WO2018198567A1 - Ignition control device for internal-combustion engine - Google Patents

Ignition control device for internal-combustion engine Download PDF

Info

Publication number
WO2018198567A1
WO2018198567A1 PCT/JP2018/010157 JP2018010157W WO2018198567A1 WO 2018198567 A1 WO2018198567 A1 WO 2018198567A1 JP 2018010157 W JP2018010157 W JP 2018010157W WO 2018198567 A1 WO2018198567 A1 WO 2018198567A1
Authority
WO
WIPO (PCT)
Prior art keywords
knock
ignition
combustion
combustion engine
control device
Prior art date
Application number
PCT/JP2018/010157
Other languages
French (fr)
Japanese (ja)
Inventor
一浩 押領司
赤城 好彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018198567A1 publication Critical patent/WO2018198567A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an ignition control device for an internal combustion engine, and more particularly to an ignition control device for a fuel engine that controls ignition timing using an in-cylinder pressure sensor.
  • the optimum ignition timing that changes according to the operating condition is calculated as a combustion state parameter whose value is determined for each combustion cycle according to the relationship between the in-cylinder pressure and the crank angle.
  • a technique for improving the knock avoidance performance by optimizing the combustion state so as to realize the state parameter is known.
  • Patent Document 1 discloses a method for suppressing an amount of change in a specific combustion ratio point (crank angle at which combustion progresses to a predetermined combustion state) that changes for each cycle. Techniques for stabilizing the engine output are shown. This technique is effective as a method for controlling the ignition timing in a state where the air-fuel mixture is in excess of air or in a state where combustion is unstable in a state diluted with exhaust gas recirculation (EGR).
  • EGR exhaust gas recirculation
  • Patent Document 1 apart from the progress of combustion due to the flame propagation starting from the spark discharge by the spark plug, the abnormality that occurs from the self-ignition that occurs in the region where the flame has not yet reached (unburned region) With respect to the change in the combustion state caused by the occurrence of knock that is combustion, the assumed combustion change factor is different, which may promote the occurrence of knock.
  • An object of the present invention is to provide an ignition control device for an internal combustion engine that can predict the occurrence of knock due to a temperature change in an unburned region and can effectively suppress the knock in a combustion cycle in which the occurrence of knock is predicted. There is.
  • a feature of the present invention is that it includes a knock generation prediction unit that predicts the occurrence of knock based on a change in cooling loss (wall temperature change) of the internal combustion engine calculated based on a signal from an in-cylinder pressure sensor attached to the combustion chamber.
  • a knock control unit that controls the ignition timing of the internal combustion engine based on knock prediction information related to the cooling loss detected by the occurrence prediction unit is provided.
  • the occurrence of knock due to the increase in wall temperature accompanying the increase in cooling loss and the accompanying increase in temperature in the unburned region is predicted, and the ignition timing is retarded in the combustion cycle in which the occurrence of knock is predicted.
  • knock can be effectively suppressed.
  • FIG. 1 is an overall configuration diagram showing the overall configuration of an internal combustion engine to which the present invention is applied. It is the block diagram which showed the internal structure of the control apparatus shown in FIG. It is a system block diagram of the control apparatus shown in FIG. It is explanatory drawing explaining a combustion period, a combustion time, and a combustion ratio. It is explanatory drawing explaining a knock intensity
  • FIG. 1 shows the overall configuration of an internal combustion engine to which the present invention is applied.
  • FIG. 1 shows an automotive four-cylinder internal combustion engine that performs spark ignition combustion using gasoline as a fuel.
  • the internal combustion engine 100 shown in the drawing is an air flow sensor 1 that measures the amount of intake air, an electronic control throttle 2 that adjusts the pressure of the intake pipe 6, and an intake air temperature detector at an appropriate position of the intake pipe 6.
  • An intake air temperature sensor 15 for measuring the intake air temperature and an intake air pressure sensor 21 for measuring the pressure in the intake pipe 6 are provided.
  • the internal combustion engine 100 also includes a fuel injection device (in-cylinder direct injection injector or simply an injector for direct injection) for each cylinder (# 1 to # 4) communicating with each intake pipe 6 into the combustion chamber 12 of each cylinder. 3), an ignition system 4 that supplies ignition energy, and an in-cylinder pressure sensor 26 that detects in-cylinder pressure.
  • a fuel injection device in-cylinder direct injection injector or simply an injector for direct injection
  • an ignition system 4 that supplies ignition energy
  • an in-cylinder pressure sensor 26 that detects in-cylinder pressure.
  • the internal combustion engine 100 includes a cooling water temperature sensor 14 that measures the cooling water temperature of the internal combustion engine 100 at an appropriate position of the cylinder head 7, and an intake valve variable device 5a that adjusts the intake gas flowing into the cylinder. And an exhaust valve variable device 5b for adjusting the exhaust gas discharged from the cylinder.
  • the variable valve 5 has a phase angle sensor (not shown) for detecting the phase angle of the intake valve variable device 5a and the exhaust valve variable device 5b. By adjusting the phase angle of the device 5a and the exhaust valve variable device 5b), the intake amount and EGR amount of all cylinders from # 1 to # 4 can be adjusted.
  • a high pressure fuel pump 17 for supplying high pressure fuel to the fuel injection device 3 is connected to the fuel injection device 3 of the internal combustion engine 100 via a fuel pipe, and the fuel pressure is measured in the fuel pipe.
  • a fuel pressure sensor 18 is provided, a crankshaft (not shown) of the internal combustion engine 100 is provided with a crank angle sensor 13 for calculating its rotation angle, and a cylinder block (not shown) of the internal combustion engine 100 is provided. ) Is provided with a knock sensor 25 for detecting the vibration of the internal combustion engine 100.
  • the internal combustion engine 100 detects the air-fuel ratio of the exhaust gas at an appropriate position of the exhaust pipe 8 and a three-way catalyst 10 that purifies the exhaust and an aspect of an air-fuel ratio detector that is upstream of the three-way catalyst 10. And an exhaust gas temperature sensor 11 that measures the exhaust gas temperature upstream of the three-way catalyst 10 in one mode of the exhaust gas temperature detector.
  • the internal combustion engine 100 includes an engine control unit (hereinafter referred to as ECU) 20 that is a control means for controlling the combustion state of the internal combustion engine 100, and the air flow sensor 1, the air-fuel ratio sensor 9, and the cooling water temperature sensor described above. 14, intake temperature sensor 15, exhaust temperature sensor 11, crank angle sensor 13, fuel pressure sensor 18, intake pressure sensor 21, ignition system 4, in-cylinder pressure sensor 26, variable valve devices 5a and 5b, knock sensor 25, and the like.
  • a signal is transmitted to the ECU 20.
  • the ECU 20 is also transmitted with a signal obtained from an accelerator opening sensor 16 that detects the amount of depression of the accelerator pedal, that is, the accelerator opening.
  • the ECU 20 calculates a required torque for the internal combustion engine 100 based on a signal obtained from the accelerator opening sensor 16. Further, the ECU 20 calculates the rotational speed of the internal combustion engine 100 based on a signal obtained from the crank angle sensor 13. Further, the ECU 20 calculates the operating state of the internal combustion engine 100 based on signals obtained from the outputs of the various sensors described above, as well as air flow rate, fuel injection amount, ignition timing, throttle opening, variable valve operating amount, fuel A main operation amount related to the internal combustion engine 100 such as pressure is calculated.
  • the fuel injection amount calculated by the ECU 20 is converted into a valve opening pulse signal and transmitted to the fuel injection device 3. Further, an ignition signal generated so as to be ignited at the ignition timing calculated by the ECU 20 is transmitted from the ECU 20 to the ignition system 4. Further, the throttle opening calculated by the ECU 20 is transmitted to the electronic control throttle 2 as a throttle drive signal, the operation amount of the variable valve is transmitted to the valve variable devices 5a and 5b as a variable valve drive signal, and the fuel pressure is It is transmitted to the high pressure fuel pump 17 as a high pressure fuel pump drive signal.
  • a predetermined amount of fuel is supplied from the fuel injection device 3 to the air flowing into the combustion chamber 12 from the intake pipe 6 via the intake valve (not shown). Is injected to form an air-fuel mixture.
  • the air-fuel mixture formed in the combustion chamber 12 is exploded by a spark generated from the spark plug 4a (see FIG. 2) of the ignition system 4 at a predetermined ignition timing based on the ignition signal, and the combustion pressure causes a piston (not The driving force of the internal combustion engine 100 is generated by being pushed down.
  • the exhaust gas after the explosion is sent to the three-way catalyst 10 through the exhaust pipe 8, and the exhaust components of the exhaust gas are purified in the three-way catalyst 10 and discharged to the outside.
  • FIG. 2 shows the internal configuration of the ECU 20 shown in FIG.
  • the illustrated ECU 20 mainly includes an input circuit 20a, an input / output port 20b made up of an input port and an output port, a ROM 20d in which a control program describing the contents of arithmetic processing is stored, and a CPU 20e for arithmetic processing according to the control program. And a RAM 20c that stores a value indicating the operation amount of each actuator calculated according to the control program, and an ignition output circuit 20f that controls the spark plug based on a value indicating the operation amount of the spark plug.
  • an input circuit 20a of the ECU 20 includes an air flow sensor 1, an ignition system 4, an air-fuel ratio sensor 9, an exhaust gas temperature sensor 11, a crank angle sensor 13, a coolant temperature sensor 14, an intake air temperature sensor 15, an accelerator opening.
  • Output signals from the sensor 16, the fuel pressure sensor 18, the intake pressure sensor 21, the in-cylinder pressure sensor 26, the knock sensor 25, and the like are input.
  • the input signal input to the input circuit 20a is not limited to these.
  • the input signal of each sensor input to the input circuit 20a is transmitted to the input port in the input / output port 20b, stored in the RAM 20c, and then processed by the CPU 20e according to a control program stored in the ROM 20d in advance.
  • a value indicating the operation amount of each actuator calculated according to the control program by the CPU 20e is stored in the RAM 20c, and then transmitted to the output port in the input / output port 20b, and is transmitted to the ignition system 4 through the ignition output circuit 20f.
  • the drive circuit in ECU20 is not limited to this. Moreover, these drive circuits can also be provided outside ECU20.
  • the output signal of the in-cylinder pressure sensor 26 is input to the input circuit 20a of the ECU 20, and the ECU 20 stores in advance in the ROM 20d by the CPU 20e based on the input signal (becomes a knock signal).
  • the control program the occurrence of knock or the occurrence of knock in the internal combustion engine 100 is detected.
  • the ECU 20 detects a knock occurrence sign or a knock occurrence in the internal combustion engine 100, the ECU 20 transmits a control signal to the ignition system 4 via the ignition output circuit 20f to control the ignition timing in the retarded direction.
  • FIG. 3 is a diagram showing an outline of the control logic of knock occurrence prediction and knock suppression control executed in the ECU 20 of the ignition control device of the internal combustion engine according to the embodiment of the present invention.
  • the control logic correlates with detection information related to a change in cooling loss radiated from the combustion chamber through the combustion chamber wall surface and knock generation based on at least input information from the crank angle sensor 13 and the in-cylinder pressure sensor 26.
  • a knock occurrence prediction unit 27 that predicts the occurrence of a knock from a statistic (statistic average value, statistic mode value, etc.) and calculates a knock predictor flag; a knock occurrence predictor flag set by the knock occurrence predictor 27; It is comprised from the knock control part 28 which performs the ignition control for suppressing a knock based on the above-mentioned sensor output.
  • the knock occurrence prediction unit 27 and the knock control unit 28 are control function units constructed by the control program of the CPU 20e.
  • FIG. 4 is a diagram for explaining the specific combustion ratio, the arrival time of the specific combustion ratio, and the combustion period based on these, which are related indicators of cooling loss.
  • the combustion ratio is calculated by calculating the calorific value in the cylinder from the in-cylinder pressure and the in-cylinder volume, integrating the calculated calorific value in the cylinder, and further normalizing this.
  • the calorific value in the cylinder is calculated by the following formula.
  • Q is a calorific value [J]
  • is a specific heat ratio [ ⁇ ]
  • P is a pressure [Pa]
  • V is an in-cylinder volume [m 3 ]
  • is a crank angle [deg].
  • the integrated heat generation amount Q ( ⁇ ) at an arbitrary crank angle is calculated by integration from the ignition timing by the spark plug 4a to the arbitrary crank angle ⁇ . Specifically, the following formula is used.
  • ⁇ ADV is the crank angle [deg] of the ignition timing.
  • the total calorific value Q (total) is calculated by setting an appropriate integration completion time ⁇ END. Specifically, the following formula is used.
  • normalization of the heat generation amount is calculated by a ratio (Q ( ⁇ ) / Q (total)) of the total heat generation amount Q ( ⁇ ) and the total heat generation amount Q (total) at an arbitrary crank angle.
  • a combustion ratio MFB ( ⁇ ) a ratio of the total heat generation amount Q ( ⁇ ) and the total heat generation amount Q (total) at an arbitrary crank angle.
  • MFB ( ⁇ ) a combustion ratio of the combustion ratio
  • the combustion phase which is one of the indexes indicating the combustion state, is defined as the crank angle at which the combustion ratio MFB ( ⁇ ) has reached a specific value (specific combustion ratio point).
  • the combustion phase and the combustion period are exemplarily defined as values using a crank angle at which the combustion ratio reaches 10% and a crank angle at which the combustion ratio reaches 90%.
  • the combustion phase the crank angle timing at which the combustion rate reaches 10% is referred to as MFB10
  • MFB90 the crank angle timing at which the combustion rate reaches 90%.
  • a combustion period IG90 that is a crank angle period from the start of ignition to MFB90 and a combustion period MFB1090 that is a crank angle period from MFB10 to MFB90 can be defined.
  • the correlation with the cooling loss is stronger than that in the combustion period MFB1090. It is also possible to select the combustion period MFB1090. In this case, by selecting the MFB1090, the combustion change caused by the ignition can be removed and the examination can be made, so that the conditions with different ignition timings are arranged as the same condition. Can do.
  • the combustion period IG90 When the combustion period IG90 is short and combustion is completed quickly, the maximum temperature in the cylinder becomes high, and the residence time of the high-temperature combustion gas in the cylinder becomes long, so that the cooling loss (heat loss from the wall of the combustion chamber) ) Increases, and the wall surface temperature of the combustion chamber increases.
  • the combustion period IG90, the combustion period MFB1090, and the combustion ratio A change in cooling loss can be estimated using the MFB 90.
  • FIG. 5 is a diagram for defining the knock strength for determining the presence or absence of knock based on the detection value of the in-cylinder pressure sensor.
  • FIG. 5 shows the result of extracting the high-frequency component of the detected in-cylinder pressure as an absolute value.
  • the maximum value of the absolute value of the pressure high-frequency component is defined as the knock intensity, and the presence / absence of knock occurrence is determined.
  • the presence or absence of knocking can be detected using a plurality of detection methods even when the in-cylinder pressure sensor 26 is used, and detection using the knock sensor 25 is also possible.
  • the knock intensity can be defined based on the power spectrum obtained by processing the detected value of the knock sensor by FFT.
  • the control flow shown in FIG. 6 predicts knocking by statistically processing parameters such as the combustion period IG90, the combustion period MFB1090, and the combustion ratio MFB90 shown in FIG.
  • Step S61 the combustion ratio MFB ( ⁇ ) is calculated.
  • the combustion ratio MFB ( ⁇ ) can be calculated based on the equations shown in the description of FIGS.
  • the process proceeds to step S62.
  • Step S62 the statistic of combustion period IG90 (or combustion period MFB1090) is calculated. What is calculated in the calculation of the statistic is a statistical distribution, an average value, a mode value, and a history of a plurality of (predetermined number) combustion cycles of the target combustion period IG90.
  • FIG. 7A and FIG. 7B show the statistical distribution of the combustion period in FIG. 7A showing operating conditions with no knocking or low knock frequency, and FIG. 7B showing operating conditions with many knocks.
  • a characteristic curve indicated by a solid line is a curve obtained by approximating a statistical distribution with a normal distribution.
  • Statistic distribution is obtained by grouping for each combustion period and combustion time and arranging the number of appearances of each group as a percentage.
  • a combustion period group is defined every 5 [deg]
  • each group is numbered from 1 to n
  • the appearance ratios of the combustion cycles belonging to each group are R1, R2,..., Rn.
  • R1 to Rn are statistical distributions
  • the combustion period of the group having the largest appearance ratio is the mode value
  • the combustion period obtained by arithmetic average is the average value.
  • the mode value and the average value are almost the same, but the mode value and the average value are different when deviating from the normal distribution.
  • the frequency of occurrence of each combustion period is close to a normal distribution, and the average value and the mode value almost coincide.
  • the mode value shifts to the shorter combustion period side than the average value.
  • step S62 it is appropriate to calculate the statistic by dividing it into a plurality of conditions according to the conditions of the rotational speed of the internal combustion engine and the engine torque.
  • the ignition timing difference of several degrees (about 1 ° to 3 °) in the crank angle can be handled as the same condition.
  • step S62 the history of the combustion periods IG90 of a plurality of combustion cycles including the current combustion cycle and the combustion period IG90 of the current combustion cycle are calculated as statistics.
  • the change tendency of the cooling loss can be estimated from the history of a plurality of combustion cycles in the combustion period IG90.
  • an increase (decrease) in the cooling loss represents the rise (decrease) in the wall temperature accompanying the increase (decrease) in the wall heat transfer amount. Therefore, an increase (decrease) in the wall temperature means an increase (decrease) in the amount of heat received by the unburned area from the wall surface in the next combustion cycle, and further increases (decreases) the temperature in the unburned area. I mean.
  • step S62 by using the statistical distribution of the combustion period IG90 and the history of a plurality of combustion cycles, it is possible to capture the change in cooling loss (temperature of the unburned region) and the occurrence of knock using the same index, and the calculation. Increase in load can be suppressed. After executing the above calculation, the process proceeds to step S63.
  • step S63 the knock strength is calculated.
  • the calculation of the knock intensity can be defined from the maximum value of the absolute value of the high-frequency component by taking out the high-frequency component from the detection value of the in-cylinder pressure sensor, as shown in the description of FIGS. By doing in this way, the information which determines the strength of the knock generated based on the output of the cylinder pressure sensor can be obtained.
  • step S64 the knock predictor flag is set.
  • Step S64 a knock predictor flag is set.
  • the knock predictive flag is a flag that is set to “1” (YES) when the probability of occurrence of knocking is high in the next combustion cycle and “0” (NO) when low.
  • Knock is caused by self-ignition that occurs in the unburned area.
  • Self-ignition occurs when a high-temperature state is maintained through the occurrence of a low-temperature oxidation reaction caused by a temperature increase in the unburned region, or a high-temperature oxidation reaction that occurs when the temperature further increases.
  • the low-temperature oxidation reaction that is one step before knocking can be grasped, and if the temperature rises further in the next combustion cycle, then large-scale autoignition will occur in the next combustion cycle. It can be estimated that there is a high possibility of
  • a knock generation prediction method that assumes a cooling loss and a change in wall temperature and a change in unburned region temperature associated therewith is used.
  • step S64 it is determined from the combustion timing IG90 calculated in step S62 or the history of a plurality of combustion cycles in the combustion period whether the possibility of knocking is high in the next combustion cycle. If the temperature of the unburned region continues to increase every combustion cycle, that is, when the combustion period IG90 is continuously shortened by a plurality of combustion cycles, it is determined that the possibility of knocking is high, The knock predictor flag is set to “1”.
  • the tendency for the temperature of the unburned region to increase continuously for each combustion cycle can be explained as follows. That is, the combustion period IG90 becomes shorter as compared to the previous combustion cycle as the temperature rises due to heat transfer from the wall surface. Then, since the combustion period IG90 in the current combustion cycle is short, the heat transfer amount of the wall surface from the high-temperature combustion gas increases, and the wall surface temperature further increases.
  • the combustion period IG90 in the next combustion cycle is further shortened.
  • the combustion period IG90 is shortened for each combustion cycle, and the temperature of the unburned region increases for each combustion cycle.
  • step S64 “1” is set to the knock predictor flag on condition that the combustion period IG90 is shortened over a plurality of combustion cycles.
  • the knock predictor flag may be set to “1”. is there.
  • the combustion period IG90 is shortened by a plurality of combustion cycles, and further, when the combustion period IG90 of the current combustion cycle exceeds a predetermined determination threshold value and knocking does not occur in step S63, a small amount of fuel
  • the knock predictor flag may be set to “1” when a pressure vibration due to self-ignition of the light or a weak pressure vibration due to a low-temperature oxidation reaction is detected. By setting in this way, it is possible to predict the occurrence of low-temperature oxidation reaction or weak self-ignition, which is a sign of self-ignition leading to knock, and the occurrence of knock due to the temperature rise after that occurrence. Can be improved.
  • the setting of the knock predictor flag is completed, the process proceeds to step S65.
  • Step S65 a knock generation flag is set based on the knock intensity detected in step S63.
  • the knock generation flag is a flag that is set to “1” when a knock occurs and “0” when no knock occurs.
  • the knock intensity detected in step S63 exceeds a predetermined intensity that differs for each operating condition, the knock occurrence flag is set to “1”.
  • the knock predictor flag and the knock generation flag obtained in the control flow shown in FIG. 6 are sent to the knock controller 28 shown in FIG. 3 to control the ignition timing.
  • the control flow shown in FIG. 8 shows a control flow for controlling the ignition timing with reference to the knock predictor flag and the knock occurrence flag obtained in the control flow shown in FIG.
  • Step S81 it is determined whether or not knocking has occurred in the current combustion cycle. This determination can be made based on the knock occurrence flag set in step S65. If the knock determination flag is “0”, the process proceeds to step S82, and if the knock determination flag is “1”, the process proceeds to step S85.
  • Step S82 it is determined whether or not there is a sign of occurrence of knock in the current combustion cycle. This determination can be made based on the knock predictor flag set in step S64. If the knock predictor flag is “1”, it is predicted that a knock will occur, and the process proceeds to step S83. If the knock predictor flag is “0”, it is predicted that no knock will occur, and the process proceeds to step S84.
  • Step S83 since the occurrence of knocking is predicted in the next combustion cycle, the target value for retarding the ignition timing is set.
  • the target value of the ignition timing is set by setting the target value of the ignition timing for the purpose of suppressing the rise in the wall temperature, which is a cause of occurrence of knocking, by subtracting the retardation target value from the reference ignition timing determined by the operating conditions.
  • the retard target value is set to a value smaller than the knock retard target value of the retard control that is performed when the knock is generated. This setting method will be described with reference to FIG.
  • Step S84 Since it is determined that there is no sign of occurrence of knocking in Step S82, in Step S84, the current ignition timing map is set from the target ignition timing map set on the rotation / load map stored in the ROM 20d of the ECU 20. The ignition timing under the condition corresponding to the operating condition is calculated and the process goes to the end.
  • step S85 Since it is determined in step S81 that knocking has occurred, in step S85, it is determined whether the frequency of knocking is high.
  • the knock occurrence frequency can be determined from the relationship between the arithmetic mean value and the mode value of the combustion period IG90 in a plurality (predetermined number) of combustion cycles before the occurrence of knock under the current operating conditions.
  • the difference between the arithmetic average value and the mode value is within a predetermined range, it is determined that the knock occurrence frequency is low, the mode value is larger, and the difference from the arithmetic average value is “predetermined value”. If it is larger, it is determined that the knock occurrence frequency is high.
  • step S84 the process proceeds to step S84 to set the reference ignition timing described above.
  • step S86 the process proceeds to step S86.
  • Step S86 When it is determined in step S85 that the knock occurrence frequency is high, ignition timing retard processing based on knock detection is executed. In this case, the ignition timing of the next combustion cycle is retarded by a predetermined knock retardation target value at which knock does not occur, and exits to the end.
  • the knock retardation target value is set to a value larger than the retardation target value when knocking is predicted as described above. In the subsequent combustion cycle, the ignition timing is sequentially advanced by a predetermined amount for each combustion cycle and returned to the reference ignition timing.
  • step S83 shown in FIG. 8 the arithmetic processing executed in step S83 shown in FIG. 8 will be described with reference to FIG.
  • Step S91 a wall temperature target value setting process is executed.
  • the target wall surface temperature Ttar [K] under the current operation condition is calculated.
  • the average target wall surface temperature map can be determined by a prior experiment or a simulation under a predetermined operating condition.
  • the target temperature of the average wall surface temperature is defined by the limit to the occurrence of knock, the target temperature tends to increase qualitatively in the increasing direction of the rotation speed, and the target temperature tends to decrease in the increasing direction of the load.
  • the in-cylinder pressure is high under heavy load conditions, and the in-cylinder temperature in the unburned region due to the combustion phenomenon and piston compression increases, so it is necessary to lower the wall temperature, and the rotation speed is large. This is because the remaining time in the unburned region is shortened under the condition, and thus the in-cylinder temperature in the unburned region is allowed to be higher than when the rotational speed is low.
  • the target wall temperature Ttar is set, the process proceeds to step S92 to estimate the current wall temperature.
  • Step S92 the current wall temperature is estimated.
  • the wall temperature is estimated based on the coolant temperature Tw [K], the lubricating oil temperature To [K], the combustion period IG90 [deg] of the current combustion cycle, the knock intensity Pk [MPa] of the current combustion cycle, and the ignition timing ADV [ degATDC] or the like. That is, the wall temperature Twall [K] can be estimated as the following function using these estimation parameters as variables.
  • Twall f1 (Tw, To, IG90, Pk, ADV)
  • (1) the wall surface temperature increases as the water temperature and oil temperature increase
  • the wall surface temperature increases as the ignition timing advances.
  • Twall (K w ⁇ Tw) + (K o ⁇ To) ⁇ K IG90 ⁇ (IG90 ⁇ IG90ref) + K ADV ⁇ (ADV ⁇ ADVref) ⁇ K Pk (Pk ⁇ Pkref)
  • K w , K o , K IG90 , K ADV , and K Pk are positive values, and are coefficients that vary depending on operating conditions and the internal combustion engine.
  • IG90ref is a reference combustion period [deg]
  • ADVref is a reference ignition timing [degATDC]
  • Pkref is a reference knock intensity [MPa]
  • step S93 the ignition timing is controlled so that the estimated wall surface temperature Twall approaches the target wall surface temperature Ttar.
  • Step S93 the ignition timing retardation target value set in step S83 of FIG. 8 is set so that the wall surface temperature Twall estimated in step S92 approaches the target wall surface temperature Ttar obtained in step S91. Perform the desired operation.
  • the ignition timing retardation target value ADVret [deg] can be obtained as a function of the wall surface temperature Twall and the target wall surface temperature Ttar shown below.
  • ADVret f2 (Twall, Ttar) and the above function is expressed as follows because the ignition delay amount needs to be increased as the wall surface temperature Twall is higher and the difference from the target wall surface temperature Ttar is larger. Can do.
  • ADVret F1 (Twall-Ttar)
  • F1 is a positive coefficient
  • the retard target value ADVret is set to be larger as the difference between the wall surface temperature Twall of the current combustion cycle and the target wall surface temperature Ttar is larger. For this reason, since the wall surface temperature Twall can be greatly reduced, the wall surface temperature Twall can be efficiently converged to the target wall surface temperature Ttar quickly.
  • the ignition timing is advanced, and when the combustion chamber wall temperature Twall is decreased, the ignition timing is retarded so that the actual combustion chamber wall temperature Twall is set to the target wall temperature. It is possible to converge to the temperature Ttar.
  • FIG. 10 shows a control result of the ignition timing according to the progress of the combustion cycle when the control of the ignition timing is executed using the first embodiment.
  • the ignition timing the movement of the present embodiment is indicated by a solid line, and the movement of normal knock retard control is indicated by a broken line.
  • the combustion period tends to be shortened in the plurality of combustion cycles C1 and C2 before the combustion cycle C3, and the combustion period is further shortened in the current combustion cycle C3. It is determined that there is a high possibility that knocking will occur due to an increase in the temperature of the unburned area accompanying the rise in the wall temperature. Further, since the knock intensity is slightly increased, it can be determined that a low-temperature oxidation reaction has occurred, or that the combustion period is shorter than a predetermined value in the combustion cycle C3.
  • the ignition timing can be retarded to prevent knocking in the combustion cycle C4.
  • knock occurs in the combustion cycle C4 next to the combustion cycle C3, and this is detected and detected after two combustion cycles of the combustion cycle C3 (one combustion from the occurrence of knock). After the cycle), the ignition timing is retarded.
  • the occurrence of knock is predicted by estimating the wall temperature of the combustion chamber, and based on this, the ignition timing is retarded to converge to the normal wall temperature.
  • ignition timing retard control is executed from the combustion cycle subsequent to the combustion cycle C9.
  • knock does not occur in the combustion cycles C4 to C8. Therefore, it is possible to continuously generate knock after the knock cycle based on the knock occurrence frequency in step S85 of FIG. It is determined whether or not the ignition performance is high. If it is determined that the ignition timing is low, the ignition timing retarding control is not executed.
  • the ignition timing of the combustion cycle in which the possibility of knocking is high is retarded, or the ignition delay control is not executed when knocking occurs under a condition where the frequency of knocking is low.
  • unnecessary retard control of the ignition timing can be avoided, and fuel consumption deterioration can be suppressed.
  • the ignition timing is retarded to control the wall surface temperature so that knocking occurs in the combustion cycle next to the combustion cycle in which knocking is predicted. Can be suppressed.
  • the combustion period (crank angle) is used as an index representing the change in cooling loss, but this can also be used as the combustion phase.
  • the combustion phase the relationship between the piston position and the combustion is clarified, so that the estimation and correlation of the wall temperature become stronger and the estimation accuracy of the occurrence of knocking and the estimation accuracy of the wall temperature can be expected.
  • FIG. 11 is a control flow for the arithmetic processing performed by the knock occurrence prediction unit 27 shown in FIG. 3, and is substantially the same as the processing content of the control flow shown in FIG.
  • the second embodiment is different in that the in-cylinder pressure is used instead of the specific combustion ratio and the combustion period.
  • Step S111 the maximum position (crank angle) of the in-cylinder pressure is detected.
  • FIG. 12 explains the maximum position of the in-cylinder pressure. As shown in FIG. 12, the maximum position of the in-cylinder pressure indicates the crank angle at which the maximum value of the in-cylinder pressure in the current combustion cycle is located. Is.
  • the maximum position of the in-cylinder pressure is correlated with the combustion period, and if the combustion period is short, the maximum position of the in-cylinder pressure moves to the advance side.
  • the maximum position of the in-cylinder pressure is an amount having a correlation with the combustion period, the change in the cooling loss can be extracted from the change in the maximum position of the in-cylinder pressure.
  • Step S112 the statistic of the maximum position of the in-cylinder pressure is calculated. What is calculated in the calculation of the statistic is the statistical distribution and the average value, the mode value, and the history of a plurality of combustion cycles at the maximum position of the target in-cylinder pressure. Even at the maximum position of the in-cylinder pressure, in the operating condition where knock does not occur or the knock occurrence frequency is low, the occurrence frequency of the maximum position of each in-cylinder pressure is close to a normal distribution and is an average value as in FIG. 7A. And the mode value almost coincide. On the other hand, in the driving condition where the frequency of knocking is high, the mode value is shifted to the advance side as compared with the average value as in FIG. 7B. When the calculation of the statistics is completed, the process proceeds to step S113.
  • Step S113 knock strength is calculated. Since step S113 is the same as step S63, the description thereof is omitted. When the knock strength is obtained, the process proceeds to step S114.
  • Step S114 a knock predictor flag is set.
  • the knock predictor flag is a flag that is set to “1” when the probability of knock occurrence is high in the next combustion cycle, and “0” when low.
  • step S114 is substantially the same idea as step S64.
  • the knock predictor flag is set. “1 ⁇ may be set. By setting the knock predictor flag in this way, knocking occurs when the wall surface temperature state in the next combustion cycle reaches a specific determination threshold value. Since the determination can be made, the knock generation prediction accuracy can be improved.
  • the knocking predictor flag may be set to “1” when pressure vibration due to slight fuel self-ignition or weak pressure vibration caused by low-temperature oxidation reaction is detected. Is. " By setting in this way, it is possible to predict the occurrence of low-temperature oxidation reaction or weak self-ignition, which is a sign of self-ignition leading to knock, and the occurrence of knock due to the temperature rise after that occurrence. Can be improved.
  • the setting of the knock predictor flag is completed, the process proceeds to step S115.
  • Step S115 a knock generation flag is set based on the knock intensity detected in step S113. Since step S113 is the same process as step S63, description thereof is omitted.
  • the knock control unit 28 executes a control flow for controlling the ignition timing with reference to the knock predictor flag and the knock occurrence flag shown in FIG.
  • step S83 the processing of the control step executed in step S83 is different from that of the first embodiment.
  • the processing executed in step S83 is shown in FIG. 9, and the point that the wall temperature estimation in step S92 is calculated using the maximum value position of the in-cylinder pressure in this embodiment is different.
  • the wall surface temperature increases as the water temperature or oil temperature increases
  • the wall surface temperature increases as the maximum position of the in-cylinder pressure advances
  • the wall surface temperature depends on the ignition timing (degATDC).
  • Twall (K w ⁇ Tw) + (K o ⁇ To) ⁇ K ⁇ p ⁇ ( ⁇ pmax ⁇ pmaxref) + K ADV ⁇ (ADV ⁇ ADVref) ⁇ K Pk (Pk ⁇ Pkref)
  • K w , K o , K ⁇ p , K ADV , and K Pk are positive values, and are coefficients that vary depending on operating conditions and the internal combustion engine.
  • ⁇ pmaxref is the maximum position of the reference in-cylinder pressure, and these are arranged as a map for each operating condition and stored in the ROM 20d. Thereby, the current wall surface temperature Twall can be estimated.
  • step S93 the ignition timing is controlled so that the estimated wall surface temperature Twall approaches the target wall surface temperature Ttar.
  • step S93 an operation for obtaining a target value for retarding the ignition timing is executed so that the wall surface temperature Twall estimated in step S92 approaches the target wall surface temperature Ttar obtained in step S91.
  • the ignition timing retardation target value ADVret [deg] can be obtained as a function of the wall surface temperature Twall and the target wall surface temperature Ttar shown below.
  • ADVret f2 (Twall, Ttar) and the above function is expressed as follows because the ignition delay amount needs to be increased as the wall surface temperature Twall is higher and the difference from the target wall surface temperature Ttar is larger. Can do.
  • ADVret F1 (Twall-Ttar)
  • F1 is a positive coefficient
  • the retard target value ADVret is set to increase as the difference between the wall temperature Twall of the current combustion cycle and the target wall temperature Ttar increases. Therefore, the wall temperature Twall can be greatly reduced. it can. For this reason, the wall surface temperature Twall can be quickly converged to the target wall surface temperature Ttar efficiently.
  • F1 is a positive coefficient
  • the retard target value ADVret is set to increase as the difference between the wall temperature Twall of the current combustion cycle and the target wall temperature Ttar increases. Therefore, the wall temperature Twall
  • the present invention includes a knock generation prediction unit that predicts the occurrence of knock based on a change in cooling loss (wall temperature change) of the internal combustion engine calculated based on a signal from an in-cylinder pressure sensor attached to the combustion chamber.
  • the knock control unit is configured to control the ignition timing of the internal combustion engine based on knock prediction information related to the cooling loss detected by the knock generation prediction unit.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 Air flow sensor, 2 ... Electronic control throttle, 3 ... Fuel injection apparatus, 4 ... Ignition system, 5 ... Variable valve, 5a ... Intake valve variable device, 5b ... Exhaust valve variable device, 6 ... Intake pipe, 7 ... Cylinder head , 8 ... Exhaust pipe, 9 ... Air-fuel ratio sensor, 10 ... Three-way catalyst, 11 ... Exhaust temperature sensor, 12 ... Combustion chamber, 13 ... Crank angle sensor, 14 ... Coolant temperature sensor, 15 ... Intake temperature sensor, 16 ... Accelerator opening sensor, 17 ... high pressure fuel pump, 18 ... fuel pressure sensor, 20 ... internal combustion engine control unit, 20a ...

Abstract

The objective of the present invention is to provide an ignition control device for an internal-combustion engine capable of predicting the occurrence of knocking resulting from a temperature change in an uncombusted region, and capable of suppressing knocking effectively in a combustion cycle in which knocking has been predicted. To this end, the ignition control device is provided with a knocking occurrence predicting unit 27 which predicts knocking on the basis of a change in a cooling loss of an internal-combustion engine, calculated on the basis of a signal from a cylinder pressure sensor 26 attached to a combustion chamber, and is additionally provided with a knocking control unit 28 which controls an ignition period of the internal-combustion engine on the basis of detected information correlated to the cooling loss detected by the knocking occurrence predicting unit. Knocking resulting from a wall temperature increase accompanying an increase in cooling loss, and a concomitant temperature increase in the uncombusted region is predicted, and retardation control of the ignition period is performed in the combustion cycle in which knocking has been predicted, making it possible for knocking to be effectively suppressed.

Description

内燃機関の点火制御装置Ignition control device for internal combustion engine
 本発明は内燃機関の点火制御装置に係り、特に筒内圧センサを用いて点火時期を制御する燃機関の点火制御装置に関するものである。 The present invention relates to an ignition control device for an internal combustion engine, and more particularly to an ignition control device for a fuel engine that controls ignition timing using an in-cylinder pressure sensor.
 近年、自動車等の車両においては、燃料消費量(燃費)や排気ガス有害成分に関する規制が強化され、このような規制は今後もますます強化される傾向にある。特に、燃費に関する規制は、近年の燃料価格の高騰、地球温暖化への影響、エネルギー資源枯渇等の問題により、極めて関心の高い事項である。 In recent years, in vehicles such as automobiles, regulations on fuel consumption (fuel consumption) and exhaust gas harmful components have been strengthened, and such regulations tend to be strengthened in the future. In particular, regulations related to fuel consumption are of great interest due to problems such as recent increases in fuel prices, impacts on global warming, and depletion of energy resources.
 このような状況下において、例えば自動車産業では、車両の燃費性能や排気ガス浄化性能の向上を目的とした様々な技術開発が進められている。そして、燃費性能の向上を目的とした開発技術の一つとして、例えば、内燃機関の圧縮比を上げる高圧縮比化技術が知られている。また、排気ガス浄化性能の向上を目的とした開発技術の一つとして、例えば、吸気行程時に複数回に分けて燃料を噴射し、一回当たりの燃料噴射量を低減してPN(Particulate Number)を低減する多段噴射技術が知られている。 Under such circumstances, in the automobile industry, for example, various technological developments are being promoted for the purpose of improving the fuel efficiency performance and exhaust gas purification performance of the vehicle. As one of the development technologies aimed at improving the fuel consumption performance, for example, a high compression ratio technology for increasing the compression ratio of an internal combustion engine is known. In addition, as one of the development technologies aimed at improving the exhaust gas purification performance, for example, fuel is injected in multiple times during the intake stroke, and the fuel injection amount per time is reduced to reduce PN (Particulate Number) A multistage injection technique for reducing the above is known.
 上述した高圧縮比化技術では、内燃機関の圧縮比を上げると熱効率が向上して燃費が改善するものの、燃焼室内の温度が上昇してノックが発生し易くなることが知られている。
そのため、従来の内燃機関においては、ノック発生時に特定の周波数信号レベルが上昇することを利用して、シリンダーブロックに振動型のノックセンサを取り付け、ノックセンサから出力される所定クランク期間(ノックウインドウ)の信号をFFT(高速フーリエ変換)解析してノックの発生を検出し、このノック検出情報に基づいてノックの発生後に点火時期を遅角化することで、その後のノック発生を回避するようにしている。
In the above-described high compression ratio technology, it is known that when the compression ratio of the internal combustion engine is increased, thermal efficiency is improved and fuel efficiency is improved, but the temperature in the combustion chamber is increased and knocking is likely to occur.
For this reason, in a conventional internal combustion engine, by utilizing the fact that a specific frequency signal level rises when knocking occurs, a vibration type knock sensor is attached to the cylinder block, and a predetermined crank period (knock window) output from the knock sensor. Is detected by FFT (Fast Fourier Transform) analysis, and the ignition timing is retarded after the occurrence of the knock based on the knock detection information, thereby avoiding the subsequent occurrence of the knock. Yes.
 ところで、ノックの発生に対しては、燃焼状態から予めノックが発生する燃焼サイクルを予測し、この燃焼サイクルで点火時期を遅角制御することが有効であると考えられる。
これに関連して、運転状況に応じて変化する最適な点火時期を、筒内圧とクランク角の関係に応じて燃焼サイクル毎に値が定まる燃焼状態パラメータを算出し、この燃焼状態パラメータが目標燃焼状態パラメータを実現するように、燃焼状態を最適化することで、ノック回避性能の向上を図る技術が知られている。
By the way, for the occurrence of knock, it is considered effective to predict a combustion cycle in which knock occurs in advance from the combustion state and to retard the ignition timing in this combustion cycle.
In relation to this, the optimum ignition timing that changes according to the operating condition is calculated as a combustion state parameter whose value is determined for each combustion cycle according to the relationship between the in-cylinder pressure and the crank angle. A technique for improving the knock avoidance performance by optimizing the combustion state so as to realize the state parameter is known.
 例えば、特開2014-136972号公報(特許文献1)には、サイクル毎に変化する特定の燃焼割合点(燃焼が進行して所定の燃焼状態に達するクランク角)の変化量を抑制し、内燃機関の出力を安定させるための技術が示されている。この技術は、混合気が空気過剰な状態や、排気再循環ガス(EGR、Exhaust Gas Recirculation)による希釈された状態における燃焼不安定な状況に対しては、点火時期の制御手法として有効である。 For example, Japanese Unexamined Patent Application Publication No. 2014-136972 (Patent Document 1) discloses a method for suppressing an amount of change in a specific combustion ratio point (crank angle at which combustion progresses to a predetermined combustion state) that changes for each cycle. Techniques for stabilizing the engine output are shown. This technique is effective as a method for controlling the ignition timing in a state where the air-fuel mixture is in excess of air or in a state where combustion is unstable in a state diluted with exhaust gas recirculation (EGR).
特開2014-136972号公報JP 2014-136972 A
 しかしながら、特許文献1においては、点火プラグによる火花放電を起点に始まる火炎伝播による燃焼進行とは別に、まだ火炎の到達していない領域(未燃領域)にて生じる自着火を起点に発生する異常燃焼であるノックの発生により生じる燃焼状態の変化に対しては、想定している燃焼変化要因が異なるため、ノックの発生を助長させる恐れがある。 However, in Patent Document 1, apart from the progress of combustion due to the flame propagation starting from the spark discharge by the spark plug, the abnormality that occurs from the self-ignition that occurs in the region where the flame has not yet reached (unburned region) With respect to the change in the combustion state caused by the occurrence of knock that is combustion, the assumed combustion change factor is different, which may promote the occurrence of knock.
 本発明の目的は、未燃領域の温度変化によるノックの発生を予測し、ノックの発生が予測される燃焼サイクルで、効果的にノックを抑制することができる内燃機関の点火制御装置を提供することにある。 An object of the present invention is to provide an ignition control device for an internal combustion engine that can predict the occurrence of knock due to a temperature change in an unburned region and can effectively suppress the knock in a combustion cycle in which the occurrence of knock is predicted. There is.
 本発明の特徴は、燃焼室に取り付けられた筒内圧センサの信号に基づき算出した内燃機関の冷却損失の変化(壁温変化)基づきノックの発生を予測するノック発生予測部を備え、更に、ノック発生予測部で検出される冷却損失に関連するノック予測情報に基づき内燃機関の点火時期を制御するノック制御部を備える、ところにある。 A feature of the present invention is that it includes a knock generation prediction unit that predicts the occurrence of knock based on a change in cooling loss (wall temperature change) of the internal combustion engine calculated based on a signal from an in-cylinder pressure sensor attached to the combustion chamber. A knock control unit that controls the ignition timing of the internal combustion engine based on knock prediction information related to the cooling loss detected by the occurrence prediction unit is provided.
 本発明によれば、冷却損失の増加に伴う壁温上昇と、これに伴う未燃領域の温度上昇によるノックの発生を予測し、ノックの発生を予測した燃焼サイクルで点火時期を遅角制御することで、ノックを効果的に抑制することができる。 According to the present invention, the occurrence of knock due to the increase in wall temperature accompanying the increase in cooling loss and the accompanying increase in temperature in the unburned region is predicted, and the ignition timing is retarded in the combustion cycle in which the occurrence of knock is predicted. Thus, knock can be effectively suppressed.
本発明が適用される内燃機関の全体の構成を示した全体構成図である。1 is an overall configuration diagram showing the overall configuration of an internal combustion engine to which the present invention is applied. 図1に示す制御装置の内部構成を示したブロック図である。It is the block diagram which showed the internal structure of the control apparatus shown in FIG. 図2に示す制御装置のシステム構成図である。It is a system block diagram of the control apparatus shown in FIG. 燃焼期間、燃焼時期、燃焼割合を説明する説明図である。It is explanatory drawing explaining a combustion period, a combustion time, and a combustion ratio. ノック強度を説明する説明図である。It is explanatory drawing explaining a knock intensity | strength. 本発明の第1の実施形態になるノック発生予測部で実施する制御ステップを示すフローチャート図である。It is a flowchart figure which shows the control step implemented in the knock generation | occurrence | production prediction part which becomes the 1st Embodiment of this invention. ノック無しの場合の統計処理に基づく平均値、最頻値を説明する説明図である。It is explanatory drawing explaining the average value and mode value based on the statistical process in the case of no knock. ノック有りの場合の統計処理に基づく平均値、最頻値を説明する説明図である。It is explanatory drawing explaining the average value and mode value based on the statistical process in case of knocking. 図6に示すノック発生予測部の予測結果を使用してノックを抑制する制御ステップを示すフローチャート図である。It is a flowchart figure which shows the control step which suppresses a knock using the prediction result of the knock generation | occurrence | production prediction part shown in FIG. 図8に示す壁温による点火時期遅角設定の制御ステップを示すフローチャート図である。It is a flowchart figure which shows the control step of the ignition timing delay angle setting by wall temperature shown in FIG. 本発明の第1の実施形態を実施した場合のノック強度、燃焼期間、燃焼期間平均値。点火時期の変化を示す説明図である。Knock strength, combustion period, and combustion period average value when the first embodiment of the present invention is implemented. It is explanatory drawing which shows the change of ignition timing. 本発明の第2の実施形態になるノック発生予測部で実施する制御ステップを示すフローチャート図である。It is a flowchart figure which shows the control step implemented in the knock generation | occurrence | production prediction part which becomes the 2nd Embodiment of this invention. 筒内圧の変化を説明する説明図である。It is explanatory drawing explaining the change of a cylinder pressure.
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is also included in the range.
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は、本発明が適用される内燃機関の全体構成を示したものであり、例えば、燃料にガソリンを使用する火花点火式燃焼を実施する自動車用4気筒内燃機関を示したものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of an internal combustion engine to which the present invention is applied. For example, FIG. 1 shows an automotive four-cylinder internal combustion engine that performs spark ignition combustion using gasoline as a fuel.
 図示する内燃機関100は、吸気管6の適宜の位置に、吸入空気量を計測するエアフローセンサ1と、吸気管6の圧力を調整する電子制御スロットル2と、吸入空気温度検出器の一態様であって吸入空気温度を計測する吸気温度センサ15と、吸気管6内の圧力を計測する吸気圧センサ21と、を備えている。 The internal combustion engine 100 shown in the drawing is an air flow sensor 1 that measures the amount of intake air, an electronic control throttle 2 that adjusts the pressure of the intake pipe 6, and an intake air temperature detector at an appropriate position of the intake pipe 6. An intake air temperature sensor 15 for measuring the intake air temperature and an intake air pressure sensor 21 for measuring the pressure in the intake pipe 6 are provided.
 また、内燃機関100は、各吸気管6と連通する気筒(♯1~♯4)毎に、各気筒の燃焼室12の内部に燃料を噴射する燃料噴射装置(筒内直接噴射用インジェクタもしくは単にインジェクタともいう)3と、点火エネルギーを供給する点火システム4と、筒内圧を検出する筒内圧センサ26を備えている。 The internal combustion engine 100 also includes a fuel injection device (in-cylinder direct injection injector or simply an injector for direct injection) for each cylinder (# 1 to # 4) communicating with each intake pipe 6 into the combustion chamber 12 of each cylinder. 3), an ignition system 4 that supplies ignition energy, and an in-cylinder pressure sensor 26 that detects in-cylinder pressure.
 また、内燃機関100は、シリンダヘッド7の適宜の位置に、内燃機関100の冷却水温度を計測する冷却水温度センサ14を備えると共に、気筒内に流入する吸入ガスを調整する吸気バルブ可変装置5aと気筒内から排出される排気ガスを調整する排気バルブ可変装置5bとから構成される可変バルブ5を備えている。ここで、可変バルブ5は、吸気バルブ可変装置5aや排気バルブ可変装置5bの位相角を検出する位相角センサ(不図示)を有しており、後述するECU20によって可変バルブ5(特に吸気バルブ可変装置5aや排気バルブ可変装置5bの位相角)を調整することにより、♯1から♯4までの全気筒の吸気量およびEGR量を調整することができる。 In addition, the internal combustion engine 100 includes a cooling water temperature sensor 14 that measures the cooling water temperature of the internal combustion engine 100 at an appropriate position of the cylinder head 7, and an intake valve variable device 5a that adjusts the intake gas flowing into the cylinder. And an exhaust valve variable device 5b for adjusting the exhaust gas discharged from the cylinder. Here, the variable valve 5 has a phase angle sensor (not shown) for detecting the phase angle of the intake valve variable device 5a and the exhaust valve variable device 5b. By adjusting the phase angle of the device 5a and the exhaust valve variable device 5b), the intake amount and EGR amount of all cylinders from # 1 to # 4 can be adjusted.
 また、内燃機関100の燃料噴射装置3には、この燃料噴射装置3に高圧燃料を供給するための高圧燃料ポンプ17が燃料配管を介して接続され、この燃料配管には、燃料圧力を計測する燃料圧力センサ18が設けられており、内燃機関100のクランク軸(不図示)には、その回転角度を算出するクランク角度センサ13が設けられており、また、内燃機関100のシリンダブロック(不図示)には、内燃機関100の振動を検出するノックセンサ25が設けられている。 A high pressure fuel pump 17 for supplying high pressure fuel to the fuel injection device 3 is connected to the fuel injection device 3 of the internal combustion engine 100 via a fuel pipe, and the fuel pressure is measured in the fuel pipe. A fuel pressure sensor 18 is provided, a crankshaft (not shown) of the internal combustion engine 100 is provided with a crank angle sensor 13 for calculating its rotation angle, and a cylinder block (not shown) of the internal combustion engine 100 is provided. ) Is provided with a knock sensor 25 for detecting the vibration of the internal combustion engine 100.
 更に、内燃機関100は、排気管8の適宜の位置に、排気を浄化する三元触媒10と、空燃比検出器の一態様であって三元触媒10の上流側で排気の空燃比を検出する空燃比センサ9と、排気温度検出器の一態様あって三元触媒10の上流側で排気温度を計測する排気温度センサ11と、を備えている。 Further, the internal combustion engine 100 detects the air-fuel ratio of the exhaust gas at an appropriate position of the exhaust pipe 8 and a three-way catalyst 10 that purifies the exhaust and an aspect of an air-fuel ratio detector that is upstream of the three-way catalyst 10. And an exhaust gas temperature sensor 11 that measures the exhaust gas temperature upstream of the three-way catalyst 10 in one mode of the exhaust gas temperature detector.
 内燃機関100は、内燃機関100の燃焼状態を制御する制御手段であるエンジンコントロールユニット(以下、ECUと表記する)20を備えており、上述したエアフローセンサ1、空燃比センサ9、冷却水温度センサ14、吸気温度センサ15、排気温度センサ11、クランク角センサ13、燃料圧力センサ18、吸気圧センサ21、点火システム4、筒内圧センサ26、バルブ可変装置5a、5b、ノックセンサ25等から得られる信号が、ECU20に送信される。また、ECU20には、アクセルペダルの踏み込み量、すなわちアクセル開度を検出するアクセル開度センサ16から得られる信号も送信されている。 The internal combustion engine 100 includes an engine control unit (hereinafter referred to as ECU) 20 that is a control means for controlling the combustion state of the internal combustion engine 100, and the air flow sensor 1, the air-fuel ratio sensor 9, and the cooling water temperature sensor described above. 14, intake temperature sensor 15, exhaust temperature sensor 11, crank angle sensor 13, fuel pressure sensor 18, intake pressure sensor 21, ignition system 4, in-cylinder pressure sensor 26, variable valve devices 5a and 5b, knock sensor 25, and the like. A signal is transmitted to the ECU 20. The ECU 20 is also transmitted with a signal obtained from an accelerator opening sensor 16 that detects the amount of depression of the accelerator pedal, that is, the accelerator opening.
 ECU20は、アクセル開度センサ16から得られる信号に基づいて内燃機関100への要求トルクを演算する。また、ECU20は、クランク角度センサ13から得られる信号に基づいて内燃機関100の回転速度を演算する。また、ECU20は、上記した各種センサの出力から得られる信号に基づいて内燃機関100の運転状態を演算すると共に、空気流量、燃料噴射量、点火時期、スロットル開度、可変バルブの作動量、燃料圧力等といった内燃機関100に関する主要な作動量を演算する。 The ECU 20 calculates a required torque for the internal combustion engine 100 based on a signal obtained from the accelerator opening sensor 16. Further, the ECU 20 calculates the rotational speed of the internal combustion engine 100 based on a signal obtained from the crank angle sensor 13. Further, the ECU 20 calculates the operating state of the internal combustion engine 100 based on signals obtained from the outputs of the various sensors described above, as well as air flow rate, fuel injection amount, ignition timing, throttle opening, variable valve operating amount, fuel A main operation amount related to the internal combustion engine 100 such as pressure is calculated.
 ECU20で演算された燃料噴射量は、開弁パルス信号に変換されて燃料噴射装置3に送信される。また、ECU20で演算された点火時期で点火されるように生成された点火信号が、ECU20から点火システム4へ送信される。また、ECU20で演算されたスロットル開度は、スロットル駆動信号として電子制御スロットル2に送信され、可変バルブの作動量は、可変バルブ駆動信号としてバルブ可変装置5a、5bへ送信され、燃料圧力は、高圧燃料ポンプ駆動信号として高圧燃料ポンプ17へ送信される。 The fuel injection amount calculated by the ECU 20 is converted into a valve opening pulse signal and transmitted to the fuel injection device 3. Further, an ignition signal generated so as to be ignited at the ignition timing calculated by the ECU 20 is transmitted from the ECU 20 to the ignition system 4. Further, the throttle opening calculated by the ECU 20 is transmitted to the electronic control throttle 2 as a throttle drive signal, the operation amount of the variable valve is transmitted to the valve variable devices 5a and 5b as a variable valve drive signal, and the fuel pressure is It is transmitted to the high pressure fuel pump 17 as a high pressure fuel pump drive signal.
 ECU20から燃料噴射装置3へ送信された開弁パルス信号に基づいて、吸気管6から吸気バルブ(不図示)を介して燃焼室12内に流入した空気に対し燃料噴射装置3から所定量の燃料が噴射されることにより、混合気が形成される。燃焼室12内に形成された混合気は、点火信号に基づいて所定の点火時期で点火システム4の点火プラグ4a(図2参照)から発生される火花により爆発され、その燃焼圧によりピストン(不図示)が押し下げられて内燃機関100の駆動力が発生される。爆発後の排気ガスは、排気管8を介して三元触媒10に送出され、排気ガスの排気成分が三元触媒10内で浄化されて外部へ排出される。 Based on the valve opening pulse signal transmitted from the ECU 20 to the fuel injection device 3, a predetermined amount of fuel is supplied from the fuel injection device 3 to the air flowing into the combustion chamber 12 from the intake pipe 6 via the intake valve (not shown). Is injected to form an air-fuel mixture. The air-fuel mixture formed in the combustion chamber 12 is exploded by a spark generated from the spark plug 4a (see FIG. 2) of the ignition system 4 at a predetermined ignition timing based on the ignition signal, and the combustion pressure causes a piston (not The driving force of the internal combustion engine 100 is generated by being pushed down. The exhaust gas after the explosion is sent to the three-way catalyst 10 through the exhaust pipe 8, and the exhaust components of the exhaust gas are purified in the three-way catalyst 10 and discharged to the outside.
 図2は、図1に示すECU20の内部構成を示したものである。図示するECU20は、主に、入力回路20aと、入力ポートおよび出力ポートからなる入出力ポート20bと、演算処理内容を記述した制御プログラムが格納されるROM20dと、制御プログラムに従って演算処理するためのCPU20eと、制御プログラムに従って演算された各アクチュエータの作動量を示す値を格納するRAM20cと、点火プラグの作動量を示す値に基づいて点火プラグを制御する点火出力回路20fと、を備えている。 FIG. 2 shows the internal configuration of the ECU 20 shown in FIG. The illustrated ECU 20 mainly includes an input circuit 20a, an input / output port 20b made up of an input port and an output port, a ROM 20d in which a control program describing the contents of arithmetic processing is stored, and a CPU 20e for arithmetic processing according to the control program. And a RAM 20c that stores a value indicating the operation amount of each actuator calculated according to the control program, and an ignition output circuit 20f that controls the spark plug based on a value indicating the operation amount of the spark plug.
 図示するように、ECU20の入力回路20aには、エアフローセンサ1、点火システム4、空燃比センサ9、排気温度センサ11、クランク角センサ13、冷却水温度センサ14、吸気温度センサ15、アクセル開度センサ16、燃料圧力センサ18、吸気圧センサ21、筒内圧センサ26、ノックセンサ25等の出力信号が入力される。尚、入力回路20aに入力される入力信号はこれらに限定されない。入力回路20aに入力された各センサの入力信号は、入出力ポート20b内の入力ポートに送信され、RAM20cに保管された後、CPU20eでROM20dに予め格納された制御プログラムに従って演算処理される。 As shown in the figure, an input circuit 20a of the ECU 20 includes an air flow sensor 1, an ignition system 4, an air-fuel ratio sensor 9, an exhaust gas temperature sensor 11, a crank angle sensor 13, a coolant temperature sensor 14, an intake air temperature sensor 15, an accelerator opening. Output signals from the sensor 16, the fuel pressure sensor 18, the intake pressure sensor 21, the in-cylinder pressure sensor 26, the knock sensor 25, and the like are input. The input signal input to the input circuit 20a is not limited to these. The input signal of each sensor input to the input circuit 20a is transmitted to the input port in the input / output port 20b, stored in the RAM 20c, and then processed by the CPU 20e according to a control program stored in the ROM 20d in advance.
 CPU20eで制御プログラムに従って演算された各アクチュエータの作動量を示す値は、RAM20cに保管された後、入出力ポート20b内の出力ポートに送信され、点火出力回路20fを介して点火システム4に送信される。なお、ECU20内の駆動回路は、これに限定されない。また、これらの駆動回路は、ECU20の外に設けることもできる。 A value indicating the operation amount of each actuator calculated according to the control program by the CPU 20e is stored in the RAM 20c, and then transmitted to the output port in the input / output port 20b, and is transmitted to the ignition system 4 through the ignition output circuit 20f. The In addition, the drive circuit in ECU20 is not limited to this. Moreover, these drive circuits can also be provided outside ECU20.
 ここで、ECU20の入力回路20aには、上述したように筒内圧センサ26の出力信号が入力されており、ECU20は、その入力信号(ノック信号となる)に基づいて、CPU20eでROM20dに予め格納された制御プログラムに従って内燃機関100のノックの発生予兆やノックの発生を検出する。ECU20は、内燃機関100のノック発生予兆やノックの発生を検出した場合には、点火出力回路20fを介して点火システム4へ制御信号を送信してその点火時期を遅角方向制御する。 Here, as described above, the output signal of the in-cylinder pressure sensor 26 is input to the input circuit 20a of the ECU 20, and the ECU 20 stores in advance in the ROM 20d by the CPU 20e based on the input signal (becomes a knock signal). According to the control program, the occurrence of knock or the occurrence of knock in the internal combustion engine 100 is detected. When the ECU 20 detects a knock occurrence sign or a knock occurrence in the internal combustion engine 100, the ECU 20 transmits a control signal to the ignition system 4 via the ignition output circuit 20f to control the ignition timing in the retarded direction.
 次に、ECU20による内燃機関100のノックの発生予兆の検出方法及び点火時期の制御方法について、図3~図8を参照して説明する。尚、ノックの予兆は、ノックの予測とも言えるので、以下では、予兆、或いは予測と同義で説明することもある。 Next, a method of detecting the occurrence of knocking in the internal combustion engine 100 by the ECU 20 and a method of controlling the ignition timing will be described with reference to FIGS. In addition, since it can be said that the knock sign is also a knock prediction, the following explanation may be synonymous with the sign or the prediction.
 図3は、本発明の実施形態になる内燃機関の点火制御装置のECU20内で実行されるノック発生予測及びノック抑制制御の制御ロジックの概要を示す図である。制御ロジックは、少なくとも、クランク角センサ13及び筒内圧センサ26からの入力情報に基づき、燃焼室から燃焼室壁面を介して放熱される冷却損失の変化に関連する検出情報やノック発生に相関を持つ統計量(統計量平均値、統計量最頻値等)とからノックの発生を予測してノック予兆フラグを算出するノック発生予測部27と、ノック発生予測部27で設定したノック発生予兆フラグや上述のセンサ出力に基づきノックを抑制するための点火制御を実行するノック制御部28から構成されている。尚、ノック発生予測部27、ノック制御部28は、CPU20eの制御プログラムによって構築される制御機能部である。 FIG. 3 is a diagram showing an outline of the control logic of knock occurrence prediction and knock suppression control executed in the ECU 20 of the ignition control device of the internal combustion engine according to the embodiment of the present invention. The control logic correlates with detection information related to a change in cooling loss radiated from the combustion chamber through the combustion chamber wall surface and knock generation based on at least input information from the crank angle sensor 13 and the in-cylinder pressure sensor 26. A knock occurrence prediction unit 27 that predicts the occurrence of a knock from a statistic (statistic average value, statistic mode value, etc.) and calculates a knock predictor flag; a knock occurrence predictor flag set by the knock occurrence predictor 27; It is comprised from the knock control part 28 which performs the ignition control for suppressing a knock based on the above-mentioned sensor output. The knock occurrence prediction unit 27 and the knock control unit 28 are control function units constructed by the control program of the CPU 20e.
 図4は、冷却損失の関連指標である、特定燃焼割合及び特定燃焼割合の到達時期及びこれらに基づく燃焼期間を説明するための図である。燃焼割合は、筒内圧力及び筒内容積から筒内の発熱量を算出し、算出した筒内の発熱量を積算し、これを更に正規化することで計算している。尚、筒内の発熱量の算出は、以下の式で計算する。 FIG. 4 is a diagram for explaining the specific combustion ratio, the arrival time of the specific combustion ratio, and the combustion period based on these, which are related indicators of cooling loss. The combustion ratio is calculated by calculating the calorific value in the cylinder from the in-cylinder pressure and the in-cylinder volume, integrating the calculated calorific value in the cylinder, and further normalizing this. The calorific value in the cylinder is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ここで、Qは発熱量[J]、γは比熱比[-]、Pは圧力[Pa]、Vは筒内容積[m]、θはクランク角[deg]である。 Here, Q is a calorific value [J], γ is a specific heat ratio [−], P is a pressure [Pa], V is an in-cylinder volume [m 3 ], and θ is a crank angle [deg].
 次に、任意のクランク角度における積算発熱量Q(θ)は、点火プラグ4aによる点火時期から任意のクランク角θまでの積分により計算する。具体的には以下の式で計算する。 Next, the integrated heat generation amount Q (θ) at an arbitrary crank angle is calculated by integration from the ignition timing by the spark plug 4a to the arbitrary crank angle θ. Specifically, the following formula is used.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、θADVは点火時期のクランク角度[deg]である。 Here, θADV is the crank angle [deg] of the ignition timing.
 更に全発熱量Q(total)は、適切な積分完了時期θENDを設定して計算する。具体的には以下の式で計算する。 Furthermore, the total calorific value Q (total) is calculated by setting an appropriate integration completion time θEND. Specifically, the following formula is used.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 更に、発熱量の正規化は、任意のクランク角における積算発熱量Q(θ)と、全発熱量Q(total)の比(Q(θ)/Q(total))で計算し、以下では、これを燃焼割合MFB(θ)と表記する。また、燃焼状態を示す指標の一つである燃焼位相は、燃焼割合MFB(θ)が特定の値(特定燃焼割合点)に到達したクランク角として定義する。以下では、燃焼位相及び燃焼期間として、例示的に燃焼割合が10%に達したクランク角や、燃焼割合が90%に達したクランク角を用いた値で定義して説明を進める。 Further, normalization of the heat generation amount is calculated by a ratio (Q (θ) / Q (total)) of the total heat generation amount Q (θ) and the total heat generation amount Q (total) at an arbitrary crank angle. This is expressed as a combustion ratio MFB (θ). Further, the combustion phase, which is one of the indexes indicating the combustion state, is defined as the crank angle at which the combustion ratio MFB (θ) has reached a specific value (specific combustion ratio point). In the following description, the combustion phase and the combustion period are exemplarily defined as values using a crank angle at which the combustion ratio reaches 10% and a crank angle at which the combustion ratio reaches 90%.
 ここで、燃焼位相として、燃焼割合10%に達するクランク角時期をMFB10、燃焼割合90%に達するクランク角時期をMFB90と記すことにする。更に、燃焼期間としては、点火開始からMFB90までのクランク角期間である燃焼期間IG90と、MFB10からMFB90までのクランク角期間である燃焼期間MFB1090が定義できる。 Here, as the combustion phase, the crank angle timing at which the combustion rate reaches 10% is referred to as MFB10, and the crank angle timing at which the combustion rate reaches 90% is referred to as MFB90. Furthermore, as the combustion period, a combustion period IG90 that is a crank angle period from the start of ignition to MFB90 and a combustion period MFB1090 that is a crank angle period from MFB10 to MFB90 can be defined.
 本実施形態では、燃焼期間IG90を選択することで、全体の燃焼期間を扱うことが出来るのでより燃焼期間MFB1090に比べて冷却損失との相関が強くなる。尚、燃焼期間MFB1090を選択することも可能であり、この場合、MFB1090を選択することで、点火に起因する燃焼変化を除去して検討が出来るので点火時期の異なる条件を同一条件として整理することができる。 In this embodiment, since the entire combustion period can be handled by selecting the combustion period IG90, the correlation with the cooling loss is stronger than that in the combustion period MFB1090. It is also possible to select the combustion period MFB1090. In this case, by selecting the MFB1090, the combustion change caused by the ignition can be removed and the examination can be made, so that the conditions with different ignition timings are arranged as the same condition. Can do.
 そして、燃焼期間IG90が短く燃焼が早く完了すると筒内の最高温度が高くなり、また、筒内での高温の燃焼ガスの滞留時間が長くなるため、燃焼室の壁面からの冷却損失(熱損失)は大きくなり、燃焼室の壁面温度が高くなる。この冷却損失の変化傾向を判断するには、燃焼期間全体がどのように燃焼サイクル毎に変化するかを捉えることが重要であり、このためには、燃焼期間IG90、燃焼期間MFB1090、及び燃焼割合MFB90を用いて冷却損失の変化を推定することができる。 When the combustion period IG90 is short and combustion is completed quickly, the maximum temperature in the cylinder becomes high, and the residence time of the high-temperature combustion gas in the cylinder becomes long, so that the cooling loss (heat loss from the wall of the combustion chamber) ) Increases, and the wall surface temperature of the combustion chamber increases. In order to determine the change tendency of the cooling loss, it is important to grasp how the entire combustion period changes for each combustion cycle. For this purpose, the combustion period IG90, the combustion period MFB1090, and the combustion ratio A change in cooling loss can be estimated using the MFB 90.
 ただし、燃焼時期及び燃焼期間としては、MFB50など冷却損失の変化と相関を持つ期間は複数あり、また、内燃機関によっても異なるので、これらの指標で置き換えることも可能である。 However, as the combustion timing and the combustion period, there are a plurality of periods such as MFB50 which have a correlation with the change of the cooling loss, and also vary depending on the internal combustion engine, and can be replaced with these indexes.
 図5は、ノックの有無を筒内圧センサの検出値で判定するための、ノック強度を定義する図である。図5は検出した筒内圧力の高周波成分を抜き出した上で、絶対値として取り出した結果である。ここで、圧力高周波成分の絶対値の最大値をノック強度と定義して、ノック発生有無を判定する。ただし、ノック発生の有無は、筒内圧センサ26を用いた場合にも複数の検出方法があり、また、ノックセンサ25を用いた検出も可能であり、以下で示すノック検出に対しては、図5に示す方法以外も適用できる。例えば、ノックセンサの検出値をFFTによる処理で得られるパワースペクトルに基づきノック強度を定義することが出来る。 FIG. 5 is a diagram for defining the knock strength for determining the presence or absence of knock based on the detection value of the in-cylinder pressure sensor. FIG. 5 shows the result of extracting the high-frequency component of the detected in-cylinder pressure as an absolute value. Here, the maximum value of the absolute value of the pressure high-frequency component is defined as the knock intensity, and the presence / absence of knock occurrence is determined. However, the presence or absence of knocking can be detected using a plurality of detection methods even when the in-cylinder pressure sensor 26 is used, and detection using the knock sensor 25 is also possible. Other than the method shown in FIG. For example, the knock intensity can be defined based on the power spectrum obtained by processing the detected value of the knock sensor by FFT.
 次に図3に示すノック発生予測部27で実施する演算処理について、図6を用いて説明する。図6に示す制御フローは、図4に示す燃焼期間IG90、燃焼期間MFB1090、及び燃焼割合MFB90等のパラメータを統計処理してノックの発生を予兆するものである。 Next, calculation processing performed by the knock occurrence prediction unit 27 shown in FIG. 3 will be described with reference to FIG. The control flow shown in FIG. 6 predicts knocking by statistically processing parameters such as the combustion period IG90, the combustion period MFB1090, and the combustion ratio MFB90 shown in FIG.
 ≪ステップS61≫まず、ステップS61においては、燃焼割合MFB(θ)を算出する。燃焼割合MFB(θ)は、図4及び図4の説明で示した式に基づき計算することができる。燃焼割合MFB(θ)の計算が完了すると、ステップS62に移行する。 << Step S61 >> First, in step S61, the combustion ratio MFB (θ) is calculated. The combustion ratio MFB (θ) can be calculated based on the equations shown in the description of FIGS. When the calculation of the combustion ratio MFB (θ) is completed, the process proceeds to step S62.
 ≪ステップS62≫
 ステップS62においては、燃焼期間IG90(或いは、燃焼期間MFB1090)の統計量を算出する。統計量の算出で計算するものは、統計分布及び平均値、最頻値、及び対象とする燃焼期間IG90の複数(所定回数)の燃焼サイクルの履歴である。
<< Step S62 >>
In step S62, the statistic of combustion period IG90 (or combustion period MFB1090) is calculated. What is calculated in the calculation of the statistic is a statistical distribution, an average value, a mode value, and a history of a plurality of (predetermined number) combustion cycles of the target combustion period IG90.
 統計分布については、図7A、図7Bを用いて説明する。図7A、図7Bは燃焼期間の統計分布を、ノックがない、或いはノック頻度が小さい運転条件を図7Aに示し、ノックが多い運転条件を図7Bで示したものである。尚、実線で示す特性曲線は、統計分布を正規分布で近似した曲線である。 The statistical distribution will be described with reference to FIGS. 7A and 7B. FIG. 7A and FIG. 7B show the statistical distribution of the combustion period in FIG. 7A showing operating conditions with no knocking or low knock frequency, and FIG. 7B showing operating conditions with many knocks. A characteristic curve indicated by a solid line is a curve obtained by approximating a statistical distribution with a normal distribution.
 統計分布は、燃焼期間や燃焼時期毎にグループ分けをし、各グループの出現回数を割合として整理することで得られるものである。例えば、5[deg]毎に燃焼期間のグループを定義し、各グループに1番からn番まで番号をつけ、それぞれのグループに属する燃焼サイクルの出現割合をR1、R2、・・・、Rnとする。ここでR1からRnが統計分布であり、最も出現割合の大きいグループの燃焼期間が最頻値、算術平均で得られる燃焼期間が平均値である。 Statistic distribution is obtained by grouping for each combustion period and combustion time and arranging the number of appearances of each group as a percentage. For example, a combustion period group is defined every 5 [deg], each group is numbered from 1 to n, and the appearance ratios of the combustion cycles belonging to each group are R1, R2,..., Rn. To do. Here, R1 to Rn are statistical distributions, the combustion period of the group having the largest appearance ratio is the mode value, and the combustion period obtained by arithmetic average is the average value.
 正規分布に近い分布では、最頻値と平均値が概ね一致するが、正規分布からずれると最頻値と平均値は異なる値となる。尚、ノックが発生しない、又は、ノック発生頻度が低い運転条件においては、図7Aに示すように、各燃焼期間の発生頻度は正規分布に近く、平均値と最頻値が概ね一致する。一方、ノックの頻度が高い運転条件では、図7Bに示すように、平均値に比べて最頻値が燃焼期間の短い側に移行している。この平均値に比べて最頻値が燃焼期間の短い側に移行する理由は、ノックを引き起こす自着火燃焼の発生に伴い、火炎伝播により燃焼が進む場合に比べて、熱発生率が増加し、全熱発生が完了するまでの時間(燃焼期間)が短くなるためである。 In the distribution close to the normal distribution, the mode value and the average value are almost the same, but the mode value and the average value are different when deviating from the normal distribution. In an operating condition where knock does not occur or knock frequency is low, as shown in FIG. 7A, the frequency of occurrence of each combustion period is close to a normal distribution, and the average value and the mode value almost coincide. On the other hand, in the operating condition where the frequency of knocking is high, as shown in FIG. 7B, the mode value shifts to the shorter combustion period side than the average value. The reason why the mode shifts to the shorter combustion period compared to this average value is that the rate of heat generation increases with the occurrence of self-ignition combustion that causes knocking, compared to the case where combustion proceeds by flame propagation, This is because the time until the total heat generation is completed (combustion period) is shortened.
 尚、統計量は内燃機関の回転数、機関トルクの条件により、複数の条件に区分して算出することが適切である。ただし、燃焼期間を用いることで、クランク角で数°(1°~3°程度)の点火時期の違いは同じ条件として取り扱うことができる。ステップS62で実行する統計量の算出により、現時点での運転条件がノックの頻度が高い条件であるか、ノック発生の頻度が低い条件であるかを判定する状況を整理できる。 It should be noted that it is appropriate to calculate the statistic by dividing it into a plurality of conditions according to the conditions of the rotational speed of the internal combustion engine and the engine torque. However, by using the combustion period, the ignition timing difference of several degrees (about 1 ° to 3 °) in the crank angle can be handled as the same condition. By calculating the statistic executed in step S62, it is possible to organize the situation for determining whether the current driving condition is a condition where the frequency of knocking is high or a condition where the frequency of knocking is low.
 ステップS62においては、統計量として現在の燃焼サイクルを含む複数の燃焼サイクルの燃焼期間IG90の履歴、及び現在の燃焼サイクルの燃焼期間IG90を算出する。
この燃焼期間IG90の複数の燃焼サイクルの履歴から、冷却損失の変化傾向を推定できる。
In step S62, the history of the combustion periods IG90 of a plurality of combustion cycles including the current combustion cycle and the combustion period IG90 of the current combustion cycle are calculated as statistics.
The change tendency of the cooling loss can be estimated from the history of a plurality of combustion cycles in the combustion period IG90.
 図4の説明に示したとおり、燃焼期間IG90が短い場合は、冷却損失は相対的に大きく、燃焼期間IG90が長い場合は冷却損失が相対的に小さいことを利用すると、燃焼期間IG90の変化に基づき、燃焼サイクル毎の冷却損失の変化傾向を捉えることができる。 As shown in the explanation of FIG. 4, when the combustion period IG90 is short, the cooling loss is relatively large, and when the combustion period IG90 is long, the fact that the cooling loss is relatively small is used to change the combustion period IG90. Based on this, it is possible to capture the changing tendency of the cooling loss for each combustion cycle.
 ここで、冷却損失の増加(減少)は、壁面熱伝達量の増加(減少)に伴う壁面温度の上昇(下降)を表している。したがって、壁面温度の上昇(下降)は、次の燃焼サイクルで壁面から未燃領域が受け取る熱量の増加(減少)を意味し、更に未燃領域の温度が上昇(下降)する要因となることを意味している。 Here, the increase (decrease) in the cooling loss represents the rise (decrease) in the wall temperature accompanying the increase (decrease) in the wall heat transfer amount. Therefore, an increase (decrease) in the wall temperature means an increase (decrease) in the amount of heat received by the unburned area from the wall surface in the next combustion cycle, and further increases (decreases) the temperature in the unburned area. I mean.
 つまり、燃焼期間IG90が燃焼サイクル毎に連続的に短くなる変化を示している条件において、未燃領域の温度が燃焼サイクル毎に連続的に増加していると判断することができる。ステップS62において、燃焼期間IG90の統計分布及び複数の燃焼サイクルの履歴を用いることで、同一の指標を用いて冷却損失(未燃領域の温度)の変化やノック発生頻度を捉えることができ、計算負荷の増加を抑制できる。以上の計算を実行してステップS63に移行する。 That is, it can be determined that the temperature of the unburned region continuously increases for each combustion cycle under the condition that the combustion period IG90 shows a change that continuously decreases for each combustion cycle. In step S62, by using the statistical distribution of the combustion period IG90 and the history of a plurality of combustion cycles, it is possible to capture the change in cooling loss (temperature of the unburned region) and the occurrence of knock using the same index, and the calculation. Increase in load can be suppressed. After executing the above calculation, the process proceeds to step S63.
 ≪ステップS63≫ステップS63ではノック強度を算出する。ノック強度の算出は、図5及び図5の説明に示したとおり、筒内圧センサの検出値から高周波成分を取り出し、この高周波成分の絶対値の最大値から定義できる。このようにすることで、筒内圧センサの出力に基づき発生しているノックの強弱を判定する情報が得られる。次にステップS64に進み、ノック予兆フラグの設定を実行する。 << Step S63 >> In step S63, the knock strength is calculated. The calculation of the knock intensity can be defined from the maximum value of the absolute value of the high-frequency component by taking out the high-frequency component from the detection value of the in-cylinder pressure sensor, as shown in the description of FIGS. By doing in this way, the information which determines the strength of the knock generated based on the output of the cylinder pressure sensor can be obtained. Next, the process proceeds to step S64, where the knock predictor flag is set.
 ≪ステップS64≫ステップS64においては、ノック予兆フラグを設定する。ノック予兆フラグは、次の燃焼サイクルでノック発生の確率が高い場合に「1」(YES)、低い場合に「0」(NO)と設定されるフラグである。 << Step S64 >> In step S64, a knock predictor flag is set. The knock predictive flag is a flag that is set to “1” (YES) when the probability of occurrence of knocking is high in the next combustion cycle and “0” (NO) when low.
 ノックは、未燃領域で発生する自着火により引き起こされる。自着火は、未燃領域の温度上昇に伴い引き起こされる低温酸化反応の発生を経て、高温状態が維持されることや、更に温度が上昇することで発生する高温酸化反応に至ることで発生する。ノックの予兆を推定するには、ノックの一歩手前である低温酸化反応を捉え、更に、次の燃焼サイクルでさらに温度が上昇することを捉えることができれば、次の燃焼サイクルで大規模な自着火を発生する可能性が高いと推定できる。ここでは、冷却損失とこれに伴う壁温変化及び未燃領域温度の変化を想定したノック発生予測方法を用いている。 Knock is caused by self-ignition that occurs in the unburned area. Self-ignition occurs when a high-temperature state is maintained through the occurrence of a low-temperature oxidation reaction caused by a temperature increase in the unburned region, or a high-temperature oxidation reaction that occurs when the temperature further increases. In order to estimate the sign of knocking, if the low-temperature oxidation reaction that is one step before knocking can be grasped, and if the temperature rises further in the next combustion cycle, then large-scale autoignition will occur in the next combustion cycle. It can be estimated that there is a high possibility of Here, a knock generation prediction method that assumes a cooling loss and a change in wall temperature and a change in unburned region temperature associated therewith is used.
 ステップS64では、ステップS62で算出した燃焼時期IG90又は燃焼期間の複数の燃焼サイクルの履歴から、次の燃焼サイクルでノック発生の可能性が高いかを判定している。燃焼サイクル毎に未燃領域の温度が増加する傾向が続いている場合、つまり、燃焼期間IG90が複数の燃焼サイクルで連続して短縮している場合にノック発生の可能性が高いと判定し、ノック予兆フラグを「1」に設定する。 In step S64, it is determined from the combustion timing IG90 calculated in step S62 or the history of a plurality of combustion cycles in the combustion period whether the possibility of knocking is high in the next combustion cycle. If the temperature of the unburned region continues to increase every combustion cycle, that is, when the combustion period IG90 is continuously shortened by a plurality of combustion cycles, it is determined that the possibility of knocking is high, The knock predictor flag is set to “1”.
 連続的に燃焼サイクル毎に未燃領域の温度が増加する傾向は、次のように説明できる。
つまり、壁面からの熱伝達による温度上昇に伴い燃焼期間IG90が前の燃焼サイクルに比べて短くなる。すると、現在の燃焼サイクルでの燃焼期間IG90が短いことで高温の燃焼ガスから壁面の熱伝達量が増加し、更に壁面温度が増加する。
The tendency for the temperature of the unburned region to increase continuously for each combustion cycle can be explained as follows.
That is, the combustion period IG90 becomes shorter as compared to the previous combustion cycle as the temperature rises due to heat transfer from the wall surface. Then, since the combustion period IG90 in the current combustion cycle is short, the heat transfer amount of the wall surface from the high-temperature combustion gas increases, and the wall surface temperature further increases.
 この結果、現在の燃焼サイクルの次の燃焼サイクルで、未燃領域が壁面から受け取る熱量が増えるため、次の燃焼サイクルでの未燃領域の温度が現在の燃焼サイクルよりも高くなる。このため、次の燃焼サイクルでの燃焼期間IG90が更に短縮される。このような現象の繰り返しで、燃焼サイクル毎に燃焼期間IG90が短くなり、未燃領域の温度が燃焼サイクル毎に上昇していくようになる。 As a result, in the next combustion cycle of the current combustion cycle, the amount of heat that the unburned region receives from the wall surface increases, so the temperature of the unburned region in the next combustion cycle becomes higher than the current combustion cycle. For this reason, the combustion period IG90 in the next combustion cycle is further shortened. By repeating such a phenomenon, the combustion period IG90 is shortened for each combustion cycle, and the temperature of the unburned region increases for each combustion cycle.
 これを踏まえて、ステップS64では、燃焼期間IG90が複数の燃焼サイクルに亘って短くなることを条件に、ノック予兆フラグに「1」を設定する。このようにノック予兆フラグ設定することで、未燃領域の温度を直接的に検出することなく、次の燃焼サイクルにおけるノックの発生を予測できるため、ノック予兆フラグを利用して点火時期を制御してやればノック回避が事前に可能となる。 Based on this, in step S64, “1” is set to the knock predictor flag on condition that the combustion period IG90 is shortened over a plurality of combustion cycles. By setting the knock predictor flag in this way, it is possible to predict the occurrence of knock in the next combustion cycle without directly detecting the temperature of the unburned region, so control the ignition timing using the knock predictor flag. For example, knocking can be avoided in advance.
 或いは、燃焼期間IG90が複数の燃焼サイクルで短くなり、更に、現在の燃焼サイクルの燃焼期間IG90が所定の判定閾値を超えた場合に、ノック予兆フラグに「1」を設定しても良いものである。このようにノック予兆フラグを設定することで、次の燃焼サイクルでの壁面温度の状態が、特定の判定閾値まで達した際にノックが発生すると判定できるので、ノックの発生予測精度を向上することができる。 Alternatively, when the combustion period IG90 is shortened by a plurality of combustion cycles and the combustion period IG90 of the current combustion cycle exceeds a predetermined determination threshold value, the knock predictor flag may be set to “1”. is there. By setting the knock predictor flag in this way, it is possible to determine that knocking will occur when the wall surface temperature state in the next combustion cycle reaches a specific determination threshold value, so that the occurrence prediction of knocking can be improved. Can do.
 或いは、燃焼期間IG90が複数の燃焼サイクルで短くなり、更に、現在の燃焼サイクルの燃焼期間IG90が所定の判定閾値を超えた場合で、且つステップS63でノック発生とは至らないが、僅かな燃料の自着火による圧力振動、又は低温酸化反応に起因する弱い圧力振動の振動を検出した場合に、ノック予兆フラグを「1」に設定してもよいものである。このように設定することで、ノックに至る自着火の予兆である低温酸化反応、又は弱い自着火の発生と、その発生後の温度上昇によるノックの発生を予測できるので、更にノックの発生予測精度を向上することができる。以上のノック予兆フラグの設定が完了したら、ステップS65に移行する。 Alternatively, the combustion period IG90 is shortened by a plurality of combustion cycles, and further, when the combustion period IG90 of the current combustion cycle exceeds a predetermined determination threshold value and knocking does not occur in step S63, a small amount of fuel The knock predictor flag may be set to “1” when a pressure vibration due to self-ignition of the light or a weak pressure vibration due to a low-temperature oxidation reaction is detected. By setting in this way, it is possible to predict the occurrence of low-temperature oxidation reaction or weak self-ignition, which is a sign of self-ignition leading to knock, and the occurrence of knock due to the temperature rise after that occurrence. Can be improved. When the setting of the knock predictor flag is completed, the process proceeds to step S65.
 ≪ステップS65≫ステップS65においては、ステップS63により検出したノック強度に基づいてノック発生フラグを設定する。ノック発生フラグは、ノック発生時に「1」、ノック未発生であれば「0」に設定されるフラグである。ステップS63で検出されたノック強度が運転条件毎に異なる所定の強度を超える場合に、ノック発生フラグを「1」に設定する。 << Step S65 >> In step S65, a knock generation flag is set based on the knock intensity detected in step S63. The knock generation flag is a flag that is set to “1” when a knock occurs and “0” when no knock occurs. When the knock intensity detected in step S63 exceeds a predetermined intensity that differs for each operating condition, the knock occurrence flag is set to “1”.
 このように、図6に示した制御フローで求められた、ノック予兆フラグとノック発生フラグは、図3に示すノック制御部28に送られて点火時期が制御されることになる。 As described above, the knock predictor flag and the knock generation flag obtained in the control flow shown in FIG. 6 are sent to the knock controller 28 shown in FIG. 3 to control the ignition timing.
 次に図3に示すノック制御部28で実行する演算処理について、図8を用いて説明する。図8に示す制御フローは、図6に示す制御フローで求めた、ノック予兆フラグとノック発生フラグを参照して点火時期を制御する制御フローを示している。 Next, calculation processing executed by the knock control unit 28 shown in FIG. 3 will be described with reference to FIG. The control flow shown in FIG. 8 shows a control flow for controlling the ignition timing with reference to the knock predictor flag and the knock occurrence flag obtained in the control flow shown in FIG.
 ≪ステップS81≫ステップS81においては、現在の燃焼サイクルでノックが発生したかどうかを判定している。この判定には、ステップS65で設定したノック発生フラグに基づき判定できる。
ノック判定フラグが「0」であればステップS82に移行し、ノック判定フラグが「1」であればステップS85に移行する。
<< Step S81 >> In step S81, it is determined whether or not knocking has occurred in the current combustion cycle. This determination can be made based on the knock occurrence flag set in step S65.
If the knock determination flag is “0”, the process proceeds to step S82, and if the knock determination flag is “1”, the process proceeds to step S85.
 ≪ステップS82≫ステップS82においては、現在の燃焼サイクルでノックの発生の予兆があるかどうかを判定している。この判定には、ステップS64で設定したノック予兆フラグに基づき判定できる。ノック予兆フラグが「1」であれば、ノックが発生すると予測してステップS83に移行し、ノック予兆フラグが「0」であれば、ノックが発生しないと予測してステップS84に移行する。 << Step S82 >> In step S82, it is determined whether or not there is a sign of occurrence of knock in the current combustion cycle. This determination can be made based on the knock predictor flag set in step S64. If the knock predictor flag is “1”, it is predicted that a knock will occur, and the process proceeds to step S83. If the knock predictor flag is “0”, it is predicted that no knock will occur, and the process proceeds to step S84.
 ≪ステップS83≫ステップS83においては、次の燃焼サイクルでノック発生が予測されているため、点火時期の遅角目標値を設定する。ここでは、運転条件によって決まる基準点火時期から遅角目標値を減算することによって、ノックの発生予兆要因である壁面温度の上昇を抑制することを目的とする点火時期の目標値を設定してエンドに抜ける。尚、遅角目標値は、ノックが発生された時に行う遅角制御のノック遅角目標値よりも小さい値が設定される。この設定方法は、図9で説明する。 << Step S83 >> In step S83, since the occurrence of knocking is predicted in the next combustion cycle, the target value for retarding the ignition timing is set. Here, the target value of the ignition timing is set by setting the target value of the ignition timing for the purpose of suppressing the rise in the wall temperature, which is a cause of occurrence of knocking, by subtracting the retardation target value from the reference ignition timing determined by the operating conditions. Exit. The retard target value is set to a value smaller than the knock retard target value of the retard control that is performed when the knock is generated. This setting method will be described with reference to FIG.
 ≪ステップS84≫ステップS82でノックの発生の予兆がないと判断されているので、ステップS84においては、ECU20のROM20dに記憶している回転/負荷マップ上に設定された、目標点火時期マップから現在の運転条件に該当する条件における点火時期を算出してエンドに抜ける。 << Step S84 >> Since it is determined that there is no sign of occurrence of knocking in Step S82, in Step S84, the current ignition timing map is set from the target ignition timing map set on the rotation / load map stored in the ROM 20d of the ECU 20. The ignition timing under the condition corresponding to the operating condition is calculated and the process goes to the end.
 ≪ステップS85≫ステップS81でノックが発生したと判断されているので、ステップS85においては、ノック発生頻度が高いかどうかの判定を行なう。ノック発生頻度は、現在の運転条件における、ノック発生前の複数(所定回数)の燃焼サイクルでの燃焼期間IG90の算術平均値及び最頻値の関係から決めることができる。ここでは、算術平均値と最頻値の差が所定の範囲内であれば、ノック発生頻度が低いと判定し、最頻値の方が大きく、且つ算術平均値との差が「所定値」より大きければ、ノック発生頻度が高いと判定する。 << Step S85 >> Since it is determined in step S81 that knocking has occurred, in step S85, it is determined whether the frequency of knocking is high. The knock occurrence frequency can be determined from the relationship between the arithmetic mean value and the mode value of the combustion period IG90 in a plurality (predetermined number) of combustion cycles before the occurrence of knock under the current operating conditions. Here, if the difference between the arithmetic average value and the mode value is within a predetermined range, it is determined that the knock occurrence frequency is low, the mode value is larger, and the difference from the arithmetic average value is “predetermined value”. If it is larger, it is determined that the knock occurrence frequency is high.
 例えば、「ばらつき」の大きさを考慮して、クランク角で3°~5°程度に「所定値」を設定すると良いものである。ここで、ノック発生頻度が低いと判定した場合は、ステップS84に移行して上述した基準点火時期を設定する。一方、ノック発生頻度が高いと判定した場合は、ステップS86に移行する。 For example, in consideration of the magnitude of “variation”, it is good to set “predetermined value” to about 3 ° to 5 ° in crank angle. If it is determined that the knock occurrence frequency is low, the process proceeds to step S84 to set the reference ignition timing described above. On the other hand, if it is determined that the knock occurrence frequency is high, the process proceeds to step S86.
 ≪ステップS86≫ステップS85にてノック発生頻度が高いと判定した場合、ノック検出に基づく点火時期の遅角処理を実行する。この場合は、次の燃焼サイクルの点火時期を、ノックが発生しない所定のノック遅角目標値だけ大きく遅角してエンドに抜ける。ノック遅角目標値は、上述の通りノックが予兆された時の遅角目標値よりも大きい値に設定されている。尚、これに続く燃焼サイクルでは、燃焼サイクル毎に点火時期を所定量だけ順次進角させて基準点火時期まで復帰させるようにしている。 << Step S86 >> When it is determined in step S85 that the knock occurrence frequency is high, ignition timing retard processing based on knock detection is executed. In this case, the ignition timing of the next combustion cycle is retarded by a predetermined knock retardation target value at which knock does not occur, and exits to the end. The knock retardation target value is set to a value larger than the retardation target value when knocking is predicted as described above. In the subsequent combustion cycle, the ignition timing is sequentially advanced by a predetermined amount for each combustion cycle and returned to the reference ignition timing.
 次に、図8に示すステップS83で実行する演算処理について、図9を用いて説明する。 Next, the arithmetic processing executed in step S83 shown in FIG. 8 will be described with reference to FIG.
 ≪ステップS91≫ステップS91においては、壁温目標値設定処理を実行する。ここでは、ECU20のROM20dに記憶している運転条件毎の平均壁面温度マップに基づき、現在の運転条件における目標壁面温度Ttar[K]を計算する。平均目標壁面温度マップは、予め定めた運転条件での事前の実験や、シミュレーションにて決定することができる。 << Step S91 >> In step S91, a wall temperature target value setting process is executed. Here, based on the average wall surface temperature map for each operation condition stored in the ROM 20d of the ECU 20, the target wall surface temperature Ttar [K] under the current operation condition is calculated. The average target wall surface temperature map can be determined by a prior experiment or a simulation under a predetermined operating condition.
 平均壁面温度の目標温度を、ノックの発生に至る限界で規定すると、定性的に回転数の増加方向に目標温度は高くる傾向に設定され、負荷の増加方向に対して目標温度は低くなる傾向に設定される。これは、負荷が大きい条件では筒内圧力が高いため、燃焼現象やピストン圧縮による未燃領域の筒内温度が高温化するため、壁温を低くする必要が有るためであり、回転数が大きい条件では、未燃領域の残存する時間が短くなるため、未燃領域の筒内温度が回転数の低い場合に比べて高くなることを許容するためである。目標壁面温度Ttarが設定されると、ステップS92に移行して現在の壁温を推定する。 If the target temperature of the average wall surface temperature is defined by the limit to the occurrence of knock, the target temperature tends to increase qualitatively in the increasing direction of the rotation speed, and the target temperature tends to decrease in the increasing direction of the load. Set to This is because the in-cylinder pressure is high under heavy load conditions, and the in-cylinder temperature in the unburned region due to the combustion phenomenon and piston compression increases, so it is necessary to lower the wall temperature, and the rotation speed is large. This is because the remaining time in the unburned region is shortened under the condition, and thus the in-cylinder temperature in the unburned region is allowed to be higher than when the rotational speed is low. When the target wall temperature Ttar is set, the process proceeds to step S92 to estimate the current wall temperature.
 ≪ステップS92≫ステップS92においては、現在の壁温の推定を実行する。壁温の推定は、冷却水温度Tw[K]、潤滑油温度To[K]、現在の燃焼サイクルの燃焼期間IG90[deg]、現在の燃焼サイクルのノック強度Pk[MPa]、点火時期ADV[degATDC]等の推定パラメータに基づき実行される。つまり、これらの推定パラメータを変数とする以下の関数として、壁温Twall[K]を推定できる。
Twall=f1(Tw、To、IG90、Pk、ADV)
 ここで、(1)壁面温度は水温や油温の増加に伴い増加する、(2)壁面温度は燃焼期間が短くなるほど増加する、(3)壁面温度は点火時期が進角するほど増加する、(4)壁面温度は現在の燃焼サイクルのノック強度が大きい程減少する、という関係を用いて、上述の関数は以下のように表すことができる。
Twall=(K×Tw)+(K×To)-KIG90×(IG90-IG90ref)+KADV×(ADV-ADVref)-KPk(Pk-Pkref)
 ここで、K、K、KIG90、KADV、KPkは正の値であり、運転条件、内燃機関によって変化する係数である。また、「IG90ref」は基準の燃焼期間[deg]、「ADVref」は基準の点火時期[degATDC]、「Pkref」は基準のノック強度[MPa]であり、これらは運転条件毎にマップとして整理され、ROM20dに格納されている。これにより現在の壁面温度Twallを推定できる。
<< Step S92 >> In step S92, the current wall temperature is estimated. The wall temperature is estimated based on the coolant temperature Tw [K], the lubricating oil temperature To [K], the combustion period IG90 [deg] of the current combustion cycle, the knock intensity Pk [MPa] of the current combustion cycle, and the ignition timing ADV [ degATDC] or the like. That is, the wall temperature Twall [K] can be estimated as the following function using these estimation parameters as variables.
Twall = f1 (Tw, To, IG90, Pk, ADV)
Here, (1) the wall surface temperature increases as the water temperature and oil temperature increase, (2) the wall surface temperature increases as the combustion period becomes shorter, and (3) the wall surface temperature increases as the ignition timing advances. (4) Using the relationship that the wall surface temperature decreases as the knock intensity of the current combustion cycle increases, the above function can be expressed as follows.
Twall = (K w × Tw) + (K o × To) −K IG90 × (IG90−IG90ref) + K ADV × (ADV−ADVref) −K Pk (Pk−Pkref)
Here, K w , K o , K IG90 , K ADV , and K Pk are positive values, and are coefficients that vary depending on operating conditions and the internal combustion engine. “IG90ref” is a reference combustion period [deg], “ADVref” is a reference ignition timing [degATDC], and “Pkref” is a reference knock intensity [MPa], and these are arranged as a map for each operating condition. Stored in the ROM 20d. Thereby, the current wall surface temperature Twall can be estimated.
 このように、各変数に対して壁面温度Twallを推定することで、運転状況に応じて適切な壁温推定が可能になる。次にステップS93に移行して、推定した壁面温度Twallを目標壁面温度Ttarに近づけるように点火時期を制御する。 Thus, by estimating the wall surface temperature Twall for each variable, it is possible to estimate the wall temperature appropriately according to the operating conditions. Next, the process proceeds to step S93, and the ignition timing is controlled so that the estimated wall surface temperature Twall approaches the target wall surface temperature Ttar.
 ≪ステップS93≫ステップS93においては、ステップS92で推定した壁面温度Twallを、ステップS91で求めた目標壁面温度Ttarに近づけるように、図8のステップS83で設定される点火時期の遅角目標値を求める演算を実行する。 << Step S93 >> In step S93, the ignition timing retardation target value set in step S83 of FIG. 8 is set so that the wall surface temperature Twall estimated in step S92 approaches the target wall surface temperature Ttar obtained in step S91. Perform the desired operation.
 点火時期の遅角目標値ADVret[deg]は、以下に示す壁面温度Twall及び目標壁面温度Ttarの関数として求めることができる。
ADVret=f2(Twall、Ttar)そして、壁面温度Twallが高く、目標壁面温度Ttarとの差が大きい程、点火遅角量を増加する必要が有る関係から、上述の関数は以下のように表すことができる。
ADVret=F1(Twall-Ttar)
 ここで、F1は正の係数であり、遅角目標値ADVretは現在の燃焼サイクルの壁面温度Twallと目標壁面温度Ttarとの差が大きい程大きく設定される。このため、壁面温度Twallを大きく下げることができるので、壁面温度Twallを効率的に目標壁面温度Ttarへと素早く収束させることができる。
The ignition timing retardation target value ADVret [deg] can be obtained as a function of the wall surface temperature Twall and the target wall surface temperature Ttar shown below.
ADVret = f2 (Twall, Ttar) and the above function is expressed as follows because the ignition delay amount needs to be increased as the wall surface temperature Twall is higher and the difference from the target wall surface temperature Ttar is larger. Can do.
ADVret = F1 (Twall-Ttar)
Here, F1 is a positive coefficient, and the retard target value ADVret is set to be larger as the difference between the wall surface temperature Twall of the current combustion cycle and the target wall surface temperature Ttar is larger. For this reason, since the wall surface temperature Twall can be greatly reduced, the wall surface temperature Twall can be efficiently converged to the target wall surface temperature Ttar quickly.
 尚、燃焼室の壁面温度Twallを上昇させる場合は点火時期を進角し、燃焼室の壁面温度Twallを下降させる場合は点火時期を遅角すれば、実際の燃焼室の壁面温度Twallを目標壁面温度Ttarに収束させることが可能となる。 When the combustion chamber wall temperature Twall is increased, the ignition timing is advanced, and when the combustion chamber wall temperature Twall is decreased, the ignition timing is retarded so that the actual combustion chamber wall temperature Twall is set to the target wall temperature. It is possible to converge to the temperature Ttar.
 図10は、第1の実施形態を用いて点火時期の制御を実行した際の燃焼サイクルの進行にしたがった点火時期の制御結果を示している。図10では、(a)ノック強度、(b)燃焼期間、(c)焼期間の平均値(実線)、燃焼期間の最頻値(一点鎖線)、(d)点火時期の燃焼サイクル毎の変化を示している。尚、点火時期については、実線にて本実施形態の動き、破線にて通常のノック遅角制御の動きを示している。 FIG. 10 shows a control result of the ignition timing according to the progress of the combustion cycle when the control of the ignition timing is executed using the first embodiment. In FIG. 10, (a) knock intensity, (b) combustion period, (c) average value (solid line) of burning period, mode value of combustion period (dashed line), (d) change in ignition timing for each combustion cycle Is shown. As for the ignition timing, the movement of the present embodiment is indicated by a solid line, and the movement of normal knock retard control is indicated by a broken line.
 先ず、燃焼サイクルC3の以前の複数の燃焼サイクルC1、C2で燃焼期間が短くなる傾向にあり、現在の燃焼サイクルC3でも更に燃焼期間が短くなっていることから、次の燃焼サイクルで更に燃焼室の壁温の上昇に伴う未燃領域の温度増加が発生し、ノックが発生する可能性が高いと判断する。また、ノック強度が僅かに増加していることから、低温酸化反応が発生していることや、燃焼サイクルC3にて燃焼期間が所定の値よりも短くなっていることで判断することもできる。 First, the combustion period tends to be shortened in the plurality of combustion cycles C1 and C2 before the combustion cycle C3, and the combustion period is further shortened in the current combustion cycle C3. It is determined that there is a high possibility that knocking will occur due to an increase in the temperature of the unburned area accompanying the rise in the wall temperature. Further, since the knock intensity is slightly increased, it can be determined that a low-temperature oxidation reaction has occurred, or that the combustion period is shorter than a predetermined value in the combustion cycle C3.
 この結果に基づき、燃焼サイクルC3の次の燃焼サイクルC4では点火時期を遅角して燃焼サイクルC4におけるノック発生を未然に抑制できる。本実施形態を使用しない従来のノック遅角制御の場合は、燃焼サイクルC3の次の燃焼サイクルC4でノックが発生し、これを検出して燃焼サイクルC3の2燃焼サイクル後(ノック発生から1燃焼サイクル後)から点火時期の遅角が開始される。このように、本実施形態では、燃焼室の壁温を推定してノックの発生を予測し、これに基づき点火時期を遅角して正規の壁温に収束させるようにしている。 Based on this result, in the combustion cycle C4 following the combustion cycle C3, the ignition timing can be retarded to prevent knocking in the combustion cycle C4. In the case of conventional knock retardation control not using this embodiment, knock occurs in the combustion cycle C4 next to the combustion cycle C3, and this is detected and detected after two combustion cycles of the combustion cycle C3 (one combustion from the occurrence of knock). After the cycle), the ignition timing is retarded. Thus, in this embodiment, the occurrence of knock is predicted by estimating the wall temperature of the combustion chamber, and based on this, the ignition timing is retarded to converge to the normal wall temperature.
 また、燃焼サイクルC9においては、事前のノックの発生の予兆が見られない中でノックが発生している状態を示している。通常のノック遅角制御では、燃焼サイクルC9の次の燃焼サイクルから点火時期の遅角制御が実行される。 Further, in the combustion cycle C9, a state in which knocking occurs while no sign of occurrence of prior knocking is observed is shown. In normal knock retard control, ignition timing retard control is executed from the combustion cycle subsequent to the combustion cycle C9.
 これに対して、本実施例においては、燃焼サイクルC4~C8においてノックが発生していないので、図8のステップS85によってノック発生頻度に基づき、ノックサイクルの次に継続的にノックが発生する可能性が高いかを判定し、低いと判断した場合には点火時期の遅角制御を実行しないようにしている。 On the other hand, in the present embodiment, knock does not occur in the combustion cycles C4 to C8. Therefore, it is possible to continuously generate knock after the knock cycle based on the knock occurrence frequency in step S85 of FIG. It is determined whether or not the ignition performance is high. If it is determined that the ignition timing is low, the ignition timing retarding control is not executed.
 このように、本実施形態では、ノックが発生する可能性が高い燃焼サイクルの点火時期を遅角することや、ノックの発生頻度が低い条件ではノックが発生した場合に点火遅角制御を実行しないことで、不要な点火時期の遅角制御を避けることができ、燃費悪化を抑制することができる。また、ノックの発生を予測した燃焼サイクルにおいては、壁面温度を目標とする点火時期の遅角制御を実行することで、ノックの発生を予測した燃焼サイクルの次の燃焼サイクルでのノック発生をも抑制することができる。 As described above, in the present embodiment, the ignition timing of the combustion cycle in which the possibility of knocking is high is retarded, or the ignition delay control is not executed when knocking occurs under a condition where the frequency of knocking is low. As a result, unnecessary retard control of the ignition timing can be avoided, and fuel consumption deterioration can be suppressed. In addition, in the combustion cycle in which the occurrence of knocking is predicted, the ignition timing is retarded to control the wall surface temperature so that knocking occurs in the combustion cycle next to the combustion cycle in which knocking is predicted. Can be suppressed.
 尚、本実施形態では、冷却損失の変化を表す指標として燃焼期間(クランク角)を用いたが、これを燃焼位相とすることも可能である。燃焼位相を用いることで、ピストン位置と燃焼の関係がはっきりするため、より壁温の推定や、相関が強くなり、ノックの発生の推定精度や壁温推定精度の向上が見込めるようになる。 In this embodiment, the combustion period (crank angle) is used as an index representing the change in cooling loss, but this can also be used as the combustion phase. By using the combustion phase, the relationship between the piston position and the combustion is clarified, so that the estimation and correlation of the wall temperature become stronger and the estimation accuracy of the occurrence of knocking and the estimation accuracy of the wall temperature can be expected.
 次に、本発明の第2の実施形態について、図3、図8、図9、図11を用いて説明する。図11は、図3に示すノック発生予測部27で実施する演算処理についての制御フローであり、概ね図6に示す制御フローの処理内容と同一である。ただ、第2の実施形態では、特定燃焼割合、燃焼期間の代わりに筒内圧力を用いる点で異なっている。 Next, a second embodiment of the present invention will be described with reference to FIG. 3, FIG. 8, FIG. 9, and FIG. FIG. 11 is a control flow for the arithmetic processing performed by the knock occurrence prediction unit 27 shown in FIG. 3, and is substantially the same as the processing content of the control flow shown in FIG. However, the second embodiment is different in that the in-cylinder pressure is used instead of the specific combustion ratio and the combustion period.
 ≪ステップS111≫ステップS111においては、筒内圧力の最大位置(クランク角)を検出する。図12は、筒内圧力の最大位置を説明するものであり、図12にあるように筒内圧力の最大位置とは、現在の燃焼サイクルにおける筒内圧力の最大値が位置するクランク角を指すものである。 << Step S111 >> In step S111, the maximum position (crank angle) of the in-cylinder pressure is detected. FIG. 12 explains the maximum position of the in-cylinder pressure. As shown in FIG. 12, the maximum position of the in-cylinder pressure indicates the crank angle at which the maximum value of the in-cylinder pressure in the current combustion cycle is located. Is.
 運転条件及び点火時期がそろった条件であれば、筒内圧力の最大位置は燃焼期間と相関があり、燃焼期間が短いと筒内圧力の最大位置は進角側に移動する。このように筒内圧力の最大位置は燃焼期間と相関を持つ量であることから、筒内圧力の最大位置の変化から、冷却損失の変化も抽出可能である。ステップS111で筒内圧力の最大位置を検出すると、ステップS112に移行して筒内圧力の最大位置の統計量を算出する。 If the operating conditions and the ignition timing are the same, the maximum position of the in-cylinder pressure is correlated with the combustion period, and if the combustion period is short, the maximum position of the in-cylinder pressure moves to the advance side. Thus, since the maximum position of the in-cylinder pressure is an amount having a correlation with the combustion period, the change in the cooling loss can be extracted from the change in the maximum position of the in-cylinder pressure. When the maximum position of the in-cylinder pressure is detected in step S111, the process proceeds to step S112, and the statistic of the maximum position of the in-cylinder pressure is calculated.
 ≪ステップS112≫ステップS112においては、筒内圧力の最大位置の統計量を算出する。統計量の算出で計算するものは、統計分布及び平均値、最頻値、及び対象とする筒内圧力の最大位置の複数の燃焼サイクルの履歴である。筒内圧力の最大位置においても、ノックが発生しない、又は、ノック発生頻度が低い運転条件においては、図7Aと同様に、各筒内圧力の最大位置の発生頻度は正規分布に近く、平均値と最頻値が概ね一致する。一方、ノックの頻度が高い運転条件では、図7Bと同様に、平均値に比べて最頻値が進角側に移行している。統計量の算出が終了するとステップS113に移行する。 << Step S112 >> In step S112, the statistic of the maximum position of the in-cylinder pressure is calculated. What is calculated in the calculation of the statistic is the statistical distribution and the average value, the mode value, and the history of a plurality of combustion cycles at the maximum position of the target in-cylinder pressure. Even at the maximum position of the in-cylinder pressure, in the operating condition where knock does not occur or the knock occurrence frequency is low, the occurrence frequency of the maximum position of each in-cylinder pressure is close to a normal distribution and is an average value as in FIG. 7A. And the mode value almost coincide. On the other hand, in the driving condition where the frequency of knocking is high, the mode value is shifted to the advance side as compared with the average value as in FIG. 7B. When the calculation of the statistics is completed, the process proceeds to step S113.
 ≪ステップS113≫ステップS113においてはノック強度の算出を実行するが、ステップS113はステップS63と同じ処理であるので、説明は省略する。ノック強度が求まるとステップS114に移行する。 << Step S113 >> In step S113, knock strength is calculated. Since step S113 is the same as step S63, the description thereof is omitted. When the knock strength is obtained, the process proceeds to step S114.
 ≪ステップS114≫ステップS114では、ノック予兆フラグの設定を実行する。ノック予兆フラグは、次の燃焼サイクルでノック発生の確率が高い場合に「1」、低い場合に「0」と設定されるフラグである。 << Step S114 >> In step S114, a knock predictor flag is set. The knock predictor flag is a flag that is set to “1” when the probability of knock occurrence is high in the next combustion cycle, and “0” when low.
 現在の燃焼サイクルまで連続して冷却損失が増加している場合、筒内圧力の最大位置は複数の燃焼サイクルにおいて進角を続けている。したがって、筒内圧力の最大位置が複数の燃焼サイクルに亘って進角することを条件に、ノック予兆フラグに「1」を設定することができる。このステップS114もステップS64と実質同じ考え方である。 [If the cooling loss continuously increases up to the current combustion cycle, the maximum position of the in-cylinder pressure continues to advance in multiple combustion cycles. Accordingly, the knock predictor flag can be set to “1” on condition that the maximum position of the in-cylinder pressure is advanced over a plurality of combustion cycles. This step S114 is substantially the same idea as step S64.
 また、筒内圧力の最大位置が複数の燃焼サイクルで進角していき、更に、現在の燃焼サイクルの筒内圧力の最大位置が所定の判定閾値よりも進角した場合に、ノック予兆フラグに「1}を設定してもよいものである。このようにノック予兆フラグを設定することで、次の燃焼サイクルでの壁面温度の状態が、特定の判定閾値まで達した際にノックが発生すると判定できるので、ノックの発生予測精度を向上することができる。 In addition, when the maximum position of the in-cylinder pressure is advanced in a plurality of combustion cycles and the maximum position of the in-cylinder pressure in the current combustion cycle is advanced from a predetermined determination threshold, the knock predictor flag is set. “1} may be set. By setting the knock predictor flag in this way, knocking occurs when the wall surface temperature state in the next combustion cycle reaches a specific determination threshold value. Since the determination can be made, the knock generation prediction accuracy can be improved.
 また、筒内圧力の最大位置が複数の燃焼サイクルで進角していき、更に、現在の燃焼サイクルの筒内圧力の最大位置が所定の判定閾値よりも進角した場合で、且つステップS113でノック発生とは至らないが、僅かな燃料の自着火による圧力振動、又は低温酸化反応に起因する弱い圧力振動の振動を検出した場合に、ノック予兆フラグを「1」に設定してもよいものである」。このように設定することで、ノックに至る自着火の予兆である低温酸化反応、又は弱い自着火の発生と、その発生後の温度上昇によるノックの発生を予測できるので、更にノックの発生予測精度を向上することができる。以上のノック予兆フラグの設定が完了したら、ステップS115に移行する。 Further, when the maximum position of the in-cylinder pressure is advanced in a plurality of combustion cycles, and the maximum position of the in-cylinder pressure of the current combustion cycle is advanced from a predetermined determination threshold value, and in step S113. Although knocking does not occur, the knocking predictor flag may be set to “1” when pressure vibration due to slight fuel self-ignition or weak pressure vibration caused by low-temperature oxidation reaction is detected. Is. " By setting in this way, it is possible to predict the occurrence of low-temperature oxidation reaction or weak self-ignition, which is a sign of self-ignition leading to knock, and the occurrence of knock due to the temperature rise after that occurrence. Can be improved. When the setting of the knock predictor flag is completed, the process proceeds to step S115.
 ≪ステップS115≫ステップS115においては、ステップS113により検出したノック強度に基づいてノック発生フラグを設定する。ステップS113はステップS63と同じ処理であるので、説明は省略する。 << Step S115 >> In step S115, a knock generation flag is set based on the knock intensity detected in step S113. Since step S113 is the same process as step S63, description thereof is omitted.
 ノック予兆フラグ、及びノック発生フラグの設定は完了すると、ノック制御部28において、図8に示すノック予兆フラグとノック発生フラグを参照して点火時期を制御する制御フローを実行する。 When the setting of the knock predictor flag and the knock occurrence flag is completed, the knock control unit 28 executes a control flow for controlling the ignition timing with reference to the knock predictor flag and the knock occurrence flag shown in FIG.
 ただ、第1の実施形態とはステップS83で実行する制御ステップの処理が異なっているものである。ステップS83で実行する処理は図9に示されており、ステップS92における壁温推定に関して、本実施形態では筒内圧力の最大値位置を用いて計算する点が異なっているものである。 However, the processing of the control step executed in step S83 is different from that of the first embodiment. The processing executed in step S83 is shown in FIG. 9, and the point that the wall temperature estimation in step S92 is calculated using the maximum value position of the in-cylinder pressure in this embodiment is different.
 壁温の推定は、冷却水温度Tw[K]、潤滑油温度To[K]、現在の燃焼サイクルの筒内圧力最大位置θpmax、現在の燃焼サイクルのノック強度Pk[MPa]、点火時期ADV[degATDC]等の推定パラメータに基づき実行される。つまり、これらの推定パラメータを変数とする以下の関数として、壁温Twall[K]を推定できる。
Twall=g1(Tw、To、θpmax、Pk、ADV)
 ここで、(1)壁面温度は水温や油温の増加に伴い増加する、(2)壁面温度は筒内圧力の最大位置が進角するほど増加する、(3)壁面温度は点火時期(degATDC)が進角するほど増加する、(4)壁面温度は現在の燃焼サイクルのノック強度が大きい程減少する、との関係を用いて、上述の関数は以下のように表すことができる。
Twall=(K×Tw)+(K×To)-Kθp×(θpmax-θpmaxref)+KADV×(ADV-ADVref)-KPk(Pk-Pkref)
 ここで、K、K、Kθp、KADV、KPkは正の値であり、運転条件、内燃機関によって変化する係数である。尚、「θpmaxref」は基準の筒内圧力の最大位置あり、これらは運転条件毎にマップとして整理され、ROM20dに格納されている。これにより現在の壁面温度Twallを推定できる。
The wall temperature is estimated based on the coolant temperature Tw [K], the lubricating oil temperature To [K], the in-cylinder pressure maximum position θpmax of the current combustion cycle, the knock intensity Pk [MPa] of the current combustion cycle, and the ignition timing ADV [ degATDC] or the like. That is, the wall temperature Twall [K] can be estimated as the following function using these estimation parameters as variables.
Twall = g1 (Tw, To, θpmax, Pk, ADV)
Here, (1) the wall surface temperature increases as the water temperature or oil temperature increases, (2) the wall surface temperature increases as the maximum position of the in-cylinder pressure advances, and (3) the wall surface temperature depends on the ignition timing (degATDC). ) Increases with advance, and (4) the wall temperature decreases as the knock strength of the current combustion cycle increases, the above function can be expressed as follows:
Twall = (K w × Tw) + (K o × To) −K θp × (θpmax−θpmaxref) + K ADV × (ADV−ADVref) −K Pk (Pk−Pkref)
Here, K w , K o , K θp , K ADV , and K Pk are positive values, and are coefficients that vary depending on operating conditions and the internal combustion engine. “Θpmaxref” is the maximum position of the reference in-cylinder pressure, and these are arranged as a map for each operating condition and stored in the ROM 20d. Thereby, the current wall surface temperature Twall can be estimated.
 このように、各変数に対して壁面温度Twallを推定することで、運転状況に応じて適切な壁温推定が可能になる。次にステップS93に移行して、推定した壁面温度Twallを目標壁面温度Ttarに近づけるように点火時期を制御する。 Thus, by estimating the wall surface temperature Twall for each variable, it is possible to estimate the wall temperature appropriately according to the operating conditions. Next, the process proceeds to step S93, and the ignition timing is controlled so that the estimated wall surface temperature Twall approaches the target wall surface temperature Ttar.
 ステップS93においては、ステップS92で推定した壁面温度Twallを、ステップS91で求めた目標壁面温度Ttarに近づけるように、点火時期の遅角目標値を求める演算を実行する。 In step S93, an operation for obtaining a target value for retarding the ignition timing is executed so that the wall surface temperature Twall estimated in step S92 approaches the target wall surface temperature Ttar obtained in step S91.
 点火時期の遅角目標値ADVret[deg]は、以下に示す壁面温度Twall及び目標壁面温度Ttarの関数として求めることができる。
ADVret=f2(Twall、Ttar)そして、壁面温度Twallが高く、目標壁面温度Ttarとの差が大きい程、点火遅角量を増加する必要が有る関係から、上述の関数は以下のように表すことができる。ADVret=F1(Twall-Ttar)
 ここで、F1は正の係数であり、遅角目標値ADVretは現在の燃焼サイクルの壁面温度Twallと目標壁面温度Ttarとの差が大きい程大きく設定されるので、壁面温度Twallを大きく下げることができる。このため、壁面温度Twallを効率的に目標壁面温度Ttarへと素早く収束させることができる。尚、係数F1を変更することで、現在の燃焼サイクルにおける壁面温度に応じて目標壁面温度に近づける速度を変えることも可能である。
The ignition timing retardation target value ADVret [deg] can be obtained as a function of the wall surface temperature Twall and the target wall surface temperature Ttar shown below.
ADVret = f2 (Twall, Ttar) and the above function is expressed as follows because the ignition delay amount needs to be increased as the wall surface temperature Twall is higher and the difference from the target wall surface temperature Ttar is larger. Can do. ADVret = F1 (Twall-Ttar)
Here, F1 is a positive coefficient, and the retard target value ADVret is set to increase as the difference between the wall temperature Twall of the current combustion cycle and the target wall temperature Ttar increases. Therefore, the wall temperature Twall can be greatly reduced. it can. For this reason, the wall surface temperature Twall can be quickly converged to the target wall surface temperature Ttar efficiently. Note that by changing the coefficient F1, it is possible to change the speed of approaching the target wall surface temperature in accordance with the wall surface temperature in the current combustion cycle.
 以上述べた通り本発明は、燃焼室に取り付けられた筒内圧センサの信号に基づき算出した内燃機関の冷却損失の変化(壁温変化)基づきノックの発生を予測するノック発生予測部を備え、更に、ノック発生予測部で検出される冷却損失に関連するノック予測情報に基づき内燃機関の点火時期を制御するノック制御部を備える、構成とした。 As described above, the present invention includes a knock generation prediction unit that predicts the occurrence of knock based on a change in cooling loss (wall temperature change) of the internal combustion engine calculated based on a signal from an in-cylinder pressure sensor attached to the combustion chamber. The knock control unit is configured to control the ignition timing of the internal combustion engine based on knock prediction information related to the cooling loss detected by the knock generation prediction unit.
 これによれば、冷却損失の増加に伴う壁温上昇と、これに伴う未燃領域の温度上昇によるノックの発生を予測し、ノックの発生を予測した燃焼サイクルで点火時期を遅角制御することで、ノックを効果的に抑制することができる。 According to this, it is possible to predict the occurrence of knock due to the rise in wall temperature accompanying the increase in cooling loss and the accompanying rise in temperature in the unburned region, and to retard the ignition timing with the combustion cycle in which the occurrence of knock is predicted. Thus, knock can be effectively suppressed.
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…エアフローセンサ、2…電子制御スロットル、3…燃料噴射装置、4…点火システム、5…可変バルブ、5a…吸気バルブ可変装置、5b…排気バルブ可変装置、6…吸気管、7…シリンダヘッド、8…排気管、9…空燃比センサ、10…三元触媒、11…排気温度センサ、12…燃焼室、13…クランク角度センサ、14…冷却水温度センサ、15…吸気温度センサ、16…アクセル開度センサ、17…高圧燃料ポンプ、18…燃料圧力センサ、20…内燃機関コントロールユニット、20a…入力回路、20b…入出力ポート、20c…RAM、20d…ROM、20e…CPU、20f…電子制御スロットル駆動回路、20g…インジェクタ駆動回路、20h…点火出力回路、20j…可変バルブ駆動回路、20k…高圧燃料ポンプ駆動回路、20m…ノック検出部、20n…ノック回避制御部、21…吸気圧センサ、25…ノックセンサ、26…筒内圧センサ、27…ノック発生予測部、28…ノック制御部、100…内燃機関。 DESCRIPTION OF SYMBOLS 1 ... Air flow sensor, 2 ... Electronic control throttle, 3 ... Fuel injection apparatus, 4 ... Ignition system, 5 ... Variable valve, 5a ... Intake valve variable device, 5b ... Exhaust valve variable device, 6 ... Intake pipe, 7 ... Cylinder head , 8 ... Exhaust pipe, 9 ... Air-fuel ratio sensor, 10 ... Three-way catalyst, 11 ... Exhaust temperature sensor, 12 ... Combustion chamber, 13 ... Crank angle sensor, 14 ... Coolant temperature sensor, 15 ... Intake temperature sensor, 16 ... Accelerator opening sensor, 17 ... high pressure fuel pump, 18 ... fuel pressure sensor, 20 ... internal combustion engine control unit, 20a ... input circuit, 20b ... input / output port, 20c ... RAM, 20d ... ROM, 20e ... CPU, 20f ... electronic Control throttle drive circuit, 20g ... injector drive circuit, 20h ... ignition output circuit, 20j ... variable valve drive circuit, 20k ... high pressure fuel port 20m ... knock detection unit, 20n ... knock avoidance control unit, 21 ... intake pressure sensor, 25 ... knock sensor, 26 ... in-cylinder pressure sensor, 27 ... knock generation prediction unit, 28 ... knock control unit, 100 ... internal combustion organ.

Claims (19)

  1.  内燃機関の燃焼室の燃焼圧力を検出する筒内圧センサからの検出情報に基づきノックの発生状況を判定して点火時期を制御する点火時期制御手段と、点火時期制御手段からの点火制御信号に基づき前記燃焼室に設けられた点火プラグに駆動出力信号を送る点火出力手段とを備えた内燃機関の点火制御装置において、
     前記点火時期制御手段は、
     前記筒内圧センサの検出情報に基づき算出した冷却損失の変化と相関をもつ因子に基づいてノックの発生を予測してノック予兆情報を求めるノック発生予測部と、
     前記ノック発生予測部で求められたノック予兆情報に基づき点火時期を補正するノック制御部とを備えていることを特徴とする内燃機関の点火制御装置。
    Based on detection information from an in-cylinder pressure sensor that detects the combustion pressure in the combustion chamber of the internal combustion engine, an ignition timing control means that determines the occurrence of knocking and controls the ignition timing, and an ignition control signal from the ignition timing control means In an ignition control device for an internal combustion engine comprising ignition output means for sending a drive output signal to an ignition plug provided in the combustion chamber,
    The ignition timing control means includes
    A knock occurrence prediction unit for predicting knock occurrence based on a factor correlated with a change in cooling loss calculated based on the detection information of the in-cylinder pressure sensor to obtain knock precursor information;
    An ignition control device for an internal combustion engine, comprising: a knock control unit that corrects an ignition timing based on knock prediction information obtained by the knock occurrence prediction unit.
  2.  請求項1に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、冷却損失の変化と相関をもつ因子として、前記燃焼室の壁面温度の変化に基づいてノックを予測して前記ノック予兆情報を求めることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 1,
    Ignition control for an internal combustion engine characterized in that the knock generation prediction unit predicts knock based on a change in wall temperature of the combustion chamber as a factor having a correlation with a change in cooling loss and obtains the knock predictive information apparatus.
  3.  請求項1に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、冷却損失の変化と相関をもつ因子として、特定の燃焼状態に到達する時期の変化に基づいてノックを予測して前記ノック予兆情報を求めることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 1,
    The knock occurrence predicting unit obtains the knock predictive information by predicting a knock based on a change in the timing of reaching a specific combustion state as a factor correlated with a change in cooling loss. Ignition control device.
  4.  請求項3に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部によって求められる特定の燃焼状態に到達する時期は、前記筒内圧センサにより検出した特定燃焼割合点の到達時期に基づいて求められることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 3,
    The ignition control device for an internal combustion engine, characterized in that the time when the specific combustion state obtained by the knock generation prediction unit is reached is obtained based on the arrival time of the specific combustion ratio point detected by the in-cylinder pressure sensor.
  5.  請求項3に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部によって求められる特定の燃焼状態に到達する時期は、前記筒内圧センサにより検出した筒内圧が最大値に到達した時期に基づいて求められることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 3,
    The internal combustion engine ignition control device characterized in that the time when the specific combustion state determined by the knock generation prediction unit is reached is determined based on the time when the in-cylinder pressure detected by the in-cylinder pressure sensor reaches a maximum value. .
  6.  請求項1に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、冷却損失の変化と相関をもつ因子として、特定の燃焼状態に到達するまでの燃焼期間の変化に基づいてノックを予測して前記ノック予兆情報を求めることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 1,
    The knock generation prediction unit is configured to obtain knock prediction information by predicting knock based on a change in a combustion period until reaching a specific combustion state as a factor having a correlation with a change in cooling loss. An ignition control device for an internal combustion engine.
  7.  請求項6に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部によって求められる前記燃焼期間は、前記点火プラグによる点火開始時期から特定燃焼割合点までの到達時期の期間であることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 6,
    The ignition control device for an internal combustion engine, wherein the combustion period obtained by the knock generation prediction unit is a period of arrival time from an ignition start timing by the spark plug to a specific combustion ratio point.
  8.  請求項6に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部によって求められる前記燃焼期間は、第1の特定燃焼割合点に到達した第1到達時期から第2の特定燃焼割合点に到達した第2到達時期までの期間であることを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 6,
    The combustion period obtained by the knock generation prediction unit is a period from a first arrival time at which the first specific combustion ratio point is reached to a second arrival time at which the second specific combustion ratio point is reached. An internal combustion engine ignition control device.
  9.  請求項4又は請求項5に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、
     特定の燃焼状態に到達する時期が複数の燃焼サイクルに亘って連続して進角側に変化した場合に前記ノック予兆情報を発生し、
     前記ノック制御部は、前記ノック予兆情報に基づいて次の燃焼サイクルで点火時期を遅角させた制御信号を発生することを特徴とする内燃機関の点火制御装置。
    In the ignition control device for an internal combustion engine according to claim 4 or 5,
    The knock occurrence prediction unit
    When the time to reach a specific combustion state changes continuously to the advance side over a plurality of combustion cycles, the knock predictor information is generated,
    The internal combustion engine ignition control device, wherein the knock control unit generates a control signal obtained by retarding an ignition timing in a next combustion cycle based on the knock predictor information.
  10.  請求項4又は請求項5に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、
     前記特定の燃焼状態に到達する時期が複数の燃焼サイクルに亘って連続して進角側に変化した場合で、且つ現在の燃焼サイクルの点火開始時期で定まる所定の時期から前記特定の燃焼状態に到達する時期までの燃焼期間が設定値以下になった場合に前記ノック予兆情報を発生し、
     前記ノック制御部は、前記ノック予兆情報に基づいて次の燃焼サイクルで点火時期を遅角させた制御信号を発生することを特徴とする内燃機関の点火制御装置。
    In the ignition control device for an internal combustion engine according to claim 4 or 5,
    The knock occurrence prediction unit
    The specific combustion state is changed from a predetermined time determined by the ignition start timing of the current combustion cycle when the time to reach the specific combustion state changes continuously to the advance side over a plurality of combustion cycles. When the combustion period until the arrival time is below the set value, the knock precursor information is generated,
    The internal combustion engine ignition control device, wherein the knock control unit generates a control signal obtained by retarding an ignition timing in a next combustion cycle based on the knock predictor information.
  11.  請求項4又は請求項5に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、
     特定の燃焼状態に到達する時期が複数の燃焼サイクルに亘って連続して進角側に変化した場合で、且つ現在の燃焼サイクルの特定の燃焼状態に到達する時期が設定値以下になった場合で、更に僅かな燃料の自着火に起因する圧力振動、又は低温酸化反応に起因する弱い圧力振動を検出した場合に前記ノック予兆情報を発生し、
     前記ノック制御部は、前記ノック予兆情報に基づいて次の燃焼サイクルで点火時期を遅角させた制御信号を発生することを特徴とする内燃機関の点火制御装置。
    In the ignition control device for an internal combustion engine according to claim 4 or 5,
    The knock occurrence prediction unit
    When the time to reach a specific combustion state changes continuously to the advance side over multiple combustion cycles, and the time to reach a specific combustion state in the current combustion cycle falls below the set value In addition, when the pressure vibration due to a slight fuel self-ignition or the weak pressure vibration due to the low temperature oxidation reaction is detected, the knock precursor information is generated,
    The internal combustion engine ignition control device, wherein the knock control unit generates a control signal obtained by retarding an ignition timing in a next combustion cycle based on the knock predictor information.
  12.  請求項7又は請求項8に記載の内燃機関の点火制御装置において、前記ノック発生予測部は、前記燃焼期間が複数の燃焼サイクルに亘って連続して短縮方向に移行した場合に前記ノック予兆情報を発生し、
     前記ノック制御部は、前記ノック予兆情報に基づいて次の燃焼サイクルで点火時期を遅角させた制御信号を発生することを特徴とする内燃機関の点火制御装置。
    9. The ignition control device for an internal combustion engine according to claim 7, wherein the knock occurrence predicting unit includes the knock predictor information when the combustion period continuously shifts in a shortening direction over a plurality of combustion cycles. Occur and
    The internal combustion engine ignition control device, wherein the knock control unit generates a control signal obtained by retarding an ignition timing in a next combustion cycle based on the knock predictor information.
  13.  請求項7又は請求項8に記載の内燃機関の点火制御装置において、前記ノック発生予測部は、前記燃焼期間が複数の燃焼サイクルに亘って連続して短縮方向に移行し、且つ現在の燃焼サイクルで前記燃焼期間が設定値以下になった場合に前記ノック予兆情報を発生し、
     前記ノック制御部は、前記ノック予兆情報に基づいて次の燃焼サイクルで点火時期を遅角させた制御信号を発生することを特徴とする内燃機関の点火制御装置。
    9. The ignition control device for an internal combustion engine according to claim 7, wherein the knock generation prediction unit is configured such that the combustion period continuously shifts in a shortening direction over a plurality of combustion cycles, and the current combustion cycle. When the combustion period falls below a set value, the knock precursor information is generated,
    The internal combustion engine ignition control device, wherein the knock control unit generates a control signal obtained by retarding an ignition timing in a next combustion cycle based on the knock predictor information.
  14.  請求項7又は請求項8に記載の内燃機関の点火制御装置において、前記ノック発生予測部は、前記燃焼期間が複数の燃焼サイクルに亘って連続して短縮方向に移行し、且つ現在の燃焼サイクルで前記燃焼期間が設定値以下になった場合で、更に僅かな燃料の自着火に起因する圧力振動、又は低温酸化反応に起因する弱い圧力振動を検出した場合に前記ノック予兆情報を発生し、
     前記ノック制御部は、前記ノック予兆情報に基づいて次の燃焼サイクルで点火時期を遅角させた制御信号を発生することを特徴とする内燃機関の点火制御装置。
    9. The ignition control device for an internal combustion engine according to claim 7, wherein the knock generation prediction unit is configured such that the combustion period continuously shifts in a shortening direction over a plurality of combustion cycles, and the current combustion cycle. In the case where the combustion period is less than or equal to the set value, the knock precursor information is generated when a pressure vibration caused by a slight amount of fuel self-ignition or a weak pressure vibration caused by a low temperature oxidation reaction is detected.
    The internal combustion engine ignition control device, wherein the knock control unit generates a control signal obtained by retarding an ignition timing in a next combustion cycle based on the knock predictor information.
  15.  請求項1に記載の内燃機関の点火制御装置において、
     前記ノック発生予測部は、前記筒内圧センサによってノックの発生を検出するノック検出部と、前記筒内圧センサにより検出した特定燃焼割点の到達時期、又は点火開始時期で定まる所定の時期から特定燃焼状態に到達する時期までの燃焼期間を算出する燃焼状態算出部とを備え、
     前記ノック制御部は、
     前記ノック検出部によりノック発生を検出した場合に、ノック発生前の所定回数の燃焼サイクルにおける前記燃焼状態算出部により検出される燃焼期間、又は特定燃焼割合点の到達時期の最頻値と平均値の差が所定の値より小さい場合は、次の燃焼サイクルでの点火時期を基準点火時期に維持し、
     前記最頻値と前記平均値の差が所定の値より大きい場合に、ノックが発生した次の燃焼サイクルで点火時期を遅角することを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 1,
    The knock generation prediction unit includes a knock detection unit that detects the occurrence of knock by the in-cylinder pressure sensor, and a specific combustion from a predetermined timing determined by the arrival timing of the specific combustion break point detected by the in-cylinder pressure sensor or the ignition start timing. A combustion state calculation unit that calculates the combustion period until the time to reach the state,
    The knock control unit
    When knock generation is detected by the knock detection unit, the mode and average value of the combustion period detected by the combustion state calculation unit in the predetermined number of combustion cycles before the knock generation or the arrival time of the specific combustion ratio point If the difference is smaller than the predetermined value, the ignition timing in the next combustion cycle is maintained at the reference ignition timing,
    An ignition control device for an internal combustion engine, wherein when the difference between the mode value and the average value is larger than a predetermined value, the ignition timing is retarded in the next combustion cycle in which knocking occurs.
  16.  請求項9又は請求項12に記載の内燃機関の点火制御装置において、
     前記ノック制御部は、
     前記内燃機関の運転状態によって定まる前記燃焼室の目標壁面温度を求める目標壁面温度推定手段と、
     前記燃焼室の実際の壁面温度を推定する壁面温度推定手段と、
     前記実際の壁面温度を前記目標壁面温度に制御する壁面温度制御手段とを備えることを特徴とする内燃機関の点火制御装置。
    The internal combustion engine ignition control device according to claim 9 or 12,
    The knock control unit
    Target wall surface temperature estimating means for determining a target wall surface temperature of the combustion chamber determined by the operating state of the internal combustion engine;
    Wall surface temperature estimating means for estimating an actual wall surface temperature of the combustion chamber;
    An ignition control device for an internal combustion engine, comprising: wall surface temperature control means for controlling the actual wall surface temperature to the target wall surface temperature.
  17.  請求項16に記載の内燃機関の点火制御装置において、
     前記壁面温度推定手段は、冷却水温、油温、点火時期、ノックの有無の少なくとも一つの情報に基づき壁面温度を推定することを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 16,
    The internal combustion engine ignition control device characterized in that the wall surface temperature estimating means estimates the wall surface temperature based on at least one of information on cooling water temperature, oil temperature, ignition timing, and presence / absence of knock.
  18.  請求項16に記載の内燃機関の点火制御装置において、
     前記壁面温度制御手段は、点火時期を制御して壁面温度を調整することを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 16,
    The ignition control device for an internal combustion engine, wherein the wall surface temperature control means adjusts the wall surface temperature by controlling an ignition timing.
  19.  請求項16に記載の内燃機関の点火制御装置において、
     前記壁面温度制御手段は、前記燃焼室の壁面温度を上昇させる場合は点火時期を進角し、前記燃焼室の壁面温度を下降させる場合は点火時期を遅角することを特徴とする内燃機関の点火制御装置。
    The ignition control device for an internal combustion engine according to claim 16,
    The wall surface temperature control means advances the ignition timing when increasing the wall surface temperature of the combustion chamber, and retards the ignition timing when decreasing the wall surface temperature of the combustion chamber. Ignition control device.
PCT/JP2018/010157 2017-04-25 2018-03-15 Ignition control device for internal-combustion engine WO2018198567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017085924A JP6764824B2 (en) 2017-04-25 2017-04-25 Internal combustion engine ignition control device
JP2017-085924 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018198567A1 true WO2018198567A1 (en) 2018-11-01

Family

ID=63920359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010157 WO2018198567A1 (en) 2017-04-25 2018-03-15 Ignition control device for internal-combustion engine

Country Status (2)

Country Link
JP (1) JP6764824B2 (en)
WO (1) WO2018198567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396210A (en) * 2020-03-31 2020-07-10 潍柴动力股份有限公司 Control method and device of natural gas engine, storage medium and processor
IT202100007604A1 (en) * 2021-03-29 2022-09-29 Ferrari Spa PROCEDURE AND APPARATUS FOR ADJUSTING THE IGNITION TIMING OF AN INTERNAL COMBUSTION ENGINE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848918B2 (en) * 2018-03-29 2021-03-24 マツダ株式会社 Engine control method, engine knock detection method and engine control device
JP6848919B2 (en) * 2018-03-29 2021-03-24 マツダ株式会社 Engine control method and control device
JP7293838B2 (en) * 2019-04-19 2023-06-20 マツダ株式会社 CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
CN113250837B (en) * 2020-02-12 2023-08-08 联合汽车电子有限公司 Super knock monitoring system and method, pre-control system and method
CN111980821A (en) * 2020-08-20 2020-11-24 联合汽车电子有限公司 Super knock control system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233114A (en) * 2004-02-20 2005-09-02 Nissan Motor Co Ltd Ignition timing controlling equipment of internal combustion engine
JP2007177723A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007332934A (en) * 2006-06-19 2007-12-27 Toyota Central Res & Dev Lab Inc Optimal ignition timing setting method of spark ignition internal combustion engine and optimal ignition timing setting device of spark ignition internal combustion engine
JP2017032492A (en) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 Internal combustion engine control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233114A (en) * 2004-02-20 2005-09-02 Nissan Motor Co Ltd Ignition timing controlling equipment of internal combustion engine
JP2007177723A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007332934A (en) * 2006-06-19 2007-12-27 Toyota Central Res & Dev Lab Inc Optimal ignition timing setting method of spark ignition internal combustion engine and optimal ignition timing setting device of spark ignition internal combustion engine
JP2017032492A (en) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 Internal combustion engine control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396210A (en) * 2020-03-31 2020-07-10 潍柴动力股份有限公司 Control method and device of natural gas engine, storage medium and processor
CN111396210B (en) * 2020-03-31 2022-08-23 潍柴动力股份有限公司 Control method and device of natural gas engine, storage medium and processor
IT202100007604A1 (en) * 2021-03-29 2022-09-29 Ferrari Spa PROCEDURE AND APPARATUS FOR ADJUSTING THE IGNITION TIMING OF AN INTERNAL COMBUSTION ENGINE
EP4067639A1 (en) * 2021-03-29 2022-10-05 FERRARI S.p.A. A process and an apparatus to adjust the ignition timing of an internal combustion engine
US11686261B2 (en) 2021-03-29 2023-06-27 Ferrari S.P.A. Process and an apparatus to adjust the ignition timing of an internal combustion engine

Also Published As

Publication number Publication date
JP2018184862A (en) 2018-11-22
JP6764824B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2018198567A1 (en) Ignition control device for internal-combustion engine
US9702779B2 (en) Engine control device
US9494098B2 (en) Method for detecting combustion noise in internal combustion engine, combustion noise detection device, and device for controlling internal combustion engine
EP1830057A1 (en) Fuel injection control device for internal combustion engine
CN1331782A (en) Device for suppressing engine knocking in I.C. engine
WO2018061473A1 (en) Internal combustion engine control device
JP2009030545A (en) Control device of engine for vehicle
CN108699981B (en) Engine control device
KR20140012458A (en) Control method for cvvl engine
US20200332759A1 (en) Internal-Combustion-Engine Control Unit and Internal-Combustion-Engine Control Method
JP2014101863A (en) Abnormal combustion determination device for internal combustion engine
US20230220807A1 (en) Internal Combustion Engine Control Device
JP2007211649A (en) Control device of engine
JP2011241727A (en) Abnormality detection device for internal combustion engine and control device for internal combustion engine
EP3321493B1 (en) Control device for internal combustion engine
JP2008267293A (en) Control system of internal combustion engine
US10094301B2 (en) Internal combustion engine controller
CN110725752A (en) Method and device for controlling an internal combustion engine
JP2008075633A (en) Combustion control device for internal combustion engine
JP2014092109A (en) Control device and control method of internal combustion engine
JP6527393B2 (en) Control device for internal combustion engine
US20160047351A1 (en) Control apparatus for internal combustion engine
JP2009257211A (en) Control system for internal combustion engine
JP6432548B2 (en) Engine control device
JP2023064924A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791360

Country of ref document: EP

Kind code of ref document: A1