessary are mixed.
  • the mixing at this time is preferably carried out while stirring at room temperature, or while appropriately cooling to room temperature or lower and stirring because the coordination reaction (complexing reaction) with amines to the silver compound involves heat generation. Since the mixed liquid of a silver compound and an amine compound is performed in the presence of a polar solvent, stirring and cooling can be performed satisfactorily. The excess of the polar solvent and the amine compound serves as a reaction medium.
  • a liquid alkylamine component is first charged in a reaction vessel, and a powdered silver compound (silver oxalate) is charged therein.
  • the liquid alkylamine component is a flammable substance, and there was a danger in putting the powdery silver compound therein. In other words, there was a risk of ignition due to static electricity due to the introduction of the silver compound of the powder. In addition, there is a risk that the complex formation reaction locally progresses due to the introduction of the silver compound of the powder, and the exothermic reaction is expelled. According to the present invention, such danger can be avoided.
  • the odor of the highly volatile alkylamine has a great adverse effect on the working environment.
  • the amount of the highly volatile alkylamine used during the synthesis of the silver nanoparticles can be reduced or eliminated. Odor and exposure to workers can be reduced when charging.
  • the heating rate affects the particle size of the precipitated silver particles, and therefore the particle size of the silver particles can be controlled by adjusting the heating rate of the heating step.
  • the silver particles are preferably washed with an alcohol having a boiling point of 150 ° C. or lower such as methanol, ethanol, propanol or the like as a solvent.
  • an alcohol having a boiling point of 150 ° C. or lower such as methanol, ethanol, propanol or the like as a solvent.
  • cleaning after adding a solvent to the solution after silver particle synthesis
  • the amount of amine removed can be controlled by the volume of solvent added and the number of washings.
  • the solvent is preferably used in a volume of 1/20 to 3 times that of the solution after silver particle synthesis, and washed 1 to 5 times.
  • the above silver nanoparticles may be substituted with an amine compound suitable for the application by replacing the surface protective agent with an amine compound having 4 or more carbon atoms (including those containing oxygen atoms) as necessary. May be.
  • the amine compound finally substituted may be the one used when silver nanoparticles are produced, or a new one not used may be used.
  • alkylamine having 4 to 8 carbon atoms or an amine compound containing an oxygen atom (alkoxyamine, alkyl ether amine, amino alcohol).
  • alkoxyamine, alkyl ether amine, amino alcohol those having a molecular length of 5 to 8 mm are preferable, and those having a molecular length of 7 to 8 mm are more preferable.
  • the alkylamine and the amine compound containing an oxygen atom can be used alone or in combination of two or more, and the viscosity can be adjusted when processed into a paste depending on the composition.
  • the silver particle surface protective agent is replaced by stirring and suspending for a certain period of time in the amine compound to be finally replaced with silver particles after washing. At that time, 50-100 wt% of the amine compound to be finally substituted is added to the pure silver content, and the mixture is stirred and suspended at room temperature for about 1 h.
  • the surface protective agent can be confirmed by the difference in peak derived from sintering in DTA measurement, head space GC / MS, pyrolysis GC / MS, or the like.
  • the target silver particles are obtained through the washing step again.
  • the specific amino alcohol itself corresponding to (b) can be almost removed by the washing step, when this remains using other amines, the above substitution step may be appropriately obtained as necessary.
  • Silver nanoparticles to which an amine compound is bonded are formed.
  • Silver nanoparticles are fine particles that can be produced by the following method and that have a silver component as a main component and usually have a particle size of 1 to 1000 nm.
  • the substance that binds to silver nanoparticles and functions as a protective agent include the specific amino alcohol (b) having 4 or less carbon atoms and / or the amine compound (d) having a molecular length of 5 mm or more, and When used, it contains the aliphatic carboxylic acid. Their content in the protective agent is equivalent to their use in the amine mixture.
  • the type and total amount of the protective agent can be adjusted by the washing step and, if necessary, the protective agent replacement process.
  • the molecular length of the amine compound finally bonded as a protective agent is preferably 2 to 8 mm, more preferably 5 to 8 mm. 7 to 8 mm is most preferable.
  • the total amount of the protective agent is preferably 0.3 to 2.0 wt% with respect to the pure silver content. Further, 0.5 to 1.0 wt% is more preferable.
  • the silver nanoparticles of the present invention usually have a particle size of 1000 nm or less.
  • the average particle diameter is preferably 70 to 350 nm, particularly preferably 70 to 300 nm, and further preferably 80 to 200 nm.
  • the coefficient of variation indicating the variation in particle diameter is preferably 30 to 80%, particularly preferably 40 to 70%, and further preferably 50 to 60%.
  • the average particle diameter and coefficient of variation are determined as follows.
  • the obtained silver nanoparticles are observed for particle shape by FE-SEM. Thereafter, using an image analysis software SCANDIUM (manufactured by OLYMPUS), 300 or more particle sizes are measured, and the average particle size and standard deviation are obtained by analysis. Using these values, the coefficient of variation is calculated based on the following formula.
  • Coefficient of variation (%) ⁇ standard deviation (nm) / average particle size (nm) ⁇ ⁇ 100
  • the equipment for measuring the particle size is not limited as long as the same result as the above method can be obtained.
  • the thickness of the coating film obtained by applying the silver paint can be increased. Specifically, a thick film having a thickness of 10 to 30 ⁇ m can be obtained. Furthermore, not only is it thick, but the volume resistivity of the resulting film can be lowered. Specifically, a thick film having a thickness of 20 ⁇ m or more and a small volume resistivity of about 6 to 7 ⁇ ⁇ cm can be obtained. This is because the particle size distribution is wide, and small particles are packed close to the closest packing between large particles, so that a film with a high silver particle content is obtained because the silver particles are highly packed. It is guessed.
  • the average particle diameter exceeds 350 nm, the phenomenon of melting point drop of silver nanoparticles becomes weak and it becomes difficult to sinter at a low temperature, so that the volume resistivity of the coating film cannot be lowered also in this case.
  • the coefficient of variation is less than 30%, the particles are aligned, the voids between the particles cannot be filled, and the volume resistivity of the coating film cannot be lowered.
  • the coefficient of variation exceeds 80%, the particle size is too different even if there is a variation in particles, and in this case too, it becomes difficult to fill the voids between the particles. It cannot be lowered.
  • the viscosity can be adjusted to be suitable as a silver coating composition.
  • the viscosity of the screen printing ink is preferably in the range of 0.1 to 500 Pa ⁇ s (when the shear rate is 5 1 / sec). This is because if it is too high, there is no fluidity and printing failure is liable to occur, and if it is too low, the printed ink will sag and the line width will increase.
  • an organic binder is usually added, but the organic binder increases the resistance value of the resulting coating film.
  • the silver particles of the present invention can have a viscosity suitable for screen printing even when the amount of the organic binder is relatively small. That is, for example, “Etocel 45” (trade name, manufactured by Nisshin Kasei Co., Ltd.) as an organic binder can be made to have a relatively high viscosity even in a state where 1 wt% is added to the pure silver content. By adjusting to 80 nm and a coefficient of variation of about 35%, the viscosity can be adjusted to about 30 to 40 Pa ⁇ s. Therefore, even if the addition amount of the organic binder is 1 wt% or less with respect to the pure silver content, the viscosity suitable for the screen printing can be obtained. As described above, since the viscosity can be controlled by adjusting the particle size, the degree of freedom in the amount of the organic binder added is increased, and the amount can be reduced.
  • the particle size can be controlled by the type of amine used, the type of organic solvent, the amount of water added, and the like. Accordingly, silver particles having a large particle size of 200 to 500 nm and silver particles having a small particle size of 50 to 200 nm can be synthesized in one batch, which is suitable for industrial production. Since the silver particles of the present invention thus obtained have silver particles in a large particle size region of 200 nm or more, even during the process of cleaning the excess protective agent of silver nanoparticles, protective agent replacement treatment, pasting, etc. It is difficult to agglomerate (sinter), and it can be expected that a silver nanoparticle dispersion / silver coating composition can be easily produced without impairing the characteristics of the original silver particles. This is also effective when considering scale-up.
  • a silver nanoparticle dispersion corps can be produced using the silver nanoparticles obtained by the method described above.
  • the silver nanoparticle dispersion refers to a composition containing at least silver nanoparticles and a dispersion medium.
  • Such a silver nanoparticle dispersion corps can take various forms without limitation.
  • the silver nanoparticle dispersion of the present invention can be obtained by dispersing silver nanoparticles in a suitable organic solvent (dispersion medium) in a suspended state.
  • a silver coating composition containing a so-called binder component in addition to silver nanoparticles and a dispersion medium can be produced.
  • a silver coating composition containing 7095% by weight, more preferably 75-80% by weight, of silver nanoparticles can also be prepared.
  • Aromatic hydrocarbon solvents such as cyclohexane and methylcyclohexane; Aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, etc .; Methanol, ethanol, propanol, n-butanol, n-pentanol, n- Examples include alcohol solvents such as hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, n-dodecanol and the like. Among these, an organic solvent having 8 to 16 carbon atoms and an oxygen atom in the structure and having a boiling point of 280 ° C. or lower is particularly preferable.
  • Preferred examples of this solvent include terpineol (C10, boiling point 219 ° C.), dihydroterpineol (C10, boiling point 220 ° C.), texanol (C12, boiling point 260 ° C.), ethyl carbitol acetate (C8, boiling point 219 ° C.), butyl Carbitol acetate (C10, boiling point 247 ° C.), 2,4-dimethyl-1,5-pentanediol (C9, boiling point 150 ° C.), 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (C16, Boiling point of 280 ° C.).
  • a plurality of solvents may be used as a mixture or may be used alone. The type and amount of the
  • Organic Binder of Coating Composition By adding an organic binder in the silver coating composition, it is possible to assist the dispersibility of the silver particles or to adhere to the base material.
  • the addition amount of the organic binder is preferably 0.1 to 10 wt% with respect to the contained silver.
  • the presence form of the binder resin in the conductive ink may be dissolved in a solvent, or may be an emulsion or a suspension.
  • the binder resin is not particularly limited.
  • polyester resin polyurethane resin, polyamide resin, polyvinyl chloride resin, polyacrylamide resin, polyether resin, acrylic resin, melamine resin, vinyl resin, phenol resin, epoxy resin, urea Resin, vinyl acetate resin, polybutadiene resin, vinyl chloride vinyl acetate copolymer resin, fluorine resin, silicone resin, rosin, rosin ester, chlorinated polyolefin resin, modified chlorinated polyolefin resin, chlorinated polyurethane resin, cellulosic resin, polyethylene Examples include glycol, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinyl petital, and polyvinyl pyrrolidone.
  • the binder resin to be used may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the prepared silver coating composition is applied onto a substrate and then baked.
  • Application is spin coating, inkjet printing, screen printing, dispenser printing, letterpress printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio printing (gravure printing), contact printing, microcontact printing
  • a printing technique is used, a patterned silver coating composition layer is obtained, and a patterned silver conductive layer is obtained by firing.
  • this silver conductive layer can be applied as a bonding material having excellent conductivity and thermal conductivity, and is also useful as a bonding material for electrical equipment that handles a large current such as a power device.
  • Firing can be performed at a temperature of 200 ° C. or lower, for example, room temperature (25 ° C.) or higher and 150 ° C. or lower, preferably room temperature (25 ° C.) or higher and 120 ° C. or lower.
  • it may be performed at a temperature of 60 ° C. to 200 ° C., for example, 80 ° C. to 150 ° C., preferably 90 ° C. to 120 ° C.
  • the firing time may be appropriately determined in consideration of the amount of silver ink applied, the firing temperature, and the like, for example, within several hours (for example, 3 hours or 2 hours), preferably within 1 hour, more preferably within 30 minutes. Good.
  • the silver nanoparticles are configured as described above, the sintering of the silver particles sufficiently proceeds even by such a firing process at a low temperature and in a short time. As a result, excellent conductivity (low resistance value) is exhibited.
  • a silver conductive layer having a low resistance value (for example, 15 ⁇ cm or less and in the range of 7 to 15 ⁇ cm) is formed.
  • the resistance value of bulk silver is 1.6 ⁇ cm.
  • the substrate can be a glass substrate, a heat-resistant plastic substrate such as a polyimide film, or a polyester system such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film.
  • a general-purpose plastic substrate having low heat resistance such as a polyolefin film such as a film or polypropylene can also be suitably used.
  • short-time firing reduces the load on these general-purpose plastic substrates having low heat resistance and improves production efficiency.
  • the thickness of the silver conductive layer may be appropriately determined according to the intended use, and particularly high conductivity even when a silver conductive layer having a relatively large thickness is formed by using the silver nanoparticles according to the present invention. Can show.
  • the thickness of the silver conductive layer may be selected from the range of, for example, 100 nm to 30 ⁇ m, preferably 1 ⁇ m to 20 ⁇ m, more preferably 10 ⁇ m to 20 ⁇ m.
  • the silver conductive material of the present invention is an electromagnetic wave control material, circuit board, antenna, heat sink, liquid crystal display, organic EL display, field emission display (FED), IC card, IC tag, solar cell, LED element, organic transistor, capacitor (Capacitor), electronic paper, flexible battery, flexible sensor, membrane switch, touch panel, EMI shield, etc.
  • Tables 1 to 3 show characteristics such as names and structural formulas of amine compounds used in Examples and Comparative Examples.
  • Example 1 Manufacture of silver particles
  • 7.58 g (24.95 mmol) of a dried silver oxalate product as a raw silver compound and 9.21 g (90.14 mmol) of n-hexanol as a polar solvent are stirred.
  • the silver oxalate was wetted.
  • 2.50 g (25.47 mmol) of AMP and 4.83 g (46.82 mmol) of 3-ethoxypropylamine were added. Thereafter, the mixture was stirred for 1 hour to produce a silver-amine complex.
  • heating was performed at a heating rate of 3 ° C./min, and the generation of carbon dioxide, which was considered to have caused the decomposition reaction of silver oxalate at 100 ° C., was confirmed. Heating was continued until the generation of carbon dioxide stopped to obtain a liquid in which silver particles were suspended. After precipitation of the silver particles, 20 cc of methanol was added to the reaction solution for washing, and this was centrifuged. This washing and centrifugation were performed three times. In this way, silver nanoparticles were obtained.
  • Table 4 shows the ratio (%), average particle diameter (nm), and coefficient of variation (%) of particles of 100 nm or less, 200 to 500 nm, and more than 500 nm.
  • An FE-SEM photograph is shown in FIG.
  • a particle size distribution histogram is shown in FIG.
  • Examples 2 to 15 and Comparative Examples 1 to 6 Manufacture of silver particles
  • the materials used and the blending ratio were changed to those shown in Tables 4 to 12, the rate of temperature increase after the formation of the silver-amine complex compound was changed to that shown in Tables 4 to 12, and the reaction vessel / heating device was changed to Tables 4 to 4
  • Silver particles were produced in the same manner as in Example 1 (Production of silver particles) except that the one shown in FIG.
  • Examples 6, 10 and Comparative Example 5 were subjected to (protecting agent replacement treatment) as described below. The protective agent replacement process is shown below.
  • Example 2 to 4 The obtained silver particles were subjected to the same method as in Example 1 (confirmation of particle diameter).
  • the particle diameter was confirmed by STEM images.
  • Example 2 to 11 and Comparative Examples 1 and 2 silver nanoparticle pastes and inks were prepared and fired by the same method as in Example 1 using the obtained particles.
  • Example 4, 5 each was carried out using the particle
  • the silver nanoparticle dispersion was coated on glass by spin coating.
  • Examples 12 to 15 and Comparative Examples 5 to 6 using the obtained particles, texanol was added and mixed as a solvent so that the silver content was 78.5%, and a silver nanoparticle paste was prepared. It was.
  • Example 2 to 15 and Comparative Examples 1 to 6 the average particle size (nm), coefficient of variation (%), and particle ratio (%) in each particle size range are shown in Tables 4 to 12 Show. SEM or STEM images are shown in FIGS. 4 to 16 and FIGS. 31 to 36. FIG. 17 to 28 and 43 to 48 show the particle size distribution histograms of Examples 2 to 15 and Comparative Examples 1 to 6, respectively.
  • Example 1 to 13, 15 and Comparative Examples 1 to 4 the volume resistivity and film thickness values of the sintered coating films are shown in Tables 4 to 12.
  • Measurement conditions are: measurement mode: hysteresis loop, shear rate: 0.1 s ⁇ 1 ⁇ 30 s ⁇ 1 (90 s), 30 s ⁇ 1 ⁇ 0.1 s ⁇ 1 (90 s), measurement jig: cone plate (Cone C35 / 1 ° TiL, Lower plate TMP35), gap: 0.052 mm, measurement temperature: 25 ° C.
  • the measured viscosity data is as shown in FIG.
  • Example 1 to 5 by utilizing the difference in the amount of the amine compound (b1) added and the polarity of the alcohol solvent used, the particle size can be controlled to a certain degree with a coefficient of variation of 30% or more to control the particle size. It is understood that is possible. Further, as in Examples 6 to 8, not only the component (b1) but also water may be used in combination in order to increase the particle size and provide variation. Among them, Example 6 using AMP as an amine compound can exhibit a volume resistivity of 10 ⁇ ⁇ cm or less at 150 ° C. baking, and a thick conductive film with the highest conductivity can be obtained. It was.
  • the amine compound of component (b1) and diglycolamine can be used in combination to increase the particle size and distribution, and as in Example 10, diglycolamine and By using water together, the particle size can be increased.
  • a thick film conductive film having a thickness of 50 ⁇ ⁇ cm can be obtained by firing at 100 to 150 ° C.
  • the silver particles can have a large particle size and a wide distribution, and are 40 ⁇ m or more and about 30 ⁇ ⁇ cm thick film conductive film.
  • the amine compound of component (b1) and diglycolamine can be used in combination to increase the particle size and distribution, and as in Example 10, diglycolamine and By using water together, the particle size can be increased.
  • a thick film conductive film having a thickness of 50 ⁇ ⁇ cm can be obtained by firing at 100 to 150 ° C.
  • the silver particles can have a large particle size and a wide distribution, and are 40 ⁇ m or more and about 30 ⁇ ⁇ cm thick film conductive film.
  • Comparative Examples 1 and 2 the component (b) amine compound was not added.
  • the average particle size was less than 70 nm, but also the variation coefficient was less than 30% and the variation was small. 99% or more has a small particle size of 100 nm or less. With such small particles with little variation, there are cases where sufficient conductivity cannot be obtained at each firing temperature unless the film thickness is 10 ⁇ m or less, or there are cases where cracks occur due to volume shrinkage and there is no conductivity itself. .
  • the silver nanoparticles of the present invention can have an appropriate variation in the particle size distribution in the method of the present invention by using the component (b) within the range defining the amine compound. It can be seen that it is possible to produce a silver paint composition that is easy to obtain a low-resistance thick film conductive film.
  • the viscosity of the silver paste is controlled by using silver nanoparticles in which the amine compound of the component (b1) or the amine compound in combination of (b1) and (b2) is bonded to the surface of the silver particles ( It was confirmed that the viscosity was increased.
  • FIG. 49 shows the viscosity data of Examples 12 to 15 and Comparative Examples 5 to 6.
  • Example 14 average particle size 145.9 nm
  • Example 5 average particle size
  • the viscosity is high. Moreover, by using not only the component (b1) but also the component (b2) and adjusting the blending, the viscosity of the silver paste can be adjusted. By reducing the blending amount of the AMP of (b1), the viscosity can be reduced. Tend to be lower. By controlling the blending of the components (b1) and (b2), it is possible to easily adjust the viscosity of a paste prepared from silver nanoparticles having the same particle size. Furthermore, by using an amine compound having a molecular length of 7 to 8 mm, a silver nanoparticle paste excellent in stability and handling can be obtained.
  • the dried coating films of Examples 12 to 15 and Comparative Example 5 have a small amount of agglomerates, so it is considered that a good conductive film is likely to be obtained.
  • No. 5 since it has a low viscosity, more organic binder is required to increase the viscosity. Therefore, in high-definition screen printing (with a line width of 50 ⁇ m or less), there is a high possibility of impairing the original conductivity. Conceivable.
  • the paste made from silver nanoparticles in which the amine compound combined with the component (b1) or the component (b1) (b2) is bonded to the surface of the silver particle is surprisingly a high-viscosity silver paste.
  • a silver conductive layer having a large particle size, a wide distribution, a thick film and high conductivity can be easily formed by a method in which the emission amount of a strong pungent amine is suppressed.
  • a silver coating composition having a viscosity suitable for nanoparticles, particularly screen printing, can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

[Problem] To provide a method for producing silver nanoparticles having good physical properties, whereby it becomes possible to reduce the discharge amount of an amine having a very irritating odor. [Solution] A method for producing silver nanoparticles, comprising reacting a silver compound (a) having thermal degradability with an amine compound (b) capable of forming a complex with the component (a) to form a complex and then thermally degrading the complex by heating to form the silver nanoparticles, said method being characterized in that the component (b) is an amino alcohol having 6 or less carbon atoms and also having one primary or secondary amino group and one hydroxyl group. Silver nanoparticles having an average particle diameter of 350 nm or less and a coefficient of variation of 40 to 80%, wherein an amino alcohol having 6 or less carbon atoms and also having one primary or secondary amino group and one hydroxyl group is bonded to the surface of each of the silver particles.

Description

広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子Method for producing silver nanoparticles having wide particle size distribution and silver nanoparticles
 本発明は、スクリーン印刷に適した粘度領域に調整しやすく、比較的大粒径かつ粒度分布が広い銀粒子の製造方法及び銀ナノ粒子、並びに銀ナノ粒子の製造に好適な銀化合物含有組成物に関する。 The present invention relates to a method for producing silver particles having a relatively large particle size and a wide particle size distribution, silver nanoparticles, and a silver compound-containing composition suitable for producing silver nanoparticles, which can be easily adjusted to a viscosity region suitable for screen printing. About.
 銀ナノ粒子は、金属ナノ粒子の融点降下の性質により、低温でも焼結するため、基板上への電気配線や、パワーデバイス半導体の接合材として利用されている。しかし、銀ナノ粒子は微細であるため凝集しやすく、また融点降下により融着しやすいことから、製造過程や保存中に意図しない粒子同士の接触、焼結を防ぐため、銀ナノ粒子の表面には保護剤と呼ばれる有機物層を存在させている。これらの有機物層は、脂肪酸やアルキルアミン等が用いられることが多いが、特にアルキルアミンまたはアルキルジアミンで被覆された銀ナノ粒子は比較的低温で保護剤が脱離し、低温焼成可能な銀ナノ粒子として知られている(特許文献1~2)。 Silver nanoparticles are sintered at low temperatures due to the melting point lowering properties of metal nanoparticles, and are therefore used as electrical wiring on a substrate and as a bonding material for power device semiconductors. However, since silver nanoparticles are fine, they tend to agglomerate and are easily fused due to a melting point drop. Has an organic substance layer called a protective agent. In these organic layers, fatty acids, alkylamines, and the like are often used. In particular, silver nanoparticles coated with alkylamine or alkyldiamine are desorbed at a relatively low temperature, and silver nanoparticles that can be fired at a low temperature. (Patent Documents 1 and 2).
 このような低温焼成可能な銀ナノ粒子を用いた焼成塗膜を配線などの導電材料としての利用が期待されるが、配線等の導電材料としての信頼性や導電性を担保するために、配線を厚膜にして対応する手法がとられている。そういった厚膜化を目的とするために設計された銀ナノ粒子として、特許文献3では、数nm~数十nm程度の一次粒子径を持った銀ナノ粒子を用いて、5~20μmの導電性銀塗膜が得られる銀塗料組成物(インク)が報告されている。また、特許文献4では、粒径100~200nmの銀粒子を粒子数基準で30%以上含むことにより焼結体とした際に低抵抗化できること、水分を銀化合物100重量部に対して5~100重量部反応系内に含ませることにより、そのような銀粒子を得ることができることが記載されている。 It is expected that such a fired coating film using silver nanoparticles that can be fired at a low temperature is used as a conductive material such as wiring. In order to ensure reliability and conductivity as a conductive material such as wiring, wiring The corresponding method is taken with thick film. As silver nanoparticles designed for the purpose of increasing the film thickness, Patent Document 3 uses silver nanoparticles having a primary particle diameter of several nanometers to several tens of nanometers, and has a conductivity of 5 to 20 μm. A silver paint composition (ink) from which a silver coating film can be obtained has been reported. Further, in Patent Document 4, when a sintered body is formed by containing silver particles having a particle diameter of 100 to 200 nm in an amount of 30% or more on the basis of the number of particles, the resistance can be reduced, and the water content is 5 to It is described that such silver particles can be obtained by inclusion in a 100 parts by weight reaction system.
 これらの公知文献では、銀化合物とアミン化合物との錯体形成反応を利用して銀ナノ粒子を作成する。具体的にはシュウ酸銀とアルキルアミンまたはアルキルジアミンとを用い、無溶媒下で錯体形成を行う。しかし、無溶媒下で錯体形成すると、流動性がない固体物となり撹拌がしにくく、系の均一性に欠け、局所的に発熱反応を伴ったりするため、スケールアップ時に、品質面・安全面に問題があり、工業的実用化が難しい。そこで、アルコール溶媒中で錯体形成反応を行うことで、錯体反応を促進・補助したり、系内の撹拌性を上げたり、熱分解で急激に発生する炭酸ガスを抑えたり、品質面・安全面を向上された銀ナノ粒子製造方法が報告されている(特許文献5~7)。 In these known documents, silver nanoparticles are prepared by utilizing a complex formation reaction between a silver compound and an amine compound. Specifically, complex formation is performed in the absence of a solvent using silver oxalate and alkylamine or alkyldiamine. However, complex formation in the absence of a solvent results in a solid material that does not flow, is difficult to stir, lacks system uniformity, and is locally accompanied by an exothermic reaction. There are problems and it is difficult to put it to practical use. Therefore, the complex formation reaction in an alcohol solvent promotes and assists the complex reaction, improves the agitation in the system, suppresses carbon dioxide generated suddenly by thermal decomposition, and improves quality and safety. A silver nanoparticle production method with improved resistance has been reported (Patent Documents 5 to 7).
 また、シュウ酸銀-アルキルアミン錯体を加熱分解する過程で、副生ガス(主に炭酸ガス)が発生して排出される時に、揮発しやすいアルキルアミンも含まれて系外に排出されてしまう問題を回避するため、前記錯体化合物を連続的に反応容器内に導入し、熱分解反応時の副生ガス発生量を制御した製造方法が報告されている(特許文献8)。 Also, in the process of thermally decomposing silver oxalate-alkylamine complex, when by-product gas (mainly carbon dioxide) is generated and discharged, it contains alkylamine which is easily volatilized and is discharged out of the system. In order to avoid the problem, a production method in which the complex compound is continuously introduced into a reaction vessel and the amount of by-product gas generated during the thermal decomposition reaction is controlled has been reported (Patent Document 8).
特許第5574761号公報Japanese Patent No. 5574761 特開2012-162767号公報JP 2012-162767 A 特許第6001861号公報Japanese Patent No. 6001861 特許第5795096号公報Japanese Patent No. 5795096 特許5975440号公報Japanese Patent No. 5975440 特許6026565号公報Japanese Patent No. 6026565 特開2016-132825号公報JP 2016-132825 A 特開2015-40319号公報Japanese Patent Laying-Open No. 2015-40319
 しかし、特許文献3では、実施例では8μmに達しない厚さの塗膜しか作成していない。仮に10μm以上の導電性塗膜を作成したとしても、銀粒子は一次粒子径が数10nmの粒子が主体なので、有機保護剤量も多く、保護剤離脱による体積収縮が生じるため、寸法安定性が低く、クラックによる断線の現象が起こる可能性が高い。 However, in Patent Document 3, only a coating film having a thickness that does not reach 8 μm is produced in the examples. Even if a conductive coating of 10 μm or more is created, silver particles are mainly composed of particles with a primary particle size of several tens of nanometers, so the amount of organic protective agent is large, and volume shrinkage occurs due to removal of the protective agent. It is low, and there is a high possibility of the occurrence of disconnection due to cracks.
 また、特許文献5~8のように副生ガスの量を制御したとしても、最終的に系外へアルキルアミンを含んだ炭酸ガスを排出する事には変わりはない。 Even if the amount of by-product gas is controlled as in Patent Documents 5 to 8, the carbon dioxide gas containing alkylamine is finally discharged out of the system.
 さらに、銀ナノ粒子分散体や塗料組成物(インク)は、基材に塗布して利用されるが、基材に塗布するのに適した粘度挙動を有する銀ナノ粒子の条件は十分に検討されていなかった。このため、実際に得られた塗膜は十分な性能を有さないこともあった。特にスクリーン印刷においては、スクリーンを通過させるためには小粒子径化だけでなく、粘度についても精密な粘度特性が求められる為、適切な粘度に調整する必要がある。粘度の調整には、粒子径を小粒子径化することや、有機バインダーの添加等の方法で、粘度を高くすることができるが、小粒子径化しすぎると、表面保護材の含有量が多くなりすぎてしまい、焼結時に体積収縮が起こって、クラックが発生したり、有機バインダーを添加しすぎると、銀粒子の焼結を阻害してしまい、焼結体の導電性や強度を悪化させてしまったりする恐れがある。 Furthermore, although the silver nanoparticle dispersion and the coating composition (ink) are used by being applied to a substrate, the conditions of the silver nanoparticles having a viscosity behavior suitable for applying to a substrate are sufficiently studied. It wasn't. For this reason, the actually obtained coating film may not have sufficient performance. In particular, in screen printing, in order to pass through a screen, not only a reduction in particle diameter but also a precise viscosity characteristic is required for the viscosity, so it is necessary to adjust to an appropriate viscosity. To adjust the viscosity, the viscosity can be increased by reducing the particle size or adding an organic binder. However, if the particle size is too small, the content of the surface protection material increases. If it becomes too much, volume shrinkage occurs during sintering, cracks occur, and too much organic binder is added, sintering of silver particles is inhibited, and the conductivity and strength of the sintered body are deteriorated. There is a risk of getting lost.
 本発明は、以上の問題点を解決し、作業性・安全性・環境面等のスケールアップを考慮した銀ナノ粒子の製造方法、及び高分布の粒度分布範囲を持つ銀ナノ粒子の製造方法と、各種印刷法、特にスクリーン印刷に適した粘度に調整しやすい銀ナノ粒子、及び銀ナノ粒子塗料組成物を提供することを課題とする。 The present invention solves the above problems, and a method for producing silver nanoparticles in consideration of scale-up such as workability, safety, and environmental aspects, and a method for producing silver nanoparticles having a highly distributed particle size distribution range, and Another object of the present invention is to provide silver nanoparticles that can be easily adjusted to a viscosity suitable for various printing methods, particularly screen printing, and silver nanoparticle coating compositions.
 これらの課題を解決するため、本発明者は鋭意検討を重ねた。その結果、銀化合物と錯体形成しうるアミン化合物として、特定のアミノアルコールを使用することにより、アルキルアミンの排出が抑えられ、環境にやさしく、しかも同時に、得られる銀粒子は粒径と分布が優れたものであり、得られる焼結塗膜も優れた性能を有することを見出し、本発明に到達した。さらに、この特定のアミノアルコールが表面に結合された銀粒子は、意外なことに従来のアルキルアミンが結合した銀粒子よりも、高粘度の分散体(ペースト)を得ることができ、アミノアルコールの種類や量を変化させることにより、その粘度調整も可能である。その結果、増粘効果のある有機バインダー等の添加量を抑えられ、特にスクリーン印刷に適した粘度域を持つ、銀塗料組成物が得られることがわかった。 In order to solve these problems, the present inventor has intensively studied. As a result, by using a specific amino alcohol as an amine compound that can form a complex with a silver compound, the emission of alkylamine is suppressed, and it is environmentally friendly. At the same time, the resulting silver particles have excellent particle size and distribution. As a result, the present inventors have found that the obtained sintered coating film also has excellent performance, and reached the present invention. Furthermore, the silver particles having the specific amino alcohol bonded to the surface can surprisingly obtain a dispersion (paste) having a higher viscosity than the silver particles bonded to the conventional alkylamine. The viscosity can be adjusted by changing the type and amount. As a result, it was found that a silver coating composition having a viscosity range particularly suitable for screen printing can be obtained by suppressing the addition amount of an organic binder having a thickening effect.
 すなわち、本発明には、以下の発明が含まれる。
(1) 熱分解性を有する銀化合物(a)と、(a)と錯体形成しうるアミン化合物(b)とを有機溶媒(c)中で反応させて錯体を形成し、得られた錯体を加熱して熱分解させることにより、銀ナノ粒子を形成する銀ナノ粒子の製造方法であって、(b)が、1級アミノ基又は2級アミノ基と水酸基とを1つずつ持つ炭素数6以下のアミノアルコールであることを特徴とする銀ナノ粒子の製造方法。
That is, the present invention includes the following inventions.
(1) A silver compound (a) having thermal decomposability and an amine compound (b) capable of forming a complex with (a) are reacted in an organic solvent (c) to form a complex. A method for producing silver nanoparticles, wherein silver nanoparticles are formed by thermal decomposition by heating, wherein (b) has 6 carbon atoms each having a primary amino group or a secondary amino group and a hydroxyl group. The manufacturing method of the silver nanoparticle characterized by being the following amino alcohols.
(2) (b)が、i)炭素数3~4の分岐型1級アミノアルコールであって、かつ(ii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているアミン化合物(b1)、またはiii)炭素数3の直鎖状2級アミノアルコール(b2)であることを特徴とする上記(1)記載の銀ナノ粒子の製造方法。
(3) (b)が、2-アミノ-2-メチル-1-プロパノールであることを特徴とする上記(1)又は(2)記載の銀ナノ粒子の製造方法。
(4) (a)がシュウ酸銀である上記(1)~(3)のいずれかに記載の銀ナノ粒子の 製造方法。
(2) (b) is i) a branched primary amino alcohol having 3 to 4 carbon atoms, and (ii) an amine in which an amino group and a hydroxyl group are bonded via an alkyl chain having 2 carbon atoms. The method for producing silver nanoparticles according to (1) above, wherein the compound is (b1) or iii) a linear secondary amino alcohol (b2) having 3 carbon atoms.
(3) The method for producing silver nanoparticles according to the above (1) or (2), wherein (b) is 2-amino-2-methyl-1-propanol.
(4) The method for producing silver nanoparticles according to any one of (1) to (3), wherein (a) is silver oxalate.
(5) (a)と(b)との錯体形成反応時に、(b)以外の分子の長さが5Å以上のアミン化合物(d)を存在させることを特徴とする上記(1)~(4)のいずれかに記載の銀ナノ粒子の製造方法。
(6) [(b)+(d)]/[(a)に含まれる銀原子]のモル比が0.7~2.0であることを特徴とする上記(5)記載の銀ナノ粒子の製造方法。
(7) (c)/(a)の重量比が0.8~1.3であることを特徴とする上記(3)~(6)のいずれかに記載の銀ナノ粒子の製造方法。
(8) (a)と(b)との錯体形成反応時に、水を存在させることを特徴とする上記(1)~(7)のいずれかに記載の銀ナノ粒子の製造方法。
(9) 上記(1)~(8)のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散することを特徴とする、銀ナノ粒子分散体の製造方法。
(10) 上記(1)~(8)のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散し、さらに有機バインダーを添加することを特徴とする、銀塗料組成物の製造方法。
(5) In the complex formation reaction of (a) and (b), the amine compound (d) having a molecular length other than (b) having a length of 5 mm or longer is present. ) The method for producing silver nanoparticles according to any one of the above.
(6) Silver nanoparticles according to (5) above, wherein the molar ratio of [(b) + (d)] / [silver atoms contained in (a)] is 0.7 to 2.0 Manufacturing method.
(7) The method for producing silver nanoparticles according to any one of (3) to (6) above, wherein the weight ratio of (c) / (a) is 0.8 to 1.3.
(8) The method for producing silver nanoparticles according to any one of (1) to (7) above, wherein water is present during the complex formation reaction of (a) and (b).
(9) A silver nanoparticle dispersion characterized in that silver nanoparticles are produced by the method according to any one of (1) to (8) above, and the obtained silver nanoparticles are dispersed in an organic solvent. Production method.
(10) Silver nanoparticles are produced by the method according to any one of (1) to (8), the obtained silver nanoparticles are dispersed in an organic solvent, and an organic binder is further added. , A method for producing a silver coating composition.
(11) 上記(9)記載の方法により得られた銀ナノ粒子分散体又は上記(10)記載の方法により得られた銀塗料組成物を基板上に塗布し、焼成して銀導電層を形成する工程を含む銀導電材料の製造方法。
(12) 熱分解性を有する銀化合物(a)と、(a)と錯体形成しうるアミン化合物(b)と、有機溶媒(c)とを含有する組成物であって、b)が、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールであることを特徴とする、銀化合物含有組成物。
(13)  [(b)+(d)]/[(a)に含まれる銀原子]がモル比で0.7~2.0であることを特徴とする上記(12)記載の銀化合物含有組成物。
(14) 熱分解性を有する銀化合物(a)と、有機溶媒(c)との含有割合が、(c)/(a)が重量比で0.8~1.3であることを特徴とする上記(12)又は(13)記載の銀化合物含有組成物。
(11) A silver nanoparticle dispersion obtained by the method described in (9) above or a silver coating composition obtained by the method described in (10) above is applied onto a substrate and baked to form a silver conductive layer. The manufacturing method of the silver electrically-conductive material including the process to do.
(12) A composition comprising a thermally decomposable silver compound (a), an amine compound (b) capable of forming a complex with (a), and an organic solvent (c), wherein b) A silver compound-containing composition, which is an amino alcohol having 6 or less carbon atoms each having a primary amino group or a secondary amino group and a hydroxyl group.
(13) The silver compound containing according to (12) above, wherein [(b) + (d)] / [silver atom contained in (a)] is 0.7 to 2.0 in molar ratio Composition.
(14) The content ratio of the thermally decomposable silver compound (a) and the organic solvent (c) is characterized in that (c) / (a) is 0.8 to 1.3 by weight. The silver compound-containing composition according to (12) or (13) above.
(15) 銀化合物(a)と錯体形成しうるアミン化合物として、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコール(b)と、(b)以外の分子の長さが5Å以上のアミン化合物(d)とを含み、かつ(b)/[(b)+(d)]がモル比で0.3~0.8であることを特徴とする上記(12)~(14)のいずれかに記載の銀化合物含有組成物。
(16) 水の含有量が銀化合物(a)100重量部に対して5~20重量部含有することを特徴とする上記(12)~(15)のいずれかに記載の銀化合物含有組成物。
(17) 平均粒径350nm以下で、変動係数30~80%であり、銀粒子表面に、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールが結合した銀ナノ粒子。
(18) 上記(17)記載の銀ナノ粒子であって、銀ナノ粒子表面に、i)炭素数3~4の分岐型1級アミノアルコールであり、かつ(ii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているアミン化合物(b1)、または(b1)とiii)炭素数3の直鎖状2級アミノアルコール(b2)が結合した銀ナノ粒子。
(15) As an amine compound capable of forming a complex with the silver compound (a), an amino alcohol (b) having 6 or less carbon atoms having one primary amino group or one secondary amino group and one hydroxyl group, and other than (b) The amine compound (d) having a molecular length of 5 mm or more and (b) / [(b) + (d)] in a molar ratio of 0.3 to 0.8 (12) The silver compound-containing composition according to any one of (14).
(16) The silver compound-containing composition as described in any of (12) to (15) above, wherein the water content is 5 to 20 parts by weight with respect to 100 parts by weight of the silver compound (a). .
(17) An average particle diameter of 350 nm or less, a coefficient of variation of 30 to 80%, and a primary amino group or an amino alcohol having 6 or less carbon atoms each having a primary amino group and a hydroxyl group bonded to the surface of the silver particle. Silver nanoparticles.
(18) The silver nanoparticle according to (17), wherein i) a branched primary amino alcohol having 3 to 4 carbon atoms, and (ii) an alkyl chain having 2 carbon atoms on the surface of the silver nanoparticle. Via the amine compound (b1) in which an amino group and a hydroxyl group are bonded, or (b1) and iii) a silver nanoparticle in which a linear secondary amino alcohol (b2) having 3 carbon atoms is bonded.
(19) 上記(18)記載の銀ナノ粒子であって、アミン化合物(b1)として2-アミノ-2-メチル-1-プロパノールが結合した銀ナノ粒子。
(20) 上記(17)~(19)のうちいずれかに記載の銀ナノ粒子であって、さらに(b1)及び(b2)以外の分子の長さ7~8Åのアミン化合物が結合した銀ナノ粒子、
(21) 上記(17)~(20)のいずれかに記載の銀ナノ粒子が有機溶媒中に分散されていることを特徴とする銀ナノ粒子分散体。
(22) 上記(17)~(20)のいずれかに記載の銀ナノ粒子が有機溶媒に分散され、さらに有機バインダーを含有することを特徴とする、銀塗料組成物。
(23) 上記(21)記載の銀ナノ粒子分散体又は上記(22)記載の銀塗料組成物を基板上に塗布し、焼成して銀導電層を形成する工程を含む銀導電材料の製造方法、
である。
(19) A silver nanoparticle according to (18) above, wherein 2-amino-2-methyl-1-propanol is bound as the amine compound (b1).
(20) The silver nanoparticle according to any one of the above (17) to (19), wherein the silver nanoparticle further binds to an amine compound having a molecular length of 7 to 8 mm other than (b1) and (b2) particle,
(21) A silver nanoparticle dispersion, wherein the silver nanoparticles according to any one of (17) to (20) are dispersed in an organic solvent.
(22) A silver paint composition, wherein the silver nanoparticles according to any one of (17) to (20) are dispersed in an organic solvent and further contain an organic binder.
(23) A method for producing a silver conductive material, comprising: applying a silver nanoparticle dispersion according to (21) above or a silver coating composition according to (22) above onto a substrate and baking to form a silver conductive layer. ,
It is.
 本発明に係る粒径制御された銀粒子を含む銀塗料組成物は、150℃以下の低温領域であっても焼結が可能で、生成する焼結体はバルクの銀に近い低抵抗値を示す。本発明は、スクリーン印刷を代表とする印刷方法により、PETやポリプロピレンなどの比較的耐熱性の低いプラスチック基板上に、数~数10μmの厚膜の銀配線を成形できる材料、または導電性の接合材料やパワーデバイス等の大電流を取り扱う電気機器の接合材として利用が期待できる。 The silver coating composition containing silver particles whose particle size is controlled according to the present invention can be sintered even in a low temperature region of 150 ° C. or less, and the resulting sintered body has a low resistance value close to that of bulk silver. Show. The present invention is a material that can form a silver wiring having a thickness of several to several tens of μm on a plastic substrate having a relatively low heat resistance such as PET or polypropylene by a printing method typified by screen printing, or conductive bonding. It can be expected to be used as a bonding material for electrical equipment that handles large currents such as materials and power devices.
 また、本発明での銀粒子の合成では、使用するアミン化合物量が従来の合成法よりも少ない他、熱分解性を持つ銀化合物と錯形成を起こすアミン化合物として、特定の炭素数4以下のアミノアルコールを用いることにより、人体や環境の負荷の高いアルキルアミンの利用をさらに低減できるので、スケールアップされた工業的な製造において、安全性の高い製造方法が提供される。 In addition, in the synthesis of silver particles in the present invention, the amount of amine compound used is less than that of the conventional synthesis method, and as an amine compound that forms a complex with a thermally decomposable silver compound, a specific carbon number of 4 or less. By using amino alcohol, it is possible to further reduce the use of alkylamines that are highly burdened on the human body and the environment. Thus, a highly safe production method is provided in scaled-up industrial production.
図1は、アミノアルコールの銀原子への配位モデル(直鎖型)、アミノアルコールの銀原子への配位モデル(OH基接近型)及びアルキルアミンの銀原子への配位モデルのイメージ図である。Figure 1 is an image of coordination model of aminoalcohol to silver atom (linear type), coordination model of aminoalcohol to silver atom (OH group approaching type), and coordination model of alkylamine to silver atom is there. 図2は、銀の吸着モデルと銀の粒子成長のイメージ図である。FIG. 2 is an image diagram of a silver adsorption model and silver particle growth. 図3は、実施例1で得られた粒子のSEM写真を示す図である。FIG. 3 is a view showing an SEM photograph of the particles obtained in Example 1. 図4は、実施例2で得られた粒子のSEM写真を示す図である。FIG. 4 is a SEM photograph of the particles obtained in Example 2. 図5は、実施例3で得られた粒子のSEM写真を示す図である。FIG. 5 is a view showing an SEM photograph of the particles obtained in Example 3. 図6は、実施例4で得られた粒子のSEM写真を示す図である。6 is a SEM photograph of the particles obtained in Example 4. FIG. 図7は、実施例5で得られた粒子のSEM写真を示す図である。FIG. 7 is a view showing an SEM photograph of the particles obtained in Example 5. 図8は、実施例6で得られた粒子のSEM写真を示す図である。FIG. 8 is a SEM photograph of the particles obtained in Example 6. 図9は、実施例7で得られた粒子のSEM写真を示す図である。FIG. 9 is a SEM photograph of the particles obtained in Example 7. 図10は、実施例8で得られた粒子のSEM写真を示す図である。FIG. 10 is a view showing an SEM photograph of the particles obtained in Example 8. 図11は、実施例9で得られた粒子のSEM写真を示す図である。FIG. 11 is a SEM photograph of the particles obtained in Example 9. 図12は、実施例10で得られた粒子のSEM写真を示す図である。12 is a SEM photograph of the particles obtained in Example 10. FIG. 図13は、実施例11で得られた粒子のSEM写真を示す図である。13 is a SEM photograph of the particles obtained in Example 11. FIG. 図14は、比較例1で得られた粒子のSEM写真を示す図である。14 is a view showing an SEM photograph of particles obtained in Comparative Example 1. FIG. 図15は、比較例2、3で得られた粒子のSTEM写真を示す図である。FIG. 15 is a view showing STEM photographs of the particles obtained in Comparative Examples 2 and 3. FIG. 図16は、比較例4で得られた粒子のSTEM写真を示す図である。FIG. 16 is a view showing an STEM photograph of the particles obtained in Comparative Example 4. 図17は、実施例1で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 17 is a diagram showing a particle size distribution histogram of the particles obtained in Example 1. 図18は、実施例2で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 18 is a graph showing a particle size distribution histogram of the particles obtained in Example 2. 図19は、実施例3で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 19 is a graph showing a particle size distribution histogram of the particles obtained in Example 3. 図20は、実施例4で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 20 is a diagram showing a particle size distribution histogram of the particles obtained in Example 4. 図21は、実施例5で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 21 is a graph showing a particle size distribution histogram of the particles obtained in Example 5. 図22は、実施例6で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 22 is a diagram showing a particle size distribution histogram of the particles obtained in Example 6. 図23は、実施例7で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 23 is a graph showing a particle size distribution histogram of the particles obtained in Example 7. 図24は、実施例8で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 24 is a diagram showing a particle size distribution histogram of the particles obtained in Example 8. 図25は、実施例9で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 25 is a diagram showing a particle size distribution histogram of the particles obtained in Example 9. 図26は、実施例10で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 26 is a diagram showing a particle size distribution histogram of the particles obtained in Example 10. FIG. 図27は、実施例11で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 27 is a diagram showing a particle size distribution histogram of the particles obtained in Example 11. FIG. 図28は、比較例1で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 28 is a diagram showing a particle size distribution histogram of particles obtained in Comparative Example 1. FIG. 図29は、比較例2、3で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 29 is a diagram showing a particle size distribution histogram of the particles obtained in Comparative Examples 2 and 3. FIG. 図30は、比較例4で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 30 is a diagram showing a particle size distribution histogram of particles obtained in Comparative Example 4. 図31は、実施例12で得られた粒子のSEM写真を示す図である。FIG. 31 is a diagram showing an SEM photograph of the particles obtained in Example 12. 図32は、実施例13で得られた粒子のSEM写真を示す図である。32 is a SEM photograph of the particles obtained in Example 13. FIG. 図33は、実施例14で得られた粒子のSEM写真を示す図である。33 is a SEM photograph of the particles obtained in Example 14. FIG. 図34は、実施例15で得られた粒子のSEM写真を示す図である。34 is a SEM photograph of the particles obtained in Example 15. FIG. 図35は、比較例5で得られた粒子のSEM写真を示す図である。FIG. 35 is a view showing an SEM photograph of the particles obtained in Comparative Example 5. FIG. 図36は、比較例6で得られた粒子のSEM写真を示す図である。FIG. 36 is a diagram showing an SEM photograph of the particles obtained in Comparative Example 6. 図37は、実施例12で得られた粒子から作製したペーストの塗膜表面のSEM写真を示す図である。FIG. 37 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 12. 図38は、実施例13で得られた粒子から作製したペーストの塗膜表面のSEM写真を示す図である。FIG. 38 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 13. 図39は、実施例14で得られた粒子から作製したペーストの塗膜表面のSEM写真を示す図である。FIG. 39 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 14. 図40は、実施例15で得られた粒子から作製したペーストの塗膜表面のSEM写真を示す図である。40 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Example 15. FIG. 図41は、比較例5で得られた粒子から作製したペーストの塗膜表面のSEM写真を示す図である。41 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Comparative Example 5. FIG. 図42は、比較例6で得られた粒子から作製したペーストの塗膜表面のSEM写真を示す図である。FIG. 42 is a view showing an SEM photograph of the coating film surface of a paste prepared from the particles obtained in Comparative Example 6. 図43は、実施例12で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 43 is a diagram showing a particle size distribution histogram of the particles obtained in Example 12. 図44は、実施例13で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 44 is a graph showing the particle size distribution histogram of the particles obtained in Example 13. 図45は、実施例14で得られた粒子の粒度分布ヒストグラムを示す図である。45 is a graph showing the particle size distribution histogram of the particles obtained in Example 14. FIG. 図46は、実施例15で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 46 is a diagram showing a particle size distribution histogram of the particles obtained in Example 15. 図47は、比較例5で得られた粒子の粒度分布ヒストグラムを示す図である。47 is a diagram showing a particle size distribution histogram of the particles obtained in Comparative Example 5. FIG. 図48は、比較例6で得られた粒子の粒度分布ヒストグラムを示す図である。FIG. 48 is a diagram showing a particle size distribution histogram of the particles obtained in Comparative Example 6. 図49は、実施例12~15、比較例5,6で得られた粒子から作製したペーストの粘度比較データを示す図である。FIG. 49 is a diagram showing viscosity comparison data of pastes prepared from the particles obtained in Examples 12 to 15 and Comparative Examples 5 and 6.
 本発明は、熱分解性を有する銀化合物(a)と錯体形成するアミン化合物(b)を反応させて銀ナノ粒子を製造する方法において、アミン化合物(b)として、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールを使用することが特徴である。
 このような特定のアミノアルコールを使用することにより、銀粒子に対し、2つの吸着モデルを有することができ、したがって広分布で比較的大粒径の銀ナノ粒子を容易に得ることができ、特に200~500nmの大粒径領域の銀ナノ粒子を合成しやすく、またアミン化合物全体の使用量を少なくすることができるため環境に優れている。
 また、特定のアミノアルコールを使用することにより、従来のアルキルアミンのみを用いた銀ナノ粒子よりも高粘度に銀ペーストを作製することが可能で、特にスクリーン印刷の粘度に適した銀塗料組成物を作製することを可能にする。
 以下、詳細に説明する。
The present invention relates to a method for producing silver nanoparticles by reacting a thermally decomposable silver compound (a) with an amine compound (b) that forms a complex. As the amine compound (b), a primary amino group or a secondary class is used. It is characterized by the use of an amino alcohol having 6 amino acids and one hydroxyl group.
By using such a specific amino alcohol, it is possible to have two adsorption models for silver particles, and thus easily obtain silver nanoparticles having a wide distribution and a relatively large particle size, Silver nanoparticles having a large particle diameter range of 200 to 500 nm can be easily synthesized, and the amount of the entire amine compound used can be reduced, which is excellent in the environment.
In addition, by using a specific amino alcohol, it is possible to produce a silver paste with a higher viscosity than silver nanoparticles using only conventional alkylamines, and in particular a silver coating composition suitable for the viscosity of screen printing Makes it possible to produce.
Details will be described below.
<銀ナノ粒子合成における材料の説明>
〔1.銀化合物(a)の説明〕
 本発明の銀粒子の製造方法では、まず、出発原料として熱分解性を有する銀化合物を用いる。熱分解性を有する銀化合物とは、後述する成分(b)と錯体化して、通常の設備で可能な加熱条件下で熱分解する銀化合物をいう。具体的には、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀等を適応できる。これら銀化合物のうち、特に好ましいのは、炭酸銀又はシュウ酸銀(Ag)である。さらに好ましくはシュウ酸銀である。シュウ酸銀は、還元剤を要することなく比較的低温で分解して銀粒子を生成することができる。また、分解により生じる二酸化炭素はガスとして放出されることから、溶液中に不純物を残留させることもないためである。
<Description of materials in silver nanoparticle synthesis>
[1. Description of silver compound (a)]
In the method for producing silver particles of the present invention, first, a silver compound having thermal decomposability is used as a starting material. The silver compound having thermal decomposability refers to a silver compound that is complexed with the component (b) described later and thermally decomposes under heating conditions that are possible with ordinary equipment. Specifically, silver oxalate, silver nitrate, silver acetate, silver carbonate, silver oxide, silver nitrite, silver benzoate, silver cyanate, silver citrate, silver lactate and the like can be applied. Of these silver compounds, silver carbonate or silver oxalate (Ag 2 C 2 O 4 ) is particularly preferable. More preferred is silver oxalate. Silver oxalate can be decomposed at a relatively low temperature without a reducing agent to produce silver particles. Further, carbon dioxide generated by the decomposition is released as a gas, so that no impurities remain in the solution.
〔2.錯体形成するアミン化合物(b)〕
 次に、本発明においては、(b)成分である銀化合物と錯体形成しうるアミン化合物として、以下のものを使用することを特徴とする。すなわち、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールである。
 これらのアミン化合物は、極性溶媒(特にアルコール溶媒)中に溶解することができるので、極性溶媒存在下で、銀化合物と錯体を形成することが可能である。その結果、極性溶媒中でも銀化合物の熱分解温度を下げ、低温で銀粒子を生成することを可能にする機能を有する。
 炭素数が7以上のアミノアルコールや、水酸基が2つ以上有するアミノアルコールは、アルコール溶媒への溶解性低い固体状の物質が多く、銀化合物との錯形成反応が起こりにくいため、不適である。また、アミノ基を2つ以上有するアミノアルコールは、極性が高くなりすぎ、錯形成反応よりも、還元反応が強くなり、銀粒子が析出しやすく粒子径のコントロールが実質できない状態になり、目的の銀粒子を得ることは難しくなる。
 さらに、本発明の(b)成分は、後述するように、銀粒子に対し2つの吸着モデルを持つことが特徴であり、このため、得られる銀粒子の粒径を容易に大きくかつ広い分布のものとすることも可能にする。
 アミン化合物(b)は、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールであればよく、骨格は直鎖状でも分岐型でも良い。
 以上の条件を満たすアミノアルコール(b)としては、例えば、メタノールアミン、エタノールアミン、1-アミノ-2-ブタノール、DL-1-アミノ-2-プロパノール、2-アミノ-2-メチル-1-プロパノール(以下、AMP)、DL-2-アミノ-1-プロパノール、N-メチルエタノールアミン、3-アミノ―1-プロパノール、4-アミノ―1-ブタノール、5-アミノ―1-ペンタノール、6-アミノ―1-ヘキサノールが挙げられる。
 さらに、銀粒子の大粒子径化・広分布化させる効果をさらに発現するためには、(b)成分として、以下の特徴を持つアミノアルコールを使用することが特に好ましい。i)炭素数3~4の分岐型1級アミノアルコールであって、かつ(ii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているアミン化合物(b1)、またはiii)炭素数3の直鎖状2級アミノアルコール(b2)である。
 ここで、(i)「分岐型」とは、炭素原子とヘテロ原子とからなる骨格が、直線状ではなく枝分かれしていることをいう。また(ii)「炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されている」とは、炭素原子とヘテロ原子とからなる骨格中、隣り合った2つの炭素原子に各々、アミノ基と水酸基とが結合していることをいう。
[2. Amine compound forming complex (b)]
Next, the present invention is characterized in that the following compounds are used as amine compounds capable of forming a complex with the silver compound as component (b). That is, it is a C6 or less amino alcohol having one primary amino group or one secondary amino group and one hydroxyl group.
Since these amine compounds can be dissolved in a polar solvent (especially an alcohol solvent), it is possible to form a complex with a silver compound in the presence of the polar solvent. As a result, it has the function of lowering the thermal decomposition temperature of the silver compound even in a polar solvent and making it possible to produce silver particles at a low temperature.
Amino alcohols having 7 or more carbon atoms or amino alcohols having 2 or more hydroxyl groups are not suitable because many solid substances with low solubility in alcohol solvents are difficult to complex with silver compounds. In addition, amino alcohols having two or more amino groups are too polar, the reduction reaction is stronger than the complex formation reaction, silver particles are likely to precipitate, and the particle size cannot be controlled substantially. It becomes difficult to obtain silver particles.
Furthermore, as will be described later, the component (b) of the present invention is characterized by having two adsorption models for silver particles. For this reason, the particle size of the obtained silver particles can be easily increased and has a wide distribution. It can also be made.
The amine compound (b) may be a primary amino group or an amino alcohol having 6 or less carbon atoms each having a primary amino group or a secondary amino group, and the skeleton may be linear or branched.
Examples of amino alcohol (b) satisfying the above conditions include methanolamine, ethanolamine, 1-amino-2-butanol, DL-1-amino-2-propanol, and 2-amino-2-methyl-1-propanol. (Hereinafter AMP), DL-2-amino-1-propanol, N-methylethanolamine, 3-amino-1-propanol, 4-amino-1-butanol, 5-amino-1-pentanol, 6-amino -1-hexanol is mentioned.
Furthermore, in order to further develop the effect of increasing the particle size and the distribution of silver particles, it is particularly preferable to use an amino alcohol having the following characteristics as the component (b). i) an amine compound (b1), which is a branched primary amino alcohol having 3 to 4 carbon atoms, and (ii) an amino group and a hydroxyl group are bonded via an alkyl chain having 2 carbon atoms, or iii) It is a linear secondary amino alcohol (b2) having 3 carbon atoms.
Here, (i) “branched type” means that a skeleton composed of carbon atoms and heteroatoms is branched rather than linear. In addition, (ii) “the amino group and the hydroxyl group are bonded via an alkyl chain having 2 carbon atoms” means that two adjacent carbon atoms in the skeleton composed of carbon atoms and heteroatoms are each amino acids. It means that a group and a hydroxyl group are bonded.
 アミン化合物(b1)の場合、炭素数2のアルキル鎖を介して、アミノ基と水酸基が1つずつ結合されており、その2つの官能基の位置関係が、「シュウ酸銀と錯形成できる適度なアミン化合物の極性」と「銀粒子との2つの吸着モデルの実現」を両立している。
 さらに、(b2)はアミノ基と水酸基の位置関係は(b1)と同様であるが、アミノ基が2級であるので、全体の炭素数が3という構造を持つことで、(b1)と同様に、「シュウ酸銀と錯形成できる適度なアミン化合物の極性」と「銀粒子との2つの吸着モデルの実現」を両立している。
 2級アミン化合物の場合、炭素数が4以上であると、アミノ基の立体障害が大きく、また全体的に極性が低くなり、シュウ酸銀との錯形成が起こりにくくなることがある。
In the case of the amine compound (b1), one amino group and one hydroxyl group are bonded via an alkyl chain having 2 carbon atoms, and the positional relationship between the two functional groups is “a moderate amount capable of complexing with silver oxalate. The polarity of a simple amine compound "and" realization of two adsorption models of silver particles ".
Furthermore, (b2) has the same positional relationship between the amino group and the hydroxyl group as (b1), but since the amino group is secondary, it has a structure with 3 carbon atoms in total, which is similar to (b1). In addition, “appropriate polarity of amine compound capable of complexing with silver oxalate” and “realization of two adsorption models with silver particles” are compatible.
In the case of a secondary amine compound, when the number of carbon atoms is 4 or more, the steric hindrance of the amino group is large, the polarity is lowered as a whole, and complex formation with silver oxalate may hardly occur.
 以上の条件を満たすアミノアルコール(b1)としては、例えば、1-アミノ-2-ブタノール、DL-1-アミノ-2-プロパノール、AMP、DL-2-アミノ-1-プロパノール、が挙げられる。
 これらのうち特に、AMPが扱いやすく、アルコール溶媒のような極性溶媒存在下での錯形成が容易に起こり、かつ大粒径かつ広い粒度分布の銀粒子を容易に得ることができるので最も好ましい。さらに銀表面に結合することで、分散体の粘度を上げる効果も優れている。
 また、同様に(b2)としては、例えばN-メチルエタノールアミンが挙げられる。
Examples of the amino alcohol (b1) that satisfies the above conditions include 1-amino-2-butanol, DL-1-amino-2-propanol, AMP, and DL-2-amino-1-propanol.
Among these, AMP is most preferable since it is easy to handle, complex formation easily occurs in the presence of a polar solvent such as an alcohol solvent, and silver particles having a large particle size and a wide particle size distribution can be easily obtained. Furthermore, by bonding to the silver surface, the effect of increasing the viscosity of the dispersion is excellent.
Similarly, (b2) includes, for example, N-methylethanolamine.
 上記の(b)成分は、従来使用されていた脂肪族炭化水素アミン化合物のような強い刺激臭もなく、取り扱う上でも安全面で有利である。
 また、アミン化合物の使用量が少なくて済む。具体的には、(b)成分を用いることで、銀化合物との錯体形成を促すために、従来技術で用いられてきた炭素数4~5の短鎖脂肪族炭化水素アミン化合物を使用しなくても、銀化合物との錯体形成反応を十分に促すことができる。したがって以下説明する成分(b)のアミノアルコール以外のアミン化合物(d)を併用したとしても、トータルの脂肪族炭化水素アミン化合物の使用量を減量又は無くすことも可能である。
 なお、以上の(b)成分は、1種のみを用いても、2種以上混合して用いてもよい。
The component (b) has no strong irritating odor like the conventionally used aliphatic hydrocarbon amine compounds, and is advantageous in terms of safety in handling.
In addition, the amount of amine compound used is small. Specifically, by using the component (b), in order to promote the complex formation with the silver compound, the short-chain aliphatic hydrocarbon amine compound having 4 to 5 carbon atoms that has been used in the prior art is not used. However, the complex formation reaction with the silver compound can be sufficiently promoted. Therefore, even if an amine compound (d) other than the amino alcohol of component (b) described below is used in combination, the total amount of the aliphatic hydrocarbon amine compound can be reduced or eliminated.
In addition, the above (b) component may use only 1 type, or may mix and use 2 or more types.
(2-1. (b)成分添加による大粒子径銀粒子生成メカニズム)
 以上説明した(b)成分を銀化合物と錯体形成するアミン化合物を用いることにより、大粒径で分布の広い銀ナノ粒子を得ることのできるメカニズムは完全には明らかではない。しかし、本発明者は以下のように推測している。
 アミン化合物と銀化合物の錯体形成は、アミン化合物が有機溶媒(c)中に溶解されることで、銀化合物と反応し、アミン化合物のアミノ基の非共有電子対が、銀原子の空軌道に配位して形成される。さらに本発明で使用するアミン化合物はアミノアルコールであり、水酸基を有している。この水酸基も、アミノ基と同様に極性がありマイナスに帯電していることから、銀原子へ接近しやすい挙動を示すと考えられる。この性質を踏まえ、(b)成分として本発明で使用する特定のアミノアルコールの銀原子の配位結合状態について、以下の2つのモデルがあると考えられる。i)アルキルアミンと同様に、アミノ基が銀原子へ配位し、アルキル鎖が外側(分散媒側)へ直線状に配向するモデル(図1-1)、ii)アミノ基が銀原子へ配位し、水酸基も銀原子側へ近づき安定化するモデル(図1-2)である。この2つの配位結合モデルが存在するために、銀原子周辺でのアミン化合物による立体障害が一様ではない。このため、出来上がる粒子径にバラつきが生まれ、大粒子径から小粒子径まで幅広く形成されると考えられる(図2)。
 また、アミン化合物のアミノ基の極性の強さは、i)アミン化合物全体の炭素数、ii)アミノ基と水酸基の位置関係、iii)アミン化合物の立体構造の3つのファクターが関係していると考えられる。具体的には、炭素数が大きすぎると、錯形成自体が起こりにくい(上記(i)のファクター)。また、アミノ基と水酸基の位置関係が、離れすぎると、水酸基が銀粒子表面に近づきにくく(上記(ii)及び(iii)のファクター)、図1-2に示す吸着モデルが起こりづらい。
 以上の理由から、本発明のように、1級アミノ基または2級アミノ基と水酸基を1つずつ持ち、かつ炭素数6以下のアミノアルコールでは、これら3つのファクターを満たし、上記の2つの吸着モデルを実現することができていると考えられる。
 さらに、i)炭素数3~4の分岐型1級アミノアルコールであって、かつ(ii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているアミン化合物(b1)、またはiii)炭素数3の直鎖状2級アミノアルコール(b2)は、上記の3つのファクターの面でも最適なため、特に優れた効果を発現していると考えられる。
(2-1. (B) Formation mechanism of large particle size silver particles by adding component)
The mechanism by which silver nanoparticles having a large particle size and a wide distribution can be obtained by using an amine compound that forms a complex with component (b) described above is not completely clear. However, the present inventor presumes as follows.
The complex formation between the amine compound and the silver compound is such that the amine compound is dissolved in the organic solvent (c), so that it reacts with the silver compound, and the unshared electron pair of the amino group of the amine compound enters the empty orbit of the silver atom. It is formed by coordination. Furthermore, the amine compound used in the present invention is an amino alcohol and has a hydroxyl group. Since this hydroxyl group is also polar and negatively charged like the amino group, it is considered that the hydroxyl group behaves easily toward a silver atom. Based on this property, it is considered that there are the following two models for the coordinate bonding state of the silver atom of the specific amino alcohol used in the present invention as the component (b). i) Similar to alkylamine, a model in which an amino group is coordinated to a silver atom and an alkyl chain is linearly oriented outward (dispersion medium side) (Fig. 1-1), ii) an amino group is coordinated to a silver atom It is a model (Fig. 1-2) in which the hydroxyl group also approaches the silver atom side and stabilizes. Since these two coordination bond models exist, the steric hindrance by the amine compound around the silver atom is not uniform. For this reason, it is considered that the resulting particle diameter varies, and it is widely formed from a large particle diameter to a small particle diameter (FIG. 2).
In addition, the strength of the polarity of the amino group of the amine compound is related to three factors: i) the total number of carbon atoms in the amine compound, ii) the positional relationship between the amino group and the hydroxyl group, and iii) the three-dimensional structure of the amine compound. Conceivable. Specifically, when the number of carbon atoms is too large, complex formation itself hardly occurs (factor (i) above). If the positional relationship between the amino group and the hydroxyl group is too far, the hydroxyl group is difficult to approach the surface of the silver particle (the factors (ii) and (iii) above), and the adsorption model shown in FIG.
For the above reasons, as in the present invention, an amino alcohol having one primary amino group or one secondary amino group and one hydroxyl group and having 6 or less carbon atoms satisfies these three factors, and the above two adsorptions. It is thought that the model can be realized.
Furthermore, i) a branched primary amino alcohol having 3 to 4 carbon atoms and (ii) an amine compound (b1) in which an amino group and a hydroxyl group are bonded via an alkyl chain having 2 carbon atoms, or iii) Since the straight-chain secondary amino alcohol (b2) having 3 carbon atoms is optimal in terms of the above three factors, it is considered that a particularly excellent effect is exhibited.
 これに対し、従来用いられてきたアルキルアミンについては、アミノ基部分しか電子供与性がないので、直線状にしか配向しないので、図1-3のようになる。したがって、粒子のばらつきは生まれず、粒子の揃った銀粒子しか合成できないのはこのためであると考えられる。
 なお、後述のように、(b)成分のアミノアルコールと水添加との併用で、さらに大粒子径化と広分布化の効果は拡大する。
On the other hand, in the case of alkylamines conventionally used, since only the amino group portion has an electron donating property, it is oriented only linearly, as shown in FIG. 1-3. Therefore, it is considered that this is because there is no variation in particles and only silver particles with uniform particles can be synthesized.
As will be described later, the combined use of the (b) component amino alcohol and water increases the effects of larger particle size and wider distribution.
〔3.立体障害による分散安定化効果を持つアミン化合物(d)〕
 本発明ではさらに、(a)と(b)の錯体形成時に、(b)成分以外のアミン化合物を存在させることができる。この化合物は、分子の長さが5Å以上であり、立体障害効果により、銀粒子の分散安定性の効果を持たせる機能を有する。ここでの分子の長さとは、水素原子を含まない最も距離の長い2原子の距離であり、計算条件は、密度汎関数法、関数 ωB97X-D、基底関数 6-31+G*、環境 真空中 エネルギー状態 基底状態、で、Spartan’‘16V1,1,0など各種の分子計算ソフトウェアで計算できる。
[3. Amine compound (d) having a dispersion stabilizing effect due to steric hindrance]
In the present invention, an amine compound other than the component (b) can be present when the complex of (a) and (b) is formed. This compound has a molecular length of 5 mm or more, and has a function of giving an effect of dispersion stability of silver particles by a steric hindrance effect. The length of the molecule here is the distance of the longest two atoms that do not contain hydrogen atoms, and the calculation conditions are density functional method, function ωB97X-D, basis function 6-31 + G *, environment vacuum energy State In the ground state, it can be calculated by various molecular calculation software such as Spartan''16V1,1,0.
 分子の長さは好ましくは7Å以上である。もっとも、あまり長いと沸点が高くなり、除去することが難しくなるので、好ましくは、8Å以下である。 The length of the molecule is preferably 7 cm or more. However, if it is too long, the boiling point becomes high and it is difficult to remove, so it is preferably 8 mm or less.
 特に、アミノ基を含めて7原子以上で構成された主鎖(主骨格)を持つアミン化合物が好ましい。
 中でも、アミン化合物を構成する原子が、N、C及びHであるもの、又はN、C、H及びOであるものが好ましい。アミン化合物のアミノ基に結合する炭化水素基の数は限定されないが、1つまたは2つである1級アミン又は2級アミンが特に銀と配位結合しやすいので好ましい。
 このような(d)成分としては、例えば炭素総数4以上の脂肪族炭化水素モノアミンが挙げられる。
In particular, an amine compound having a main chain (main skeleton) composed of 7 or more atoms including an amino group is preferable.
Among them, those in which the atoms constituting the amine compound are N, C and H, or those in which N, C, H and O are preferable are preferable. The number of hydrocarbon groups bonded to the amino group of the amine compound is not limited. However, one or two primary amines or secondary amines are particularly preferable because they easily coordinate with silver.
Examples of such component (d) include aliphatic hydrocarbon monoamines having 4 or more carbon atoms.
 炭素数4以上の脂肪族炭化水素モノアミンは、従来技術で説明した銀化合物と錯体を形成して銀ナノ粒子を形成する方法で多く用いられているものである。しかし、炭素数4以上の脂肪族炭化水素モノアミンは、刺激臭が強く、分解反応時に炭酸ガスと共に高温で排出されるリスクがあるので、他のアミン化合物を用いても良い。具体的には、炭素数4以上の、酸素原子を含むアミン化合物(アルコキシアミン、アルキルエーテルアミン、アミノアルコール)である。本発明においては、(b)成分として前述した特定のアミノアルコールを用い、(d)成分として酸素原子を含むアミン化合物であって前述の(b)成分以外のものを用いることで、錯体化反応時、分解反応時に刺激臭の強い脂肪族炭化水素アミン化合物を全く用いることなく、低温焼結性に優れ、厚膜導電焼結体を形成しやすい銀ナノ粒子を製造することができる。 Aliphatic hydrocarbon monoamines having 4 or more carbon atoms are often used in the method of forming silver nanoparticles by forming a complex with a silver compound described in the prior art. However, since aliphatic hydrocarbon monoamines having 4 or more carbon atoms have a strong irritating odor and are at risk of being discharged at a high temperature together with carbon dioxide during the decomposition reaction, other amine compounds may be used. Specifically, it is an amine compound (alkoxyamine, alkyl ether amine, amino alcohol) having 4 or more carbon atoms and containing an oxygen atom. In the present invention, the above-mentioned specific amino alcohol is used as the component (b), and an amine compound containing an oxygen atom as the component (d) is used except for the component (b). At this time, it is possible to produce silver nanoparticles that are excellent in low-temperature sinterability and easily form a thick film conductive sintered body without using any aliphatic hydrocarbon amine compound having a strong irritating odor during the decomposition reaction.
 以上の(d)成分の具体例として、アルキルアミンとしては、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、2-エチルヘキシルアミン等が挙げられる。アルコキシアミンとしては、3-メトキシプロピルアミン、3-エトキシプロピルアミン等が挙げられる。アルキルエーテルアミンとしては、HUNTSMAN製JEFFAMINEのMシリーズ、M-600、M-1000、M-2005、M-2070等が挙げられる。アミノアルコールとしては、4-アミノ-1-ブタノール、5-アミノ-1-ペンタノール、6-アミノ-1-ヘキサノール等が挙げられる。その他、ジグリコールアミン等が挙げられる。
 より好適な具体例としては、アルキルアミンとしては、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、2-エチルヘキシルアミン等が挙げられる。アルコキシアミンとしては、3-メトキシプロピルアミン、3-エトキシプロピルアミン等が挙げられる。アミノアルコールとしては、5-アミノ-1-ペンタノール、6-アミノ-1-ヘキサノール等が挙げられる。アミノエトキシとしては、ジグリコールアミン等が挙げられる。さらに好ましくは、n-ヘキシルアミン、3-エトキシプロピルアミンである。
 以上の(d)成分は、1種類もしくは2種類以上併用しても可能である。
Specific examples of the above component (d) include n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-ethylhexylamine and the like. Examples of the alkoxyamine include 3-methoxypropylamine and 3-ethoxypropylamine. Examples of the alkyl ether amine include JEFFAMINE M series, M-600, M-1000, M-2005, and M-2070 manufactured by HUNTSMAN. Examples of amino alcohols include 4-amino-1-butanol, 5-amino-1-pentanol, and 6-amino-1-hexanol. Other examples include diglycolamine.
More preferable specific examples of the alkylamine include n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-ethylhexylamine and the like. Examples of the alkoxyamine include 3-methoxypropylamine and 3-ethoxypropylamine. Examples of amino alcohols include 5-amino-1-pentanol and 6-amino-1-hexanol. Examples of aminoethoxy include diglycolamine. More preferred are n-hexylamine and 3-ethoxypropylamine.
The above component (d) can be used alone or in combination of two or more.
(3-1.アミン化合物内でのモル比率 (b)/[(b)+(d)])
 (b)/[(b)+(d)]は、好ましくは0.3~0.8(モル比)、好ましくは0.4~0.8である。この範囲は、大粒子で高分布を持つ銀ナノ粒子を製造するのに、最も適している。前記モル比率が、0.3よりも小さくなると、分子の長さが長いアミン化合物の添加量が多くなり、粒子が全体に小さくなり、粒度分布も狭くなる傾向があり好ましくない。また、前記モル比率が0.8より大きくなると、保護剤としての立体障害効果が弱くなり、合成時に銀粒子の融着が起こるリスクが高くなり、好ましくない。
(3-1. Molar ratio in amine compound (b) / [(b) + (d)])
(B) / [(b) + (d)] is preferably 0.3 to 0.8 (molar ratio), preferably 0.4 to 0.8. This range is most suitable for producing silver nanoparticles with large particles and high distribution. When the molar ratio is smaller than 0.3, the amount of the amine compound having a long molecular length is increased, the particle becomes small as a whole, and the particle size distribution tends to be narrow, which is not preferable. On the other hand, when the molar ratio is larger than 0.8, the steric hindrance effect as a protective agent is weakened, and the risk of fusion of silver particles during synthesis is increased, which is not preferable.
(3-2.アミン化合物(b)(d)と銀化合物(a)の比率・添加量について)
 銀化合物の銀原子とアミン化合物(b)+(d)との混合量について、そのモル比(アミン化合物/銀化合物の銀原子)が、0.7~2.0 となるようにしてアミン化合物(b)+(d)の量を調整するのが好ましい。より好ましくは0.7~1.5、さらに好ましくは0.7~1.3もっとも好ましくは0.7~1.3である。そうすることにより、粒径にばらつきが生まれ、目的の粒径範囲の銀粒子を得ることが容易である。
(3-2. Ratio and addition amount of amine compound (b) (d) and silver compound (a))
Regarding the mixing amount of the silver atom of the silver compound and the amine compound (b) + (d), the molar ratio (amine compound / silver atom of the silver compound) should be 0.7 to 2.0. It is preferable to adjust the amount of (b) + (d). More preferably, it is 0.7 to 1.5, still more preferably 0.7 to 1.3, and most preferably 0.7 to 1.3. By doing so, the particle size varies, and it is easy to obtain silver particles having a target particle size range.
 前述した従来の各種の合成方法(特許文献1~9)においては、アミン化合物/銀化合物の銀原子のモル比が2.0以上用いられている。これに対して本発明では、より少ないアミン量でも銀粒子を得ることができるので、アミン排出量も少なくて済む。したがって、アミンの系外放出による人体や環境負荷のリスクを軽減できる。また同時に、このような従来の方法では、粒子径も小さく、分布の狭い粒子が合成されやすくなってしまうのに対し、本発明においては、分布が広く大粒径の銀粒子を得ることができ、最終的に低温焼結性に優れ、低抵抗な厚膜導電焼結体が得ることができるのである。 In the above-described various conventional synthesis methods (Patent Documents 1 to 9), the molar ratio of amine atom / silver compound silver atom is 2.0 or more. On the other hand, in the present invention, silver particles can be obtained with a smaller amount of amine, so that the amount of amine discharged can be reduced. Therefore, the risk of the human body and environmental burden due to the release of amines outside the system can be reduced. At the same time, in the conventional method, particles having a small particle size and a narrow distribution are easily synthesized, whereas in the present invention, silver particles having a wide distribution and a large particle size can be obtained. Finally, it is possible to obtain a thick film conductive sintered body that is excellent in low-temperature sinterability and has low resistance.
〔4.有機溶媒(c)の説明〕
 本発明は、以上説明した銀化合物とアミン化合物の錯体形成反応を、有機溶媒の存在下で行う。
 本発明では、極性の官能基を持っている溶媒が好ましく、具体的には、アルコール系溶媒、ケトン系溶媒、アルデヒド系溶媒、アミド系溶媒、エステル系溶媒、ニトリル系溶媒、エーテル系溶媒、グリコール系溶媒、グリコールエーテル系溶媒、グリコールエステル系溶媒、グライム系溶媒が好ましい。特にアルコール系溶媒が好ましく、中でも炭素数3~12のアルコールが好ましい。例えば、n-プロパノール(沸点bp:97℃)、イソプロパノール(bp:82℃)、n-ブタノール(bp:117℃)、イソブタノール(bp:107.89℃)、sec-ブタノール(bp:99.5℃)、tert-ブタノール(bp:82.45℃)、n-ペンタノール(bp:136℃)、n-ヘキサノール(bp:156℃)、n-オクタノール(bp:194℃)、2-オクタノール(bp:174℃)、n-ノナノール(bp:215℃)、5-ノナノール(bp:195℃)、n-デカノール(bp:232.9℃)、n-ウンデカノール(bp:243℃)、2-ウンデカノール(bp:131℃)、n-ドデカノール(bp:259℃)、2-ドデカノール(bp:250℃)等が挙げられる。
 また、グライム系溶媒の使用も好ましく、例えば、モノグライム(bp:85℃)、エチルグライム(bp:121℃)、ジグライム(bp:162℃)、ジプロピレングリコールジメチルエーテル(bp:171℃)、エチルジグライム(bp:188℃)、トリグライム(bp:216℃)、ブチルジグライム(bp:256℃)、テトラグライム(bp:275℃)等が挙げられる。中でも沸点が150℃以上のものが扱いやすい。
 これらの中でも、後に行われる錯化合物の熱分解工程の温度を高くできること、銀ナノ粒子の形成後の後処理での利便性を考慮して、n-ブタノール、n-ヘキサノール、n-デカノール、ジグライムが好ましい。これら単独で用いても良いし、2種類以上混同して用いてもよい。
[4. Description of organic solvent (c)]
In the present invention, the above-described complex formation reaction between the silver compound and the amine compound is performed in the presence of an organic solvent.
In the present invention, a solvent having a polar functional group is preferable. Specifically, alcohol solvents, ketone solvents, aldehyde solvents, amide solvents, ester solvents, nitrile solvents, ether solvents, glycols A solvent, a glycol ether solvent, a glycol ester solvent, and a glyme solvent are preferred. In particular, alcohol solvents are preferable, and alcohols having 3 to 12 carbon atoms are particularly preferable. For example, n-propanol (boiling point bp: 97 ° C.), isopropanol (bp: 82 ° C.), n-butanol (bp: 117 ° C.), isobutanol (bp: 107.89 ° C.), sec-butanol (bp: 99. 5 ° C), tert-butanol (bp: 82.45 ° C), n-pentanol (bp: 136 ° C), n-hexanol (bp: 156 ° C), n-octanol (bp: 194 ° C), 2-octanol (Bp: 174 ° C.), n-nonanol (bp: 215 ° C.), 5-nonanol (bp: 195 ° C.), n-decanol (bp: 232.9 ° C.), n-undecanol (bp: 243 ° C.), 2 -Undecanol (bp: 131 ° C), n-dodecanol (bp: 259 ° C), 2-dodecanol (bp: 250 ° C) and the like.
The use of a glyme-based solvent is also preferable. For example, monoglyme (bp: 85 ° C.), ethyl glyme (bp: 121 ° C.), diglyme (bp: 162 ° C.), dipropylene glycol dimethyl ether (bp: 171 ° C.), ethyl dig Examples include lime (bp: 188 ° C), triglyme (bp: 216 ° C), butyl diglyme (bp: 256 ° C), and tetraglyme (bp: 275 ° C). Among them, those having a boiling point of 150 ° C. or more are easy to handle.
Among these, n-butanol, n-hexanol, n-decanol, diglyme are considered in consideration of the fact that the temperature of the thermal decomposition step of the complex compound to be performed later can be increased and the convenience in the post-treatment after the formation of the silver nanoparticles. Is preferred. These may be used alone or in combination of two or more.
(4-1.有機溶媒の添加量について)
 また、有機溶媒は、各成分の十分な撹拌操作のため、前記銀化合物(a)100重量部に対し、80~130重量部(すなわち(c)/(a)の重量比が0.8~1.3となる量)の有機溶媒を混合したものが好ましい。さらに好ましくは80~125重量部である。
(4-1. Addition amount of organic solvent)
In addition, the organic solvent has a weight ratio of 80 to 130 parts by weight (that is, a weight ratio of (c) / (a) of 0.8 to 100 parts by weight with respect to 100 parts by weight of the silver compound (a) for sufficient stirring operation of each component. What mixed the organic solvent of the quantity which becomes 1.3 is preferable. More preferably, it is 80 to 125 parts by weight.
(4-2.有機溶媒の添加方法について)
 本発明において、アミン化合物(b)または(d)と銀化合物(a)とを銀化合物とアミン化合物の錯体形成反応を、有機溶媒の存在下で行うには、いくつかの形態をとり得る。
 例えば、固体の銀化合物と有機溶媒特にアルコール溶媒とを混合して、銀化合物―アルコールスラリーを得て、次に得られた銀化合物-アルコールスラリーに、アミン化合物(b)または(d)を添加してもよい。本発明においてスラリーとは、固体の銀化合物が有機溶媒または有機溶媒とアミン化合物との混液中に分散されている混合物を表している。
 スラリーを得るには、反応容器に、固体の銀化合物を仕込み、それに有機溶媒または有機溶媒とアミン化合物との混液を添加しスラリーを得ると良い。
(4-2. Method for adding organic solvent)
In the present invention, the amine compound (b) or (d) and the silver compound (a) can take several forms in order to carry out the complex formation reaction between the silver compound and the amine compound in the presence of an organic solvent.
For example, a solid silver compound and an organic solvent, particularly an alcohol solvent, are mixed to obtain a silver compound-alcohol slurry, and then the amine compound (b) or (d) is added to the obtained silver compound-alcohol slurry. May be. In the present invention, the slurry represents a mixture in which a solid silver compound is dispersed in an organic solvent or a mixture of an organic solvent and an amine compound.
In order to obtain a slurry, a solid silver compound is charged into a reaction vessel, and an organic solvent or a mixed solution of an organic solvent and an amine compound is added thereto to obtain a slurry.
 あるいは、有機溶媒とアミン化合物との混液を反応容器に仕込み、それに銀化合物を添加しても良い。
 尚、シュウ酸銀については、乾燥状態において爆発性があることが報告されている。したがって、銀化合物としてシュウ酸銀を用いる場合には、湿潤状態にしたものを利用するのが好ましい。湿潤状態にすることで爆発性が著しく低下し、取扱い性が容易になるためである。そこで、水又は前述した有機溶媒を混合して湿潤状態にして用いればよい。
Alternatively, a mixed solution of an organic solvent and an amine compound may be charged into a reaction vessel, and a silver compound may be added thereto.
Note that silver oxalate has been reported to be explosive in the dry state. Therefore, when silver oxalate is used as the silver compound, it is preferable to use a wet state. This is because the explosiveness is remarkably lowered and handling is facilitated by making it wet. Therefore, water or the organic solvent described above may be mixed and used in a wet state.
〔5.脂肪族カルボン酸について〕
 また、粒子径、粒度分布の調整のために、錯形成時に脂肪族カルボン酸を用いてもよい。脂肪族カルボン酸を添加することで、粒子径は小さく、粒度分布は狭くなる傾向にある。水分量と適宜調整し、利用することが望ましい。前記脂肪族カルボン酸は前記アミン類と共に用いるとよく、銀化合物とアミンを混合させる際に添加して用いることもできる。前記脂肪族カルボン酸としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;  オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
[5. About aliphatic carboxylic acid)
Moreover, you may use aliphatic carboxylic acid at the time of complex formation for adjustment of a particle diameter and a particle size distribution. By adding an aliphatic carboxylic acid, the particle size tends to be small and the particle size distribution tends to be narrow. It is desirable to adjust the water content appropriately and use it. The aliphatic carboxylic acid is preferably used together with the amines, and can be added and used when the silver compound and the amine are mixed. As the aliphatic carboxylic acid, a saturated or unsaturated aliphatic carboxylic acid is used. For example, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, Examples thereof include saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid; unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, and palmitoleic acid.
 これらの内でも、炭素数8~18の飽和又は不飽和の脂肪族モノカルボンが好ましい。炭素数8以上とすることにより、カルボン酸基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和の脂肪族モノカルボン酸化合物が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Of these, saturated or unsaturated aliphatic monocarboxylic acids having 8 to 18 carbon atoms are preferable. By setting the number of carbon atoms to 8 or more, when the carboxylic acid group is adsorbed on the surface of the silver particle, a space between the silver particle and other silver particles can be secured. In view of availability, easiness of removal during firing, etc., saturated or unsaturated aliphatic monocarboxylic acid compounds having up to 18 carbon atoms are usually preferred. In particular, octanoic acid, oleic acid and the like are preferably used. Among the aliphatic carboxylic acids, only one type may be used, or two or more types may be used in combination.
(5-2.脂肪族カルボン酸の添加量について)
 前記脂肪族カルボン酸は、用いる場合には、原料の前記銀化合物の銀原子1モルに対して、例えば0.05~10モル程度用いるとよく、好ましくは0.1~5モル、より好ましくは0.5~2モル用いるとよい。前記脂肪族カルボン酸の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記脂肪族カルボン酸の添加による粒子径制御の効果が弱い。一方、前記脂肪族カルボン酸の量が10モルに達すると、粒子径が小さく揃いすぎる可能性もあるし、洗浄もしくは、表面保護剤置換工程においても、残存する可能性があるので、低温焼成での該脂肪族カルボン酸の除去がされにくくなる。ただし、脂肪族カルボン酸を用いなくてもよい。
(5-2. Addition amount of aliphatic carboxylic acid)
When used, the aliphatic carboxylic acid may be used in an amount of, for example, about 0.05 to 10 moles, preferably 0.1 to 5 moles, more preferably, with respect to 1 mole of silver atoms in the starting silver compound. 0.5 to 2 moles may be used. When the amount of the aliphatic carboxylic acid is less than 0.05 mol with respect to 1 mol of the silver atom, the effect of controlling the particle diameter by adding the aliphatic carboxylic acid is weak. On the other hand, when the amount of the aliphatic carboxylic acid reaches 10 moles, there is a possibility that the particle diameter is too small and uniform, and there is a possibility that it will remain in the washing or surface protection agent replacement step. It is difficult to remove the aliphatic carboxylic acid. However, it is not necessary to use an aliphatic carboxylic acid.
〔6.水・水分量の説明〕
 反応系の水分含有量は、銀化合物に対して20wt%以下の範囲内とするのが好適である。特に好ましくは15wt%以下である。水分含有量については、錯形成に使用するアミン化合物の種類にもよるが、水分含有量が少ないと、得られる銀粒子の粒度分布が揃い、焼結体の空隙が生まれ、本発明で期待される効果が発現しにくいことがある。一方、銀化合物に対して20wt%以上の水分含有量の場合、銀粒子が粗大になりすぎ、粒子が焼結・合一する部分が生まれ、好ましくない。使用する水に関しては、金属イオン不純物を低減したイオン交換水が好ましい。水を添加するタイミングについては、加熱工程の前であればよく、銀-アミン錯体の形成前、あるいは錯体形成後の、いずれの段階で添加してもよい。
 また、前述した有機溶媒(c)と水との比率は、水/有機溶媒の重量比が0.03~0.3が好ましい。より好ましくは0.1~0.25である。この範囲で特に、後述する本発明の粒子径及び粒度分布を有する銀ナノ粒子を得るのが容易である。
[6. (Description of water and water content)
The water content of the reaction system is preferably within a range of 20 wt% or less with respect to the silver compound. Especially preferably, it is 15 wt% or less. Although the water content depends on the type of amine compound used for complex formation, if the water content is low, the particle size distribution of the resulting silver particles is uniform, and voids in the sintered body are produced, which is expected in the present invention. Effect may be difficult to express. On the other hand, when the water content is 20 wt% or more based on the silver compound, the silver particles become too coarse, and a portion where the particles are sintered and united is produced, which is not preferable. Regarding the water to be used, ion-exchanged water with reduced metal ion impurities is preferable. The timing of adding water may be before the heating step, and may be added at any stage before the formation of the silver-amine complex or after the formation of the complex.
The weight ratio of the organic solvent (c) to water is preferably 0.03 to 0.3 as the weight ratio of water / organic solvent. More preferably, it is 0.1 to 0.25. In this range, it is particularly easy to obtain silver nanoparticles having the particle diameter and particle size distribution of the present invention described later.
(6-1.水添加することにおける高分布銀粒子生成のメカニズムについて)
 後述する熱分解による銀粒子形成の反応中、水を存在させることにより、形成される銀ナノ粒子の粒径に特にバラつきが生じ、特に高分布な銀粒子が得られる。このメカニズムについては、不明な部分もあるが、水が銀化合物、特にシュウ酸銀に近づき、銀アミン錯体形成または、加熱分解する際に、アミン化合物が銀原子へ吸着するのを阻害し、阻害された部分が粒子成長すると考えられる。さらに、この水分子のシュウ酸銀への吸着量も偏りがある(局在化している)ことから、粒径に適度なバラつきが生じさせるのが容易になると考える。逆に、銀化合物に対して20wt%よりも多い量の水を添加すると、銀粒子自体が肥大化し、隣の粒子とも焼結・合一を起こしやすい。これは、水がアミンの銀原子の吸着を阻害の程度が大きくなり銀粒子が肥大化しやすいためと推測される。
(6-1. Mechanism of formation of highly distributed silver particles by adding water)
The presence of water during the reaction of silver particle formation by thermal decomposition described later causes a particular variation in the particle size of the formed silver nanoparticles, and particularly highly distributed silver particles are obtained. Although there is an unknown part about this mechanism, when water approaches silver compounds, especially silver oxalate, silver amine complex formation or thermal decomposition inhibits amine compounds from adsorbing to silver atoms. It is thought that the part that has been made grows grains. Furthermore, since the amount of water molecules adsorbed on silver oxalate is also biased (localized), it is considered that it is easy to cause an appropriate variation in particle size. On the contrary, when an amount of water larger than 20 wt% is added to the silver compound, the silver particles themselves are enlarged, and the adjacent particles are likely to sinter and coalesce. This is presumably because the degree of inhibition of the adsorption of silver atoms of amine is increased, and the silver particles are likely to be enlarged.
<銀ナノ粒子の製造方法>
〔7.液体原料の混合〕
 本発明において、通常は、前記極性溶媒(c)の中に、前記錯体形成するアミン化合物(b)と前記保護剤として働くアミン化合物(d)を入れ、混合する。必要に応じて、脂肪族カルボン酸、水を添加・混合し、反応に必要な液体原料を調整することができる。液体原料で、常温で固体の物質があった場合は、適宜加熱を行い混合する事もできる。加熱する温度としては、100℃以下、好ましくは、80℃以下、さらに好ましくは、60℃以下で加熱し、液状化する液体原料の構成が望ましい。前記温度域よりも高い温度だと、銀化合物と混ぜてスラリー化する場合に、先に一部錯体化・シュウ酸分解反応が始まってしまい、系内の均一性が確保されないまま銀ナノ粒子が生成されてしまう可能性がある。
<Method for producing silver nanoparticles>
[7. (Mixing of liquid ingredients)
In the present invention, usually, the amine compound (b) that forms the complex and the amine compound (d) that functions as the protective agent are mixed in the polar solvent (c). If necessary, an aliphatic carboxylic acid and water can be added and mixed to prepare a liquid raw material necessary for the reaction. If there is a solid material at room temperature that is a liquid raw material, it can be appropriately heated and mixed. The heating temperature is preferably 100 ° C. or lower, preferably 80 ° C. or lower, and more preferably 60 ° C. or lower. When the temperature is higher than the above temperature range, when mixed with a silver compound and slurried, the complexation and oxalic acid decomposition reaction will start first, and the silver nanoparticles will not be secured without ensuring uniformity in the system. May be generated.
〔8.銀化合物含有組成物(銀化合物スラリー)の作製〕
 前記銀化合物(a)と前記液体原料を混合し、本発明の銀化合物含有組成物を得ることができる。または、先に極性溶媒と前記銀化合物(a)のみを混合し、前記アミン化合物を後で添加してもよい。このようにして得られる本発明の銀化合物含有組成物を用いて本発明の製造方法を実施することができる。本発明の銀化合物含有組成物は通常、スラリーの状態で調製される。
 銀化合物と、所定量のアミン混合液、または、必要に応じて脂肪族カルボン酸、水を混合する。この際の混合は、室温で撹拌しながら、あるいは銀化合物へのアミン類との配位反応(錯体化反応)は発熱を伴うため室温以下に適宜冷却して撹拌しながら行うとよい。銀化合物とアミン化合物等との混合液は、極性溶媒存在下にて行われるので、撹拌及び冷却は良好に行うことができる。極性溶媒とアミン化合物の過剰分が反応媒体の役割を果たす。
[8. Preparation of silver compound-containing composition (silver compound slurry)]
The silver compound-containing composition of the present invention can be obtained by mixing the silver compound (a) and the liquid raw material. Or only a polar solvent and the said silver compound (a) may be mixed previously, and the said amine compound may be added later. Thus, the manufacturing method of this invention can be implemented using the silver compound containing composition of this invention obtained. The silver compound-containing composition of the present invention is usually prepared in a slurry state.
A silver compound, a predetermined amount of an amine mixed solution, or an aliphatic carboxylic acid and water as necessary are mixed. The mixing at this time is preferably carried out while stirring at room temperature, or while appropriately cooling to room temperature or lower and stirring because the coordination reaction (complexing reaction) with amines to the silver compound involves heat generation. Since the mixed liquid of a silver compound and an amine compound is performed in the presence of a polar solvent, stirring and cooling can be performed satisfactorily. The excess of the polar solvent and the amine compound serves as a reaction medium.
 従来、銀アミン錯体の熱分解法においては、反応容器中に液体のアルキルアミン成分を先ず仕込み、その中に粉体の銀化合物(シュウ酸銀)が投入されていた。液体のアルキルアミン成分は引火性物質であり、その中への粉体の銀化合物の投入には危険があった。すなわち、粉体の銀化合物の投入による静電気による着火の危険性があった。また粉体の銀化合物の投入により、局所的に錯体形成反応が進行し、発熱反応が暴発してしまう危険もあった。本発明によれば、このような危険を回避できる。 Conventionally, in a thermal decomposition method of a silver amine complex, a liquid alkylamine component is first charged in a reaction vessel, and a powdered silver compound (silver oxalate) is charged therein. The liquid alkylamine component is a flammable substance, and there was a danger in putting the powdery silver compound therein. In other words, there was a risk of ignition due to static electricity due to the introduction of the silver compound of the powder. In addition, there is a risk that the complex formation reaction locally progresses due to the introduction of the silver compound of the powder, and the exothermic reaction is expelled. According to the present invention, such danger can be avoided.
 それと、揮発性の高いアルキルアミンの臭気は作業環境への悪影響が大きい、本発明においては、銀ナノ粒子合成時に使用する揮発性の高いアルキルアミンの量を軽減、または無くすことができるので、原料を仕込む際に臭気や作業者への暴露を軽減できる。 In addition, the odor of the highly volatile alkylamine has a great adverse effect on the working environment. In the present invention, the amount of the highly volatile alkylamine used during the synthesis of the silver nanoparticles can be reduced or eliminated. Odor and exposure to workers can be reduced when charging.
〔9.銀アミン錯体について〕
 生成する錯化合物が一般にその構成成分に応じた色を呈するので、反応混合物の色の変化から、錯化合物の生成反応の進行を検知することができる。また、色の変化で確認がとりにくい場合、反応混合物の粘性の変化や、温度の変化などで生成状態を検知することができる。このようにして、極性溶媒及びアミン化合物を主体とする媒体中に銀アミン錯体が得られる。
[9. (Silver amine complex)
Since the complex compound to be formed generally exhibits a color corresponding to its constituent components, the progress of the complex compound formation reaction can be detected from the change in the color of the reaction mixture. In addition, when it is difficult to confirm due to a change in color, the generation state can be detected by a change in viscosity of the reaction mixture or a change in temperature. Thus, a silver amine complex is obtained in a medium mainly composed of a polar solvent and an amine compound.
〔10.錯体化から分解反応までの昇温速度条件の説明〕
 反応系の加熱工程において、加熱速度は析出する銀粒子の粒径に影響を及ぼすことから、加熱工程の加熱速度の調整により銀粒子の粒径をコントロールすることができる。ここで、加熱工程の速度は、設定した分解温度まで、3.0~50℃/minの範囲で調整することが望ましい。昇温時間が遅い方が、粒子成長が起こりやすく大粒子径が形成されやすいが、3.0℃/minよりも遅い昇温速度であると、粒子成長が促進されやすく、隣の粒子とも同一してしまい、好ましくない。
[10. (Explanation of temperature increase rate conditions from complexation to decomposition reaction)
In the heating step of the reaction system, the heating rate affects the particle size of the precipitated silver particles, and therefore the particle size of the silver particles can be controlled by adjusting the heating rate of the heating step. Here, it is desirable to adjust the speed of the heating step in the range of 3.0 to 50 ° C./min up to the set decomposition temperature. If the temperature rise time is slower, particle growth is more likely to occur and a large particle size is likely to be formed. However, if the temperature rise rate is slower than 3.0 ° C./min, particle growth is likely to be promoted and the same as the adjacent particles. This is not preferable.
〔11.銀粒子の洗浄工程について〕
 銀化合物の熱分解により、得られた粒子の粒子径により、色が異なるが、黒褐色からグレーまでの色に呈する懸濁液となる。この懸濁液から極性溶媒や過剰のアミン化合物等の除去操作、例えば、銀ナノ粒子の沈降、適切な溶媒(水または、有機溶媒)によるデカンテーション・洗浄操作を行うことによって、目的とする保護剤としてアミン化合物が結合した銀ナノ粒子が得られる。
[11. About washing process of silver particles)
The thermal decomposition of the silver compound results in a suspension exhibiting a color from black-brown to gray, although the color varies depending on the particle size of the obtained particles. From this suspension, removal of polar solvent, excess amine compounds, etc., for example, precipitation of silver nanoparticles, decantation / washing with an appropriate solvent (water or organic solvent), and the desired protection. Silver nanoparticles to which an amine compound is bonded as an agent are obtained.
〔12.洗浄溶媒の説明〕
 この銀粒子の洗浄は、溶媒としてメタノール、エタノール、プロパノール等の沸点が150℃以下のアルコールを適応するのが好ましい。そして、洗浄の詳細な方法としては、銀粒子合成後の溶液に溶媒を加え、懸濁するまで撹拌した後、デカンテーションで上澄み液を除去することが好ましい。アミンの除去量は、加える溶媒の体積と洗浄回数で制御可能である。上述の一連の作業を線回数1回とする場合、好ましくは、銀粒子合成後の溶液に対して1/20~3倍の体積の溶媒を使用し、1~5回洗浄する。
[12. Explanation of cleaning solvent
The silver particles are preferably washed with an alcohol having a boiling point of 150 ° C. or lower such as methanol, ethanol, propanol or the like as a solvent. And as a detailed method of washing | cleaning, after adding a solvent to the solution after silver particle synthesis | combination and stirring until it suspends, it is preferable to remove a supernatant liquid by decantation. The amount of amine removed can be controlled by the volume of solvent added and the number of washings. When the above-described series of operations is performed once, the solvent is preferably used in a volume of 1/20 to 3 times that of the solution after silver particle synthesis, and washed 1 to 5 times.
〔13.保護剤置換工程〕
 さらに、上記の銀ナノ粒子に対して、必要に応じて炭素数4以上のアミン化合物(酸素原子を含むものも可)に表面保護剤を置換させる工程により、用途に合ったアミン化合物へ置換してもよい。最終的に置換するアミン化合物は、銀ナノ粒子を製造する際に用いたものでもよいし、用いていないものを新たに使用してもよい。
[13. (Protective agent replacement step)
Furthermore, the above silver nanoparticles may be substituted with an amine compound suitable for the application by replacing the surface protective agent with an amine compound having 4 or more carbon atoms (including those containing oxygen atoms) as necessary. May be. The amine compound finally substituted may be the one used when silver nanoparticles are produced, or a new one not used may be used.
 特に、炭素数4~8のアルキルアミンまたは、酸素原子を含むアミン化合物(アルコキシアミン、アルキルエーテルアミン、アミノアルコール)である。その中でも、分子の長さが5~8Åであるものが好ましく、さらに好ましいのは、分子の長さが7~8Åのものである。アルキルアミンと、酸素原子を含むアミン化合物は、1種類もしくは2種類以上併用しても可能であり、その組成によって、ペーストに加工した際の粘性の調整も可能となる。 Particularly, it is an alkylamine having 4 to 8 carbon atoms or an amine compound containing an oxygen atom (alkoxyamine, alkyl ether amine, amino alcohol). Among them, those having a molecular length of 5 to 8 mm are preferable, and those having a molecular length of 7 to 8 mm are more preferable. The alkylamine and the amine compound containing an oxygen atom can be used alone or in combination of two or more, and the viscosity can be adjusted when processed into a paste depending on the composition.
 洗浄後の銀粒子を最終的に置換したいアミン化合物の中で、一定時間撹拌・懸濁することで、銀粒子の表面保護剤が置換される。その際、含まれている純銀分に対して、最終的に置換したいアミン化合物を50~100wt%添加して、約1h常温下で撹拌・懸濁させる。表面保護剤置換工程の前後の違いについては、DTA測定での焼結由来ピークの違いや、ヘッドスペースGC/MS、熱分解GC/MSなどで、表面保護剤の確認は可能である。上述した表面保護剤の置換工程後、再度洗浄工程を経て、目的の銀粒子を得る。
 なお、(b)に該当する特定のアミノアルコール自体は洗浄工程でほとんど除去できるが、その他のアミンを使用してこれが残る場合は、必要に応じて適宜上記の置換工程を得ればよい。
〔14.生成された銀粒子の状態(保護剤、粒度分布)〕
The silver particle surface protective agent is replaced by stirring and suspending for a certain period of time in the amine compound to be finally replaced with silver particles after washing. At that time, 50-100 wt% of the amine compound to be finally substituted is added to the pure silver content, and the mixture is stirred and suspended at room temperature for about 1 h. Regarding the difference between before and after the surface protective agent replacement step, the surface protective agent can be confirmed by the difference in peak derived from sintering in DTA measurement, head space GC / MS, pyrolysis GC / MS, or the like. After the surface protective agent replacement step described above, the target silver particles are obtained through the washing step again.
In addition, although the specific amino alcohol itself corresponding to (b) can be almost removed by the washing step, when this remains using other amines, the above substitution step may be appropriately obtained as necessary.
[14. State of generated silver particles (protective agent, particle size distribution)
 このようにして、アミン化合物が結合している銀ナノ粒子が形成される。銀ナノ粒子とは、以下の方法で製造されうる、銀成分を主体として通常1~1000nmの粒径を有する微細な粒子をいう。
 銀ナノ粒子に結合し保護剤として機能する物質としては、例えば、前記の特定の炭素数4以下のアミノアルコール(b)、及び/又は分子の長さが5Å以上のアミン化合物(d)、さらに用いた場合は前記脂肪族カルボン酸を含んでいる。保護剤中におけるそれらの含有割合は、前記アミン混合液中のそれらの使用割合と同等である。また、洗浄工程、必要であれば保護剤置換行程によって、保護剤の種類や総量を調整することが可能である。最終的に保護剤として結合しているアミン化合物の分子の長さは、2~8Åが好ましく、さらに5~8Åがより好ましい。そして、7~8Åが最も好ましい。一方、保護剤の総量は純銀分に対して、0.3~2.0wt%であることが好ましい。さらに0.5~1.0wt%であればより好ましい。
In this way, silver nanoparticles to which an amine compound is bonded are formed. Silver nanoparticles are fine particles that can be produced by the following method and that have a silver component as a main component and usually have a particle size of 1 to 1000 nm.
Examples of the substance that binds to silver nanoparticles and functions as a protective agent include the specific amino alcohol (b) having 4 or less carbon atoms and / or the amine compound (d) having a molecular length of 5 mm or more, and When used, it contains the aliphatic carboxylic acid. Their content in the protective agent is equivalent to their use in the amine mixture. In addition, the type and total amount of the protective agent can be adjusted by the washing step and, if necessary, the protective agent replacement process. The molecular length of the amine compound finally bonded as a protective agent is preferably 2 to 8 mm, more preferably 5 to 8 mm. 7 to 8 mm is most preferable. On the other hand, the total amount of the protective agent is preferably 0.3 to 2.0 wt% with respect to the pure silver content. Further, 0.5 to 1.0 wt% is more preferable.
 本発明の銀ナノ粒子は、通常、粒子径が1000nm以下である。
 また、平均粒子径が70~350nmが好ましく、特に好ましくは70~300nm、さらに好ましくは80~200nmである。
 粒子径のばらつきを示す変動係数は好ましくは30~80%、特に好ましくは40~70%、さらに好ましくは50~60%である。
The silver nanoparticles of the present invention usually have a particle size of 1000 nm or less.
The average particle diameter is preferably 70 to 350 nm, particularly preferably 70 to 300 nm, and further preferably 80 to 200 nm.
The coefficient of variation indicating the variation in particle diameter is preferably 30 to 80%, particularly preferably 40 to 70%, and further preferably 50 to 60%.
 平均粒子径及び変動係数は、以下のようにして求める。得られた銀ナノ粒子をFE-SEMにて粒子形状の観察を行う。その後画像解析ソフトSCANDIUM(OLYMPUS製)を用いて、300個以上の粒子径の測長し、平均粒子径、標準偏差の値を解析により求める。これらの値を用いて、変動係数は以下の計算式に基づき計算する。
 変動係数(%)={標準偏差(nm)/平均粒子径(nm)}×100
 なお粒子径測定の機材は、上記の方法と同等の結果を得られるものであれば制限されない。
The average particle diameter and coefficient of variation are determined as follows. The obtained silver nanoparticles are observed for particle shape by FE-SEM. Thereafter, using an image analysis software SCANDIUM (manufactured by OLYMPUS), 300 or more particle sizes are measured, and the average particle size and standard deviation are obtained by analysis. Using these values, the coefficient of variation is calculated based on the following formula.
Coefficient of variation (%) = {standard deviation (nm) / average particle size (nm)} × 100
The equipment for measuring the particle size is not limited as long as the same result as the above method can be obtained.
 以上の平均粒子径と変動係数とを有することにより、銀塗料を塗布して得られる塗膜の膜厚を厚くすることができる。具体的には、10~30μmもの厚膜も得ることができる。さらに、厚いだけでなく、得られる膜の体積抵抗率も低くすることができる。具体的には、20μm以上の厚膜で、6~7μΩ・cm程度の小さな体積抵抗率のものを得ることもできる。これは、粒度分布が広く、小さい粒子が大きい粒子の間に最密充填に近く充填されることにより、銀粒子が高充填されて銀粒子の含有量の高い膜が得られているためであると推測される。
 平均粒子径が350nmを超えると、銀ナノ粒子の融点降下の現象が弱くなり、低温で焼結しづらくなるため、この場合も塗膜の体積抵抗率を低くすることができない。
 また、変動係数が30%未満だと、粒子が揃ってしまい、粒子間の空隙を埋めることができず、塗膜の体積抵抗率を低くすることができなくなる。他方、変動係数が80%を超えると、粒子のばらつきがあっても、粒子サイズが異なりすぎるため、この場合も粒子間の空隙を埋めることが難しくなり、この場合も塗膜の体積抵抗率を低くすることができない。
By having the above average particle diameter and coefficient of variation, the thickness of the coating film obtained by applying the silver paint can be increased. Specifically, a thick film having a thickness of 10 to 30 μm can be obtained. Furthermore, not only is it thick, but the volume resistivity of the resulting film can be lowered. Specifically, a thick film having a thickness of 20 μm or more and a small volume resistivity of about 6 to 7 μΩ · cm can be obtained. This is because the particle size distribution is wide, and small particles are packed close to the closest packing between large particles, so that a film with a high silver particle content is obtained because the silver particles are highly packed. It is guessed.
If the average particle diameter exceeds 350 nm, the phenomenon of melting point drop of silver nanoparticles becomes weak and it becomes difficult to sinter at a low temperature, so that the volume resistivity of the coating film cannot be lowered also in this case.
On the other hand, if the coefficient of variation is less than 30%, the particles are aligned, the voids between the particles cannot be filled, and the volume resistivity of the coating film cannot be lowered. On the other hand, if the coefficient of variation exceeds 80%, the particle size is too different even if there is a variation in particles, and in this case too, it becomes difficult to fill the voids between the particles. It cannot be lowered.
 以上の平均粒子径とばらつきとを有する本発明の銀粒子を用いれば、銀塗料組成物として好適な粘度に調整することができる。
 スクリーン印刷用インクの粘度においては、0.1~500Pa・sの範囲(ずり速度5 1/sec 時)が好ましい。高すぎると、流動性がなく印刷不良を起こしやすい、また低すぎると印刷したインクがダレて、線幅が広がってしまうためである。そこで、粘度を高くするには、通常、有機バインダーを添加することが多いが、有機バインダーは得られる塗膜の抵抗値を上げてしまう。これに対し、本発明の銀粒子は、有機バインダーの量が比較的少量でもスクリーン印刷に適した粘度にすることができる。すなわち、有機バインダーとして例えば「エトセル45」(商品名。日新化成(株)製)を純銀分に対し1wt%添加した状態でも比較的高粘度とすることができ、例えば粒度を平均粒子径約80nm、変動係数約35%に調整することにより、30~40Pa・s程度の粘度に調整できる。したがって有機バインダーの添加量が純銀分に対し1wt%以下でも上記のスクリーン印刷に適した粘度にすることができる。このように、粒度の調整で粘度をコントロールできるので、有機バインダーの添加量の自由度が上がり、少なくすることもできるため、非常に優れている。
If the silver particles of the present invention having the above average particle diameter and variation are used, the viscosity can be adjusted to be suitable as a silver coating composition.
The viscosity of the screen printing ink is preferably in the range of 0.1 to 500 Pa · s (when the shear rate is 5 1 / sec). This is because if it is too high, there is no fluidity and printing failure is liable to occur, and if it is too low, the printed ink will sag and the line width will increase. Thus, in order to increase the viscosity, an organic binder is usually added, but the organic binder increases the resistance value of the resulting coating film. In contrast, the silver particles of the present invention can have a viscosity suitable for screen printing even when the amount of the organic binder is relatively small. That is, for example, “Etocel 45” (trade name, manufactured by Nisshin Kasei Co., Ltd.) as an organic binder can be made to have a relatively high viscosity even in a state where 1 wt% is added to the pure silver content. By adjusting to 80 nm and a coefficient of variation of about 35%, the viscosity can be adjusted to about 30 to 40 Pa · s. Therefore, even if the addition amount of the organic binder is 1 wt% or less with respect to the pure silver content, the viscosity suitable for the screen printing can be obtained. As described above, since the viscosity can be controlled by adjusting the particle size, the degree of freedom in the amount of the organic binder added is increased, and the amount can be reduced.
 本発明の製造方法は、前述したように、使用するアミン種、有機溶媒種、水の添加量等で、粒子径コントロールが可能である。したがって、200~500nmの大粒子径領域の銀粒子と50~200nmの小粒子径領域の銀粒子を1バッチで合成することもできるなど、工業生産にも適している。
 こうして得られる本発明の銀粒子は、200nm以上の大粒子径領域の銀粒子が存在しているため、銀ナノ粒子の余剰保護剤の洗浄・保護剤置換処理・ペースト化などの工程途中においても凝集(焼結)しにくく、本来の銀粒子の特性を損ねることなく、銀ナノ粒子分散体・銀塗料組成物を製造しやすいと期待できる。このことは、スケールアップを考慮した際も有効である。
As described above, in the production method of the present invention, the particle size can be controlled by the type of amine used, the type of organic solvent, the amount of water added, and the like. Accordingly, silver particles having a large particle size of 200 to 500 nm and silver particles having a small particle size of 50 to 200 nm can be synthesized in one batch, which is suitable for industrial production.
Since the silver particles of the present invention thus obtained have silver particles in a large particle size region of 200 nm or more, even during the process of cleaning the excess protective agent of silver nanoparticles, protective agent replacement treatment, pasting, etc. It is difficult to agglomerate (sinter), and it can be expected that a silver nanoparticle dispersion / silver coating composition can be easily produced without impairing the characteristics of the original silver particles. This is also effective when considering scale-up.
<用途>
〔15.銀分散液・ペースト(塗料組成物)の製造方法〕
 上記に記載の方法で得られた銀ナノ粒子を用いて、銀ナノ粒子分散隊を作製することができる。ここで、銀ナノ粒子分散体とは、少なくとも銀ナノ粒子及び分散媒を含有する組成物をいう。このような銀ナノ粒子分散隊は、制限されることなく、種々の形態をとり得る。銀ナノ粒子を適切な有機溶媒(分散媒体)中に懸濁状態で分散させることにより、本発明の銀ナノ粒子分散体を得ることができる。さらに、銀ナノ粒子及び分散媒のほか、いわゆるバインダー成分を含有させた銀塗料組成物を作製することができる。本発明により、7095重量%、さらに好ましくは75~80重量%の銀ナノ粒子を含有させた銀塗料組成物を作製することもできる。
<Application>
[15. Method for producing silver dispersion / paste (coating composition)]
A silver nanoparticle dispersion corps can be produced using the silver nanoparticles obtained by the method described above. Here, the silver nanoparticle dispersion refers to a composition containing at least silver nanoparticles and a dispersion medium. Such a silver nanoparticle dispersion corps can take various forms without limitation. The silver nanoparticle dispersion of the present invention can be obtained by dispersing silver nanoparticles in a suitable organic solvent (dispersion medium) in a suspended state. Furthermore, a silver coating composition containing a so-called binder component in addition to silver nanoparticles and a dispersion medium can be produced. According to the present invention, a silver coating composition containing 7095% by weight, more preferably 75-80% by weight, of silver nanoparticles can also be prepared.
(15-1.銀ナノ粒子分散体または銀塗料組成物の溶媒の説明)
 銀ナノ粒子分散体又は銀塗料組成物を得るための分散媒としては各種の有機溶媒、具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶媒; シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン、メシチレン等のような芳香族炭化水素溶媒; メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、n-ドデカノール等のようなアルコール溶媒等が挙げられる。
 有機溶媒としてはこれらの中でも特に、炭素数8~16で構造内に酸素原子を有する沸点280℃以下の有機溶媒が好ましい。銀粒子の焼結温度の目標を150℃以下とする場合、沸点280℃を超える溶媒は揮発・除去が困難だからである。この溶媒の好ましい具体例としては、ターピネオール(C10、沸点219℃)、ジヒドロターピネオール(C10、沸点220℃)、テキサノール(C12、沸点260℃)、エチルカルビトールアセテート(C8、沸点219℃)、ブチルカルビトールアセテート(C10、沸点247℃)、2,4-ジメチルー1,5-ペンタンジオール(C9、沸点150℃)、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート(C16、沸点280℃)が挙げられる。溶媒は複数種を混合して使用しても良く、単品で使用しても良い。
 所望の銀塗料組成物又は銀ナノ粒子分散体の濃度や粘性に応じて、有機溶媒の種類や量を適宜定めると良い。
(15-1. Explanation of Solvent of Silver Nanoparticle Dispersion or Silver Coating Composition)
As a dispersion medium for obtaining a silver nanoparticle dispersion or a silver coating composition, various organic solvents, specifically, fats such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, etc. Aromatic hydrocarbon solvents such as cyclohexane and methylcyclohexane; Aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, etc .; Methanol, ethanol, propanol, n-butanol, n-pentanol, n- Examples include alcohol solvents such as hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, n-dodecanol and the like.
Among these, an organic solvent having 8 to 16 carbon atoms and an oxygen atom in the structure and having a boiling point of 280 ° C. or lower is particularly preferable. This is because when the target sintering temperature of silver particles is 150 ° C. or lower, it is difficult to volatilize and remove a solvent having a boiling point of 280 ° C. Preferred examples of this solvent include terpineol (C10, boiling point 219 ° C.), dihydroterpineol (C10, boiling point 220 ° C.), texanol (C12, boiling point 260 ° C.), ethyl carbitol acetate (C8, boiling point 219 ° C.), butyl Carbitol acetate (C10, boiling point 247 ° C.), 2,4-dimethyl-1,5-pentanediol (C9, boiling point 150 ° C.), 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (C16, Boiling point of 280 ° C.). A plurality of solvents may be used as a mixture or may be used alone.
The type and amount of the organic solvent may be appropriately determined according to the concentration and viscosity of the desired silver coating composition or silver nanoparticle dispersion.
(15-2.塗料組成物の有機バインダーの説明)
 銀塗料組成物において有機バインダーを添加することにより、銀粒子の分散性の補助、又は基材との密着性を付与することができる。有機バインダーの添加量としては、含有している銀に対して、0.1~10wt%が好ましい。
 上記バインダー樹脂の導電性インク中における存在形態は、溶媒に対して溶解していてもよいし、エマルジョン、またはサスペンションであってもよい。上記バインダー樹脂としては特に限定されないが、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアクリルアミド樹脂、ポリエーテル樹脂、アクリル樹脂、メラミン樹脂、ビニル樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、酢酸ビニル樹脂、ポリブタジエン樹脂、塩化ビニル酢酸ビニル共重合体樹脂、フッ素樹脂、シリコン樹脂、ロジン、ロジンエステル、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、塩素化ポリウレタン樹脂、セルロース系樹脂、ポリエチレングリコール、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリビニルプチラール、ポリビニルピロリドンなどを挙げることができる。
 使用するバインダー樹脂は1種単独で用いてもよいし、2種以上を併用して用いてもよい。
(15-2. Description of Organic Binder of Coating Composition)
By adding an organic binder in the silver coating composition, it is possible to assist the dispersibility of the silver particles or to adhere to the base material. The addition amount of the organic binder is preferably 0.1 to 10 wt% with respect to the contained silver.
The presence form of the binder resin in the conductive ink may be dissolved in a solvent, or may be an emulsion or a suspension. The binder resin is not particularly limited. For example, polyester resin, polyurethane resin, polyamide resin, polyvinyl chloride resin, polyacrylamide resin, polyether resin, acrylic resin, melamine resin, vinyl resin, phenol resin, epoxy resin, urea Resin, vinyl acetate resin, polybutadiene resin, vinyl chloride vinyl acetate copolymer resin, fluorine resin, silicone resin, rosin, rosin ester, chlorinated polyolefin resin, modified chlorinated polyolefin resin, chlorinated polyurethane resin, cellulosic resin, polyethylene Examples include glycol, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinyl petital, and polyvinyl pyrrolidone.
The binder resin to be used may be used individually by 1 type, and may be used in combination of 2 or more types.
〔16.銀塗料組成物の説明(印刷方法・使い方)〕
 調製された銀塗料組成物を基板上に塗布し、その後、焼成するのが一般的である。
 塗布は、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷などの公知の方法により行うことができる。印刷技術を用いると、パターン化された銀塗料組成物層が得られ、焼成により、パターン化された銀導電層が得られる。また、この銀導電層は導電性・熱伝導性に優れた接合材料としての応用が可能であり、パワーデバイス等の大電流を取扱う電気機器の接合材としても有用である。
[16. Explanation of silver paint composition (printing method and usage)]
In general, the prepared silver coating composition is applied onto a substrate and then baked.
Application is spin coating, inkjet printing, screen printing, dispenser printing, letterpress printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio printing (gravure printing), contact printing, microcontact printing It can carry out by well-known methods, such as. When a printing technique is used, a patterned silver coating composition layer is obtained, and a patterned silver conductive layer is obtained by firing. In addition, this silver conductive layer can be applied as a bonding material having excellent conductivity and thermal conductivity, and is also useful as a bonding material for electrical equipment that handles a large current such as a power device.
 焼成は、200℃以下、例えば室温(25℃)以上150℃以下、好ましくは室温(25℃)以上120℃以下の温度で行うことができる。しかしながら、短い時間での焼成によって、銀の焼結を完了させるためには、60℃以上200℃以下、例えば80℃以上150℃以下、好ましくは90℃以上120℃以下の温度で行うとよい。焼成時間は、銀インクの塗布量、焼成温度などを考慮して、適宜定めるとよく、たとえば数時間(例えば3時間、あるいは2時間)以内、好ましくは1時間以内、より好ましくは30分間以内にするとよい。
 銀ナノ粒子は上記のように構成されているので、このような低温短時間での焼成工程によっても、銀粒子の焼結が十分に進行する。その結果、優れた導電性(低い抵抗値)が発現する。低い抵抗値(例えば15μΩcm以下、範囲としては7~15μΩcm)を有する銀導電層が形成される。バルク銀の抵抗値は1.6μΩcmである。
Firing can be performed at a temperature of 200 ° C. or lower, for example, room temperature (25 ° C.) or higher and 150 ° C. or lower, preferably room temperature (25 ° C.) or higher and 120 ° C. or lower. However, in order to complete the sintering of silver by firing in a short time, it may be performed at a temperature of 60 ° C. to 200 ° C., for example, 80 ° C. to 150 ° C., preferably 90 ° C. to 120 ° C. The firing time may be appropriately determined in consideration of the amount of silver ink applied, the firing temperature, and the like, for example, within several hours (for example, 3 hours or 2 hours), preferably within 1 hour, more preferably within 30 minutes. Good.
Since the silver nanoparticles are configured as described above, the sintering of the silver particles sufficiently proceeds even by such a firing process at a low temperature and in a short time. As a result, excellent conductivity (low resistance value) is exhibited. A silver conductive layer having a low resistance value (for example, 15 μΩcm or less and in the range of 7 to 15 μΩcm) is formed. The resistance value of bulk silver is 1.6 μΩcm.
〔17.銀ナノ粒子分散体及び銀塗料組成物の用途〕
 低温での焼成が可能であるので、基板として、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタラート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。また、短時間の焼成は、これら耐熱性の低い汎用プラスチック基板に対する負荷を軽減するし、生産効率を向上させる。
[17. (Use of silver nanoparticle dispersion and silver coating composition)
Because it can be fired at low temperatures, the substrate can be a glass substrate, a heat-resistant plastic substrate such as a polyimide film, or a polyester system such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film. A general-purpose plastic substrate having low heat resistance such as a polyolefin film such as a film or polypropylene can also be suitably used. In addition, short-time firing reduces the load on these general-purpose plastic substrates having low heat resistance and improves production efficiency.
 銀導電層の厚みは、目的とする用途に応じて適宜定めるとよく、特に本発明に係る銀ナノ粒子を使用することで比較的膜厚の大きい銀導電層を形成した場合でも高い導電性を示すことができる。銀導電層の厚みは、例えば、100nm~30μm、好ましくは1μm~20μm、より好ましくは10μm~20μmの範囲から選択するとよい。
 本発明の銀導電材料は、電磁波制御材、回路基板、アンテナ、放熱板、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド等に適応することができる。
The thickness of the silver conductive layer may be appropriately determined according to the intended use, and particularly high conductivity even when a silver conductive layer having a relatively large thickness is formed by using the silver nanoparticles according to the present invention. Can show. The thickness of the silver conductive layer may be selected from the range of, for example, 100 nm to 30 μm, preferably 1 μm to 20 μm, more preferably 10 μm to 20 μm.
The silver conductive material of the present invention is an electromagnetic wave control material, circuit board, antenna, heat sink, liquid crystal display, organic EL display, field emission display (FED), IC card, IC tag, solar cell, LED element, organic transistor, capacitor (Capacitor), electronic paper, flexible battery, flexible sensor, membrane switch, touch panel, EMI shield, etc.
 以下、実施例及び比較例により本発明をさらに具体的に説明する。
 実施例及び比較例で用いたアミン化合物の名称、構造式等の特徴を、表-1~3に示す。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
Tables 1 to 3 show characteristics such as names and structural formulas of amine compounds used in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
[実施例1]
(銀粒子の製造)
 アルミブロック式加熱攪拌機にセットした試験管に原料となる銀化合物としてシュウ酸銀の乾燥品7.58g(24.95mmol) と、極性溶媒としてn-ヘキサノール9.21g(90.14mmol)とを撹拌し、シュウ酸銀を湿潤状態にさせた。その後、AMP2.50g(25.47mmol)、3-エトキシプロピルアミン4.83g(46.82mmol)を添加した。その後、1時間撹拌し、銀―アミン錯体を製造した。その後、昇温速度3℃/minで加熱し100℃でシュウ酸銀の分解反応が起こったと思われる二酸化炭素の発生を確認した。二酸化炭素の発生が止まるまで加熱を継続し、銀粒子が懸濁された液体を得た。銀粒子の析出後、反応液にメタノール20ccを添加して洗浄し、これを遠心分離した。この洗浄と遠心分離は3回行った。このようにして、銀ナノ粒子を得た。
[Example 1]
(Manufacture of silver particles)
In a test tube set in an aluminum block type heating stirrer, 7.58 g (24.95 mmol) of a dried silver oxalate product as a raw silver compound and 9.21 g (90.14 mmol) of n-hexanol as a polar solvent are stirred. The silver oxalate was wetted. Thereafter, 2.50 g (25.47 mmol) of AMP and 4.83 g (46.82 mmol) of 3-ethoxypropylamine were added. Thereafter, the mixture was stirred for 1 hour to produce a silver-amine complex. Thereafter, heating was performed at a heating rate of 3 ° C./min, and the generation of carbon dioxide, which was considered to have caused the decomposition reaction of silver oxalate at 100 ° C., was confirmed. Heating was continued until the generation of carbon dioxide stopped to obtain a liquid in which silver particles were suspended. After precipitation of the silver particles, 20 cc of methanol was added to the reaction solution for washing, and this was centrifuged. This washing and centrifugation were performed three times. In this way, silver nanoparticles were obtained.
(粒子径の確認)
 得られたメタノールで湿った状態の銀ナノ粒子をn-ヘキサノール中へボルテックスミキサーを用いて懸濁させ、その液をコロジオン膜等の支持体へ滴下し、溶媒を乾燥させて試料を得た。FE-SEM観察にて、倍率20000~70000倍で観察・撮影し、画像の中で400個以上粒子が存在している倍率の画像を選定する。その後、FE-SEMにて粒子形状の観察を行った。その後画像解析ソフトSCANDIUM(OLYMPUS製)を用いて、粒子数400個以上をカウントし、粒子径の測長、平均粒径、粒度分布等の解析を実施した。
 粒子の100nm以下、200~500nm、500nm超の粒子割合(%)、平均粒径(nm)、変動係数(%)を表-4に示す。FE-SEM写真を図3に示す。粒度分布ヒストグラムを図17に示す。
(Confirmation of particle size)
The obtained silver nanoparticles moistened with methanol were suspended in n-hexanol using a vortex mixer, the solution was dropped onto a support such as a collodion membrane, and the solvent was dried to obtain a sample. In FE-SEM observation, images are observed and photographed at a magnification of 20000 to 70000 times, and an image with a magnification of 400 or more particles is selected in the image. Thereafter, the particle shape was observed with an FE-SEM. Thereafter, using an image analysis software SCANDIUM (manufactured by OLYMPUS), the number of particles of 400 or more was counted, and analysis of particle diameter length measurement, average particle diameter, particle size distribution, etc. was performed.
Table 4 shows the ratio (%), average particle diameter (nm), and coefficient of variation (%) of particles of 100 nm or less, 200 to 500 nm, and more than 500 nm. An FE-SEM photograph is shown in FIG. A particle size distribution histogram is shown in FIG.
(銀ナノ粒子ペースト、インクの調製と焼成)
 次に、回収した銀ナノ粒子に、溶媒としてテキサノールを銀分75wt%になるよう添加し、混合した。さらに銀粒子に対して添加量が1wt%になるように、有機バインダーとしてエトセル45(日新化成製)を添加し、最終的に銀分約70wt%の銀ナノ粒子ペーストインクを作製した。このペーストをスライドガラス上でキャストし、送風乾燥機にて、150℃で1h加熱した。乾燥後の塗膜厚みは10~30μmになるようにした。
 得られた塗膜は、4端子法により表面抵抗値を測定し、得られた塗膜の厚みを乗じて、体積抵抗率を得た。
 体積抵抗率の値を表-4に示す。
(Silver nanoparticle paste, ink preparation and firing)
Next, texanol as a solvent was added to the collected silver nanoparticles so as to have a silver content of 75 wt% and mixed. Further, Etcel 45 (manufactured by Nisshin Kasei) was added as an organic binder so that the addition amount was 1 wt% with respect to the silver particles, and finally a silver nanoparticle paste ink having a silver content of about 70 wt% was produced. This paste was cast on a slide glass and heated at 150 ° C. for 1 h in a blow dryer. The coating thickness after drying was adjusted to 10 to 30 μm.
The obtained coating film was measured for surface resistance by the 4-terminal method, and multiplied by the thickness of the obtained coating film to obtain volume resistivity.
Table 4 shows the values of volume resistivity.
[実施例2~15、比較例1~6]
(銀粒子の製造)
 使用材料及び配合割合を表-4~12に示すものに代え、銀―アミン錯体化合物生成後の昇温速度を表-4~12に示すものに代え、反応容器/加熱装置を表-4~12に示すものに代えた以外は実施例1の(銀粒子の製造)と同様にして、銀粒子を作製した。
 表-6、7、12に示すとおり、実施例6、10、比較例5については、後述の内容の(保護剤置換処理)を行った。保護剤置換行程を以下に示す。シュウ酸銀のシュウ酸分解反応により、得られた銀ナノ粒子中のアミン化合物をn-ヘキシルアミンに置換するため、得られた銀ナノ粒子の純銀分に対して71.8wt%のn-ヘキシルアミンと銀ナノ粒子を常温で1時間撹拌し、上記と同様に洗浄と遠心分離を3回繰り返し、ヘキシルアミンを保護剤とした銀ナノ粒子を得た。
[Examples 2 to 15 and Comparative Examples 1 to 6]
(Manufacture of silver particles)
The materials used and the blending ratio were changed to those shown in Tables 4 to 12, the rate of temperature increase after the formation of the silver-amine complex compound was changed to that shown in Tables 4 to 12, and the reaction vessel / heating device was changed to Tables 4 to 4 Silver particles were produced in the same manner as in Example 1 (Production of silver particles) except that the one shown in FIG.
As shown in Tables 6, 7, and 12, Examples 6, 10 and Comparative Example 5 were subjected to (protecting agent replacement treatment) as described below. The protective agent replacement process is shown below. In order to replace the amine compound in the obtained silver nanoparticles with n-hexylamine by the oxalic acid decomposition reaction of silver oxalate, 71.8 wt% of n-hexyl with respect to the pure silver content of the obtained silver nanoparticles The amine and silver nanoparticles were stirred at room temperature for 1 hour, and washing and centrifugation were repeated three times in the same manner as above to obtain silver nanoparticles using hexylamine as a protective agent.
 得られた銀粒子について実施例1と同様の方法で(粒子径の確認)を行った。なお、比較例2~4については、STEM像で粒子径の確認を実施した。
 また、実施例2~11、比較例1~2については、得られた粒子を用いて実施例1と同様の方法で銀ナノ粒子ペースト、インクの調製と焼成を行った。
 なお実施例4、5については、保護剤置換処理前の粒子と保護剤置換処理後の粒子を用いて各々(銀ナノ粒子ペースト、インクの調製と焼成)を行った。
 また、比較例3及び、4については、特許文献1及び、2のように、銀分55wt%になるようにし、イソオクタン/n-ブタノール=4/1(体積比)の混合溶媒中に分散させた銀ナノ粒子分散体をスピンコートすることにより、ガラス上に塗工した。
 また、実施例12~15、比較例5~6は、得られた粒子を用いて、溶媒としてテキサノールを銀分78.5%になるように添加・混合し、銀ナノ粒子ペーストの作製を行った。
実施例12,13,15、比較例5については、実施例1と同様に、銀ナノ粒子ペースト、インクの調製と焼成を行った。
The obtained silver particles were subjected to the same method as in Example 1 (confirmation of particle diameter). For Comparative Examples 2 to 4, the particle diameter was confirmed by STEM images.
In Examples 2 to 11 and Comparative Examples 1 and 2, silver nanoparticle pastes and inks were prepared and fired by the same method as in Example 1 using the obtained particles.
In addition, about Example 4, 5, each was carried out using the particle | grains before a protective agent substitution process, and the particle | grains after a protective agent substitution process (preparation and baking of a silver nanoparticle paste and ink).
For Comparative Examples 3 and 4, as in Patent Documents 1 and 2, the silver content is 55 wt% and dispersed in a mixed solvent of isooctane / n-butanol = 4/1 (volume ratio). The silver nanoparticle dispersion was coated on glass by spin coating.
In Examples 12 to 15 and Comparative Examples 5 to 6, using the obtained particles, texanol was added and mixed as a solvent so that the silver content was 78.5%, and a silver nanoparticle paste was prepared. It was.
For Examples 12, 13, 15 and Comparative Example 5, similar to Example 1, silver nanoparticle paste and ink were prepared and fired.
 実施例2~15、比較例1~6について、得られた粒子の平均粒径(nm)、変動係数(%)、各粒子径範囲での粒子割合(%)、を表-4~12に示す。SEMもしくはSTEM画像を図4~16、図31~図36に示す。実施例2~15、比較例1~6の粒度分布ヒストグラムを図17~28、43~48に示す。実施例1~13、15及び、比較例1~4について、焼結塗膜の体積抵抗率及び膜厚の値を表-4~12に示す。 For Examples 2 to 15 and Comparative Examples 1 to 6, the average particle size (nm), coefficient of variation (%), and particle ratio (%) in each particle size range are shown in Tables 4 to 12 Show. SEM or STEM images are shown in FIGS. 4 to 16 and FIGS. 31 to 36. FIG. 17 to 28 and 43 to 48 show the particle size distribution histograms of Examples 2 to 15 and Comparative Examples 1 to 6, respectively. For Examples 1 to 13, 15 and Comparative Examples 1 to 4, the volume resistivity and film thickness values of the sintered coating films are shown in Tables 4 to 12.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(塗膜観察)
 実施例12~15、比較例5~6記載の粒子を用いて作成した銀分78.5%テキサノールペーストについて、アルミ箔上にスパチュラで塗布した膜をドライヤーで乾燥させた塗布膜表面についてSEM観察を実施した。SEM観察した塗布膜は図37~42のとおりである。
(銀ペーストの粘度測定)
 さらに、実施例12~15、比較例5~6は記載の粒子を用いて作成した銀分78.5%テキサノールペーストについて、レオメーター(サーモフィッシャーサイエンティフィック社製HAAKE MARSIII)にて粘度を測定した。測定条件は、測定モード:ヒステリシス・ループ、せん断速度:0.1s-1→30s-1(90s)、30s-1→0.1s-1(90s)、測定治具:コーンプレート(Cone C35/1°TiL、Lower  plate TMP35)、ギャップ:0.052mm、測定温度:25℃とした。 測定した粘度データは図49記載のとおりである。
 以上のように、本発明により、錯体形成時に(b)成分のアミン化合物を添加し、合成された銀粒子を用いることで、20μm以上の焼結塗膜を形成することが可能でかつ、150℃での焼成条件において、塗膜の体積抵抗率が50μΩ・cm以下であり、導電性がある膜を得られることが確認できた。
(Coating film observation)
For the silver content 78.5% texanol paste prepared using the particles described in Examples 12 to 15 and Comparative Examples 5 to 6, the surface of the coated film obtained by drying a film coated with a spatula on an aluminum foil with a drier was SEM. Observations were made. The coating films observed by SEM are as shown in FIGS.
(Viscosity measurement of silver paste)
Further, in Examples 12 to 15 and Comparative Examples 5 to 6, the viscosity of a 78.5% silver texanol paste prepared using the described particles was measured with a rheometer (HAAKE MARSIII manufactured by Thermo Fisher Scientific). It was measured. Measurement conditions are: measurement mode: hysteresis loop, shear rate: 0.1 s −1 → 30 s −1 (90 s), 30 s −1 → 0.1 s −1 (90 s), measurement jig: cone plate (Cone C35 / 1 ° TiL, Lower plate TMP35), gap: 0.052 mm, measurement temperature: 25 ° C. The measured viscosity data is as shown in FIG.
As described above, according to the present invention, it is possible to form a sintered coating having a thickness of 20 μm or more by adding the amine compound of component (b) at the time of complex formation and using synthesized silver particles. It was confirmed that the film had a volume resistivity of 50 μΩ · cm or less and a conductive film could be obtained under the baking conditions at ° C.
 実施例1~5では、(b1)成分のアミン化合物の添加量や使用するアルコール溶媒の極性の違いを利用して、変動係数30%以上で、ある程度粒子径のばらつきを持たせ、粒子径制御が可能であることがわかる。
 また、実施例6~8のように、粒子径を大きく、ばらつきを持たせるために、(b1)成分だけでなく、水を併用して用いてもよい。その中でも、アミン化合物としてAMPを使用した、実施例6については、150℃焼成において、10μΩ・cm以下の体積抵抗率を示すことができ、最も導電性の高い厚膜導電膜を得ることができた。
In Examples 1 to 5, by utilizing the difference in the amount of the amine compound (b1) added and the polarity of the alcohol solvent used, the particle size can be controlled to a certain degree with a coefficient of variation of 30% or more to control the particle size. It is understood that is possible.
Further, as in Examples 6 to 8, not only the component (b1) but also water may be used in combination in order to increase the particle size and provide variation. Among them, Example 6 using AMP as an amine compound can exhibit a volume resistivity of 10 μΩ · cm or less at 150 ° C. baking, and a thick conductive film with the highest conductivity can be obtained. It was.
 さらに、実施例9のように、(b1)成分のアミン化合物とジグリコールアミンと併用して、大粒子径化、広分布化も可能であるし、実施例10のように、ジグリコールアミンと水も併用させることにより、より大粒子径化が可能である。特に実施例10の平均粒子径258.8nmの銀ナノ粒子についても、100~150℃の焼成において、50μΩ・cmの厚膜導電膜を得ることができる。
 また、実施例11のように、(b2)成分のアミン化合物を用いた場合でも、銀粒子を大粒子径・広分布化することが可能で、40μm以上、約30μΩ・cmの厚膜導電膜を得ることが確認できた。
Further, as in Example 9, the amine compound of component (b1) and diglycolamine can be used in combination to increase the particle size and distribution, and as in Example 10, diglycolamine and By using water together, the particle size can be increased. In particular, for the silver nanoparticles having an average particle diameter of 258.8 nm of Example 10, a thick film conductive film having a thickness of 50 μΩ · cm can be obtained by firing at 100 to 150 ° C.
Further, as in Example 11, even when the component (b2) amine compound is used, the silver particles can have a large particle size and a wide distribution, and are 40 μm or more and about 30 μΩ · cm thick film conductive film. Could be confirmed.
 これに対し、比較例1、2では(b)成分のアミン化合物を添加しておらず、この場合は平均粒子径が70nm未満と小さいだけでなく、変動係数が30%未満でばらつきが小さく、99%以上が100nm以下の小さな粒子径を有している。このような小さくてばらつきの少ない粒子では、10μm以下の膜厚でないと、各焼成温度において、十分な導電性は得られないケース、もしくは体積収縮によりクラックが生じ、導電性自体がないケースがある。 In contrast, in Comparative Examples 1 and 2, the component (b) amine compound was not added. In this case, not only the average particle size was less than 70 nm, but also the variation coefficient was less than 30% and the variation was small. 99% or more has a small particle size of 100 nm or less. With such small particles with little variation, there are cases where sufficient conductivity cannot be obtained at each firing temperature unless the film thickness is 10 μm or less, or there are cases where cracks occur due to volume shrinkage and there is no conductivity itself. .
 また、特許文献1,2の製法と同等の方法で作製した比較例3及び4の粒子では、インクを塗工すると、0.5μm程度の焼結塗膜となってしまい、厚膜化は困難である。
 以上の結果からわかるように、(b)成分のアミン化合物を規定する範囲内で使用することにより、本発明の方法で本発明の銀ナノ粒子は、粒度分布に適度なバラつきを持たせることができ、低抵抗な厚膜導電膜を得られやすい銀塗料組成物を作製することが可能であることがわかる。
Moreover, in the particles of Comparative Examples 3 and 4 produced by the same method as the production method of Patent Documents 1 and 2, when ink is applied, a sintered coating film of about 0.5 μm is formed, and it is difficult to increase the film thickness. It is.
As can be seen from the above results, the silver nanoparticles of the present invention can have an appropriate variation in the particle size distribution in the method of the present invention by using the component (b) within the range defining the amine compound. It can be seen that it is possible to produce a silver paint composition that is easy to obtain a low-resistance thick film conductive film.
 以上により、本発明において、(b1)成分のアミン化合物、または(b1)と(b2)を併用したアミン化合物が銀粒子表面に結合した銀ナノ粒子を用いることで、銀ペーストの粘性をコントロール(高粘度化)することが確認できた。
 図49に実施例12~15、比較例5~6の粘度データを記載しているが、(b1)成分としてAMPを用いている実施例12~14については、粒子径が小さくなるにつれ、高粘度となっているが、一番粒子径が大きい実施例14(平均粒子径145.9nm)は、従来のアルキルアミンのみで表面保護されている銀粒子から作製されたペースト比較例5(平均粒子径108.7nm)と比較しても、高粘度である。
 また、(b1)成分だけでなく(b2)成分を併用し、その配合を調整することにより、銀ペーストの粘度も調整ができる、(b1)のAMPの配合量を低くすることで、粘度が低くなる傾向がある。(b1)(b2)成分の配合をコントロールすることにより、同レベルの粒子径を持つ銀ナノ粒子から作製されたペーストの粘度を容易に調整することが可能である。さらに分子の長さ7~8Åのアミン化合物を用いることで、安定性やハンドリングに優れた銀ナノ粒子ペーストを得ることができる。
As described above, in the present invention, the viscosity of the silver paste is controlled by using silver nanoparticles in which the amine compound of the component (b1) or the amine compound in combination of (b1) and (b2) is bonded to the surface of the silver particles ( It was confirmed that the viscosity was increased.
FIG. 49 shows the viscosity data of Examples 12 to 15 and Comparative Examples 5 to 6. However, in Examples 12 to 14 using AMP as the component (b1), the particle size decreases as the particle size decreases. Example 14 (average particle size 145.9 nm), which has a viscosity but the largest particle size, is a paste comparative example 5 (average particle size) prepared from silver particles whose surface is protected only with a conventional alkylamine. Compared with a diameter of 108.7 nm, the viscosity is high.
Moreover, by using not only the component (b1) but also the component (b2) and adjusting the blending, the viscosity of the silver paste can be adjusted. By reducing the blending amount of the AMP of (b1), the viscosity can be reduced. Tend to be lower. By controlling the blending of the components (b1) and (b2), it is possible to easily adjust the viscosity of a paste prepared from silver nanoparticles having the same particle size. Furthermore, by using an amine compound having a molecular length of 7 to 8 mm, a silver nanoparticle paste excellent in stability and handling can be obtained.
 従来のアルキルアミンのみで表面保護されている銀粒子についても、比較例6のように粒子径を小さくすれば高粘度化は可能であるが、図42に示す乾燥塗膜を見ると、非常にクラックを起こしやすく、塗膜表面に多くの凹凸が確認され、銀ナノ粒子が凝集状態にあり、優れた導電膜を得られないペーストとなっている。 For silver particles whose surface is protected only with conventional alkylamines, it is possible to increase the viscosity by reducing the particle diameter as in Comparative Example 6, but when the dried coating film shown in FIG. It is easy to cause cracks, many irregularities are confirmed on the surface of the coating film, silver nanoparticles are in an aggregated state, and it is a paste from which an excellent conductive film cannot be obtained.
 これに対して、実施例12~15、比較例5の乾燥塗膜は、凝集物量も少なく小さいので、良好な導電膜が得られやすいと考えられるが、アルキルアミンのみで表面被覆された比較例5については、低粘度であるので、粘度を高めるためにより多くの有機バインダーを必要とするため、高精細なスクリーン印刷(線幅50μm以下)においては、本来の導電性を損なう可能性が高いと考えられる。
 以上の事から、(b1)成分、もしくは(b1)(b2)成分を併用したアミン化合物が銀粒子表面に結合した銀ナノ粒子から作成されたペーストは、意外にも高粘度な銀ペーストが得られ、特にスクリーン印刷に適した粘度に調整しやすい銀塗料組成物を提供することが可能である。
In contrast, the dried coating films of Examples 12 to 15 and Comparative Example 5 have a small amount of agglomerates, so it is considered that a good conductive film is likely to be obtained. As for No. 5, since it has a low viscosity, more organic binder is required to increase the viscosity. Therefore, in high-definition screen printing (with a line width of 50 μm or less), there is a high possibility of impairing the original conductivity. Conceivable.
From the above, the paste made from silver nanoparticles in which the amine compound combined with the component (b1) or the component (b1) (b2) is bonded to the surface of the silver particle is surprisingly a high-viscosity silver paste. In particular, it is possible to provide a silver coating composition that can be easily adjusted to a viscosity suitable for screen printing.
 本発明により、刺激臭の強いアミンの排出量が抑えられた方法で、大粒径で広い分布を有し、厚膜で且つ高い導電性を有する銀導電層を容易に形成することのできる銀ナノ粒子、特にスクリーン印刷に適した粘度を有する銀塗料組成物を得ることができる。 According to the present invention, a silver conductive layer having a large particle size, a wide distribution, a thick film and high conductivity can be easily formed by a method in which the emission amount of a strong pungent amine is suppressed. A silver coating composition having a viscosity suitable for nanoparticles, particularly screen printing, can be obtained.

Claims (23)

  1.  熱分解性を有する銀化合物(a)と、(a)と錯体形成しうるアミン化合物(b)とを有機溶媒(c)中で反応させて錯体を形成し、得られた錯体を加熱して熱分解させることにより、銀ナノ粒子を形成する銀ナノ粒子の製造方法であって、(b)が、1級アミノ基又は2級アミノ基と水酸基とを1つずつ持つ炭素数6以下のアミノアルコールであることを特徴とする銀ナノ粒子の製造方法。 A silver compound (a) having thermal decomposability and an amine compound (b) capable of forming a complex with (a) are reacted in an organic solvent (c) to form a complex, and the resulting complex is heated. A method for producing silver nanoparticles by thermally decomposing silver nanoparticles, wherein (b) is an amino acid having 6 or less carbon atoms each having a primary amino group or one secondary amino group and one hydroxyl group. A method for producing silver nanoparticles, which is alcohol.
  2.  (b)が、i)炭素数3~4の分岐型1級アミノアルコールであって、かつ(ii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているアミン化合物(b1)、またはiii)炭素数3の直鎖状2級アミノアルコール(b2)であることを特徴とする請求項1記載の銀ナノ粒子の製造方法。 (B) is an amine compound (b1) in which i) a branched primary amino alcohol having 3 to 4 carbon atoms and (ii) an amino group and a hydroxyl group are bonded via an alkyl chain having 2 carbon atoms. Or iii) a linear secondary amino alcohol (b2) having 3 carbon atoms. The method for producing silver nanoparticles according to claim 1, wherein
  3.  (b)が、2-アミノ-2-メチル-1-プロパノールであることを特徴とする請求項1又は2記載の銀ナノ粒子の製造方法。 3. The method for producing silver nanoparticles according to claim 1, wherein (b) is 2-amino-2-methyl-1-propanol.
  4.  (a)がシュウ酸銀である請求項1~3記載のいずれかに記載の銀ナノ粒子の製造方法。 The method for producing silver nanoparticles according to any one of claims 1 to 3, wherein (a) is silver oxalate.
  5.  (a)と(b)との錯体形成反応時に、(b)以外の分子の長さが5Å以上のアミン化合物(d)を存在させることを特徴とする請求項1~4のいずれかに記載の銀ナノ粒子の製造方法。 5. The amine compound (d) having a molecular length other than (b) of at least 5 mm during the complex formation reaction between (a) and (b). A method for producing silver nanoparticles.
  6.  [(b)+(d)]/[(a)に含まれる銀原子]のモル比が0.7~2.0であることを特徴とする請求項5記載の銀ナノ粒子の製造方法。 6. The method for producing silver nanoparticles according to claim 5, wherein the molar ratio of [(b) + (d)] / [silver atoms contained in (a)] is 0.7 to 2.0.
  7.  (c)/(a)の重量比が0.7~1.3であることを特徴とする請求項3~6のいずれかに記載の銀ナノ粒子の製造方法。 The method for producing silver nanoparticles according to any one of claims 3 to 6, wherein the weight ratio of (c) / (a) is 0.7 to 1.3.
  8.  (a)と(b)との錯体形成反応時に、水を存在させることを特徴とする請求項1~7のいずれかに記載の銀ナノ粒子の製造方法。 The method for producing silver nanoparticles according to any one of claims 1 to 7, wherein water is present during the complex formation reaction between (a) and (b).
  9.  請求項1~8のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散することを特徴とする、銀ナノ粒子分散体の製造方法。 A method for producing a silver nanoparticle dispersion, comprising producing silver nanoparticles by the method according to any one of claims 1 to 8, and dispersing the obtained silver nanoparticles in an organic solvent.
  10.  請求項1~8のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散し、さらに有機バインダーを添加することを特徴とする、銀塗料組成物の製造方法。 A silver coating composition comprising: a silver nanoparticle prepared by the method according to any one of claims 1 to 8; the obtained silver nanoparticle is dispersed in an organic solvent; and an organic binder is further added. Production method.
  11.  請求項9記載の方法により得られた銀ナノ粒子分散体又は請求項10記載の方法により得られた銀塗料組成物を基板上に塗布し、焼成して銀導電層を形成する工程を含む銀導電材料の製造方法。 A silver nanoparticle dispersion obtained by the method according to claim 9 or a silver coating composition obtained by the method according to claim 10 is applied on a substrate and baked to form a silver conductive layer. A method for producing a conductive material.
  12.  熱分解性を有する銀化合物(a)と、(a)と錯体形成しうるアミン化合物(b)と、有機溶媒(c)とを含有する組成物であって、b)が、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールであることを特徴とする、銀化合物含有組成物。 A composition comprising a thermally decomposable silver compound (a), an amine compound (b) capable of forming a complex with (a), and an organic solvent (c), wherein b) is a primary amino group Alternatively, a silver compound-containing composition, which is an amino alcohol having 6 or less carbon atoms having one secondary amino group and one hydroxyl group.
  13.   [(b)+(d)]/[(a)に含まれる銀原子]がモル比で0.8~2.0であることを特徴とする請求項12記載の銀化合物含有組成物。 13. The silver compound-containing composition according to claim 12, wherein [(b) + (d)] / [silver atoms contained in (a)] is 0.8 to 2.0 in molar ratio.
  14.  熱分解性を有する銀化合物(a)と、有機溶媒(c)との含有割合が、(c)/(a)が重量比で0.8~1.3であることを特徴とする請求項12又は13記載の銀化合物含有組成物。 The content ratio of the thermally decomposable silver compound (a) and the organic solvent (c) is such that (c) / (a) is 0.8 to 1.3 by weight. The silver compound containing composition of 12 or 13.
  15.  銀化合物(a)と錯体形成しうるアミン化合物として、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコール(b)と、(b)以外の分子の長さが5Å以上のアミン化合物(d)とを含み、かつ(b)/[(b)+(d)]がモル比で0.3~0.8であることを特徴とする請求項12~14のいずれかに記載の銀化合物含有組成物。 As an amine compound capable of forming a complex with the silver compound (a), an amino alcohol (b) having 6 or less carbon atoms having one primary amino group or one secondary amino group and one hydroxyl group, and the length of a molecule other than (b) And (b) / [(b) + (d)] in a molar ratio of 0.3 to 0.8, comprising an amine compound (d) having a thickness of 5% or more. The silver compound containing composition in any one of 14.
  16.  水の含有量が銀化合物(a)100重量部に対して5~20重量部含有することを特徴とする請求項12~15のいずれかに記載の銀化合物含有組成物。 The silver compound-containing composition according to any one of claims 12 to 15, wherein the water content is 5 to 20 parts by weight with respect to 100 parts by weight of the silver compound (a).
  17.  平均粒径350nm以下で、変動係数30~80%であり、銀粒子表面に、1級アミノ基もしくは2級アミノ基と水酸基を1つずつ持つ炭素数6以下のアミノアルコールが結合した銀ナノ粒子。 Silver nanoparticles having an average particle size of 350 nm or less and a coefficient of variation of 30 to 80%, and having a primary amino group or a secondary amino group and a hydroxyl group having 6 carbon atoms or less bonded to the surface of the silver particle. .
  18.  請求項17記載の銀ナノ粒子であって、銀ナノ粒子表面に、i)炭素数3~4の分岐型1級アミノアルコールであり、かつ(ii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているアミン化合物(b1)、または(b1)とiii)炭素数3の直鎖状2級アミノアルコール(b2)が結合した銀ナノ粒子。 18. The silver nanoparticle according to claim 17, wherein i) a branched primary amino alcohol having 3 to 4 carbon atoms and (ii) an amino chain via an alkyl chain having 2 carbon atoms on the surface of the silver nanoparticle. A silver nanoparticle in which an amine compound (b1) to which a group and a hydroxyl group are bonded, or (b1) and iii) a linear secondary amino alcohol (b2) having 3 carbon atoms is bonded.
  19.  請求項18記載の銀ナノ粒子であって、アミン化合物(b1)として2-アミノ-2-メチル-1-プロパノールが結合した銀ナノ粒子。 The silver nanoparticle according to claim 18, wherein 2-amino-2-methyl-1-propanol is bound as the amine compound (b1).
  20.  請求項17~19のうちいずれかに記載の銀ナノ粒子であって、さらに(b1)及び(b2)以外の分子の長さ7~8Åのアミン化合物が結合した銀ナノ粒子。 20. The silver nanoparticle according to any one of claims 17 to 19, further comprising an amine compound having a molecular length of 7 to 8 mm other than (b1) and (b2).
  21.  請求項17~20のいずれかに記載の銀ナノ粒子が有機溶媒中に分散されていることを特徴とする銀ナノ粒子分散体。 A silver nanoparticle dispersion, wherein the silver nanoparticles according to any one of claims 17 to 20 are dispersed in an organic solvent.
  22.  請求項17~20のいずれかに記載の銀ナノ粒子が有機溶媒に分散され、さらに有機バインダーを含有することを特徴とする、銀塗料組成物。 21. A silver paint composition, wherein the silver nanoparticles according to claim 17 are dispersed in an organic solvent and further contain an organic binder.
  23.  請求項21記載の銀ナノ粒子分散体又は請求項22記載の銀塗料組成物を基板上に塗布し、焼成して銀導電層を形成する工程を含む銀導電材料の製造方法。 A method for producing a silver conductive material, comprising: applying a silver nanoparticle dispersion according to claim 21 or a silver coating composition according to claim 22 on a substrate and baking to form a silver conductive layer.
PCT/JP2018/015455 2017-04-27 2018-04-12 Method for producing silver nanoparticles having broad particle size distribution, and silver nanoparticles WO2018198810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514381A JP6837703B2 (en) 2017-04-27 2018-04-12 Manufacturing method of silver nanoparticles with wide particle size distribution and silver nanoparticles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017088881 2017-04-27
JP2017-088881 2017-04-27
JP2017248529 2017-12-25
JP2017-248529 2017-12-25

Publications (1)

Publication Number Publication Date
WO2018198810A1 true WO2018198810A1 (en) 2018-11-01

Family

ID=63919624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015455 WO2018198810A1 (en) 2017-04-27 2018-04-12 Method for producing silver nanoparticles having broad particle size distribution, and silver nanoparticles

Country Status (2)

Country Link
JP (2) JP6837703B2 (en)
WO (1) WO2018198810A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste
JP2014152337A (en) * 2013-02-04 2014-08-25 Yamagata Univ Precipitation method of metallic silver, coated silver fine particle, thin wire-like coated metallic silver
WO2015087967A1 (en) * 2013-12-11 2015-06-18 田中貴金属工業株式会社 Method for producing silver particles, and silver particles produced by said method
WO2015196017A1 (en) * 2014-06-20 2015-12-23 Rhodia Operations Stabilizing agent-free metal nanoparticle synthesis and uses of metal nanoparticles synthesized therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste
JP2014152337A (en) * 2013-02-04 2014-08-25 Yamagata Univ Precipitation method of metallic silver, coated silver fine particle, thin wire-like coated metallic silver
WO2015087967A1 (en) * 2013-12-11 2015-06-18 田中貴金属工業株式会社 Method for producing silver particles, and silver particles produced by said method
WO2015196017A1 (en) * 2014-06-20 2015-12-23 Rhodia Operations Stabilizing agent-free metal nanoparticle synthesis and uses of metal nanoparticles synthesized therefrom

Also Published As

Publication number Publication date
JP6837703B2 (en) 2021-03-03
JP7097032B2 (en) 2022-07-07
JP2021073371A (en) 2021-05-13
JPWO2018198810A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP7262059B2 (en) Method for producing silver nanoparticles with wide particle size distribution and silver nanoparticles
EP3135405B1 (en) Silver particle coating composition
JP6532862B2 (en) Silver nanoparticle-containing ink for intaglio offset printing and method for producing the same
TWI567026B (en) Method for producing silver nanoparticle, silver nanoparticle, and silver coating composition
TWI676659B (en) Silver particle coating composition
EP3260503B1 (en) Use of a silver particle coating composition for screen printing
JP5858374B2 (en) Method for producing coated copper fine particles
JP6976597B2 (en) Copper particle mixture and its production method, copper particle mixture dispersion, copper particle mixture-containing ink, copper particle mixture storage method and copper particle mixture sintering method
CN109789482B (en) Bonding material and bonding method using the same
WO2014080662A1 (en) Copper powder and method for producing same
JP6026565B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP5761483B2 (en) Silver fine particles and production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
WO2018198810A1 (en) Method for producing silver nanoparticles having broad particle size distribution, and silver nanoparticles
JP7283703B2 (en) Method for producing silver nanoparticles with wide particle size distribution and silver nanoparticles
JP6968543B2 (en) Copper particle structure and copper ink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791464

Country of ref document: EP

Kind code of ref document: A1