WO2018198756A1 - 圧縮空気貯蔵発電装置 - Google Patents

圧縮空気貯蔵発電装置 Download PDF

Info

Publication number
WO2018198756A1
WO2018198756A1 PCT/JP2018/015071 JP2018015071W WO2018198756A1 WO 2018198756 A1 WO2018198756 A1 WO 2018198756A1 JP 2018015071 W JP2018015071 W JP 2018015071W WO 2018198756 A1 WO2018198756 A1 WO 2018198756A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
command value
generator
discharge
power supply
Prior art date
Application number
PCT/JP2018/015071
Other languages
English (en)
French (fr)
Inventor
佐藤 隆
亮 中道
松隈 正樹
浩樹 猿田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CA3059672A priority Critical patent/CA3059672A1/en
Priority to CN201880027534.XA priority patent/CN110537311A/zh
Priority to US16/603,812 priority patent/US10868440B2/en
Priority to EP18790912.2A priority patent/EP3618224A4/en
Publication of WO2018198756A1 publication Critical patent/WO2018198756A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/006Systems for storing electric energy in the form of pneumatic energy, e.g. compressed air energy storage [CAES]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • F05B2260/422Storage of energy in the form of potential energy, e.g. pressurized or pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a compressed air storage power generator.
  • CAES compressed air storage
  • CAES power generators use renewable energy to drive compressors to produce compressed air, store the compressed air in tanks, etc., and use compressed air to drive turbine generators when necessary to generate power It is a device to obtain.
  • Such a CAES power generator is disclosed in, for example, Patent Document 1.
  • Patent Document 1 Generally, a minimum output for driving an electric motor or a generator is specified. That is, no response can be made even if an output less than the specified minimum output is requested. In Patent Document 1, there is no suggestion regarding a method for dealing with an output less than the specified minimum output. Accordingly, it is considered that the CAES power generation device of Patent Document 1 stops operation when an output less than the minimum output specified is required.
  • An object of the present invention is to provide a compressed air storage power generator capable of responding even when an output less than the minimum output specified for an electric motor or a generator is required.
  • a compressed air storage power generation apparatus includes an electric motor driven by fluctuating input power, a plurality of compressors driven by the electric motor to compress air, and a compression discharged from the compressor A pressure accumulator that stores air; a plurality of expanders that are driven by compressed air supplied from the pressure accumulator; a generator that is driven by the expander and supplies output power that fluctuates to customer equipment; and the electric motor
  • An inverter for a motor that changes the rotation speed of the generator an inverter for a generator that changes the rotation speed of the generator, a power supply command receiving unit that receives the input power as a power supply command value before feeding the input power, and A discharge command receiving unit that receives the demand power from the customer facility as a discharge command value before outputting the output power, and the power supply command value corresponds to the minimum rotation speed of the motor
  • a power feeding determination unit that determines whether or not the charging power is smaller than a minimum charging power; a discharge determination unit that determines whether or not the discharge command value is smaller than a minimum
  • energy input electric power
  • the compressed air is supplied to the expander when necessary.
  • the production of compressed air by the compressor and the storage of the compressed air by the pressure accumulator is also referred to as charging
  • the generation of power by the generator using the compressed air of the accumulator is also referred to as discharge.
  • the power supply determination unit can determine whether the magnitude of the power supply command value is large enough to drive the motor, and the discharge determination unit determines the magnitude of the discharge command value from the generator. It can be determined whether or not the size is sufficient for driving.
  • each command value is not sufficiently large, that is, when an output less than the specified minimum output is requested, the motor or generator cannot be driven alone, but the input / output adjustment unit It is possible to drive the motor and the generator at the same time by canceling the output of the other.
  • the power supply command value and the discharge command value are in a canceling relationship with each other.
  • the discharge command value is insufficient, the discharge command value is increased, and the power supply command value is increased by the same amount, so that both command values can be offset and an insufficient discharge command value can be secured.
  • a general CAES power generator that does not have the above-described configuration cannot respond to a power supply command value or a discharge command value that is less than specified, but even when such a command value is given by the above-described configuration, it can be operated. Can be continued.
  • the control device calculates a difference between the power supply command value and the minimum charge power as a power supply shortage amount.
  • the input / output adjustment unit further generates a power greater than the insufficient power supply by driving the generator, and the power generated by the generator and the input power of the power supply command value
  • the electric motor may be driven by electric power that is equal to or greater than the minimum charging electric power combined with electric power that is greater than or equal to an insufficient power supply amount.
  • the power supply shortage amount can be calculated by the power supply shortage amount calculation unit and the power supply shortage amount can be compensated by the input / output adjustment unit, it is possible to secure the minimum charging power for driving the motor. Therefore, the operation can be continued even when a power supply command value that does not satisfy the regulations is given.
  • the control device calculates a difference between the discharge command value and the minimum discharge power as a discharge shortage amount.
  • the input / output adjustment unit may further include a calculation unit, and the input / output adjustment unit may drive the generator at a minimum rotational speed or more, and drive the electric motor with electric power that is greater than the insufficient discharge amount and greater than the minimum charge power.
  • the discharge shortage amount can be calculated by the discharge shortage amount calculation unit, and the discharge shortage amount can be eliminated by the input / output adjustment unit, so that the minimum discharge power for driving the generator can be secured. Therefore, the operation can be continued even when a discharge command value less than the standard is given.
  • a plurality of the compressors and the motors are provided, and the control device includes a compression leveling control unit that controls the motor inverter so as to level the drive time between the compressors and the motors. May be.
  • a plurality of the expanders and the generators are provided, and the control device controls the generator inverter so as to level the drive time between the expanders and the generators. You may have.
  • the rotational speed control of the compressor or the expander is suitably performed, so that the operation efficiency can be improved.
  • the schematic structure figure of the compressed air storage power generator concerning a 1st embodiment of the present invention.
  • the control block diagram of the compressed air storage power generator which concerns on 1st Embodiment.
  • the schematic block diagram of the compressed air storage power generator which concerns on 2nd Embodiment.
  • the control block diagram of the compressed air storage power generator which concerns on 2nd Embodiment.
  • a compressed air storage (CAES) power generation apparatus 1 shown in FIG. 1 stores electric power generated by a power generation facility 2 using renewable energy such as wind power generation or solar power generation in the form of compressed air, and when necessary. It is a device that generates power using compressed air and supplies power to customer facilities 3 such as villages, areas for district cooling and heating, large shopping centers, substations, or factories.
  • customer facilities 3 such as villages, areas for district cooling and heating, large shopping centers, substations, or factories.
  • the power generation facility 2 is provided with a power supply command transmitter 2a.
  • the power supply command transmission unit 2 a transmits a power supply command value to the CAES power generator 1.
  • a discharge command transmission unit 3 a is attached to the customer facility 3.
  • the discharge command transmission unit 3 a transmits a discharge command value to the CAES power generator 1.
  • the power supply command value means the power (input power to be described later) to be charged by the CAES power generation device 1 among the power generated by the power generation facility 2, and the discharge command value is the customer equipment 3 by the CAES power generation device. This means the power required for 1 (demand power to be described later).
  • the CAES power generator 1 performs necessary charging and discharging.
  • the power supply command transmission unit 2a is attached to the power generation facility 2.
  • the power supply command transmission unit 2a is not necessarily attached to the power generation facility 2, and may be installed at other places in the power system such as a substation. Good.
  • the CAES power generation apparatus 1 includes a plurality of compressors 10, a pressure accumulating tank (pressure accumulating unit) 11, and a plurality of expanders 12. In the present embodiment, three compressors 10 and three expanders 12 are arranged. A motor (electric motor) 13 is mechanically connected to each compressor 10. An electric motor inverter 14 is electrically connected to each motor 13. Further, a generator 15 is mechanically connected to each expander 12. A generator inverter 16 is electrically connected to each generator 15.
  • the electric power generated by the power generation facility 2 using renewable energy is supplied to the motor 13 via the power transmission / reception facility 4 and the motor inverter 14.
  • the power supplied from the power generation facility 2 to the motor 13 is referred to as input power.
  • the compressor 10 of this embodiment is a screw type. Therefore, the compressor 10 of the present embodiment includes a pair of screw rotors (not shown) inside, and the screw rotors are mechanically connected to the motor 13.
  • the compressor 10 is not limited to the screw type as long as the rotation speed can be controlled, and may be, for example, a scroll type.
  • the intake port 10a of the compressor 10 communicates with outside air through the air pipe 5a.
  • the discharge port 10b of the compressor 10 is fluidly connected to the pressure accumulation tank 11 through the air pipe 5b.
  • a valve 6a is attached to the air pipe 5b, and air flow can be allowed or blocked.
  • each motor 13 When input power is supplied to each motor 13, each motor 13 is operated, the above-described screw rotor is rotated, and each compressor 10 is driven. Each compressor 10 sucks air from the air inlet 10a through the air pipe 5a, compresses and discharges it from the outlet 10b, and pumps the compressed air to the pressure accumulation tank 11 through the air pipe 5b.
  • the pressure accumulation tank 11 is a steel tank, for example, and stores the compressed air fed from the compressor 10.
  • the pressure accumulation tank 11 is fluidly connected to the expander 12 through the air pipe 5c, and the compressed air stored in the pressure accumulation tank 11 is supplied to the expander 12 through the air pipe 5c. Further, a valve 6b is attached to the air pipe 5c, and air flow can be allowed or blocked.
  • the expander 12 of this embodiment is a screw type. Therefore, the expander 12 of this embodiment includes a pair of screw rotors (not shown) inside, and the screw rotors are mechanically connected to the generator 15.
  • the expander 12 is not limited to the screw type as long as the rotation speed can be controlled, and may be, for example, a scroll type.
  • the air inlet 12a of the expander 12 is fluidly connected to the pressure accumulation tank 11 through the air pipe 5c as described above.
  • the exhaust port 12b of the expander 12 is open to the outside air through the air pipe 5d.
  • each expander 12 When compressed air is supplied to each expander 12, the above-described screw rotor is rotated to drive each expander 12, that is, to drive each generator 15.
  • the air (exhaust air) expanded by each expander 12 is discharged to the outside air from each exhaust port 12b through the air pipe 5d.
  • the generator 15 generates power by being driven by the expander 12.
  • Each generator 15 is electrically connected to a power consumer facility 3 such as a factory, and the power generated by each generator 15 is supplied to the customer facility 3.
  • the CAES power generator 1 includes a control device 30.
  • the control device 30 is constructed by hardware including a storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and software installed therein.
  • a storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and software installed therein.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a power supply command receiving unit 31 and a discharge command receiving unit 32 are electrically connected to the control device 30.
  • the power supply command receiving unit 31 receives the power supply command value from the power supply command transmission unit 2 a and transmits the power supply command value to the control device 30.
  • the discharge command receiving unit 32 receives the discharge command value from the discharge command transmitting unit 3 a and transmits the discharge command value to the control device 30.
  • the control device 30 controls the motor inverter 14, the generator inverter 16, and the valves 6a and 6b based on the power supply command value and the discharge command value.
  • the control device 30 of the present embodiment includes a power supply determination unit 30a, a power supply insufficient amount calculation unit 30b, a discharge determination unit 30c, a discharge insufficient amount calculation unit 30d, and an input / output adjustment unit 30e.
  • the power supply determination unit 30 a determines whether or not the power supply command value is smaller than the power (minimum charging power) corresponding to the minimum rotation speed of the motor 13. In other words, the power supply determination unit 30a determines whether or not the motor 13 can be driven by the input power of the power supply command value.
  • the power supply insufficient amount calculation unit 30b calculates the difference between the power supply command value and the minimum charge power as the power supply insufficient amount. This power supply shortage amount represents the remaining power required to drive the motor 13 in addition to the input power of the power supply command value.
  • the discharge determination unit 30c determines whether or not the discharge command value is smaller than the power corresponding to the minimum rotation speed of the generator 15 (minimum discharge power). In other words, the discharge determination unit 30c determines whether or not the generator 15 can respond to the discharge command value.
  • the insufficient discharge amount calculation unit 30d calculates the difference between the discharge command value and the minimum discharge power as the insufficient discharge amount. This insufficient discharge amount represents the remaining discharge amount necessary for driving the generator 15 in addition to the discharge command value.
  • the input / output adjustment unit 30e determines that the power supply command value is smaller than the minimum charge power by the power supply determination unit 30a, or when the discharge command value is determined to be smaller than the minimum discharge power by the discharge determination unit,
  • the motor inverter 14 and the generator inverter 16 are controlled to drive the motor 13 and the generator 15 simultaneously.
  • the input / output adjustment unit 30e when it is determined by the power supply determination unit 30a that the power supply command value is smaller than the minimum charge power, the input / output adjustment unit 30e generates power that is greater than the power supply shortage by driving the generator 15.
  • the motor 13 is driven by power that is equal to or greater than the minimum charge power, which is a combination of the input power of the power feed command value and the power that is generated by the generator 15 and that is greater than the power shortage.
  • the input / output adjustment unit 30e opens the valve 6b and supplies compressed air from the pressure accumulation tank 11 to the expander 12. To do.
  • the input / output adjustment unit 30e controls the generator inverter 16, that is, controls the rotational speed of the generator 15 to generate electric power that is greater than the insufficient power supply amount. Then, the input / output adjustment unit 30e controls the motor inverter 14, that is, controls the rotational speed of the motor 13, and exceeds the input power of the power supply command value and the insufficient power supply generated by the generator 15 as described above. The output can be adjusted according to the electric power. At this time, the input / output adjustment unit 30 e opens the valve 6 a so that compressed air can be supplied from the compressor 10 to the pressure accumulating tank 11.
  • the input / output adjustment unit 30e drives the generator 15 at the minimum rotational speed or more, the discharge is insufficient or more and the minimum charge power or more.
  • the motor 13 is driven by the electric power.
  • the input / output adjustment unit 30e opens the valve 6b and supplies compressed air from the pressure accumulation tank 11 to the expander 12. .
  • the input / output adjustment unit 30e controls the generator inverter 16, that is, controls the rotational speed of the generator 15 to drive the motor at a minimum rotational speed or higher. At this time, surplus power is generated because output power equal to or greater than the discharge command value is obtained.
  • the input / output adjustment unit 30e controls the motor inverter 14, that is, controls the rotational speed of the motor 13, and drives the motor 13 so as to cancel out this surplus power. At this time, the input / output adjustment unit 30 e opens the valve 6 a so that compressed air can be supplied from the compressor 10 to the pressure accumulating tank 11.
  • the electric power generated by the generator 15 is not directly supplied to the motor 13, but the electric power consumed by the motor 13 and the electric power generated by the generator 15 are offset as a result. Has been. Therefore, no additional equipment such as electrical wiring for connecting the generator 15 and the motor 13 is required, and control by the input / output adjustment unit 30e is performed only by updating the software in the control device 30 using the existing equipment. Is feasible.
  • FIG. 3 is a graph showing the control by the input / output adjustment unit 30e.
  • the horizontal axis in FIG. 3 represents the command value
  • the power supply command value is represented by a negative value
  • the discharge command value is represented by a positive value.
  • the vertical axis in FIG. 3 represents the output of the motor 13 and the output of the generator 15.
  • the output (power consumed) of the motor 13 is represented by a negative value
  • Both the command value on the horizontal axis and the output on the vertical axis are shown in a ratio where the rated state is 100%.
  • the motor 13 of this embodiment has an output at the minimum rotational speed (minimum output) of ⁇ 40% with respect to a rated output of 100%. In other words, the motor 13 of this embodiment has an output of 40% of the rating when the magnitude of the input power is the minimum charging power. That is, the motor 13 of this embodiment cannot cope with a command value larger than ⁇ 40%.
  • the generator 15 of the present embodiment has an output at the minimum rotational speed (minimum output) of 10% with respect to a rated output of 100%. In other words, the generator 15 of this embodiment has an output of 10% with respect to the rating when outputting with the minimum discharge power. That is, the generator 15 of this embodiment cannot cope with a command value of less than 10%. Therefore, the command value in the range of ⁇ 40% to 10% cannot be responded if no additional control is performed, but in this embodiment, the entire range of ⁇ 100% to 100% is performed as follows. The response to the command value is realized.
  • the motor 13 supplies power as it is. It is driven by the input power of the command value. For example, when a command value of ⁇ 50% is given, the output of the motor 13 is ⁇ 50% as it is. At this time, the generator 15 is not driven.
  • the generator 15 When the command value is 10% or more, that is, when the discharge command value is given so that the generator 15 is driven at an output of 10% or more with respect to the rated output, the generator 15 is directly driven by the discharge command value. .
  • the output of the generator 15 is directly 50%. At this time, the motor 13 is not driven.
  • the insufficient power supply command value is calculated by the power supply shortage amount calculation unit 30b as described above, and a discharge command value equal to or greater than the calculated power supply shortage amount is supplied to the generator 15 to generate power. For example, if a command value of ⁇ 20% is given, the power shortage amount is calculated as ⁇ 20%.
  • the power supply command value is added by -20%, and the discharge command value is added by 20% accordingly, and the added amount is set to 0% as the total command value.
  • the command value 20% for the generator 15 and the command value ⁇ 40% for the motor 13 are combined to coincide with the actual command value ⁇ 20% so that there is no discrepancy with the actual command value.
  • the command value for the motor 13 becomes ⁇ 40%, so that the motor 13 can achieve the minimum output of ⁇ 40%.
  • the output of the motor 13 and the output of the generator 15 are often different in absolute value from the viewpoint of output efficiency even if the ratio to the rating is the same. Therefore, there is a case where the command value cannot be accurately canceled. In that case, a correction coefficient is introduced, and the command value can be canceled by increasing or decreasing the output of one of the motor 13 or the generator 15 in proportion to the other.
  • the same control is performed as when the command value is from -30% to 0%.
  • the output of the generator 15 is fixed to a minimum output of 10%.
  • the power supply shortage amount is calculated as ⁇ 5%.
  • the power supply command value is added by -5%, and the discharge command value is added by 5% accordingly, so that the additional amount can be set to 0% as the total command value.
  • the minimum output of the generator 15 is 10%, it is necessary to secure a discharge command value of 10% or more and drive the generator 15 with a minimum output of 10% or more.
  • the power supply deficit amount is -5%, but a power supply command value of -10% and a discharge command value of 10% are added to obtain the total command value.
  • the additional amount is 0%. That is, the command value 10% for the generator 15 and the command value -45% for the motor 13 are combined to match the actual command value -35%, so that there is no discrepancy with the actual command value.
  • the command value for the motor 13 becomes ⁇ 45%, the motor 13 can achieve the minimum output of ⁇ 40%, and the command value for the generator 15 becomes 10%, so that the generator 15 also achieves the minimum output of 10%. Can be achieved.
  • an insufficient discharge command value (discharge shortage amount) is calculated by the discharge shortage amount calculation unit 30d as described above, and the motor 13 charges more than the calculated discharge shortage amount. For example, if a command value of 5% is given, the insufficient discharge amount is calculated as 5%.
  • the discharge power command value is added by 5%, and the power supply command value is added by -5% in accordance therewith, so that the added amount can be 0% as the total command value.
  • the minimum output of the motor 13 is ⁇ 40%, it is necessary to secure a power supply command value of ⁇ 40% and drive the motor 13 with the minimum output of ⁇ 40% or less. Therefore, for example, if a command value of 5% is given, the discharge shortage amount is 5%, but a discharge command value of 40% and a power supply command value of -40% are added, and the total command value is added. The amount is 0%.
  • the command value 45% for the generator 15 and the command value ⁇ 40% for the compressor 10 are combined to match the actual command value of 5%, so that there is no discrepancy with the actual command value.
  • the generator 15 can achieve the minimum output of 10%, and the command value for the motor 13 is -40%, so the motor 13 also has the minimum output of -40%. Can be achieved.
  • the present embodiment it is possible to determine whether the magnitude of the power supply command value is sufficient for driving the motor 13 by the power supply determination unit 30a, and the magnitude of the discharge command value by the discharge determination unit 30c. It can be determined whether or not is large enough to drive the generator 15.
  • each command value is not sufficiently large, that is, when an output less than the specified minimum output is requested, the motor 13 or the generator 15 cannot be driven alone, but the input / output adjustment unit
  • the motor 13 and the generator 15 can be driven at the same time by using one output with the other by 30e. Specifically, considering the input power (input power) and the output power (output power), the power supply command value and the discharge command value are in a canceling relationship with each other.
  • both command values can be offset, and an insufficient power supply command value can be secured.
  • the discharge command value is insufficient, the discharge command value is increased, and the power supply command value is increased by the same amount, so that both command values can be offset and an insufficient discharge command value can be secured.
  • a general CAES power generation apparatus that does not have the configuration as in the present embodiment cannot respond to a power supply command value or a discharge command value that does not meet the standard, but such a command value is given by the configuration of the present embodiment. The operation can be continued even if
  • the power supply shortage amount can be calculated by the power supply shortage amount calculation unit, and the power supply shortage amount can be compensated by the input / output adjustment unit 30e. Therefore, the minimum charging power for driving the motor 13 is ensured. it can. Therefore, the operation can be continued even when a power supply command value that does not satisfy the regulations is given.
  • the insufficient discharge amount can be calculated by the insufficient discharge amount calculation unit, and the insufficient discharge amount can be eliminated by the input / output adjustment unit, so that the minimum discharge power for driving the generator 15 can be secured. Therefore, the operation can be continued even when a discharge command value less than the standard is given.
  • the CAES power generator 1 of the present embodiment shown in FIG. 4 is provided with a plurality of compressors 10 and expanders 12. Except for the configuration related to this, the configuration is the same as the configuration of the CAES power generator 1 of the first embodiment of FIG. Therefore, the same parts as those shown in FIG.
  • three compressors 10 are provided, and a motor 13 is mechanically connected to each compressor 10.
  • An electric motor inverter 14 is electrically connected to each motor 13.
  • three expanders 12 are provided, and a generator 15 is mechanically connected to each expander 12.
  • a generator inverter 16 is electrically connected to each generator 15.
  • the control device 30 includes a power supply determination unit 30a, a power supply shortage amount calculation unit 30b, a discharge determination unit 30c, a discharge shortage amount calculation unit 30d, an input / output adjustment unit 30e, and a compression leveling control unit 30f. And an expansion leveling control unit 30g.
  • the compression leveling control unit 30f controls the motor inverter 14 so as to level the drive time between the compressor 10 and the motor 13. Specifically, the driving time of the compressor 10 and the motor 13 is measured, and the driving priority is set higher in descending order of driving time. This priority is preferably updated when the initial operation is started. As a result, it is possible to prevent the compressor 10 and the motor 13 that are being driven from being stopped and drive the other compressors 10 and the motor 13, thereby enabling a stable operation.
  • the expansion leveling control unit 30g controls the generator inverter 16 so as to level the drive time between the expander 12 and the generator 15. Specifically, the drive time of the expander 12 and the generator 15 is measured, and the priority to use in order from the one with the shortest drive time is set higher. The priority is preferably updated when the initial operation is started. As a result, it is possible to prevent the driven expander 12 and the generator 15 from being stopped and drive the other expander 12 and the generator 15, thereby enabling stable operation.
  • each compressor 10 and motor 13 can be leveled by the compression leveling control unit 30f, only the specific compressor 10 and motor 13 are driven and prevented from deteriorating. it can.
  • the expansion leveling control unit 30g can level the drive time of each of the expander 12 and the generator 15, so that only the specific expander 12 and the generator 15 are driven and deteriorated. Can be prevented.
  • the target of power generation by renewable energy is steady (or repetitive) with natural forces, such as wind, sunlight, solar heat, wave or tidal power, running water or tide, for example. It is possible to target anything that uses energy that is replenished regularly and fluctuates irregularly. Further, the power may be changed by equipment that consumes a large amount of power in the factory using commercial power as input power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

圧縮空気貯蔵発電装置1は、モータ13と、圧縮機10と、蓄圧タンク11と、膨張機12と、発電機15と、電動機用インバータ14と、発電機用インバータ16と、給電指令受信部31と、放電指令受信部32と、制御装置30とを備える。制御装置30は、給電指令値が最小充電電力よりも小さいか否かを判定する給電判定部30aと、放電指令値が最小放電電力よりも小さいか否かを判定する放電判定部30cと、給電判定部によって給電指令値が最小充電電力よりも小さいと判定されるか、または、放電判定部によって放電指令値が最小放電電力よりも小さいと判定された場合、インバータ14,16を制御し、モータ13と発電機15とを同時に駆動する入出力調整部30eとを有する。

Description

圧縮空気貯蔵発電装置
 本発明は、圧縮空気貯蔵発電装置に関する。
 風力発電や太陽光発電などの再生可能エネルギーを利用した発電は、気象条件に依存するため、出力が安定しないことがある。そのため、適時に必要な電力を得るためには、エネルギー貯蔵システムを使用する必要がある。そのようなシステムの一例として、例えば、圧縮空気貯蔵(CAES:compressed air energy storage)発電装置が知られている。
 CAES発電装置は、再生可能エネルギーを用いて圧縮機を駆動して圧縮空気を製造し、圧縮空気をタンクなどに貯蔵し、必要なときに圧縮空気を使用してタービン発電機を駆動して電力を得る装置である。このようなCAES発電装置が、例えば特許文献1に開示されている。
特開2016-34211号公報
 一般に、電動機または発電機は、駆動するための最小出力が規定されている。即ち、規定された最小出力未満の出力を要求されても応答できない。特許文献1では、このような規定された最小出力未満の出力を要求された場合の対応方法に関する示唆がない。従って、仮に規定された最小出力未満の出力を要求された場合、特許文献1のCAES発電装置は運転を停止すると考えられる。
 本発明は、電動機または発電機に規定された最小出力未満の出力を要求された場合にも応答可能な圧縮空気貯蔵発電装置を提供することを課題とする。
 本発明の一実施形態に係る圧縮空気貯蔵発電装置は、変動する入力電力により駆動される電動機と、前記電動機によって駆動され、空気を圧縮する複数の圧縮機と、前記圧縮機から吐出された圧縮空気を蓄える蓄圧部と、前記蓄圧部から供給される圧縮空気によって駆動される複数の膨張機と、前記膨張機によって駆動され、需要家設備に変動する出力電力を供給する発電機と、前記電動機の回転速度を変更する電動機用インバータと、前記発電機の回転速度を変更する発電機用インバータと、前記入力電力の給電前に前記入力電力を給電指令値として受信する給電指令受信部と、前記出力電力の出力前に前記需要家設備からの需要電力を放電指令値として受信する放電指令受信部と、前記給電指令値が前記電動機の最低回転速度に相当する最小充電電力よりも小さいか否かを判定する給電判定部と、前記放電指令値が前記発電機の最低回転速度に相当する最小放電電力よりも小さいか否かを判定する放電判定部と、前記給電判定部によって前記給電指令値が前記最小充電電力よりも小さいと判定されるか、または、前記放電判定部によって前記放電指令値が前記最小放電電力よりも小さいと判定された場合、前記電動機用インバータと前記発電機用インバータを制御し、前記電動機と前記発電機とを同時に駆動する入出力調整部とを有する制御装置とを備える。
 この構成によれば、再生可能エネルギーのような出力が不規則に変動するエネルギー(入力電力)を蓄圧部にて圧縮空気として貯蔵でき、必要なときに圧縮空気を膨張機に供給し、発電機を駆動して発電できる。以降、圧縮機にて圧縮空気を製造して蓄圧部にて圧縮空気を貯蔵することを充電ともいい、蓄圧部の圧縮空気を利用して発電機にて発電することを放電ともいう。特に、上記構成では、給電判定部によって給電指令値の大きさが電動機を駆動するために十分な大きさであるか否かを判定でき、放電判定部によって放電指令値の大きさが発電機を駆動するために十分な大きさであるか否かを判定できる。各指令値が十分な大きさでないと判定された場合、即ち規定された最小出力未満の出力を要求された場合、電動機または発電機を単独では駆動させることができないが、入出力調整部によって一方の出力を他方で相殺することで電動機と発電機とを同時に駆動することはできる。具体的には、入力される電力(入力電力)と出力される電力(出力電力)を考慮すると、給電指令値および放電指令値は互いに相殺関係にあるため、給電指令値が足りない場合、給電指令値を増加させ、放電指令値も同じだけ増加させることで両指令値を相殺し、足りない給電指令値を確保できる。また、放電指令値が足りない場合、放電指令値を増加させ、給電指令値も同じだけ増加させることで両指令値を相殺し、足りない放電指令値を確保できる。仮に、上記のような構成を有していない一般のCAES発電装置では、規定に満たない給電指令値または放電指令値に応答できないが、上記構成によってそのような指令値が与えられた場合でも運転を継続させることができる。
 前記制御装置は、前記給電判定部によって前記給電指令値が前記最小充電電力よりも小さいと判定された場合、前記給電指令値と前記最小充電電力との差を給電不足量として算出する給電不足量演算部をさらに有し、前記入出力調整部は、前記発電機を駆動することで前記給電不足量以上の電力を発電し、前記給電指令値の前記入力電力と前記発電機によって発電された前記給電不足量以上の電力とを合わせた前記最小充電電力以上の電力によって前記電動機を駆動してもよい。
 この構成によれば、給電不足量演算部によって給電不足量を算出でき、入出力調整部によって給電不足量を補うことができるため、電動機を駆動するための最小充電電力を確保できる。従って、規定に満たない給電指令値が与えられた場合でも運転を継続できる。
 前記制御装置は、前記放電判定部によって前記放電指令値が前記最小放電電力よりも小さいと判定された場合、前記放電指令値と前記最小放電電力との差を放電不足量として算出する放電不足量演算部をさらに有し、前記入出力調整部は、前記発電機を最低回転速度以上で駆動し、前記放電不足量以上かつ前記最小充電電力以上の電力によって前記電動機を駆動してもよい。
 この構成によれば、放電不足量演算部によって放電不足量を算出でき、入出力調整部によって放電不足量を解消できるため、発電機を駆動するための最小放電電力を確保できる。従って、規定に満たない放電指令値が与えられた場合でも運転を継続できる。
 前記圧縮機および前記電動機は複数台設けられており、前記制御装置は、前記圧縮機および前記電動機間の駆動時間を平準化するように前記電動機用インバータを制御する圧縮平準化制御部を有してもよい。
 この構成によれば、圧縮平準化制御部によって、それぞれの圧縮機および電動機の駆動時間を平準化できるため、特定の圧縮機および電動機のみが駆動され、劣化することを防止できる。
 前記膨張機および前記発電機は複数台設けられており、前記制御装置は、前記膨張機および前記発電機間の駆動時間を平準化するように前記発電機用インバータを制御する膨張平準化制御部を有してもよい。
 この構成によれば、膨張平準化制御部によって、それぞれの膨張機および発電機の駆動時間を平準化できるため、特定の膨張機および発電機のみが駆動され、劣化することを防止できる。
 本発明によれば、複数の圧縮機または膨張機を備える圧縮空気貯蔵発電装置において、圧縮機または膨張機の回転数制御を好適に行っているため、運転効率を向上できる。
本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 第1実施形態に係る圧縮空気貯蔵発電装置の制御ブロック図。 第1実施形態に係る圧縮空気貯蔵発電装置の給電と放電に関するグラフ。 第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 第2実施形態に係る圧縮空気貯蔵発電装置の制御ブロック図。
 以下、添付図面を参照して本発明の実施形態を説明する。
(第1実施形態)
 図1に示す圧縮空気貯蔵(CAES)発電装置1は、風力発電や太陽光発電等の再生可能エネルギーを利用した発電設備2にて発電された電力を圧縮空気の態様で蓄え、必要なときに圧縮空気を用いて発電し、集落、地域冷暖房の対象エリア、規模の大きなショッピングセンター、変電所、または工場などの需要家設備3に電力を供給する装置である。
 本実施形態では、発電設備2には、給電指令送信部2aが取り付けられている。給電指令送信部2aは、CAES発電装置1に給電指令値を送信する。また、需要家設備3には、放電指令送信部3aが取り付けられている。放電指令送信部3aは、CAES発電装置1に放電指令値を送信する。ここで、給電指令値は発電設備2にて発電される電力のうちCAES発電装置1で充電すべき電力(後述する入力電力)のことをいい、放電指令値は需要家設備3がCAES発電装置1に要求する電力(後述する需要電力)のことをいう。後述するように、これらの給電指令値と放電指令値とに基づいて、CAES発電装置1は、必要な充電および放電を行う。なお、給電指令送信部2aは、この実施形態では発電設備2に付設されているが、必ずしも発電設備2に付設される必要はなく、変電所などの電力系統の他の場所に設置してもよい。
 CAES発電装置1は、複数台の圧縮機10と、蓄圧タンク(蓄圧部)11と、複数台の膨張機12とを備える。本実施形態では、3台の圧縮機10および3台の膨張機12が配置されている。各圧縮機10には、モータ(電動機)13がそれぞれ機械的に接続されている。各モータ13には電動機用インバータ14がそれぞれ電気的に接続されている。また、各膨張機12には、発電機15がそれぞれ機械的に接続されている。各発電機15には、発電機用インバータ16がそれぞれ電気的に接続されている。
 再生可能エネルギーを利用する発電設備2により発電された電力は、受送電設備4と、電動機用インバータ14とを介して、モータ13に供給される。以降、発電設備2からモータ13に供給される電力を入力電力という。
 本実施形態の圧縮機10は、スクリュ式である。そのため、本実施形態の圧縮機10は内部に図示しない一対のスクリュロータを備え、このスクリュロータはモータ13と機械的に接続されている。ただし、圧縮機10は、回転速度制御可能であればよく、スクリュ式に限定されず、例えばスクロール式であってもよい。
 圧縮機10の吸気口10aは、空気配管5aを通じて外気に連通している。圧縮機10の吐出口10bは、空気配管5bを通じて蓄圧タンク11に流体的に接続されている。空気配管5bには、バルブ6aが取り付けられており、空気の流動を許容または遮断できる。
 各モータ13に入力電力が供給されると、各モータ13が作動し、上記のスクリュロータが回転し、各圧縮機10を駆動する。各圧縮機10は、空気配管5aを通じて吸気口10aから空気を吸気し、圧縮して吐出口10bから吐出し、空気配管5bを通じて蓄圧タンク11に圧縮空気を圧送する。
 蓄圧タンク11は、例えば鋼製のタンクであり、圧縮機10から圧送された圧縮空気を蓄えている。蓄圧タンク11は、空気配管5cを通じて膨張機12と流体的に接続されており、蓄圧タンク11に蓄えられた圧縮空気は空気配管5cを通じて膨張機12に給気される。また、空気配管5cには、バルブ6bが取り付けられており、空気の流動を許容または遮断できる。
 本実施形態の膨張機12は、スクリュ式である。そのため、本実施形態の膨張機12は内部に図示しない一対のスクリュロータを備え、このスクリュロータは発電機15と機械的に接続されている。ただし、膨張機12は、回転速度制御可能であればよく、スクリュ式に限定されず、例えばスクロール式であってもよい。
 膨張機12の給気口12aは、前述のように空気配管5cを通じて蓄圧タンク11と流体的に接続されている。膨張機12の排気口12bは、空気配管5dを通じて外気に開放されている。
 各膨張機12に圧縮空気が給気されると、上記のスクリュロータが回転し、各膨張機12を駆動し、即ち各発電機15を駆動する。各膨張機12で膨張された空気(排気空気)は、各排気口12bから空気配管5dを通じて外気に放気される。
 発電機15は、膨張機12によって駆動されることで発電する。各発電機15は、工場などの電力の需要家設備3に電気的に接続されており、各発電機15で発電した電力は需要家設備3に供給される。
 また、CAES発電装置1は、制御装置30を備える。制御装置30は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)のような記憶装置を含むハードウェアと、それに実装されたソフトウェアにより構築されている。
 図1および図2に示すように、制御装置30には、給電指令受信部31と、放電指令受信部32とが電気的に接続されている。給電指令受信部31は、給電指令送信部2aから給電指令値を受け、制御装置30に給電指令値を伝達する。放電指令受信部32は、放電指令送信部3aから放電指令値を受け、制御装置30に放電指令値を伝達する。制御装置30は、給電指令値および放電指令値に基づいて、電動機用インバータ14と、発電機用インバータ16と、バルブ6a,6bとを制御する。
 本実施形態の制御装置30は、給電判定部30aと、給電不足量演算部30bと、放電判定部30cと、放電不足量演算部30dと、入出力調整部30eとを備える。
 給電判定部30aは、給電指令値がモータ13の最低回転速度に相当する電力(最小充電電力)よりも小さいか否かを判定する。換言すれば、給電判定部30aは、給電指令値の入力電力によってモータ13を駆動できるか否かを判定している。
 給電不足量演算部30bは、給電判定部30aによって給電指令値が最小充電電力よりも小さいと判定された場合、給電指令値と最小充電電力との差を給電不足量として算出する。この給電不足量は、給電指令値の入力電力に加えて、モータ13を駆動するために必要な残りの電力を表している。
 放電判定部30cは、放電指令値が発電機15の最低回転速度に相当する電力(最小放電電力)よりも小さいか否かを判定する。換言すれば、放電判定部30cは、放電指令値に対し、発電機15が応答可能であるか否かを判定している。
 放電不足量演算部30dは、放電判定部30cによって放電指令値が最小放電電力よりも小さいと判定された場合、放電指令値と最小放電電力との差を放電不足量として算出する。この放電不足量は、放電指令値に加えて、発電機15を駆動するために必要な残りの放電量を表している。
 入出力調整部30eは、給電判定部30aによって給電指令値が最小充電電力よりも小さいと判定されるか、または、放電判定部によって放電指令値が最小放電電力よりも小さいと判定された場合、電動機用インバータ14と発電機用インバータ16を制御し、モータ13と発電機15とを同時に駆動する。
 詳細には、給電判定部30aによって給電指令値が最小充電電力よりも小さいと判定された場合、入出力調整部30eは、発電機15を駆動することで給電不足量以上の電力を発電し、給電指令値の入力電力と発電機15によって発電された給電不足量以上の電力とを合わせた最小充電電力以上の電力によってモータ13を駆動する。具体的には、給電判定部30aによって給電指令値が最小充電電力よりも小さいと判定された場合、入出力調整部30eは、バルブ6bを開き、蓄圧タンク11から膨張機12に圧縮空気を供給する。そして、入出力調整部30eは、発電機用インバータ16を制御し、即ち発電機15の回転速度を制御して給電不足量以上の電力を発電する。そして、入出力調整部30eは、電動機用インバータ14を制御し、即ちモータ13の回転速度を制御し、給電指令値の入力電力と上記のように発電機15によって発電された給電不足量以上の電力とによって駆動可能な出力に調整する。このとき、入出力調整部30eは、バルブ6aを開き、圧縮機10から蓄圧タンク11に圧縮空気を供給できるようにしている。
 また、放電判定部によって放電指令値が最小放電電力よりも小さいと判定された場合、入出力調整部30eは、発電機15を最低回転速度以上で駆動し、放電不足量以上かつ最小充電電力以上の電力によってモータ13を駆動する。具体的には、放電判定部によって放電指令値が最小放電電力よりも小さいと判定された場合、入出力調整部30eは、バルブ6bを開き、蓄圧タンク11から膨張機12に圧縮空気を供給する。そして、入出力調整部30eは、発電機用インバータ16を制御し、即ち発電機15の回転速度を制御して最低回転速度以上で駆動する。このとき、放電指令値以上の出力電力を得ることになるため余剰電力が発生している。そして、入出力調整部30eは、電動機用インバータ14を制御し、即ちモータ13の回転速度を制御し、この余剰電力を相殺するようにモータ13を駆動する。このとき、入出力調整部30eは、バルブ6aを開き、圧縮機10から蓄圧タンク11に圧縮空気を供給できるようにしている。
 入出力調整部30eによる制御では、発電機15によって発電された電力がモータ13に直接供給されるわけではなく、モータ13にて消費する電力と発電機15にて発電する電力とが結果として相殺されている。従って、発電機15とモータ13とを接続する電気配線のような追加設備を要することもなく、既存の設備を利用して制御装置30内のソフトウェアを更新するのみで入出力調整部30eによる制御は実行可能である。
 上記の入出力調整部30eによる制御をグラフ化したものが図3である。図3の横軸は、指令値を表しており、給電指令値は負の値で表され、放電指令値は正の値で表されている。図3の縦軸はモータ13の出力および発電機15の出力を表しており、モータ13の出力(消費される電力)は負の値で表され、発電機15の出力(発電される電力)は正の値で表されている。横軸の指令値および縦軸の出力は、ともに定格状態を100%とした割合で示されている。
 本実施形態のモータ13は、定格出力100%に対し、最低回転速度での出力(最低出力)が-40%である。換言すれば、本実施形態のモータ13は、入力電力の大きさが最小充電電力のとき、定格に対して40%の出力となる。即ち、本実施形態のモータ13は、-40%より大きい指令値に対応できない。また、本実施形態の発電機15は、定格出力100%に対し、最低回転速度での出力(最低出力)が10%である。換言すれば、本実施形態の発電機15は、最小放電電力で出力するとき、定格に対して10%の出力となる。即ち、本実施形態の発電機15は、10%未満の指令値に対応できない。従って、-40%から10%の範囲の指令値に対して、何らの追加の制御を行わない場合には応答できないが、本実施形態では以下のようにして-100%から100%の全範囲の指令値に対する応答を実現している。
 図3に示すように、指令値が-40%以下のとき、即ちモータ13を定格出力に対して40%以上の出力で駆動するように給電指令値が与えられたとき、モータ13はそのまま給電指令値の入力電力によって駆動される。例えば、-50%の指令値が与えられると、モータ13の出力はそのまま-50%となる。このとき、発電機15は駆動されない。
 指令値が10%以上のとき、即ち発電機15を定格出力に対して10%以上の出力で駆動するように放電指令値が与えられたとき、発電機15はそのまま放電指令値によって駆動される。例えば、50%の指令値が与えられると、発電機15の出力はそのまま50%となる。このとき、モータ13は駆動されない。
 指令値が-30%から0%のとき、モータ13の最低出力が-40%であることから、モータ13を駆動するには給電指令値が足りない。給電指令値および放電指令値は正負の相殺関係にあるため、給電指令値が足りない場合、給電指令値を増加させ、放電指令値も同じだけ増加させることで両指令値を相殺し、足りない給電指令値を確保できる。そのため、足りない給電指令値(給電不足量)を給電不足量演算部30bによって前述のように算出し、算出した給電不足量以上の放電指令値を発電機15に与えて発電する。例えば、-20%の指令値が与えられると、給電不足量は-20%と算出される。そのため、給電指令値を-20%、それに合わせて放電指令値を20%、それぞれ追加し、合計の指令値としては追加量を0%とする。即ち、発電機15に対する指令値20%とモータ13に対する指令値-40%とを合わせ、実際の指令値-20%と一致させ、実際の指令値と齟齬を生じないようにする。これにより、モータ13に対する指令値が-40%となるため、モータ13は最低出力-40%を達成できる。なお、一般に、モータ13の出力と発電機15の出力は、定格に対する割合が同じでも出力効率の観点から絶対値では異なることが多い。そのため、指令値の正確な相殺ができない場合がある。その場合には補正係数を導入し、モータ13または発電機15の一方の出力を他方に対して比例的に増加または減少させることで、指令値の相殺が可能となる。
 指令値が-40%から-30%のとき、指令値が-30%から0%のときと概ね同じ制御を行う。ただし、このとき、発電機15の出力は最低出力10%に固定される。例えば、-35%の指令値が与えられると、給電不足量は-5%と算出される。そのため、給電指令値を-5%、それに合わせて放電指令値を5%、それぞれ追加し、合計の指令値としては追加量を0%とすることができる。しかし、本実施形態では、発電機15の最低出力が10%であるため、放電指令値を10%以上確保し、発電機15を最低出力10%以上で駆動する必要がある。従って、例えば、-35%の指令値が与えられると、給電不足量は-5%であるが、給電指令値を-10%、放電指令値を10%、それぞれ追加し、合計の指令値としては追加量を0%とする。即ち、発電機15に対する指令値10%とモータ13に対する指令値-45%とを合わせて、実際の指令値-35%と一致させ、実際の指令値と齟齬を生じないようにする。これにより、モータ13に対する指令値が-45%となるため、モータ13は最低出力-40%を達成でき、発電機15に対する指令値が10%となるため、発電機15も最低出力10%を達成できる。
 指令値が0%から10%のとき、発電機15の最低出力が10%であることから、発電機15を駆動するには放電指令値が足りない。放電指令値が足りない場合、給電指令値が足りない場合と同様に、放電指令値を増加させ、給電指令値も同じだけ増加させることで両指令値を相殺し、足りない放電指令値を確保できる。そのため、足りない放電指令値(放電不足量)を放電不足量演算部30dによって前述のように算出し、算出した放電不足量以上の充電をモータ13によって行う。例えば、5%の指令値が与えられると、放電不足量は5%と算出される。そのため、放電電指令値を5%、それに合わせて給電指令値を-5%、それぞれ追加し、合計の指令値としては追加量を0%とすることができる。しかし、本実施形態では、モータ13の最低出力が-40%であるため、給電指令値を-40%確保し、モータ13を最低出力-40%以下で駆動する必要がある。従って、例えば、5%の指令値が与えられると、放電不足量は5%であるが、放電指令値を40%、給電指令値を-40%、それぞれ追加し、合計の指令値としては追加量を0%とする。即ち、発電機15に対する指令値45%と圧縮機10に対する指令値-40%とを合わせて、実際の指令値5%と一致させ、実際の指令値と齟齬を生じないようにする。これにより、発電機15に対する指令値が45%となるため、発電機15は最低出力10%を達成でき、モータ13に対する指令値が-40%となるため、モータ13も最低出力-40%を達成できる。
 本実施形態によれば、給電判定部30aによって給電指令値の大きさがモータ13を駆動するために十分な大きさであるか否かを判定でき、放電判定部30cによって放電指令値の大きさが発電機15を駆動するために十分な大きさであるか否かを判定できる。各指令値が十分な大きさでないと判定された場合、即ち規定された最小出力未満の出力を要求された場合、モータ13または発電機15を単独では駆動させることができないが、入出力調整部30eによって一方の出力を他方で利用することでモータ13と発電機15とを同時に駆動することはできる。具体的には、入力される電力(入力電力)と出力される電力(出力電力)を考慮すると、給電指令値および放電指令値は互いに相殺関係にあるため、給電指令値が足りない場合、給電指令値を増加させ、放電指令値も同じだけ増加させることで両指令値を相殺し、足りない給電指令値を確保できる。また、放電指令値が足りない場合、放電指令値を増加させ、給電指令値も同じだけ増加させることで両指令値を相殺し、足りない放電指令値を確保できる。仮に、本実施形態のような構成を有していない一般のCAES発電装置では、規定に満たない給電指令値または放電指令値に応答できないが、本実施形態の構成によってそのような指令値が与えられた場合でも運転を継続させることができる。
 また、本実施形態によれば、給電不足量演算部によって給電不足量を算出でき、入出力調整部30eによって給電不足量を補うことができるため、モータ13を駆動するための最小充電電力を確保できる。従って、規定に満たない給電指令値が与えられた場合でも運転を継続できる。
 また、本実施形態によれば、放電不足量演算部によって放電不足量を算出でき、入出力調整部によって放電不足量を解消できるため、発電機15を駆動するための最小放電電力を確保できる。従って、規定に満たない放電指令値が与えられた場合でも運転を継続できる。
(第2実施形態)
 図4に示す本実施形態のCAES発電装置1は、第1実施形態と異なり、圧縮機10および膨張機12が複数台設けられている。これに関する構成以外は、図1の第1実施形態のCAES発電装置1の構成と同様である。従って、図1に示した構成と同様の部分については同様の符号を付して説明を省略する。
 本実施形態では、3台の圧縮機10が設けられており、各圧縮機10にはモータ13がそれぞれ機械的に接続されている。各モータ13には電動機用インバータ14がそれぞれ電気的に接続されている。また、本実施形態では、3台の膨張機12が設けられており、各膨張機12には発電機15がそれぞれ機械的に接続されている。各発電機15には発電機用インバータ16がそれぞれ電気的に接続されている。なお、図4では、詳細を図示していないが、各圧縮機10から蓄圧タンク11に選択的に圧縮空気を供給でき、蓄圧タンク11から各膨張機12にも選択的に圧縮空気を供給できる。
 本実施形態の制御装置30は、給電判定部30aと、給電不足量演算部30bと、放電判定部30cと、放電不足量演算部30dと、入出力調整部30eと、圧縮平準化制御部30fと、膨張平準化制御部30gとを備える。
 圧縮平準化制御部30fは、圧縮機10およびモータ13間の駆動時間を平準化するように電動機用インバータ14を制御する。具体的には、圧縮機10およびモータ13の駆動時間を計測し、駆動時間の少ないものから順に駆動する優先度を高く設定する。この優先度は、初期の運転開始時等に更新されることが好ましい。これにより、駆動中の圧縮機10およびモータ13を停止して他の圧縮機10およびモータ13を駆動することを防止できるため、安定した運転が可能となる。
 膨張平準化制御部30gは、膨張機12および発電機15間の駆動時間を平準化するように発電機用インバータ16を制御する。具体的には、膨張機12および発電機15の駆動時間を計測し、駆動時間の少ないものから順に使用する優先度を高く設定する。優先度は、初期の運転開始時等に更新されることが好ましい。これにより、駆動中の膨張機12および発電機15を停止して他の膨張機12および発電機15を駆動することを防止できるため、安定した運転が可能となる。
 本実施形態によれば、圧縮平準化制御部30fによって、それぞれの圧縮機10およびモータ13の駆動時間を平準化できるため、特定の圧縮機10およびモータ13のみが駆動され、劣化することを防止できる。
 また、本実施形態によれば、膨張平準化制御部30gによって、それぞれの膨張機12および発電機15の駆動時間を平準化できるため、特定の膨張機12および発電機15のみが駆動され、劣化することを防止できる。
 ここで記載した実施形態およびその変形例において、再生可能エネルギーによる発電の対象は、例えば、風力、太陽光、太陽熱、波力又は潮力、流水又は潮汐等、自然の力で定常的(もしくは反復的)に補充され、かつ不規則に変動するエネルギーを利用したもの全てを対象とすることが可能である。また、商用電力を入力電力として、工場内の他の大電力を消費する機器によって電力が変動するものであってもよい。
 以上により、本発明の具体的な実施形態やその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、個々の実施形態の内容を適宜組み合わせたものを、この発明の一実施形態としてもよい。
  1 CAES発電装置
  2 発電設備
  2a 給電指令送信部
  3 需要家設備
  3a 放電指令送信部
  4 受送電設備
  5a~5d 空気配管
  6a,6b バルブ
  10 圧縮機
  10a 吸気口
  10b 吐出口
  11 蓄圧タンク(蓄圧部)
  12 膨張機
  12a 給気口
  12b 排気口
  13 モータ(電動機)
  14 電動機用インバータ
  15 発電機
  16 発電機用インバータ
  30 制御装置
  30a 給電判定部
  30b 給電不足量演算部
  30c 放電判定部
  30d 放電不足量演算部
  30e 入出力調整部
  30f 圧縮平準化制御部
  30g 膨張平準化制御部
  31 給電指令受信部
  32 放電指令受信部

Claims (5)

  1.  変動する入力電力により駆動される電動機と、
     前記電動機によって駆動され、空気を圧縮する圧縮機と、
     前記圧縮機から吐出された圧縮空気を蓄える蓄圧部と、
     前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、
     前記膨張機によって駆動され、需要家設備に変動する出力電力を供給する発電機と、
     前記電動機の回転速度を変更する電動機用インバータと、
     前記発電機の回転速度を変更する発電機用インバータと、
     前記入力電力の給電前に前記入力電力を給電指令値として受信する給電指令受信部と、
     前記出力電力の出力前に前記需要家設備からの需要電力を放電指令値として受信する放電指令受信部と、
     前記給電指令値が前記電動機の最低回転速度に相当する最小充電電力よりも小さいか否かを判定する給電判定部と、前記放電指令値が前記発電機の最低回転速度に相当する最小放電電力よりも小さいか否かを判定する放電判定部と、前記給電判定部によって前記給電指令値が前記最小充電電力よりも小さいと判定されるか、または、前記放電判定部によって前記放電指令値が前記最小放電電力よりも小さいと判定された場合、前記電動機用インバータと前記発電機用インバータを制御し、前記電動機と前記発電機とを同時に駆動する入出力調整部とを有する制御装置と
     を備える、圧縮空気貯蔵発電装置。
  2.  前記制御装置は、
     前記給電判定部によって前記給電指令値が前記最小充電電力よりも小さいと判定された場合、前記給電指令値と前記最小充電電力との差を給電不足量として算出する給電不足量演算部をさらに有し、
     前記入出力調整部は、前記発電機を駆動することで前記給電不足量以上の電力を発電し、前記給電指令値の前記入力電力と前記発電機によって発電された前記給電不足量以上の電力とを合わせた前記最小充電電力以上の電力によって前記電動機を駆動する、請求項1に記載の圧縮空気貯蔵発電装置。
  3.  前記制御装置は、
     前記放電判定部によって前記放電指令値が前記最小放電電力よりも小さいと判定された場合、前記放電指令値と前記最小放電電力との差を放電不足量として算出する放電不足量演算部をさらに有し、
     前記入出力調整部は、前記発電機を最低回転速度以上で駆動し、前記放電不足量以上かつ前記最小充電電力以上の電力によって前記電動機を駆動する、請求項1に記載の圧縮空気貯蔵発電装置。
  4.  前記圧縮機および前記電動機は複数台設けられており、
     前記制御装置は、前記圧縮機および前記電動機間の駆動時間を平準化するように前記電動機用インバータを制御する圧縮平準化制御部を有する、請求項1から請求項3のいずれか1項に記載の圧縮空気貯蔵発電装置。
  5.  前記膨張機および前記発電機は複数台設けられており、
     前記制御装置は、前記膨張機および前記発電機間の駆動時間を平準化するように前記発電機用インバータを制御する膨張平準化制御部を有する、請求項1から請求項3のいずれか1項に記載の圧縮空気貯蔵発電装置。
PCT/JP2018/015071 2017-04-26 2018-04-10 圧縮空気貯蔵発電装置 WO2018198756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3059672A CA3059672A1 (en) 2017-04-26 2018-04-10 Compressed air energy storage generator
CN201880027534.XA CN110537311A (zh) 2017-04-26 2018-04-10 压缩空气贮藏发电装置
US16/603,812 US10868440B2 (en) 2017-04-26 2018-04-10 Compressed air energy storage generator
EP18790912.2A EP3618224A4 (en) 2017-04-26 2018-04-10 COMPRESSED AIR ENERGY STORAGE GENERATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087528A JP6885777B2 (ja) 2017-04-26 2017-04-26 圧縮空気貯蔵発電装置
JP2017-087528 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018198756A1 true WO2018198756A1 (ja) 2018-11-01

Family

ID=63919708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015071 WO2018198756A1 (ja) 2017-04-26 2018-04-10 圧縮空気貯蔵発電装置

Country Status (6)

Country Link
US (1) US10868440B2 (ja)
EP (1) EP3618224A4 (ja)
JP (1) JP6885777B2 (ja)
CN (1) CN110537311A (ja)
CA (1) CA3059672A1 (ja)
WO (1) WO2018198756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313418A (zh) * 2020-04-01 2020-06-19 国网四川省电力公司电力科学研究院 一种压缩空气储能的电力系统及其调度方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889604B2 (ja) * 2017-04-26 2021-06-18 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
US20230213149A1 (en) * 2021-12-31 2023-07-06 Kepler Energy Systems, Inc. Power Shift System to Store and Distribute Energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191586A (ja) * 1996-01-08 1997-07-22 Tomijiro Ikeda 電力変換貯蔵方法
JP2011106333A (ja) * 2009-11-17 2011-06-02 Yamatake Corp 圧縮空気供給システムおよび方法
JP2016034211A (ja) 2014-07-31 2016-03-10 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2016121675A (ja) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2016211515A (ja) * 2015-05-13 2016-12-15 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2016220350A (ja) * 2015-05-18 2016-12-22 株式会社神戸製鋼所 圧縮空気貯蔵発電方法及び圧縮空気貯蔵発電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236325A1 (de) * 2001-08-17 2003-02-27 Alstom Switzerland Ltd Verfahren zum Betreiben einer Gasspeicherkraftanlage
US8478625B2 (en) * 2001-08-17 2013-07-02 Alstom Technology Ltd Method for operating a gas storage power plant
DE102011112280B4 (de) * 2011-09-05 2022-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Anlage zur Speicherung von Energie mittels Druckluft
GB2495955A (en) * 2011-10-26 2013-05-01 Alstom Technology Ltd Compressed air energy storage system
ES2423973B1 (es) * 2012-02-23 2014-09-08 Prextor Systems, S.L. Tecnología caes de ciclo combinado (CCC)
JP6510876B2 (ja) * 2015-05-01 2019-05-08 株式会社神戸製鋼所 圧縮空気貯蔵発電方法および圧縮空気貯蔵発電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191586A (ja) * 1996-01-08 1997-07-22 Tomijiro Ikeda 電力変換貯蔵方法
JP2011106333A (ja) * 2009-11-17 2011-06-02 Yamatake Corp 圧縮空気供給システムおよび方法
JP2016034211A (ja) 2014-07-31 2016-03-10 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2016121675A (ja) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2016211515A (ja) * 2015-05-13 2016-12-15 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2016220350A (ja) * 2015-05-18 2016-12-22 株式会社神戸製鋼所 圧縮空気貯蔵発電方法及び圧縮空気貯蔵発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618224A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313418A (zh) * 2020-04-01 2020-06-19 国网四川省电力公司电力科学研究院 一种压缩空气储能的电力系统及其调度方法

Also Published As

Publication number Publication date
JP2018186657A (ja) 2018-11-22
CN110537311A (zh) 2019-12-03
CA3059672A1 (en) 2018-11-01
US10868440B2 (en) 2020-12-15
JP6885777B2 (ja) 2021-06-16
EP3618224A4 (en) 2020-09-16
EP3618224A1 (en) 2020-03-04
US20200083743A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
CN107534315B (zh) 压缩空气储能发电方法及压缩空气储能发电装置
CN110573736B (zh) 压缩空气储能发电装置
WO2016178358A1 (ja) 圧縮空気貯蔵発電方法および圧縮空気貯蔵発電装置
Chedid et al. Optimization and control of autonomous renewable energy systems
WO2016181841A1 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
CN110462181B (zh) 压缩空气储能发电装置
WO2018198756A1 (ja) 圧縮空気貯蔵発電装置
EP3372804A1 (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
JP6815369B2 (ja) 圧縮空気貯蔵発電装置および圧縮空気貯蔵発電方法
US11319876B2 (en) Compressed air energy storage power generation apparatus
WO2021039467A1 (ja) 圧縮空気貯蔵発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3059672

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790912

Country of ref document: EP

Effective date: 20191126