JPWO2018198377A1 - Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JPWO2018198377A1
JPWO2018198377A1 JP2019515075A JP2019515075A JPWO2018198377A1 JP WO2018198377 A1 JPWO2018198377 A1 JP WO2018198377A1 JP 2019515075 A JP2019515075 A JP 2019515075A JP 2019515075 A JP2019515075 A JP 2019515075A JP WO2018198377 A1 JPWO2018198377 A1 JP WO2018198377A1
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019515075A
Other languages
Japanese (ja)
Other versions
JP6939880B2 (en
Inventor
隆行 宮内
隆行 宮内
西田 達也
達也 西田
石井 義人
義人 石井
崇 坂本
崇 坂本
中村 優
優 中村
石島 善三
善三 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63920197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2018198377(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2018198377A1 publication Critical patent/JPWO2018198377A1/en
Application granted granted Critical
Publication of JP6939880B2 publication Critical patent/JP6939880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

体積基準の粒度分布において、下記(1)〜(4)を満たすリチウムイオン二次電池用負極材。(1)小径側からの累積が10%となるときの粒子径(D10)が5μm〜14μmである(2)小径側からの累積が50%となるときの粒子径(D50)が15μm〜27μmである(3)小径側からの累積が90%となるときの粒子径(D90)が20μm〜55μmである(4)9.516μm以下の粒子径の積算値Q3が4%〜30%である。A negative electrode material for a lithium ion secondary battery that satisfies the following (1) to (4) in a volume-based particle size distribution. (1) The particle diameter (D10) when the accumulation from the small diameter side becomes 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side becomes 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side becomes 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

近年、スマートフォン等の携帯電子機器の普及に伴う高容量化及びコンパクト化、電気自動車及び蓄電用途に対応するための長寿命化、充電時間の短縮化(急速充電特性の向上)などの特性の向上がリチウムイオン二次電池に求められている。例えば、特許文献1では、複数の扁平状の1次粒子を、配向面が非平行となるように集合又は結合させてなる2次粒子構造を有する黒鉛粒子を負極活物質として用いることで、充放電サイクル特性の改善を図っている。   In recent years, with the spread of portable electronic devices such as smartphones, improvements in characteristics such as higher capacity and downsizing, longer life for electric vehicles and power storage applications, and shorter charging times (improving rapid charging characteristics) have been made. Is required for lithium ion secondary batteries. For example, in Patent Literature 1, graphite particles having a secondary particle structure in which a plurality of flat primary particles are aggregated or bonded so that their orientation planes are non-parallel are used as a negative electrode active material. The discharge cycle characteristics are improved.

特開平10−158005号公報JP-A-10-158005

リチウムイオン二次電池の使用場面が多様化しつつある一方で、リチウムイオン二次電池においては使用環境の温度が低いと充電容量維持率が低下し、安定した充電性能が得られない場合がある。従って、充電容量の安定性に優れるリチウムイオン二次電池の開発が望まれている。   While the use scene of the lithium ion secondary battery is diversifying, in the case of the lithium ion secondary battery, if the temperature of the use environment is low, the charge capacity retention rate decreases, and stable charge performance may not be obtained. Therefore, development of a lithium ion secondary battery having excellent charge capacity stability is desired.

本発明は、充電容量の安定性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することを課題とする。   The present invention provides a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having excellent charge capacity stability. Make it an issue.

上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1>体積基準の粒度分布において、下記(1)〜(4)を満たすリチウムイオン二次電池用負極材。
(1)小径側からの累積が10%となるときの粒子径(D10)が5μm〜14μmである
(2)小径側からの累積が50%となるときの粒子径(D50)が15μm〜27μmである
(3)小径側からの累積が90%となるときの粒子径(D90)が20μm〜55μmである
(4)9.516μm以下の粒子径の積算値Q3が4%〜30%である。
<2>複数の扁平状の黒鉛粒子がその配向面が非平行となるように集合又は結合している粒子を含む、<1>に記載のリチウムイオン二次電池用負極材。
<3>CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下である、<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4>窒素ガス吸着のBET法による比表面積が1.0m/g〜5.0m/gである、<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5>真比重が2.22以上である、<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<6>集電体と、集電体上に形成された<1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。
<7><6>に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。
Specific means for solving the above problems include the following embodiments.
<1> A negative electrode material for a lithium ion secondary battery satisfying the following (1) to (4) in a volume-based particle size distribution.
(1) The particle diameter (D10) when the accumulation from the small diameter side becomes 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side becomes 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side becomes 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .
<2> The negative electrode material for a lithium ion secondary battery according to <1>, wherein the negative electrode material includes particles in which a plurality of flat graphite particles are aggregated or bonded such that their orientation planes are non-parallel.
<3> The negative electrode material for a lithium ion secondary battery according to <1> or <2>, wherein the interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement using CuKα radiation is 3.38 ° or less. .
<4> The specific surface area by BET method of nitrogen gas adsorption is 1.0m 2 /g~5.0m 2 / g, < 1> ~ for lithium ion secondary battery according to any one of <3> Anode material.
<5> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <4>, wherein the true specific gravity is 2.22 or more.
<6> Lithium ion having a current collector and a negative electrode material layer including the negative electrode material for a lithium ion secondary battery according to any one of <1> to <5> formed on the current collector Negative electrode for secondary battery.
<7> A lithium ion secondary battery having the negative electrode for a lithium ion secondary battery according to <6>.

本発明によれば、充電容量の安定性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material for lithium ion secondary batteries, the negative electrode for lithium ion secondary batteries, and the lithium ion secondary battery which can obtain the lithium ion secondary battery which is excellent in charge capacity stability are provided. You.

以下、本開示のリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池の実施形態の一例について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の範囲を制限するものではない。   Hereinafter, an example of an embodiment of a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery according to the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the components (including the element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and does not limit the scope of the present disclosure.

本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
In the present disclosure, the term "step" includes, in addition to a step independent of other steps, even if the purpose of the step is achieved even if it cannot be clearly distinguished from the other steps, the step is also included. .
In the present disclosure, the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described in stages in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages. . Further, in the numerical range described in the present disclosure, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
In the present disclosure, the content or content of each component in the composition is, when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the plurality of substances present in the composition Means the total content or content.
In the present disclosure, the particle diameter of each component in the composition, when there are a plurality of types of particles corresponding to each component in the composition, unless otherwise specified, for a mixture of the plurality of types of particles present in the composition Means the value of
In the present disclosure, the term "layer" or "film" means that when a region where the layer or film is present is observed, in addition to a case where the layer or film is formed over the entire region, only a part of the region The case where it is formed is also included.
In the present disclosure, the term "lamination" refers to stacking layers, where two or more layers may be joined, or two or more layers may be removable.

<リチウムイオン二次電池用負極材>
本開示の一実施形態であるリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう。)は、体積基準の粒度分布において、下記(1)〜(4)を満たす。
(1)小径側からの累積が10%となるときの粒子径(D10)が5μm〜14μmである
(2)小径側からの累積が50%となるときの粒子径(D50)が15μm〜27μmである
(3)小径側からの累積が90%となるときの粒子径(D90)が20μm〜55μmである
(4)9.516μm以下の粒子径の積算値Q3が4%〜30%である。
<Negative electrode material for lithium ion secondary batteries>
A negative electrode material for a lithium ion secondary battery (hereinafter, also simply referred to as a “negative electrode material”) according to an embodiment of the present disclosure satisfies the following (1) to (4) in a volume-based particle size distribution.
(1) The particle diameter (D10) when the accumulation from the small diameter side becomes 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side becomes 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side becomes 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .

本発明者らの検討により、上記条件を満たす負極材を用いて得られるリチウムイオン二次電池は、低温環境下でも充電容量の維持率が高く、充電性能の安定性に優れることがわかった。その理由は明らかではないが、例えば、負極材中を電解液が移動するための経路が充分に確保されているため、温度低下により電解液の粘度が上昇しても電解液が移動しやすいためと推測される。   The present inventors have found that a lithium ion secondary battery obtained by using a negative electrode material satisfying the above conditions has a high charge capacity maintenance ratio even under a low-temperature environment and has excellent charge performance stability. Although the reason is not clear, for example, since the path for the electrolyte solution to move in the negative electrode material is sufficiently secured, even if the viscosity of the electrolyte solution increases due to the temperature drop, the electrolyte solution is likely to move. It is presumed.

負極材中の電解液の経路が充分に確保されている理由としては、例えば、以下の2つが考えられる。まず、負極材が小径粒子と大径粒子を上記粒度分布の条件を満たす割合で含んでいることで、小径粒子の割合がこれより大きい場合に比べ、負極の高密度化のために加えた圧力が負極全体に伝達されやすく、負極表面近傍と負極内部とでの粒子の潰れ具合のバラつきが抑制されることが考えられる。さらに、大径粒子の割合がこれより大きい場合に比べ、電解液の経路の数が充分に確保されることが考えられる。もっとも、これらの推測は本開示を制限するものではない。   For example, the following two reasons can be considered as the reason that the path of the electrolyte in the negative electrode material is sufficiently ensured. First, since the negative electrode material contains the small-diameter particles and the large-diameter particles in a ratio satisfying the above-mentioned particle size distribution conditions, the pressure applied for increasing the density of the negative electrode is higher than when the ratio of the small-diameter particles is larger than this. Is likely to be transmitted to the entire negative electrode, and it is conceivable that variation in the degree of crushing of particles between the vicinity of the negative electrode surface and the inside of the negative electrode is suppressed. Further, it is conceivable that the number of electrolyte solution paths is sufficiently ensured compared to the case where the ratio of large-diameter particles is larger than this. However, these assumptions do not limit the present disclosure.

ある実施態様では、負極材のD10は5μm〜10μmであってもよく、6μm〜10μmであってもよい。またある実施態様では、負極材のD50は17μm〜25μmであってもよく、18μm〜23μmであってもよい。またある実施態様では、負極材のD90は30μm〜50μmであってもよく、35μm〜47μmであってもよい。またある実施態様では、負極材の粒子径が9.516μm以下の積算値Q3は4%〜20%であってもよく、5μm〜15μmであってもよい。またある実施態様では、負極材のD10とD90の差は20μm〜50μmであってもよく、25μm〜40μmであってもよい。   In one embodiment, D10 of the negative electrode material may be 5 μm to 10 μm, or may be 6 μm to 10 μm. In one embodiment, the D50 of the negative electrode material may be 17 μm to 25 μm, or may be 18 μm to 23 μm. In some embodiments, D90 of the negative electrode material may be 30 μm to 50 μm, or may be 35 μm to 47 μm. In one embodiment, the integrated value Q3 when the particle diameter of the negative electrode material is 9.516 μm or less may be 4% to 20%, or may be 5 μm to 15 μm. In one embodiment, the difference between D10 and D90 of the negative electrode material may be 20 μm to 50 μm, or may be 25 μm to 40 μm.

本開示において、負極材の体積基準の粒度分布は、レーザー回折粒度分布測定装置(例えば、SALD−3000J、株式会社島津製作所製)を用いて測定した値である。測定は、試料を界面活性剤(ポリオキシエチレン(20)ソルビタンモノラウレート)を添加したイオン交換水に混合し、超音波を30秒照射して分散させた後に行った。   In the present disclosure, the volume-based particle size distribution of the negative electrode material is a value measured using a laser diffraction particle size distribution analyzer (for example, SALD-3000J, manufactured by Shimadzu Corporation). The measurement was performed after the sample was mixed with ion-exchanged water to which a surfactant (polyoxyethylene (20) sorbitan monolaurate) was added, and the mixture was irradiated with ultrasonic waves for 30 seconds to be dispersed.

負極材の粒度分布は、粒子径0.1μm〜2000μmの範囲を対数比で50分割して得られる。例えば、粒子径は、n=(2000/0.1)1/50を求め、0.1×n、0.1×n、・・・、0.1×n50から得られる。0.1μm〜2000μmの範囲における各粒度範囲の相対粒子量の合計値は、100(%)となる。具体的には、粒子径0.1μm〜2000μmの範囲を下記表1に示すように50分割した。The particle size distribution of the negative electrode material is obtained by dividing the range of particle diameters from 0.1 μm to 2000 μm by 50 in logarithmic ratio. For example, particle size, obtains the n = (2000 / 0.1) 1/50 , 0.1 × n, 0.1 × n 2, ···, obtained from 0.1 × n 50. The total value of the relative particle amounts in each particle size range in the range of 0.1 μm to 2000 μm is 100 (%). Specifically, the range of the particle diameter of 0.1 μm to 2000 μm was divided into 50 as shown in Table 1 below.

負極材は、炭素材料であってよい。また、複数の扁平状の黒鉛粒子がその配向面が非平行となるように集合又は結合している粒子(以下、複合粒子とも称する)を含むものであってよく、複数の扁平状の黒鉛粒子がその配向面が非平行となるように変形している粒子であってもよい。複数の扁平状の黒鉛粒子がその配向面が非平行となるように変形している粒子としては、複数の鱗片状の天然黒鉛を球形化処理して得た球状天然黒鉛等が挙げられる。   The negative electrode material may be a carbon material. Further, it may include particles (hereinafter, also referred to as composite particles) in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel, and the plurality of flat graphite particles may be included. May be particles that are deformed so that their orientation planes are non-parallel. Examples of the particles in which a plurality of flat graphite particles are deformed so that their orientation planes are non-parallel include spherical natural graphite obtained by spheroidizing a plurality of flaky natural graphite.

(複合粒子)
複合粒子に含まれる扁平状の黒鉛粒子は、形状に異方性を有する非球状の粒子である。扁平状の黒鉛粒子としては、例えば、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が1.2〜5であってもよく、1.3〜3であってもよい。本開示におけるアスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してA/Bを測定し、その平均値をとったものである。
長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。
すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a及び接線aを選択して、この接線a及び接線aの間の距離を長軸方向の長さAとする。また、長軸と直交し、黒鉛粒子の投影像の輪郭線上の2点を結ぶ線分のうち最長のものの長さを短軸方向の長さBとする。
(Composite particles)
The flat graphite particles contained in the composite particles are non-spherical particles having shape anisotropy. Examples of the flat graphite particles include graphite particles having a shape such as a scale, a scale, and a partial lump. The flat graphite particles may have an aspect ratio represented by A / B of 1.2 to 5 when the length in the major axis direction is A and the length in the minor axis direction is B, It may be 1.3 to 3. The aspect ratio in the present disclosure is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
The length A in the major axis direction and the length B in the minor axis direction are measured as follows.
That is, in the projection image of the graphite particles observed using a microscope, a two parallel tangents circumscribing the outer periphery of the graphite particles, by selecting the tangent line a 1 and tangential a 2 where the distance is maximum , the distance between the tangent line a 1 and the tangent a 2 of major axis length a. In addition, the length of the longest line segment perpendicular to the long axis and connecting two points on the outline of the projected image of the graphite particles is defined as the length B in the short axis direction.

扁平状の黒鉛粒子の配向面が非平行であるとは、扁平状の黒鉛粒子の最も断面積の大きい面に平行な面(配向面)が一定方向に揃っていないことをいう。扁平状の黒鉛粒子の配向面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、配向面が互いに非平行な状態で集合又は結合していることにより、粒子の電極上での配向性が高まるのを抑制でき、充放電による電極膨張を低減でき、優れた充放電サイクル特性が得られる傾向にある。
負極材は、扁平状の黒鉛粒子の配向面が平行となるように、複数の扁平状の黒鉛粒子が集合又は結合している構造を部分的に含んでいてもよい。
The non-parallel orientation plane of the flat graphite particles means that the plane (orientation plane) parallel to the plane having the largest cross-sectional area of the flat graphite particles is not aligned in a certain direction. Whether or not the orientation planes of the flat graphite particles are non-parallel to each other can be confirmed by microscopic observation. Since a plurality of flat graphite particles are gathered or bonded in a state where the orientation planes are not parallel to each other, it is possible to suppress an increase in the orientation of the particles on the electrode, and to reduce electrode expansion due to charge and discharge. , Excellent charge / discharge cycle characteristics tend to be obtained.
The negative electrode material may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded such that the orientation planes of the flat graphite particles are parallel.

複数の扁平状の黒鉛粒子が集合又は結合している状態とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。結合とは、互いの粒子が、直接又は炭素物質を介して、化学的に結合している状態をいう。また、集合とは、互いの粒子が化学的に結合してはないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質は、例えば、タール、ピッチ等のバインダが焼成工程で黒鉛化した黒鉛であってもよい。機械的な強度の面からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であってもよい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。   The state in which a plurality of flat graphite particles are aggregated or bonded refers to a state in which two or more flat graphite particles are aggregated or bonded. Bonding refers to a state in which the particles are chemically bonded directly or via a carbon material. The term “assembly” refers to a state in which particles are not chemically bonded to each other, but maintain the shape as an aggregate due to the shape and the like. The flat graphite particles may be aggregated or bonded via a carbon material. The carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in a firing step. From the viewpoint of mechanical strength, two or more flat graphite particles may be bonded via a carbon material. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.

1個の複合粒子に含まれる扁平状の黒鉛粒子の合計数は、3個以上であってもよく、10個以上であってもよい。   The total number of flat graphite particles contained in one composite particle may be 3 or more, or may be 10 or more.

扁平状の黒鉛粒子の平均粒子径(D50)は、特に制限されない。例えば、集合又は結合のし易さの観点から、1μm〜25μmの範囲から選択できる。扁平状の黒鉛粒子の平均粒子径(D50)は、負極材のD50と同様にして測定される。   The average particle diameter (D50) of the flat graphite particles is not particularly limited. For example, it can be selected from the range of 1 μm to 25 μm from the viewpoint of easy assembly or connection. The average particle diameter (D50) of the flat graphite particles is measured in the same manner as D50 of the negative electrode material.

扁平状の黒鉛粒子及びその原料の材質は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化を行いやすい傾向にある。   The material of the flat graphite particles and the raw material thereof is not particularly limited, and examples thereof include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, and pitch. Above all, artificial graphite, natural graphite, or graphite obtained from coke has high crystallinity and becomes soft particles, and thus tends to easily increase the density of the negative electrode.

複合粒子は、球状の黒鉛粒子を更に含んでいてもよい。一般に、球状の黒鉛粒子は扁平状の黒鉛粒子よりも高密度であるため、複合粒子が球状の黒鉛粒子を含むことにより負極材の密度を高くすることができ、高密度化処理の際に加える圧力を低減することができる。その結果、扁平状の黒鉛粒子が集電体の面に沿う方向に配向することが抑制され、リチウムイオンの移動がより良好となる傾向にある。特に、負極の電極密度が1.7g/cmを超える場合は、扁平状の黒鉛粒子の配向を抑制することにより、負極材層内への電解液の浸透性がより高まり、放電容量及び充放電サイクル特性がより向上する傾向にある。The composite particles may further include spherical graphite particles. In general, spherical graphite particles have a higher density than flat graphite particles, so that the composite particles include spherical graphite particles, so that the density of the negative electrode material can be increased. The pressure can be reduced. As a result, the flat graphite particles are suppressed from being oriented in the direction along the surface of the current collector, and the movement of lithium ions tends to be more favorable. In particular, when the electrode density of the negative electrode exceeds 1.7 g / cm 3 , by suppressing the orientation of the flat graphite particles, the permeability of the electrolyte into the negative electrode material layer is further increased, and the discharge capacity and the charge capacity are reduced. Discharge cycle characteristics tend to be further improved.

複合粒子が球状の黒鉛粒子を含む場合、扁平状の黒鉛粒子と球状の黒鉛粒子とは、炭素物質を介して集合又は結合していてもよい。炭素物質は、例えば、タール、ピッチ等のバインダが焼成工程で黒鉛化した黒鉛であってもよい。複合粒子が球状の黒鉛粒子を含んでいるか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。   When the composite particles include spherical graphite particles, the flat graphite particles and the spherical graphite particles may be aggregated or bonded via a carbon material. The carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in a firing step. Whether or not the composite particles contain spherical graphite particles can be confirmed, for example, by observation with a scanning electron microscope.

複合粒子が球状の黒鉛粒子を含む場合、1個の複合粒子に含まれる扁平状の黒鉛粒子と球状の黒鉛粒子との合計数は、特に制限されない。例えば、3個以上であってもよく、10個以上であってもよい。   When the composite particles include spherical graphite particles, the total number of flat graphite particles and spherical graphite particles contained in one composite particle is not particularly limited. For example, the number may be three or more, or ten or more.

球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極材として十分な飽和タップ密度を得る観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であってもよい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であってもよい。球状天然黒鉛は、剥離強度が強く電極を強い力でプレスしても集電体から剥がれにくいという特長を有するため、球状の黒鉛粒子を含む複合粒子を用いることで、より強力な剥離強度を有する負極材が得られる傾向にある。   Examples of the spherical graphite particles include spherical artificial graphite and spherical natural graphite. From the viewpoint of obtaining a sufficient saturated tap density as a negative electrode material, the spherical graphite particles may be high-density graphite particles. Specifically, it may be spherical natural graphite that has been subjected to a particle spheroidizing treatment so that a high tap density can be achieved. Spherical natural graphite has a strong peeling strength, and has a feature that it is hard to be peeled off from the current collector even when the electrode is pressed with a strong force.By using composite particles containing spherical graphite particles, it has a stronger peeling strength. A negative electrode material tends to be obtained.

球状の黒鉛粒子の平均粒子径(D50)は、特に制限されない。例えば、5μm〜30μmの範囲から選択できる。球状の黒鉛粒子の平均粒子径(D50)は、負極材のD50と同様にして測定される。   The average particle diameter (D50) of the spherical graphite particles is not particularly limited. For example, it can be selected from the range of 5 μm to 30 μm. The average particle diameter (D50) of the spherical graphite particles is measured in the same manner as D50 of the negative electrode material.

負極材を用いて負極を製造した場合に球状の黒鉛粒子の断面像を観察する方法としては、例えば、試料電極(後述)又は観察対象の電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、VE−7800、株式会社キーエンス製)で観察する方法、イオンミリング装置(例えば、E−3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製して走査型電子顕微鏡(例えば、VE−7800、株式会社キーエンス製)で観察する方法が挙げられる。   As a method of observing a cross-sectional image of spherical graphite particles when a negative electrode is manufactured using a negative electrode material, for example, after embedding a sample electrode (described later) or an electrode to be observed in an epoxy resin, mirror-polishing the electrode, A method of observing the cross section with a scanning electron microscope (for example, VE-7800, manufactured by KEYENCE CORPORATION), and forming and scanning an electrode cross section using an ion milling apparatus (for example, E-3500, manufactured by Hitachi High Technology Co., Ltd.) Observation method using a scanning electron microscope (for example, VE-7800, manufactured by KEYENCE CORPORATION).

試料電極は、例えば、負極材98質量部、バインダとしてのスチレンブタジエン樹脂1質量部、及び増粘材としてのカルボキシメチルセルロース1質量部の混合物を固形分として、この混合物の25℃における粘度が1500mPa・s〜2500mPa・sとなるように水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、120℃で1時間乾燥させることによって作製することができる。   The sample electrode has a solid content of, for example, a mixture of 98 parts by mass of the negative electrode material, 1 part by mass of a styrene butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener, and has a viscosity at 25 ° C. of 1500 mPa · s to 2500 mPa · s to prepare a dispersion by adding water, and applying the dispersion to a thickness of about 70 μm (at the time of coating) on a copper foil having a thickness of 10 μm. It can be produced by drying at 120 ° C. for 1 hour.

負極材は、複合粒子のほかに、複合粒子を形成していない扁平状の黒鉛粒子又は球状の黒鉛粒子を含んでいてもよい。   The negative electrode material may include flat graphite particles or spherical graphite particles that do not form composite particles, in addition to the composite particles.

(黒鉛結晶の層間距離d(002))
負極材は、CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下であり、3.37Å以下であってもよく、3.36Å以下であってもよい。黒鉛結晶の層間距離d(002)が3.38Å以下であることで、炭素の六角網平面間に挿入又は脱離できるリチウムイオン量が多くなり、放電容量が向上する傾向にある。黒鉛結晶の層間距離d(002)の下限値に特に制限はないが、純粋な黒鉛結晶のd(002)の理論値は通常3.35Å程度とされる。
(Distance between graphite crystals d (002))
In the negative electrode material, the interlayer distance d (002) of graphite crystals determined by X-ray diffraction measurement using CuKα radiation is 3.38 ° or less, and may be 3.37 ° or less, or 3.36 ° or less. Is also good. When the interlayer distance d (002) of the graphite crystal is 3.38 ° or less, the amount of lithium ions that can be inserted or removed between the carbon hexagonal mesh planes increases, and the discharge capacity tends to be improved. The lower limit of the interlayer distance d (002) of the graphite crystal is not particularly limited, but the theoretical value of d (002) of the pure graphite crystal is usually about 3.35 °.

黒鉛結晶の層間距離d(002)は、詳しくは、X線(CuKα線)を負極材に照射し、回折線をゴニオメーターにより測定して得られた回折プロファイルにより、回折角2θが24度〜26度の範囲に現れるd(002)面に対応する回折ピークより、ブラッグの式を用い算出することができる。   More specifically, the interlayer distance d (002) of the graphite crystal is determined by irradiating the negative electrode material with X-rays (CuKα rays) and measuring the diffraction line with a goniometer, and the diffraction angle 2θ is 24 degrees or more. From the diffraction peak corresponding to the d (002) plane appearing in the range of 26 degrees, it can be calculated using the Bragg equation.

なお、CuKα線を用いたX線回折測定の詳細は以下のとおりである。
−測定装置及び条件−
X線回折装置:MultiFlex、株式会社リガク製
ゴニオメーター:MultiFlexゴニオメーター(シャッターなし)
アタッチメント:標準試料ホルダー
モノクロメーター:固定モノクロメーター
走査モード:2θ/θ
走査タイプ:連続
出力:40kV、40mA
発散スリット:1度
散乱スリット:1度
受光スリット:0.30mm
モノクロ受光スリット:0.8mm
測定範囲:0度≦2θ≦35度
サンプリング幅:0.01度
The details of the X-ray diffraction measurement using CuKα rays are as follows.
-Measuring equipment and conditions-
X-ray diffractometer: MultiFlex, Rigaku Corporation Goniometer: MultiFlex goniometer (without shutter)
Attachment: Standard sample holder Monochromator: Fixed monochromator Scanning mode: 2θ / θ
Scan type: continuous Output: 40kV, 40mA
Divergence slit: 1 degree Scattering slit: 1 degree Receiving slit: 0.30 mm
Monochrome receiving slit: 0.8mm
Measuring range: 0 degrees ≦ 2θ ≦ 35 degrees Sampling width: 0.01 degrees

(比表面積)
負極材は、窒素ガス吸着のBET法による比表面積が1.0m/g〜5.0m/gであってもよく、3.0m/g〜4.5m/gであってもよい。
(Specific surface area)
Negative electrode material has a specific surface area by the BET method of nitrogen gas adsorption may be 1.0m 2 /g~5.0m 2 / g, even 3.0m 2 /g~4.5m 2 / g Good.

比表面積の測定は、以下の方法で行うことができる。例えば、負極材を測定セルに充填し、真空脱気しながら200℃で加熱前処理を行って得た試料に、ガス吸着装置(例えば、ASAP2010、株式会社島津製作所製)を用いて窒素ガスを吸着させる。得られた試料について5点法でBET解析を行い、比表面積を算出する。   The measurement of the specific surface area can be performed by the following method. For example, a sample obtained by filling a negative electrode material in a measurement cell and performing a heating pretreatment at 200 ° C. while degassing in a vacuum is charged with nitrogen gas using a gas adsorption device (for example, ASAP2010, manufactured by Shimadzu Corporation). Adsorb. BET analysis is performed on the obtained sample by a five-point method to calculate a specific surface area.

負極材の比表面積は、例えば、平均粒子径を調整することにより上記範囲とすることができる。なお、平均粒子径が小さいほど比表面積が大きくなる傾向にある。   The specific surface area of the negative electrode material can be set in the above range by adjusting the average particle diameter, for example. The specific surface area tends to increase as the average particle diameter decreases.

(真比重)
負極材は、真比重が2.22以上であってもよく、2.22〜2.27であってもよい。真比重が2.22以上であるとリチウムイオン二次電池の単位体積当たりの充放電容量が増大し、高容量化し易くなる傾向にある。また、真比重が2.22以上であると、黒鉛の結晶性が高くなる結果、電解液との反応性が低くなり、初回充放電効率が向上する傾向にある。
(True specific gravity)
The negative electrode material may have a true specific gravity of 2.22 or more, or may have a specific gravity of 2.22 to 2.27. When the true specific gravity is 2.22 or more, the charge / discharge capacity per unit volume of the lithium ion secondary battery increases, and the capacity tends to be easily increased. Further, when the true specific gravity is 2.22 or more, the crystallinity of the graphite is increased, so that the reactivity with the electrolytic solution is reduced, and the initial charge / discharge efficiency tends to be improved.

負極材の真比重を2.22以上とする方法としては、結晶性の高い天然黒鉛を用いる方法、結晶性を高くした人造黒鉛を用いる方法等が挙げられる。黒鉛の結晶性を高くするには、例えば、2000℃以上の温度で熱処理を施せばよい。
真比重は、比重瓶を用いたブタノール置換法(JIS R 7212−1995)により測定することができる。
Examples of the method for setting the true specific gravity of the negative electrode material to 2.22 or more include a method using natural graphite having high crystallinity and a method using artificial graphite having high crystallinity. In order to increase the crystallinity of graphite, for example, heat treatment may be performed at a temperature of 2000 ° C. or higher.
The true specific gravity can be measured by a butanol displacement method using a specific gravity bottle (JIS R 7212-1995).

(負極材の製造方法)
リチウム二次電池用負極の製造方法は特に制限されないが、例えば、下記のようにして製造できる。少なくとも黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダと、を混合し、粉砕した後、この粉砕物と黒鉛化触媒を混合し、焼成して黒鉛粒子を得る。次いで、この黒鉛粒子に有機系結着剤及び溶剤を添加して混合し、混合物を得る。この混合物を集電体に塗布し、乾燥して溶剤を除去した後、加圧して一体化することで作製できる。
(Production method of negative electrode material)
The method for producing the negative electrode for a lithium secondary battery is not particularly limited, but can be produced, for example, as follows. After at least graphitizable aggregate or graphite and a graphitizable binder are mixed and pulverized, the pulverized material and the graphitizing catalyst are mixed and calcined to obtain graphite particles. Next, an organic binder and a solvent are added to the graphite particles and mixed to obtain a mixture. The mixture can be applied to a current collector, dried to remove the solvent, and then pressurized to be integrated.

黒鉛化可能な骨材としては、例えば、コークス、樹脂の炭化物等が使用できるが、特に制限はない。黒鉛化可能な骨材は粒子状であることが好ましく、ニードルコークス等の黒鉛化しやすいコークスの粒子がより好ましい。黒鉛としては、例えば、天然黒鉛、人造黒鉛等が使用できるが、特に制限はない。黒鉛は粒子状であることが好ましい。   As the graphitizable aggregate, for example, coke, carbide of resin, and the like can be used, but there is no particular limitation. The graphitizable aggregate is preferably in the form of particles, and more preferably coke particles such as needle coke which are easily graphitized. As the graphite, for example, natural graphite, artificial graphite and the like can be used, but there is no particular limitation. The graphite is preferably in the form of particles.

黒鉛化可能な骨材又は黒鉛の粒子径は、作製する黒鉛粒子の粒子径より小さいことが好ましく、平均粒子径が1μm〜80μmであることがより好ましく、1μm〜50μmであることがさらに好ましく、5μm〜50μmであることが特に好ましい。また、黒鉛化可能な骨材又は黒鉛の粒子のアスペクト比は、1.2〜500であることが好ましく、1.5〜300であることがより好ましく、1.5〜100であることがさらに好ましく、2〜50であることが特に好ましい。ここでアスペクト比の測定は、前記と同様の方法で行う。黒鉛化可能な骨材又は黒鉛の粒子のアスペクト比が大きくなると、加圧及び一体化後の負極のX線回折で測定される回折強度比(002)/(110)が大きくなる傾向にあり、1.2以上であると黒鉛粒子質量当りの放電容量が充分に確保される傾向にある。黒鉛化可能な骨材又は黒鉛の平均粒子径は、負極材の平均粒子径(D50)と同様にして測定される。   The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles to be produced, the average particle size is more preferably 1 μm to 80 μm, further preferably 1 μm to 50 μm, It is particularly preferred that it is 5 μm to 50 μm. The aspect ratio of the graphitizable aggregate or graphite particles is preferably from 1.2 to 500, more preferably from 1.5 to 300, and even more preferably from 1.5 to 100. It is particularly preferably 2 to 50. Here, the measurement of the aspect ratio is performed in the same manner as described above. When the aspect ratio of the graphitizable aggregate or graphite particles increases, the diffraction intensity ratio (002) / (110) measured by X-ray diffraction of the negative electrode after pressing and integration tends to increase, When it is 1.2 or more, the discharge capacity per graphite particle mass tends to be sufficiently ensured. The average particle size of the graphitizable aggregate or graphite is measured in the same manner as the average particle size (D50) of the negative electrode material.

バインダとしては、例えば、タール、ピッチ、有機系材料(熱硬化性樹脂、熱可塑性樹脂等)などが挙げられる。バインダの配合量は、黒鉛化可能な骨材又は黒鉛に対し、5質量%〜80質量%とすることが好ましく、10質量%〜80質量%とすることがより好ましく、20質量%〜80質量%とすることがさらに好ましく、30質量%〜80質量%とすることが特に好ましい。バインダの量が上記範囲であると、作製する黒鉛粒子のアスペクト比及び比表面積を所望の範囲に制御しやすい傾向にある。黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、例えばニーダー等を用いて行うことができる。混合は、バインダの軟化点以上の温度で行うことが好ましい。具体的には、例えば、バインダがピッチ、タール等である場合には50℃〜300℃が好ましく、熱硬化性樹脂である場合には20℃〜180℃が好ましい。   Examples of the binder include tar, pitch, and organic materials (such as thermosetting resin and thermoplastic resin). The compounding amount of the binder is preferably 5% by mass to 80% by mass, more preferably 10% by mass to 80% by mass, and more preferably 20% by mass to 80% by mass with respect to the graphitizable aggregate or graphite. %, More preferably 30% by mass to 80% by mass. When the amount of the binder is in the above range, the aspect ratio and the specific surface area of the graphite particles to be produced tend to be easily controlled in a desired range. The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and can be performed using, for example, a kneader. The mixing is preferably performed at a temperature equal to or higher than the softening point of the binder. Specifically, for example, when the binder is pitch, tar, or the like, the temperature is preferably 50C to 300C, and when the binder is a thermosetting resin, the temperature is preferably 20C to 180C.

次に上記混合物を粉砕し、得られた粉砕物と黒鉛化触媒とを混合する。粉砕物の粒子径は1μm〜100μmであることが好ましく、5μm〜80μmであることがより好ましく、5μm〜50μmであることがさらに好ましく、10μm〜30μmであることが特に好ましい。粉砕物の粒子径が100μm以下であると、得られる黒鉛粒子の比表面積が大きくなりすぎない傾向にあり、1μm以上であると、得られる負極の(002)/(110)比が大きくなりすぎない傾向にある。   Next, the above mixture is pulverized, and the obtained pulverized substance and a graphitization catalyst are mixed. The particle size of the pulverized product is preferably from 1 μm to 100 μm, more preferably from 5 μm to 80 μm, even more preferably from 5 μm to 50 μm, particularly preferably from 10 μm to 30 μm. If the particle size of the pulverized product is 100 μm or less, the specific surface area of the obtained graphite particles tends not to be too large, and if it is 1 μm or more, the (002) / (110) ratio of the obtained negative electrode becomes too large. There is no tendency.

粉砕物中の揮発分の割合は、粉砕物全体の0.5質量%〜50質量%であることが好ましく、1質量%〜30質量%であることがより好ましく、5質量%〜20質量%であることがさらに好ましい。揮発分の割合は、粉砕物を800℃で10分間加熱したときの質量減少率から求められる。   The proportion of volatile matter in the pulverized material is preferably 0.5% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass of the whole pulverized material. Is more preferable. The volatile content is determined from the mass reduction rate when the pulverized material is heated at 800 ° C. for 10 minutes.

粉砕物と混合する黒鉛化触媒は、黒鉛化触媒としての機能を有するものであれば特に制限はない。例えば、鉄、ニッケル、チタン、ケイ素、ホウ素等の金属又は半金属、これらを含む化合物(炭化物、酸化物等)などが使用できる。これらの中で、鉄又はケイ素を含む化合物が好ましい。また化合物の化学構造としては炭化物が好ましい。黒鉛化触媒は粒子状であることが好ましく、平均粒子径が0.1μm〜200μmの粒子状であることがより好ましく、平均粒子径が1μm〜100μmの粒子状であることがさらに好ましく、平均粒子径が1μm〜50μmの粒子状であることが特に好ましい。黒鉛化触媒の平均粒子径は、負極材の平均粒子径(D50)と同様にして測定される。   The graphitization catalyst to be mixed with the pulverized material is not particularly limited as long as it has a function as a graphitization catalyst. For example, metals or metalloids such as iron, nickel, titanium, silicon, and boron, and compounds containing these (such as carbides and oxides) can be used. Among these, compounds containing iron or silicon are preferred. Further, the chemical structure of the compound is preferably a carbide. The graphitization catalyst is preferably in the form of particles, more preferably in the form of particles having an average particle diameter of 0.1 μm to 200 μm, and still more preferably in the form of particles having an average particle diameter of 1 μm to 100 μm. It is particularly preferable that the particles have a diameter of 1 μm to 50 μm. The average particle diameter of the graphitization catalyst is measured in the same manner as the average particle diameter (D50) of the negative electrode material.

黒鉛化触媒の添加量は、黒鉛化触媒と混合する粉砕物と黒鉛化触媒の総量を100質量%としたとき、1質量%〜50質量%であることが好ましく、5質量%〜30質量%であることがより好ましく、7質量%〜20質量%であることがさらに好ましい。黒鉛化触媒の量が1質量%以上であると、作製する黒鉛粒子の結晶の発達が良好となり比表面積が大きくなりすぎない傾向にあり、50質量%以下であると、作製する黒鉛粒子中に黒鉛化触媒が残存しにくい傾向にある。   The addition amount of the graphitization catalyst is preferably 1% by mass to 50% by mass, and more preferably 5% by mass to 30% by mass, when the total amount of the pulverized material mixed with the graphitization catalyst and the graphitization catalyst is 100% by mass. Is more preferable, and it is still more preferable that it is 7 to 20 mass%. When the amount of the graphitization catalyst is 1% by mass or more, the crystal growth of the graphite particles to be produced tends to be good and the specific surface area does not tend to be too large. The graphitization catalyst tends to hardly remain.

次に上記混合物を焼成し、黒鉛化処理を行う。焼成を行う前に、粉砕物と黒鉛化触媒の混合物をプレス等により所定形状に成形してもよい。この場合の成形圧力は、1MPa〜300MPa程度が好ましい。焼成は、混合物が酸化しにくい条件で行うことが好ましくい。例えば、窒素雰囲気中、アルゴン雰囲気中、真空中、自己揮発性雰囲気中等で焼成することが好ましい。黒鉛化処理の温度は、2000℃以上であることが好ましく、2500℃以上であることがより好ましく、2700℃以上であればさらに好ましく、2800℃〜3200℃であることが特に好ましい。黒鉛化の温度が2000℃以上であると、黒鉛の結晶の発達が促進され、充分な放電容量が得られる傾向にあるとともに、添加した黒鉛化触媒が作製する黒鉛粒子中に残存しにくい傾向にある。黒鉛粒子中に残存する黒鉛化触媒の量が多すぎると、黒鉛粒子質量当りの放電容量が低下する傾向にある。黒鉛化の温度の上限は特に制限されないが、黒鉛の昇華が生じない程度であることが好ましい。   Next, the above-mentioned mixture is baked and graphitized. Before firing, a mixture of the pulverized product and the graphitization catalyst may be formed into a predetermined shape by pressing or the like. The molding pressure in this case is preferably about 1 MPa to 300 MPa. The firing is preferably performed under conditions where the mixture is hardly oxidized. For example, baking is preferably performed in a nitrogen atmosphere, an argon atmosphere, a vacuum, a self-volatile atmosphere, or the like. The temperature of the graphitization treatment is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, even more preferably 2700 ° C. or higher, and particularly preferably 2800 ° C. to 3200 ° C. When the graphitization temperature is 2000 ° C. or higher, the development of graphite crystals is promoted, and a sufficient discharge capacity tends to be obtained, and the added graphitization catalyst tends not to remain in the graphite particles to be produced. is there. If the amount of the graphitization catalyst remaining in the graphite particles is too large, the discharge capacity per graphite particle mass tends to decrease. Although the upper limit of the graphitization temperature is not particularly limited, it is preferable that the sublimation of graphite does not occur.

混合物を成形した状態で黒鉛化処理を行う場合、黒鉛化後の成形物の見掛け密度は1.65g/cm以下であることが好ましく、1.55g/cm以下であることがより好ましく、1.50g/cm以下であることがさらに好ましく、1.45g/cm以下であることが特に好ましい。黒鉛化後の成形物の密度が1.65g/cm以下であると、作製する黒鉛粒子の比表面積が大きくなりすぎない傾向にある。黒鉛化後の成形物の見掛け密度は、例えば、黒鉛化触媒と混合する粉砕物の粒子径、プレス等により所定形状に成形するときの圧力などにより適宜調整することができる。When mixtures performing graphitization treatment while molding the apparent density of the molded product after graphitization is preferably 1.65 g / cm 3 or less, more preferably 1.55 g / cm 3 or less, more preferably 1.50 g / cm 3 or less, particularly preferably 1.45 g / cm 3 or less. If the density of the molded product after graphitization is 1.65 g / cm 3 or less, the specific surface area of the graphite particles to be produced does not tend to be too large. The apparent density of the molded product after graphitization can be appropriately adjusted by, for example, the particle size of the pulverized product mixed with the graphitization catalyst, the pressure at the time of molding into a predetermined shape by pressing, or the like.

黒鉛化処理後、粉砕し、粒度を調整して負極材とする。粉砕方法は特に制限はなく、例えば、ジェットミル、ハンマーミル、ピンミル等の衝撃粉砕方式をとることができる。   After the graphitization treatment, it is pulverized to adjust the particle size to obtain a negative electrode material. The pulverization method is not particularly limited, and for example, an impact pulverization method such as a jet mill, a hammer mill, and a pin mill can be used.

必要に応じ、黒鉛化処理後の粉砕物の表面に有機化合物を付着させて焼成する工程(以下、「被覆工程」ともいう)を実施してもよい。
被覆工程では、得られた粉砕物の表面に有機化合物を付着させて焼成する。粉砕物に有機化合物を付着させて焼成することで、粉砕物の表面に付着した有機化合物が低結晶性炭素物質に変化する。これにより、粉砕物の表面の一部又は全部に低結晶性炭素物質が被覆される。高結晶性である黒鉛は、SP混成軌道を持つ炭素が規則正しく配列した構造を有しており、リチウムイオンの出入り口の数が充分でない場合がある。これに対して低結晶性炭素物質は、乱層構造であるため、リチウムイオンの出入り口を多く持つ。従って、粉砕物の表面の一部又は全部を低結晶性炭素物質で被覆することで、急速充電等の入出力特性が向上する傾向にある。
If necessary, a step of adhering an organic compound to the surface of the pulverized product after the graphitization treatment and baking it (hereinafter, also referred to as a “coating step”) may be performed.
In the coating step, an organic compound is attached to the surface of the obtained pulverized material, followed by firing. The organic compound attached to the surface of the pulverized material changes to a low-crystalline carbon material by causing the organic compound to adhere to the pulverized material and firing. Thereby, a part or the whole of the surface of the pulverized material is coated with the low crystalline carbon material. Highly crystalline graphite has a structure in which carbons having SP 2 hybrid orbitals are regularly arranged, and the number of entrances and exits of lithium ions may not be sufficient. On the other hand, a low-crystalline carbon material has a turbostratic structure and thus has many entrances and exits of lithium ions. Therefore, by coating a part or the whole of the surface of the pulverized material with the low crystalline carbon material, the input / output characteristics such as quick charging tend to be improved.

粉砕物の表面に有機化合物を付着させる方法は、特に制限されない。具体的には、有機化合物を溶媒に溶解又は分散させた混合溶液に、粉砕物を分散及び混合した後、溶媒を除去して付着させる湿式方式、粉砕物と固体状の有機化合物を混合して得た混合物に力学的エネルギーを加えて付着させる乾式方式、粉砕物と固体状の有機化合物を混合して得た混合物を不活性雰囲気下で焼成する方法、CVD法等の気相方式などが挙げられる。   The method for attaching the organic compound to the surface of the pulverized material is not particularly limited. Specifically, in a mixed solution in which an organic compound is dissolved or dispersed in a solvent, after dispersing and mixing the pulverized material, a wet method in which the solvent is removed and adhered, and the pulverized material and a solid organic compound are mixed. Examples include a dry method in which mechanical energy is applied to the obtained mixture to adhere thereto, a method in which a mixture obtained by mixing a pulverized material and a solid organic compound is fired in an inert atmosphere, and a gas phase method such as a CVD method. Can be

有機化合物は、焼成により低結晶性炭素物質に変化するもの(炭素前駆体)であれば特に制限されない。具体的には、石油系ピッチ、ナフタレン、アントラセン、フェナントロレン、コールタール、フェノール樹脂、ポリビニルアルコール等が挙げられる。有機化合物は1種を単独で用いても、2種以上を併用してもよい。   The organic compound is not particularly limited as long as it changes into a low-crystalline carbon material by firing (carbon precursor). Specific examples include petroleum pitch, naphthalene, anthracene, phenanthrolen, coal tar, phenol resin, polyvinyl alcohol, and the like. One organic compound may be used alone, or two or more organic compounds may be used in combination.

表面に有機化合物が付着した粉砕物を焼成する際の温度は、粉砕物の表面に付着させた有機化合物が炭素化する温度であれば特に制限されない。例えば、焼成する際の温度は750℃〜2000℃の範囲内であってよい。焼成は窒素雰囲気等の不活性ガス雰囲気中で行うことが好ましい。   The temperature at which the pulverized material having the organic compound attached to the surface is fired is not particularly limited as long as the organic compound attached to the surface of the pulverized material is carbonized. For example, the temperature for firing may be in the range of 750C to 2000C. The firing is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere.

負極材は、前述した複合粒子及び黒鉛粒子とは形状及び物性の少なくとも一方が異なる炭素質粒子又は吸蔵金属粒子を含んでいてもよい。炭素質粒子としては、例えば、天然黒鉛粒子、人造黒鉛粒子、低結晶性炭素物質で被覆された黒鉛粒子、樹脂被覆黒鉛粒子、及び非晶質炭素粒子等が挙げられる。吸蔵金属粒子としては、例えば、Al、Si、Ga、Ge、In、Sn、Sb、Ag等のリチウムと合金化する元素を含む粒子が挙げられる。   The negative electrode material may include carbonaceous particles or occluded metal particles different from at least one of the above-described composite particles and graphite particles in shape and physical properties. Examples of the carbonaceous particles include natural graphite particles, artificial graphite particles, graphite particles coated with a low-crystalline carbon material, resin-coated graphite particles, and amorphous carbon particles. Examples of the occluded metal particles include particles containing an element that alloys with lithium, such as Al, Si, Ga, Ge, In, Sn, Sb, and Ag.

<リチウムイオン二次電池用負極>
本開示の一実施形態であるリチウムイオン二次電池用負極(以下、「負極」ともいう)は、集電体と、集電体上に形成された上述の負極材を含む負極材層とを有する。
<Negative electrode for lithium ion secondary battery>
A negative electrode for a lithium ion secondary battery (hereinafter, also referred to as a “negative electrode”) according to an embodiment of the present disclosure includes a current collector and a negative electrode material layer including the above-described negative electrode material formed on the current collector. Have.

集電体の材質及び形状は、特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等が挙げられる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も集電体として使用可能である。   The material and shape of the current collector are not particularly limited. For example, a band-shaped foil, a band-shaped perforated foil, a band-shaped mesh, or the like made of a metal or alloy such as aluminum, copper, nickel, titanium, and stainless steel can be used. In addition, a porous material such as a porous metal (foam metal) or carbon paper can be used as the current collector.

負極材層を集電体上に形成する方法は、特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により、負極材組成物を集電体上に付与して形成することができる。負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。   The method for forming the negative electrode material layer on the current collector is not particularly limited. For example, the negative electrode material composition may be collected by a known method such as a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, or a screen printing method. It can be formed by being applied on top. When integrating the negative electrode material layer and the current collector, a known method such as roll, press, or a combination thereof can be used.

負極材組成物としては、例えば、上述した負極材と、有機結着材と、溶剤とを含むものを用いることができる。負極材組成物は、例えば、スラリー、ペースト等の状態であってよい。   As the negative electrode material composition, for example, those containing the above-described negative electrode material, an organic binder, and a solvent can be used. The negative electrode material composition may be in a state of, for example, a slurry or a paste.

負極材組成物に含まれる有機結着材は、特に制限されない。例えば、スチレン−ブタジエンゴム;エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等)及びエチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)に由来する(メタ)アクリル共重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリロニトリルとは、アクリロニトリル又はメタクリロニトリルを意味する。   The organic binder contained in the negative electrode material composition is not particularly limited. For example, styrene-butadiene rubber; ethylenically unsaturated carboxylic acid esters (such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate); (Meth) acrylic copolymers derived from saturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.); polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, High molecular compounds such as polyimide and polyamide imide are exemplified. In addition, (meth) acrylate means acrylate or methacrylate, and (meth) acrylonitrile means acrylonitrile or methacrylonitrile.

負極材組成物に含まれる溶剤は、特に制限されない。例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等の有機溶剤が挙げられる。   The solvent contained in the negative electrode material composition is not particularly limited. For example, organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, γ-butyrolactone and the like can be mentioned.

負極材組成物は、必要に応じて、粘度を調整するための増粘材を含んでいてもよい。増粘材としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。   The negative electrode material composition may include a thickener for adjusting the viscosity, if necessary. Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, and casein.

負極材組成物は、必要に応じて、導電助剤を含んでいてもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。   The negative electrode material composition may contain a conductive auxiliary as needed. Examples of the conductive assistant include carbon black, graphite, acetylene black, conductive oxides, and conductive nitrides.

負極材組成物を集電体上に付与して負極材層を形成する場合、必要に応じて熱処理を行ってもよい。熱処理を行うことにより溶剤が除去され、有機結着材の硬化による高強度化が進み、粒子間及び粒子と集電体との間の密着性が向上する傾向にある。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。   When the negative electrode material composition is provided on the current collector to form the negative electrode material layer, heat treatment may be performed as necessary. By performing the heat treatment, the solvent is removed, the strength of the organic binder is increased by hardening, and the adhesion between the particles and between the particles and the current collector tend to be improved. The heat treatment may be performed in an inert atmosphere such as helium, argon, or nitrogen or in a vacuum atmosphere to prevent oxidation of the current collector during the treatment.

負極は、高密度化のために加圧処理(プレス)を行ってもよい。加圧処理することにより、電極密度を所望の範囲に調整することができる。電極密度は、1.5g/cm〜1.9g/cmであってもよく、1.6g/cm〜1.8g/cmであってもよい。 The negative electrode may be subjected to a pressure treatment (press) to increase the density. By performing the pressure treatment, the electrode density can be adjusted to a desired range. Electrode density may be 1.5g / cm 3 ~1.9g / cm 3 , may be 1.6g / cm 3 ~1.8g / cm 3 .

<リチウムイオン二次電池>
本開示の一実施形態であるリチウムイオン二次電池は、上述した負極を有する。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成を有していてよい。
<Lithium ion secondary battery>
A lithium ion secondary battery according to an embodiment of the present disclosure has the above-described negative electrode. The lithium ion secondary battery may have a configuration in which, for example, a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolyte containing an electrolyte is injected.

正極は、負極と同様にして、集電体表面上に正極材層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等を用いることができる。   The positive electrode can be obtained by forming a positive electrode material layer on the current collector surface in the same manner as the negative electrode. As the current collector, a band-shaped foil, a band-shaped perforated foil, a band-shaped mesh, or the like made of a metal or alloy such as aluminum, titanium, and stainless steel can be used.

正極材層に用いる正極材は、特に制限されない。正極材としては、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が挙げられる。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(MはCo、Ni、Mn又はFeである)、導電性ポリマー(ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等)、多孔質炭素などが挙げられる。これらの正極材は、1種を単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)は、容量が高いために正極材として好適である。The positive electrode material used for the positive electrode material layer is not particularly limited. Examples of the positive electrode material include metal compounds, metal oxides, metal sulfides, and conductive polymer materials capable of doping or intercalating lithium ions. Specifically, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), and these mixed oxide (LiCo x Ni y Mn z O 2, x + y + z = 1,0 <x, 0 <y; LiNi 2-x Mn x O 4, 0 <x ≦ 2), lithium manganese spinel (LiMn 2 O 4), lithium vanadium compounds, V 2 O 5, V 6 O 13, VO 2, MnO 2, TiO 2, MoV 2 O 8, TiS 2, V 2 S 5, VS 2, MoS 2, MoS 3, Cr 3 O 8, Cr 2 O 8, olivine LiMPO 2 (M is Co, Ni, Mn Or Fe), a conductive polymer (polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc.), porous carbon, and the like. It is. These cathode materials can be used alone or in combination of two or more. Among them, lithium nickelate (LiNiO 2) and its composite oxide (LiCo x Ni y Mn z O 2, x + y + z = 1,0 <x, 0 <y; LiNi 2-x Mn x O 4, 0 <x ≦ 2 ) Is suitable as a positive electrode material because of its high capacity.

セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム、それらの組み合わせなどが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。   Examples of the separator include nonwoven fabrics, cloths, microporous films, and combinations thereof mainly containing polyolefins such as polyethylene and polypropylene. In the case where the lithium ion secondary battery has a structure in which the positive electrode and the negative electrode do not come into contact, it is not necessary to use a separator.

電解液としては、電解質を非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。電解質としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩が挙げられる。非水系溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等が挙げられる。電解質と非水系溶剤は、それぞれ1種を単独で又は2種以上を組み合わせて使用することができる。中でも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、充放電サイクル特性が向上するために好適である。As the electrolytic solution, a so-called organic electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent can be used. Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 . Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine- 2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl Examples thereof include tetrahydrofuran, 1,3-dioxolan, methyl acetate, and ethyl acetate. The electrolyte and the non-aqueous solvent can be used each alone or in combination of two or more. Among them, an electrolytic solution containing fluoroethylene carbonate tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and is suitable for improving charge / discharge cycle characteristics.

リチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。前述した負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。   The form of the lithium ion secondary battery is not particularly limited, and examples thereof include a paper battery, a button battery, a coin battery, a stacked battery, a cylindrical battery, and a square battery. The above-described negative electrode material can be applied to all electrochemical devices such as hybrid capacitors having a charge / discharge mechanism for inserting and removing lithium ions, in addition to the lithium ion secondary battery.

以下、実施例に基づき上記実施形態を更に詳細に説明する。なお、上記実施形態は以下の実施例によって限定されるものではない。   Hereinafter, the above embodiment will be described in more detail with reference to examples. The above embodiment is not limited by the following examples.

[負極材Aの作製]
平均粒子径25μmのコークス粉末50質量部と、コールタールピッチ30質量部を230℃で2時間混合した。次いで、この混合物を平均粒子径25μmに粉砕した。その後、この粉砕物80質量部と平均粒子径25μmの炭化ケイ素20質量部をブレンダーで混合して混合物を得た。この混合物を金型に入れ、100MPaでプレス成形し、直方体に成形した。この成形体を窒素雰囲気中で1000℃で熱処理した後、さらに窒素雰囲気中で3000℃で熱処理し、黒鉛化した成形体を得た。さらにこの黒鉛化した成形体を粉砕して黒鉛粒子(負極材A)を得た。
[Preparation of negative electrode material A]
50 parts by mass of coke powder having an average particle size of 25 μm and 30 parts by mass of coal tar pitch were mixed at 230 ° C. for 2 hours. Next, this mixture was pulverized to an average particle diameter of 25 μm. Thereafter, 80 parts by mass of the pulverized product and 20 parts by mass of silicon carbide having an average particle diameter of 25 μm were mixed with a blender to obtain a mixture. This mixture was put into a mold, press-molded at 100 MPa, and formed into a rectangular parallelepiped. After heat-treating this compact at 1000 ° C. in a nitrogen atmosphere, it was further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a graphitized compact. The graphitized compact was further pulverized to obtain graphite particles (negative electrode material A).

[負極材Bの作製]
平均粒子径10μmのコークス粉末50質量部と、コールタールピッチ30質量部を230℃で2時間混合した。次いで、この混合物を平均粒子径25μmに粉砕した。その後、この粉砕物80質量部と平均粒子径25μmの炭化ケイ素20質量部をブレンダーで混合して混合物を得た。この混合物を金型に入れ、100MPaでプレス成形し、直方体に成形した。この成形体を窒素雰囲気中で1000℃で熱処理した後、さらに窒素雰囲気中で3000℃で熱処理し、黒鉛化した成形体を得た。さらにこの黒鉛化した成形体を粉砕して黒鉛粒子(負極材B)を得た。
[Preparation of negative electrode material B]
50 parts by mass of coke powder having an average particle diameter of 10 μm and 30 parts by mass of coal tar pitch were mixed at 230 ° C. for 2 hours. Next, this mixture was pulverized to an average particle diameter of 25 μm. Thereafter, 80 parts by mass of the pulverized product and 20 parts by mass of silicon carbide having an average particle diameter of 25 μm were mixed with a blender to obtain a mixture. This mixture was put into a mold, press-molded at 100 MPa, and formed into a rectangular parallelepiped. After heat-treating this compact at 1000 ° C. in a nitrogen atmosphere, it was further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a graphitized compact. The graphitized compact was further pulverized to obtain graphite particles (negative electrode material B).

[負極材Cの作製]
負極材Aと負極材Bを、質量比(負極材A:負極材B)が50:50となるように混合して負極材Cを得た。
[Preparation of negative electrode material C]
Negative electrode material C was obtained by mixing negative electrode material A and negative electrode material B such that the mass ratio (negative electrode material A: negative electrode material B) was 50:50.

上記で得られた負極材のD10、D50、D90及びQ3を測定した結果を表2に示す。あわせて、比表面積、黒鉛結晶の層間距離d(002)、真比重を測定した結果を表2に示す。測定はそれぞれ前述した方法により行った。あわせて、注液時間を後述する方法により測定した結果を表2に示す。なお、負極材を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。   Table 2 shows the results of measuring D10, D50, D90 and Q3 of the negative electrode material obtained above. In addition, Table 2 shows the measurement results of the specific surface area, the interlayer distance d (002) of the graphite crystal, and the true specific gravity. Each measurement was performed by the method described above. In addition, Table 2 shows the results of the injection time measured by the method described below. In addition, when the negative electrode material was observed with a scanning electron microscope, it was found that a plurality of flat graphite particles contained composite particles that were aggregated or bonded so that the orientation planes were non-parallel.

負極材の注液時間は、下記のようにして測定した。上記で得られた負極材98質量部、スチレンブタジエンゴム(BM−400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部を混練してスラリー状の負極材組成物を調製した。
これを105℃で乾燥し、乳鉢を用いて粉砕した。次いで、粉砕粉を200メッシュの標準篩で篩い、測定試料を作製した。得られた測定試料を、錠剤成型機(錠剤底面積:1.327cm)を用いて錠剤化した。具体的には、錠剤成型機に測定試料を1.0g投入し、錠剤が所定の密度(1.75g/cm)になる圧力を30秒間加えて作製した。次いで、作製した錠剤の表面に、電解液(1.0MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(体積比:3/7)とビニレンカーボネート(0.5質量%)との混合液)を130μL滴下し、電解液が染み込むまでの時間を測定した。
The injection time of the negative electrode material was measured as described below. 98 parts by mass of the negative electrode material obtained above, 1 part by mass of styrene-butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC2200, manufactured by Daicel Corporation) are kneaded to form a slurry. A negative electrode material composition was prepared.
This was dried at 105 ° C. and pulverized using a mortar. Next, the pulverized powder was sieved with a 200-mesh standard sieve to prepare a measurement sample. The obtained measurement sample was tableted using a tablet molding machine (tablet bottom area: 1.327 cm 2 ). Specifically, 1.0 g of a measurement sample was charged into a tablet molding machine, and a pressure at which a tablet had a predetermined density (1.75 g / cm 3 ) was applied for 30 seconds. Next, an electrolytic solution (a mixture of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass)) was applied to the surface of the prepared tablet. 130 μL was added dropwise, and the time until the electrolyte solution permeated was measured.

[負極の作製]
上記で得られた負極材98質量部、スチレンブタジエンゴム(BM−400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部を混練してスラリー状の負極材組成物を調製した。これを集電体(厚さ10μmの銅箔)に塗布し、105℃で1時間大気中で乾燥して、負極材層を形成した。次いで、ロールプレスにて電極密度が1.70g/cmとなるように加圧処理を行い、負極材層を集電体と一体化して、負極を作製した。
[Preparation of negative electrode]
98 parts by mass of the negative electrode material obtained above, 1 part by mass of styrene-butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC2200, manufactured by Daicel Corporation) are kneaded to form a slurry. A negative electrode material composition was prepared. This was applied to a current collector (a copper foil having a thickness of 10 μm) and dried at 105 ° C. for 1 hour in the air to form a negative electrode material layer. Next, pressure treatment was performed by a roll press so that the electrode density became 1.70 g / cm 3 , and the negative electrode material layer was integrated with the current collector to produce a negative electrode.

[リチウムイオン二次電池の作製]
上記で得られた負極と、正極としての金属リチウムとを用いてリチウムイオン二次電池(2016型コインセル)を作製した。電解液としては、1.0MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(体積比:3/7)とビニレンカーボネート(0.5質量%)との混合液を用いた。セパレータとしては、厚さ25μmのポリエチレン製微孔膜を用いた。スペーサとしては、厚さ230μm、直径14mmの円形の銅板を用いた。
[Production of lithium ion secondary battery]
A lithium ion secondary battery (2016 type coin cell) was produced using the negative electrode obtained above and metallic lithium as a positive electrode. As an electrolytic solution, a mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass) was used. As the separator, a 25 μm-thick polyethylene microporous membrane was used. As the spacer, a circular copper plate having a thickness of 230 μm and a diameter of 14 mm was used.

[初回充放電容量]
初回充放電容量(mAh/g)の測定は、試料質量:15.4mg、電極面積:1.54cm、測定温度:25℃、電極密度:1.70g/cm、CC−CV充電条件:定電流充電0.543mA、定電圧充電0V(Li/Li)、カット電流0.053mA、CC放電条件:定電流放電0.543mA、カット電圧1.5V(Li/Li)の条件で行った。結果を表3に示す。
[Initial charge / discharge capacity]
The initial charge / discharge capacity (mAh / g) was measured as follows: sample weight: 15.4 mg, electrode area: 1.54 cm 2 , measurement temperature: 25 ° C., electrode density: 1.70 g / cm 3 , CC-CV charge conditions: Constant current charge 0.543 mA, constant voltage charge 0 V (Li / Li + ), cut current 0.053 mA, CC discharge condition: performed under the conditions of constant current discharge 0.543 mA, cut voltage 1.5 V (Li / Li + ). Was. Table 3 shows the results.

[初回充放電効率]
初回充放電効率(%)を下記式により求めた。結果を表3に示す。
初回充放電効率=初回放電容量/初回充電容量×100
[Initial charge / discharge efficiency]
Initial charge / discharge efficiency (%) was determined by the following equation. Table 3 shows the results.
Initial charge / discharge efficiency = Initial discharge capacity / First charge capacity x 100

[不可逆容量]
不可逆容量(mAh/g)を下記式により求めた。結果を表3に示す。
不可逆容量=初回充電容量−初回放電容量
[Irreversible capacity]
The irreversible capacity (mAh / g) was determined by the following equation. Table 3 shows the results.
Irreversible capacity = Initial charge capacity-Initial discharge capacity

[低温条件での充電容量維持率]
(1)試料質量:15.4mg、電極面積:1.54cm、電極密度:1.70g/cm、測定温度:25℃、CC−CV充電条件:定電流充電0.543mA、定電圧充電0V(Li/Li)、カット電流0.053mA、CC放電条件:定電流放電0.543mA、カット電圧1.5V(Li/Li)の条件で2サイクル充放電を行った。
(2)次いで、測定温度:0℃において、CC−CV充電条件:定電流充電0.543mA、定電圧充電0V(Li/Li)、カット電流0.053mA、CC放電条件:定電流放電0.543mA、カット電圧1.5V(Li/Li)の条件で1サイクル充放電を行った。
(3)25℃及び0℃でのCC充電容量(mAh/g)の容量を求め、下記式にて低温条件での充電容量維持率を算出した。結果を表3に示す。
低温条件での充電容量維持率=0℃におけるCC充電容量/25℃におけるCC充電容量×100
[Charge capacity retention rate under low temperature conditions]
(1) Sample mass: 15.4 mg, electrode area: 1.54 cm 2 , electrode density: 1.70 g / cm 3 , measurement temperature: 25 ° C, CC-CV charging conditions: constant current charging 0.543 mA, constant voltage charging Two-cycle charge / discharge was performed under the conditions of 0 V (Li / Li + ), a cut current of 0.053 mA, and CC discharge conditions: a constant current discharge of 0.543 mA, and a cut voltage of 1.5 V (Li / Li + ).
(2) Next, at a measurement temperature of 0 ° C., CC-CV charge conditions: constant current charge 0.543 mA, constant voltage charge 0 V (Li / Li + ), cut current 0.053 mA, CC discharge conditions: constant current discharge 0 One cycle charge / discharge was performed under the conditions of .543 mA and a cut voltage of 1.5 V (Li / Li + ).
(3) The capacity of the CC charge capacity (mAh / g) at 25 ° C. and 0 ° C. was determined, and the charge capacity retention rate under low temperature conditions was calculated by the following equation. Table 3 shows the results.
Charge capacity retention rate under low temperature condition = 0 CC charge capacity at 0 ° C./CC charge capacity at 25 ° C. × 100

表3の結果に示されるように、体積基準の粒度分布が上述した条件を満たす負極材を用いた実施例のリチウムイオン二次電池は、体積基準の粒度分布が上述した条件を満たさない負極材を用いた比較例のリチウムイオン二次電池に比べて低温条件での充放電容量維持率が高く、充電性能の安定性に優れていた。また、実施例のリチウムイオン二次電池の初回充放電効率は、比較例のリチウムイオン二次電池と同等の水準であった。   As shown in the results of Table 3, the lithium ion secondary battery of the example using the negative electrode material whose volume-based particle size distribution satisfies the above-described conditions is a negative electrode material whose volume-based particle size distribution does not satisfy the above-described conditions. The charge / discharge capacity retention ratio under low-temperature conditions was higher than that of the lithium ion secondary battery of Comparative Example using, and the stability of charging performance was excellent. Further, the initial charge / discharge efficiency of the lithium ion secondary battery of the example was at the same level as that of the lithium ion secondary battery of the comparative example.

Claims (7)

体積基準の粒度分布において、下記(1)〜(4)を満たすリチウムイオン二次電池用負極材。
(1)小径側からの累積が10%となるときの粒子径(D10)が5μm〜14μmである
(2)小径側からの累積が50%となるときの粒子径(D50)が15μm〜27μmである
(3)小径側からの累積が90%となるときの粒子径(D90)が20μm〜55μmである
(4)9.516μm以下の粒子径の積算値Q3が4%〜30%である。
A negative electrode material for a lithium ion secondary battery that satisfies the following (1) to (4) in a volume-based particle size distribution.
(1) The particle diameter (D10) when the accumulation from the small diameter side becomes 10% is 5 μm to 14 μm. (2) The particle diameter (D50) when the accumulation from the small diameter side becomes 50% is 15 μm to 27 μm. (3) The particle diameter (D90) when the accumulation from the small diameter side becomes 90% is 20 μm to 55 μm. (4) The integrated value Q3 of the particle diameter of 9.516 μm or less is 4% to 30%. .
複数の扁平状の黒鉛粒子がその配向面が非平行となるように集合又は結合している粒子を含む、請求項1に記載のリチウムイオン二次電池用負極材。   2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the negative electrode material for a lithium ion secondary battery includes particles in which a plurality of flat graphite particles are aggregated or bonded such that their orientation planes are non-parallel. CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下である、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。   3. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein an interlayer distance d (002) of graphite crystals determined by X-ray diffraction measurement using CuKα radiation is 3.38 ° or less. 4. 窒素ガス吸着のBET法による比表面積が1.0m/g〜5.0m/gである、請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。The specific surface area by BET method of nitrogen gas adsorption is 1.0m 2 /g~5.0m 2 / g, a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3. 真比重が2.22以上である、請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, having a true specific gravity of 2.22 or more. 集電体と、集電体上に形成された請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。   A lithium ion secondary battery comprising: a current collector; and a negative electrode material layer including the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5 formed on the current collector. For negative electrode. 請求項6に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 6.
JP2019515075A 2017-04-28 2017-04-28 Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries Active JP6939880B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017099 WO2018198377A1 (en) 2017-04-28 2017-04-28 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPWO2018198377A1 true JPWO2018198377A1 (en) 2020-03-12
JP6939880B2 JP6939880B2 (en) 2021-09-22

Family

ID=63920197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019515075A Active JP6939880B2 (en) 2017-04-28 2017-04-28 Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries

Country Status (2)

Country Link
JP (1) JP6939880B2 (en)
WO (1) WO2018198377A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901088A4 (en) * 2018-12-19 2022-02-23 Posco Method for producing negative electrode active material for lithium secondary battery
EP4007017B1 (en) * 2019-07-31 2023-03-29 Resonac Corporation Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521404A (en) * 2008-04-21 2011-07-21 ポスコ ケムテック Cathode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method for producing the same
WO2012077268A1 (en) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
WO2014103281A1 (en) * 2012-12-26 2014-07-03 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2017063040A (en) * 2016-11-01 2017-03-30 昭和電工株式会社 Negative electrode material for lithium ion battery and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521404A (en) * 2008-04-21 2011-07-21 ポスコ ケムテック Cathode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method for producing the same
WO2012077268A1 (en) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
WO2014103281A1 (en) * 2012-12-26 2014-07-03 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2017063040A (en) * 2016-11-01 2017-03-30 昭和電工株式会社 Negative electrode material for lithium ion battery and use thereof

Also Published As

Publication number Publication date
WO2018198377A1 (en) 2018-11-01
JP6939880B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6555051B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555050B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP4007017B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2019026265A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226431B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6218348B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5885919B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6319260B2 (en) Lithium ion secondary battery and manufacturing method thereof
TWI853980B (en) Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP7238885B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2024195011A1 (en) Graphite carbon material for lithium-ion secondary battery anode, anode material for lithium-ion secondary battery, anode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350