WO2018198377A1 - Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery - Google Patents

Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery Download PDF

Info

Publication number
WO2018198377A1
WO2018198377A1 PCT/JP2017/017099 JP2017017099W WO2018198377A1 WO 2018198377 A1 WO2018198377 A1 WO 2018198377A1 JP 2017017099 W JP2017017099 W JP 2017017099W WO 2018198377 A1 WO2018198377 A1 WO 2018198377A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
electrode material
Prior art date
Application number
PCT/JP2017/017099
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 宮内
西田 達也
石井 義人
崇 坂本
中村 優
石島 善三
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63920197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018198377(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/017099 priority Critical patent/WO2018198377A1/en
Priority to JP2019515075A priority patent/JP6939880B2/en
Publication of WO2018198377A1 publication Critical patent/WO2018198377A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Patent Document 1 uses a graphite particle having a secondary particle structure in which a plurality of flat primary particles are aggregated or bonded so that their orientation planes are non-parallel as a negative electrode active material. The discharge cycle characteristics are improved.
  • the present invention provides a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having excellent charging capacity stability. Let it be an issue.
  • a negative electrode material for a lithium ion secondary battery satisfying the following (1) to (4) in a volume-based particle size distribution.
  • the particle diameter (D10) when the accumulation from the small diameter side is 10% is 5 ⁇ m to 14 ⁇ m.
  • the particle diameter (D50) when the accumulation from the small diameter side is 50% is 15 ⁇ m to 27 ⁇ m.
  • the particle diameter (D90) when the accumulation from the small diameter side is 90% is 20 ⁇ m to 55 ⁇ m.
  • the integrated value Q3 of the particle diameter of 9.516 ⁇ m or less is 4% to 30%. .
  • the negative electrode material for a lithium ion secondary battery according to ⁇ 1> comprising particles in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel.
  • ⁇ 3> The negative electrode material for a lithium ion secondary battery according to ⁇ 1> or ⁇ 2>, wherein an interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement using CuK ⁇ rays is 3.38 mm or less. .
  • ⁇ 4> The specific surface area by BET method of nitrogen gas adsorption is 1.0m 2 /g ⁇ 5.0m 2 / g, ⁇ 1> ⁇ for lithium ion secondary battery according to any one of ⁇ 3> Negative electrode material.
  • ⁇ 5> The negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein the true specific gravity is 2.22 or more.
  • ⁇ 6> A lithium ion having a current collector and a negative electrode material layer including the negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 5> formed on the current collector.
  • ⁇ 7> A lithium ion secondary battery having the negative electrode for a lithium ion secondary battery according to ⁇ 6>.
  • the negative electrode material for lithium ion secondary batteries which can obtain the lithium ion secondary battery excellent in stability of charge capacity, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery are provided.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified.
  • the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition.
  • the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • a negative electrode material for a lithium ion secondary battery (hereinafter also simply referred to as “negative electrode material”) according to an embodiment of the present disclosure satisfies the following (1) to (4) in the volume-based particle size distribution.
  • the particle diameter (D10) when the accumulation from the small diameter side is 10% is 5 ⁇ m to 14 ⁇ m.
  • the particle diameter (D50) when the accumulation from the small diameter side is 50% is 15 ⁇ m to 27 ⁇ m.
  • the particle diameter (D90) when the accumulation from the small diameter side is 90% is 20 ⁇ m to 55 ⁇ m.
  • the integrated value Q3 of the particle diameter of 9.516 ⁇ m or less is 4% to 30%. .
  • a lithium ion secondary battery obtained using a negative electrode material satisfying the above conditions has a high charge capacity maintenance rate even in a low temperature environment and is excellent in charging performance stability.
  • the reason for this is not clear, but for example, there is a sufficient path for the electrolyte solution to move through the negative electrode material, so the electrolyte solution can easily move even if the viscosity of the electrolyte solution increases due to a temperature drop. It is guessed.
  • the electrolyte solution path in the negative electrode material is sufficiently secured, for example, there are the following two reasons.
  • the pressure applied to increase the density of the negative electrode compared to the case where the ratio of small-sized particles is larger than this. Is easily transmitted to the whole negative electrode, and it is considered that variation in the degree of particle collapse between the vicinity of the negative electrode surface and inside the negative electrode is suppressed.
  • the number of paths of the electrolytic solution is sufficiently ensured as compared with the case where the ratio of the large diameter particles is larger than this.
  • these assumptions do not limit the present disclosure.
  • D10 of the negative electrode material may be 5 ⁇ m to 10 ⁇ m, or may be 6 ⁇ m to 10 ⁇ m.
  • the D50 of the negative electrode material may be 17 ⁇ m to 25 ⁇ m, or 18 ⁇ m to 23 ⁇ m.
  • D90 of the negative electrode material may be 30 ⁇ m to 50 ⁇ m, or may be 35 ⁇ m to 47 ⁇ m.
  • the integrated value Q3 when the particle diameter of the negative electrode material is 9.516 ⁇ m or less may be 4% to 20%, or may be 5 ⁇ m to 15 ⁇ m.
  • the difference between D10 and D90 of the negative electrode material may be 20 ⁇ m to 50 ⁇ m, or may be 25 ⁇ m to 40 ⁇ m.
  • the volume-based particle size distribution of the negative electrode material is a value measured using a laser diffraction particle size distribution measuring apparatus (for example, SALD-3000J, manufactured by Shimadzu Corporation). The measurement was performed after the sample was mixed with ion-exchanged water to which a surfactant (polyoxyethylene (20) sorbitan monolaurate) was added and dispersed by irradiation with ultrasonic waves for 30 seconds.
  • a surfactant polyoxyethylene (20) sorbitan monolaurate
  • the particle size distribution of the negative electrode material is obtained by dividing the range of the particle diameter of 0.1 ⁇ m to 2000 ⁇ m into 50 logarithmic ratios.
  • the total value of the relative particle amount in each particle size range in the range of 0.1 ⁇ m to 2000 ⁇ m is 100 (%).
  • the particle size range of 0.1 ⁇ m to 2000 ⁇ m was divided into 50 as shown in Table 1 below.
  • the negative electrode material may be a carbon material.
  • a plurality of flat graphite particles may include particles (hereinafter also referred to as composite particles) in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel. However, the particles may be deformed so that their orientation planes are non-parallel. Examples of particles in which a plurality of flat graphite particles are deformed so that their orientation planes are non-parallel include spherical natural graphite obtained by spheroidizing a plurality of scaly natural graphites.
  • the flat graphite particles contained in the composite particles are non-spherical particles having anisotropy in shape.
  • Examples of the flat graphite particles include graphite particles having a shape such as a scale shape, a scale shape, or a partial lump shape.
  • the flat graphite particles may have an aspect ratio of 1.2 to 5 represented by A / B, where A is the length in the major axis direction and B is the length in the minor axis direction. It may be 1.3 to 3.
  • the aspect ratio in the present disclosure is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the graphite particles observed using a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a 1 and the tangent line a 2 having the maximum distance are selected. The distance between the tangent line a 1 and the tangent line a 2 is a length A in the major axis direction. Further, the length of the longest line segment connecting the two points on the contour line of the projected image of the graphite particles is defined as the length B in the minor axis direction.
  • the orientation plane of the flat graphite particles being non-parallel means that planes (alignment planes) parallel to the plane having the largest cross-sectional area of the flat graphite particles are not aligned in a certain direction. Whether or not the orientation planes of the flat graphite particles are non-parallel to each other can be confirmed by microscopic observation.
  • a plurality of flat graphite particles that are assembled or bonded with their orientation planes being non-parallel to each other can suppress an increase in the orientation of the particles on the electrode, and can reduce electrode expansion due to charge and discharge. , Excellent charge / discharge cycle characteristics tend to be obtained.
  • the negative electrode material may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded so that the orientation planes of the flat graphite particles are parallel to each other.
  • the state where a plurality of flat graphite particles are aggregated or bonded means a state where two or more flat graphite particles are aggregated or bonded.
  • the bond refers to a state in which the particles are chemically bonded directly or via a carbon substance.
  • the term “aggregate” refers to a state in which the particles are not chemically bonded but the shape as an aggregate is maintained due to the shape or the like.
  • the flat graphite particles may be aggregated or bonded via a carbon substance.
  • the carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in the firing process. From the viewpoint of mechanical strength, it may be in a state where two or more flat graphite particles are bonded via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.
  • the total number of flat graphite particles contained in one composite particle may be 3 or more, or 10 or more.
  • the average particle diameter (D50) of the flat graphite particles is not particularly limited. For example, it can be selected from the range of 1 ⁇ m to 25 ⁇ m from the viewpoint of easy assembly or coupling.
  • the average particle diameter (D50) of the flat graphite particles is measured in the same manner as D50 of the negative electrode material.
  • the material of the flat graphite particles and the raw material thereof is not particularly limited, and examples thereof include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, and pitch.
  • graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, and thus tends to increase the density of the negative electrode.
  • the composite particles may further include spherical graphite particles.
  • spherical graphite particles are denser than flat graphite particles, the composite particles contain spherical graphite particles, so that the density of the negative electrode material can be increased and added during densification treatment. The pressure can be reduced. As a result, the orientation of the flat graphite particles in the direction along the surface of the current collector is suppressed, and the movement of lithium ions tends to be better.
  • the electrode density of the negative electrode exceeds 1.7 g / cm 3 , by suppressing the orientation of the flat graphite particles, the permeability of the electrolytic solution into the negative electrode material layer is further increased, and the discharge capacity and charge capacity are increased. The discharge cycle characteristics tend to be further improved.
  • the composite particles include spherical graphite particles
  • the flat graphite particles and the spherical graphite particles may be aggregated or bonded via a carbon substance.
  • the carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in the firing process. Whether or not the composite particles include spherical graphite particles can be confirmed, for example, by observation with a scanning electron microscope.
  • the total number of flat graphite particles and spherical graphite particles contained in one composite particle is not particularly limited. For example, it may be 3 or more, or 10 or more.
  • the spherical graphite particles include spherical artificial graphite and spherical natural graphite.
  • the spherical graphite particles may be high-density graphite particles. Specifically, it may be spherical natural graphite that has been subjected to a particle spheroidization treatment so as to increase the tap density.
  • Spherical natural graphite has the advantage that it has a high peel strength and is difficult to peel off from the current collector even if the electrode is pressed with a strong force, so it has a stronger peel strength by using composite particles containing spherical graphite particles. A negative electrode material tends to be obtained.
  • the average particle diameter (D50) of the spherical graphite particles is not particularly limited. For example, it can be selected from a range of 5 ⁇ m to 30 ⁇ m.
  • the average particle diameter (D50) of the spherical graphite particles is measured in the same manner as D50 of the negative electrode material.
  • a sample electrode (described later) or an electrode to be observed is embedded in an epoxy resin, and then mirror-polished to an electrode.
  • a method of observing a cross section with a scanning electron microscope for example, VE-7800, manufactured by Keyence Corporation
  • an electrode milling apparatus for example, E-3500, manufactured by Hitachi High Technology Co., Ltd.
  • preparing an electrode cross section for scanning for example, VE-7800, manufactured by Keyence Corporation.
  • a scanning electron microscope for example, VE-7800, manufactured by Keyence Corporation
  • the sample electrode has, for example, a mixture of 98 parts by mass of a negative electrode material, 1 part by mass of styrene butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener, and the viscosity of this mixture at 25 ° C. is 1500 mPa ⁇
  • the dispersion is applied to a thickness of about 70 ⁇ m (at the time of application) on a copper foil having a thickness of 10 ⁇ m, It can be produced by drying at 120 ° C. for 1 hour.
  • the negative electrode material may contain, in addition to the composite particles, flat graphite particles or spherical graphite particles that do not form composite particles.
  • the negative electrode material has an interlayer distance d (002) of graphite crystals determined by X-ray diffraction measurement using CuK ⁇ rays of 3.38 mm or less, may be 3.37 mm or less, and is 3.36 mm or less. Also good.
  • the interlayer distance d (002) of the graphite crystal is 3.38 mm or less, the amount of lithium ions that can be inserted or removed between the hexagonal planes of carbon increases, and the discharge capacity tends to be improved.
  • the theoretical value of d (002) of the pure graphite crystal is usually about 3.35 mm.
  • the interlayer distance d (002) of the graphite crystal is determined by the diffraction profile obtained by irradiating the negative electrode material with X-rays (CuK ⁇ rays) and measuring the diffraction lines with a goniometer. From the diffraction peak corresponding to the d (002) plane appearing in the range of 26 degrees, it can be calculated using the Bragg equation.
  • X-ray diffractometer MultiFlex, manufactured by Rigaku Corporation Goniometer: MultiFlex goniometer (without shutter) Attachment: Standard specimen holder Monochromator: Fixed monochromator Scanning mode: 2 ⁇ / ⁇ Scan type: Continuous Output: 40kV, 40mA Diverging slit: 1 degree Scattering slit: 1 degree Receiving slit: 0.30 mm Monochrome light receiving slit: 0.8mm Measurement range: 0 degrees ⁇ 2 ⁇ ⁇ 35 degrees Sampling width: 0.01 degrees
  • Negative electrode material has a specific surface area by the BET method of nitrogen gas adsorption may be 1.0m 2 /g ⁇ 5.0m 2 / g, even 3.0m 2 /g ⁇ 4.5m 2 / g Good.
  • the measurement of the specific surface area can be performed by the following method. For example, a negative electrode material is filled in a measurement cell, and a sample obtained by performing preheating treatment at 200 ° C. while vacuum degassing is used to apply nitrogen gas using a gas adsorption device (for example, ASAP2010, manufactured by Shimadzu Corporation). Adsorb. A BET analysis is performed on the obtained sample by a five-point method to calculate a specific surface area.
  • a gas adsorption device for example, ASAP2010, manufactured by Shimadzu Corporation.
  • the specific surface area of the negative electrode material can be adjusted to the above range by adjusting the average particle diameter, for example. In addition, it exists in the tendency for a specific surface area to become large, so that an average particle diameter is small.
  • the negative electrode material may have a true specific gravity of 2.22 or more, or 2.22 to 2.27.
  • the true specific gravity is 2.22 or more
  • the charge / discharge capacity per unit volume of the lithium ion secondary battery is increased, and the capacity tends to be increased.
  • the true specific gravity is 2.22 or more
  • the crystallinity of graphite increases, and as a result, the reactivity with the electrolytic solution decreases and the initial charge / discharge efficiency tends to be improved.
  • Examples of the method for setting the true specific gravity of the negative electrode material to 2.22 or more include a method using natural graphite having high crystallinity and a method using artificial graphite having high crystallinity.
  • heat treatment may be performed at a temperature of 2000 ° C. or higher.
  • the true specific gravity can be measured by a butanol substitution method (JIS R 7212-1995) using a specific gravity bottle.
  • the manufacturing method in particular of the negative electrode for lithium secondary batteries is not restrict
  • the graphitizable aggregate is preferably in the form of particles, more preferably coke particles such as needle coke that are easily graphitized.
  • the graphite for example, natural graphite, artificial graphite and the like can be used, but there is no particular limitation.
  • the graphite is preferably in the form of particles.
  • the particle diameter of the graphitizable aggregate or graphite is preferably smaller than the particle diameter of the graphite particles to be produced, the average particle diameter is more preferably 1 ⁇ m to 80 ⁇ m, still more preferably 1 ⁇ m to 50 ⁇ m, A thickness of 5 ⁇ m to 50 ⁇ m is particularly preferable.
  • the aspect ratio of the graphitizable aggregate or graphite particles is preferably 1.2 to 500, more preferably 1.5 to 300, and further preferably 1.5 to 100. It is preferably 2 to 50, particularly preferably.
  • the aspect ratio is measured by the same method as described above.
  • the diffraction intensity ratio (002) / (110) measured by X-ray diffraction of the negative electrode after pressurization and integration tends to increase. If it is 1.2 or more, the discharge capacity per graphite particle mass tends to be sufficiently secured.
  • the average particle diameter of the graphitizable aggregate or graphite is measured in the same manner as the average particle diameter (D50) of the negative electrode material.
  • the binder examples include tar, pitch, and organic materials (thermosetting resin, thermoplastic resin, etc.).
  • the blending amount of the binder is preferably 5% by mass to 80% by mass, more preferably 10% by mass to 80% by mass, and more preferably 20% by mass to 80% by mass with respect to the graphitizable aggregate or graphite. %, More preferably 30% by mass to 80% by mass.
  • the amount of the binder is within the above range, the aspect ratio and specific surface area of the graphite particles to be produced tend to be easily controlled within a desired range.
  • the method of mixing the aggregate that can be graphitized or graphite and the binder is not particularly limited, and can be performed using, for example, a kneader.
  • the mixing is preferably performed at a temperature equal to or higher than the softening point of the binder.
  • the binder is pitch, tar or the like, 50 ° C. to 300 ° C. is preferable, and when the binder is a thermosetting resin, 20 ° C. to 180 ° C. is preferable.
  • the particle size of the pulverized product is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 80 ⁇ m, still more preferably 5 ⁇ m to 50 ⁇ m, and particularly preferably 10 ⁇ m to 30 ⁇ m.
  • the particle diameter of the pulverized product is 100 ⁇ m or less, the specific surface area of the obtained graphite particles tends not to be too large, and when it is 1 ⁇ m or more, the (002) / (110) ratio of the obtained negative electrode is too large. There is no tendency.
  • the proportion of volatile matter in the pulverized product is preferably 0.5% by mass to 50% by mass of the entire pulverized product, more preferably 1% by mass to 30% by mass, and 5% by mass to 20% by mass. More preferably.
  • the proportion of volatile matter can be determined from the mass reduction rate when the pulverized product is heated at 800 ° C. for 10 minutes.
  • the graphitization catalyst mixed with the pulverized product is not particularly limited as long as it has a function as a graphitization catalyst.
  • metals or semimetals such as iron, nickel, titanium, silicon, and boron, compounds containing these (carbides, oxides, and the like) can be used. Of these, compounds containing iron or silicon are preferred.
  • the chemical structure of the compound is preferably a carbide.
  • the graphitization catalyst is preferably in the form of particles, more preferably in the form of particles having an average particle diameter of 0.1 ⁇ m to 200 ⁇ m, more preferably in the form of particles having an average particle diameter of 1 ⁇ m to 100 ⁇ m, Particularly preferred is a particulate form having a diameter of 1 ⁇ m to 50 ⁇ m.
  • the average particle diameter of the graphitization catalyst is measured in the same manner as the average particle diameter (D50) of the negative electrode material.
  • the addition amount of the graphitization catalyst is preferably 1% by mass to 50% by mass when the total amount of the pulverized product mixed with the graphitization catalyst and the graphitization catalyst is 100% by mass, and 5% by mass to 30% by mass. More preferably, the content is 7% by mass to 20% by mass.
  • the amount of the graphitization catalyst is 1% by mass or more, the crystals of the produced graphite particles tend to develop well and the specific surface area tends not to be too large.
  • the amount is 50% by mass or less, The graphitization catalyst tends not to remain.
  • the above mixture is fired and graphitized.
  • the mixture of the pulverized product and the graphitization catalyst may be formed into a predetermined shape by a press or the like.
  • the molding pressure in this case is preferably about 1 MPa to 300 MPa.
  • the firing is preferably performed under conditions where the mixture is not easily oxidized. For example, baking is preferably performed in a nitrogen atmosphere, an argon atmosphere, a vacuum, a self-volatile atmosphere, or the like.
  • the graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, further preferably 2700 ° C. or higher, and particularly preferably 2800 ° C. to 3200 ° C. When the graphitization temperature is 2000 ° C.
  • the upper limit of the graphitization temperature is not particularly limited, but it is preferable that the graphitization does not occur.
  • the apparent density of the molded product after graphitization is preferably 1.65 g / cm 3 or less, more preferably 1.55 g / cm 3 or less, more preferably 1.50 g / cm 3 or less, particularly preferably 1.45 g / cm 3 or less.
  • the density of the molded product after graphitization is 1.65 g / cm 3 or less, the specific surface area of the produced graphite particles tends not to be too large.
  • the apparent density of the molded product after graphitization can be appropriately adjusted by, for example, the particle diameter of the pulverized product mixed with the graphitization catalyst, the pressure when forming into a predetermined shape by a press or the like.
  • the pulverization method is not particularly limited, and for example, an impact pulverization method such as a jet mill, a hammer mill, or a pin mill can be adopted.
  • a step of attaching an organic compound to the surface of the pulverized product after the graphitization treatment and baking may be performed.
  • an organic compound is attached to the surface of the obtained pulverized product and fired.
  • the organic compound attached to the surface of the pulverized product is changed to a low crystalline carbon material by attaching the organic compound to the pulverized product and baking.
  • a low crystalline carbon substance is coat
  • Graphite having high crystallinity has a structure in which carbons having SP 2 hybrid orbitals are regularly arranged, and the number of entrances and exits of lithium ions may not be sufficient.
  • the low crystalline carbon material has many layers of lithium ions because it has a turbulent structure. Therefore, by covering part or all of the surface of the pulverized product with the low crystalline carbon material, the input / output characteristics such as rapid charging tend to be improved.
  • the method for attaching the organic compound to the surface of the pulverized product is not particularly limited. Specifically, a wet method in which a pulverized product is dispersed and mixed in a mixed solution in which an organic compound is dissolved or dispersed in a solvent and then the solvent is removed and adhered, and the pulverized product and a solid organic compound are mixed. Examples include a dry method in which mechanical energy is applied to the obtained mixture for adhesion, a method in which a mixture obtained by mixing a pulverized product and a solid organic compound is baked in an inert atmosphere, and a gas phase method such as a CVD method. It is done.
  • the organic compound is not particularly limited as long as the organic compound changes into a low crystalline carbon material by firing (carbon precursor).
  • specific examples include petroleum pitch, naphthalene, anthracene, phenanthrolen, coal tar, phenol resin, polyvinyl alcohol, and the like.
  • An organic compound may be used individually by 1 type, or may use 2 or more types together.
  • the temperature at which the pulverized product with the organic compound attached to the surface is baked is not particularly limited as long as the organic compound attached to the surface of the pulverized product is carbonized.
  • the firing temperature may be in the range of 750 ° C. to 2000 ° C. Firing is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere.
  • the negative electrode material may contain carbonaceous particles or occluded metal particles that are different in shape and physical properties from the composite particles and graphite particles described above.
  • the carbonaceous particles include natural graphite particles, artificial graphite particles, graphite particles coated with a low crystalline carbon material, resin-coated graphite particles, and amorphous carbon particles.
  • the occluded metal particles include particles containing an element that forms an alloy with lithium, such as Al, Si, Ga, Ge, In, Sn, Sb, and Ag.
  • a negative electrode for a lithium ion secondary battery (hereinafter, also referred to as “negative electrode”) according to an embodiment of the present disclosure includes a current collector and a negative electrode material layer including the above-described negative electrode material formed on the current collector. Have.
  • the material and shape of the current collector are not particularly limited.
  • a belt-shaped foil made of a metal or an alloy such as aluminum, copper, nickel, titanium, and stainless steel, a belt-shaped perforated foil, a belt-shaped mesh, and the like can be given.
  • porous materials such as porous metal (foam metal) and carbon paper can be used as the current collector.
  • the method for forming the negative electrode material layer on the current collector is not particularly limited.
  • the negative electrode material composition is collected by a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method. It can be applied and formed on top.
  • a metal mask printing method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method. It can be applied and formed on top.
  • a negative electrode material layer and a collector it can carry out by well-known methods, such as a roll, a press, and these combination.
  • the negative electrode material composition for example, a material containing the above-described negative electrode material, an organic binder, and a solvent can be used.
  • the negative electrode material composition may be in a state such as a slurry or a paste.
  • the organic binder contained in the negative electrode material composition is not particularly limited.
  • styrene-butadiene rubber ethylenically unsaturated carboxylic acid ester (such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate)) and ethylenically unsaturated (Meth) acrylic copolymers derived from saturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.); polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, Examples thereof include polymer compounds such as polyimide and polyamideimide.
  • (Meth) acrylate means acrylate or methacrylate
  • (meth) acrylonitrile means acrylonitrile or
  • the solvent contained in the negative electrode material composition is not particularly limited. Examples thereof include organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and ⁇ -butyrolactone.
  • the negative electrode material composition may contain a thickener for adjusting the viscosity, if necessary.
  • a thickener for adjusting the viscosity
  • examples of the thickening material include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, and casein.
  • the negative electrode material composition may contain a conductive aid as necessary.
  • a conductive aid include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride.
  • heat treatment may be performed as necessary.
  • the solvent is removed, the strength of the organic binder is increased by hardening, and the adhesion between the particles and between the particles and the current collector tends to be improved.
  • the heat treatment may be performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the negative electrode may be subjected to pressure treatment (pressing) for densification.
  • pressure treatment pressing
  • the electrode density can be adjusted to a desired range.
  • Electrode density may be 1.5g / cm 3 ⁇ 1.9g / cm 3, may be 1.6g / cm 3 ⁇ 1.8g / cm 3.
  • a lithium ion secondary battery according to an embodiment of the present disclosure has the above-described negative electrode.
  • the lithium ion secondary battery may have a configuration in which, for example, a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected.
  • the positive electrode can be obtained by forming a positive electrode material layer on the current collector surface in the same manner as the negative electrode.
  • a strip-shaped foil, strip-shaped punched foil, strip-shaped mesh or the like made of a metal or alloy such as aluminum, titanium, or stainless steel can be used.
  • the positive electrode material used for the positive electrode material layer is not particularly limited.
  • positive electrode materials can be used individually by 1 type or in combination of 2 or more types.
  • separator examples include non-woven fabrics, cloths, microporous films, combinations thereof, and the like mainly composed of polyolefins such as polyethylene and polypropylene.
  • a lithium ion secondary battery has a structure where a positive electrode and a negative electrode do not contact, it is not necessary to use a separator.
  • the electrolytic solution a so-called organic electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent can be used.
  • the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 .
  • Non-aqueous solvents include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine- 2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl Tetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate and the like can be mentioned.
  • the electrolyte and the non-aqueous solvent can be used singly or in combination of two or more.
  • the electrolytic solution containing fluoroethylene carbonate tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and is suitable for improving charge / discharge cycle characteristics.
  • the form of the lithium ion secondary battery is not particularly limited, and examples include a paper battery, a button battery, a coin battery, a stacked battery, a cylindrical battery, and a square battery.
  • the negative electrode material described above can be applied to any electrochemical device such as a hybrid capacitor that has a charge / discharge mechanism that inserts and desorbs lithium ions.
  • Negative electrode material A and negative electrode material B were mixed so that the mass ratio (negative electrode material A: negative electrode material B) was 50:50 to obtain negative electrode material C.
  • Table 2 shows the results of measuring D10, D50, D90 and Q3 of the negative electrode material obtained above.
  • Table 2 shows the results of measurement of specific surface area, interlayer distance d (002) of graphite crystals, and true specific gravity. Each measurement was performed by the method described above.
  • Table 2 shows the results of measuring the injection time by the method described later.
  • a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel.
  • the injection time of the negative electrode material was measured as follows. 98 parts by mass of the negative electrode material obtained above, 1 part by mass of styrene-butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC2200, manufactured by Daicel Corporation) were kneaded to form a slurry. A negative electrode material composition was prepared. This was dried at 105 ° C. and ground using a mortar. Next, the pulverized powder was sieved with a 200-mesh standard sieve to prepare a measurement sample. The obtained measurement sample was tableted using a tablet molding machine (tablet bottom area: 1.327 cm 2 ).
  • 1.0 g of a measurement sample was put into a tablet molding machine, and a pressure at which a tablet had a predetermined density (1.75 g / cm 3 ) was applied for 30 seconds.
  • an electrolytic solution (mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass)) is applied to the surface of the prepared tablet. 130 ⁇ L was dropped and the time until the electrolyte soaked was measured.
  • a lithium ion secondary battery (2016 type coin cell) was produced using the negative electrode obtained above and metallic lithium as the positive electrode.
  • the electrolytic solution a mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass) was used.
  • the separator a polyethylene microporous film having a thickness of 25 ⁇ m was used.
  • the spacer a circular copper plate having a thickness of 230 ⁇ m and a diameter of 14 mm was used.
  • the lithium ion secondary battery of the example using the negative electrode material whose volume-based particle size distribution satisfies the above-described conditions is the negative electrode material whose volume-based particle size distribution does not satisfy the above-described conditions.
  • the charge / discharge capacity maintenance rate under a low temperature condition was high, and the stability of the charging performance was excellent.
  • the initial charge / discharge efficiency of the lithium ion secondary battery of the example was the same level as the lithium ion secondary battery of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This lithium ion secondary battery negative electrode material satisfies the following (1) to (4) in a particle size distribution based on volume. (1) A particle diameter (D10) obtained when an accumulation from the smaller diameter side reaches 10 % is 5 μm to 14 μm. (2) A particle diameter (D50) obtained when an accumulation from the smaller diameter side reaches 50 % is 15 μm to 27 μm. (3) A particle diameter (D90) obtained when an accumulation from the smaller diameter side reaches 90 % is 20 μm to 55 μm. (4) An accumulation value Q3 obtained by accumulating particle diameters of 9.516 μm or less is 4 % to 30 %.

Description

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
 本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
 近年、スマートフォン等の携帯電子機器の普及に伴う高容量化及びコンパクト化、電気自動車及び蓄電用途に対応するための長寿命化、充電時間の短縮化(急速充電特性の向上)などの特性の向上がリチウムイオン二次電池に求められている。例えば、特許文献1では、複数の扁平状の1次粒子を、配向面が非平行となるように集合又は結合させてなる2次粒子構造を有する黒鉛粒子を負極活物質として用いることで、充放電サイクル特性の改善を図っている。 In recent years, with the spread of portable electronic devices such as smartphones, improvements in characteristics such as higher capacity and compactness, longer life to accommodate electric vehicles and power storage applications, and shortened charging time (improved rapid charging characteristics) Is required for lithium ion secondary batteries. For example, Patent Document 1 uses a graphite particle having a secondary particle structure in which a plurality of flat primary particles are aggregated or bonded so that their orientation planes are non-parallel as a negative electrode active material. The discharge cycle characteristics are improved.
特開平10-158005号公報Japanese Patent Laid-Open No. 10-158005
 リチウムイオン二次電池の使用場面が多様化しつつある一方で、リチウムイオン二次電池においては使用環境の温度が低いと充電容量維持率が低下し、安定した充電性能が得られない場合がある。従って、充電容量の安定性に優れるリチウムイオン二次電池の開発が望まれている。 While the usage scenes of lithium ion secondary batteries are diversifying, if the temperature of the usage environment is low in a lithium ion secondary battery, the charge capacity maintenance rate decreases, and stable charging performance may not be obtained. Therefore, development of a lithium ion secondary battery having excellent charge capacity stability is desired.
 本発明は、充電容量の安定性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することを課題とする。 The present invention provides a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having excellent charging capacity stability. Let it be an issue.
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1>体積基準の粒度分布において、下記(1)~(4)を満たすリチウムイオン二次電池用負極材。
(1)小径側からの累積が10%となるときの粒子径(D10)が5μm~14μmである
(2)小径側からの累積が50%となるときの粒子径(D50)が15μm~27μmである
(3)小径側からの累積が90%となるときの粒子径(D90)が20μm~55μmである
(4)9.516μm以下の粒子径の積算値Q3が4%~30%である。
<2>複数の扁平状の黒鉛粒子がその配向面が非平行となるように集合又は結合している粒子を含む、<1>に記載のリチウムイオン二次電池用負極材。
<3>CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下である、<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4>窒素ガス吸着のBET法による比表面積が1.0m/g~5.0m/gである、<1>~<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5>真比重が2.22以上である、<1>~<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<6>集電体と、集電体上に形成された<1>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。
<7><6>に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。
Specific means for solving the above problems include the following embodiments.
<1> A negative electrode material for a lithium ion secondary battery satisfying the following (1) to (4) in a volume-based particle size distribution.
(1) The particle diameter (D10) when the accumulation from the small diameter side is 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side is 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side is 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .
<2> The negative electrode material for a lithium ion secondary battery according to <1>, comprising particles in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel.
<3> The negative electrode material for a lithium ion secondary battery according to <1> or <2>, wherein an interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement using CuKα rays is 3.38 mm or less. .
<4> The specific surface area by BET method of nitrogen gas adsorption is 1.0m 2 /g~5.0m 2 / g, < 1> ~ for lithium ion secondary battery according to any one of <3> Negative electrode material.
<5> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <4>, wherein the true specific gravity is 2.22 or more.
<6> A lithium ion having a current collector and a negative electrode material layer including the negative electrode material for a lithium ion secondary battery according to any one of <1> to <5> formed on the current collector. Negative electrode for secondary battery.
<7> A lithium ion secondary battery having the negative electrode for a lithium ion secondary battery according to <6>.
 本発明によれば、充電容量の安定性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material for lithium ion secondary batteries which can obtain the lithium ion secondary battery excellent in stability of charge capacity, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery are provided. The
 以下、本開示のリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池の実施形態の一例について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の範囲を制限するものではない。 Hereinafter, examples of embodiments of the negative electrode material for a lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and the lithium ion secondary battery according to the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiment. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the scope of the present disclosure is not limited.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
In the present disclosure, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. .
In the present disclosure, numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified. Means the total content or content.
In the present disclosure, the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of
In the present disclosure, the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
In the present disclosure, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
<リチウムイオン二次電池用負極材>
 本開示の一実施形態であるリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう。)は、体積基準の粒度分布において、下記(1)~(4)を満たす。
(1)小径側からの累積が10%となるときの粒子径(D10)が5μm~14μmである
(2)小径側からの累積が50%となるときの粒子径(D50)が15μm~27μmである
(3)小径側からの累積が90%となるときの粒子径(D90)が20μm~55μmである
(4)9.516μm以下の粒子径の積算値Q3が4%~30%である。
<Anode material for lithium ion secondary battery>
A negative electrode material for a lithium ion secondary battery (hereinafter also simply referred to as “negative electrode material”) according to an embodiment of the present disclosure satisfies the following (1) to (4) in the volume-based particle size distribution.
(1) The particle diameter (D10) when the accumulation from the small diameter side is 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side is 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side is 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .
 本発明者らの検討により、上記条件を満たす負極材を用いて得られるリチウムイオン二次電池は、低温環境下でも充電容量の維持率が高く、充電性能の安定性に優れることがわかった。その理由は明らかではないが、例えば、負極材中を電解液が移動するための経路が充分に確保されているため、温度低下により電解液の粘度が上昇しても電解液が移動しやすいためと推測される。 As a result of studies by the present inventors, it has been found that a lithium ion secondary battery obtained using a negative electrode material satisfying the above conditions has a high charge capacity maintenance rate even in a low temperature environment and is excellent in charging performance stability. The reason for this is not clear, but for example, there is a sufficient path for the electrolyte solution to move through the negative electrode material, so the electrolyte solution can easily move even if the viscosity of the electrolyte solution increases due to a temperature drop. It is guessed.
 負極材中の電解液の経路が充分に確保されている理由としては、例えば、以下の2つが考えられる。まず、負極材が小径粒子と大径粒子を上記粒度分布の条件を満たす割合で含んでいることで、小径粒子の割合がこれより大きい場合に比べ、負極の高密度化のために加えた圧力が負極全体に伝達されやすく、負極表面近傍と負極内部とでの粒子の潰れ具合のバラつきが抑制されることが考えられる。さらに、大径粒子の割合がこれより大きい場合に比べ、電解液の経路の数が充分に確保されることが考えられる。もっとも、これらの推測は本開示を制限するものではない。 As the reason why the electrolyte solution path in the negative electrode material is sufficiently secured, for example, there are the following two reasons. First, since the negative electrode material contains small-sized particles and large-sized particles in a ratio that satisfies the above particle size distribution, the pressure applied to increase the density of the negative electrode compared to the case where the ratio of small-sized particles is larger than this. Is easily transmitted to the whole negative electrode, and it is considered that variation in the degree of particle collapse between the vicinity of the negative electrode surface and inside the negative electrode is suppressed. Further, it is conceivable that the number of paths of the electrolytic solution is sufficiently ensured as compared with the case where the ratio of the large diameter particles is larger than this. However, these assumptions do not limit the present disclosure.
 ある実施態様では、負極材のD10は5μm~10μmであってもよく、6μm~10μmであってもよい。またある実施態様では、負極材のD50は17μm~25μmであってもよく、18μm~23μmであってもよい。またある実施態様では、負極材のD90は30μm~50μmであってもよく、35μm~47μmであってもよい。またある実施態様では、負極材の粒子径が9.516μm以下の積算値Q3は4%~20%であってもよく、5μm~15μmであってもよい。またある実施態様では、負極材のD10とD90の差は20μm~50μmであってもよく、25μm~40μmであってもよい。 In one embodiment, D10 of the negative electrode material may be 5 μm to 10 μm, or may be 6 μm to 10 μm. In one embodiment, the D50 of the negative electrode material may be 17 μm to 25 μm, or 18 μm to 23 μm. In one embodiment, D90 of the negative electrode material may be 30 μm to 50 μm, or may be 35 μm to 47 μm. In one embodiment, the integrated value Q3 when the particle diameter of the negative electrode material is 9.516 μm or less may be 4% to 20%, or may be 5 μm to 15 μm. In one embodiment, the difference between D10 and D90 of the negative electrode material may be 20 μm to 50 μm, or may be 25 μm to 40 μm.
 本開示において、負極材の体積基準の粒度分布は、レーザー回折粒度分布測定装置(例えば、SALD-3000J、株式会社島津製作所製)を用いて測定した値である。測定は、試料を界面活性剤(ポリオキシエチレン(20)ソルビタンモノラウレート)を添加したイオン交換水に混合し、超音波を30秒照射して分散させた後に行った。 In the present disclosure, the volume-based particle size distribution of the negative electrode material is a value measured using a laser diffraction particle size distribution measuring apparatus (for example, SALD-3000J, manufactured by Shimadzu Corporation). The measurement was performed after the sample was mixed with ion-exchanged water to which a surfactant (polyoxyethylene (20) sorbitan monolaurate) was added and dispersed by irradiation with ultrasonic waves for 30 seconds.
 負極材の粒度分布は、粒子径0.1μm~2000μmの範囲を対数比で50分割して得られる。例えば、粒子径は、n=(2000/0.1)1/50を求め、0.1×n、0.1×n、・・・、0.1×n50から得られる。0.1μm~2000μmの範囲における各粒度範囲の相対粒子量の合計値は、100(%)となる。具体的には、粒子径0.1μm~2000μmの範囲を下記表1に示すように50分割した。 The particle size distribution of the negative electrode material is obtained by dividing the range of the particle diameter of 0.1 μm to 2000 μm into 50 logarithmic ratios. For example, the particle diameter is obtained from 0.1 × n, 0.1 × n 2 ,..., 0.1 × n 50 by obtaining n = (2000 / 0.1) 1/50 . The total value of the relative particle amount in each particle size range in the range of 0.1 μm to 2000 μm is 100 (%). Specifically, the particle size range of 0.1 μm to 2000 μm was divided into 50 as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 負極材は、炭素材料であってよい。また、複数の扁平状の黒鉛粒子がその配向面が非平行となるように集合又は結合している粒子(以下、複合粒子とも称する)を含むものであってよく、複数の扁平状の黒鉛粒子がその配向面が非平行となるように変形している粒子であってもよい。複数の扁平状の黒鉛粒子がその配向面が非平行となるように変形している粒子としては、複数の鱗片状の天然黒鉛を球形化処理して得た球状天然黒鉛等が挙げられる。 The negative electrode material may be a carbon material. In addition, a plurality of flat graphite particles may include particles (hereinafter also referred to as composite particles) in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel. However, the particles may be deformed so that their orientation planes are non-parallel. Examples of particles in which a plurality of flat graphite particles are deformed so that their orientation planes are non-parallel include spherical natural graphite obtained by spheroidizing a plurality of scaly natural graphites.
(複合粒子)
 複合粒子に含まれる扁平状の黒鉛粒子は、形状に異方性を有する非球状の粒子である。扁平状の黒鉛粒子としては、例えば、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が1.2~5であってもよく、1.3~3であってもよい。本開示におけるアスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してA/Bを測定し、その平均値をとったものである。
 長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。
 すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a及び接線aを選択して、この接線a及び接線aの間の距離を長軸方向の長さAとする。また、長軸と直交し、黒鉛粒子の投影像の輪郭線上の2点を結ぶ線分のうち最長のものの長さを短軸方向の長さBとする。
(Composite particles)
The flat graphite particles contained in the composite particles are non-spherical particles having anisotropy in shape. Examples of the flat graphite particles include graphite particles having a shape such as a scale shape, a scale shape, or a partial lump shape. The flat graphite particles may have an aspect ratio of 1.2 to 5 represented by A / B, where A is the length in the major axis direction and B is the length in the minor axis direction. It may be 1.3 to 3. The aspect ratio in the present disclosure is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
The length A in the major axis direction and the length B in the minor axis direction are measured as follows.
That is, in the projected image of the graphite particles observed using a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a 1 and the tangent line a 2 having the maximum distance are selected. The distance between the tangent line a 1 and the tangent line a 2 is a length A in the major axis direction. Further, the length of the longest line segment connecting the two points on the contour line of the projected image of the graphite particles is defined as the length B in the minor axis direction.
 扁平状の黒鉛粒子の配向面が非平行であるとは、扁平状の黒鉛粒子の最も断面積の大きい面に平行な面(配向面)が一定方向に揃っていないことをいう。扁平状の黒鉛粒子の配向面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、配向面が互いに非平行な状態で集合又は結合していることにより、粒子の電極上での配向性が高まるのを抑制でき、充放電による電極膨張を低減でき、優れた充放電サイクル特性が得られる傾向にある。
 負極材は、扁平状の黒鉛粒子の配向面が平行となるように、複数の扁平状の黒鉛粒子が集合又は結合している構造を部分的に含んでいてもよい。
The orientation plane of the flat graphite particles being non-parallel means that planes (alignment planes) parallel to the plane having the largest cross-sectional area of the flat graphite particles are not aligned in a certain direction. Whether or not the orientation planes of the flat graphite particles are non-parallel to each other can be confirmed by microscopic observation. A plurality of flat graphite particles that are assembled or bonded with their orientation planes being non-parallel to each other can suppress an increase in the orientation of the particles on the electrode, and can reduce electrode expansion due to charge and discharge. , Excellent charge / discharge cycle characteristics tend to be obtained.
The negative electrode material may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded so that the orientation planes of the flat graphite particles are parallel to each other.
 複数の扁平状の黒鉛粒子が集合又は結合している状態とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。結合とは、互いの粒子が、直接又は炭素物質を介して、化学的に結合している状態をいう。また、集合とは、互いの粒子が化学的に結合してはないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質は、例えば、タール、ピッチ等のバインダが焼成工程で黒鉛化した黒鉛であってもよい。機械的な強度の面からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であってもよい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。 The state where a plurality of flat graphite particles are aggregated or bonded means a state where two or more flat graphite particles are aggregated or bonded. The bond refers to a state in which the particles are chemically bonded directly or via a carbon substance. In addition, the term “aggregate” refers to a state in which the particles are not chemically bonded but the shape as an aggregate is maintained due to the shape or the like. The flat graphite particles may be aggregated or bonded via a carbon substance. The carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in the firing process. From the viewpoint of mechanical strength, it may be in a state where two or more flat graphite particles are bonded via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.
 1個の複合粒子に含まれる扁平状の黒鉛粒子の合計数は、3個以上であってもよく、10個以上であってもよい。 The total number of flat graphite particles contained in one composite particle may be 3 or more, or 10 or more.
 扁平状の黒鉛粒子の平均粒子径(D50)は、特に制限されない。例えば、集合又は結合のし易さの観点から、1μm~25μmの範囲から選択できる。扁平状の黒鉛粒子の平均粒子径(D50)は、負極材のD50と同様にして測定される。 The average particle diameter (D50) of the flat graphite particles is not particularly limited. For example, it can be selected from the range of 1 μm to 25 μm from the viewpoint of easy assembly or coupling. The average particle diameter (D50) of the flat graphite particles is measured in the same manner as D50 of the negative electrode material.
 扁平状の黒鉛粒子及びその原料の材質は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化を行いやすい傾向にある。 The material of the flat graphite particles and the raw material thereof is not particularly limited, and examples thereof include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, and pitch. Among these, graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, and thus tends to increase the density of the negative electrode.
 複合粒子は、球状の黒鉛粒子を更に含んでいてもよい。一般に、球状の黒鉛粒子は扁平状の黒鉛粒子よりも高密度であるため、複合粒子が球状の黒鉛粒子を含むことにより負極材の密度を高くすることができ、高密度化処理の際に加える圧力を低減することができる。その結果、扁平状の黒鉛粒子が集電体の面に沿う方向に配向することが抑制され、リチウムイオンの移動がより良好となる傾向にある。特に、負極の電極密度が1.7g/cmを超える場合は、扁平状の黒鉛粒子の配向を抑制することにより、負極材層内への電解液の浸透性がより高まり、放電容量及び充放電サイクル特性がより向上する傾向にある。 The composite particles may further include spherical graphite particles. In general, since spherical graphite particles are denser than flat graphite particles, the composite particles contain spherical graphite particles, so that the density of the negative electrode material can be increased and added during densification treatment. The pressure can be reduced. As a result, the orientation of the flat graphite particles in the direction along the surface of the current collector is suppressed, and the movement of lithium ions tends to be better. In particular, when the electrode density of the negative electrode exceeds 1.7 g / cm 3 , by suppressing the orientation of the flat graphite particles, the permeability of the electrolytic solution into the negative electrode material layer is further increased, and the discharge capacity and charge capacity are increased. The discharge cycle characteristics tend to be further improved.
 複合粒子が球状の黒鉛粒子を含む場合、扁平状の黒鉛粒子と球状の黒鉛粒子とは、炭素物質を介して集合又は結合していてもよい。炭素物質は、例えば、タール、ピッチ等のバインダが焼成工程で黒鉛化した黒鉛であってもよい。複合粒子が球状の黒鉛粒子を含んでいるか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。 When the composite particles include spherical graphite particles, the flat graphite particles and the spherical graphite particles may be aggregated or bonded via a carbon substance. The carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in the firing process. Whether or not the composite particles include spherical graphite particles can be confirmed, for example, by observation with a scanning electron microscope.
 複合粒子が球状の黒鉛粒子を含む場合、1個の複合粒子に含まれる扁平状の黒鉛粒子と球状の黒鉛粒子との合計数は、特に制限されない。例えば、3個以上であってもよく、10個以上であってもよい。 When the composite particles include spherical graphite particles, the total number of flat graphite particles and spherical graphite particles contained in one composite particle is not particularly limited. For example, it may be 3 or more, or 10 or more.
 球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極材として十分な飽和タップ密度を得る観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であってもよい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であってもよい。球状天然黒鉛は、剥離強度が強く電極を強い力でプレスしても集電体から剥がれにくいという特長を有するため、球状の黒鉛粒子を含む複合粒子を用いることで、より強力な剥離強度を有する負極材が得られる傾向にある。 Examples of the spherical graphite particles include spherical artificial graphite and spherical natural graphite. From the viewpoint of obtaining a sufficient saturated tap density as the negative electrode material, the spherical graphite particles may be high-density graphite particles. Specifically, it may be spherical natural graphite that has been subjected to a particle spheroidization treatment so as to increase the tap density. Spherical natural graphite has the advantage that it has a high peel strength and is difficult to peel off from the current collector even if the electrode is pressed with a strong force, so it has a stronger peel strength by using composite particles containing spherical graphite particles. A negative electrode material tends to be obtained.
 球状の黒鉛粒子の平均粒子径(D50)は、特に制限されない。例えば、5μm~30μmの範囲から選択できる。球状の黒鉛粒子の平均粒子径(D50)は、負極材のD50と同様にして測定される。 The average particle diameter (D50) of the spherical graphite particles is not particularly limited. For example, it can be selected from a range of 5 μm to 30 μm. The average particle diameter (D50) of the spherical graphite particles is measured in the same manner as D50 of the negative electrode material.
 負極材を用いて負極を製造した場合に球状の黒鉛粒子の断面像を観察する方法としては、例えば、試料電極(後述)又は観察対象の電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、VE-7800、株式会社キーエンス製)で観察する方法、イオンミリング装置(例えば、E-3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製して走査型電子顕微鏡(例えば、VE-7800、株式会社キーエンス製)で観察する方法が挙げられる。 As a method of observing a cross-sectional image of spherical graphite particles when a negative electrode is produced using a negative electrode material, for example, a sample electrode (described later) or an electrode to be observed is embedded in an epoxy resin, and then mirror-polished to an electrode. A method of observing a cross section with a scanning electron microscope (for example, VE-7800, manufactured by Keyence Corporation), an electrode milling apparatus (for example, E-3500, manufactured by Hitachi High Technology Co., Ltd.), and preparing an electrode cross section for scanning. And a method of observation with a scanning electron microscope (for example, VE-7800, manufactured by Keyence Corporation).
 試料電極は、例えば、負極材98質量部、バインダとしてのスチレンブタジエン樹脂1質量部、及び増粘材としてのカルボキシメチルセルロース1質量部の混合物を固形分として、この混合物の25℃における粘度が1500mPa・s~2500mPa・sとなるように水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、120℃で1時間乾燥させることによって作製することができる。 The sample electrode has, for example, a mixture of 98 parts by mass of a negative electrode material, 1 part by mass of styrene butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener, and the viscosity of this mixture at 25 ° C. is 1500 mPa · After adding water so as to be s-2500 mPa · s to prepare a dispersion, the dispersion is applied to a thickness of about 70 μm (at the time of application) on a copper foil having a thickness of 10 μm, It can be produced by drying at 120 ° C. for 1 hour.
 負極材は、複合粒子のほかに、複合粒子を形成していない扁平状の黒鉛粒子又は球状の黒鉛粒子を含んでいてもよい。 The negative electrode material may contain, in addition to the composite particles, flat graphite particles or spherical graphite particles that do not form composite particles.
(黒鉛結晶の層間距離d(002))
 負極材は、CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下であり、3.37Å以下であってもよく、3.36Å以下であってもよい。黒鉛結晶の層間距離d(002)が3.38Å以下であることで、炭素の六角網平面間に挿入又は脱離できるリチウムイオン量が多くなり、放電容量が向上する傾向にある。黒鉛結晶の層間距離d(002)の下限値に特に制限はないが、純粋な黒鉛結晶のd(002)の理論値は通常3.35Å程度とされる。
(Distance between graphite crystal layers d (002))
The negative electrode material has an interlayer distance d (002) of graphite crystals determined by X-ray diffraction measurement using CuKα rays of 3.38 mm or less, may be 3.37 mm or less, and is 3.36 mm or less. Also good. When the interlayer distance d (002) of the graphite crystal is 3.38 mm or less, the amount of lithium ions that can be inserted or removed between the hexagonal planes of carbon increases, and the discharge capacity tends to be improved. Although there is no particular limitation on the lower limit value of the interlayer distance d (002) of the graphite crystal, the theoretical value of d (002) of the pure graphite crystal is usually about 3.35 mm.
 黒鉛結晶の層間距離d(002)は、詳しくは、X線(CuKα線)を負極材に照射し、回折線をゴニオメーターにより測定して得られた回折プロファイルにより、回折角2θが24度~26度の範囲に現れるd(002)面に対応する回折ピークより、ブラッグの式を用い算出することができる。 Specifically, the interlayer distance d (002) of the graphite crystal is determined by the diffraction profile obtained by irradiating the negative electrode material with X-rays (CuKα rays) and measuring the diffraction lines with a goniometer. From the diffraction peak corresponding to the d (002) plane appearing in the range of 26 degrees, it can be calculated using the Bragg equation.
 なお、CuKα線を用いたX線回折測定の詳細は以下のとおりである。
 -測定装置及び条件-
 X線回折装置:MultiFlex、株式会社リガク製
 ゴニオメーター:MultiFlexゴニオメーター(シャッターなし)
 アタッチメント:標準試料ホルダー
 モノクロメーター:固定モノクロメーター
 走査モード:2θ/θ
 走査タイプ:連続
 出力:40kV、40mA
 発散スリット:1度
 散乱スリット:1度
 受光スリット:0.30mm
 モノクロ受光スリット:0.8mm
 測定範囲:0度≦2θ≦35度
 サンプリング幅:0.01度
The details of the X-ray diffraction measurement using CuKα rays are as follows.
-Measurement equipment and conditions-
X-ray diffractometer: MultiFlex, manufactured by Rigaku Corporation Goniometer: MultiFlex goniometer (without shutter)
Attachment: Standard specimen holder Monochromator: Fixed monochromator Scanning mode: 2θ / θ
Scan type: Continuous Output: 40kV, 40mA
Diverging slit: 1 degree Scattering slit: 1 degree Receiving slit: 0.30 mm
Monochrome light receiving slit: 0.8mm
Measurement range: 0 degrees ≤ 2θ ≤ 35 degrees Sampling width: 0.01 degrees
(比表面積)
 負極材は、窒素ガス吸着のBET法による比表面積が1.0m/g~5.0m/gであってもよく、3.0m/g~4.5m/gであってもよい。
(Specific surface area)
Negative electrode material has a specific surface area by the BET method of nitrogen gas adsorption may be 1.0m 2 /g~5.0m 2 / g, even 3.0m 2 /g~4.5m 2 / g Good.
 比表面積の測定は、以下の方法で行うことができる。例えば、負極材を測定セルに充填し、真空脱気しながら200℃で加熱前処理を行って得た試料に、ガス吸着装置(例えば、ASAP2010、株式会社島津製作所製)を用いて窒素ガスを吸着させる。得られた試料について5点法でBET解析を行い、比表面積を算出する。 The measurement of the specific surface area can be performed by the following method. For example, a negative electrode material is filled in a measurement cell, and a sample obtained by performing preheating treatment at 200 ° C. while vacuum degassing is used to apply nitrogen gas using a gas adsorption device (for example, ASAP2010, manufactured by Shimadzu Corporation). Adsorb. A BET analysis is performed on the obtained sample by a five-point method to calculate a specific surface area.
 負極材の比表面積は、例えば、平均粒子径を調整することにより上記範囲とすることができる。なお、平均粒子径が小さいほど比表面積が大きくなる傾向にある。 The specific surface area of the negative electrode material can be adjusted to the above range by adjusting the average particle diameter, for example. In addition, it exists in the tendency for a specific surface area to become large, so that an average particle diameter is small.
(真比重)
 負極材は、真比重が2.22以上であってもよく、2.22~2.27であってもよい。真比重が2.22以上であるとリチウムイオン二次電池の単位体積当たりの充放電容量が増大し、高容量化し易くなる傾向にある。また、真比重が2.22以上であると、黒鉛の結晶性が高くなる結果、電解液との反応性が低くなり、初回充放電効率が向上する傾向にある。
(True specific gravity)
The negative electrode material may have a true specific gravity of 2.22 or more, or 2.22 to 2.27. When the true specific gravity is 2.22 or more, the charge / discharge capacity per unit volume of the lithium ion secondary battery is increased, and the capacity tends to be increased. Further, when the true specific gravity is 2.22 or more, the crystallinity of graphite increases, and as a result, the reactivity with the electrolytic solution decreases and the initial charge / discharge efficiency tends to be improved.
 負極材の真比重を2.22以上とする方法としては、結晶性の高い天然黒鉛を用いる方法、結晶性を高くした人造黒鉛を用いる方法等が挙げられる。黒鉛の結晶性を高くするには、例えば、2000℃以上の温度で熱処理を施せばよい。
 真比重は、比重瓶を用いたブタノール置換法(JIS R 7212-1995)により測定することができる。
Examples of the method for setting the true specific gravity of the negative electrode material to 2.22 or more include a method using natural graphite having high crystallinity and a method using artificial graphite having high crystallinity. In order to increase the crystallinity of graphite, for example, heat treatment may be performed at a temperature of 2000 ° C. or higher.
The true specific gravity can be measured by a butanol substitution method (JIS R 7212-1995) using a specific gravity bottle.
(負極材の製造方法)
 リチウム二次電池用負極の製造方法は特に制限されないが、例えば、下記のようにして製造できる。少なくとも黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダと、を混合し、粉砕した後、この粉砕物と黒鉛化触媒を混合し、焼成して黒鉛粒子を得る。次いで、この黒鉛粒子に有機系結着剤及び溶剤を添加して混合し、混合物を得る。この混合物を集電体に塗布し、乾燥して溶剤を除去した後、加圧して一体化することで作製できる。
(Method for producing negative electrode material)
Although the manufacturing method in particular of the negative electrode for lithium secondary batteries is not restrict | limited, For example, it can manufacture as follows. At least a graphitizable aggregate or graphite and a graphitizable binder are mixed and pulverized, and then the pulverized product and a graphitization catalyst are mixed and fired to obtain graphite particles. Next, an organic binder and a solvent are added to the graphite particles and mixed to obtain a mixture. This mixture can be applied to a current collector, dried to remove the solvent, and then pressurized to be integrated.
 黒鉛化可能な骨材としては、例えば、コークス、樹脂の炭化物等が使用できるが、特に制限はない。黒鉛化可能な骨材は粒子状であることが好ましく、ニードルコークス等の黒鉛化しやすいコークスの粒子がより好ましい。黒鉛としては、例えば、天然黒鉛、人造黒鉛等が使用できるが、特に制限はない。黒鉛は粒子状であることが好ましい。 As aggregates that can be graphitized, for example, coke, resin carbide, etc. can be used, but there is no particular limitation. The graphitizable aggregate is preferably in the form of particles, more preferably coke particles such as needle coke that are easily graphitized. As graphite, for example, natural graphite, artificial graphite and the like can be used, but there is no particular limitation. The graphite is preferably in the form of particles.
 黒鉛化可能な骨材又は黒鉛の粒子径は、作製する黒鉛粒子の粒子径より小さいことが好ましく、平均粒子径が1μm~80μmであることがより好ましく、1μm~50μmであることがさらに好ましく、5μm~50μmであることが特に好ましい。また、黒鉛化可能な骨材又は黒鉛の粒子のアスペクト比は、1.2~500であることが好ましく、1.5~300であることがより好ましく、1.5~100であることがさらに好ましく、2~50であることが特に好ましい。ここでアスペクト比の測定は、前記と同様の方法で行う。黒鉛化可能な骨材又は黒鉛の粒子のアスペクト比が大きくなると、加圧及び一体化後の負極のX線回折で測定される回折強度比(002)/(110)が大きくなる傾向にあり、1.2以上であると黒鉛粒子質量当りの放電容量が充分に確保される傾向にある。黒鉛化可能な骨材又は黒鉛の平均粒子径は、負極材の平均粒子径(D50)と同様にして測定される。 The particle diameter of the graphitizable aggregate or graphite is preferably smaller than the particle diameter of the graphite particles to be produced, the average particle diameter is more preferably 1 μm to 80 μm, still more preferably 1 μm to 50 μm, A thickness of 5 μm to 50 μm is particularly preferable. Further, the aspect ratio of the graphitizable aggregate or graphite particles is preferably 1.2 to 500, more preferably 1.5 to 300, and further preferably 1.5 to 100. It is preferably 2 to 50, particularly preferably. Here, the aspect ratio is measured by the same method as described above. When the aspect ratio of graphitizable aggregate or graphite particles increases, the diffraction intensity ratio (002) / (110) measured by X-ray diffraction of the negative electrode after pressurization and integration tends to increase. If it is 1.2 or more, the discharge capacity per graphite particle mass tends to be sufficiently secured. The average particle diameter of the graphitizable aggregate or graphite is measured in the same manner as the average particle diameter (D50) of the negative electrode material.
 バインダとしては、例えば、タール、ピッチ、有機系材料(熱硬化性樹脂、熱可塑性樹脂等)などが挙げられる。バインダの配合量は、黒鉛化可能な骨材又は黒鉛に対し、5質量%~80質量%とすることが好ましく、10質量%~80質量%とすることがより好ましく、20質量%~80質量%とすることがさらに好ましく、30質量%~80質量%とすることが特に好ましい。バインダの量が上記範囲であると、作製する黒鉛粒子のアスペクト比及び比表面積を所望の範囲に制御しやすい傾向にある。黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、例えばニーダー等を用いて行うことができる。混合は、バインダの軟化点以上の温度で行うことが好ましい。具体的には、例えば、バインダがピッチ、タール等である場合には50℃~300℃が好ましく、熱硬化性樹脂である場合には20℃~180℃が好ましい。 Examples of the binder include tar, pitch, and organic materials (thermosetting resin, thermoplastic resin, etc.). The blending amount of the binder is preferably 5% by mass to 80% by mass, more preferably 10% by mass to 80% by mass, and more preferably 20% by mass to 80% by mass with respect to the graphitizable aggregate or graphite. %, More preferably 30% by mass to 80% by mass. When the amount of the binder is within the above range, the aspect ratio and specific surface area of the graphite particles to be produced tend to be easily controlled within a desired range. The method of mixing the aggregate that can be graphitized or graphite and the binder is not particularly limited, and can be performed using, for example, a kneader. The mixing is preferably performed at a temperature equal to or higher than the softening point of the binder. Specifically, for example, when the binder is pitch, tar or the like, 50 ° C. to 300 ° C. is preferable, and when the binder is a thermosetting resin, 20 ° C. to 180 ° C. is preferable.
 次に上記混合物を粉砕し、得られた粉砕物と黒鉛化触媒とを混合する。粉砕物の粒子径は1μm~100μmであることが好ましく、5μm~80μmであることがより好ましく、5μm~50μmであることがさらに好ましく、10μm~30μmであることが特に好ましい。粉砕物の粒子径が100μm以下であると、得られる黒鉛粒子の比表面積が大きくなりすぎない傾向にあり、1μm以上であると、得られる負極の(002)/(110)比が大きくなりすぎない傾向にある。 Next, the mixture is pulverized, and the obtained pulverized product and the graphitization catalyst are mixed. The particle size of the pulverized product is preferably 1 μm to 100 μm, more preferably 5 μm to 80 μm, still more preferably 5 μm to 50 μm, and particularly preferably 10 μm to 30 μm. When the particle diameter of the pulverized product is 100 μm or less, the specific surface area of the obtained graphite particles tends not to be too large, and when it is 1 μm or more, the (002) / (110) ratio of the obtained negative electrode is too large. There is no tendency.
 粉砕物中の揮発分の割合は、粉砕物全体の0.5質量%~50質量%であることが好ましく、1質量%~30質量%であることがより好ましく、5質量%~20質量%であることがさらに好ましい。揮発分の割合は、粉砕物を800℃で10分間加熱したときの質量減少率から求められる。 The proportion of volatile matter in the pulverized product is preferably 0.5% by mass to 50% by mass of the entire pulverized product, more preferably 1% by mass to 30% by mass, and 5% by mass to 20% by mass. More preferably. The proportion of volatile matter can be determined from the mass reduction rate when the pulverized product is heated at 800 ° C. for 10 minutes.
 粉砕物と混合する黒鉛化触媒は、黒鉛化触媒としての機能を有するものであれば特に制限はない。例えば、鉄、ニッケル、チタン、ケイ素、ホウ素等の金属又は半金属、これらを含む化合物(炭化物、酸化物等)などが使用できる。これらの中で、鉄又はケイ素を含む化合物が好ましい。また化合物の化学構造としては炭化物が好ましい。黒鉛化触媒は粒子状であることが好ましく、平均粒子径が0.1μm~200μmの粒子状であることがより好ましく、平均粒子径が1μm~100μmの粒子状であることがさらに好ましく、平均粒子径が1μm~50μmの粒子状であることが特に好ましい。黒鉛化触媒の平均粒子径は、負極材の平均粒子径(D50)と同様にして測定される。 The graphitization catalyst mixed with the pulverized product is not particularly limited as long as it has a function as a graphitization catalyst. For example, metals or semimetals such as iron, nickel, titanium, silicon, and boron, compounds containing these (carbides, oxides, and the like) can be used. Of these, compounds containing iron or silicon are preferred. The chemical structure of the compound is preferably a carbide. The graphitization catalyst is preferably in the form of particles, more preferably in the form of particles having an average particle diameter of 0.1 μm to 200 μm, more preferably in the form of particles having an average particle diameter of 1 μm to 100 μm, Particularly preferred is a particulate form having a diameter of 1 μm to 50 μm. The average particle diameter of the graphitization catalyst is measured in the same manner as the average particle diameter (D50) of the negative electrode material.
 黒鉛化触媒の添加量は、黒鉛化触媒と混合する粉砕物と黒鉛化触媒の総量を100質量%としたとき、1質量%~50質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。黒鉛化触媒の量が1質量%以上であると、作製する黒鉛粒子の結晶の発達が良好となり比表面積が大きくなりすぎない傾向にあり、50質量%以下であると、作製する黒鉛粒子中に黒鉛化触媒が残存しにくい傾向にある。 The addition amount of the graphitization catalyst is preferably 1% by mass to 50% by mass when the total amount of the pulverized product mixed with the graphitization catalyst and the graphitization catalyst is 100% by mass, and 5% by mass to 30% by mass. More preferably, the content is 7% by mass to 20% by mass. When the amount of the graphitization catalyst is 1% by mass or more, the crystals of the produced graphite particles tend to develop well and the specific surface area tends not to be too large. When the amount is 50% by mass or less, The graphitization catalyst tends not to remain.
 次に上記混合物を焼成し、黒鉛化処理を行う。焼成を行う前に、粉砕物と黒鉛化触媒の混合物をプレス等により所定形状に成形してもよい。この場合の成形圧力は、1MPa~300MPa程度が好ましい。焼成は、混合物が酸化しにくい条件で行うことが好ましくい。例えば、窒素雰囲気中、アルゴン雰囲気中、真空中、自己揮発性雰囲気中等で焼成することが好ましい。黒鉛化処理の温度は、2000℃以上であることが好ましく、2500℃以上であることがより好ましく、2700℃以上であればさらに好ましく、2800℃~3200℃であることが特に好ましい。黒鉛化の温度が2000℃以上であると、黒鉛の結晶の発達が促進され、充分な放電容量が得られる傾向にあるとともに、添加した黒鉛化触媒が作製する黒鉛粒子中に残存しにくい傾向にある。黒鉛粒子中に残存する黒鉛化触媒の量が多すぎると、黒鉛粒子質量当りの放電容量が低下する傾向にある。黒鉛化の温度の上限は特に制限されないが、黒鉛の昇華が生じない程度であることが好ましい。 Next, the above mixture is fired and graphitized. Before firing, the mixture of the pulverized product and the graphitization catalyst may be formed into a predetermined shape by a press or the like. The molding pressure in this case is preferably about 1 MPa to 300 MPa. The firing is preferably performed under conditions where the mixture is not easily oxidized. For example, baking is preferably performed in a nitrogen atmosphere, an argon atmosphere, a vacuum, a self-volatile atmosphere, or the like. The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, further preferably 2700 ° C. or higher, and particularly preferably 2800 ° C. to 3200 ° C. When the graphitization temperature is 2000 ° C. or higher, the development of graphite crystals tends to be promoted and a sufficient discharge capacity tends to be obtained, and the added graphitization catalyst tends not to remain in the graphite particles produced. is there. If the amount of graphitization catalyst remaining in the graphite particles is too large, the discharge capacity per mass of the graphite particles tends to decrease. The upper limit of the graphitization temperature is not particularly limited, but it is preferable that the graphitization does not occur.
 混合物を成形した状態で黒鉛化処理を行う場合、黒鉛化後の成形物の見掛け密度は1.65g/cm以下であることが好ましく、1.55g/cm以下であることがより好ましく、1.50g/cm以下であることがさらに好ましく、1.45g/cm以下であることが特に好ましい。黒鉛化後の成形物の密度が1.65g/cm以下であると、作製する黒鉛粒子の比表面積が大きくなりすぎない傾向にある。黒鉛化後の成形物の見掛け密度は、例えば、黒鉛化触媒と混合する粉砕物の粒子径、プレス等により所定形状に成形するときの圧力などにより適宜調整することができる。 When mixtures performing graphitization treatment while molding the apparent density of the molded product after graphitization is preferably 1.65 g / cm 3 or less, more preferably 1.55 g / cm 3 or less, more preferably 1.50 g / cm 3 or less, particularly preferably 1.45 g / cm 3 or less. When the density of the molded product after graphitization is 1.65 g / cm 3 or less, the specific surface area of the produced graphite particles tends not to be too large. The apparent density of the molded product after graphitization can be appropriately adjusted by, for example, the particle diameter of the pulverized product mixed with the graphitization catalyst, the pressure when forming into a predetermined shape by a press or the like.
 黒鉛化処理後、粉砕し、粒度を調整して負極材とする。粉砕方法は特に制限はなく、例えば、ジェットミル、ハンマーミル、ピンミル等の衝撃粉砕方式をとることができる。 After graphitization, pulverize and adjust particle size to make negative electrode material. The pulverization method is not particularly limited, and for example, an impact pulverization method such as a jet mill, a hammer mill, or a pin mill can be adopted.
 必要に応じ、黒鉛化処理後の粉砕物の表面に有機化合物を付着させて焼成する工程(以下、「被覆工程」ともいう)を実施してもよい。
 被覆工程では、得られた粉砕物の表面に有機化合物を付着させて焼成する。粉砕物に有機化合物を付着させて焼成することで、粉砕物の表面に付着した有機化合物が低結晶性炭素物質に変化する。これにより、粉砕物の表面の一部又は全部に低結晶性炭素物質が被覆される。高結晶性である黒鉛は、SP混成軌道を持つ炭素が規則正しく配列した構造を有しており、リチウムイオンの出入り口の数が充分でない場合がある。これに対して低結晶性炭素物質は、乱層構造であるため、リチウムイオンの出入り口を多く持つ。従って、粉砕物の表面の一部又は全部を低結晶性炭素物質で被覆することで、急速充電等の入出力特性が向上する傾向にある。
If necessary, a step of attaching an organic compound to the surface of the pulverized product after the graphitization treatment and baking (hereinafter, also referred to as “coating step”) may be performed.
In the coating step, an organic compound is attached to the surface of the obtained pulverized product and fired. The organic compound attached to the surface of the pulverized product is changed to a low crystalline carbon material by attaching the organic compound to the pulverized product and baking. Thereby, a low crystalline carbon substance is coat | covered to a part or all of the surface of a ground material. Graphite having high crystallinity has a structure in which carbons having SP 2 hybrid orbitals are regularly arranged, and the number of entrances and exits of lithium ions may not be sufficient. On the other hand, the low crystalline carbon material has many layers of lithium ions because it has a turbulent structure. Therefore, by covering part or all of the surface of the pulverized product with the low crystalline carbon material, the input / output characteristics such as rapid charging tend to be improved.
 粉砕物の表面に有機化合物を付着させる方法は、特に制限されない。具体的には、有機化合物を溶媒に溶解又は分散させた混合溶液に、粉砕物を分散及び混合した後、溶媒を除去して付着させる湿式方式、粉砕物と固体状の有機化合物を混合して得た混合物に力学的エネルギーを加えて付着させる乾式方式、粉砕物と固体状の有機化合物を混合して得た混合物を不活性雰囲気下で焼成する方法、CVD法等の気相方式などが挙げられる。 The method for attaching the organic compound to the surface of the pulverized product is not particularly limited. Specifically, a wet method in which a pulverized product is dispersed and mixed in a mixed solution in which an organic compound is dissolved or dispersed in a solvent and then the solvent is removed and adhered, and the pulverized product and a solid organic compound are mixed. Examples include a dry method in which mechanical energy is applied to the obtained mixture for adhesion, a method in which a mixture obtained by mixing a pulverized product and a solid organic compound is baked in an inert atmosphere, and a gas phase method such as a CVD method. It is done.
 有機化合物は、焼成により低結晶性炭素物質に変化するもの(炭素前駆体)であれば特に制限されない。具体的には、石油系ピッチ、ナフタレン、アントラセン、フェナントロレン、コールタール、フェノール樹脂、ポリビニルアルコール等が挙げられる。有機化合物は1種を単独で用いても、2種以上を併用してもよい。 The organic compound is not particularly limited as long as the organic compound changes into a low crystalline carbon material by firing (carbon precursor). Specific examples include petroleum pitch, naphthalene, anthracene, phenanthrolen, coal tar, phenol resin, polyvinyl alcohol, and the like. An organic compound may be used individually by 1 type, or may use 2 or more types together.
 表面に有機化合物が付着した粉砕物を焼成する際の温度は、粉砕物の表面に付着させた有機化合物が炭素化する温度であれば特に制限されない。例えば、焼成する際の温度は750℃~2000℃の範囲内であってよい。焼成は窒素雰囲気等の不活性ガス雰囲気中で行うことが好ましい。 The temperature at which the pulverized product with the organic compound attached to the surface is baked is not particularly limited as long as the organic compound attached to the surface of the pulverized product is carbonized. For example, the firing temperature may be in the range of 750 ° C. to 2000 ° C. Firing is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere.
 負極材は、前述した複合粒子及び黒鉛粒子とは形状及び物性の少なくとも一方が異なる炭素質粒子又は吸蔵金属粒子を含んでいてもよい。炭素質粒子としては、例えば、天然黒鉛粒子、人造黒鉛粒子、低結晶性炭素物質で被覆された黒鉛粒子、樹脂被覆黒鉛粒子、及び非晶質炭素粒子等が挙げられる。吸蔵金属粒子としては、例えば、Al、Si、Ga、Ge、In、Sn、Sb、Ag等のリチウムと合金化する元素を含む粒子が挙げられる。 The negative electrode material may contain carbonaceous particles or occluded metal particles that are different in shape and physical properties from the composite particles and graphite particles described above. Examples of the carbonaceous particles include natural graphite particles, artificial graphite particles, graphite particles coated with a low crystalline carbon material, resin-coated graphite particles, and amorphous carbon particles. Examples of the occluded metal particles include particles containing an element that forms an alloy with lithium, such as Al, Si, Ga, Ge, In, Sn, Sb, and Ag.
<リチウムイオン二次電池用負極>
 本開示の一実施形態であるリチウムイオン二次電池用負極(以下、「負極」ともいう)は、集電体と、集電体上に形成された上述の負極材を含む負極材層とを有する。
<Anode for lithium ion secondary battery>
A negative electrode for a lithium ion secondary battery (hereinafter, also referred to as “negative electrode”) according to an embodiment of the present disclosure includes a current collector and a negative electrode material layer including the above-described negative electrode material formed on the current collector. Have.
 集電体の材質及び形状は、特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等が挙げられる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も集電体として使用可能である。 The material and shape of the current collector are not particularly limited. For example, a belt-shaped foil made of a metal or an alloy such as aluminum, copper, nickel, titanium, and stainless steel, a belt-shaped perforated foil, a belt-shaped mesh, and the like can be given. In addition, porous materials such as porous metal (foam metal) and carbon paper can be used as the current collector.
 負極材層を集電体上に形成する方法は、特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により、負極材組成物を集電体上に付与して形成することができる。負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。 The method for forming the negative electrode material layer on the current collector is not particularly limited. For example, the negative electrode material composition is collected by a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method. It can be applied and formed on top. When integrating a negative electrode material layer and a collector, it can carry out by well-known methods, such as a roll, a press, and these combination.
 負極材組成物としては、例えば、上述した負極材と、有機結着材と、溶剤とを含むものを用いることができる。負極材組成物は、例えば、スラリー、ペースト等の状態であってよい。 As the negative electrode material composition, for example, a material containing the above-described negative electrode material, an organic binder, and a solvent can be used. The negative electrode material composition may be in a state such as a slurry or a paste.
 負極材組成物に含まれる有機結着材は、特に制限されない。例えば、スチレン-ブタジエンゴム;エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等)及びエチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)に由来する(メタ)アクリル共重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリロニトリルとは、アクリロニトリル又はメタクリロニトリルを意味する。 The organic binder contained in the negative electrode material composition is not particularly limited. For example, styrene-butadiene rubber; ethylenically unsaturated carboxylic acid ester (such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate)) and ethylenically unsaturated (Meth) acrylic copolymers derived from saturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.); polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, Examples thereof include polymer compounds such as polyimide and polyamideimide. (Meth) acrylate means acrylate or methacrylate, and (meth) acrylonitrile means acrylonitrile or methacrylonitrile.
 負極材組成物に含まれる溶剤は、特に制限されない。例えば、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤が挙げられる。 The solvent contained in the negative electrode material composition is not particularly limited. Examples thereof include organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and γ-butyrolactone.
 負極材組成物は、必要に応じて、粘度を調整するための増粘材を含んでいてもよい。増粘材としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。 The negative electrode material composition may contain a thickener for adjusting the viscosity, if necessary. Examples of the thickening material include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, and casein.
 負極材組成物は、必要に応じて、導電助剤を含んでいてもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。 The negative electrode material composition may contain a conductive aid as necessary. Examples of the conductive aid include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride.
 負極材組成物を集電体上に付与して負極材層を形成する場合、必要に応じて熱処理を行ってもよい。熱処理を行うことにより溶剤が除去され、有機結着材の硬化による高強度化が進み、粒子間及び粒子と集電体との間の密着性が向上する傾向にある。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。 When the negative electrode material composition is applied on the current collector to form the negative electrode material layer, heat treatment may be performed as necessary. By performing the heat treatment, the solvent is removed, the strength of the organic binder is increased by hardening, and the adhesion between the particles and between the particles and the current collector tends to be improved. The heat treatment may be performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
 負極は、高密度化のために加圧処理(プレス)を行ってもよい。加圧処理することにより、電極密度を所望の範囲に調整することができる。電極密度は、1.5g/cm~1.9g/cmであってもよく、1.6g/cm~1.8g/cmであってもよい。    The negative electrode may be subjected to pressure treatment (pressing) for densification. By performing the pressure treatment, the electrode density can be adjusted to a desired range. Electrode density may be 1.5g / cm 3 ~ 1.9g / cm 3, may be 1.6g / cm 3 ~ 1.8g / cm 3.
<リチウムイオン二次電池>
 本開示の一実施形態であるリチウムイオン二次電池は、上述した負極を有する。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成を有していてよい。
<Lithium ion secondary battery>
A lithium ion secondary battery according to an embodiment of the present disclosure has the above-described negative electrode. The lithium ion secondary battery may have a configuration in which, for example, a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected.
 正極は、負極と同様にして、集電体表面上に正極材層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等を用いることができる。 The positive electrode can be obtained by forming a positive electrode material layer on the current collector surface in the same manner as the negative electrode. As the current collector, a strip-shaped foil, strip-shaped punched foil, strip-shaped mesh or the like made of a metal or alloy such as aluminum, titanium, or stainless steel can be used.
 正極材層に用いる正極材は、特に制限されない。正極材としては、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が挙げられる。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(MはCo、Ni、Mn又はFeである)、導電性ポリマー(ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等)、多孔質炭素などが挙げられる。これらの正極材は、1種を単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、容量が高いために正極材として好適である。 The positive electrode material used for the positive electrode material layer is not particularly limited. Examples of the positive electrode material include metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and double oxides thereof (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <X, 0 <y; LiNi 2-x Mn x O 4 , 0 <x ≦ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 8 , olivine type LiMPO 2 (M is Co, Ni, Mn Or Fe), conductive polymers (polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc.), porous carbon, etc. It is. These positive electrode materials can be used individually by 1 type or in combination of 2 or more types. Among them, lithium nickelate (LiNiO 2 ) and its double oxide (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <x, 0 <y; LiNi 2−x Mn x O 4 , 0 <x ≦ 2 ) Is suitable as a positive electrode material because of its high capacity.
 セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム、それらの組み合わせなどが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。 Examples of the separator include non-woven fabrics, cloths, microporous films, combinations thereof, and the like mainly composed of polyolefins such as polyethylene and polypropylene. In addition, when a lithium ion secondary battery has a structure where a positive electrode and a negative electrode do not contact, it is not necessary to use a separator.
 電解液としては、電解質を非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。電解質としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩が挙げられる。非水系溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等が挙げられる。電解質と非水系溶剤は、それぞれ1種を単独で又は2種以上を組み合わせて使用することができる。中でも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、充放電サイクル特性が向上するために好適である。 As the electrolytic solution, a so-called organic electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent can be used. Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 . Non-aqueous solvents include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine- 2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl Tetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate and the like can be mentioned. The electrolyte and the non-aqueous solvent can be used singly or in combination of two or more. Among them, the electrolytic solution containing fluoroethylene carbonate tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and is suitable for improving charge / discharge cycle characteristics.
 リチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。前述した負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。 The form of the lithium ion secondary battery is not particularly limited, and examples include a paper battery, a button battery, a coin battery, a stacked battery, a cylindrical battery, and a square battery. In addition to the lithium ion secondary battery, the negative electrode material described above can be applied to any electrochemical device such as a hybrid capacitor that has a charge / discharge mechanism that inserts and desorbs lithium ions.
 以下、実施例に基づき上記実施形態を更に詳細に説明する。なお、上記実施形態は以下の実施例によって限定されるものではない。 Hereinafter, the embodiment will be described in more detail based on examples. The above embodiment is not limited to the following examples.
[負極材Aの作製]
 平均粒子径25μmのコークス粉末50質量部と、コールタールピッチ30質量部を230℃で2時間混合した。次いで、この混合物を平均粒子径25μmに粉砕した。その後、この粉砕物80質量部と平均粒子径25μmの炭化ケイ素20質量部をブレンダーで混合して混合物を得た。この混合物を金型に入れ、100MPaでプレス成形し、直方体に成形した。この成形体を窒素雰囲気中で1000℃で熱処理した後、さらに窒素雰囲気中で3000℃で熱処理し、黒鉛化した成形体を得た。さらにこの黒鉛化した成形体を粉砕して黒鉛粒子(負極材A)を得た。
[Preparation of Anode Material A]
50 parts by mass of coke powder having an average particle size of 25 μm and 30 parts by mass of coal tar pitch were mixed at 230 ° C. for 2 hours. The mixture was then pulverized to an average particle size of 25 μm. Thereafter, 80 parts by mass of the pulverized product and 20 parts by mass of silicon carbide having an average particle diameter of 25 μm were mixed with a blender to obtain a mixture. This mixture was put into a mold and press-molded at 100 MPa to form a rectangular parallelepiped. This molded body was heat-treated at 1000 ° C. in a nitrogen atmosphere, and further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a graphitized molded body. Further, the graphitized molded body was pulverized to obtain graphite particles (negative electrode material A).
[負極材Bの作製]
 平均粒子径10μmのコークス粉末50質量部と、コールタールピッチ30質量部を230℃で2時間混合した。次いで、この混合物を平均粒子径25μmに粉砕した。その後、この粉砕物80質量部と平均粒子径25μmの炭化ケイ素20質量部をブレンダーで混合して混合物を得た。この混合物を金型に入れ、100MPaでプレス成形し、直方体に成形した。この成形体を窒素雰囲気中で1000℃で熱処理した後、さらに窒素雰囲気中で3000℃で熱処理し、黒鉛化した成形体を得た。さらにこの黒鉛化した成形体を粉砕して黒鉛粒子(負極材B)を得た。
[Preparation of negative electrode material B]
50 parts by mass of coke powder having an average particle size of 10 μm and 30 parts by mass of coal tar pitch were mixed at 230 ° C. for 2 hours. The mixture was then pulverized to an average particle size of 25 μm. Thereafter, 80 parts by mass of the pulverized product and 20 parts by mass of silicon carbide having an average particle diameter of 25 μm were mixed with a blender to obtain a mixture. This mixture was put into a mold and press-molded at 100 MPa to form a rectangular parallelepiped. This molded body was heat-treated at 1000 ° C. in a nitrogen atmosphere, and further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a graphitized molded body. Furthermore, this graphitized shaped body was pulverized to obtain graphite particles (negative electrode material B).
[負極材Cの作製]
 負極材Aと負極材Bを、質量比(負極材A:負極材B)が50:50となるように混合して負極材Cを得た。
[Preparation of negative electrode material C]
Negative electrode material A and negative electrode material B were mixed so that the mass ratio (negative electrode material A: negative electrode material B) was 50:50 to obtain negative electrode material C.
 上記で得られた負極材のD10、D50、D90及びQ3を測定した結果を表2に示す。あわせて、比表面積、黒鉛結晶の層間距離d(002)、真比重を測定した結果を表2に示す。測定はそれぞれ前述した方法により行った。あわせて、注液時間を後述する方法により測定した結果を表2に示す。なお、負極材を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。 Table 2 shows the results of measuring D10, D50, D90 and Q3 of the negative electrode material obtained above. In addition, Table 2 shows the results of measurement of specific surface area, interlayer distance d (002) of graphite crystals, and true specific gravity. Each measurement was performed by the method described above. In addition, Table 2 shows the results of measuring the injection time by the method described later. In addition, when the negative electrode material was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel.
 負極材の注液時間は、下記のようにして測定した。上記で得られた負極材98質量部、スチレンブタジエンゴム(BM-400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部を混練してスラリー状の負極材組成物を調製した。
 これを105℃で乾燥し、乳鉢を用いて粉砕した。次いで、粉砕粉を200メッシュの標準篩で篩い、測定試料を作製した。得られた測定試料を、錠剤成型機(錠剤底面積:1.327cm)を用いて錠剤化した。具体的には、錠剤成型機に測定試料を1.0g投入し、錠剤が所定の密度(1.75g/cm)になる圧力を30秒間加えて作製した。次いで、作製した錠剤の表面に、電解液(1.0MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(体積比:3/7)とビニレンカーボネート(0.5質量%)との混合液)を130μL滴下し、電解液が染み込むまでの時間を測定した。
The injection time of the negative electrode material was measured as follows. 98 parts by mass of the negative electrode material obtained above, 1 part by mass of styrene-butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC2200, manufactured by Daicel Corporation) were kneaded to form a slurry. A negative electrode material composition was prepared.
This was dried at 105 ° C. and ground using a mortar. Next, the pulverized powder was sieved with a 200-mesh standard sieve to prepare a measurement sample. The obtained measurement sample was tableted using a tablet molding machine (tablet bottom area: 1.327 cm 2 ). Specifically, 1.0 g of a measurement sample was put into a tablet molding machine, and a pressure at which a tablet had a predetermined density (1.75 g / cm 3 ) was applied for 30 seconds. Next, an electrolytic solution (mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass)) is applied to the surface of the prepared tablet. 130 μL was dropped and the time until the electrolyte soaked was measured.
[負極の作製]
 上記で得られた負極材98質量部、スチレンブタジエンゴム(BM-400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部を混練してスラリー状の負極材組成物を調製した。これを集電体(厚さ10μmの銅箔)に塗布し、105℃で1時間大気中で乾燥して、負極材層を形成した。次いで、ロールプレスにて電極密度が1.70g/cmとなるように加圧処理を行い、負極材層を集電体と一体化して、負極を作製した。
[Production of negative electrode]
98 parts by mass of the negative electrode material obtained above, 1 part by mass of styrene-butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC2200, manufactured by Daicel Corporation) were kneaded to form a slurry. A negative electrode material composition was prepared. This was applied to a current collector (copper foil having a thickness of 10 μm) and dried in the air at 105 ° C. for 1 hour to form a negative electrode material layer. Next, pressure treatment was performed by a roll press so that the electrode density was 1.70 g / cm 3 , and the negative electrode material layer was integrated with the current collector to produce a negative electrode.
[リチウムイオン二次電池の作製]
 上記で得られた負極と、正極としての金属リチウムとを用いてリチウムイオン二次電池(2016型コインセル)を作製した。電解液としては、1.0MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(体積比:3/7)とビニレンカーボネート(0.5質量%)との混合液を用いた。セパレータとしては、厚さ25μmのポリエチレン製微孔膜を用いた。スペーサとしては、厚さ230μm、直径14mmの円形の銅板を用いた。
[Production of lithium ion secondary battery]
A lithium ion secondary battery (2016 type coin cell) was produced using the negative electrode obtained above and metallic lithium as the positive electrode. As the electrolytic solution, a mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass) was used. As the separator, a polyethylene microporous film having a thickness of 25 μm was used. As the spacer, a circular copper plate having a thickness of 230 μm and a diameter of 14 mm was used.
[初回充放電容量]
 初回充放電容量(mAh/g)の測定は、試料質量:15.4mg、電極面積:1.54cm、測定温度:25℃、電極密度:1.70g/cm、CC-CV充電条件:定電流充電0.543mA、定電圧充電0V(Li/Li)、カット電流0.053mA、CC放電条件:定電流放電0.543mA、カット電圧1.5V(Li/Li)の条件で行った。結果を表3に示す。
[First charge / discharge capacity]
Measurement of initial charge / discharge capacity (mAh / g) is as follows: sample mass: 15.4 mg, electrode area: 1.54 cm 2 , measurement temperature: 25 ° C., electrode density: 1.70 g / cm 3 , CC-CV charge conditions: Constant current charge 0.543 mA, constant voltage charge 0 V (Li / Li + ), cut current 0.053 mA, CC discharge condition: constant current discharge 0.543 mA, cut voltage 1.5 V (Li / Li + ) It was. The results are shown in Table 3.
[初回充放電効率]
 初回充放電効率(%)を下記式により求めた。結果を表3に示す。
 初回充放電効率=初回放電容量/初回充電容量×100
[First-time charge / discharge efficiency]
The initial charge / discharge efficiency (%) was determined by the following formula. The results are shown in Table 3.
Initial charge / discharge efficiency = initial discharge capacity / initial charge capacity x 100
[不可逆容量]
 不可逆容量(mAh/g)を下記式により求めた。結果を表3に示す。
 不可逆容量=初回充電容量-初回放電容量
[Irreversible capacity]
The irreversible capacity (mAh / g) was determined by the following formula. The results are shown in Table 3.
Irreversible capacity = initial charge capacity-initial discharge capacity
[低温条件での充電容量維持率]
(1)試料質量:15.4mg、電極面積:1.54cm、電極密度:1.70g/cm、測定温度:25℃、CC-CV充電条件:定電流充電0.543mA、定電圧充電0V(Li/Li)、カット電流0.053mA、CC放電条件:定電流放電0.543mA、カット電圧1.5V(Li/Li)の条件で2サイクル充放電を行った。
(2)次いで、測定温度:0℃において、CC-CV充電条件:定電流充電0.543mA、定電圧充電0V(Li/Li)、カット電流0.053mA、CC放電条件:定電流放電0.543mA、カット電圧1.5V(Li/Li)の条件で1サイクル充放電を行った。
(3)25℃及び0℃でのCC充電容量(mAh/g)の容量を求め、下記式にて低温条件での充電容量維持率を算出した。結果を表3に示す。
 低温条件での充電容量維持率=0℃におけるCC充電容量/25℃におけるCC充電容量×100
[Charge capacity maintenance rate at low temperature]
(1) Sample mass: 15.4 mg, electrode area: 1.54 cm 2 , electrode density: 1.70 g / cm 3 , measurement temperature: 25 ° C., CC-CV charge condition: constant current charge 0.543 mA, constant voltage charge Charge / discharge was performed for 2 cycles under the conditions of 0 V (Li / Li + ), cut current 0.053 mA, CC discharge conditions: constant current discharge 0.543 mA, cut voltage 1.5 V (Li / Li + ).
(2) Next, at a measurement temperature of 0 ° C., CC-CV charge condition: constant current charge 0.543 mA, constant voltage charge 0 V (Li / Li + ), cut current 0.053 mA, CC discharge condition: constant current discharge 0 The battery was charged and discharged for one cycle under the conditions of .543 mA and a cut voltage of 1.5 V (Li / Li + ).
(3) The capacity | capacitance of CC charge capacity (mAh / g) in 25 degreeC and 0 degreeC was calculated | required, and the charge capacity maintenance factor in low temperature conditions was computed with the following formula. The results are shown in Table 3.
Charge capacity maintenance rate under low temperature condition = 0 CC charge capacity at 0 ° C./CC charge capacity at 25 ° C. × 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果に示されるように、体積基準の粒度分布が上述した条件を満たす負極材を用いた実施例のリチウムイオン二次電池は、体積基準の粒度分布が上述した条件を満たさない負極材を用いた比較例のリチウムイオン二次電池に比べて低温条件での充放電容量維持率が高く、充電性能の安定性に優れていた。また、実施例のリチウムイオン二次電池の初回充放電効率は、比較例のリチウムイオン二次電池と同等の水準であった。 As shown in the results of Table 3, the lithium ion secondary battery of the example using the negative electrode material whose volume-based particle size distribution satisfies the above-described conditions is the negative electrode material whose volume-based particle size distribution does not satisfy the above-described conditions. Compared to the lithium ion secondary battery of the comparative example using the battery, the charge / discharge capacity maintenance rate under a low temperature condition was high, and the stability of the charging performance was excellent. In addition, the initial charge / discharge efficiency of the lithium ion secondary battery of the example was the same level as the lithium ion secondary battery of the comparative example.

Claims (7)

  1.  体積基準の粒度分布において、下記(1)~(4)を満たすリチウムイオン二次電池用負極材。
    (1)小径側からの累積が10%となるときの粒子径(D10)が5μm~14μmである
    (2)小径側からの累積が50%となるときの粒子径(D50)が15μm~27μmである
    (3)小径側からの累積が90%となるときの粒子径(D90)が20μm~55μmである
    (4)9.516μm以下の粒子径の積算値Q3が4%~30%である。
    A negative electrode material for a lithium ion secondary battery satisfying the following (1) to (4) in a volume-based particle size distribution.
    (1) The particle diameter (D10) when the accumulation from the small diameter side is 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side is 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side is 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .
  2.  複数の扁平状の黒鉛粒子がその配向面が非平行となるように集合又は結合している粒子を含む、請求項1に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 1, comprising particles in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel.
  3.  CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下である、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。 3. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein an interlayer distance d (002) of the graphite crystal obtained by X-ray diffraction measurement using CuKα rays is 3.38 mm or less.
  4.  窒素ガス吸着のBET法による比表面積が1.0m/g~5.0m/gである、請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。 The specific surface area by BET method of nitrogen gas adsorption is 1.0m 2 /g~5.0m 2 / g, according to claim 1 negative electrode material for a lithium ion secondary battery according to any one of claims 3.
  5.  真比重が2.22以上である、請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the true specific gravity is 2.22 or more.
  6.  集電体と、集電体上に形成された請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。 A lithium ion secondary battery comprising: a current collector; and a negative electrode material layer including the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5 formed on the current collector. Negative electrode.
  7.  請求項6に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。 A lithium ion secondary battery having the negative electrode for a lithium ion secondary battery according to claim 6.
PCT/JP2017/017099 2017-04-28 2017-04-28 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery WO2018198377A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/017099 WO2018198377A1 (en) 2017-04-28 2017-04-28 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2019515075A JP6939880B2 (en) 2017-04-28 2017-04-28 Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017099 WO2018198377A1 (en) 2017-04-28 2017-04-28 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2018198377A1 true WO2018198377A1 (en) 2018-11-01

Family

ID=63920197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017099 WO2018198377A1 (en) 2017-04-28 2017-04-28 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6939880B2 (en)
WO (1) WO2018198377A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514906A (en) * 2018-12-19 2022-02-16 ポスコ Negative electrode active material for lithium secondary batteries and its manufacturing method
CN114207879A (en) * 2019-07-31 2022-03-18 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103281A1 (en) * 2012-12-26 2014-07-03 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2017063040A (en) * 2016-11-01 2017-03-30 昭和電工株式会社 Negative electrode material for lithium ion battery and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090111129A (en) * 2008-04-21 2009-10-26 엘에스엠트론 주식회사 Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same, and method thereof
WO2012077268A1 (en) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103281A1 (en) * 2012-12-26 2014-07-03 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2017063040A (en) * 2016-11-01 2017-03-30 昭和電工株式会社 Negative electrode material for lithium ion battery and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514906A (en) * 2018-12-19 2022-02-16 ポスコ Negative electrode active material for lithium secondary batteries and its manufacturing method
JP7471303B2 (en) 2018-12-19 2024-04-19 ポスコホールディングス インコーポレーティッド Negative electrode active material for lithium secondary battery and method for producing same
CN114207879A (en) * 2019-07-31 2022-03-18 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JPWO2018198377A1 (en) 2020-03-12
JP6939880B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5494344B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555051B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555050B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019026265A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226431B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7238884B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
KR102608550B1 (en) Carbonaceous particles, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
JP5885919B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
EP4007017B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7238885B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907389

Country of ref document: EP

Kind code of ref document: A1