WO2018198495A1 - Temperature-responsive cell culture substrate, and method for producing same - Google Patents

Temperature-responsive cell culture substrate, and method for producing same Download PDF

Info

Publication number
WO2018198495A1
WO2018198495A1 PCT/JP2018/005836 JP2018005836W WO2018198495A1 WO 2018198495 A1 WO2018198495 A1 WO 2018198495A1 JP 2018005836 W JP2018005836 W JP 2018005836W WO 2018198495 A1 WO2018198495 A1 WO 2018198495A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
responsive
polymer
cell culture
layer
Prior art date
Application number
PCT/JP2018/005836
Other languages
French (fr)
Japanese (ja)
Inventor
礼奈 森安
美子 茂原
綱之 奥村
淳史 坂倉
正道 森田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2019515113A priority Critical patent/JP6879365B2/en
Publication of WO2018198495A1 publication Critical patent/WO2018198495A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a temperature-responsive cell culture substrate and a method for producing the same.
  • a substrate having a temperature-responsive surface As a cell culture substrate, a substrate having a temperature-responsive surface is used. These substrates are mainly used for the cultivation of adherent cells. Adherent cells grow by adhering to the surface of the carrier. Adhesive cells are generally considered to have the property of being easily adhered to an appropriate hydrophobic surface and not adhering to a hydrophilic surface. For this reason, it becomes possible to control adhesion of adherent cells to the surface by temperature change by using a base material having a surface that changes from moderate hydrophobicity to hydrophilicity by the temperature response or vice versa. .
  • Such a cell culture substrate is referred to as a “temperature-responsive cell culture substrate”.
  • the protein could be peeled off from the substrate surface by a method or a method of “physically destroying” the protein using pipetting (injecting the culture solution with a pipette), rubber policeman, cell scraper, or the like. If a temperature-responsive cell culture substrate is used, all these operations are unnecessary, and the cultured cells can be peeled off simply by changing the temperature.
  • Cells collected from a temperature-responsive cell culture substrate are characterized by being not chemically or physically damaged.
  • the cell sheet collected from the temperature-responsive cell culture substrate retains the adhesive protein as it is, and can quickly adhere to a living tissue.
  • cell sheets are laminated, they can be organized and positioned as a platform technology for future development of regenerative medicine technology.
  • a culture substrate has been developed in which poly-N-isopropylacrylamide (PNIPAM) having a lower critical solution temperature (Low Critical Solution temperature (LCST)) of 32 ° C. is immobilized on the surface (Patent Document 1).
  • PNIPAM poly-N-isopropylacrylamide
  • LCST Low Critical Solution temperature
  • Patent Document 1 The polymer chain on the surface of the base material exposed to water having a temperature of 32 ° C. or more is condensed, and the property of the base material surface is strongly the property of the NIPAM polymer chain itself, and is relatively hydrophobic.
  • a temperature response occurs, and the polymer chains on the surface hydrate with water molecules.
  • hydrophilicity is exhibited as compared with that before the temperature response, and the adhered cells can be peeled off.
  • An object of the present invention is to provide a temperature-responsive cell culture substrate having superior cell detachability.
  • the inventors of the present invention have made extensive studies, and in the temperature-responsive cell culture substrate whose surface is covered with the temperature-responsive polymer immobilized on the surface of the substrate, the surface coverage by the temperature-responsive polymer is higher than the conventional one.
  • the present inventors have found that the above problems can be solved by further improvement.
  • the present inventors have developed a method for evaluating the surface coverage of the temperature-responsive polymer based on the element concentration measured by the X-ray photoelectron spectroscopy (XPS) method.
  • XPS X-ray photoelectron spectroscopy
  • Item 1 (A) a temperature-responsive layer; and (B) a temperature-responsive cell culture substrate containing a substrate layer,
  • the temperature responsive layer (A) contains a temperature responsive polymer having nitrogen atoms,
  • the temperature responsive layer (A) is disposed on at least one surface of the base material layer (B),
  • the substrate layer (B) does not have nitrogen atoms, and the surface on the temperature response layer (A) side has a nitrogen element concentration N 1s and carbon measured by X-ray photoelectron spectroscopy at an emission angle of 45 °.
  • the element concentration C 1s is expressed by the following formula (1): (1) 100 ⁇ (N 1s / C 1s ) / (N / C) ⁇ 80 (In the formula, N / C represents a theoretical value of each element ratio in the temperature-responsive polymer) Satisfying a temperature-responsive cell culture substrate. Item 2.
  • N 1s and C 1s measured by X-ray photoelectron spectroscopy satisfy the following condition (A):
  • the measured value at an etching depth of 2 nm satisfies the following formula (2): (2) 100 ⁇ (N 1s / C 1s ) / (N / C) ⁇ 50 (In the formula, N / C represents the same meaning as described above).
  • Item 4. Item 4. The temperature-responsive cell culture substrate according to any one of Items 1 to 3, wherein the temperature-responsive layer (A) contains a block polymer in which the temperature-responsive polymer is bonded to the end of a dendritic polymer.
  • At least one of the temperature-responsive polymers is A temperature-responsive polymer obtainable by polymerizing a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether, or Item 6.
  • the temperature-responsive cell culture substrate according to any one of Items 1 to 5, which is a partially acetylated polyvinyl alcohol. Item 7.
  • the N- (or N, N-di) -substituted (meth) acrylamide is poly-N-isopropyl (meth) acrylamide, poly-N, N-diethyl (meth) acrylamide, and poly-N, N-dimethyl (meta).
  • Item 7. The temperature-responsive cell culture substrate according to Item 6, which is at least one selected from the group consisting of acrylamide.
  • Item 8. The temperature-responsive cell culture substrate according to any one of Items 1 to 7, wherein the substrate layer (B) contains polystyrene.
  • Item 9. Item 9.
  • a block polymer a solution containing a good solvent and a poor solvent of polystyrene, in which a block polymer having a temperature-responsive polymer bonded to a terminal of a dendritic polymer having a styrene skeleton or a siloxane skeleton is dissolved, A step of dropping on the surface of a polystyrene substrate and developing the surface; (B) placing the surface obtained in step (a) under the vapor of the solvent for 2 hours or more; and (c) drying the surface obtained in step (b).
  • a method for producing a temperature-responsive cell culture substrate A method for producing a temperature-responsive cell culture substrate.
  • the temperature-responsive cell culture substrate of the present invention which is a temperature responsiveness at a total of 5 points of the surface of the temperature-responsive layer (A), that is, a central point and four specific points equally spaced from the central point. It is drawing which showed the example of how to take these measurement points in one mode of the present invention characterized by there being no big variation between each measured value of polymer immobilization amount. It is drawing which showed how to take the five measurement points in another mode of the present invention. It is the graph which showed the measured value of Numerical formula (2) left side for every etching depth in the temperature-responsive cell culture substratum of this invention.
  • Temperature response layer (A) 1.1 Parameters relating to distribution of temperature-responsive polymer
  • the temperature-responsive cell culture substrate of the present invention comprises: (A) a temperature-responsive layer; and (B) a temperature-responsive cell culture substrate containing a substrate layer,
  • the temperature responsive layer (A) contains a temperature responsive polymer having nitrogen atoms,
  • the temperature responsive layer (A) is disposed on at least one surface of the base material layer (B), the base material layer (B) does not have nitrogen atoms, and the temperature responsive layer (A) )
  • Side surface has a nitrogen element concentration N 1s and a carbon element concentration C 1s measured by the XPS method at an emission angle of 45 °, the following formula (1): (1) 100 ⁇ (N 1s / C 1s ) / (N / C) ⁇ 80 (In the formula, N / C represents a theoretical value of each element ratio in the temperature-responsive polymer) It is a temperature-responsive cell culture substrate that satisfies the above.
  • the temperature responsive layer (A) includes at least a temperature responsive polymer, and the surface exhibits temperature responsiveness.
  • the temperature-responsive cell culture substrate of the present invention uses a surface exhibiting this temperature responsiveness as a surface for cell culture.
  • the temperature responsive layer (A) includes at least one temperature responsive polymer.
  • the temperature responsive layer (A) may contain a temperature responsive polymer in the form of a single molecule, or may contain in the form of a complex containing a temperature responsive polymer. In such composites, the temperature responsive polymer is bound in some manner to other structural moieties.
  • the bonding mode is not limited, but a covalent bond is preferable in that the temperature-responsive polymer is stably immobilized on the surface of the base material layer (B).
  • the temperature-responsive cell culture substrate of the present invention has more excellent cell detachability during temperature response because the surface on the temperature-responsive layer (A) side has the above characteristics.
  • the surface of the temperature responsive layer (A) side has a feature that the coating amount of the temperature responsive polymer is higher than that in the conventional temperature responsive cell culture substrate.
  • Formula (1) is one of the indicators of the coating amount of the temperature-responsive polymer obtained by measuring the surface on the temperature-responsive layer (A) side by the XPS method.
  • N 1s / C 1s is equal to N / C
  • the value on the left side of Equation (1) is 100 (%).
  • N 1s represents the nitrogen atom concentration measured by the XPS method
  • N / C represents the theoretical value of the ratio of nitrogen atom (N) to the amount of carbon atoms (C) contained in the temperature-responsive polymer.
  • the temperature-responsive polymer is polyisopropylacrylamide
  • Equation (1) the value on the left side of Equation (1) is 0 (%).
  • the left side of Formula (1) is preferably 85 (%) or more, more preferably 90 (%) or more, and even more preferably 95 (%) or more.
  • Equation (1) After immersing the temperature-responsive cell culture substrate of the present invention in 20 ° C. distilled water and allowing it to stand for 24 hours, the value on the left side of Equation (1) calculated based on the value measured by the above method is It is preferable to be within the above range.
  • XPS is measured as follows. Using a surface analysis device PHI5000 VersaProbe II manufactured by ULVAC-PHI, Inc. or its equivalent, it is irradiated with monochromatic X-ray AlK ⁇ and measured at an emission angle of 45 °.
  • the temperature-responsive cell culture substrate of the present invention preferably has N 1s and C 1s measured by XPS while the surface on the temperature-responsive layer (A) side is etched from the surface side with an argon gas cluster ion beam. Satisfy the following conditions (A) and / or (B): (A) The measured value at an etching depth of 2 nm satisfies the following formula (2): (2) 100 ⁇ (N 1s / C 1s ) / (N / C) ⁇ 50 (In the formula, N / C represents the same meaning as described above.) (B) The etching depth that satisfies the following formula (3) is 5 nm or more: (3) 100 ⁇ (N 1s / C 1s ) / (N / C) ⁇ 5 (In the formula, N / C represents the same meaning as described above).
  • Equation (2) is a temperature-responsive polymer at a position of 2 nm depth from the surface obtained by measuring by XPS while etching from the surface side of the temperature-responsive cell culture substrate with an argon gas cluster ion beam. Is an indicator of the abundance of. When this position is completely occupied by the temperature-responsive polymer, since N 1s / C 1s is equal to N / C, the value on the left side of Equation (2) is 100 (%).
  • the left side of the formula (2) is preferably 60 (%) or more, more preferably 70 (%) or more, and further preferably 80 (%) or more.
  • Equation (3) shows that the amount of the temperature-responsive polymer obtained by measuring by X-ray photoelectron spectroscopy while etching from the surface side of the temperature-responsive cell culture substrate with an argon gas cluster ion beam is sufficiently small. It is an index of the depth position. That is, the amount of the temperature-responsive polymer is sufficiently reduced at the point where the mathematical formula (3) is satisfied. If the depth position where the mathematical formula (3) is satisfied is 5 nm or more, it can be said that a sufficient amount of the temperature-responsive polymer exists from the surface side to a deeper position. It will be better. In view of this effect, the etching depth that satisfies the left side of Equation (3) is preferably 4 nm or more, more preferably 5 nm or more, and even more preferably 6 nm or more.
  • the method of measuring XPS while etching with an argon gas cluster ion beam is specifically performed as follows. Using a surface analyzer PHI5000 VersaProbe II manufactured by ULVAC-PHI, Inc. or an equivalent thereof, elements in the depth direction are measured while etching with argon gas cluster ions under conditions of 2.5 kV, 10 nA (Area 2 mm ⁇ ). The etching rate is calculated to be 2.0 nm / min by etching a 61 nm thick PNIPAM thin film (substrate: silicon wafer) with argon gas cluster ions until Si is detected.
  • the surface coverage of the temperature-responsive polymer is more uniformly coated on the surface.
  • the center point of the surface on the temperature response layer (A) side, and each end point in a cross line with the center point as an intersection, which is set so that the sum of the distances from the center point to each end point is maximized The coefficient of variation [(standard deviation / average value) ⁇ 100] calculated from each measured value of the temperature-responsive polymer immobilization amount at five points including the center point of the line connecting the center point is expressed by the following formula ( 4): (4) Coefficient of variation ⁇ 10 It is preferable to satisfy.
  • the left side of Equation (4) is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less.
  • FIGS. 1 and 2 show an example when the surface is circular
  • FIG. 2 shows an example when the surface is substantially square
  • the point A indicates the center point
  • the point B indicates the center point of the line connecting the end points and the center point in the cross line (shown by a broken line).
  • the area of the substrate used for the measurement is, for example, 9.6 to 78.5 cm 2 .
  • the amount of the temperature-responsive polymer immobilized on the substrate surface can be calculated from the amount of the temperature-responsive polymer applied to the substrate surface.
  • the amount of the temperature-responsive polymer immobilized can be measured according to a conventional method. Examples of such a measuring method include Fourier transform infrared spectroscopic total reflection attenuation method (FT-IR-ATR method), elemental analysis method, XPS method and the like. Any measurement method may be selected as long as the measurement result does not vary. However, in the case where variation occurs, the measurement result by the FT-IR-ATR method is adopted in the present invention.
  • the measurement by the FT-IR-ATR method is specifically performed as follows. A case where a polystyrene cell culture dish is used as a base material and a case where PNIPAM is used as a temperature-responsive polymer will be described as an example, but other base materials and / or polymers may be used in the same manner by applying the following examples. It can be measured.
  • a temperature-responsive cell culture substrate in which a cell culture dish made of polystyrene is used as a substrate and PNIPAM is immobilized as a temperature-responsive polymer is prepared.
  • FT-IR-ATR measuring represented by the following formula (5), for the absorption intensity of the benzene ring stretching derived from polystyrene (1600 cm -1), amide stretch derived from PNIPAM (1650 cm -1 ) Absorption intensity ratio can be obtained.
  • Absorption intensity ratio I 1650 / I 1600
  • a known amount of PNIPAM (1 to 10 ⁇ g / cm 2 ) is applied to a polystyrene substrate, and a calibration curve is prepared in advance from the absorption intensity ratio obtained by the formula (5).
  • the amount of unknown PNIPAM can be determined.
  • the polymer immobilization layer on the polystyrene substrate is assumed to be sufficiently thin with respect to the penetration depth (on the order of 1 ⁇ m) of infrared light (evanescent wave) on the sample (reference document: Langmuir 2004, 20, 5506-5511). ).
  • the temperature-responsive polymer is preferably immobilized on the surface by 0.5 ⁇ g / cm 2 or more.
  • the complex is 0.5 ⁇ g / cm 2 in terms of temperature-responsive polymer. As described above, it is preferably 1.0 ⁇ g / cm 2 or more, more preferably 1.5 ⁇ g / cm 2 or more, and more preferably 1.5 ⁇ g / cm 2 or more.
  • the temperature-responsive polymer when the temperature-responsive polymer is immobilized in the above amount or more, the cultured cells on the polymer are not easily detached even if the temperature is changed.
  • the complex is the temperature-responsive polymer. If converted to 10 ⁇ g / cm 2 or less, preferably 5 ⁇ g / cm 2 or less, more preferably 4 ⁇ g / cm 2 or less, the cells are likely to adhere to the surface in the state before the temperature response. , It becomes easy to attach the cells sufficiently.
  • the temperature-responsive cell culture substrate of the present invention has a temperature-responsive polymer, or when the temperature-responsive polymer is immobilized on the surface as a complex with another structure, the complex is
  • the complex is In terms of responsive polymer, 0.5 to 10 ⁇ g / cm 2 is preferably immobilized on the surface, preferably 1 to 5 ⁇ g / cm 2 , more preferably immobilized on the surface, and 1.5 to 4 ⁇ g. / cm 2, more preferably immobilized on the surface.
  • the temperature-responsive polymer is not particularly limited as long as it is a temperature-responsive polymer having a nitrogen atom, and can be widely selected. Specific examples of the temperature-responsive polymer include a polymer having a lower critical solution temperature (LCST) or a polymer having an upper critical solution temperature (UCST), and a block polymer having a specific structure is used. It is preferable.
  • the block polymer may contain a kind of temperature-responsive polymer as a block, or may contain a plurality of kinds of temperature-responsive polymers as a block.
  • Examples of the temperature-responsive polymer include polymers described in Japanese Patent Publication No. 06-104061. Specific examples include polymers having structural units based on at least one of the following monomers. Examples of the monomer include (meth) acrylamide compounds, N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives, vinyl ether derivatives, and the like.
  • temperature-responsive polymers examples include polyvinyl alcohol partial acetylated products and nitrogen-containing cyclic polymers.
  • temperature-responsive polymer examples include alkyl-substituted cellulose derivatives, polyalkylene oxide block copolymers, and polyalkylene oxide block copolymers.
  • a temperature-responsive polymer having LCST or UCST within this range is preferable.
  • Polymers obtained by polymerizing poly (N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives having such temperature responsiveness (poly (N- (or N, N-di) alkyl-substituted) Specific examples of (meth) acrylamide)) are poly-Nn-propylacrylamide (lower critical solution temperature 21 ° C.), poly-Nn-propyl methacrylamide (27 ° C.), poly-N-isopropylacrylamide.
  • poly-N-isopropylmethacrylamide (43 ° C), poly-N-cyclopropylacrylamide (45 ° C), poly-N-ethoxyethylacrylamide (about 35 ° C), poly-N- Ethoxyethyl methacrylamide (about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (about 28 ° C), poly- -Tetrahydrofurfuryl methacrylamide (about 35 ° C), poly-N, N-ethylmethylacrylamide (56 ° C), poly-N, N-diethylacrylamide (32 ° C), poly (N-ethylacrylamide), Examples include poly (N-isopropylmethacrylamide), poly (N-cyclopropylacrylamide), and poly (N-cyclopropylmethacrylamide).
  • polystyrene resin examples include polymethyl vinyl ether.
  • polystyrene resin examples include poly(N-acryloylpyrrolidine) and poly (N-acryloylpiperidine).
  • alkyl-substituted cellulose derivative examples include methyl cellulose, ethyl cellulose, and hydroxypropyl cellulose.
  • polyalkylene oxide block copolymer examples include a block copolymer of polypolypropylene oxide and polyethylene oxide.
  • thermoresponsive polymer a copolymer of at least one of the above-mentioned monomers whose homopolymer exhibits temperature-responsiveness and at least one monomer other than the above-mentioned monomer can be used.
  • monomers for example, charged monomers and / or hydrophobic monomers can be used.
  • Examples of the charged monomer include a monomer having an amino group, a monomer having an ammonium salt, a monomer having a carboxyl group, and a monomer having a sulfonic acid group.
  • Examples of the monomer having an amino group include dialkylaminoalkyl (meth) acrylamide, dialkylaminoalkyl (meth) acrylate, aminoalkyl (meth) acrylate, aminostyrene, aminoalkylstyrene, aminoalkyl (meth) acrylamide, and the like. .
  • Examples of the monomer having an ammonium salt include [2- (2-methylacryloyloxy) ethyl] trimethylammonium salt and 3-acrylamidopropyltrimethylammonium chloride which is a (meth) acrylamide alkyltrimethylammonium salt.
  • Examples of the monomer having a carboxyl group include acrylic acid and methacrylic acid.
  • examples of the monomer having sulfonic acid include (meth) acrylamide alkyl sulfonic acid.
  • hydrophobic monomer examples include alkyl acrylate and alkyl methacrylate.
  • alkyl acrylate examples include n-butyl acrylate and t-butyl acrylate.
  • alkyl methacrylate examples include n-butyl methacrylate, t-butyl methacrylate, methyl methacrylate and the like.
  • hydrophobic monomer the following fluorine-containing monomers can also be used.
  • fluorine-containing monomer for example, an acrylate ester having a fluoroalkyl group that is ester-bonded or amide-bonded directly or via a divalent organic group to the carboxyl group, and may have a substituent at the ⁇ -position (hereinafter referred to as “a”) , “Fluoroalkyl group-containing acrylate ester”), or “fluoroalkyl group-containing acrylamide”.
  • X represents a hydrogen atom, a linear or branched alkyl group having 1 to 21 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (where X 1 and X 2 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group or A substituted or unsubstituted phenyl group; Y is —O— or —NH—; Z is an aliphatic group having 1 to 10 carbon atoms, an aromatic group having 6 to 10 carbon atoms or a cyclic aliphatic group, —CH 2 CH 2 N (R 1 ) SO 2 — group (where R 1 X
  • Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms which may have a hetero atom.
  • the fluoroalkyl group represented by Rf is an alkyl group which may have a hetero atom, in which at least one hydrogen atom is substituted with a fluorine atom, and all the hydrogen atoms are A perfluoroalkyl group which may be substituted with a fluorine atom and which may have a hetero atom is also included.
  • Rf is preferably a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, and particularly a straight chain having 1 to 3 carbon atoms. It is preferably a chain or branched perfluoroalkyl group.
  • EPA US Environmental Protection Agency
  • a compound having a fluoroalkyl group having 8 or more carbon atoms is a high environmental load that may decompose and accumulate in the environment and living organisms.
  • Rf when Rf is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, such environmental problems are pointed out. Because it is not.
  • examples of the Rf group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CFHCF 3 , —CF (CF 3 ) 2 , -CF 2 CF 2 CF 2 CF 3 , -CF 2 CF (CF 3 ) 2 , -C (CF 3 ) 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 2 CF (CF 3 ) 2 , -CF 2 C (CF 3 ) 3 , -CF (CF 3 ) CF 2 CF 2 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 3 CF (CF 3 ) 2 .
  • the fluorine-containing monomer is preferably a non-telomer, and in this respect, the Rf group includes a fluoroalkyl group having 1 to 2 carbon atoms, or two or more carbon atoms having 1 to 3 carbon atoms interposed by a hetero atom.
  • acrylate ester and acrylamide represented by the general formula (1) are as follows.
  • fluoroalkyl group-containing acrylic ester and fluoroalkyl group-containing acrylamide can be used alone or in combination of two or more.
  • the temperature-responsive polymer is obtained by polymerizing a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether.
  • a temperature-responsive polymer or polyvinyl alcohol partially acetylated product is preferred.
  • a block polymer having the above-described temperature-responsive polymer as a segment may be used. Moreover, you may use what cross-linked temperature-responsive polymer in the range which does not impair the original property of a polymer.
  • the crosslinkable monomer used at that time is not particularly limited and can be selected widely. An example is N, N'-methylenebis (meth) acrylamide.
  • the temperature-responsive layer (A) is a block polymer in which the temperature-responsive polymer is bonded to the end of the dendritic polymer (hereinafter referred to as “dendritic block copolymer”). ) Is preferably contained. This makes it easier to achieve the parameters relating to the preferred temperature-responsive polymer distribution.
  • the temperature responsive layer (A) when the temperature responsive layer (A) contains a dendritic block copolymer, the temperature responsive polymer is more easily fixed to the temperature responsive layer (A). Specifically, in the said aspect, the residual rate to the temperature-responsive layer (A) of the temperature-responsive polymer after washing the temperature-responsive layer (A) with water is excellent. For this reason, the temperature-responsive cell culture substrate of this aspect is preferably used for reuse. In the temperature-responsive cell culture substrate of this embodiment, the temperature-responsive layer (A) preferably has a temperature-responsive polymer residual amount of 1 ⁇ g / cm 2 after being immersed in distilled water at 20 ° C. and allowed to stand for 24 hours. That's it.
  • the upper limit of the temperature-responsive polymer remaining amount is usually 10 ⁇ g / cm 2 , preferably 5 ⁇ g / cm 2 , more preferably 4 ⁇ g / cm 2 .
  • the remaining amount of the temperature-responsive polymer can be measured by the same method as described above as the method for measuring the immobilized amount of the temperature-responsive polymer.
  • the core dendritic polymer portion excluding the temperature-responsive polymer portion (in this specification, this portion is simply referred to as “dendritic polymer” in order to distinguish it from the entire dendritic block copolymer.
  • this portion is preferably a dendritic polymer having a styrene skeleton or a siloxane skeleton.
  • the dendritic polymer portion is easily arranged regularly on the surface of the base material, thereby stably fixing to the surface of the base material. As a result, an effect that it is difficult to release not only when culturing cells but also when detaching cells by temperature response can be obtained.
  • the dendritic block copolymer in which the temperature-responsive polymer is bonded to the terminal of the dendritic polymer having a styrene skeleton has a water-insoluble styrenic dendritic polymer portion and a temperature-responsive polymer portion having affinity for water. It is a combination. Therefore, it is expected that a fine phase separation structure is formed on the substrate surface by coating the substrate surface with this dendritic block copolymer and drying it. When cells adhere to the surface of the substrate, it is preferable to have a phase separation structure on the surface of the substrate because cell denaturation can be suppressed.
  • the dendritic polymer is preferably a dendritic polymer having 15 or more terminals.
  • the density per unit volume of the temperature-responsive polymer bonded to the terminals can be within a preferable range, which contributes to the improvement of cell detachability during temperature response.
  • the number of terminals of the dendritic polymer having a styrene skeleton is preferably 15 or more, and more preferably 20 or more.
  • the number of terminals of the dendritic polymer is preferably 100 or less, and more preferably 50 or less, in that the reaction time for adding the temperature-responsive polymer can be shortened.
  • the preferred range of the number of terminals of the dendritic polymer is 15 to 50, of which 20 to 50 is preferred, and 30 to 50 is more preferred.
  • the molecular weight of the dendritic polymer is not particularly limited, and can be selected from a wide range.
  • the molecular weight of the dendritic polymer is 2,000 or more, the dendritic block copolymer is easily immobilized on the polystyrene base material, and the possibility of elution into the medium or the like is reduced.
  • the molecular weight of the dendritic polymer is preferably 3,000 or more, more preferably 4,000 or more, and most preferably 5,000 or more.
  • the molecular weight of the dendritic polymer of the present invention is measured by GPC under the following conditions. In addition, it may replace with the apparatus, reagent, etc. which are listed below, and may use the thing equivalent to them.
  • Apparatus Not particularly limited.
  • Detector Differential refractive index detector RI column: LF-604 (2), KF-601 (2) (Shodex) Solvent: Tetrahydrofuran flow rate: 0.6 ml / min Column temperature: 40 ° C
  • Sample preparation A sample was dissolved in tetrahydrofuran to prepare 0.5 mass%. After dissolution, it was filtered using a 0.45 ⁇ m filter. Injection volume: 0.2ml Standard sample: standard polystyrene made by shodex
  • the temperature-responsive polymer introduction rate can be kept within a preferable range.
  • the molecular weight of the dendritic polymer is preferably 500,000 or less, more preferably 300,000 or less, and most preferably 100,000 or less.
  • a group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be added to the end of the dendritic block copolymer.
  • the application of these groups can be performed by a conventional method.
  • the dendritic polymer portion has a positive or negative group such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group.
  • a charged group may remain.
  • a group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be imparted to or at the terminal of the temperature-responsive polymer.
  • the dendritic block copolymer at least one kind of temperature-responsive polymer is bonded to the end of the dendritic polymer, but at least one other polymer may be further bonded.
  • the dendritic block copolymer has a temperature-responsive polymer having a molecular weight of 3000 or more bonded to 50 to 99.5% by mass with respect to the whole dendritic block copolymer at the end of a dendritic polymer having 15 or more terminals. preferable.
  • the temperature-responsive polymer since the temperature-responsive polymer is sufficiently bonded to the end of the dendritic polymer, the cultured cells on the polymer are not easily detached even when the temperature is changed.
  • the temperature-responsive polymer is bonded to the terminal of the dendritic polymer at 70% by mass or more with respect to the entire dendritic block copolymer, and 80% by mass or more is bonded. It is more preferable.
  • the dendritic block copolymer is preferably one in which the temperature-responsive polymer is bonded to the end of the dendritic polymer at 99.5% by mass or less with respect to the entire dendritic block copolymer.
  • the temperature-responsive polymer is bonded to the end of the dendritic polymer with 98% by mass or less, and 97% by mass or less with respect to the entire dendritic block copolymer. More preferred.
  • the molecular weight of the dendritic block copolymer of the present invention is measured by GPC under the following conditions. In addition, it may replace with the apparatus, reagent, etc. which are listed below, and may use the thing equivalent to them.
  • Apparatus Not particularly limited.
  • Detector Differential refractive index detector RI
  • Solvent Dimethylformamide (50 mM LiBr added)
  • Flow rate 0.8mL / min
  • Sample preparation 5 mL of DMF solvent is added to 10 mg of sample, dissolved by gently stirring at room temperature, and then filtered using a 0.45 ⁇ m filter.
  • Injection volume 0.2 mL
  • Standard sample Tosoh monodisperse polystyrene
  • the molecular weight (weight basis) of the dendritic block copolymer of the present invention is preferably 100,000 to 500,000.
  • the measured molecular weight is less than 100,000, the temperature-responsive polymer is not introduced into the end of the dendritic polymer, and the cell detachability is lowered because the blended ratio is large.
  • the method for bonding the temperature-responsive polymer to the end of the dendritic polymer is not particularly limited and can be selected widely.
  • Examples of the bonding method include a method in which a RAFT agent is introduced at the end of the dendritic polymer, and various monomers are grown using the RAFT agent as a starting point.
  • the initiator for RAFT polymerization is not particularly limited and can be selected widely.
  • 2,2′-azobis isobutyronitrile
  • 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • V-057 2,2′-azobis [(2- Carboxyethyl) -2- (methylpropionamidine)
  • the solvent used in the RAFT polymerization is not particularly limited and can be selected widely.
  • benzene, tetrahydrofuran, 1,4-dioxane, dimethylformaldehyde (DMF) and the like are preferable, and can be appropriately selected depending on the types of monomers, RAFT agent, and polymerization initiator used in the polymerization reaction.
  • the initiator concentration, the amount of RAFT agent, the reaction temperature, the reaction time, and the like at the time of polymerization are not particularly limited and can be appropriately set according to the purpose.
  • the reaction solution may be allowed to stand or be stirred.
  • the structure of the styrene skeleton dendritic polymer can be selected widely.
  • the structure of the styrene skeleton dendritic polymer can be represented, for example, by the following general formula (2).
  • R 2 is a group into which the temperature-responsive polymer can be introduced by a covalent bond.
  • n represents the degree of polymerization.
  • R 2 is not particularly limited and can be selected widely.
  • a group that can act as a reversible addition-cleavage chain transfer (RAFT) agent is preferable because a temperature-responsive polymer can be introduced by RAFT polymerization.
  • RAFT reversible addition-cleavage chain transfer
  • Such a group that can act as a RAFT agent is not particularly limited and can be selected widely.
  • Examples include a thiocarbonylthio group. Examples of the thiocarbonylthio group include a dithioester group, a dithiocarbamate group, a trithiocarbonate group, a xanthate group, and a dithiobenzoate group.
  • R 2 may have an optionally substituted hydrocarbon group having 3 to 12 carbon atoms at the terminal.
  • the hydrocarbon group is preferably a branched hydrocarbon group. Thereby, an appropriate steric hindrance can be given to the temperature-responsive portion in the dendritic block copolymer, and the effect that the substrate surface can be coated more effectively can be obtained.
  • Specific examples of R 2 at this time include the following trithiocarbonate groups.
  • R 3 represents an optionally substituted hydrocarbon group having 3 to 12 carbon atoms.
  • R 3 is preferably a branched hydrocarbon group. Specifically, methyl, ethyl, propyl, branched propyl, butyl, branched butyl, hexyl, branched hexyl, pentyl, branched pentyl, heptyl, branched heptyl, octyl, branched There are an octyl group, a 2-ethylhexyl group, a nonyl group, a branched nonyl group, a decyl group, a branched decyl group, a dodecyl group, and a branched dodecyl group, preferably an isopropyl group, an ethylhexyl group, and a butyloctyl group.
  • the method for producing the styrene skeleton dendritic polymer is not particularly limited, and can be widely selected.
  • it can be obtained by an atom transfer radical polymerization (ATRP) method in the presence of copper chloride in chlorobenzene, which is conventionally performed.
  • ATRP atom transfer radical polymerization
  • AIBN azobisisobutyronitrile
  • styrene derivative having a functional group as a monomer.
  • styrene derivatives include halogenated methylstyrene.
  • halogenated methylstyrene chloromethylstyrene, bromomethylstyrene, or the like is used.
  • a styrene derivative may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the ratio of the styrene derivative having a functional group to the total monomer used is preferably 5% or more.
  • the proportion of the styrene derivative having a functional group is more preferably 10% or more, further preferably 15% or more, and most preferably 20% or more.
  • the proportion of the styrene derivative having a functional group is 90% or less, the resulting dendritic block copolymer is hardly soluble in water while maintaining the efficiency of introducing the temperature-responsive polymer chain within a good range, and the dendritic block The possibility of the copolymer eluting into the medium or the like is reduced.
  • the ratio of the styrene derivative having a functional group is more preferably 80% or less, further preferably 70% or less, and most preferably 60% or less.
  • the proportion of the styrene derivative having a functional group is preferably 5% to 90%, more preferably 10% to 80%, further preferably 15% to 70%, and most preferably 20% to 60%.
  • Siloxane skeleton dendritic polymer can be widely selected.
  • the siloxane skeleton dendritic polymer is, for example, at least one selected from the group consisting of bis (dimethylvinylsiloxane) methylsilane, tris (dimethylvinylsiloxane) silane, bis (dimethylallylsiloxane) methylsilane, and tris (dimethylallylsiloxane) silane.
  • polymerizing a monomer are mentioned.
  • siloxane skeleton dendritic polymer can be obtained by, for example, the method described in WO 2004/074177 pamphlet or the like.
  • the temperature-responsive cell culture substrate of the present invention can be obtained by disposing the temperature-responsive layer (A) on at least one surface of the substrate layer (B).
  • the temperature responsive polymer (A) is disposed on the surface of the base material layer (B) by directly or indirectly fixing the temperature responsive polymer to the surface of the base material layer (B). it can.
  • the temperature response layer (A) may have two or more regions having different UCST or LCST, and these regions may be arranged so as to form a two-dimensional pattern.
  • the temperature response layer (A) is disposed on a part of at least one surface of the base material layer (B), and the region and the region not temperature-responsive are arranged so as to form a two-dimensional pattern. May be.
  • the method for fixing the temperature-responsive polymer to the surface of the base material layer (B) is not particularly limited and can be selected widely.
  • the temperature-responsive polymer can be directly fixed by dissolving or dispersing it in a solvent and then applying it so that the substrate surface is uniformly coated.
  • the temperature-responsive polymer can be indirectly fixed by dissolving or dispersing the complex containing the temperature-responsive polymer in a solvent and then applying the complex to the surface of the base material layer (B).
  • a complex examples include the above-mentioned dendritic block copolymer of 1.3.
  • the solvent is not particularly limited as long as it can dissolve or disperse the temperature-responsive polymer or the complex containing the polymer, and can be selected widely.
  • examples thereof include N, N-dimethylacrylamide; isopropyl alcohol; and a mixture of acetonitrile and N, N-dimethylformamide.
  • a plurality of types of solvents may be mixed and used.
  • the mixing ratio is not particularly limited and can be selected widely.
  • dioxane: normal propanol can be set to 0.5 to 2: 4.
  • toluene: normal butanol can be set to 0.5 to 2: 4.
  • a mixed solvent of acetonitrile and N, N-dimethylformamide for example, acetonitrile: N, N-dimethylformamide can be set to 4: 1 to 6: 1.
  • the solvent a solution containing a good solvent and a poor solvent of polystyrene is preferable.
  • a solvent particularly when the material of the base material layer (B) is polystyrene, while the polystyrene on the surface of the base material layer (B) is swollen, the styrene skeleton dendritic block copolymer of the above 1.3 or The siloxane skeleton dendritic block copolymer can be fixed, and as a result, the styrene skeleton dendritic block copolymer or the siloxane skeleton dendritic block copolymer is preferably embedded in the surface of the base material layer (B).
  • the good solvent and the poor solvent are tetrahydrofuran and methanol, respectively.
  • the tetrahydrofuran content in the mixed solvent of tetrahydrofuran and methanol is more preferably 10 to 35% by volume.
  • the solution containing the temperature-responsive polymer or the composite containing the same is uniformly applied to the surface of the base material layer (B). It is preferable to apply to.
  • the method is not particularly limited and can be selected widely. For example, the method of using a dispenser, the method of leaving a base material layer (B) on a horizontal stand, etc. are mentioned.
  • the temperature-responsive cell culture substrate of the present invention is obtained by applying a solution containing a temperature-responsive polymer or a complex containing the same to the surface of the substrate layer (B) and then removing the solvent.
  • the method for removing the solvent is not particularly limited, and can be selected widely. For example, a method of slowly evaporating over time in the atmosphere at room temperature, a method of evaporating slowly over time in a solvent-saturated environment at room temperature, a method of evaporating under heating, and evaporating under reduced pressure Methods and the like.
  • a method of slowly evaporating at room temperature and in a solvent saturated environment is preferable in that a uniform surface of the temperature responsive layer (A) can be obtained. Specifically, it is preferable to put it under the vapor of the solvent for 2 hours or more.
  • the temperature-responsive layer (A) it is preferable to slowly evaporate the solvent over time in a solvent-saturated environment and then wash the surface once and then dry.
  • Base material layer (B) The material of the base material layer (B) is not particularly limited as long as it does not have a nitrogen atom. Usually, any material can be used as long as it is used for cell culture. For example, glass, modified glass, various resins, etc. are mentioned. In addition to these, it may be made of a material that can generally be given a form. Such a material is not particularly limited and can be selected widely. For example, a graft polymer, ceramics, metals, etc. are mentioned.
  • the resin examples include polystyrene, polyethylene, polypropylene, cycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
  • polystyrene, polymethyl methacrylate and the like are particularly preferably used.
  • the surface of the base material layer (B) on the side where the temperature responsive layer (A) is arranged may be subjected to a surface treatment as necessary.
  • a surface treatment include plasma treatment and corona treatment.
  • the surface of the base material layer (B) on the side where the temperature response layer (A) is arranged may be smooth, and a three-dimensional structure such as a hole shape, a protrusion shape, or a wall shape is formed. May be.
  • a three-dimensional structure such as a hole shape, a protrusion shape, or a wall shape is formed. May be.
  • the substrate layer (B) having such a three-dimensional structure on the surface include, for example, commercially available three-dimensional structure cell culture substrates, SCIVAX NanoCulture Plate, Hitachi High-Technologies Nanopillar Plate, 3D Biomatrix Perfecta3D or Kuraray ELPLASIA can be used.
  • the temperature response layer (A) may be disposed on the surface of the base material layer (B) via at least one other layer.
  • the other layers include polystyrene, polyethylene, polypropylene, cycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
  • the temperature-responsive cell culture substrate of the present invention may further include other layers in addition to the temperature-responsive layer (A) and the substrate layer (B) as necessary.
  • other layers include a support layer used for the purpose of shape retention.
  • the shape of the temperature-responsive cell culture substrate of the present invention is not particularly limited. It may be a cell culture dish such as a Petri dish, or a plate, fiber or particle. The particles may be porous. Further, it may have another container shape generally used for cell culture or the like. As such a container shape, a flask, a bag, etc. are mentioned, for example.
  • the temperature-responsive cell culture substrate of the present invention can be used for all cells.
  • Examples thereof include cells such as animals, insects and plants, and bacteria.
  • Examples of the origin of animal cells include humans, monkeys, dogs, cats, rabbits, rats, nude mice, mice, guinea pigs, pigs, sheep, Chinese hamsters, cattle, marmoset, and African green monkeys.
  • the temperature-responsive cell culture substrate of the present invention can be preferably used for adherent cells.
  • Adhesive cells can be widely selected and include, for example, endothelial cells, epidermis cells, epithelial cells, muscle cells, nerve cells, bone cells, fat cells, etc., as well as dendritic cells and macrophages.
  • the endothelial cells include hepatocytes, Kupffer cells, vascular endothelial cells, and corneal endothelial cells.
  • epidermal cells include fibroblasts, osteoblasts, osteoclasts, periodontal ligament-derived cells and epidermal keratinocytes.
  • epithelial cells include tracheal epithelial cells, gastrointestinal epithelial cells, cervical epithelial cells, and corneal epithelial cells.
  • muscle cells include mammary gland cells, pericytes, smooth muscle cells, and cardiomyocytes.
  • nerve cells include kidney cells, pancreatic islets of Langerhans, peripheral nerve cells, and optic nerve cells.
  • bone cells include osteoclasts and chondrocytes.
  • Adhesive stem cells include embryonic stem cells (ES cells), embryonic germ cells (EG cells), germline stem cells (GS cells), induced pluripotent stem cells (IPS cells; induced pluripotent stem cells) and other pluripotent stem cells; mesenchymal stem cells; hematopoietic stem cells; Stem cells such as unipotent stem cells (progenitor cells) such as cells, dermal fibroblasts, skeletal muscle myoblasts, osteoblasts, and odontoblasts.
  • ES cells embryonic stem cells
  • EG cells embryonic germ cells
  • GS cells germline stem cells
  • IPS cells induced pluripotent stem cells
  • mesenchymal stem cells hematopoietic stem cells
  • Stem cells such as unipotent stem cells (progenitor cells) such as cells, dermal fibroblasts, skeletal muscle myoblasts, osteoblasts, and odontoblasts.
  • a medium usually used for culturing target cells can be used as it is.
  • the temperature of the whole or part of the culture base material is made to be not less than UCST or not more than LCST of the temperature-responsive polymer, so that the cultured cells are detached without enzyme treatment. be able to.
  • the peeling due to the temperature change may be performed in a culture solution or in another isotonic solution.
  • the substrate can be tapped or swayed for the purpose of detaching and collecting the cells faster and more efficiently. If necessary, the medium may be stirred using a pipette or the like. Advantages of changing the temperature of only a part of the substrate include, for example, that it is possible to selectively detach only differentiated cell colonies in induction of iPS cell differentiation.
  • the temperature-responsive polymer is preferably firmly fixed on the surface, and in this case, it can be used for reuse.
  • the temperature-responsive base material for cell culture having a surface on which the above-mentioned 1.3 dendritic block copolymer is fixed is particularly preferably used for reuse because the temperature-responsive polymer is firmly fixed on the surface. be able to.
  • a series of steps are performed in which cell culture is performed by adding a liquid medium, the cells are detached by temperature response, and the substrate surface is washed with an appropriate washing solution such as phosphate buffered saline.
  • an appropriate washing solution such as phosphate buffered saline.
  • the same temperature-responsive substrate for cell culture is used in two or more cycles, that is, used for two or more reuses.
  • the temperature-responsive substrate for cell culture of the present invention is preferably used for reuse three times or more.
  • Dendritic block copolymer (temperature-responsive polymer content 85%)
  • Dendritic polymer 1 (0.028 g), N-isopropylacrylamide (NIPAM, 1 g, 8.85 ⁇ 10 ⁇ 3 mol), dehydrated tetrahydrofuran (THF, 3 ml) described above into a 10 ml branch tube flask under nitrogen substitution And dissolved by stirring. Further, AIBN (4.0 ⁇ 10 ⁇ 3 g, 4.6 ⁇ 10 ⁇ 6 mol) was added, and the mixture was stirred at 70 ° C. for 10 hours.
  • NIPAM N-isopropylacrylamide
  • THF dehydrated tetrahydrofuran
  • the coating solution (50 ⁇ l) obtained by the above method was applied to a polystyrene cell culture dish (Corning Falcon 3001, culture area 9.6 cm 2 ) and covered. The mixture was allowed to stand for 2.5 hours and then dried to obtain a temperature-responsive cell culture substrate.
  • Example 2 [Preparation of coating solution]
  • Example 3 [Preparation of coating solution] It was prepared in the same manner as in Example 1, except that the dendritic block copolymer was replaced with that synthesized in Production Example 2.
  • Example 4 [Preparation of coating solution]
  • the coating solution preparation method was the same as in Example 3.
  • Comparative Example 1 Corning Falcon 3001 (culture area 9.6 cm 2 ) was used as Comparative Example 1.
  • ⁇ Comparative example 4> As a comparative example 4, a commercially available temperature-responsive cell culture substrate A in which PNIPAM was chemically imparted to the polystyrene substrate surface by electron beam irradiation by graft polymerization was used.
  • X-ray photoelectron spectroscopy measurement while etching with an argon gas cluster ion beam was performed as follows. The elements in the depth direction were measured while etching with argon gas cluster ions under the conditions of 2.5 kV and 10 nA (Area 2 mm) using a surface analyzer PHI5000 VersaProbe II manufactured by ULVAC-PHI. The etching rate was calculated to be 2.0 nm / min by etching a 61 nm thick PNIPAM thin film (substrate: silicon wafer) with argon gas cluster ions until Si was detected.
  • FT-IR-ATR method A temperature-responsive cell culture substrate was prepared using a polystyrene cell culture dish as a substrate and PNIPAM immobilized as a temperature-responsive polymer.
  • the state of attachment of the cultured cells and whether the cultured cells were growing until they became full in the petri dish were observed using an inverted microscope. Thereafter, the temperature-responsive petri dish containing the cultured cells was allowed to stand in a low-temperature CO 2 incubator (20 ° C., 5% CO 2 ) and cooled for 15 minutes. After cooling, the peeled state of the cultured cells and whether the cultured cells were peeled in a sheet form were observed with an inverted microscope, and the peelability of the cell sheets was evaluated according to the following criteria. 1. Does not peel. Partial peeling 2. 4. The whole cultured cell peels off, but it takes about 15 minutes to peel off. 4. Good peeling within 15 minutes. It peels very well in a short time
  • Example 1 [Evaluation of Example 1 (without washing) and Comparison with Comparative Example 4] The results are shown in Table 1.
  • the base material of Example 1 (without water washing) had a PNIPAM coverage of 99% or more on the outermost surface at an etching depth of 0 nm.
  • the base material obtained in Comparative Example 4 (commercial product A) had an outermost surface PNIPAM coverage of less than 80%, suggesting that the base material was exposed.
  • the PNIPAM coverage with respect to the etching depth was measured, it was suggested that the base material obtained in Example 1 was twice or more deeper than the base material obtained in Comparative Example 4. It was. From the above, it was confirmed that the product of the present invention was able to effectively embed the polymer in the base material and that the surface of the base material was almost covered with PNIPAM.
  • Example 1 (with water washing) and Comparison with Comparative Example 4]
  • the cell sheet peelability was evaluated using mouse fibroblasts for the substrate without washing in Example 1, the substrate with washing in Example 1, and the substrate in Comparative Example 4. As a result, good peelability was exhibited in the order of Comparative Example 4 ⁇ Example 1 (without water washing) ⁇ Example 1 (with water washing). This is considered to be due to the effect that the surface was effectively covered with PNIPAM by embedding the polystyrene dendritic polymer site in the base material, and the excess polymer was removed by washing with water. On the other hand, in Comparative Example 4, it was considered that the peeling time was longer than that in Example 1 because both the coating amount and the coverage of PNIPAM were insufficient.
  • Example 2 the THF content in the coating solvent was increased from 20% to 29% by volume. The effect was evaluated from both the PNIPAM coverage and coverage. As a result, it was confirmed by FT-IR-ATR measurement that the amount of PNIPAM coating after washing was increased by about 20% compared to Example 1, and accordingly, the PNIPAM coverage with respect to the etching depth of 2 nm and the PNIPAM coverage was 5 nm. The following etching depth also increased slightly.
  • Example 2 As a result of evaluating the cell sheet peelability of the substrate of Example 2 obtained above using mouse fibroblasts, the peel was better than that of Example 1 in both “without water wash” / “with water wash” Showed sex. In particular, “with water” exhibited very good peelability, and evaluation 5 was obtained.
  • Comparative Example 2 the substrate coated with PNIPAM obtained in Comparative Production Example 1 was evaluated, but cell detachability was not expressed.
  • This PNIPAM does not have a means for binding to the base material, so it is considered that it was dissolved and removed when the medium (water) was added.
  • the base material of Comparative Example 2 was washed with water, and the surface coating with PNIPAM could not be confirmed. This is probably because all the applied PNIPAM was already removed at the time of water washing because PNIPAM was not bonded to the substrate. Therefore, in Comparative Example 3, cell detachability was not expressed.
  • Example 1 (with water washing)
  • the polymer elution test with respect to room temperature water was done. Specifically, the degree of change in the PNIPAM coverage on the surface after immersion of the sample in room temperature water was measured using the XPS (analysis depth of about 10 nm) and FT-IR-ATR (analysis depth of 1 to several). ⁇ m) was used for analysis.
  • XPS analysis depth of about 10 nm
  • FT-IR-ATR analysis depth of 1 to several. ⁇ m
  • Comparative Example 4 a commercially available temperature-responsive cell culture substrate in which PNIPAM was chemically applied to a polystyrene substrate was measured in the same manner by a graft polymerization method using electron beam irradiation.
  • Example 1 As a result of the evaluation, at the analysis depth of about 10 nm, the base material of Example 1 showed no change in the PNIPAM residual rate before and after the dissolution test. On the other hand, in Comparative Example 4 in which PNIPAM was chemically bonded to the substrate surface, the coverage was clearly reduced, suggesting that the polymer was eluted.
  • FT-IR-ATR evaluation using FT-IR-ATR was performed according to the following procedure. 1. Each base material was cut into an appropriate size to prepare a sample (two about 1.5 cm squares were prepared). 2. A 50 ml screw tube was filled with distilled water. At this time, the water temperature was 20 ° C. 3. 2. In the distilled water of 1. above. One of these samples was immersed and taken out after 24 hours. 4). FT-IR-ATR analysis was performed for each sample with and without immersion, and the amount of PNIPAM on each surface was analyzed by a calibration curve method (measured at 5 points for each sample). 5). The PNIPAM residual rate was calculated according to the following formula. (PNIPAM amount with immersion / PNIPAM amount without immersion) x 100 (%)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a temperature-responsive cell culture substrate having superior cell detachability. A temperature-responsive cell culture substrate containing (A) a temperature-responsive layer and (B) a base layer, wherein the temperature-responsive layer (A) contains a temperature-responsive polymer having a nitrogen atom, the temperature-responsive layer (A) is arranged on at least one surface of the base layer (B), the base layer (B) has no nitrogen atom, and the nitrogen element concentration N1s and the carbon element concentration C1s both measured by an X-ray photoelectron spectroscopy at an emission angle of 45° meet mathematical formula (1): 100×(N1s/C1s)/(N/C) ≥ 80 (wherein N/C represents a theoretical value of the content ratio of the elements in the temperature-responsive polymer) in a temperature-responsive layer (A) side surface of the base layer (B).

Description

温度応答性細胞培養基材及びその製造方法Temperature-responsive cell culture substrate and method for producing the same
 本発明は、温度応答性細胞培養基材及びその製造方法に関する。 The present invention relates to a temperature-responsive cell culture substrate and a method for producing the same.
 細胞培養基材として、温度応答性の表面を有する基材が用いられている。これらの基材は、主に、接着性細胞の培養のために用いられる。接着性細胞は、担体の表面に接着することにより増殖する。接着性細胞は、一般に、適度な疎水性表面に接着しやすく、親水性表面に接着しない性質を持っているとされる。このため、温度応答によって適度な疎水性から親水性へ、あるいはその逆方向に変化する表面を有する基材を用いることにより、接着細胞の表面への接着を温度変化により制御することが可能となる。 As a cell culture substrate, a substrate having a temperature-responsive surface is used. These substrates are mainly used for the cultivation of adherent cells. Adherent cells grow by adhering to the surface of the carrier. Adhesive cells are generally considered to have the property of being easily adhered to an appropriate hydrophobic surface and not adhering to a hydrophilic surface. For this reason, it becomes possible to control adhesion of adherent cells to the surface by temperature change by using a base material having a surface that changes from moderate hydrophobicity to hydrophilicity by the temperature response or vice versa. .
 このような細胞培養基材のことを、「温度応答性細胞培養基材」という。これまで、培養した細胞は、蛋白分解酵素(ペプシン、トリプシン、ペプチダーゼなど)、EDTA(エチレンジアミン四酢酸=金属キレート剤)などを用いて、基材-細胞間のタンパク質を「化学的に破壊」させる方法、あるいは、ピペッティング(ピペットで培養液を噴射)、ラバーポリスマン、セルスクレイパーなど用いて、同タンパク質を「物理的に破壊」させる方法で、基材表面から剥離するしかなかった。温度応答性細胞培養基材を用いれば、こうした操作が全て不要となり、温度を変えるだけで培養した細胞を剥がせるようになる。
温度応答性細胞培養基材から回収した細胞(シート状に限定されない)は、化学的、物理的に損傷を受けていない特徴がある。また、温度応答性細胞培養基材から回収した細胞シートは、接着性タンパク質をそのまま保持しており、生体組織にも速やかに付着することができる。また、細胞シート同士を積層化すれば組織化することもでき、今後の再生医療技術の展開のためのプラットホーム技術と位置付けられる。
Such a cell culture substrate is referred to as a “temperature-responsive cell culture substrate”. Until now, cultured cells “chemically disrupt” the protein between the substrate and cells using proteolytic enzymes (pepsin, trypsin, peptidase, etc.), EDTA (ethylenediaminetetraacetic acid = metal chelating agent), etc. The protein could be peeled off from the substrate surface by a method or a method of “physically destroying” the protein using pipetting (injecting the culture solution with a pipette), rubber policeman, cell scraper, or the like. If a temperature-responsive cell culture substrate is used, all these operations are unnecessary, and the cultured cells can be peeled off simply by changing the temperature.
Cells collected from a temperature-responsive cell culture substrate (not limited to a sheet) are characterized by being not chemically or physically damaged. In addition, the cell sheet collected from the temperature-responsive cell culture substrate retains the adhesive protein as it is, and can quickly adhere to a living tissue. In addition, if cell sheets are laminated, they can be organized and positioned as a platform technology for future development of regenerative medicine technology.
 温度応答性細胞培養基材として、種々のものが開発されている。例えば、下限臨界溶液温度[Lower Critical Solution emperature(LCST)]が32℃であるポリ-N-イソプロピルアクリルアミド(PNIPAM)を表面に固定化した培養基材が開発されている(特許文献1)。32℃以上の温度の水に触れた基材表面のポリマー鎖は凝縮し、基材表面の性質としてはNIPAMポリマー鎖そのものの性質が強く現れ、比較的疎水性を示す。一方、基材表面が32℃以下の温度の水に接すると温度応答が起こり、表面のポリマー鎖は水分子と水和する。これにより、基材表面の性質としては、温度応答前に比べ親水性を示すことになり、接着していた細胞を剥離することができる。 A variety of temperature-responsive cell culture substrates have been developed. For example, a culture substrate has been developed in which poly-N-isopropylacrylamide (PNIPAM) having a lower critical solution temperature (Low Critical Solution temperature (LCST)) of 32 ° C. is immobilized on the surface (Patent Document 1). The polymer chain on the surface of the base material exposed to water having a temperature of 32 ° C. or more is condensed, and the property of the base material surface is strongly the property of the NIPAM polymer chain itself, and is relatively hydrophobic. On the other hand, when the substrate surface comes into contact with water having a temperature of 32 ° C. or lower, a temperature response occurs, and the polymer chains on the surface hydrate with water molecules. Thereby, as a property of the substrate surface, hydrophilicity is exhibited as compared with that before the temperature response, and the adhered cells can be peeled off.
特開平2-211865号公報JP-A-2-21865
 本発明者らは、従来の温度応答性細胞培養基材においては、温度応答時の細胞剥離性において改善すべき点があることを見出した。本発明は、より優れた細胞剥離性を有する温度応答性細胞培養基材を提供することを課題とする。 The present inventors have found that there is a point to be improved in the cell detachability at the time of temperature response in the conventional temperature-responsive cell culture substrate. An object of the present invention is to provide a temperature-responsive cell culture substrate having superior cell detachability.
 本発明者らは、鋭意検討を重ね、基材表面に固定化された温度応答性ポリマーにより表面が覆われた温度応答性細胞培養基材において、温度応答性ポリマーによる表面被覆率を従来よりもさらに向上させることにより、上記課題を解決できることを見出した。さらに本発明者らは、温度応答性ポリマーの表面被覆率を、X線光電子分光(XPS)法で測定される元素濃度に基づいて評価する手法を開発し、かかる評価指標に基づいて、上記課題を解決することのできる表面特性を定義した。本発明は、かかる知見に基づきさらなる試行錯誤を重ねることにより完成したものであり、以下の態様を含む。 The inventors of the present invention have made extensive studies, and in the temperature-responsive cell culture substrate whose surface is covered with the temperature-responsive polymer immobilized on the surface of the substrate, the surface coverage by the temperature-responsive polymer is higher than the conventional one. The present inventors have found that the above problems can be solved by further improvement. Furthermore, the present inventors have developed a method for evaluating the surface coverage of the temperature-responsive polymer based on the element concentration measured by the X-ray photoelectron spectroscopy (XPS) method. The surface properties that can solve the problem are defined. The present invention has been completed by further trial and error based on such findings, and includes the following aspects.
 項1.
 (A)温度応答層;及び
 (B)基材層
を含有する温度応答性細胞培養基材であって、
 前記温度応答層(A)は、窒素原子を有する温度応答性ポリマーを含有し、
 前記温度応答層(A)は、前記基材層(B)の少なくとも一方の面に配置されており、
 前記基材層(B)は、窒素原子を有さず、かつ
 前記温度応答層(A)側の表面は、放出角45°におけるX線光電子分光法で測定される窒素元素濃度N1s及び炭素元素濃度C1sが、以下の数式(1):
  (1)100×(N1s/C1s)/(N/C)≧80
(数式中、N/Cは、前記温度応答性ポリマーにおける各元素比の理論値を表わす)
を満たす、温度応答性細胞培養基材。
 項2.
 前記温度応答層(A)側の表面は、アルゴンガスクラスターイオンビームにより表面側からエッチングしながら、X線光電子分光法により測定されるN1sとC1sとが、以下の条件(A)を満たす、項1に記載の温度応答性細胞培養基材:
 (A)エッチング深さ2nmにおける測定値が、以下の数式(2)を満たす:
  (2)100×(N1s/C1s)/(N/C)≧50
(数式中、N/Cは、前記と同じ意味を表わす)。
 項3.
 前記温度応答層(A)側の表面に、前記温度応答性ポリマーが、1~10μg/cm固定化されている、項1又は2に記載の温度応答性細胞培養基材。
 項4.
 前記温度応答層(A)が、デンドリティックポリマーの末端に前記温度応答性ポリマーが結合したブロックポリマーを含有する、項1~3のいずれか一項に記載の温度応答性細胞培養基材。
 項5.
 前記デンドリティックポリマーが、スチレン骨格又はシロキサン骨格のデンドリティックポリマーである、項4に記載の温度応答性細胞培養基材。
 項6.
 前記温度応答性ポリマーの少なくとも一種が、
(メタ)アクリルアミド、N-(若しくはN,N-ジ)置換(メタ)アクリルアミド及びビニルエーテルからなる群より選択される少なくとも一種を含むモノマー組成物を重合することにより得られうる温度応答性ポリマー、又は
ポリビニルアルコール部分酢化物
である、項1~5のいずれか一項に記載の温度応答性細胞培養基材。
 項7.
 前記N-(若しくはN,N-ジ)置換(メタ)アクリルアミドが、ポリ-N-イソプロピル(メタ)アクリルアミド、ポリ-N、N-ジエチル(メタ)アクリルアミド、及びポリ-N、N-ジメチル(メタ)アクリルアミドからなる群より選択される少なくとも一種である、項6に記載の温度応答性細胞培養基材。
 項8.
 前記基材層(B)がポリスチレンを含む、項1~7のいずれか一項に記載の温度応答性細胞培養基材。
 項9.
 リユース用である、項1~8のいずれか一項に記載の温度応答性細胞培養基材。
 項10.
(a)ブロックポリマーであって、スチレン骨格又はシロキサン骨格のデンドリティックポリマーの末端に、温度応答性ポリマーが結合したブロックポリマーが溶解してなる、ポリスチレンの良溶媒と貧溶媒とを含む溶液を、ポリスチレン基材表面に滴下し、展開させる工程;
(b)前記工程(a)で得られた表面を、2時間以上、前記溶媒の蒸気下に置く工程;及び
(c)前記工程(b)で得られた表面を、乾燥させる工程
を含む、温度応答性細胞培養基材の製造方法。
Item 1.
(A) a temperature-responsive layer; and (B) a temperature-responsive cell culture substrate containing a substrate layer,
The temperature responsive layer (A) contains a temperature responsive polymer having nitrogen atoms,
The temperature responsive layer (A) is disposed on at least one surface of the base material layer (B),
The substrate layer (B) does not have nitrogen atoms, and the surface on the temperature response layer (A) side has a nitrogen element concentration N 1s and carbon measured by X-ray photoelectron spectroscopy at an emission angle of 45 °. The element concentration C 1s is expressed by the following formula (1):
(1) 100 × (N 1s / C 1s ) / (N / C) ≧ 80
(In the formula, N / C represents a theoretical value of each element ratio in the temperature-responsive polymer)
Satisfying a temperature-responsive cell culture substrate.
Item 2.
The surface on the temperature-responsive layer (A) side is etched from the surface side with an argon gas cluster ion beam, and N 1s and C 1s measured by X-ray photoelectron spectroscopy satisfy the following condition (A): The temperature-responsive cell culture substrate according to Item 1,
(A) The measured value at an etching depth of 2 nm satisfies the following formula (2):
(2) 100 × (N 1s / C 1s ) / (N / C) ≧ 50
(In the formula, N / C represents the same meaning as described above).
Item 3.
Item 3. The temperature-responsive cell culture substrate according to Item 1 or 2, wherein the temperature-responsive polymer is fixed to 1 to 10 μg / cm 2 on the surface of the temperature-responsive layer (A).
Item 4.
Item 4. The temperature-responsive cell culture substrate according to any one of Items 1 to 3, wherein the temperature-responsive layer (A) contains a block polymer in which the temperature-responsive polymer is bonded to the end of a dendritic polymer.
Item 5.
Item 5. The temperature-responsive cell culture substrate according to Item 4, wherein the dendritic polymer is a dendritic polymer having a styrene skeleton or a siloxane skeleton.
Item 6.
At least one of the temperature-responsive polymers is
A temperature-responsive polymer obtainable by polymerizing a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether, or Item 6. The temperature-responsive cell culture substrate according to any one of Items 1 to 5, which is a partially acetylated polyvinyl alcohol.
Item 7.
The N- (or N, N-di) -substituted (meth) acrylamide is poly-N-isopropyl (meth) acrylamide, poly-N, N-diethyl (meth) acrylamide, and poly-N, N-dimethyl (meta). Item 7. The temperature-responsive cell culture substrate according to Item 6, which is at least one selected from the group consisting of acrylamide.
Item 8.
Item 8. The temperature-responsive cell culture substrate according to any one of Items 1 to 7, wherein the substrate layer (B) contains polystyrene.
Item 9.
Item 9. The temperature-responsive cell culture substrate according to any one of Items 1 to 8, which is for reuse.
Item 10.
(A) A block polymer, a solution containing a good solvent and a poor solvent of polystyrene, in which a block polymer having a temperature-responsive polymer bonded to a terminal of a dendritic polymer having a styrene skeleton or a siloxane skeleton is dissolved, A step of dropping on the surface of a polystyrene substrate and developing the surface;
(B) placing the surface obtained in step (a) under the vapor of the solvent for 2 hours or more; and (c) drying the surface obtained in step (b). A method for producing a temperature-responsive cell culture substrate.
 本発明によれば、温度応答時の細胞剥離性がより優れた温度応答性細胞培養基材を提供できる。 According to the present invention, it is possible to provide a temperature-responsive cell culture substrate with more excellent cell detachability during temperature response.
本発明の温度応答性細胞培養基材であって、温度応答層(A)の表面のうち、中心点と、中心点からそれぞれ均等に離間した特定の4点との計5点における温度応答性ポリマー固定化量の各測定値の間に大きなばらつきのないことを特徴とする、本発明の一態様における、それら測定点5点の取り方の例を示した図面である。The temperature-responsive cell culture substrate of the present invention, which is a temperature responsiveness at a total of 5 points of the surface of the temperature-responsive layer (A), that is, a central point and four specific points equally spaced from the central point. It is drawing which showed the example of how to take these measurement points in one mode of the present invention characterized by there being no big variation between each measured value of polymer immobilization amount. 本発明の別の一態様における、前記測定点5点の取り方を示した図面であるIt is drawing which showed how to take the five measurement points in another mode of the present invention. 本発明の温度応答性細胞培養基材における、エッチング深さ毎の、数式(2)左辺の測定値を示したグラフである。It is the graph which showed the measured value of Numerical formula (2) left side for every etching depth in the temperature-responsive cell culture substratum of this invention.
 1. 温度応答層(A)
 1.1 温度応答性ポリマーの分布に関するパラメーター
 本発明の温度応答性細胞培養基材は、
 (A)温度応答層;及び
 (B)基材層
を含有する温度応答性細胞培養基材であって、
 前記温度応答層(A)は、窒素原子を有する温度応答性ポリマーを含有し、
 前記温度応答層(A)は、前記基材層(B)の少なくとも一方の面に配置されており、 前記基材層(B)は、窒素原子を有さず、かつ
 前記温度応答層(A)側の表面は、放出角45°におけるXPS法で測定される窒素元素濃度N1s及び炭素元素濃度C1sが、以下の数式(1):
  (1)100×(N1s/C1s)/(N/C)≧80
(数式中、N/Cは、前記温度応答性ポリマーにおける各元素比の理論値を表わす)
を満たす、温度応答性細胞培養基材である。
1. Temperature response layer (A)
1.1 Parameters relating to distribution of temperature-responsive polymer The temperature-responsive cell culture substrate of the present invention comprises:
(A) a temperature-responsive layer; and (B) a temperature-responsive cell culture substrate containing a substrate layer,
The temperature responsive layer (A) contains a temperature responsive polymer having nitrogen atoms,
The temperature responsive layer (A) is disposed on at least one surface of the base material layer (B), the base material layer (B) does not have nitrogen atoms, and the temperature responsive layer (A) ) Side surface has a nitrogen element concentration N 1s and a carbon element concentration C 1s measured by the XPS method at an emission angle of 45 °, the following formula (1):
(1) 100 × (N 1s / C 1s ) / (N / C) ≧ 80
(In the formula, N / C represents a theoretical value of each element ratio in the temperature-responsive polymer)
It is a temperature-responsive cell culture substrate that satisfies the above.
 温度応答層(A)は、少なくとも温度応答性ポリマーを含み、表面が温度応答性を示す。本発明の温度応答性細胞培養基材は、この温度応答性を示す表面を、細胞培養を行う面として使用する。 The temperature responsive layer (A) includes at least a temperature responsive polymer, and the surface exhibits temperature responsiveness. The temperature-responsive cell culture substrate of the present invention uses a surface exhibiting this temperature responsiveness as a surface for cell culture.
 温度応答層(A)は、温度応答性ポリマーを少なくとも一種含む。また、温度応答層(A)は、温度応答性ポリマーを単独の分子の形態で含んでいてもよいし、温度応答性ポリマーを含む複合体の形態で含んでいてもよい。かかる複合体においては、温度応答性ポリマーが他の構造部分に何らかの様式で結合している。結合様式は限定されないが、共有結合であれば温度応答性ポリマーが安定的に基材層(B)の面に固定化されるという点で好ましい。 The temperature responsive layer (A) includes at least one temperature responsive polymer. The temperature responsive layer (A) may contain a temperature responsive polymer in the form of a single molecule, or may contain in the form of a complex containing a temperature responsive polymer. In such composites, the temperature responsive polymer is bound in some manner to other structural moieties. The bonding mode is not limited, but a covalent bond is preferable in that the temperature-responsive polymer is stably immobilized on the surface of the base material layer (B).
 本発明の温度応答性細胞培養基材は、温度応答層(A)側の表面が上記の特性を有していることにより、温度応答時の細胞剥離性がより優れたものとなる。 The temperature-responsive cell culture substrate of the present invention has more excellent cell detachability during temperature response because the surface on the temperature-responsive layer (A) side has the above characteristics.
 具体的には、温度応答層(A)側の表面は、温度応答性ポリマーの被覆量が、従来の温度応答性細胞培養基材におけるものよりも高いという特徴を有している。数式(1)は、XPS法で温度応答層(A)側の表面を測定することにより得られる、温度応答性ポリマーの被覆量の指標の一つである。表面が完全に温度応答性ポリマーで被覆されている場合には、N1s/C1sがN/Cと等しくなるため、数式(1)の左辺の値は100(%)となる。ここで、N1sはXPS法で測定される窒素原子濃度を表わし、N/Cは、前記温度応答性ポリマーに含まれる炭素原子量(C)に対する、窒素原子(N)の比率の理論値を表わす。温度応答性ポリマーがポリイソプロピルアクリルアミドの場合、その繰返単位のイソプロピルアクリルアミドは窒素原子1個、炭素原子6から構成されるため、N/Cの理論値は、1/6=0.167である。 Specifically, the surface of the temperature responsive layer (A) side has a feature that the coating amount of the temperature responsive polymer is higher than that in the conventional temperature responsive cell culture substrate. Formula (1) is one of the indicators of the coating amount of the temperature-responsive polymer obtained by measuring the surface on the temperature-responsive layer (A) side by the XPS method. When the surface is completely covered with the temperature-responsive polymer, since N 1s / C 1s is equal to N / C, the value on the left side of Equation (1) is 100 (%). Here, N 1s represents the nitrogen atom concentration measured by the XPS method, and N / C represents the theoretical value of the ratio of nitrogen atom (N) to the amount of carbon atoms (C) contained in the temperature-responsive polymer. . When the temperature-responsive polymer is polyisopropylacrylamide, the repeating unit isopropylacrylamide is composed of one nitrogen atom and six carbon atoms, so the theoretical value of N / C is 1/6 = 0.167. .
 一方、表面が温度応答性ポリマーで全く被覆されていない場合には、基材層(B)が、温度応答性ポリマーの有する窒素原子を有さないためN1sが検出されない。したがって、数式(1)の左辺の値は0(%)となる。 On the other hand, when the surface is not covered with the temperature-responsive polymer at all, N 1s is not detected because the base material layer (B) does not have the nitrogen atom of the temperature-responsive polymer. Therefore, the value on the left side of Equation (1) is 0 (%).
 数式(1)の左辺の値が80(%)以上であると、温度応答性ポリマーの表面被覆量が十分に高く、温度応答時の細胞剥離性がより優れたものとなる。この効果の点で、数式(1)の左辺は、85(%)以上であれば好ましく、90(%)以上であればより好ましく、95(%)以上であればさらに好ましい。 When the value on the left side of the mathematical formula (1) is 80 (%) or more, the surface coverage of the temperature-responsive polymer is sufficiently high, and the cell detachability at the time of temperature response becomes more excellent. In view of this effect, the left side of Formula (1) is preferably 85 (%) or more, more preferably 90 (%) or more, and even more preferably 95 (%) or more.
 20℃の蒸留水中に本発明の温度応答性細胞培養基材を浸漬して24時間静置した後に、上記方法にて測定される値に基づいて計算される数式(1)の左辺の値が、上記の範囲内となることが好ましい。 After immersing the temperature-responsive cell culture substrate of the present invention in 20 ° C. distilled water and allowing it to stand for 24 hours, the value on the left side of Equation (1) calculated based on the value measured by the above method is It is preferable to be within the above range.
 XPSは、具体的には以下のようにして測定する。
 アルバック・ファイ社製 表面分析装置 PHI5000 VersaProbe II又はその同等品を用いて、単色化されたX線 AlKαを照射し、放出角45°で測定する。
Specifically, XPS is measured as follows.
Using a surface analysis device PHI5000 VersaProbe II manufactured by ULVAC-PHI, Inc. or its equivalent, it is irradiated with monochromatic X-ray AlKα and measured at an emission angle of 45 °.
 本発明の温度応答性細胞培養基材は、好ましくは、前記温度応答層(A)側の表面が、アルゴンガスクラスターイオンビームにより表面側からエッチングしながら、XPSにより測定されるN1sとC1sとが、以下の条件(A)及び/又は(B)を満たす:
 (A)エッチング深さ2nmにおける測定値が、以下の数式(2)を満たす:
  (2)100×(N1s/C1s)/(N/C)≧50
(数式中、N/Cは、前記と同じ意味を表わす)
 (B)以下の数式(3)が満たされるエッチング深さが5nm以上である:
  (3)100×(N1s/C1s)/(N/C)≦5
(数式中、N/Cは、前記と同じ意味を表わす)。
The temperature-responsive cell culture substrate of the present invention preferably has N 1s and C 1s measured by XPS while the surface on the temperature-responsive layer (A) side is etched from the surface side with an argon gas cluster ion beam. Satisfy the following conditions (A) and / or (B):
(A) The measured value at an etching depth of 2 nm satisfies the following formula (2):
(2) 100 × (N 1s / C 1s ) / (N / C) ≧ 50
(In the formula, N / C represents the same meaning as described above.)
(B) The etching depth that satisfies the following formula (3) is 5 nm or more:
(3) 100 × (N 1s / C 1s ) / (N / C) ≦ 5
(In the formula, N / C represents the same meaning as described above).
 数式(2)は、アルゴンガスクラスターイオンビームにより温度応答性細胞培養基材の表面側からエッチングしながらXPS法で測定することにより得られる、表面からの深さ2nmの位置における、温度応答性ポリマーの存在量の指標である。この位置が完全に温度応答性ポリマーで占められている場合には、N1s/C1sがN/Cと等しくなるため、数式(2)の左辺の値は100(%)となる。 Equation (2) is a temperature-responsive polymer at a position of 2 nm depth from the surface obtained by measuring by XPS while etching from the surface side of the temperature-responsive cell culture substrate with an argon gas cluster ion beam. Is an indicator of the abundance of. When this position is completely occupied by the temperature-responsive polymer, since N 1s / C 1s is equal to N / C, the value on the left side of Equation (2) is 100 (%).
 数式(2)の左辺の値が50(%)以上であると、表面からの深さ2nmの位置における温度応答性ポリマーの存在量が十分に多く、温度応答時の細胞剥離性がより優れたものとなる。この効果の点で、数式(2)の左辺は、60(%)以上であれば好ましく、70(%)以上であればより好ましく、80(%)以上であればさらに好ましい。 When the value on the left side of Formula (2) is 50% or more, the amount of the temperature-responsive polymer at a position 2 nm deep from the surface is sufficiently large, and the cell detachability during temperature response is more excellent. It will be a thing. In view of this effect, the left side of the formula (2) is preferably 60 (%) or more, more preferably 70 (%) or more, and further preferably 80 (%) or more.
 数式(3)は、アルゴンガスクラスターイオンビームにより温度応答性細胞培養基材の表面側からエッチングしながらX線光電子分光法で測定することにより得られる、温度応答性ポリマーの存在量が十分に少なくなる深さ位置の指標である。つまり、数式(3)が満たされる地点では、温度応答性ポリマーの存在量が十分に少なくなっている。数式(3)が満たされる深さ位置が5nm以上であると、温度応答性ポリマーが表面側からより深い位置にまで十分量存在していると言え、このとき、温度応答時の細胞剥離性がより優れたものとなる。この効果の点で、数式(3)の左辺が満たされるエッチング深さは4nm以上であれば好ましく、5nm以上であればより好ましく、6nm以上であればさらに好ましい。 Equation (3) shows that the amount of the temperature-responsive polymer obtained by measuring by X-ray photoelectron spectroscopy while etching from the surface side of the temperature-responsive cell culture substrate with an argon gas cluster ion beam is sufficiently small. It is an index of the depth position. That is, the amount of the temperature-responsive polymer is sufficiently reduced at the point where the mathematical formula (3) is satisfied. If the depth position where the mathematical formula (3) is satisfied is 5 nm or more, it can be said that a sufficient amount of the temperature-responsive polymer exists from the surface side to a deeper position. It will be better. In view of this effect, the etching depth that satisfies the left side of Equation (3) is preferably 4 nm or more, more preferably 5 nm or more, and even more preferably 6 nm or more.
 アルゴンガスクラスターイオンビームによるエッチングを行いながらXPSを測定する方法は、具体的には以下のようにして行う。
 アルバック・ファイ社製 表面分析装置 PHI5000 VersaProbe II又はその同等品を用いて、2.5kV、10nA(Area 2mm□)の条件で、アルゴンガスクラスターイオンでエッチングしながら深さ方向の元素を測定する。エッチングレートは、膜厚61nmのPNIPAM薄膜(基板:シリコンウエハ)に、Siが検出されるまでアルゴンガスクラスターイオンでエッチングすることにより、2.0nm/minを算出する。
The method of measuring XPS while etching with an argon gas cluster ion beam is specifically performed as follows.
Using a surface analyzer PHI5000 VersaProbe II manufactured by ULVAC-PHI, Inc. or an equivalent thereof, elements in the depth direction are measured while etching with argon gas cluster ions under conditions of 2.5 kV, 10 nA (Area 2 mm □). The etching rate is calculated to be 2.0 nm / min by etching a 61 nm thick PNIPAM thin film (substrate: silicon wafer) with argon gas cluster ions until Si is detected.
 本発明の温度応答性細胞培養基材は、温度応答性ポリマーの表面被覆量が、表面においてより均一に被覆されていると好ましい。この点で、
 前記温度応答層(A)側の表面の中心点、及び
 該中心点から各端点までの距離の合計が最大となるように設定された、該中心点を交点とする十字線における、各端点と中心点とを結ぶ線の中心点
からなる5点における、前記温度応答性ポリマー固定化量の各測定値から算出された変動係数[(標準偏差/平均値)×100]が、以下の数式(4):
  (4)変動係数≦10
を満たすことが好ましい。
In the temperature-responsive cell culture substrate of the present invention, it is preferable that the surface coverage of the temperature-responsive polymer is more uniformly coated on the surface. In this regard,
The center point of the surface on the temperature response layer (A) side, and each end point in a cross line with the center point as an intersection, which is set so that the sum of the distances from the center point to each end point is maximized The coefficient of variation [(standard deviation / average value) × 100] calculated from each measured value of the temperature-responsive polymer immobilization amount at five points including the center point of the line connecting the center point is expressed by the following formula ( 4):
(4) Coefficient of variation ≦ 10
It is preferable to satisfy.
 数式(4)は、表面のうち、中心点と、中心点からそれぞれ均等に離間した特定の4点との計5点における温度応答性ポリマー固定化量の各測定値の間に大きなばらつきのないことを保証したものである。ばらつきが全くない場合、標準偏差は0となるため、数式(4)の左辺は0となる。よりばらつきの少ない表面であるという点において、数式(4)の左辺は10以下であれば好ましく、7以下であればより好ましく、5以下であればさらに好ましい。 In the formula (4), there is no large variation between the measured values of the temperature-responsive polymer immobilization amount at a total of five points, that is, the center point and the specific four points that are equally spaced from the center point on the surface. It is guaranteed. When there is no variation, the standard deviation is 0, so the left side of Equation (4) is 0. In terms of a surface with less variation, the left side of the formula (4) is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less.
 特定の5点の取り方の例を図1及び図2に示す。図1は表面が円形の場合の例を示しており、図2は表面が略正方形の場合の例を示している。図1及び図2の両方において、点Aは中心点を、点Bは、十字線(破線で示す)における、各端点と中心点とを結ぶ線の中心点をそれぞれ示している。測定に用いられる基材の面積は、例えば、9.6~78.5cmである。 Examples of how to take specific 5 points are shown in FIGS. FIG. 1 shows an example when the surface is circular, and FIG. 2 shows an example when the surface is substantially square. In both FIG. 1 and FIG. 2, the point A indicates the center point, and the point B indicates the center point of the line connecting the end points and the center point in the cross line (shown by a broken line). The area of the substrate used for the measurement is, for example, 9.6 to 78.5 cm 2 .
 本発明において、基材表面への温度応答性ポリマーの固定化量は、基材表面に適用した温度応答性ポリマーの量から計算できる。ただし、必要に応じて、温度応答性ポリマーの固定化量を常法に従って測定することもできる。そのような測定方法としては、例えばフーリエ変換赤外分光全反射減衰法(FT-IR-ATR法)、元素分析法及びXPS法等が挙げられる。測定結果にバラつきが生じない限り、いずれの測定法を選択してもよいが、バラつきが生じる場合は、本発明においてはFT-IR-ATR法による測定結果を採用する。 In the present invention, the amount of the temperature-responsive polymer immobilized on the substrate surface can be calculated from the amount of the temperature-responsive polymer applied to the substrate surface. However, if necessary, the amount of the temperature-responsive polymer immobilized can be measured according to a conventional method. Examples of such a measuring method include Fourier transform infrared spectroscopic total reflection attenuation method (FT-IR-ATR method), elemental analysis method, XPS method and the like. Any measurement method may be selected as long as the measurement result does not vary. However, in the case where variation occurs, the measurement result by the FT-IR-ATR method is adopted in the present invention.
 FT-IR-ATR法での測定は、具体的には以下のようにして行う。基材としてポリスチレン製セルカルチャーディッシュを、温度応答性ポリマーとしてPNIPAMをそれぞれ用いる場合を一例として説明するが、他の基材及び/又はポリマーを用いる場合も以下の例を応用することにより同様にして測定できる。 The measurement by the FT-IR-ATR method is specifically performed as follows. A case where a polystyrene cell culture dish is used as a base material and a case where PNIPAM is used as a temperature-responsive polymer will be described as an example, but other base materials and / or polymers may be used in the same manner by applying the following examples. It can be measured.
 ポリスチレン製セルカルチャーディッシュを基材とし、温度応答性ポリマーとしてPNIPAMを固定化させた、温度応答性細胞培養基材を用意する。同基材をFT-IR-ATR測定すると、次式(5)にて表される、ポリスチレンに由来するベンゼン環伸縮(1600cm-1)の吸収強度に対する、PNIPAMに由来するアミド伸縮(1650cm-1)の吸収強度の比率を得ることができる。
(5) 吸収強度比率=I1650/I1600
A temperature-responsive cell culture substrate in which a cell culture dish made of polystyrene is used as a substrate and PNIPAM is immobilized as a temperature-responsive polymer is prepared. When the same substrate FT-IR-ATR measuring, represented by the following formula (5), for the absorption intensity of the benzene ring stretching derived from polystyrene (1600 cm -1), amide stretch derived from PNIPAM (1650 cm -1 ) Absorption intensity ratio can be obtained.
(5) Absorption intensity ratio = I 1650 / I 1600
 既知量のPNIPAM(1~10μg/cm)をポリスチレン基材に塗布し、式(5)により得られる吸収強度比率から検量線を予め作成しておくことにより、ポリスチレン基材上に固定化された未知のPNIPAMの量を求めることができる。なお、ポリスチレン基材上のポリマー固定化層は、試料に対する赤外光(エバネッセント波)のしみこみ深さ(1μmオーダー)に対し十分に薄いと仮定する(参考文献:Langmuir 2004,20,5506-5511)。 A known amount of PNIPAM (1 to 10 μg / cm 2 ) is applied to a polystyrene substrate, and a calibration curve is prepared in advance from the absorption intensity ratio obtained by the formula (5). The amount of unknown PNIPAM can be determined. The polymer immobilization layer on the polystyrene substrate is assumed to be sufficiently thin with respect to the penetration depth (on the order of 1 μm) of infrared light (evanescent wave) on the sample (reference document: Langmuir 2004, 20, 5506-5511). ).
 本発明の温度応答性細胞培養基材は、温度応答性ポリマーが、表面に0.5μg/cm以上固定化されていることが好ましい。本発明の温度応答性細胞培養基材は、温度応答性ポリマーが他の構造との複合体として表面に固定化されている場合、当該複合体が温度応答性ポリマー換算で0.5μg/cm以上、好ましくは1.0μg/cm以上、より好ましくは1.5μg/cm以上基材表面に固定化されていることが好ましい。本発明の温度応答性細胞培養基材は、温度応答性ポリマーの固定化量が上記以上であると、温度を変えても当該ポリマー上の培養細胞が剥離し難くなるということがない。 In the temperature-responsive cell culture substrate of the present invention, the temperature-responsive polymer is preferably immobilized on the surface by 0.5 μg / cm 2 or more. In the temperature-responsive cell culture substrate of the present invention, when the temperature-responsive polymer is immobilized on the surface as a complex with another structure, the complex is 0.5 μg / cm 2 in terms of temperature-responsive polymer. As described above, it is preferably 1.0 μg / cm 2 or more, more preferably 1.5 μg / cm 2 or more, and more preferably 1.5 μg / cm 2 or more. In the temperature-responsive cell culture substrate of the present invention, when the temperature-responsive polymer is immobilized in the above amount or more, the cultured cells on the polymer are not easily detached even if the temperature is changed.
 本発明の温度応答性細胞培養基材は、温度応答性ポリマーが、あるいは温度応答性ポリマーが他の構造との複合体として表面に固定化されている場合は、当該複合体が温度応答性ポリマー換算で、10μg/cm以下、好ましくは5μg/cm以下、より好ましくは4μg/cm以下、基材表面に固定化されていれば、温度応答前の状態で細胞が表面に付着し易く、細胞を十分に付着させることが容易となる。 In the temperature-responsive cell culture substrate of the present invention, when the temperature-responsive polymer or the temperature-responsive polymer is immobilized on the surface as a complex with another structure, the complex is the temperature-responsive polymer. If converted to 10 μg / cm 2 or less, preferably 5 μg / cm 2 or less, more preferably 4 μg / cm 2 or less, the cells are likely to adhere to the surface in the state before the temperature response. , It becomes easy to attach the cells sufficiently.
 総合すると、本発明の温度応答性細胞培養基材は、温度応答性ポリマーが、あるいは温度応答性ポリマーが他の構造との複合体として表面に固定化されている場合は、当該複合体が温度応答性ポリマー換算で、0.5~10μg/cm、表面に固定化されていることが好ましく、1~5μg/cm、表面に固定化されていることがより好ましく、1.5~4μg/cm、表面に固定化されていることがさらに好ましい。 In summary, the temperature-responsive cell culture substrate of the present invention has a temperature-responsive polymer, or when the temperature-responsive polymer is immobilized on the surface as a complex with another structure, the complex is In terms of responsive polymer, 0.5 to 10 μg / cm 2 is preferably immobilized on the surface, preferably 1 to 5 μg / cm 2 , more preferably immobilized on the surface, and 1.5 to 4 μg. / cm 2, more preferably immobilized on the surface.
 1.2 温度応答性ポリマー
 温度応答性ポリマーは、窒素原子を有する温度応答性ポリマーであれば特に限定されず、幅広く選択することができる。温度応答性ポリマーは、具体的には、下限臨界溶解温度(LCST)を有するポリマー、又は上限臨界溶解温度[Upper Critical Solution emperature(UCST)]を有するポリマーが挙げられ、特定構造のブロックポリマーを用いることが好ましい。ブロックポリマーは、一種の温度応答性ポリマーをブロックとして含んでいてもよいし、複数種の温度応答性ポリマーをブロックとして含んでいてもよい。
1.2 Temperature-responsive polymer The temperature-responsive polymer is not particularly limited as long as it is a temperature-responsive polymer having a nitrogen atom, and can be widely selected. Specific examples of the temperature-responsive polymer include a polymer having a lower critical solution temperature (LCST) or a polymer having an upper critical solution temperature (UCST), and a block polymer having a specific structure is used. It is preferable. The block polymer may contain a kind of temperature-responsive polymer as a block, or may contain a plurality of kinds of temperature-responsive polymers as a block.
 温度応答性ポリマーとしては、例えば、特公平06-104061号公報に記載されているポリマーが挙げられる。具体的には、例えば、以下のモノマーの少なくとも一種に基づく構成単位を有するポリマーが挙げられる。モノマーとしては、例えば、(メタ)アクリルアミド化合物、N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体及びビニルエーテル誘導体等が挙げられる。 Examples of the temperature-responsive polymer include polymers described in Japanese Patent Publication No. 06-104061. Specific examples include polymers having structural units based on at least one of the following monomers. Examples of the monomer include (meth) acrylamide compounds, N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives, vinyl ether derivatives, and the like.
 温度応答性ポリマーとしては、ポリビニルアルコール部分酢化物及び含窒素環状ポリマー等も例示できる。 Examples of temperature-responsive polymers include polyvinyl alcohol partial acetylated products and nitrogen-containing cyclic polymers.
 温度応答性ポリマーとしては、アルキル置換セルロース誘導体、ポリアルキレンオキサイドブロック共重合体及びポリアルキレンオキサイドブロック共重合体等も例示できる。 Examples of the temperature-responsive polymer include alkyl-substituted cellulose derivatives, polyalkylene oxide block copolymers, and polyalkylene oxide block copolymers.
 培養細胞の剥離は、通常、5℃~50℃の範囲で行うことが好ましいため、LCST又はUCSTがこの範囲内である温度応答性ポリマーが好ましい。そのような温度応答性を有する、ポリ(N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体を重合して得られるポリマー(ポリ(N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド))の具体例としては、ポリ-N-n-プロピルアクリルアミド(下限臨界溶解温度21℃)、ポリ-N-n-プロピルメタクリルアミド(同27℃)、ポリ-N-イソプロピルアクリルアミド(同32℃)、ポリ-N-イソプロピルメタクリルアミド(同43℃)、ポリ-N-シクロプロピルアクリルアミド(同45℃)、ポリ-N-エトキシエチルアクリルアミド(同約35℃)、ポリ-N-エトキシエチルメタクリルアミド(同約45℃)、ポリ-N-テトラヒドロフルフリルアクリルアミド(同約28℃)、ポリ-N-テトラヒドロフルフリルメタクリルアミド(同約35℃)、ポリ-N,N-エチルメチルアクリルアミド(同56℃)、ポリ-N,N-ジエチルアクリルアミド(同32℃)、ポリ(N-エチルアクリルアミド)、ポリ(N-イソプロピルメタクリルアミド)、ポリ(N-シクロプロピルアクリルアミド)及びポリ(N-シクロプロピルメタクリルアミド)等が挙げられる。 Since culturing of the cultured cells is usually preferably performed in the range of 5 ° C. to 50 ° C., a temperature-responsive polymer having LCST or UCST within this range is preferable. Polymers obtained by polymerizing poly (N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives having such temperature responsiveness (poly (N- (or N, N-di) alkyl-substituted) Specific examples of (meth) acrylamide)) are poly-Nn-propylacrylamide (lower critical solution temperature 21 ° C.), poly-Nn-propyl methacrylamide (27 ° C.), poly-N-isopropylacrylamide. (32 ° C), poly-N-isopropylmethacrylamide (43 ° C), poly-N-cyclopropylacrylamide (45 ° C), poly-N-ethoxyethylacrylamide (about 35 ° C), poly-N- Ethoxyethyl methacrylamide (about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (about 28 ° C), poly- -Tetrahydrofurfuryl methacrylamide (about 35 ° C), poly-N, N-ethylmethylacrylamide (56 ° C), poly-N, N-diethylacrylamide (32 ° C), poly (N-ethylacrylamide), Examples include poly (N-isopropylmethacrylamide), poly (N-cyclopropylacrylamide), and poly (N-cyclopropylmethacrylamide).
 上記と同様の範囲のLCST又はUCSTを有する具体的なポリマーとしては、他にも、以下のものを例示できる。ポリビニルエーテルとして、例えば、ポリメチルビニルエーテル等が挙げられる。含窒素環状ポリマーとして、例えば、ポリ(N-アクリロイルピロリジン)及びポリ(N-アクリロイルピペリジン)等が挙げられる。アルキル置換セルロース誘導体として、例えば、メチルセルロース、エチルセルロース及びヒドロキシプロピルセルロース等が挙げられる。ポリアルキレンオキサイドブロック共重合体としては、例えば、ポリポリプロピレンオキサイドとポリエチレンオキサイドとのブロック共重合体等が挙げられる。 Other specific examples of the polymer having LCST or UCST in the same range as described above are as follows. Examples of the polyvinyl ether include polymethyl vinyl ether. Examples of the nitrogen-containing cyclic polymer include poly (N-acryloylpyrrolidine) and poly (N-acryloylpiperidine). Examples of the alkyl-substituted cellulose derivative include methyl cellulose, ethyl cellulose, and hydroxypropyl cellulose. Examples of the polyalkylene oxide block copolymer include a block copolymer of polypolypropylene oxide and polyethylene oxide.
 温度応答性ポリマーとしては、ホモポリマーが温度応答性を示す上記モノマーの少なくとも一種と、上記モノマー以外の少なくとも一種のモノマーとの共重合体を用いることもできる。そのような他のモノマーとして、例えば、荷電を有するモノマー及び/又は疎水性モノマーを使用できる。 As the temperature-responsive polymer, a copolymer of at least one of the above-mentioned monomers whose homopolymer exhibits temperature-responsiveness and at least one monomer other than the above-mentioned monomer can be used. As such other monomers, for example, charged monomers and / or hydrophobic monomers can be used.
 荷電を有するモノマーとして、例えばアミノ基を有するモノマー、アンモニウム塩を有するモノマー、カルボキシル基を有するモノマー、及びスルホン酸基を有するモノマー等が挙げられる。 Examples of the charged monomer include a monomer having an amino group, a monomer having an ammonium salt, a monomer having a carboxyl group, and a monomer having a sulfonic acid group.
 アミノ基を有するモノマーとしては、例えば、ジアルキルアミノアルキル(メタ)アクリルアミド、ジアルキルアミノアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、アミノスチレン、アミノアルキルスチレン、アミノアルキル(メタ)アクリルアミド等が挙げられる。 Examples of the monomer having an amino group include dialkylaminoalkyl (meth) acrylamide, dialkylaminoalkyl (meth) acrylate, aminoalkyl (meth) acrylate, aminostyrene, aminoalkylstyrene, aminoalkyl (meth) acrylamide, and the like. .
 アンモニウム塩を有するモノマーとしては、例えば、[2-(2-メチルアクリロイルオキシ)エチル]トリメチルアンモニウム塩、(メタ)アクリルアミドアルキルトリメチルアンモニウム塩である3-アクリルアミドプロピルトリメチルアンモニウムクロライド等が挙げられる。 Examples of the monomer having an ammonium salt include [2- (2-methylacryloyloxy) ethyl] trimethylammonium salt and 3-acrylamidopropyltrimethylammonium chloride which is a (meth) acrylamide alkyltrimethylammonium salt.
 カルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸等が挙げられる。 Examples of the monomer having a carboxyl group include acrylic acid and methacrylic acid.
 また、スルホン酸を有するモノマーとしては、(メタ)アクリルアミドアルキルスルホン酸等が挙げられる。 In addition, examples of the monomer having sulfonic acid include (meth) acrylamide alkyl sulfonic acid.
 疎水性モノマーとしては、アルキルアクリレート、アルキルメタアクリレート等が挙げられる。アルキルアクリレートとしては、例えば、n-ブチルアクリレート、t-ブチルアクリレート等が挙げられる。アルキルメタアクリレートとしては、例えば、n-ブチルメタクリレート、t-ブチルメタクリレート、メチルメタクリレート等が挙げられる。疎水性モノマーとしては、以下に挙げる含フッ素モノマーも使用できる。 Examples of the hydrophobic monomer include alkyl acrylate and alkyl methacrylate. Examples of the alkyl acrylate include n-butyl acrylate and t-butyl acrylate. Examples of the alkyl methacrylate include n-butyl methacrylate, t-butyl methacrylate, methyl methacrylate and the like. As the hydrophobic monomer, the following fluorine-containing monomers can also be used.
 含フッ素モノマーとして、例えば、カルボキシル基に対して直接又は2価の有機基を介してエステル結合又はアミド結合したフルオロアルキル基を有し、α位に置換基を有することのあるアクリル酸エステル(以下、「フルオロアルキル基含有アクリル酸エステル」と略記することがある。)、又は「フルオロアルキル基含有アクリルアミド」等が挙げられる。 As the fluorine-containing monomer, for example, an acrylate ester having a fluoroalkyl group that is ester-bonded or amide-bonded directly or via a divalent organic group to the carboxyl group, and may have a substituent at the α-position (hereinafter referred to as “a”) , “Fluoroalkyl group-containing acrylate ester”), or “fluoroalkyl group-containing acrylamide”.
 フルオロアルキル基含有アクリル酸エステル又はフルオロアルキル基含有アクリルアミドの好ましい具体例としては、下記一般式(1):
CH=C(-X)-C(=O)-Y-Z-Rf    (1)
Preferable specific examples of the fluoroalkyl group-containing acrylate ester or the fluoroalkyl group-containing acrylamide include the following general formula (1):
CH 2 = C (-X) -C (= O) -YZ-Rf (1)
[式中、Xは、水素原子、炭素数1~21の直鎖状又は分岐状のアルキル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、X及びXは、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基又は置換若しくは非置換のフェニル基であり;
Yは、-O-又は-NH-であり;
Zは、炭素数1~10の脂肪族基、炭素数6~10の芳香族基若しくは環状脂肪族基、
-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基である。
)、-CHCH(OZ))CH-基(但し、Zは水素原子又はアセチル基である。)、-(CH-SO-(CH-基、-(CH-S-(CH-基(但し、mは1~10、nは0~10である。)又は-(CH-COO-基(mは1~10である。)であり;
Rfは、ヘテロ原子を有していてもよい、炭素数1~20の直鎖状又は分岐状のフルオロアルキル基である。]で表されるアクリル酸エステル及びアクリルアミドを例示できる。
[Wherein, X represents a hydrogen atom, a linear or branched alkyl group having 1 to 21 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (where X 1 and X 2 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group or A substituted or unsubstituted phenyl group;
Y is —O— or —NH—;
Z is an aliphatic group having 1 to 10 carbon atoms, an aromatic group having 6 to 10 carbon atoms or a cyclic aliphatic group,
—CH 2 CH 2 N (R 1 ) SO 2 — group (where R 1 is an alkyl group having 1 to 4 carbon atoms).
), —CH 2 CH (OZ) 1 ) CH 2 — group (wherein Z 1 is a hydrogen atom or an acetyl group), — (CH 2 ) m —SO 2 — (CH 2 ) n — group, — (CH 2 ) m —S— (CH 2 ) n — group (where m is 1 to 10 and n is 0 to 10) or — (CH 2 ) m —COO— group (m is 1 to 10) Is));
Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms which may have a hetero atom. An acrylate ester and acrylamide represented by the formula:
 上記一般式(1)において、Rfで表されるフルオロアルキル基は、少なくとも一個の水素原子がフッ素原子で置換された、ヘテロ原子を有していてもよいアルキル基であり、全ての水素原子がフッ素原子で置換された、ヘテロ原子を有していてもよいパーフルオロアルキル基も包含するものである。 In the general formula (1), the fluoroalkyl group represented by Rf is an alkyl group which may have a hetero atom, in which at least one hydrogen atom is substituted with a fluorine atom, and all the hydrogen atoms are A perfluoroalkyl group which may be substituted with a fluorine atom and which may have a hetero atom is also included.
 上記一般式(1)で表されるアクリル酸エステル及びアクリルアミドでは、Rfが炭素数1~6の直鎖状又は分岐状のフルオロアルキル基であることが好ましく、特に、炭素数1~3の直鎖状又は分岐状のパーフルオロアルキル基であることが好ましい。近年、EPA(米国環境保護庁)により、炭素数が8以上のフルオロアルキル基を有する化合物は、環境、生体中で分解して蓄積するおそれがある環境負荷が高い化合物であることが指摘されているが、一般式(1)で表されるアクリル酸エステル及びアクリルアミドにおいてRfが炭素数1~6の直鎖状又は分岐状のフルオロアルキル基である場合には、この様な環境問題が指摘されていないためである。 In the acrylic acid ester and acrylamide represented by the general formula (1), Rf is preferably a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, and particularly a straight chain having 1 to 3 carbon atoms. It is preferably a chain or branched perfluoroalkyl group. In recent years, it has been pointed out by the EPA (US Environmental Protection Agency) that a compound having a fluoroalkyl group having 8 or more carbon atoms is a high environmental load that may decompose and accumulate in the environment and living organisms. However, in the acrylic ester and acrylamide represented by the general formula (1), when Rf is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, such environmental problems are pointed out. Because it is not.
 上記式(1)において、Rf基の例として、-CF、-CFCF、-CFCFH、-CFCFCF、-CFCFHCF、-CF(CF、-CFCFCFCF、-CFCF(CF、-C(CF、-(CFCF、-(CFCF(CF、-CFC(CF、-CF(CF)CFCFCF、-(CFCF、-(CFCF(CF等が挙げられる。 In the above formula (1), examples of the Rf group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CFHCF 3 , —CF (CF 3 ) 2 , -CF 2 CF 2 CF 2 CF 3 , -CF 2 CF (CF 3 ) 2 , -C (CF 3 ) 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 2 CF (CF 3 ) 2 , -CF 2 C (CF 3 ) 3 , -CF (CF 3 ) CF 2 CF 2 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 3 CF (CF 3 ) 2 .
 さらに、含フッ素モノマーは、非テロマーであることが好ましく、この点で、Rf基としては、炭素数1~2のフルオロアルキル基、又はヘテロ原子によって介在された二以上の炭素数1~3のフルオロアルキル基が好ましい。具体例としては、COCF(CF)CFOCF(CF)-、(CFNC2p-(p=1~6)等が挙げられる。 Further, the fluorine-containing monomer is preferably a non-telomer, and in this respect, the Rf group includes a fluoroalkyl group having 1 to 2 carbon atoms, or two or more carbon atoms having 1 to 3 carbon atoms interposed by a hetero atom. A fluoroalkyl group is preferred. Specific examples include C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) —, (CF 3 ) 2 NC p F 2p — (p = 1 to 6), and the like.
 上記した一般式(1)で表されるアクリル酸エステル及びアクリルアミドの具体例は、次の通りである。 Specific examples of the acrylate ester and acrylamide represented by the general formula (1) are as follows.
  CH=C(-H)-C(=O)-O-(CH-Rf
  CH=C(-H)-C(=O)-O-C-Rf
  CH=C(-Cl)-C(=O)-O-(CH-Rf
  CH=C(-H)-C(=O)-O-(CHN(-CH)SO-Rf
  CH=C(-H)-C(=O)-O-(CHN(-C)SO-Rf  CH=C(-H)-C(=O)-O-CHCH(-OH)CH-Rf
  CH=C(-H)-C(=O)-O-CHCH(-OCOCH)CH-Rf  CH=C(-H)-C(=O)-O-(CH-S-Rf
  CH=C(-H)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-H)-C(=O)-O-(CH-SO-Rf
  CH=C(-H)-C(=O)-O-(CH-SO-(CH-Rf  CH=C(-H)-C(=O)-NH-(CH-Rf
  CH=C(-CH)-C(=O)-O-(CH-Rf
  CH=C(-CH)-C(=O)-O-C-Rf
  CH=C(-CH)-C(=O)-O-(CHN(-CH)SO-Rf
  CH=C(-CH)-C(=O)-O-(CHN(-C)SO-Rf
  CH=C(-CH)-C(=O)-O-CHCH(-OH)CH-Rf
  CH=C(-CH)-C(=O)-O-CHCH(-OCOCH)CH-Rf
CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 2 —Rf
CH 2 ═C (—H) —C (═O) —O—C 6 H 4 —Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 2 —Rf
CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 2 N (—CH 3 ) SO 2 —Rf
CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 2 N (—C 2 H 5 ) SO 2 —Rf CH 2 ═C (—H) —C (═O) —O —CH 2 CH (—OH) CH 2 —Rf
CH 2 ═C (—H) —C (═O) —O—CH 2 CH (—OCOCH 3 ) CH 2 —Rf CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 2 -S-Rf
CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—H) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf CH 2 ═C (—H) —C (═O) —NH— (CH 2 ) 2 -Rf
CH 2 ═C (—CH 3 ) —C (═O) —O— (CH 2 ) 2 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —O—C 6 H 4 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —O— (CH 2 ) 2 N (—CH 3 ) SO 2 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —O— (CH 2 ) 2 N (—C 2 H 5 ) SO 2 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —O—CH 2 CH (—OH) CH 2 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —O—CH 2 CH (—OCOCH 3 ) CH 2 —Rf
  CH=C(-CH)-C(=O)-O-(CH-S-Rf
  CH=C(-CH)-C(=O)-O-(CH-S-(CH-Rf  CH=C(-CH)-C(=O)-O-(CH-SO-Rf
  CH=C(-CH)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CH)-C(=O)-NH-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-S-Rf
  CH=C(-F)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-(CH-Rf  CH=C(-F)-C(=O)-NH-(CH-Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-(CH-Rf
CH 2 ═C (—CH 3 ) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—CH 3 ) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf CH 2 ═C (—CH 3 ) —C (═O) —O — (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CH 3 ) —C (═O) —NH— (CH 2 ) 2 —Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf CH 2 ═C (—F) —C (═O) —NH— (CH 2 ) 2 -Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
  CH=C(-Cl)-C(=O)-NH-(CH-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-(CH-Rf  CH=C(-CF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CF)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CF)-C(=O)-NH-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFH)-C(=O)-NH-(CH-Rf
CH 2 ═C (—Cl) —C (═O) —NH— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 3 ) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—CF 3 ) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf CH 2 ═C (—CF 3 ) —C (═O) —O — (CH 2 ) 2 —SO 2 —Rf
CH 2 ═C (—CF 3 ) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CF 3 ) —C (═O) —NH— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —NH— (CH 2 ) 2 —Rf
  CH=C(-CN)-C(=O)-O-(CH-S-Rf
  CH=C(-CN)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CN)-C(=O)-NH-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFCF)-C(=O)-NH-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-S-Rf
  CH=C(-F)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-(CH-Rf  CH=C(-F)-C(=O)-NH-(CH-Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CN) —C (═O) —NH— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 2 —S—Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —NH— (CH 2 ) 2 —Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 3 —S—Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—F) —C (═O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf CH 2 ═C (—F) —C (═O) —NH— (CH 2 ) 3 -Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-(CH-Rf  CH=C(-CF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CF)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CN)-C(=O)-O-(CH-S-Rf
  CH=C(-CN)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-(CH-Rf
[上記式中、Rfは、炭素数1~6、好ましくは、1~3のフルオロアルキル基である。]   
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 3 —S—Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—Cl) —C (═O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CF 3 ) —C (═O) —O— (CH 2 ) 3 —S—Rf
CH 2 ═C (—CF 3 ) —C (═O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf CH 2 ═C (—CF 3 ) —C (═O) —O — (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—CF 3 ) —C (═O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 3 —S—Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—CF 2 H) —C (═O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 3 —S—Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—CN) —C (═O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 3 —S—Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 ═C (—CF 2 CF 3 ) —C (═O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
[In the above formula, Rf is a fluoroalkyl group having 1 to 6, preferably 1 to 3 carbon atoms. ]
  COCF(CF)CFO-CF(CF)CH-MAc
  COCF(CF)CFO-CF(CF)CH-Ac
  (CFCH-Ac
  CCH-MAc
  CCH-Ac
[上記式中において、Acはアクリレート、MAcはメタクリレートを、それぞれ表す。]
C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3) CH 2 -MAc
C 3 F 7 OCF (CF 3 ) CF 2 O—CF (CF 3 ) CH 2 —Ac
(CF 3 ) 2 CH-Ac
C 2 F 5 CH 2 -MAc
C 2 F 5 CH 2 -Ac
[In the above formula, Ac represents acrylate, and MAc represents methacrylate, respectively. ]
 上記したフルオロアルキル基含有アクリル酸エステル及びフルオロアルキル基含有アクリルアミドは、一種単独又は二種以上混合して用いることができる。 The above-mentioned fluoroalkyl group-containing acrylic ester and fluoroalkyl group-containing acrylamide can be used alone or in combination of two or more.
 温度応答性ポリマーとしては、(メタ)アクリルアミド、N-(若しくはN,N-ジ)置換(メタ)アクリルアミド及びビニルエーテルからなる群より選択される少なくとも一種を少なくとも含むモノマー組成物を重合することにより得られうる温度応答性ポリマー、又はポリビニルアルコール部分酢化物が好ましい。 The temperature-responsive polymer is obtained by polymerizing a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether. Preferred is a temperature-responsive polymer or polyvinyl alcohol partially acetylated product.
 また、前記した温度応答性ポリマーをセグメントとして有するブロックポリマーを用いてもよい。また、ポリマー本来の性質を損なわない範囲で温度応答性ポリマー同士を架橋したものを用いてもよい。その際利用される架橋性モノマーとしては特に限定されず、幅広く選択できる。例えば、N,N’-メチレンビス(メタ)アクリルアミドが挙げられる。 Further, a block polymer having the above-described temperature-responsive polymer as a segment may be used. Moreover, you may use what cross-linked temperature-responsive polymer in the range which does not impair the original property of a polymer. The crosslinkable monomer used at that time is not particularly limited and can be selected widely. An example is N, N'-methylenebis (meth) acrylamide.
 1.3 デンドリティックブロックコポリマー
 本発明においては、温度応答層(A)が、デンドリティックポリマーの末端に、前記温度応答性ポリマーが結合したブロックポリマー(本明細書において、「デンドリティックブロックコポリマー」という)を含有することが好ましい。これにより、上記の好ましい温度応答性ポリマーの分布に関するパラメーターを達成しやすくなる。
1.3 Dendritic Block Copolymer In the present invention, the temperature-responsive layer (A) is a block polymer in which the temperature-responsive polymer is bonded to the end of the dendritic polymer (hereinafter referred to as “dendritic block copolymer”). ) Is preferably contained. This makes it easier to achieve the parameters relating to the preferred temperature-responsive polymer distribution.
 本発明においては、温度応答層(A)が、デンドリティックブロックコポリマーを含有していると、温度応答性ポリマーがより安定的に温度応答層(A)に固定化されやすくなる。具体的には、上記態様では、温度応答層(A)を水洗した後の温度応答性ポリマーの温度応答層(A)への残存率が優れている。このため、かかる態様の温度応答性細胞培養基材は、リユース用として好ましく用いられる。
 かかる態様の温度応答性細胞培養基材は、好ましくは、温度応答層(A)が、20℃の蒸留水中に浸漬して24時間静置した後の温度応答性ポリマー残存量が1μg/cm以上である。特に限定されないが、上記において、温度応答性ポリマー残存量の上限は、通常、10μg/cmであり、好ましくは5μg/cmであり、より好ましくは4μg/cmである。温度応答性ポリマーの残存量は、温度応答性ポリマーの固定化量の測定方法として上述したものと同じ方法により測定できる。
In the present invention, when the temperature responsive layer (A) contains a dendritic block copolymer, the temperature responsive polymer is more easily fixed to the temperature responsive layer (A). Specifically, in the said aspect, the residual rate to the temperature-responsive layer (A) of the temperature-responsive polymer after washing the temperature-responsive layer (A) with water is excellent. For this reason, the temperature-responsive cell culture substrate of this aspect is preferably used for reuse.
In the temperature-responsive cell culture substrate of this embodiment, the temperature-responsive layer (A) preferably has a temperature-responsive polymer residual amount of 1 μg / cm 2 after being immersed in distilled water at 20 ° C. and allowed to stand for 24 hours. That's it. Although not particularly limited, in the above, the upper limit of the temperature-responsive polymer remaining amount is usually 10 μg / cm 2 , preferably 5 μg / cm 2 , more preferably 4 μg / cm 2 . The remaining amount of the temperature-responsive polymer can be measured by the same method as described above as the method for measuring the immobilized amount of the temperature-responsive polymer.
 特に、温度応答性ポリマー部分を除いた、コアとなるデンドリティックポリマー部分(本明細書において、この部分のことを、デンドリティックブロックコポリマー全体と峻別するために、単に「デンドリティックポリマー」と呼ぶことがある)が、スチレン骨格又はシロキサン骨格のデンドリティックポリマーであることが好ましい。本発明者らの検討によれば、このような骨格を有していることにより、デンドリティックポリマー部分が、基材表面に規則的に配置されやすくなり、これにより安定的に基材表面に固定化される結果、細胞培養のときだけでなく、温度応答により細胞を剥離させるときにおいても遊離しにくいという効果が得られる。 In particular, the core dendritic polymer portion excluding the temperature-responsive polymer portion (in this specification, this portion is simply referred to as “dendritic polymer” in order to distinguish it from the entire dendritic block copolymer. However, it is preferably a dendritic polymer having a styrene skeleton or a siloxane skeleton. According to the study by the present inventors, by having such a skeleton, the dendritic polymer portion is easily arranged regularly on the surface of the base material, thereby stably fixing to the surface of the base material. As a result, an effect that it is difficult to release not only when culturing cells but also when detaching cells by temperature response can be obtained.
 また、スチレン骨格のデンドリティックポリマーの末端に前記温度応答性ポリマーが結合したデンドリティックブロックコポリマーは、水不溶性のスチレン骨格のデンドリティックポリマー部分と、水に親和性を有する温度応答性ポリマー部分とが結合したものである。したがって、このデンドリティックブロックコポリマーで基材表面を被覆し、乾燥させることにより、基材表面に微細な相分離構造が形成されることが期待される。細胞が基材表面に付着する際に、基材表面に相分離構造があると細胞の変性を抑えることが可能となるため好ましい。 In addition, the dendritic block copolymer in which the temperature-responsive polymer is bonded to the terminal of the dendritic polymer having a styrene skeleton has a water-insoluble styrenic dendritic polymer portion and a temperature-responsive polymer portion having affinity for water. It is a combination. Therefore, it is expected that a fine phase separation structure is formed on the substrate surface by coating the substrate surface with this dendritic block copolymer and drying it. When cells adhere to the surface of the substrate, it is preferable to have a phase separation structure on the surface of the substrate because cell denaturation can be suppressed.
 デンドリティックポリマーとしては、末端数15以上のデンドリティックポリマーが好ましい。末端数が15以上であることにより、末端に結合する温度応答性ポリマーの単位体積当たり密度を好ましい範囲とすることができ、このことが、温度応答時の細胞剥離性の向上に寄与する。この点において、スチレン骨格のデンドリティックポリマーの末端数は、15以上であれば好ましく、20以上であればより好ましい。 The dendritic polymer is preferably a dendritic polymer having 15 or more terminals. When the number of terminals is 15 or more, the density per unit volume of the temperature-responsive polymer bonded to the terminals can be within a preferable range, which contributes to the improvement of cell detachability during temperature response. In this respect, the number of terminals of the dendritic polymer having a styrene skeleton is preferably 15 or more, and more preferably 20 or more.
 また、このデンドリティックポリマーの末端数は、温度応答性ポリマーを付加させる反応の時間を短縮できるという点において、100以下であることが好ましく、50以下であることがより好ましい。 Further, the number of terminals of the dendritic polymer is preferably 100 or less, and more preferably 50 or less, in that the reaction time for adding the temperature-responsive polymer can be shortened.
 以上を総合すると、デンドリティックポリマーの末端数の好ましい範囲としては、15~50が挙げられ、その中においても20~50が好ましく、30~50がより好ましい。 In summary, the preferred range of the number of terminals of the dendritic polymer is 15 to 50, of which 20 to 50 is preferred, and 30 to 50 is more preferred.
 デンドリティックポリマーの分子量は特に限定されず、幅広い範囲から選択することができる。特に、デンドリティックポリマーの分子量が2,000以上であれば、ポリスチレン基材にデンドリティックブロックコポリマーが固定化されやすくなり、培地等に溶出する可能性が低減される。この点で、デンドリティックポリマーの分子量は、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が最も好ましい。 The molecular weight of the dendritic polymer is not particularly limited, and can be selected from a wide range. In particular, when the molecular weight of the dendritic polymer is 2,000 or more, the dendritic block copolymer is easily immobilized on the polystyrene base material, and the possibility of elution into the medium or the like is reduced. In this respect, the molecular weight of the dendritic polymer is preferably 3,000 or more, more preferably 4,000 or more, and most preferably 5,000 or more.
 本発明のデンドリティックポリマーの分子量は、GPCにより以下の条件で測定する。
なお、以下に挙げる装置及び試薬等に換えて、それらと同等のものを使用してもよい。
装置 :特に限定されない。
検出器 :示差屈折率検出器RIカラム:LF-604(2本)、KF-601(2本)(Shodex)
溶媒 :テトラヒドロフラン
流速 :0.6ml/min
カラム温度 :40℃
試料調製 :試料をテトラヒドロフランに溶解させ、0.5質量%に調製した。溶解後、0.45μmフィルターを用いてろ過した。
注入量 :0.2ml
標準試料:shodex製標準ポリスチレン
The molecular weight of the dendritic polymer of the present invention is measured by GPC under the following conditions.
In addition, it may replace with the apparatus, reagent, etc. which are listed below, and may use the thing equivalent to them.
Apparatus: Not particularly limited.
Detector: Differential refractive index detector RI column: LF-604 (2), KF-601 (2) (Shodex)
Solvent: Tetrahydrofuran flow rate: 0.6 ml / min
Column temperature: 40 ° C
Sample preparation: A sample was dissolved in tetrahydrofuran to prepare 0.5 mass%. After dissolution, it was filtered using a 0.45 μm filter.
Injection volume: 0.2ml
Standard sample: standard polystyrene made by shodex
 また、デンドリティックポリマーの分子量が1,000,000以下であれば、温度応答性ポリマー導入率を好ましい範囲内に保つことができる。この点で、デンドリティックポリマーの分子量は、500,000以下が好ましく、300,000以下がより好ましく、100,000以下が最も好ましい。 Further, when the molecular weight of the dendritic polymer is 1,000,000 or less, the temperature-responsive polymer introduction rate can be kept within a preferable range. In this respect, the molecular weight of the dendritic polymer is preferably 500,000 or less, more preferably 300,000 or less, and most preferably 100,000 or less.
 必要に応じて、デンドリティックブロックコポリマーの末端に水酸基、カルボキシル基、アミノ基、カルボニル基、アルデヒド基、スルホン酸基等の正又は負の荷電を有する基を付与してもよい。これらの基の付与は常法により行うことができる。 If necessary, a group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be added to the end of the dendritic block copolymer. The application of these groups can be performed by a conventional method.
 また、必要に応じて、温度応答性ポリマーが結合した状態のデンドリティックブロックコポリマーにおいて、デンドリティックポリマー部分に水酸基、カルボキシル基、アミノ基、カルボニル基、アルデヒド基、スルホン酸基等の正又は負の荷電を有する基が残存していてもよい。温度応答性ポリマー中または末端に、水酸基、カルボキシル基、アミノ基、カルボニル基、アルデヒド基、スルホン酸基等の正又は負の荷電を有する基を付与させてもよい。 Further, if necessary, in the dendritic block copolymer in which the temperature-responsive polymer is bonded, the dendritic polymer portion has a positive or negative group such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group. A charged group may remain. A group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be imparted to or at the terminal of the temperature-responsive polymer.
 デンドリティックブロックコポリマーは、デンドリティックポリマーの末端に温度応答性ポリマーが少なくとも一種結合しているが、少なくとも一種のその他のポリマーがさらに結合していてもよい。 In the dendritic block copolymer, at least one kind of temperature-responsive polymer is bonded to the end of the dendritic polymer, but at least one other polymer may be further bonded.
 デンドリティックブロックコポリマーは、末端数15以上のデンドリティックポリマーの末端に、分子量3000以上の温度応答性ポリマーがデンドリティックブロックコポリマー全体に対して50~99.5質量%結合しているものであれば好ましい。このデンドリティックブロックコポリマーは、温度応答性ポリマーがデンドリティックポリマーの末端に十分量結合しているため、温度を変えても当該ポリマー上の培養細胞が剥離し難くなるということがない。この点において、本発明のデンドリティックブロックコポリマーは、温度応答性ポリマーがデンドリティックポリマーの末端に、デンドリティックブロックコポリマー全体に対して70質量%以上結合していると好ましく、80質量%以上結合しているとより好ましい。 As long as the dendritic block copolymer has a temperature-responsive polymer having a molecular weight of 3000 or more bonded to 50 to 99.5% by mass with respect to the whole dendritic block copolymer at the end of a dendritic polymer having 15 or more terminals. preferable. In this dendritic block copolymer, since the temperature-responsive polymer is sufficiently bonded to the end of the dendritic polymer, the cultured cells on the polymer are not easily detached even when the temperature is changed. In this respect, in the dendritic block copolymer of the present invention, it is preferable that the temperature-responsive polymer is bonded to the terminal of the dendritic polymer at 70% by mass or more with respect to the entire dendritic block copolymer, and 80% by mass or more is bonded. It is more preferable.
 デンドリティックブロックコポリマーは、デンドリティックポリマーの末端に、温度応答性ポリマーがデンドリティックブロックコポリマー全体に対して99.5質量%以下結合しているものであれば好ましい。この点において、デンドリティックブロックコポリマーは、デンドリティックポリマーの末端に、温度応答性ポリマーがデンドリティックブロックコポリマー全体に対して98質量%以下結合していると好ましく、97質量%以下結合しているとより好ましい。 The dendritic block copolymer is preferably one in which the temperature-responsive polymer is bonded to the end of the dendritic polymer at 99.5% by mass or less with respect to the entire dendritic block copolymer. In this respect, in the dendritic block copolymer, it is preferable that the temperature-responsive polymer is bonded to the end of the dendritic polymer with 98% by mass or less, and 97% by mass or less with respect to the entire dendritic block copolymer. More preferred.
 本発明のデンドリティックブロックコポリマーの分子量は、GPCにより以下の条件で測定する。なお、以下に挙げる装置及び試薬等に換えて、それらと同等のものを使用してもよい。
装置:特に限定されない。
検出器:示差屈折率検出器RI
カラム:TSKgel-M(1本)、TSKgel-3000(1本)(東ソー)
溶媒:ジメチルホルムアミド(50mM LiBr 添加)
流速:0.8mL/min
カラム温度 :23℃
試料調製 :試料10mgにDMF溶媒5mLを加え、室温で緩やかに攪拌して溶解させた後、0.45μmフィルターを用いてろ過する。
注入量:0.2mL
標準試料:東ソー製単分散ポリスチレン
The molecular weight of the dendritic block copolymer of the present invention is measured by GPC under the following conditions. In addition, it may replace with the apparatus, reagent, etc. which are listed below, and may use the thing equivalent to them.
Apparatus: Not particularly limited.
Detector: Differential refractive index detector RI
Column: TSKgel-M (1), TSKgel-3000 (1) (Tosoh)
Solvent: Dimethylformamide (50 mM LiBr added)
Flow rate: 0.8mL / min
Column temperature: 23 ° C
Sample preparation: 5 mL of DMF solvent is added to 10 mg of sample, dissolved by gently stirring at room temperature, and then filtered using a 0.45 μm filter.
Injection volume: 0.2 mL
Standard sample: Tosoh monodisperse polystyrene
 本発明のデンドリティックブロックコポリマーの分子量(重量基準)は、100,000~500,000であれば好ましい。測定された分子量が100,000未満の場合、温度応答性ポリマーがデンドリティックポリマーの末端に導入されず、単にブレンドされている割合が多いため、細胞剥離性が低下する。 The molecular weight (weight basis) of the dendritic block copolymer of the present invention is preferably 100,000 to 500,000. When the measured molecular weight is less than 100,000, the temperature-responsive polymer is not introduced into the end of the dendritic polymer, and the cell detachability is lowered because the blended ratio is large.
 本発明のデンドリティックブロックコポリマーにおいて、デンドリティックポリマーの末端に温度応答性ポリマーを結合させる方法は、特に限定されず、幅広く選択できる。 In the dendritic block copolymer of the present invention, the method for bonding the temperature-responsive polymer to the end of the dendritic polymer is not particularly limited and can be selected widely.
 結合方法としては、デンドリティックポリマーの末端にRAFT剤を導入し、それを起点に各種モノマーを成長させる等の方法が挙げられる。
 RAFT重合の開始剤は特に限定されず、幅広く選択できる。例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(4-メトキシ‐2,4-ジメチルバレロニトリル)(V-70)及び2,2’-アゾビス[(2-カルボキシエチル)-2-(メチルプロピオンアミジン)(V-057)等が挙げられる。
Examples of the bonding method include a method in which a RAFT agent is introduced at the end of the dendritic polymer, and various monomers are grown using the RAFT agent as a starting point.
The initiator for RAFT polymerization is not particularly limited and can be selected widely. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70) and 2,2′-azobis [(2- Carboxyethyl) -2- (methylpropionamidine) (V-057) and the like.
 RAFT重合時に使用する溶媒については特に限定されず幅広く選択できる。例えば、ベンゼン、テトラヒドロフラン、1,4-ジオキサン及びジメチルホルムアルデヒド(DMF)等が好ましく、重合反応に使用するモノマー、RAFT剤及び重合開始剤の種類によって、適宜選択できる。重合時の開始剤濃度、RAFT剤量、反応温度及び反応時間等は特に限定されず、目的に応じて適宜設定できる。重合時、反応液は静置させても攪拌してもよい。 The solvent used in the RAFT polymerization is not particularly limited and can be selected widely. For example, benzene, tetrahydrofuran, 1,4-dioxane, dimethylformaldehyde (DMF) and the like are preferable, and can be appropriately selected depending on the types of monomers, RAFT agent, and polymerization initiator used in the polymerization reaction. The initiator concentration, the amount of RAFT agent, the reaction temperature, the reaction time, and the like at the time of polymerization are not particularly limited and can be appropriately set according to the purpose. During the polymerization, the reaction solution may be allowed to stand or be stirred.
 スチレン骨格デンドリティックポリマーの構造は、幅広く選択することができる。スチレン骨格デンドリティックポリマーの構造は、例えば、以下の一般式(2)により表わすことができる。 The structure of the styrene skeleton dendritic polymer can be selected widely. The structure of the styrene skeleton dendritic polymer can be represented, for example, by the following general formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは、共有結合により温度応答性ポリマーが導入されうる基である。nは重合度を表わす。 In the above formula, R 2 is a group into which the temperature-responsive polymer can be introduced by a covalent bond. n represents the degree of polymerization.
 Rとしては、特に限定されず、幅広く選択することができる。特に、可逆的付加-開裂連鎖移動(RAFT)剤として作用しうる基であれば、RAFT重合により温度応答性ポリマーを導入できるため好ましい。このようなRAFT剤として作用しうる基としては、特に限定されず、幅広く選択できる。例えば、チオカルボニルチオ基等が挙げられる。
チオカルボニルチオ基としては、ジチオエステル基、ジチオカルバメート基、トリチオカーボネート基、キサンタート基及びジチオベンゾエート基等が挙げられる。
R 2 is not particularly limited and can be selected widely. In particular, a group that can act as a reversible addition-cleavage chain transfer (RAFT) agent is preferable because a temperature-responsive polymer can be introduced by RAFT polymerization. Such a group that can act as a RAFT agent is not particularly limited and can be selected widely. Examples include a thiocarbonylthio group.
Examples of the thiocarbonylthio group include a dithioester group, a dithiocarbamate group, a trithiocarbonate group, a xanthate group, and a dithiobenzoate group.
 Rは、末端に、炭素数3~12の、置換されていてもよい炭化水素基を有していてもよい。この炭化水素基は、分岐状炭化水素基であれば好ましい。このことにより、デンドリティックブロックコポリマー中の温度応答性部位に適度な立体障害を持たせることができ、より効果的に基材表面を被覆することができるという効果が得られる。このときのRの具体例として、以下のようなトリチオカーボネート基が挙げられる。 R 2 may have an optionally substituted hydrocarbon group having 3 to 12 carbon atoms at the terminal. The hydrocarbon group is preferably a branched hydrocarbon group. Thereby, an appropriate steric hindrance can be given to the temperature-responsive portion in the dendritic block copolymer, and the effect that the substrate surface can be coated more effectively can be obtained. Specific examples of R 2 at this time include the following trithiocarbonate groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式中、Rは、炭素数3~12の、置換されていてもよい炭化水素基を指す。Rは、分岐状炭化水素基であれば好ましい。具体的には、メチル基、エチル基、プロピル基、分岐プロピル基、ブチル基、分岐ブチル基、ヘキシル基、分岐ヘキシル基、ペンチル基、分岐ペンチル基、ヘプチル基、分岐ヘプチル基、オクチル基、分岐オクチル基、2-エチルヘキシル基、ノニル基、分岐ノニル基、デシル基、分岐デシル基、ドデシル基、分岐ドデシル基があり、好ましくはイソプロピル基、エチルヘキシル基及びブチルオクチル基等が挙げられる。 In the above formula, R 3 represents an optionally substituted hydrocarbon group having 3 to 12 carbon atoms. R 3 is preferably a branched hydrocarbon group. Specifically, methyl, ethyl, propyl, branched propyl, butyl, branched butyl, hexyl, branched hexyl, pentyl, branched pentyl, heptyl, branched heptyl, octyl, branched There are an octyl group, a 2-ethylhexyl group, a nonyl group, a branched nonyl group, a decyl group, a branched decyl group, a dodecyl group, and a branched dodecyl group, preferably an isopropyl group, an ethylhexyl group, and a butyloctyl group.
 スチレン骨格デンドリティックポリマーの製造方法は、特に限定されず、幅広く選択することができる。例えば、常法として行われているクロロベンゼン中、塩化銅存在下で原子移動ラジカル重合(ATRP)法によって得ることができる。あるいは、乾燥トルエン中、加熱下、アゾビスイソブチロニトリル(AIBN)存在下にてラジカル重合させることによっても得ることができる。 The method for producing the styrene skeleton dendritic polymer is not particularly limited, and can be widely selected. For example, it can be obtained by an atom transfer radical polymerization (ATRP) method in the presence of copper chloride in chlorobenzene, which is conventionally performed. Alternatively, it can also be obtained by radical polymerization in dry toluene in the presence of azobisisobutyronitrile (AIBN) under heating.
 より詳細には、上記Rの導入の目的のために、官能基を有するスチレン誘導体を少なくともモノマーとして用いて重合することが好ましい。このようなスチレン誘導体としては、ハロゲン化メチルスチレン等が挙げられる。ハロゲン化メチルスチレンとしては、クロルメチルスチレン、ブロムメチルスチレン等が用いられる。スチレン誘導体は一種を単独で用いてもよいし、二種以上を混合して用いてもよい。 More specifically, for the purpose of introducing R 2 , it is preferable to perform polymerization using at least a styrene derivative having a functional group as a monomer. Examples of such styrene derivatives include halogenated methylstyrene. As the halogenated methylstyrene, chloromethylstyrene, bromomethylstyrene, or the like is used. A styrene derivative may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 上記の通り重合反応によりスチレン骨格デンドリティックポリマーを製造する際、使用する総モノマー全体に対する、官能基を有するスチレン誘導体の割合は、5%以上であることが好ましい。官能基を有するスチレン誘導体の上記割合が5%以上であると、温度応答性ポリマー鎖を導入する効率が良好となり、本発明で目標とする温度応答性ポリマー導入率を達成しやすくなる。この点で、官能基を有するスチレン誘導体の上記割合は、10%以上であればより好ましく、15%以上であればさらに好ましく、20%以上であれば最も好ましい。 As described above, when the styrene skeleton dendritic polymer is produced by the polymerization reaction, the ratio of the styrene derivative having a functional group to the total monomer used is preferably 5% or more. When the ratio of the styrene derivative having a functional group is 5% or more, the efficiency of introducing the temperature-responsive polymer chain becomes good, and the target temperature-responsive polymer introduction rate in the present invention is easily achieved. In this respect, the proportion of the styrene derivative having a functional group is more preferably 10% or more, further preferably 15% or more, and most preferably 20% or more.
 官能基を有するスチレン誘導体の上記割合が90%以下であると、温度応答性ポリマー鎖を導入する効率を良好な範囲に保ちつつ、得られるデンドリティックブロックコポリマーが水に溶けにくくなり、デンドリティックブロックコポリマーが培地等に溶出する可能性が低減される。この点で、官能基を有するスチレン誘導体の上記割合は、80%以下であればより好ましく、70%以下であればさらに好ましく、60%以下であれば最も好ましい。 When the proportion of the styrene derivative having a functional group is 90% or less, the resulting dendritic block copolymer is hardly soluble in water while maintaining the efficiency of introducing the temperature-responsive polymer chain within a good range, and the dendritic block The possibility of the copolymer eluting into the medium or the like is reduced. In this respect, the ratio of the styrene derivative having a functional group is more preferably 80% or less, further preferably 70% or less, and most preferably 60% or less.
 総合すると、官能基を有するスチレン誘導体の上記割合としては、5%~90%が好ましく、10%~80%がより好ましく、15%~70%がさらに好ましく、20%~60%が最も好ましい。 In summary, the proportion of the styrene derivative having a functional group is preferably 5% to 90%, more preferably 10% to 80%, further preferably 15% to 70%, and most preferably 20% to 60%.
 シロキサン骨格デンドリティックポリマーは、幅広く選択することができる。シロキサン骨格デンドリティックポリマーは、例えば、ビス(ジメチルビニルシロキサン)メチルシラン、トリス(ジメチルビニルシロキサン)シラン、ビス(ジメチルアリルシロキサン)メチルシラン及びトリス(ジメチルアリルシロキサン)シランからなる群より選択される少なくとも一種のモノマーを重合することにより得られうるもの等が挙げられる。また、ビス(ジメチルシロキシ)メチルビニルシラン、トリス(ジメチルシロキシ)ビニルシラン、ビス(ジメチルシロキシ)メチルアリルシラン及びトリス(ジメチルシロキシ)アリルシランからなる群より選択される少なくとも一種のモノマーを重合することにより得られうるもの等も挙げられる。このようなシロキサン骨格デンドリティックポリマーは、例えばWO2004/074177号パンフレット等に記載の方法により得ることができる。 Siloxane skeleton dendritic polymer can be widely selected. The siloxane skeleton dendritic polymer is, for example, at least one selected from the group consisting of bis (dimethylvinylsiloxane) methylsilane, tris (dimethylvinylsiloxane) silane, bis (dimethylallylsiloxane) methylsilane, and tris (dimethylallylsiloxane) silane. The thing etc. which can be obtained by superposing | polymerizing a monomer are mentioned. Further, it can be obtained by polymerizing at least one monomer selected from the group consisting of bis (dimethylsiloxy) methylvinylsilane, tris (dimethylsiloxy) vinylsilane, bis (dimethylsiloxy) methylallylsilane and tris (dimethylsiloxy) allylsilane. Examples are also included. Such a siloxane skeleton dendritic polymer can be obtained by, for example, the method described in WO 2004/074177 pamphlet or the like.
 1.4. 基材層(B)表面への温度応答層(A)の配置方法 1.4. Arrangement method of temperature response layer (A) on surface of base material layer (B)
 本発明の温度応答性細胞培養基材は、基材層(B)の少なくとも一方の面に温度応答層(A)を配置することにより得られうる。具体的には、例えば、温度応答性ポリマーを、基材層(B)の面に直接的又は間接的に固定することにより、温度応答層(A)を基材層(B)の面に配置できる。 The temperature-responsive cell culture substrate of the present invention can be obtained by disposing the temperature-responsive layer (A) on at least one surface of the substrate layer (B). Specifically, for example, the temperature responsive polymer (A) is disposed on the surface of the base material layer (B) by directly or indirectly fixing the temperature responsive polymer to the surface of the base material layer (B). it can.
 温度応答層(A)は、互いに異なるUCST又はLCSTを有する二以上の領域を有し、それらの領域が二次元パターンを形成するように配列していてもよい。 The temperature response layer (A) may have two or more regions having different UCST or LCST, and these regions may be arranged so as to form a two-dimensional pattern.
 温度応答層(A)は、基材層(B)の少なくとも一方の面の一部に配置されており、その領域と、温度応答しない領域とが、二次元パターンを形成するように配列していてもよい。 The temperature response layer (A) is disposed on a part of at least one surface of the base material layer (B), and the region and the region not temperature-responsive are arranged so as to form a two-dimensional pattern. May be.
 温度応答性ポリマーの基材層(B)の面への固定方法は、特に限定されず、幅広く選択できる。例えば、温度応答性ポリマーを溶媒に溶解又は分散させてから、基材表面が均一に被覆されるように塗布することにより直接的に固定することができる。 The method for fixing the temperature-responsive polymer to the surface of the base material layer (B) is not particularly limited and can be selected widely. For example, the temperature-responsive polymer can be directly fixed by dissolving or dispersing it in a solvent and then applying it so that the substrate surface is uniformly coated.
 また、温度応答性ポリマーを含む複合体を溶媒に溶解又は分散させてから、基材層(B)の面に塗布することにより、温度応答性ポリマーを間接的に固定することもできる。そのような複合体としては、例えば上記1.3のデンドリティックブロックコポリマー等が挙げられる。 Further, the temperature-responsive polymer can be indirectly fixed by dissolving or dispersing the complex containing the temperature-responsive polymer in a solvent and then applying the complex to the surface of the base material layer (B). Examples of such a complex include the above-mentioned dendritic block copolymer of 1.3.
 この場合、溶媒としては、温度応答性ポリマー又はそれを含む複合体を溶解又は分散させるものであれば特に限定されず、幅広く選択できる。例えば、N、N-ジメチルアクリルアミド;イソプロピルアルコール;並びにアセトニトリル及びN、N-ジメチルホルムアミドの混合液等が挙げられる。 In this case, the solvent is not particularly limited as long as it can dissolve or disperse the temperature-responsive polymer or the complex containing the polymer, and can be selected widely. Examples thereof include N, N-dimethylacrylamide; isopropyl alcohol; and a mixture of acetonitrile and N, N-dimethylformamide.
 複数種の溶媒を混合して使用してもよい。この場合、混合比は特に限定されず、幅広く選択できる。テトラヒドロフランとメタノールとの混合溶媒の場合、例えば、テトラヒドロフラン:メタノール=0.5~2:4とすることができる。アセトンとエタノールとの混合溶媒の場合、例えば、アセトン:エタノール=0.5~1:4とすることができる。
ジオキサンとノルマルプロパノールとの混合溶媒の場合、例えば、ジオキサン:ノルマルプロパノール=0.5~2:4とすることができる。トルエンとノルマルブタノールとの混合溶媒の場合、例えば、トルエン:ノルマルブタノール=0.5~2:4とすることができる。アセトニトリルとN、N-ジメチルホルムアミドとの混合溶媒の場合、例えば、アセトニトリル:N、N-ジメチルホルムアミド=4:1~6:1とすることができる。
A plurality of types of solvents may be mixed and used. In this case, the mixing ratio is not particularly limited and can be selected widely. In the case of a mixed solvent of tetrahydrofuran and methanol, for example, tetrahydrofuran: methanol = 0.5 to 2: 4 can be set. In the case of a mixed solvent of acetone and ethanol, for example, acetone: ethanol = 0.5 to 1: 4 can be set.
In the case of a mixed solvent of dioxane and normal propanol, for example, dioxane: normal propanol can be set to 0.5 to 2: 4. In the case of a mixed solvent of toluene and normal butanol, for example, toluene: normal butanol can be set to 0.5 to 2: 4. In the case of a mixed solvent of acetonitrile and N, N-dimethylformamide, for example, acetonitrile: N, N-dimethylformamide can be set to 4: 1 to 6: 1.
 溶媒としては、ポリスチレンの良溶媒と貧溶媒とを含む溶液が好ましい。このような溶媒を使用すると、特に基材層(B)の材質がポリスチレンである場合、基材層(B)の面のポリスチレンを膨潤させつつ、上記1.3のスチレン骨格デンドリティックブロックコポリマー又はシロキサン骨格デンドリティックブロックコポリマーを固定化させることができ、結果的にスチレン骨格デンドリティックブロックコポリマー又はシロキサン骨格デンドリティックブロックコポリマーが基材層(B)の面に埋め込まれるような形となるため好ましい。この場合、前記良溶媒と前記貧溶媒とが、それぞれテトラヒドロフランとメタノールであれば好ましい。さらに、テトラヒドロフランとメタノールの混合溶媒中のテトラヒドロフラン含量が10~35体積%であればより好ましい。 As the solvent, a solution containing a good solvent and a poor solvent of polystyrene is preferable. When such a solvent is used, particularly when the material of the base material layer (B) is polystyrene, while the polystyrene on the surface of the base material layer (B) is swollen, the styrene skeleton dendritic block copolymer of the above 1.3 or The siloxane skeleton dendritic block copolymer can be fixed, and as a result, the styrene skeleton dendritic block copolymer or the siloxane skeleton dendritic block copolymer is preferably embedded in the surface of the base material layer (B). In this case, it is preferable that the good solvent and the poor solvent are tetrahydrofuran and methanol, respectively. Further, the tetrahydrofuran content in the mixed solvent of tetrahydrofuran and methanol is more preferably 10 to 35% by volume.
 温度応答性ポリマー又はそれを含む複合体の基材層(B)の面への固定化に際しては、温度応答性ポリマー又はそれを含む複合体を含む溶液を基材層(B)の面へ均一に塗布することが好ましい。その方法は特に限定されず、幅広く選択できる。例えば、ディスペンサーを利用する方法、基材層(B)を水平な台の上に静置させる方法等が挙げられる。 In immobilizing the temperature-responsive polymer or the composite containing the same to the surface of the base material layer (B), the solution containing the temperature-responsive polymer or the composite containing the same is uniformly applied to the surface of the base material layer (B). It is preferable to apply to. The method is not particularly limited and can be selected widely. For example, the method of using a dispenser, the method of leaving a base material layer (B) on a horizontal stand, etc. are mentioned.
 温度応答性ポリマー又はそれを含む複合体を含む溶液を基材層(B)の面へ塗布した後、溶媒を除去することにより、本発明の温度応答性細胞培養基材が得られる。溶媒の除去方法は特に限定されず、幅広く選択できる。例えば、室温にて、かつ大気中で時間をかけてゆっくり蒸発させる方法、室温にて、かつ溶媒飽和環境下で時間をかけてゆっくり蒸発させる方法、加熱下で蒸発させる方法、減圧下で蒸発させる方法等が挙げられる。特に、均一な温度応答層(A)の面が得られるという点で、室温にて、かつ溶媒飽和環境下で時間をかけてゆっくり蒸発させる方法が好ましい。具体的には、2時間以上、前記溶媒の蒸気下に置くことが好ましい。 The temperature-responsive cell culture substrate of the present invention is obtained by applying a solution containing a temperature-responsive polymer or a complex containing the same to the surface of the substrate layer (B) and then removing the solvent. The method for removing the solvent is not particularly limited, and can be selected widely. For example, a method of slowly evaporating over time in the atmosphere at room temperature, a method of evaporating slowly over time in a solvent-saturated environment at room temperature, a method of evaporating under heating, and evaporating under reduced pressure Methods and the like. In particular, a method of slowly evaporating at room temperature and in a solvent saturated environment is preferable in that a uniform surface of the temperature responsive layer (A) can be obtained. Specifically, it is preferable to put it under the vapor of the solvent for 2 hours or more.
 均一な温度応答層(A)の面が得られるという点で、溶媒飽和環境下で時間をかけてゆっくり溶媒を蒸発させた後、いったん表面を水洗してから乾燥させることが好ましい。 In terms of obtaining a uniform surface of the temperature-responsive layer (A), it is preferable to slowly evaporate the solvent over time in a solvent-saturated environment and then wash the surface once and then dry.
 2. 基材層(B)
 基材層(B)の材質は、窒素原子を有さないものであればよく、特に限定されない。通常、細胞培養に用いられるものであればよく特に制限されない。例えば、ガラス、改質ガラス、各種樹脂等が挙げられる。また、これらの他にもさらに、一般に形態付与が可能とされる材質からなるものであってもよい。そのような材質は、特に限定されず、幅広く選択できる。例えば、グラフトポリマー、セラミックス及び金属類等が挙げられる。
2. Base material layer (B)
The material of the base material layer (B) is not particularly limited as long as it does not have a nitrogen atom. Usually, any material can be used as long as it is used for cell culture. For example, glass, modified glass, various resins, etc. are mentioned. In addition to these, it may be made of a material that can generally be given a form. Such a material is not particularly limited and can be selected widely. For example, a graft polymer, ceramics, metals, etc. are mentioned.
 樹脂としては、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、シクロオレフィン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリサルフォン及びポリフェニレンスルファイド等が挙げられる。 Examples of the resin include polystyrene, polyethylene, polypropylene, cycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
 これらの中でも、特に、ポリスチレン、ポリメチルメタクリレート等が好ましく用いられる。 Of these, polystyrene, polymethyl methacrylate and the like are particularly preferably used.
 基材層(B)の、温度応答層(A)が配置される側の面は、必要に応じて表面処理がなされていてもよい。表面処理としては、例えば、プラズマ処理及びコロナ処理等が挙げられる。 The surface of the base material layer (B) on the side where the temperature responsive layer (A) is arranged may be subjected to a surface treatment as necessary. Examples of the surface treatment include plasma treatment and corona treatment.
 また、基材層(B)の、温度応答層(A)が配置される側の面は、平滑であってもよいし、穴状、突起状又は壁状等の三次元構造が形成されていてもよい。そのような三次元構造を表面に有する基材層(B)としては、例えば、市販されている三次元構造細胞培養基材である、SCIVAX製NanoCulture Plate、日立ハイテクノロジーズ製 ナノピラープレート、3D Biomatrix製Perfecta3D又はクラレ製ELPLASIA等を使用できる。 Further, the surface of the base material layer (B) on the side where the temperature response layer (A) is arranged may be smooth, and a three-dimensional structure such as a hole shape, a protrusion shape, or a wall shape is formed. May be. Examples of the substrate layer (B) having such a three-dimensional structure on the surface include, for example, commercially available three-dimensional structure cell culture substrates, SCIVAX NanoCulture Plate, Hitachi High-Technologies Nanopillar Plate, 3D Biomatrix Perfecta3D or Kuraray ELPLASIA can be used.
 温度応答層(A)は、基材層(B)の面に、少なくとも一種のその他の層を介して配置されていてもよい。その他の層としては、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、シクロオレフィン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリサルフォン及びポリフェニレンスルファイド等が挙げられる。 The temperature response layer (A) may be disposed on the surface of the base material layer (B) via at least one other layer. Examples of the other layers include polystyrene, polyethylene, polypropylene, cycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
 3. 温度応答性細胞培養基材のその他の構成、特性及び用途等 3. Other configurations, characteristics and applications of temperature-responsive cell culture substrate
 本発明の温度応答性細胞培養基材は、必要に応じて、温度応答層(A)及び基材層(B)に加えてさらにその他の層を有していてもよい。その他の層としては、例えば、形状保持の目的で使用される支持層が挙げられる。 The temperature-responsive cell culture substrate of the present invention may further include other layers in addition to the temperature-responsive layer (A) and the substrate layer (B) as necessary. Examples of other layers include a support layer used for the purpose of shape retention.
 本発明の温度応答性細胞培養基材の形状は、特に限定されない。ペトリ皿等の細胞培養皿であってもよいし、プレート、ファイバー又は粒子等であってもよい。粒子は多孔質であってもよい。また、一般に細胞培養等に用いられる別の容器形状であってもよい。そのような容器形状としては、例えば、フラスコ、バッグ等が挙げられる。 The shape of the temperature-responsive cell culture substrate of the present invention is not particularly limited. It may be a cell culture dish such as a Petri dish, or a plate, fiber or particle. The particles may be porous. Further, it may have another container shape generally used for cell culture or the like. As such a container shape, a flask, a bag, etc. are mentioned, for example.
 本発明の温度応答性細胞培養基材は、細胞全般に対して使用できる。例えば、動物、昆虫、植物等の細胞、細菌類が挙げられる。動物細胞の由来の例として、ヒト、サル、イヌ、ネコ、ウサギ、ラット、ヌードマウス、マウス、モルモット、ブタ、ヒツジ、チャイニーズハムスター、ウシ、マーモセット及びアフリカミドリザル等が挙げられる。 The temperature-responsive cell culture substrate of the present invention can be used for all cells. Examples thereof include cells such as animals, insects and plants, and bacteria. Examples of the origin of animal cells include humans, monkeys, dogs, cats, rabbits, rats, nude mice, mice, guinea pigs, pigs, sheep, Chinese hamsters, cattle, marmoset, and African green monkeys.
 本発明の温度応答性細胞培養基材は、接着性細胞に対して好ましく使用できる。接着性細胞としては、幅広く選択することができ、例えば、内皮細胞、表皮細胞、上皮細胞、筋細胞、神経細胞、骨細胞及び脂肪細胞等のほか、樹状細胞及びマクロファージ等も挙げられる。内皮細胞としては、例えば、肝細胞、クッパー細胞、血管内皮細胞及び角膜内皮細胞等が挙げられる。表皮細胞としては、例えば、繊維芽細胞、骨芽細胞、砕骨細胞、歯根膜由来細胞及び表皮角化細胞等が挙げられる。上皮細胞としては、例えば、気管上皮細胞、消化管上皮細胞、子宮頸部上皮細胞及び角膜上皮細胞等が挙げられる。筋細胞としては、例えば、乳腺細胞、ペリサイト、平滑筋細胞及び心筋細胞等が挙げられる。神経細胞としては、例えば、腎細胞、膵ランゲルハンス島細胞、末梢神経細胞及び視神経細胞等が挙げられる。骨細胞としては、例えば、破骨細胞、軟骨細胞等が挙げられる。 The temperature-responsive cell culture substrate of the present invention can be preferably used for adherent cells. Adhesive cells can be widely selected and include, for example, endothelial cells, epidermis cells, epithelial cells, muscle cells, nerve cells, bone cells, fat cells, etc., as well as dendritic cells and macrophages. Examples of the endothelial cells include hepatocytes, Kupffer cells, vascular endothelial cells, and corneal endothelial cells. Examples of epidermal cells include fibroblasts, osteoblasts, osteoclasts, periodontal ligament-derived cells and epidermal keratinocytes. Examples of epithelial cells include tracheal epithelial cells, gastrointestinal epithelial cells, cervical epithelial cells, and corneal epithelial cells. Examples of muscle cells include mammary gland cells, pericytes, smooth muscle cells, and cardiomyocytes. Examples of nerve cells include kidney cells, pancreatic islets of Langerhans, peripheral nerve cells, and optic nerve cells. Examples of bone cells include osteoclasts and chondrocytes.
 接着性細胞としては、各種幹細胞も使用できる。接着性の幹細胞としては、胚性幹細胞(embryonic stem cells:ES細胞)、胚性生殖細胞(embryonic germ cells:EG細胞)、生殖細胞系列幹細胞(germline stem cells:GS細胞)、誘導多能性幹細胞(iPS細胞;induced pluripotent stem cell)等の多能性幹細胞、間葉系幹細胞、造血系幹細胞、神経系幹細胞等の複能性幹細胞、心筋前駆細胞、血管内皮前駆細胞、神経前駆細胞、脂肪前駆細胞、皮膚線維芽細胞、骨格筋筋芽細胞、骨芽細胞、象牙芽細胞等の単能性幹細胞(前駆細胞)等の幹細胞が挙げられる。 ¡Various stem cells can be used as adherent cells. Adhesive stem cells include embryonic stem cells (ES cells), embryonic germ cells (EG cells), germline stem cells (GS cells), induced pluripotent stem cells (IPS cells; induced pluripotent stem cells) and other pluripotent stem cells; mesenchymal stem cells; hematopoietic stem cells; Stem cells such as unipotent stem cells (progenitor cells) such as cells, dermal fibroblasts, skeletal muscle myoblasts, osteoblasts, and odontoblasts.
 本発明の温度応答性細胞培養基材においては、対象となる細胞を培養するために通常用いられる培地をそのまま使用できる。 In the temperature-responsive cell culture substrate of the present invention, a medium usually used for culturing target cells can be used as it is.
 本発明の細胞培養用温度応答性基材においては、全面もしくは一部の培養基材の温度を温度応答性ポリマーのUCST以上若しくはLCST以下にすることによって、培養細胞を酵素処理することなく剥離させることができる。この温度変化による剥離は、培養液中において行ってもよいし、その他の等張液中等において行ってもよい。また、細胞をより早く、より高効率に剥離及び回収する目的で、基材を軽くたたいたり、ゆらしたりすることができる。さらに必要に応じて、ピペット等を用いて培地を撹拌する等してもよい。基材の一部のみの温度を変化させることのメリットとしては、例えば、iPS細胞の分化誘導において、分化した細胞コロニーのみを選択的に剥離することが可能となること等が挙げられる。 In the temperature-responsive base material for cell culture of the present invention, the temperature of the whole or part of the culture base material is made to be not less than UCST or not more than LCST of the temperature-responsive polymer, so that the cultured cells are detached without enzyme treatment. be able to. The peeling due to the temperature change may be performed in a culture solution or in another isotonic solution. In addition, the substrate can be tapped or swayed for the purpose of detaching and collecting the cells faster and more efficiently. If necessary, the medium may be stirred using a pipette or the like. Advantages of changing the temperature of only a part of the substrate include, for example, that it is possible to selectively detach only differentiated cell colonies in induction of iPS cell differentiation.
 本発明の細胞培養用温度応答性基材は、温度応答性ポリマーが表面に強固に固定されていることが好ましく、この場合、リユース用として用いることができる。特に、上記1.3のデンドリティックブロックコポリマーが固定化されている表面を有する細胞培養用温度応答性基材は、特に温度応答性ポリマーが表面に強固に固定されており、リユース用として好ましく用いることができる。 In the temperature-responsive substrate for cell culture of the present invention, the temperature-responsive polymer is preferably firmly fixed on the surface, and in this case, it can be used for reuse. In particular, the temperature-responsive base material for cell culture having a surface on which the above-mentioned 1.3 dendritic block copolymer is fixed is particularly preferably used for reuse because the temperature-responsive polymer is firmly fixed on the surface. be able to.
 リユース用として用いる場合、液体培地を添加して細胞培養を行い、温度応答により細胞を剥離し、基材表面をリン酸緩衝生理食塩水等の適当な洗浄液で洗浄する、という一連の工程を一サイクルとして、同一の細胞培養用温度応答性基材を二以上のサイクルにおいて使用する、すなわち、2回以上のリユースのために用いられる。本発明の細胞培養用温度応答性基材は、好ましくは3回以上のリユースのために用いられる。 When used for reuse, a series of steps are performed in which cell culture is performed by adding a liquid medium, the cells are detached by temperature response, and the substrate surface is washed with an appropriate washing solution such as phosphate buffered saline. As a cycle, the same temperature-responsive substrate for cell culture is used in two or more cycles, that is, used for two or more reuses. The temperature-responsive substrate for cell culture of the present invention is preferably used for reuse three times or more.
 以下、本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following examples.
<製造例1>
[S-(4-ビニル)ベンジル S’-アルキルトリチオカーボネートの合成]
 窒素置換下の100ml三ツ口フラスコ中へ、ナトリウムメトキシド(5.6ml, 0.028mol)、メタノール(MeOH、28ml)を入れ、2分間撹拌させた。そこへ、2-エチル-1-ヘキサンチオール(4.10g、0.028mol)をMeOH(22ml)に溶解させたものを添加し、室温にて2時間撹拌した。そこへ二硫化炭素(CS)(2.1ml、0.035mol)を添加し、室温にて5時間撹拌した。さらに、4-ビニルベンジルクロリド(4.3ml、0.028mol)を添加し、そのまま20時間室温にて撹拌した。反応後、水を添加し、ジクロロメタンにて抽出、有機層を飽和食塩水にて洗浄後、硫化マグネシウムで乾燥させ、溶媒を減圧留去した。精製は、ヘキサンを展開溶媒にカラムクロマトグラフィーにて行った。オレンジ色液体の目的物が、5.6gの収率にて得られた。
 参考文献:Macromolecules 2011,44,2034-2049
<Production Example 1>
[Synthesis of S- (4-vinyl) benzyl S′-alkyltrithiocarbonate]
Sodium methoxide (5.6 ml, 0.028 mol) and methanol (MeOH, 28 ml) were put into a 100 ml three-necked flask under nitrogen substitution and stirred for 2 minutes. Thereto was added 2-ethyl-1-hexanethiol (4.10 g, 0.028 mol) dissolved in MeOH (22 ml), and the mixture was stirred at room temperature for 2 hours. Carbon disulfide (CS 2 ) (2.1 ml, 0.035 mol) was added thereto, and the mixture was stirred at room temperature for 5 hours. Further, 4-vinylbenzyl chloride (4.3 ml, 0.028 mol) was added and the mixture was stirred as it was at room temperature for 20 hours. After the reaction, water was added and the mixture was extracted with dichloromethane. The organic layer was washed with saturated brine and dried over magnesium sulfide, and the solvent was distilled off under reduced pressure. Purification was performed by column chromatography using hexane as a developing solvent. The target product as an orange liquid was obtained in a yield of 5.6 g.
Reference: Macromolecules 2011, 44, 2034-2049
[デンドリティックポリマー1の合成]
 窒素置換下の10ml枝管付フラスコ中へ、S-(4-ビニル)ベンジル S’-(2-エチル-1-ヘキシル)トリチオカーボネート(1.20g、3.61×10-3mol)、脱水トルエン(1ml)を入れ、撹拌して溶解させた。さらに2、2’-アゾジイソブチロニトリル(AIBN、0.0745g、4.50×10-4mol)を添加し、80℃にて10時間撹拌した。反応後、トルエンを2ml追加し希釈した後、氷浴中で冷却したヘキサン中へ滴下及び再沈させ、オレンジ色のオイル状のポリマーを0.58g回収した。
[Synthesis of Dendritic Polymer 1]
S- (4-vinyl) benzyl S ′-(2-ethyl-1-hexyl) trithiocarbonate (1.20 g, 3.61 × 10 −3 mol) into a 10 ml branch tube flask under nitrogen substitution, Dehydrated toluene (1 ml) was added and dissolved by stirring. Further, 2,2′-azodiisobutyronitrile (AIBN, 0.0745 g, 4.50 × 10 −4 mol) was added, and the mixture was stirred at 80 ° C. for 10 hours. After the reaction, 2 ml of toluene was added and diluted, and then dropped and reprecipitated into hexane cooled in an ice bath to recover 0.58 g of an orange oily polymer.
[デンドリティックブロックコポリマーの合成(温度応答性ポリマー含量85%)]
 窒素置換下の10ml枝管付フラスコ中へ、上述したデンドリティックポリマー1(0.028g)、N-イソプロピルアクリルアミド(NIPAM、1g、8.85×10-3mol)、脱水テトラヒドロフラン(THF、3ml)を入れ、撹拌して溶解させた。
さらに、AIBN(4.0×10-3g、4.6×10-6mol)を添加し、70℃にて10時間撹拌した。反応後、THFを3ml添加し希釈した後、ジエチルエーテル中へ滴下及び再沈させ、卵色固体を回収した。再度THF5mlに溶解させ、ジエチルエーテル中へ再沈を行い、白色の粉末状固体を0.706g得た。
[Synthesis of dendritic block copolymer (temperature-responsive polymer content 85%)]
Dendritic polymer 1 (0.028 g), N-isopropylacrylamide (NIPAM, 1 g, 8.85 × 10 −3 mol), dehydrated tetrahydrofuran (THF, 3 ml) described above into a 10 ml branch tube flask under nitrogen substitution And dissolved by stirring.
Further, AIBN (4.0 × 10 −3 g, 4.6 × 10 −6 mol) was added, and the mixture was stirred at 70 ° C. for 10 hours. After the reaction, 3 ml of THF was added for dilution, and then dropped and reprecipitated into diethyl ether to recover an egg-colored solid. It was again dissolved in 5 ml of THF and reprecipitated into diethyl ether to obtain 0.706 g of a white powdery solid.
<製造例2>
[デンドリティックポリマー2の合成]
 窒素置換下の10ml枝管付フラスコ中へ、S-(4-ビニル)ベンジル S’-(2-エチル-1-ヘキシル)トリチオカーボネート(1.20g、3.61×10-3mol)、脱水トルエン(1ml)を入れ、撹拌して溶解させた。さらに、AIBN(0.0745g、4.50×10-4mol)を添加し、80℃にて24時間撹拌した。反応後、トルエンを2ml追加し希釈した後、氷浴中で冷却したヘキサン中へ滴下・再沈させ、オレンジ色のオイル状のポリマーを回収した。収量は0.58gであった。
<Production Example 2>
[Synthesis of Dendritic Polymer 2]
S- (4-vinyl) benzyl S ′-(2-ethyl-1-hexyl) trithiocarbonate (1.20 g, 3.61 × 10 −3 mol) into a 10 ml branch tube flask under nitrogen substitution, Dehydrated toluene (1 ml) was added and dissolved by stirring. Further, AIBN (0.0745 g, 4.50 × 10 −4 mol) was added, and the mixture was stirred at 80 ° C. for 24 hours. After the reaction, 2 ml of toluene was added and diluted, and then dropped and reprecipitated into hexane cooled in an ice bath to recover an orange oily polymer. The yield was 0.58g.
[デンドリティックブロックコポリマーの合成(温度応答性ポリマー含量95%)]
 窒素置換下の10ml枝管付フラスコ中へ、上述したデンドリティックポリマー2(0.028g)、NIPAM(1g、8.85×10-3mol)、脱水THF(3ml)を入れ、撹拌して溶解させた。さらに、AIBN(4.0×10-3g、4.6×10-6mol)を添加し、70℃にて24時間撹拌した。反応後、THFを3ml添加し希釈した後、ジエチルエーテル中へ滴下及び再沈させ、卵色固体を回収した。再度THF5mlに溶解させ、ジエチルエーテル中へ再沈を行い、白色の粉末状固体を0.730g得た。
[Synthesis of dendritic block copolymer (temperature-responsive polymer content 95%)]
Add the above-mentioned dendritic polymer 2 (0.028 g), NIPAM (1 g, 8.85 × 10 −3 mol), dehydrated THF (3 ml) into a 10 ml branch tube flask under nitrogen substitution, and dissolve by stirring. I let you. Further, AIBN (4.0 × 10 −3 g, 4.6 × 10 −6 mol) was added, and the mixture was stirred at 70 ° C. for 24 hours. After the reaction, 3 ml of THF was added for dilution, and then dropped and reprecipitated into diethyl ether to recover an egg-colored solid. It was again dissolved in 5 ml of THF and reprecipitated into diethyl ether to obtain 0.730 g of a white powdery solid.
<比較製造例1>
[ポリ-N-イソプロピルアクリルアミド(PNIPAM)の合成]
窒素置換下の50ml三ツ口フラスコ中へ、NIPAM(5g,0.044mol)、2-プロパノール(25ml)を添加し、撹拌して溶解させた。さらにそこへ、AIBN(0.0726g、4.4×10-4mol)を添加し、80℃にて6時間撹拌した。反応後、溶媒を減圧留去し、白色固体を4.95g得た。
<Comparative Production Example 1>
[Synthesis of poly-N-isopropylacrylamide (PNIPAM)]
NIPAM (5 g, 0.044 mol) and 2-propanol (25 ml) were added to a 50 ml three-necked flask under nitrogen substitution, and dissolved by stirring. Further, AIBN (0.0726 g, 4.4 × 10 −4 mol) was added thereto, and the mixture was stirred at 80 ° C. for 6 hours. After the reaction, the solvent was distilled off under reduced pressure to obtain 4.95 g of a white solid.
<実施例1>
[コーティング溶液の調製]
 製造例1にて合成したデンドリティックブロックコポリマー10mgを、THF/MeOH=1/4(v/v)の混合溶媒(4ml)へ溶解させた。これを、母液と称する。この母液を、培養面積9.6cmのセルカルチャーディッシュに50μl塗布した時の、PNIPAM換算での塗布量が3.5μg/cmとなるよう、THF/MeOH=1/4(v/v)の混合溶媒でさらに希釈した。これを、コーティング溶液と称する。
<Example 1>
[Preparation of coating solution]
10 mg of the dendritic block copolymer synthesized in Production Example 1 was dissolved in a mixed solvent (4 ml) of THF / MeOH = 1/4 (v / v). This is called mother liquor. THF / MeOH = 1/4 (v / v) so that the applied amount in terms of PNIPAM is 3.5 μg / cm 2 when 50 μl of this mother liquor is applied to a cell culture dish having a culture area of 9.6 cm 2. Further dilution with a mixed solvent of This is referred to as a coating solution.
[ポリスチレン製基材に対するポリマーの固定化、水洗なし]
 上記方法で得られたコーティング溶液(50μl)を、ポリスチレン製セルカルチャーディッシュ(コーニング製Falcon3001、培養面積9.6cm)に塗布し、蓋をした。そのまま2.5時間静置させた後に乾燥させ、温度応答性細胞培養基材を得た。
[Polymer immobilization on polystyrene substrate, no water washing]
The coating solution (50 μl) obtained by the above method was applied to a polystyrene cell culture dish (Corning Falcon 3001, culture area 9.6 cm 2 ) and covered. The mixture was allowed to stand for 2.5 hours and then dried to obtain a temperature-responsive cell culture substrate.
[ポリスチレン製基材に対するポリマーの固定化、水洗あり]
 コーティング溶液(50μl)を、ポリスチレン製セルカルチャーディッシュ(コーニング製Falcon3001、培養面積9.6cm)に塗布し、蓋をした。そのまま4時間静置させた後に乾燥させた。乾燥後、純水にて1時間洗浄した。洗浄後は、水切り後一晩自然乾燥させ、温度応答性細胞培養基材を得た。
[Polymer immobilization on polystyrene substrate, with water washing]
The coating solution (50 μl) was applied to a cell culture dish made of polystyrene (Falcon 3001, Corning, culture area 9.6 cm 2 ) and covered. The mixture was allowed to stand for 4 hours and then dried. After drying, it was washed with pure water for 1 hour. After washing, the membrane was naturally dried overnight after draining to obtain a temperature-responsive cell culture substrate.
<実施例2>
[コーティング溶液の調製]
 コーティング溶媒の調製に使用する混合溶媒をTHF/MeOH=2/5(v/v)とした。その他の操作については、実施例1と同様に実施した。
<Example 2>
[Preparation of coating solution]
The mixed solvent used for the preparation of the coating solvent was THF / MeOH = 2/5 (v / v). Other operations were performed in the same manner as in Example 1.
[その他の操作]
 ポリスチレン製基材に対するポリマーの固定化、並びに細胞評価の方法については、実施例1と同様に実施した。
[Other operations]
The immobilization of the polymer on the polystyrene substrate and the cell evaluation method were carried out in the same manner as in Example 1.
<実施例3>
[コーティング溶液の調製]
 デンドリティックブロックコポリマーを製造例2で合成したものに置き換える以外は、実施例1と同じ方法で調製した。
<Example 3>
[Preparation of coating solution]
It was prepared in the same manner as in Example 1, except that the dendritic block copolymer was replaced with that synthesized in Production Example 2.
[その他の操作]
 ポリスチレン製基材に対するポリマーの固定化、並びに細胞評価の方法については、実施例1と同様に実施した。
[Other operations]
The immobilization of the polymer on the polystyrene substrate and the cell evaluation method were carried out in the same manner as in Example 1.
<実施例4>
[コーティング溶液の調製]
 コーティング溶液の調製に使用する混合溶媒をTHF/MeOH=2/5(v/v)とした。その他、コーティング溶液の調製方法については実施例3と同様にした。
<Example 4>
[Preparation of coating solution]
The mixed solvent used for the preparation of the coating solution was THF / MeOH = 2/5 (v / v). In addition, the coating solution preparation method was the same as in Example 3.
[その他の操作]
 ポリスチレン製基材に対するポリマーの固定化、並びに細胞評価の方法については、実施例1と同様に実施した。
[Other operations]
The immobilization of the polymer on the polystyrene substrate and the cell evaluation method were carried out in the same manner as in Example 1.
<比較例1>
 コーニング製Falcon3001(培養面積9.6cm)を比較例1として用いた。
<Comparative Example 1>
Corning Falcon 3001 (culture area 9.6 cm 2 ) was used as Comparative Example 1.
<比較例2、3>
[コーティング溶液の調製]
 デンドリティックブロックコポリマーを比較製造例1で合成したPNIPAMに置き換える以外は、実施例1と同じ方法で調製した。
<Comparative Examples 2 and 3>
[Preparation of coating solution]
A dendritic block copolymer was prepared in the same manner as in Example 1, except that the PNIPAM synthesized in Comparative Production Example 1 was replaced.
[その他の操作]
 ポリスチレン製基材に対するポリマーの固定化、並びに細胞評価の方法については、実施例1と同様に実施した。ポリマー塗布後、水洗なしの場合を比較例2、水洗ありの場合を比較例3とした。
[Other operations]
The immobilization of the polymer on the polystyrene substrate and the cell evaluation method were carried out in the same manner as in Example 1. After the polymer application, the case without water washing was designated as Comparative Example 2, and the case with water washing was designated as Comparative Example 3.
<比較例4>
 電子線照射によりポリスチレン基材表面にPNIPAMをグラフト重合により化学的に付与した、市販品温度応答性細胞培養基材Aを比較例4として用いた。
<Comparative example 4>
As a comparative example 4, a commercially available temperature-responsive cell culture substrate A in which PNIPAM was chemically imparted to the polystyrene substrate surface by electron beam irradiation by graft polymerization was used.
[XPSによる測定]
 アルバック・ファイ社製 表面分析装置 PHI5000 VersaProbe IIを用いて、単色化されたX線 AlKαを照射し、放出角45°で測定した。
[Measurement by XPS]
Using a surface analyzer PHI5000 VersaProbe II manufactured by ULVAC-PHI, monochromatic X-ray AlKα was irradiated and measured at an emission angle of 45 °.
 アルゴンガスクラスターイオンビームによるエッチングを行いながらのX線光電子分光法測定は、以下のようにして行った。
 アルバック・ファイ社製 表面分析装置 PHI5000 VersaProbe IIを用いて、2.5kV、10nA(Area 2mm)の条件で、アルゴンガスクラスターイオンでエッチングしながら深さ方向の元素を測定した。エッチングレートは、膜厚61nmのPNIPAM薄膜(基板:シリコンウエハ)に、Siが検出されるまでアルゴンガスクラスターイオンでエッチングすることにより、2.0nm/minを算出した。
X-ray photoelectron spectroscopy measurement while etching with an argon gas cluster ion beam was performed as follows.
The elements in the depth direction were measured while etching with argon gas cluster ions under the conditions of 2.5 kV and 10 nA (Area 2 mm) using a surface analyzer PHI5000 VersaProbe II manufactured by ULVAC-PHI. The etching rate was calculated to be 2.0 nm / min by etching a 61 nm thick PNIPAM thin film (substrate: silicon wafer) with argon gas cluster ions until Si was detected.
[温度応答性ポリマーによる被覆率]
 表面、又は特定のエッチング深さにおける温度応答性ポリマーによる被覆率は、以下のようにして評価した。
 放出角45°におけるXPS法で測定される窒素元素濃度N1s及び炭素元素濃度C1sに関する、以下の数式(1)の値(%)を、被覆率とした。
  (1)100×(N1s/C1s)/(N/C)(%)
(数式中、N/Cは、温度応答性ポリマーにおける各元素比の理論値を表わす)
[Coverage with temperature-responsive polymer]
The coverage with the temperature-responsive polymer at the surface or a specific etching depth was evaluated as follows.
The value (%) of the following formula (1) regarding the nitrogen element concentration N 1s and the carbon element concentration C 1s measured by the XPS method at an emission angle of 45 ° was defined as the coverage.
(1) 100 × (N 1s / C 1s ) / (N / C) (%)
(In the formula, N / C represents the theoretical value of each element ratio in the temperature-responsive polymer)
[FT-IR-ATR法]
 ポリスチレン製セルカルチャーディッシュを基材とし、温度応答性ポリマーとしてPNIPAMを固定化させた、温度応答性細胞培養基材を用意した。同基材をFT-IR-ATR測定することにより、次式(5)にて表される、ポリスチレンに由来するベンゼン環伸縮(1600cm-1)の吸収強度に対する、PNIPAMに由来するアミド伸縮(1650cm-1)の吸収強度の比率を得た。
(5) 吸収強度比率=I1650/I1600
 既知量のPNIPAM(1~10μg/cm)をポリスチレン基材に固定化させ、式(5)により得られる吸収強度比率から検量線を予め作成しておくことにより、ポリスチレン基材上に固定化された未知のPNIPAMの量を求めた。なお、ポリスチレン基材上のポリマー固定化層は、試料に対するIR光の侵入深さに対し十分に薄いと仮定した(参考文献:Langmuir 2004,20,5506-5511)。
[FT-IR-ATR method]
A temperature-responsive cell culture substrate was prepared using a polystyrene cell culture dish as a substrate and PNIPAM immobilized as a temperature-responsive polymer. By performing FT-IR-ATR measurement on the substrate, amide stretch (1650 cm) derived from PNIPAM with respect to the absorption strength of benzene ring stretch (1600 cm −1 ) derived from polystyrene represented by the following formula (5): A ratio of absorption intensity of -1 ) was obtained.
(5) Absorption intensity ratio = I 1650 / I 1600
A known amount of PNIPAM (1 to 10 μg / cm 2 ) is immobilized on a polystyrene substrate, and a calibration curve is prepared in advance from the absorption intensity ratio obtained by the formula (5), thereby immobilizing on the polystyrene substrate. The amount of unknown PNIPAM was determined. It was assumed that the polymer immobilization layer on the polystyrene substrate was sufficiently thin with respect to the penetration depth of IR light into the sample (reference document: Langmuir 2004, 20, 5506-5511).
[培養後における温度応答性細胞培養基材の細胞評価方法]
 3.5cmφ温度応答性細胞培養基材へ培地[ダルベッコ改変イーグル培地(DMEM)、10%仔ウシ血清、1%抗生物質含]1mlを加え、さらに3T3マウス線維芽細胞が1×10個分散した培地1mlを加え、COインキュベーター(37℃、5%CO)中で4日間培養を行った。
[Cell evaluation method of temperature-responsive cell culture substrate after culture]
1 ml of medium [Dulbecco's modified Eagle medium (DMEM), 10% calf serum, 1% antibiotics] is added to a 3.5 cmφ temperature-responsive cell culture substrate, and 1 × 10 5 3T3 mouse fibroblasts are dispersed. 1 ml of the prepared medium was added and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 4 days.
 培養終了後、培養細胞の付着状態、並びに培養細胞がシャーレ内で満杯(コンフルエント)になるまで増殖しているかどうかを、倒立顕微鏡を用いて観察した。その後、培養細胞が入った温度応答性シャーレを低温COインキュベーター(20℃、5%CO)内で静置し、15分間冷却した。冷却後、培養細胞の剥離状態、培養細胞がシート状で剥離しているかどうかを倒立顕微鏡で観察し、以下の基準に従って細胞シートの剥離性を評価した。
 1.剥離しない
 2.一部剥離
 3.培養細胞全体が剥がれるが、剥離に15分程度かかる
 4.15分以内に良好に剥離する
 5.さらに短い時間で極めて良好に剥離する
After completion of the culture, the state of attachment of the cultured cells and whether the cultured cells were growing until they became full in the petri dish were observed using an inverted microscope. Thereafter, the temperature-responsive petri dish containing the cultured cells was allowed to stand in a low-temperature CO 2 incubator (20 ° C., 5% CO 2 ) and cooled for 15 minutes. After cooling, the peeled state of the cultured cells and whether the cultured cells were peeled in a sheet form were observed with an inverted microscope, and the peelability of the cell sheets was evaluated according to the following criteria.
1. Does not peel. Partial peeling 2. 4. The whole cultured cell peels off, but it takes about 15 minutes to peel off. 4. Good peeling within 15 minutes. It peels very well in a short time
[実施例1(水洗なし)の評価、及び比較例4との比較]
 結果を表1に示す。実施例1(水洗なし)の基材は、エッチング深さ0nmにおける最表面のPNIPAM被覆率が99%以上であった。一方、比較例4(市販品A)で得た基材は、最表面のPNIPAM被覆率が80%に満たないことから、基材が露出していることが示唆された。さらに、エッチング深さに対するPNIPAM被覆率を測定したところ、比較例4で得た基材と比べ、実施例1で得た基材の方が2倍以上深くPNIPAMが存在していることが示唆された。以上より、本発明品は、基材に対し効果的にポリマーを埋め込むことができており、且つ基材表面をPNIPAMによりほぼ被覆できていることが確認された。
[Evaluation of Example 1 (without washing) and Comparison with Comparative Example 4]
The results are shown in Table 1. The base material of Example 1 (without water washing) had a PNIPAM coverage of 99% or more on the outermost surface at an etching depth of 0 nm. On the other hand, the base material obtained in Comparative Example 4 (commercial product A) had an outermost surface PNIPAM coverage of less than 80%, suggesting that the base material was exposed. Furthermore, when the PNIPAM coverage with respect to the etching depth was measured, it was suggested that the base material obtained in Example 1 was twice or more deeper than the base material obtained in Comparative Example 4. It was. From the above, it was confirmed that the product of the present invention was able to effectively embed the polymer in the base material and that the surface of the base material was almost covered with PNIPAM.
 実施例、比較例の結果を表1にまとめた。
[実施例1(水洗あり)の評価、及び比較例4との比較]
 実施例1(水洗なし)の基材では、基材に固定化しきれなかったポリマーが、細胞シート剥離性を阻害する可能性があった。そこで、実施例1において得られた温度応答性細胞培養基材を水洗し、水洗前後において、PNIPAM被覆率が5%以下となるエッチング深さ(=PNIPAM存在深さ)を比較したところ、水洗後はPNIPAM存在深さが約3nm浅いことが確認された。FT-IR-ATR測定においては、水洗によりPNIPMA被覆量が約半分にまで減少していること、さらに、変動係数が5%以下に軽減していることが確認された。従って、余分なポリマーを除去することによって、非常に均一なPNIPAM層を得られることが確認された。比較例4と同じく、基材表面の露出が懸念されたが、エッチング深さ0nmにおけるPNIPAM被覆率を確認したところ、表面は水洗前と同様に被覆されていることが判った。
The results of Examples and Comparative Examples are summarized in Table 1.
[Evaluation of Example 1 (with water washing) and Comparison with Comparative Example 4]
In the base material of Example 1 (without water washing), there was a possibility that the polymer that could not be immobilized on the base material might inhibit the cell sheet peelability. Therefore, the temperature-responsive cell culture substrate obtained in Example 1 was washed with water, and before and after washing with water, the etching depth at which the PNIPAM coverage was 5% or less (= depth of PNIPAM) was compared. It was confirmed that the existence depth of PNIPAM was about 3 nm shallow. In the FT-IR-ATR measurement, it was confirmed that the PNIPMA coating amount was reduced to about half by washing with water, and that the coefficient of variation was reduced to 5% or less. Therefore, it was confirmed that a very uniform PNIPAM layer can be obtained by removing excess polymer. As in Comparative Example 4, there was concern about exposure of the substrate surface, but when the PNIPAM coverage at an etching depth of 0 nm was confirmed, it was found that the surface was coated in the same manner as before washing.
 実施例1の水洗なし基材、実施例1の水洗あり基材、比較例4の基材について、マウス線維芽細胞を用いて細胞シート剥離性評価を実施した。その結果、比較例4<実施例1(水洗なし)<実施例1(水洗あり)の順に良好な剥離性を示した。これは、ポリスチレンデンドリティックポリマー部位を基材に埋め込むことにより、表面を効果的にPNIPAMで被覆し、さらに、水洗により余分なポリマーを除去したことによる効果であると考えられる。一方、比較例4はPNIPAMの被覆量、被覆率ともに不足していたため、実施例1と比べ剥離時間が長くなったものと考えられる。 The cell sheet peelability was evaluated using mouse fibroblasts for the substrate without washing in Example 1, the substrate with washing in Example 1, and the substrate in Comparative Example 4. As a result, good peelability was exhibited in the order of Comparative Example 4 <Example 1 (without water washing) <Example 1 (with water washing). This is considered to be due to the effect that the surface was effectively covered with PNIPAM by embedding the polystyrene dendritic polymer site in the base material, and the excess polymer was removed by washing with water. On the other hand, in Comparative Example 4, it was considered that the peeling time was longer than that in Example 1 because both the coating amount and the coverage of PNIPAM were insufficient.
 上記[実施例1(水洗あり)の評価]において、水洗により初期塗布量の約半分のポリマーが除去されることが確認された。そこで、より良好な細胞シート剥離性を目指し、基材に対するポリマー固定化量を増加させる試みを以下の通り行った。 In the above [Evaluation of Example 1 (with water washing)], it was confirmed that about half of the initial coating amount of polymer was removed by water washing. Therefore, with the aim of better cell sheet peelability, an attempt was made to increase the amount of polymer immobilized on the substrate as follows.
[実施例2の評価]
 実施例2においては、コーティング溶媒中のTHF含量を20体積%から29体積%に増加させた。その効果についてPNIPAM被覆量と被覆率の両面から評価した。その結果、FT-IR-ATR測定により、実施例1と比べ水洗後のPNIPAM被覆量が約20%増加したことが確認され、それに伴いエッチング深さ2nmに対するPNIPAM被覆率、及びPNIPAM被覆率が5nm以下となるエッチング深さもやや増加した。
[Evaluation of Example 2]
In Example 2, the THF content in the coating solvent was increased from 20% to 29% by volume. The effect was evaluated from both the PNIPAM coverage and coverage. As a result, it was confirmed by FT-IR-ATR measurement that the amount of PNIPAM coating after washing was increased by about 20% compared to Example 1, and accordingly, the PNIPAM coverage with respect to the etching depth of 2 nm and the PNIPAM coverage was 5 nm. The following etching depth also increased slightly.
 上記で得られた実施例2の基材を、マウス線維芽細胞を用いて細胞シート剥離性評価を実施した結果、「水洗なし」/「水洗あり」のどちらにおいても実施例1より良好な剥離性を示した。特に「水洗あり」は極めて良好な剥離性を発現し、評価5を得た。 As a result of evaluating the cell sheet peelability of the substrate of Example 2 obtained above using mouse fibroblasts, the peel was better than that of Example 1 in both “without water wash” / “with water wash” Showed sex. In particular, “with water” exhibited very good peelability, and evaluation 5 was obtained.
[実施例3及び4の評価]
 さらに優れた剥離性を目指し、実施例3、4においては、ポリマー中のPNIPAM含量が95重量%のデンドリティックブロックコポリマーを用いた温度応答性細胞培養基材を作製した。ポリマー中のPNIPAM含量が85%である実施例1、2の結果と比較したところ、特に「THF含量29%、水洗あり」の基材において、PNIPAM被覆量、各エッチング深さにおける被覆率、PNIPAM存在深さに増加傾向が見られた。デンドリティックブロックコポリマー中のPNIPAM鎖が長鎖化した効果と考えられる。
[Evaluation of Examples 3 and 4]
For further exfoliation, in Examples 3 and 4, a temperature-responsive cell culture substrate using a dendritic block copolymer having a PNIPAM content of 95% by weight in the polymer was prepared. When compared with the results of Examples 1 and 2 in which the PNIPAM content in the polymer was 85%, the PNIPAM coating amount, the coating rate at each etching depth, and PNIPAM, especially in the base material of “THF content 29%, with water washing” There was an increasing trend in the depth of existence. This is thought to be due to the effect that the PNIPAM chain in the dendritic block copolymer is made longer.
 上記で得られた実施例3、4のそれぞれの基材について、マウス線維芽細胞を用いて細胞シート剥離性評価を実施した。その結果、「水洗なし」の基材については実施例1,2と同様の結果であったものの、「水洗あり」基材については実施例1,2と比べさらに良好な剥離性を示した。特に「THF含量29%、水洗あり」の基材においては極めて短い時間である8分で剥離させることができた。 For each of the substrates of Examples 3 and 4 obtained above, cell sheet peelability was evaluated using mouse fibroblasts. As a result, the “without water washing” base material had the same results as in Examples 1 and 2, but the “with water washing” base material showed better peelability than Examples 1 and 2. In particular, the substrate having a "THF content of 29% and water washing" could be peeled off in 8 minutes, which is an extremely short time.
[比較例1の評価]
 比較例1の基材においては、温度応答性ポリマーで表面を被覆していないため、上述したような細胞剥離性は発現しなかった。
[Evaluation of Comparative Example 1]
In the base material of Comparative Example 1, since the surface was not coated with the temperature-responsive polymer, the cell detachability as described above was not expressed.
[比較例2、3の評価]
 比較例2では、比較製造例1にて得られたPNIPAMを塗布した基材について評価したが、細胞剥離性は発現しなかった。このPNIPAMは、基材に対する結合手段を有していないことから、培地(水)を添加した際に溶解し、除去されたためと考えられる。比較例3は、比較例2の基材を水洗したものであり、PNIPAMによる表面の被覆が確認できなかった。PNIPAMが基材と結合していないため、塗布したすべてのPNIPAMが水洗の時点で既に除去されたためと考えられる。そのため、比較例3においては細胞剥離性が発現しなかった。
[Evaluation of Comparative Examples 2 and 3]
In Comparative Example 2, the substrate coated with PNIPAM obtained in Comparative Production Example 1 was evaluated, but cell detachability was not expressed. This PNIPAM does not have a means for binding to the base material, so it is considered that it was dissolved and removed when the medium (water) was added. In Comparative Example 3, the base material of Comparative Example 2 was washed with water, and the surface coating with PNIPAM could not be confirmed. This is probably because all the applied PNIPAM was already removed at the time of water washing because PNIPAM was not bonded to the substrate. Therefore, in Comparative Example 3, cell detachability was not expressed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例1(水洗あり)の評価]
 実施例1の水洗あり基材について、室温水に対するポリマー溶出試験を行った。具体的には、試料を室温水に浸漬後、表面のPNIPAM被覆率がどの程度変化するかについて、先述のXPS(分析深さ約10nm)、及びFT-IR-ATR(分析深さ1~数μm)を利用した方法により分析した。比較例4として、電子線照射を用いたグラフト重合法により、PNIPAMをポリスチレン基材に化学的に付与した市販品温度応答性細胞培養基材についても、同様に測定した。
[Evaluation of Example 1 (with water washing)]
About the base material with water washing of Example 1, the polymer elution test with respect to room temperature water was done. Specifically, the degree of change in the PNIPAM coverage on the surface after immersion of the sample in room temperature water was measured using the XPS (analysis depth of about 10 nm) and FT-IR-ATR (analysis depth of 1 to several). μm) was used for analysis. As Comparative Example 4, a commercially available temperature-responsive cell culture substrate in which PNIPAM was chemically applied to a polystyrene substrate was measured in the same manner by a graft polymerization method using electron beam irradiation.
 XPSを用いた評価について、以下の手順で行った。
 1.各基材を適当な大きさにカットし、試料とした。
 2.各試料の裏側に、マジックペンで目印をつけた。この時、n=2で測定を行うため、二箇所に目印をつけた。
 3.上記2.の目印部分について、XPS分析を行った。
 4.測定後の試料を装置から取り出し、蒸留水を充填した50mlのスクリュー管瓶に浸漬させた。この時、水温は20℃であった。
 5.24時間後に4.の試料を取り出し、乾燥させたのち、再度目印部分についてXPS分析を行った。
 6.浸漬前後の測定値から、先述したとおりPNIPAM被覆率を計算した。また、それぞれの値から計算した変化率を、溶出試験後のPNIPAM残存率として示した。
Evaluation using XPS was performed according to the following procedure.
1. Each base material was cut into an appropriate size and used as a sample.
2. The back of each sample was marked with a magic pen. At this time, in order to perform measurement at n = 2, marks were added at two locations.
3. 2. XPS analysis was performed on the mark portion.
4). The sample after measurement was taken out from the apparatus and immersed in a 50 ml screw tube bottle filled with distilled water. At this time, the water temperature was 20 ° C.
5. After 24 hours 4. After the sample was taken out and dried, XPS analysis was performed again on the mark portion.
6). From the measured values before and after immersion, the PNIPAM coverage was calculated as described above. Moreover, the change rate calculated from each value was shown as PNIPAM residual rate after a dissolution test.
 計算結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
The calculation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
 評価の結果、分析深さ約10nmにおいて、実施例1の基材は溶出試験前後でPNIPAM残存率に変化が見られなかった。それに対して、PNIPAMを基材表面に化学的に結合させた比較例4においては明らかに被覆率が低下しており、ポリマーが溶出していることが示唆された。 As a result of the evaluation, at the analysis depth of about 10 nm, the base material of Example 1 showed no change in the PNIPAM residual rate before and after the dissolution test. On the other hand, in Comparative Example 4 in which PNIPAM was chemically bonded to the substrate surface, the coverage was clearly reduced, suggesting that the polymer was eluted.
 次に、FT-IR-ATRを用いた評価について、以下の手順で行った。
 1.各基材を適当な大きさにカットし、試料とした(約1.5cm四方のものを2枚ずつ用意した)。
 2.50mlスクリュー管瓶に蒸留水を充填した。この時、水温は20℃であった。
 3.上記2.の蒸留水に上記1.の試料を1枚浸漬させ、24時間後に取り出した。
 4.浸漬あり、なしの各試料についてFT-IR-ATR分析を行い、検量線法により各表面のPNIPAM量を分析した(各試料につき5点ずつ測定した)。
 5.PNIPAM残存率を次式に従って計算した。
(浸漬ありの際のPNIPAM量/浸漬なしの際のPNIPAM量)×100(%)
Next, evaluation using FT-IR-ATR was performed according to the following procedure.
1. Each base material was cut into an appropriate size to prepare a sample (two about 1.5 cm squares were prepared).
2. A 50 ml screw tube was filled with distilled water. At this time, the water temperature was 20 ° C.
3. 2. In the distilled water of 1. above. One of these samples was immersed and taken out after 24 hours.
4). FT-IR-ATR analysis was performed for each sample with and without immersion, and the amount of PNIPAM on each surface was analyzed by a calibration curve method (measured at 5 points for each sample).
5). The PNIPAM residual rate was calculated according to the following formula.
(PNIPAM amount with immersion / PNIPAM amount without immersion) x 100 (%)
 計算結果を表3に示す。 Table 3 shows the calculation results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 PNIPAMをグラフト重合により表面に化学結合させた比較例4に対し、実施例1の基材においてはPNIPAMの溶出が少ない事が明らかとなった。 In contrast to Comparative Example 4 in which PNIPAM was chemically bonded to the surface by graft polymerization, it was revealed that the PNIPAM was less eluted in the base material of Example 1.

Claims (10)

  1.  (A)温度応答層;及び
     (B)基材層
    を含有する温度応答性細胞培養基材であって、
     前記温度応答層(A)は、窒素原子を有する温度応答性ポリマーを含有し、
     前記温度応答層(A)は、前記基材層(B)の少なくとも一方の面に配置されており、
     前記基材層(B)は、窒素原子を有さず、かつ
     前記温度応答層(A)側の表面は、放出角45°におけるX線光電子分光法で測定される窒素元素濃度N1s及び炭素元素濃度C1sが、以下の数式(1):
      (1)100×(N1s/C1s)/(N/C)≧80
    (数式中、N/Cは、前記温度応答性ポリマーにおける各元素比の理論値を表わす)
    を満たす、温度応答性細胞培養基材。
    (A) a temperature-responsive layer; and (B) a temperature-responsive cell culture substrate containing a substrate layer,
    The temperature responsive layer (A) contains a temperature responsive polymer having nitrogen atoms,
    The temperature responsive layer (A) is disposed on at least one surface of the base material layer (B),
    The substrate layer (B) does not have nitrogen atoms, and the surface on the temperature response layer (A) side has a nitrogen element concentration N 1s and carbon measured by X-ray photoelectron spectroscopy at an emission angle of 45 °. The element concentration C 1s is expressed by the following formula (1):
    (1) 100 × (N 1s / C 1s ) / (N / C) ≧ 80
    (In the formula, N / C represents a theoretical value of each element ratio in the temperature-responsive polymer)
    Satisfying a temperature-responsive cell culture substrate.
  2.  前記温度応答層(A)側の表面は、アルゴンガスクラスターイオンビームにより表面側からエッチングしながら、X線光電子分光法により測定されるN1sとC1sとが、以下の条件(A)を満たす、請求項1に記載の温度応答性細胞培養基材:
     (A)前記窒素原子について、エッチング深さ2nmにおける測定値が、以下の数式(2)を満たす:
      (2)100×(N1s/C1s)/(N/C)≧50
    (数式中、N/Cは、前記と同じ意味を表わす)。
    The surface on the temperature-responsive layer (A) side is etched from the surface side with an argon gas cluster ion beam, and N 1s and C 1s measured by X-ray photoelectron spectroscopy satisfy the following condition (A): The temperature-responsive cell culture substrate according to claim 1:
    (A) For the nitrogen atom, the measured value at an etching depth of 2 nm satisfies the following formula (2):
    (2) 100 × (N 1s / C 1s ) / (N / C) ≧ 50
    (In the formula, N / C represents the same meaning as described above).
  3.  前記温度応答層(A)側の表面に、前記温度応答性ポリマーが、1~10μg/cm固定化されている、請求項1又は2に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to claim 1 or 2, wherein the temperature-responsive polymer is fixed to 1 to 10 µg / cm 2 on the surface of the temperature-responsive layer (A).
  4.  前記温度応答層(A)が、デンドリティックポリマーの末端に前記温度応答性ポリマーが結合したブロックポリマーを含有する、請求項1~3のいずれか一項に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to any one of claims 1 to 3, wherein the temperature-responsive layer (A) contains a block polymer in which the temperature-responsive polymer is bonded to an end of a dendritic polymer.
  5.  前記デンドリティックポリマーが、スチレン骨格又はシロキサン骨格のデンドリティックポリマーである、請求項4に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to claim 4, wherein the dendritic polymer is a dendritic polymer having a styrene skeleton or a siloxane skeleton.
  6.  前記温度応答性ポリマーの少なくとも一種が、
    (メタ)アクリルアミド、N-(若しくはN,N-ジ)置換(メタ)アクリルアミド及びビニルエーテルからなる群より選択される少なくとも一種を含むモノマー組成物を重合することにより得られうる温度応答性ポリマー、又は
    ポリビニルアルコール部分酢化物
    である、請求項1~5のいずれか一項に記載の温度応答性細胞培養基材。
    At least one of the temperature-responsive polymers is
    A temperature-responsive polymer obtainable by polymerizing a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether, or The temperature-responsive cell culture substrate according to any one of claims 1 to 5, which is a polyvinyl alcohol partially acetylated product.
  7.  前記N-(若しくはN,N-ジ)置換(メタ)アクリルアミドが、ポリ-N-イソプロピル(メタ)アクリルアミド、ポリ-N、N-ジエチル(メタ)アクリルアミド、及びポリ-N、N-ジメチル(メタ)アクリルアミドからなる群より選択される少なくとも一種である、請求項6に記載の温度応答性細胞培養基材。 The N- (or N, N-di) -substituted (meth) acrylamide is poly-N-isopropyl (meth) acrylamide, poly-N, N-diethyl (meth) acrylamide, and poly-N, N-dimethyl (meta). The temperature-responsive cell culture substrate according to claim 6, which is at least one selected from the group consisting of acrylamide).
  8.  前記基材層(B)がポリスチレンを含む、請求項1~7のいずれか一項に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to any one of claims 1 to 7, wherein the substrate layer (B) contains polystyrene.
  9.  リユース用である、請求項1~8のいずれか一項に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to any one of claims 1 to 8, which is for reuse.
  10. (a)ブロックポリマーであって、スチレン骨格又はシロキサン骨格のデンドリティックポリマーの末端に、温度応答性ポリマーが結合したブロックポリマーが溶解してなる、ポリスチレンの良溶媒と貧溶媒とを含む溶液を、ポリスチレン基材表面に滴下し、展開させる工程;
    (b)前記工程(a)で得られた表面を、2時間以上、前記溶媒の蒸気下に置く工程;及び
    (c)前記工程(b)で得られた表面を、乾燥させる工程
    を含む、温度応答性細胞培養基材の製造方法。
    (A) A block polymer, a solution containing a good solvent and a poor solvent of polystyrene, in which a block polymer having a temperature-responsive polymer bonded to a terminal of a dendritic polymer having a styrene skeleton or a siloxane skeleton is dissolved, A step of dropping on the surface of a polystyrene substrate and developing the surface;
    (B) placing the surface obtained in step (a) under the vapor of the solvent for 2 hours or more; and (c) drying the surface obtained in step (b). A method for producing a temperature-responsive cell culture substrate.
PCT/JP2018/005836 2017-04-25 2018-02-20 Temperature-responsive cell culture substrate, and method for producing same WO2018198495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515113A JP6879365B2 (en) 2017-04-25 2018-02-20 Temperature-responsive cell culture substrate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086537 2017-04-25
JP2017-086537 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018198495A1 true WO2018198495A1 (en) 2018-11-01

Family

ID=63918207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005836 WO2018198495A1 (en) 2017-04-25 2018-02-20 Temperature-responsive cell culture substrate, and method for producing same

Country Status (2)

Country Link
JP (1) JP6879365B2 (en)
WO (1) WO2018198495A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020074704A (en) * 2018-11-07 2020-05-21 東ソー株式会社 Eluate testing method
JP2021106543A (en) * 2019-12-27 2021-07-29 ダイキン工業株式会社 Microcarrier for culturing temperature-responsive cell
EP3934665A4 (en) * 2019-03-07 2022-11-23 University of Utah Research Foundation Salivary gland cell sheets and methods for their production and use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923876A (en) * 1995-07-11 1997-01-28 Kao Corp Production of supporting material for cell culture
JP2005292104A (en) * 2004-03-31 2005-10-20 Cellseed Inc Temperature responsive surface and its using method
WO2012029882A1 (en) * 2010-08-31 2012-03-08 学校法人東京女子医科大学 Temperature-responsive substrate for cell culture and method for producing same
JP2014023508A (en) * 2012-07-30 2014-02-06 Tokyo Ohka Kogyo Co Ltd Manufacture method of plate for cell cultivation, plate for cell cultivation made by this manufacture method, cell cultivation method, cell sheet-manufacture method, cell sheet and photosensitive resin composition
WO2014133168A1 (en) * 2013-02-28 2014-09-04 Sakai Hideaki Novel graft polymer, temperature-responsive substrate for cell culture using same and production method therefor, and liquid chromatography carrier having immobilized novel graft polymer and liquid chromatography method using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923876A (en) * 1995-07-11 1997-01-28 Kao Corp Production of supporting material for cell culture
JP2005292104A (en) * 2004-03-31 2005-10-20 Cellseed Inc Temperature responsive surface and its using method
WO2012029882A1 (en) * 2010-08-31 2012-03-08 学校法人東京女子医科大学 Temperature-responsive substrate for cell culture and method for producing same
JP2014023508A (en) * 2012-07-30 2014-02-06 Tokyo Ohka Kogyo Co Ltd Manufacture method of plate for cell cultivation, plate for cell cultivation made by this manufacture method, cell cultivation method, cell sheet-manufacture method, cell sheet and photosensitive resin composition
WO2014133168A1 (en) * 2013-02-28 2014-09-04 Sakai Hideaki Novel graft polymer, temperature-responsive substrate for cell culture using same and production method therefor, and liquid chromatography carrier having immobilized novel graft polymer and liquid chromatography method using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020074704A (en) * 2018-11-07 2020-05-21 東ソー株式会社 Eluate testing method
JP7262206B2 (en) 2018-11-07 2023-04-21 東ソー株式会社 Extractables test method
EP3934665A4 (en) * 2019-03-07 2022-11-23 University of Utah Research Foundation Salivary gland cell sheets and methods for their production and use
JP2021106543A (en) * 2019-12-27 2021-07-29 ダイキン工業株式会社 Microcarrier for culturing temperature-responsive cell

Also Published As

Publication number Publication date
JPWO2018198495A1 (en) 2019-11-07
JP6879365B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
Hong et al. Achieving ultralow fouling under ambient conditions via surface-initiated ARGET ATRP of carboxybetaine
JP6759958B2 (en) Temperature-responsive substrate, its manufacturing method and its evaluation method
US9657150B2 (en) Reactive superhydrophobic surfaces, patterned superhydrophobic surfaces, methods for producing the same and use of the patterned superhydrophobic surfaces
US9279102B2 (en) Temperature-responsive substrate for cell culture and production method thereof
WO2018198495A1 (en) Temperature-responsive cell culture substrate, and method for producing same
Desseaux et al. Temperature-controlled masking/unmasking of cell-adhesive cues with poly (ethylene glycol) methacrylate based brushes
Tamura et al. Thermally responsive microcarriers with optimal poly (N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture
KR101969115B1 (en) Platform for preparing surface stimuli-responsive 3D multicellular spheroids and Use Thereof
TWI801344B (en) Coating film with thin film step coating property, structural substrate with the film
Zeng et al. Thermoresponsive surfaces grafted by shrinkable hydrogel poly (N-isopropylacrylamide) for controlling microalgae cells adhesion during biofilm cultivation
Heath et al. Regenerating the cell resistance of micromolded PEG hydrogels
JP2008237088A (en) Base medium and method for cell culture
JP5349728B2 (en) Cell culture substrate and cell culture method
Sun et al. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties
JP2019083761A (en) Temperature responsive cell culture substrate and production method thereof
JP2021159049A (en) Method for growing adhesive cells and microcarrier used therefor
Li et al. Collaborative action of surface chemistry and topography in the regulation of mesenchymal and epithelial markers and the shape of cancer cells
JP7002414B2 (en) Temperature-responsive cell culture substrate
JP2006288217A (en) Cell culture substrate and cell culture method
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP7250248B2 (en) BLOCK COPOLYMER, SURFACE TREATMENT AGENT AND MEMBRANE CONTAINING THE SAME, AND CELL CULTURE EQUIPMENT AND CELL CULTURE METHOD USING THE SAME
JP4979199B2 (en) Cell culture substrate and cell culture method
JP2021106543A (en) Microcarrier for culturing temperature-responsive cell
Lin et al. Spheroid Formation of Human Adipose-Derived Stem Cells on Environmentally Friendly BMA/SBMA/HEMA Copolymer-Coated Anti-Adhesive Surface
JP2021159048A (en) Temperature responsive material and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791778

Country of ref document: EP

Kind code of ref document: A1